
MySQL 5.7 Reference Manual

Abstract

This is the MySQL™ Reference Manual. It documents MySQL 5.7 through 5.7.11.

MySQL Cluster is currently not supported in MySQL 5.7. For information about MySQL Cluster, please see
MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4.

MySQL 5.7 features. This manual describes features that are not included in every edition of MySQL 5.7; such
features may not be included in the edition of MySQL 5.7 licensed to you. If you have any questions about the
features included in your edition of MySQL 5.7, refer to your MySQL 5.7 license agreement or contact your Oracle
sales representative.

For notes detailing the changes in each release, see the MySQL 5.7 Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL
Documentation Library.

Document generated on: 2016-01-07 (revision: 46020)

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc

iii

Table of Contents
Preface and Legal Notices .. xxiii
1 General Information ... 1

1.1 About This Manual ... 2
1.2 Typographical and Syntax Conventions ... 2
1.3 Overview of the MySQL Database Management System .. 4

1.3.1 What is MySQL? ... 4
1.3.2 The Main Features of MySQL .. 5
1.3.3 History of MySQL .. 8

1.4 What Is New in MySQL 5.7 .. 9
1.5 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL
5.7 ... 20
1.6 MySQL Information Sources ... 27

1.6.1 MySQL Mailing Lists .. 27
1.6.2 MySQL Community Support at the MySQL Forums .. 30
1.6.3 MySQL Community Support on Internet Relay Chat (IRC) 30
1.6.4 MySQL Enterprise ... 30

1.7 How to Report Bugs or Problems .. 31
1.8 MySQL Standards Compliance .. 35

1.8.1 MySQL Extensions to Standard SQL .. 36
1.8.2 MySQL Differences from Standard SQL .. 39
1.8.3 How MySQL Deals with Constraints .. 41

1.9 Credits ... 44
1.9.1 Contributors to MySQL ... 44
1.9.2 Documenters and translators .. 48
1.9.3 Packages that support MySQL ... 50
1.9.4 Tools that were used to create MySQL ... 50
1.9.5 Supporters of MySQL .. 51

2 Installing and Upgrading MySQL .. 53
2.1 General Installation Guidance ... 55

2.1.1 Which MySQL Version and Distribution to Install .. 55
2.1.2 How to Get MySQL ... 57
2.1.3 Verifying Package Integrity Using MD5 Checksums or GnuPG 57
2.1.4 Installation Layouts .. 67
2.1.5 Compiler-Specific Build Characteristics ... 67

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 67
2.3 Installing MySQL on Microsoft Windows .. 70

2.3.1 MySQL Installation Layout on Microsoft Windows .. 72
2.3.2 Choosing An Installation Package ... 73
2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installer 74
2.3.4 MySQL Notifier .. 101
2.3.5 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive 112
2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation 120
2.3.7 Windows Postinstallation Procedures .. 121
2.3.8 Upgrading MySQL on Windows .. 124

2.4 Installing MySQL on OS X .. 125
2.4.1 General Notes on Installing MySQL on OS X ... 125
2.4.2 Installing MySQL on OS X Using Native Packages ... 126
2.4.3 Installing a MySQL Launch Daemon ... 131
2.4.4 Installing and Using the MySQL Preference Pane .. 134

2.5 Installing MySQL on Linux .. 138
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository 139
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository
... 143
2.5.3 Installing MySQL on Linux Using the MySQL APT Repository 146
2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository 146

MySQL 5.7 Reference Manual

iv

2.5.5 Installing MySQL on Linux Using RPM Packages ... 146
2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle 151
2.5.7 Installing MySQL on Linux from the Native Software Repositories 152
2.5.8 Installing MySQL on Linux with docker .. 156
2.5.9 Installing MySQL on Linux with juju ... 156
2.5.10 Managing MySQL Server with systemd ... 156

2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ... 159
2.7 Installing MySQL on Solaris and OpenSolaris ... 159

2.7.1 Installing MySQL on Solaris Using a Solaris PKG .. 160
2.7.2 Installing MySQL on OpenSolaris Using IPS .. 161

2.8 Installing MySQL on FreeBSD ... 162
2.9 Installing MySQL from Source ... 163

2.9.1 MySQL Layout for Source Installation ... 164
2.9.2 Installing MySQL Using a Standard Source Distribution 164
2.9.3 Installing MySQL Using a Development Source Tree .. 169
2.9.4 MySQL Source-Configuration Options ... 170
2.9.5 Dealing with Problems Compiling MySQL .. 187
2.9.6 MySQL Configuration and Third-Party Tools .. 189

2.10 Postinstallation Setup and Testing ... 189
2.10.1 Initializing the Data Directory .. 189
2.10.2 Starting the Server ... 197
2.10.3 Testing the Server ... 200
2.10.4 Securing the Initial MySQL Accounts ... 202
2.10.5 Starting and Stopping MySQL Automatically .. 206

2.11 Upgrading or Downgrading MySQL .. 207
2.11.1 Upgrading MySQL .. 207
2.11.2 Downgrading MySQL ... 221
2.11.3 Checking Whether Tables or Indexes Must Be Rebuilt 228
2.11.4 Rebuilding or Repairing Tables or Indexes ... 228
2.11.5 Copying MySQL Databases to Another Machine .. 230

2.12 Environment Variables .. 231
2.13 Perl Installation Notes ... 232

2.13.1 Installing Perl on Unix .. 232
2.13.2 Installing ActiveState Perl on Windows .. 233
2.13.3 Problems Using the Perl DBI/DBD Interface ... 234

3 Tutorial ... 237
3.1 Connecting to and Disconnecting from the Server .. 237
3.2 Entering Queries ... 238
3.3 Creating and Using a Database ... 241

3.3.1 Creating and Selecting a Database ... 242
3.3.2 Creating a Table .. 243
3.3.3 Loading Data into a Table .. 244
3.3.4 Retrieving Information from a Table .. 245

3.4 Getting Information About Databases and Tables ... 258
3.5 Using mysql in Batch Mode .. 259
3.6 Examples of Common Queries .. 261

3.6.1 The Maximum Value for a Column .. 261
3.6.2 The Row Holding the Maximum of a Certain Column .. 261
3.6.3 Maximum of Column per Group .. 262
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 262
3.6.5 Using User-Defined Variables ... 263
3.6.6 Using Foreign Keys ... 263
3.6.7 Searching on Two Keys ... 265
3.6.8 Calculating Visits Per Day .. 265
3.6.9 Using AUTO_INCREMENT ... 266

3.7 Using MySQL with Apache .. 268
4 MySQL Programs .. 269

4.1 Overview of MySQL Programs .. 270

MySQL 5.7 Reference Manual

v

4.2 Using MySQL Programs ... 274
4.2.1 Invoking MySQL Programs ... 274
4.2.2 Connecting to the MySQL Server .. 274
4.2.3 Specifying Program Options ... 278
4.2.4 Using Options on the Command Line .. 279
4.2.5 Program Option Modifiers ... 280
4.2.6 Using Option Files ... 281
4.2.7 Command-Line Options that Affect Option-File Handling 285
4.2.8 Using Options to Set Program Variables ... 286
4.2.9 Option Defaults, Options Expecting Values, and the = Sign 287
4.2.10 Setting Environment Variables .. 291

4.3 MySQL Server and Server-Startup Programs ... 292
4.3.1 mysqld — The MySQL Server ... 292
4.3.2 mysqld_safe — MySQL Server Startup Script ... 292
4.3.3 mysql.server — MySQL Server Startup Script ... 297
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 300

4.4 MySQL Installation-Related Programs .. 303
4.4.1 comp_err — Compile MySQL Error Message File .. 304
4.4.2 mysql_install_db — Initialize MySQL Data Directory 304
4.4.3 mysql_plugin — Configure MySQL Server Plugins ... 314
4.4.4 mysql_secure_installation — Improve MySQL Installation Security 316
4.4.5 mysql_ssl_rsa_setup — Create SSL/RSA Files ... 319
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables 322
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables 322

4.5 MySQL Client Programs ... 329
4.5.1 mysql — The MySQL Command-Line Tool ... 329
4.5.2 mysqladmin — Client for Administering a MySQL Server 354
4.5.3 mysqlcheck — A Table Maintenance Program .. 362
4.5.4 mysqldump — A Database Backup Program .. 370
4.5.5 mysqlimport — A Data Import Program ... 391
4.5.6 mysqlpump — A Database Backup Program .. 397
4.5.7 mysqlshow — Display Database, Table, and Column Information 411
4.5.8 mysqlslap — Load Emulation Client ... 416

4.6 MySQL Administrative and Utility Programs .. 424
4.6.1 innochecksum — Offline InnoDB File Checksum Utility 424
4.6.2 myisam_ftdump — Display Full-Text Index information 430
4.6.3 myisamchk — MyISAM Table-Maintenance Utility ... 431
4.6.4 myisamlog — Display MyISAM Log File Contents .. 447
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 448
4.6.6 mysql_config_editor — MySQL Configuration Utility 454
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files 460
4.6.8 mysqldumpslow — Summarize Slow Query Log Files 481

4.7 MySQL Program Development Utilities .. 483
4.7.1 mysql_config — Display Options for Compiling Clients 483
4.7.2 my_print_defaults — Display Options from Option Files 485
4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 486

4.8 Miscellaneous Programs ... 486
4.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output 486
4.8.2 perror — Explain Error Codes ... 486
4.8.3 replace — A String-Replacement Utility .. 487
4.8.4 resolveip — Resolve Host name to IP Address or Vice Versa 488
4.8.5 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output 488

5 MySQL Server Administration .. 491
5.1 The MySQL Server ... 491

5.1.1 Server Option and Variable Reference .. 492
5.1.2 Server Configuration Defaults ... 529
5.1.3 Server Command Options .. 530
5.1.4 Server System Variables .. 564

MySQL 5.7 Reference Manual

vi

5.1.5 Using System Variables ... 706
5.1.6 Server Status Variables .. 721
5.1.7 Server SQL Modes .. 751
5.1.8 Server Plugins ... 768
5.1.9 IPv6 Support ... 792
5.1.10 Server-Side Help .. 797
5.1.11 Server Response to Signals ... 797
5.1.12 The Server Shutdown Process .. 798

5.2 MySQL Server Logs ... 799
5.2.1 Selecting General Query and Slow Query Log Output Destinations 800
5.2.2 The Error Log .. 802
5.2.3 The General Query Log ... 804
5.2.4 The Binary Log .. 806
5.2.5 The Slow Query Log .. 817
5.2.6 The DDL Log ... 818
5.2.7 Server Log Maintenance .. 819

5.3 Running Multiple MySQL Instances on One Machine .. 820
5.3.1 Setting Up Multiple Data Directories .. 821
5.3.2 Running Multiple MySQL Instances on Windows .. 822
5.3.3 Running Multiple MySQL Instances on Unix .. 825
5.3.4 Using Client Programs in a Multiple-Server Environment 826

5.4 Tracing mysqld Using DTrace ... 827
5.4.1 mysqld DTrace Probe Reference .. 828

6 Security .. 845
6.1 General Security Issues .. 846

6.1.1 Security Guidelines .. 846
6.1.2 Keeping Passwords Secure .. 847
6.1.3 Making MySQL Secure Against Attackers .. 860
6.1.4 Security-Related mysqld Options and Variables ... 862
6.1.5 How to Run MySQL as a Normal User .. 863
6.1.6 Security Issues with LOAD DATA LOCAL ... 864
6.1.7 Client Programming Security Guidelines .. 864

6.2 The MySQL Access Privilege System .. 866
6.2.1 Privileges Provided by MySQL .. 867
6.2.2 Privilege System Grant Tables .. 871
6.2.3 Specifying Account Names ... 877
6.2.4 Access Control, Stage 1: Connection Verification ... 879
6.2.5 Access Control, Stage 2: Request Verification ... 882
6.2.6 When Privilege Changes Take Effect .. 883
6.2.7 Troubleshooting Problems Connecting to MySQL ... 884

6.3 MySQL User Account Management ... 889
6.3.1 User Names and Passwords .. 889
6.3.2 Adding User Accounts .. 890
6.3.3 Removing User Accounts ... 892
6.3.4 Setting Account Resource Limits ... 892
6.3.5 Assigning Account Passwords .. 894
6.3.6 Password Expiration Policy ... 896
6.3.7 Password Expiration and Sandbox Mode ... 898
6.3.8 Pluggable Authentication .. 900
6.3.9 Authentication Plugins Available in MySQL .. 903
6.3.10 Proxy Users ... 925
6.3.11 User Account Locking .. 929
6.3.12 Using Secure Connections ... 929
6.3.13 Creating SSL and RSA Certificates and Keys .. 942
6.3.14 Connecting to MySQL Remotely from Windows with SSH 950
6.3.15 MySQL Enterprise Audit Log Plugin .. 951
6.3.16 SQL-Based MySQL Account Activity Auditing .. 973
6.3.17 MySQL Enterprise Firewall ... 975

MySQL 5.7 Reference Manual

vii

7 Backup and Recovery ... 987
7.1 Backup and Recovery Types ... 988
7.2 Database Backup Methods ... 991
7.3 Example Backup and Recovery Strategy ... 993

7.3.1 Establishing a Backup Policy .. 993
7.3.2 Using Backups for Recovery .. 995
7.3.3 Backup Strategy Summary ... 996

7.4 Using mysqldump for Backups .. 996
7.4.1 Dumping Data in SQL Format with mysqldump .. 996
7.4.2 Reloading SQL-Format Backups ... 997
7.4.3 Dumping Data in Delimited-Text Format with mysqldump 998
7.4.4 Reloading Delimited-Text Format Backups .. 999
7.4.5 mysqldump Tips ... 1000

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log ... 1002
7.5.1 Point-in-Time Recovery Using Event Times ... 1003
7.5.2 Point-in-Time Recovery Using Event Positions ... 1004

7.6 MyISAM Table Maintenance and Crash Recovery .. 1004
7.6.1 Using myisamchk for Crash Recovery ... 1005
7.6.2 How to Check MyISAM Tables for Errors ... 1006
7.6.3 How to Repair MyISAM Tables ... 1006
7.6.4 MyISAM Table Optimization .. 1009
7.6.5 Setting Up a MyISAM Table Maintenance Schedule ... 1009

8 Optimization .. 1011
8.1 Optimization Overview .. 1012
8.2 Optimizing SQL Statements ... 1014

8.2.1 Optimizing SELECT Statements .. 1014
8.2.2 Optimizing DML Statements ... 1065
8.2.3 Optimizing Database Privileges ... 1066
8.2.4 Optimizing INFORMATION_SCHEMA Queries ... 1066
8.2.5 Other Optimization Tips .. 1071

8.3 Optimization and Indexes .. 1071
8.3.1 How MySQL Uses Indexes ... 1072
8.3.2 Using Primary Keys ... 1073
8.3.3 Using Foreign Keys .. 1073
8.3.4 Column Indexes ... 1073
8.3.5 Multiple-Column Indexes .. 1074
8.3.6 Verifying Index Usage .. 1076
8.3.7 InnoDB and MyISAM Index Statistics Collection ... 1076
8.3.8 Comparison of B-Tree and Hash Indexes .. 1077
8.3.9 Optimizer Use of Generated Column Indexes .. 1079

8.4 Optimizing Database Structure .. 1080
8.4.1 Optimizing Data Size .. 1080
8.4.2 Optimizing MySQL Data Types ... 1082
8.4.3 Optimizing for Many Tables .. 1084
8.4.4 Internal Temporary Table Use in MySQL ... 1085

8.5 Optimizing for InnoDB Tables .. 1087
8.5.1 Optimizing Storage Layout for InnoDB Tables .. 1087
8.5.2 Optimizing InnoDB Transaction Management ... 1088
8.5.3 Optimizing InnoDB Read-Only Transactions ... 1089
8.5.4 Optimizing InnoDB Redo Logging ... 1090
8.5.5 Bulk Data Loading for InnoDB Tables .. 1090
8.5.6 Optimizing InnoDB Queries ... 1091
8.5.7 Optimizing InnoDB DDL Operations .. 1092
8.5.8 Optimizing InnoDB Disk I/O .. 1092
8.5.9 Optimizing InnoDB Configuration Variables .. 1093
8.5.10 Optimizing InnoDB for Systems with Many Tables .. 1094

8.6 Optimizing for MyISAM Tables .. 1094
8.6.1 Optimizing MyISAM Queries ... 1095

MySQL 5.7 Reference Manual

viii

8.6.2 Bulk Data Loading for MyISAM Tables .. 1096
8.6.3 Speed of REPAIR TABLE Statements ... 1097

8.7 Optimizing for MEMORY Tables .. 1098
8.8 Understanding the Query Execution Plan ... 1099

8.8.1 Optimizing Queries with EXPLAIN ... 1099
8.8.2 EXPLAIN Output Format .. 1100
8.8.3 EXPLAIN EXTENDED Output Format ... 1112
8.8.4 Obtaining Execution Plan Information for a Named Connection 1114
8.8.5 Estimating Query Performance ... 1115

8.9 Controlling the Query Optimizer ... 1115
8.9.1 Controlling Query Plan Evaluation ... 1115
8.9.2 Controlling Switchable Optimizations ... 1116
8.9.3 Optimizer Hints .. 1119
8.9.4 Index Hints .. 1124
8.9.5 The Optimizer Cost Model .. 1127

8.10 Buffering and Caching ... 1129
8.10.1 The InnoDB Buffer Pool .. 1129
8.10.2 The MyISAM Key Cache .. 1132
8.10.3 The MySQL Query Cache .. 1137
8.10.4 Caching of Prepared Statements and Stored Programs 1143

8.11 Optimizing Locking Operations ... 1144
8.11.1 Internal Locking Methods .. 1144
8.11.2 Table Locking Issues .. 1146
8.11.3 Concurrent Inserts .. 1147
8.11.4 Metadata Locking ... 1148
8.11.5 External Locking ... 1149

8.12 Optimizing the MySQL Server .. 1150
8.12.1 System Factors and Startup Parameter Tuning .. 1150
8.12.2 Tuning Server Parameters .. 1150
8.12.3 Optimizing Disk I/O .. 1155
8.12.4 Using Symbolic Links ... 1156
8.12.5 Optimizing Memory Use ... 1159
8.12.6 Optimizing Network Use ... 1162
8.12.7 The Thread Pool Plugin .. 1164

8.13 Measuring Performance (Benchmarking) .. 1170
8.13.1 Measuring the Speed of Expressions and Functions 1170
8.13.2 Using Your Own Benchmarks ... 1171
8.13.3 Measuring Performance with performance_schema .. 1171

8.14 Examining Thread Information ... 1171
8.14.1 Thread Command Values ... 1172
8.14.2 General Thread States ... 1174
8.14.3 Query Cache Thread States ... 1180
8.14.4 Replication Master Thread States .. 1180
8.14.5 Replication Slave I/O Thread States .. 1181
8.14.6 Replication Slave SQL Thread States .. 1182
8.14.7 Replication Slave Connection Thread States .. 1183
8.14.8 Event Scheduler Thread States ... 1183

9 Language Structure ... 1185
9.1 Literal Values ... 1185

9.1.1 String Literals ... 1185
9.1.2 Number Literals ... 1188
9.1.3 Date and Time Literals ... 1188
9.1.4 Hexadecimal Literals .. 1190
9.1.5 Boolean Literals ... 1191
9.1.6 Bit-Field Literals ... 1191
9.1.7 NULL Values ... 1191

9.2 Schema Object Names ... 1191
9.2.1 Identifier Qualifiers ... 1193

MySQL 5.7 Reference Manual

ix

9.2.2 Identifier Case Sensitivity ... 1194
9.2.3 Mapping of Identifiers to File Names ... 1196
9.2.4 Function Name Parsing and Resolution ... 1198

9.3 Keywords and Reserved Words ... 1201
9.4 User-Defined Variables ... 1207
9.5 Expression Syntax .. 1211
9.6 Comment Syntax .. 1212

10 Globalization .. 1215
10.1 Character Set Support ... 1215

10.1.1 Character Sets and Collations in General .. 1216
10.1.2 Character Sets and Collations in MySQL ... 1217
10.1.3 Specifying Character Sets and Collations ... 1218
10.1.4 Connection Character Sets and Collations ... 1225
10.1.5 Configuring the Character Set and Collation for Applications 1228
10.1.6 Character Set for Error Messages ... 1229
10.1.7 Collation Issues .. 1230
10.1.8 String Repertoire .. 1239
10.1.9 Operations Affected by Character Set Support ... 1241
10.1.10 Unicode Support ... 1244
10.1.11 Upgrading from Previous to Current Unicode Support 1248
10.1.12 UTF-8 for Metadata .. 1251
10.1.13 Column Character Set Conversion ... 1252
10.1.14 Character Sets and Collations That MySQL Supports 1253

10.2 Setting the Error Message Language ... 1267
10.3 Adding a Character Set ... 1268

10.3.1 Character Definition Arrays ... 1270
10.3.2 String Collating Support for Complex Character Sets 1271
10.3.3 Multi-Byte Character Support for Complex Character Sets 1271

10.4 Adding a Collation to a Character Set .. 1271
10.4.1 Collation Implementation Types ... 1272
10.4.2 Choosing a Collation ID .. 1275
10.4.3 Adding a Simple Collation to an 8-Bit Character Set 1276
10.4.4 Adding a UCA Collation to a Unicode Character Set 1277

10.5 Character Set Configuration ... 1284
10.6 MySQL Server Time Zone Support .. 1285

10.6.1 Staying Current with Time Zone Changes .. 1287
10.6.2 Time Zone Leap Second Support .. 1288

10.7 MySQL Server Locale Support .. 1289
11 Data Types ... 1293

11.1 Data Type Overview ... 1294
11.1.1 Numeric Type Overview ... 1294
11.1.2 Date and Time Type Overview .. 1297
11.1.3 String Type Overview ... 1299

11.2 Numeric Types ... 1302
11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT .. 1303
11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC 1303
11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 1303
11.2.4 Bit-Value Type - BIT ... 1304
11.2.5 Numeric Type Attributes ... 1304
11.2.6 Out-of-Range and Overflow Handling .. 1305

11.3 Date and Time Types ... 1306
11.3.1 The DATE, DATETIME, and TIMESTAMP Types ... 1307
11.3.2 The TIME Type .. 1309
11.3.3 The YEAR Type ... 1309
11.3.4 YEAR(2) Limitations and Migrating to YEAR(4) .. 1310
11.3.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME 1313
11.3.6 Fractional Seconds in Time Values ... 1316

MySQL 5.7 Reference Manual

x

11.3.7 Conversion Between Date and Time Types ... 1317
11.3.8 Two-Digit Years in Dates .. 1318

11.4 String Types ... 1318
11.4.1 The CHAR and VARCHAR Types ... 1318
11.4.2 The BINARY and VARBINARY Types ... 1320
11.4.3 The BLOB and TEXT Types ... 1321
11.4.4 The ENUM Type .. 1322
11.4.5 The SET Type ... 1325

11.5 Extensions for Spatial Data ... 1327
11.5.1 Spatial Data Types ... 1329
11.5.2 The OpenGIS Geometry Model ... 1329
11.5.3 Using Spatial Data ... 1335

11.6 The JSON Data Type ... 1342
11.7 Data Type Default Values .. 1353
11.8 Data Type Storage Requirements .. 1354
11.9 Choosing the Right Type for a Column ... 1357
11.10 Using Data Types from Other Database Engines .. 1357

12 Functions and Operators .. 1359
12.1 Function and Operator Reference .. 1361
12.2 Type Conversion in Expression Evaluation ... 1373
12.3 Operators ... 1375

12.3.1 Operator Precedence ... 1376
12.3.2 Comparison Functions and Operators .. 1377
12.3.3 Logical Operators ... 1383
12.3.4 Assignment Operators .. 1385

12.4 Control Flow Functions .. 1386
12.5 String Functions .. 1388

12.5.1 String Comparison Functions .. 1403
12.5.2 Regular Expressions ... 1407

12.6 Numeric Functions and Operators .. 1412
12.6.1 Arithmetic Operators ... 1413
12.6.2 Mathematical Functions .. 1415

12.7 Date and Time Functions .. 1424
12.8 What Calendar Is Used By MySQL? .. 1445
12.9 Full-Text Search Functions .. 1446

12.9.1 Natural Language Full-Text Searches .. 1447
12.9.2 Boolean Full-Text Searches .. 1450
12.9.3 Full-Text Searches with Query Expansion .. 1455
12.9.4 Full-Text Stopwords .. 1456
12.9.5 Full-Text Restrictions .. 1461
12.9.6 Fine-Tuning MySQL Full-Text Search .. 1462
12.9.7 Adding a Collation for Full-Text Indexing .. 1465
12.9.8 ngram Full-Text Parser ... 1466
12.9.9 MeCab Full-Text Parser Plugin ... 1469

12.10 Cast Functions and Operators ... 1473
12.11 XML Functions .. 1476
12.12 Bit Functions and Operators .. 1487
12.13 Encryption and Compression Functions .. 1488
12.14 Information Functions .. 1497
12.15 Spatial Analysis Functions ... 1507

12.15.1 Spatial Function Reference ... 1507
12.15.2 Argument Handling by Spatial Functions .. 1511
12.15.3 Functions That Create Geometry Values from WKT Values 1512
12.15.4 Functions That Create Geometry Values from WKB Values 1515
12.15.5 MySQL-Specific Functions That Create Geometry Values 1517
12.15.6 Geometry Format Conversion Functions .. 1518
12.15.7 Geometry Property Functions .. 1519
12.15.8 Spatial Operator Functions .. 1528

MySQL 5.7 Reference Manual

xi

12.15.9 Functions That Test Spatial Relations Between Geometry Objects 1531
12.15.10 Spatial Geohash Functions ... 1536
12.15.11 Spatial GeoJSON Functions .. 1538
12.15.12 Spatial Convenience Functions .. 1539

12.16 JSON Functions .. 1542
12.16.1 JSON Function Reference .. 1542
12.16.2 Functions That Create JSON Values ... 1543
12.16.3 Functions That Search JSON Values ... 1544
12.16.4 Functions That Modify JSON Values ... 1551
12.16.5 Functions That Return JSON Value Attributes .. 1556
12.16.6 JSON Path Syntax ... 1559

12.17 Functions Used with Global Transaction IDs ... 1560
12.18 MySQL Enterprise Encryption Functions ... 1562

12.18.1 Enterprise Encryption Installation ... 1562
12.18.2 Enterprise Encryption Usage and Examples ... 1563
12.18.3 Enterprise Encryption Function Reference .. 1564
12.18.4 Enterprise Encryption Function Descriptions ... 1565

12.19 Miscellaneous Functions .. 1568
12.20 Functions and Modifiers for Use with GROUP BY Clauses 1578

12.20.1 GROUP BY (Aggregate) Functions .. 1578
12.20.2 GROUP BY Modifiers ... 1582
12.20.3 MySQL Handling of GROUP BY .. 1585
12.20.4 Detection of Functional Dependence ... 1588

12.21 Precision Math .. 1591
12.21.1 Types of Numeric Values .. 1591
12.21.2 DECIMAL Data Type Characteristics ... 1592
12.21.3 Expression Handling ... 1593
12.21.4 Rounding Behavior ... 1594
12.21.5 Precision Math Examples .. 1595

13 SQL Statement Syntax .. 1599
13.1 Data Definition Statements .. 1600

13.1.1 ALTER DATABASE Syntax ... 1600
13.1.2 ALTER EVENT Syntax ... 1601
13.1.3 ALTER FUNCTION Syntax ... 1603
13.1.4 ALTER PROCEDURE Syntax ... 1603
13.1.5 ALTER SERVER Syntax ... 1603
13.1.6 ALTER TABLE Syntax .. 1604
13.1.7 ALTER VIEW Syntax .. 1622
13.1.8 CREATE DATABASE Syntax .. 1622
13.1.9 CREATE EVENT Syntax .. 1623
13.1.10 CREATE FUNCTION Syntax ... 1627
13.1.11 CREATE INDEX Syntax ... 1628
13.1.12 CREATE PROCEDURE and CREATE FUNCTION Syntax 1631
13.1.13 CREATE SERVER Syntax .. 1636
13.1.14 CREATE TABLE Syntax ... 1637
13.1.15 CREATE TABLESPACE Syntax .. 1671
13.1.16 CREATE TRIGGER Syntax ... 1673
13.1.17 CREATE VIEW Syntax ... 1676
13.1.18 DROP DATABASE Syntax .. 1680
13.1.19 DROP EVENT Syntax .. 1681
13.1.20 DROP FUNCTION Syntax .. 1681
13.1.21 DROP INDEX Syntax ... 1681
13.1.22 DROP PROCEDURE and DROP FUNCTION Syntax 1682
13.1.23 DROP SERVER Syntax .. 1682
13.1.24 DROP TABLE Syntax ... 1682
13.1.25 DROP TABLESPACE Syntax .. 1683
13.1.26 DROP TRIGGER Syntax .. 1684
13.1.27 DROP VIEW Syntax ... 1684

MySQL 5.7 Reference Manual

xii

13.1.28 RENAME TABLE Syntax .. 1685
13.1.29 TRUNCATE TABLE Syntax ... 1686

13.2 Data Manipulation Statements ... 1687
13.2.1 CALL Syntax .. 1687
13.2.2 DELETE Syntax ... 1689
13.2.3 DO Syntax ... 1693
13.2.4 HANDLER Syntax .. 1693
13.2.5 INSERT Syntax .. 1695
13.2.6 LOAD DATA INFILE Syntax .. 1702
13.2.7 LOAD XML Syntax ... 1711
13.2.8 REPLACE Syntax ... 1718
13.2.9 SELECT Syntax ... 1721
13.2.10 Subquery Syntax .. 1738
13.2.11 UPDATE Syntax ... 1749

13.3 MySQL Transactional and Locking Statements ... 1752
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax 1752
13.3.2 Statements That Cannot Be Rolled Back ... 1755
13.3.3 Statements That Cause an Implicit Commit .. 1755
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT
Syntax .. 1756
13.3.5 LOCK TABLES and UNLOCK TABLES Syntax .. 1756
13.3.6 SET TRANSACTION Syntax ... 1762
13.3.7 XA Transactions ... 1765

13.4 Replication Statements .. 1768
13.4.1 SQL Statements for Controlling Master Servers .. 1768
13.4.2 SQL Statements for Controlling Slave Servers ... 1771
13.4.3 SQL Statements for Controlling Group Replication .. 1785

13.5 SQL Syntax for Prepared Statements ... 1786
13.5.1 PREPARE Syntax .. 1789
13.5.2 EXECUTE Syntax .. 1790
13.5.3 DEALLOCATE PREPARE Syntax ... 1790

13.6 MySQL Compound-Statement Syntax .. 1790
13.6.1 BEGIN ... END Compound-Statement Syntax ... 1790
13.6.2 Statement Label Syntax .. 1791
13.6.3 DECLARE Syntax .. 1792
13.6.4 Variables in Stored Programs ... 1792
13.6.5 Flow Control Statements ... 1794
13.6.6 Cursors .. 1798
13.6.7 Condition Handling ... 1799

13.7 Database Administration Statements .. 1826
13.7.1 Account Management Statements ... 1826
13.7.2 Table Maintenance Statements ... 1855
13.7.3 Plugin and User-Defined Function Statements .. 1864
13.7.4 SET Syntax ... 1867
13.7.5 SHOW Syntax .. 1870
13.7.6 Other Administrative Statements ... 1913

13.8 MySQL Utility Statements .. 1922
13.8.1 DESCRIBE Syntax ... 1922
13.8.2 EXPLAIN Syntax .. 1922
13.8.3 HELP Syntax ... 1924
13.8.4 USE Syntax ... 1926

14 The InnoDB Storage Engine ... 1929
14.1 Introduction to InnoDB ... 1931

14.1.1 InnoDB as the Default MySQL Storage Engine .. 1932
14.1.2 Checking InnoDB Availability ... 1935
14.1.3 Turning Off InnoDB .. 1935

14.2 InnoDB Concepts and Architecture .. 1935
14.2.1 MySQL and the ACID Model ... 1936

MySQL 5.7 Reference Manual

xiii

14.2.2 The InnoDB Transaction Model and Locking .. 1937
14.2.3 InnoDB Multi-Versioning ... 1950
14.2.4 InnoDB Redo Log .. 1952
14.2.5 InnoDB Undo Logs ... 1952
14.2.6 InnoDB Temporary Table Undo Logs ... 1953
14.2.7 InnoDB Table and Index Structures ... 1953
14.2.8 InnoDB Mutex and Read/Write Lock Implementation 1965

14.3 InnoDB Configuration .. 1966
14.3.1 InnoDB Initialization and Startup Configuration ... 1966
14.3.2 Configuring InnoDB for Read-Only Operation ... 1970
14.3.3 InnoDB Buffer Pool Configuration .. 1971
14.3.4 Configuring the Memory Allocator for InnoDB ... 1983
14.3.5 Configuring InnoDB Change Buffering ... 1984
14.3.6 Configuring Thread Concurrency for InnoDB .. 1985
14.3.7 Configuring the Number of Background InnoDB I/O Threads 1986
14.3.8 Configuring the InnoDB Master Thread I/O Rate ... 1987
14.3.9 Configuring Spin Lock Polling ... 1987
14.3.10 Configuring InnoDB Purge Scheduling ... 1988
14.3.11 Configuring Optimizer Statistics for InnoDB .. 1988
14.3.12 Configuring the Merge Threshold for Index Pages .. 1999

14.4 InnoDB Tablespace Management .. 2001
14.4.1 Resizing the InnoDB System Tablespace ... 2001
14.4.2 Changing the Number or Size of InnoDB Redo Log Files 2002
14.4.3 Using Raw Disk Partitions for the System Tablespace 2002
14.4.4 InnoDB File-Per-Table Tablespaces .. 2004
14.4.5 Creating a File-Per-Table Tablespace Outside the Data Directory 2006
14.4.6 Copying File-Per-Table Tablespaces to Another Server 2007
14.4.7 Storing InnoDB Undo Logs in Separate Tablespaces 2015
14.4.8 Truncating Undo Logs That Reside in Undo Tablespaces 2016
14.4.9 InnoDB General Tablespaces ... 2019

14.5 InnoDB Table Management ... 2025
14.5.1 Creating InnoDB Tables ... 2025
14.5.2 Moving or Copying InnoDB Tables to Another Machine 2027
14.5.3 Grouping DML Operations with Transactions .. 2029
14.5.4 Converting Tables from MyISAM to InnoDB ... 2030
14.5.5 AUTO_INCREMENT Handling in InnoDB ... 2034
14.5.6 InnoDB and FOREIGN KEY Constraints .. 2040
14.5.7 Limits on InnoDB Tables .. 2041

14.6 InnoDB Table and Page Compression ... 2044
14.6.1 InnoDB Table Compression .. 2044
14.6.2 InnoDB Page Compression ... 2058

14.7 InnoDB File-Format Management ... 2061
14.7.1 Enabling File Formats ... 2062
14.7.2 Verifying File Format Compatibility .. 2063
14.7.3 Identifying the File Format in Use .. 2066
14.7.4 Modifying the File Format ... 2066

14.8 InnoDB Row Storage and Row Formats ... 2067
14.8.1 Overview of InnoDB Row Storage ... 2067
14.8.2 Specifying the Row Format for a Table .. 2067
14.8.3 DYNAMIC and COMPRESSED Row Formats .. 2069
14.8.4 COMPACT and REDUNDANT Row Formats .. 2070

14.9 InnoDB Disk I/O and File Space Management .. 2070
14.9.1 InnoDB Disk I/O ... 2071
14.9.2 File Space Management ... 2071
14.9.3 InnoDB Checkpoints ... 2072
14.9.4 Defragmenting a Table ... 2073
14.9.5 Reclaiming Disk Space with TRUNCATE TABLE .. 2073

14.10 InnoDB and Online DDL .. 2074

MySQL 5.7 Reference Manual

xiv

14.10.1 Overview of Online DDL ... 2074
14.10.2 Performance and Concurrency Considerations for Online DDL 2081
14.10.3 SQL Syntax for Online DDL .. 2083
14.10.4 Combining or Separating DDL Statements ... 2084
14.10.5 Examples of Online DDL .. 2084
14.10.6 Implementation Details of Online DDL ... 2105
14.10.7 How Crash Recovery Works with Online DDL .. 2107
14.10.8 Online DDL for Partitioned InnoDB Tables ... 2107
14.10.9 Limitations of Online DDL ... 2108

14.11 InnoDB Startup Options and System Variables ... 2109
14.12 InnoDB INFORMATION_SCHEMA Tables .. 2196

14.12.1 InnoDB INFORMATION_SCHEMA Tables about Compression 2196
14.12.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Tables 2198
14.12.3 InnoDB INFORMATION_SCHEMA System Tables 2203
14.12.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables 2209
14.12.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables 2212
14.12.6 InnoDB INFORMATION_SCHEMA Metrics Table ... 2216
14.12.7 InnoDB INFORMATION_SCHEMA Temporary Table Information Table 2224
14.12.8 Retrieving InnoDB Tablespace Metadata from
INFORMATION_SCHEMA.FILES .. 2225

14.13 InnoDB Integration with MySQL Performance Schema .. 2227
14.13.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance
Schema .. 2229
14.13.2 Monitoring InnoDB Mutex Waits Using Performance Schema 2230

14.14 InnoDB Monitors ... 2234
14.14.1 InnoDB Monitor Types .. 2234
14.14.2 Enabling InnoDB Monitors ... 2234
14.14.3 InnoDB Standard Monitor and Lock Monitor Output 2237
14.14.4 InnoDB Tablespace Monitor Output ... 2242
14.14.5 InnoDB Table Monitor Output .. 2244

14.15 InnoDB Backup and Recovery ... 2247
14.15.1 The InnoDB Recovery Process ... 2249
14.15.2 Tablespace Discovery During Crash Recovery ... 2249

14.16 InnoDB and MySQL Replication ... 2250
14.17 InnoDB Integration with memcached .. 2252

14.17.1 Benefits of the InnoDB / memcached Combination .. 2252
14.17.2 Architecture of InnoDB and memcached Integration 2253
14.17.3 Getting Started with InnoDB Memcached Plugin ... 2257
14.17.4 Security Considerations for the InnoDB memcached Plugin 2260
14.17.5 Writing Applications for the InnoDB memcached Interface 2261
14.17.6 Using the InnoDB memcached Plugin with Replication 2272
14.17.7 Internals of the InnoDB memcached Plugin .. 2276
14.17.8 Troubleshooting the InnoDB memcached Plugin ... 2281

14.18 InnoDB Troubleshooting .. 2283
14.18.1 Troubleshooting InnoDB I/O Problems ... 2283
14.18.2 Forcing InnoDB Recovery ... 2284
14.18.3 Troubleshooting InnoDB Data Dictionary Operations 2285
14.18.4 InnoDB Error Handling .. 2288
14.18.5 InnoDB Error Codes ... 2288

15 Alternative Storage Engines ... 2291
15.1 Setting the Storage Engine .. 2294
15.2 The MyISAM Storage Engine .. 2295

15.2.1 MyISAM Startup Options .. 2297
15.2.2 Space Needed for Keys .. 2299
15.2.3 MyISAM Table Storage Formats ... 2299
15.2.4 MyISAM Table Problems .. 2302

15.3 The MEMORY Storage Engine .. 2303
15.4 The CSV Storage Engine .. 2307

MySQL 5.7 Reference Manual

xv

15.4.1 Repairing and Checking CSV Tables ... 2308
15.4.2 CSV Limitations ... 2309

15.5 The ARCHIVE Storage Engine .. 2309
15.6 The BLACKHOLE Storage Engine ... 2310
15.7 The MERGE Storage Engine ... 2312

15.7.1 MERGE Table Advantages and Disadvantages .. 2315
15.7.2 MERGE Table Problems ... 2315

15.8 The FEDERATED Storage Engine ... 2317
15.8.1 FEDERATED Storage Engine Overview .. 2317
15.8.2 How to Create FEDERATED Tables .. 2318
15.8.3 FEDERATED Storage Engine Notes and Tips .. 2321
15.8.4 FEDERATED Storage Engine Resources .. 2322

15.9 The EXAMPLE Storage Engine ... 2323
15.10 Other Storage Engines .. 2323
15.11 Overview of MySQL Storage Engine Architecture .. 2323

15.11.1 Pluggable Storage Engine Architecture .. 2324
15.11.2 The Common Database Server Layer .. 2324

16 High Availability and Scalability .. 2327
16.1 Using MySQL within an Amazon EC2 Instance ... 2329

16.1.1 Setting Up MySQL on an EC2 AMI ... 2330
16.1.2 EC2 Instance Limitations .. 2331
16.1.3 Deploying a MySQL Database Using EC2 ... 2331

16.2 Using ZFS Replication ... 2334
16.2.1 Using ZFS for File System Replication ... 2336
16.2.2 Configuring MySQL for ZFS Replication ... 2336
16.2.3 Handling MySQL Recovery with ZFS ... 2337

16.3 Using MySQL with memcached ... 2337
16.3.1 Installing memcached ... 2338
16.3.2 Using memcached .. 2340
16.3.3 Developing a memcached Application .. 2358
16.3.4 Getting memcached Statistics ... 2383
16.3.5 memcached FAQ ... 2391

17 Replication .. 2395
17.1 Configuring Replication .. 2396

17.1.1 Binary Log File Position Based Replication Configuration Overview 2397
17.1.2 Setting Up Binary Log File Position Based Replication 2397
17.1.3 Replication with Global Transaction Identifiers .. 2406
17.1.4 MySQL Multi-Source Replication ... 2416
17.1.5 Changing Replication Modes on Online Servers ... 2420
17.1.6 Replication and Binary Logging Options and Variables 2426
17.1.7 Common Replication Administration Tasks ... 2510

17.2 Replication Implementation .. 2513
17.2.1 Replication Formats .. 2514
17.2.2 Replication Implementation Details .. 2521
17.2.3 Replication Channels .. 2522
17.2.4 Replication Relay and Status Logs .. 2525
17.2.5 How Servers Evaluate Replication Filtering Rules ... 2531

17.3 Replication Solutions ... 2538
17.3.1 Using Replication for Backups ... 2539
17.3.2 Using Replication with Different Master and Slave Storage Engines 2542
17.3.3 Using Replication for Scale-Out ... 2543
17.3.4 Replicating Different Databases to Different Slaves .. 2544
17.3.5 Improving Replication Performance ... 2546
17.3.6 Switching Masters During Failover ... 2547
17.3.7 Setting Up Replication Using SSL ... 2549
17.3.8 Semisynchronous Replication .. 2550
17.3.9 Delayed Replication .. 2555

17.4 Replication Notes and Tips .. 2556

MySQL 5.7 Reference Manual

xvi

17.4.1 Replication Features and Issues ... 2556
17.4.2 Replication Compatibility Between MySQL Versions 2582
17.4.3 Upgrading a Replication Setup .. 2583
17.4.4 Troubleshooting Replication .. 2584
17.4.5 How to Report Replication Bugs or Problems ... 2585

18 Partitioning .. 2587
18.1 Overview of Partitioning in MySQL ... 2589
18.2 Partitioning Types ... 2591

18.2.1 RANGE Partitioning .. 2593
18.2.2 LIST Partitioning ... 2597
18.2.3 COLUMNS Partitioning ... 2600
18.2.4 HASH Partitioning .. 2607
18.2.5 KEY Partitioning ... 2610
18.2.6 Subpartitioning ... 2612
18.2.7 How MySQL Partitioning Handles NULL .. 2615

18.3 Partition Management ... 2619
18.3.1 Management of RANGE and LIST Partitions .. 2620
18.3.2 Management of HASH and KEY Partitions ... 2626
18.3.3 Exchanging Partitions and Subpartitions with Tables 2627
18.3.4 Maintenance of Partitions ... 2634
18.3.5 Obtaining Information About Partitions ... 2636

18.4 Partition Pruning ... 2638
18.5 Partition Selection ... 2641
18.6 Restrictions and Limitations on Partitioning ... 2647

18.6.1 Partitioning Keys, Primary Keys, and Unique Keys ... 2653
18.6.2 Partitioning Limitations Relating to Storage Engines 2656
18.6.3 Partitioning Limitations Relating to Functions ... 2657
18.6.4 Partitioning and Locking ... 2658

19 Stored Programs and Views ... 2661
19.1 Defining Stored Programs ... 2662
19.2 Using Stored Routines (Procedures and Functions) ... 2663

19.2.1 Stored Routine Syntax .. 2663
19.2.2 Stored Routines and MySQL Privileges ... 2664
19.2.3 Stored Routine Metadata .. 2665
19.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 2665

19.3 Using Triggers .. 2665
19.3.1 Trigger Syntax and Examples ... 2666
19.3.2 Trigger Metadata .. 2669

19.4 Using the Event Scheduler .. 2670
19.4.1 Event Scheduler Overview .. 2670
19.4.2 Event Scheduler Configuration .. 2671
19.4.3 Event Syntax ... 2673
19.4.4 Event Metadata .. 2673
19.4.5 Event Scheduler Status .. 2674
19.4.6 The Event Scheduler and MySQL Privileges .. 2675

19.5 Using Views ... 2677
19.5.1 View Syntax ... 2678
19.5.2 View Processing Algorithms .. 2678
19.5.3 Updatable and Insertable Views .. 2680
19.5.4 The View WITH CHECK OPTION Clause .. 2682
19.5.5 View Metadata ... 2683

19.6 Access Control for Stored Programs and Views .. 2684
19.7 Binary Logging of Stored Programs ... 2685

20 INFORMATION_SCHEMA Tables ... 2693
20.1 The INFORMATION_SCHEMA CHARACTER_SETS Table 2696
20.2 The INFORMATION_SCHEMA COLLATIONS Table ... 2696
20.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table ... 2697

MySQL 5.7 Reference Manual

xvii

20.4 The INFORMATION_SCHEMA COLUMNS Table ... 2697
20.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 2698
20.6 The INFORMATION_SCHEMA ENGINES Table ... 2699
20.7 The INFORMATION_SCHEMA EVENTS Table .. 2699
20.8 The INFORMATION_SCHEMA FILES Table .. 2703
20.9 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables 2705
20.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables .. 2706
20.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 2706
20.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table 2707
20.13 The INFORMATION_SCHEMA PARAMETERS Table ... 2707
20.14 The INFORMATION_SCHEMA PARTITIONS Table .. 2708
20.15 The INFORMATION_SCHEMA PLUGINS Table ... 2711
20.16 The INFORMATION_SCHEMA PROCESSLIST Table ... 2712
20.17 The INFORMATION_SCHEMA PROFILING Table .. 2713
20.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 2714
20.19 The INFORMATION_SCHEMA ROUTINES Table ... 2715
20.20 The INFORMATION_SCHEMA SCHEMATA Table .. 2716
20.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 2716
20.22 The INFORMATION_SCHEMA STATISTICS Table ... 2717
20.23 The INFORMATION_SCHEMA TABLES Table ... 2717
20.24 The INFORMATION_SCHEMA TABLESPACES Table .. 2719
20.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 2719
20.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 2720
20.27 The INFORMATION_SCHEMA TRIGGERS Table ... 2720
20.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table 2722
20.29 The INFORMATION_SCHEMA VIEWS Table ... 2722
20.30 INFORMATION_SCHEMA Tables for InnoDB ... 2724

20.30.1 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET
Tables .. 2724
20.30.2 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 2725
20.30.3 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables .. 2727
20.30.4 The INFORMATION_SCHEMA INNODB_TRX Table 2728
20.30.5 The INFORMATION_SCHEMA INNODB_LOCKS Table 2730
20.30.6 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table 2731
20.30.7 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table 2732
20.30.8 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table 2734
20.30.9 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table 2735
20.30.10 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table 2737
20.30.11 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table 2737
20.30.12 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table 2738
20.30.13 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View 2738
20.30.14 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table 2739
20.30.15 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table 2740
20.30.16 The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table 2744
20.30.17 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 2745
20.30.18 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 2747
20.30.19 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 2749
20.30.20 The INFORMATION_SCHEMA INNODB_METRICS Table 2751
20.30.21 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 2752
20.30.22 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
... 2753
20.30.23 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 2754
20.30.24 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 2756
20.30.25 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 2757
20.30.26 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 2758

MySQL 5.7 Reference Manual

xviii

20.30.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 2759
20.31 Extensions to SHOW Statements ... 2760

21 MySQL Performance Schema .. 2763
21.1 Performance Schema Quick Start .. 2765
21.2 Performance Schema Configuration ... 2771

21.2.1 Performance Schema Build Configuration .. 2771
21.2.2 Performance Schema Startup Configuration ... 2772
21.2.3 Performance Schema Runtime Configuration ... 2774

21.3 Performance Schema Queries ... 2794
21.4 Performance Schema Instrument Naming Conventions ... 2794
21.5 Performance Schema Status Monitoring ... 2797
21.6 Performance Schema Atom and Molecule Events ... 2801
21.7 Performance Schema Statement Digests .. 2801
21.8 Performance Schema General Table Characteristics ... 2804
21.9 Performance Schema Table Descriptions ... 2804

21.9.1 Performance Schema Table Index ... 2804
21.9.2 Performance Schema Setup Tables .. 2807
21.9.3 Performance Schema Instance Tables ... 2812
21.9.4 Performance Schema Wait Event Tables ... 2816
21.9.5 Performance Schema Stage Event Tables ... 2821
21.9.6 Performance Schema Statement Event Tables ... 2826
21.9.7 Performance Schema Transaction Tables .. 2835
21.9.8 Performance Schema Connection Tables .. 2842
21.9.9 Performance Schema Connection Attribute Tables ... 2844
21.9.10 Performance Schema Replication Tables ... 2846
21.9.11 Performance Schema Lock Tables .. 2857
21.9.12 Performance Schema System Variable Tables ... 2859
21.9.13 Performance Schema Status Variable Tables ... 2860
21.9.14 Performance Schema Summary Tables ... 2862
21.9.15 Performance Schema Miscellaneous Tables .. 2881

21.10 Performance Schema Option and Variable Reference ... 2889
21.11 Performance Schema Command Options ... 2892
21.12 Performance Schema System Variables ... 2893
21.13 Performance Schema Status Variables ... 2909
21.14 The Performance Schema Memory-Allocation Model ... 2912
21.15 Performance Schema and Plugins ... 2913
21.16 Using the Performance Schema to Diagnose Problems ... 2913

21.16.1 Query Profiling Using Performance Schema ... 2914
21.17 Migrating to Performance Schema System and Status Variable Tables 2916

22 MySQL sys Schema .. 2919
22.1 Prerequisites for Using the sys Schema ... 2919
22.2 Using the sys Schema .. 2920
22.3 sys Schema Progress Reporting .. 2921
22.4 sys Schema Object Reference ... 2922

22.4.1 sys Schema Object Index ... 2922
22.4.2 sys Schema Tables and Triggers .. 2926
22.4.3 sys Schema Views ... 2929
22.4.4 sys Schema Stored Procedures .. 2968
22.4.5 sys Schema Stored Functions ... 2987

23 Connectors and APIs ... 2999
23.1 MySQL Connector/ODBC .. 3002
23.2 MySQL Connector/Net .. 3003
23.3 MySQL Connector/J .. 3003
23.4 MySQL Connector/C++ ... 3003
23.5 MySQL Connector/C ... 3003
23.6 MySQL Connector/Python ... 3003
23.7 libmysqld, the Embedded MySQL Server Library .. 3003

23.7.1 Compiling Programs with libmysqld ... 3004

MySQL 5.7 Reference Manual

xix

23.7.2 Restrictions When Using the Embedded MySQL Server 3004
23.7.3 Options with the Embedded Server ... 3005
23.7.4 Embedded Server Examples ... 3005

23.8 MySQL C API ... 3009
23.8.1 MySQL C API Implementations ... 3009
23.8.2 Simultaneous MySQL Server and Connector/C Installations 3010
23.8.3 Example C API Client Programs ... 3011
23.8.4 Building and Running C API Client Programs ... 3011
23.8.5 C API Data Structures .. 3017
23.8.6 C API Function Overview .. 3022
23.8.7 C API Function Descriptions ... 3026
23.8.8 C API Prepared Statements .. 3084
23.8.9 C API Prepared Statement Data Structures ... 3084
23.8.10 C API Prepared Statement Function Overview ... 3090
23.8.11 C API Prepared Statement Function Descriptions ... 3093
23.8.12 C API Threaded Function Descriptions .. 3115
23.8.13 C API Embedded Server Function Descriptions .. 3117
23.8.14 C API Client Plugin Functions ... 3117
23.8.15 Common Questions and Problems When Using the C API 3120
23.8.16 Controlling Automatic Reconnection Behavior ... 3122
23.8.17 C API Support for Multiple Statement Execution ... 3123
23.8.18 C API Prepared Statement Problems ... 3125
23.8.19 C API Prepared Statement Handling of Date and Time Values 3125
23.8.20 C API Support for Prepared CALL Statements ... 3127

23.9 MySQL PHP API .. 3130
23.10 MySQL Perl API ... 3131
23.11 MySQL Python API ... 3131
23.12 MySQL Ruby APIs .. 3132

23.12.1 The MySQL/Ruby API .. 3132
23.12.2 The Ruby/MySQL API .. 3132

23.13 MySQL Tcl API ... 3132
23.14 MySQL Eiffel Wrapper ... 3132

24 Extending MySQL .. 3133
24.1 MySQL Internals ... 3133

24.1.1 MySQL Threads ... 3133
24.1.2 The MySQL Test Suite ... 3134

24.2 The MySQL Plugin API ... 3134
24.2.1 Plugin API Characteristics ... 3135
24.2.2 Plugin API Components .. 3136
24.2.3 Types of Plugins .. 3137
24.2.4 Writing Plugins ... 3141

24.3 MySQL Services for Plugins .. 3193
24.3.1 The Locking Service ... 3195

24.4 Adding New Functions to MySQL .. 3200
24.4.1 Features of the User-Defined Function Interface ... 3201
24.4.2 Adding a New User-Defined Function .. 3201
24.4.3 Adding a New Native Function .. 3211

24.5 Debugging and Porting MySQL .. 3212
24.5.1 Debugging a MySQL Server ... 3212
24.5.2 Debugging a MySQL Client .. 3219
24.5.3 The DBUG Package ... 3220

25 MySQL Enterprise Edition .. 3223
25.1 MySQL Enterprise Monitor Overview .. 3223
25.2 MySQL Enterprise Backup Overview .. 3224
25.3 MySQL Enterprise Security Overview ... 3224
25.4 MySQL Enterprise Encryption Overview ... 3225
25.5 MySQL Enterprise Audit Overview ... 3225
25.6 MySQL Enterprise Firewall Overview ... 3225

MySQL 5.7 Reference Manual

xx

25.7 MySQL Enterprise Thread Pool Overview ... 3226
26 MySQL Workbench .. 3227
A MySQL 5.7 Frequently Asked Questions .. 3229

A.1 MySQL 5.7 FAQ: General ... 3229
A.2 MySQL 5.7 FAQ: Storage Engines .. 3230
A.3 MySQL 5.7 FAQ: Server SQL Mode .. 3231
A.4 MySQL 5.7 FAQ: Stored Procedures and Functions ... 3232
A.5 MySQL 5.7 FAQ: Triggers .. 3236
A.6 MySQL 5.7 FAQ: Views .. 3238
A.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA .. 3238
A.8 MySQL 5.7 FAQ: Migration ... 3239
A.9 MySQL 5.7 FAQ: Security ... 3240
A.10 MySQL 5.7 FAQ: MySQL Cluster .. 3240
A.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 3241
A.12 MySQL 5.7 FAQ: Connectors & APIs ... 3253
A.13 MySQL 5.7 FAQ: Replication .. 3253
A.14 MySQL 5.7 FAQ: MySQL Enterprise Thread Pool ... 3257

B Errors, Error Codes, and Common Problems .. 3259
B.1 Sources of Error Information ... 3259
B.2 Types of Error Values ... 3259
B.3 Server Error Codes and Messages .. 3260
B.4 Client Error Codes and Messages ... 3341
B.5 Problems and Common Errors .. 3345

B.5.1 How to Determine What Is Causing a Problem .. 3345
B.5.2 Common Errors When Using MySQL Programs ... 3346
B.5.3 Administration-Related Issues ... 3359
B.5.4 Query-Related Issues ... 3368
B.5.5 Optimizer-Related Issues ... 3375
B.5.6 Table Definition-Related Issues .. 3375
B.5.7 Known Issues in MySQL .. 3376

C Restrictions and Limits .. 3381
C.1 Restrictions on Stored Programs ... 3381
C.2 Restrictions on Condition Handling .. 3384
C.3 Restrictions on Server-Side Cursors .. 3385
C.4 Restrictions on Subqueries ... 3385
C.5 Restrictions on Views ... 3386
C.6 Restrictions on XA Transactions .. 3388
C.7 Restrictions on Character Sets .. 3388
C.8 Restrictions on Performance Schema .. 3389
C.9 Restrictions on Pluggable Authentication ... 3389
C.10 Limits in MySQL ... 3391

C.10.1 Limits on Joins .. 3391
C.10.2 Limits on Number of Databases and Tables .. 3391
C.10.3 Limits on Table Size .. 3392
C.10.4 Limits on Table Column Count and Row Size .. 3393
C.10.5 Limits Imposed by .frm File Structure .. 3394
C.10.6 Windows Platform Limitations ... 3395

MySQL Glossary .. 3399
D Licenses for Third-Party Components ... 3455

D.1 Artistic License (Perl) 1.0 .. 3457
D.2 Boost Library License ... 3459
D.3 Corosync License ... 3459
D.4 dtoa.c License .. 3460
D.5 Editline Library (libedit) License ... 3460
D.6 Expect.pm License ... 3463
D.7 Facebook Fast Checksum Patch License .. 3470
D.8 Facebook Patches License ... 3471
D.9 FindGTest.cmake License ... 3471

MySQL 5.7 Reference Manual

xxi

D.10 Fred Fish's Dbug Library License .. 3472
D.11 getarg License ... 3473
D.12 GNU General Public License Version 2.0, June 1991 ... 3473
D.13 GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library
Exception Version 3.1, 31 March 2009 .. 3478
D.14 GNU Lesser General Public License Version 2.1, February 1999 3489
D.15 GNU Readline License ... 3497
D.16 GNU Standard C++ Library (libstdc++) License .. 3497
D.17 Google C++ Mocking Framework (Google Mock) License ... 3498
D.18 Google Controlling Master Thread I/O Rate Patch License .. 3499
D.19 Google Perftools (TCMalloc utility) License .. 3499
D.20 Google Protocol Buffers License ... 3500
D.21 Google SMP Patch License .. 3500
D.22 ICU4C Unicode Libraries License .. 3501
D.23 Janson License .. 3506
D.24 lib_sql.cc License ... 3506
D.25 Libaio License .. 3507
D.26 libevent License ... 3507
D.27 Linux-PAM License ... 3509
D.28 LZ4 License ... 3509
D.29 md5 (Message-Digest Algorithm 5) License ... 3510
D.30 MeCab Dictionary License .. 3510
D.31 MeCab License .. 3511
D.32 memcached License ... 3512
D.33 Memcached.pm License ... 3512
D.34 mkpasswd.pl License .. 3513
D.35 nt_servc (Windows NT Service class library) License .. 3516
D.36 OpenPAM License .. 3516
D.37 OpenSSL v1.0 License ... 3517
D.38 Percona Multiple I/O Threads Patch License .. 3518
D.39 Pion License .. 3519
D.40 RapidJSON v0.1 ... 3519
D.41 Red HAT RPM Spec File License ... 3520
D.42 RegEX-Spencer Library License .. 3520
D.43 Richard A. O'Keefe String Library License ... 3520
D.44 sajson License ... 3521
D.45 SHA-1 in C License .. 3521
D.46 Unicode Data Files ... 3521
D.47 zlib License .. 3522

General Index ... 3523
C Function Index .. 3609
Command Index ... 3619
Function Index .. 3643
INFORMATION_SCHEMA Index ... 3667
Join Types Index .. 3675
Operator Index ... 3677
Option Index ... 3683
Privileges Index .. 3735
SQL Modes Index ... 3741
Statement/Syntax Index .. 3745
Status Variable Index .. 3795
System Variable Index .. 3805
Transaction Isolation Level Index .. 3841

xxii

xxiii

Preface and Legal Notices
This is the Reference Manual for the MySQL Database System, version 5.7, through release 5.7.11.
Differences between minor versions of MySQL 5.7 are noted in the present text with reference to
release numbers (5.7.x). For license information, see the Legal Notices. This product may contain
third-party code. For license information on third-party code, see Appendix D, Licenses for Third-Party
Components.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 5.7 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.6
Reference Manual covers the 5.6 series of MySQL software releases.

Legal Notices

Copyright © 1997, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to

http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/refman/5.6/en/

Legal Notices

xxiv

your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Chapter 1 General Information

Table of Contents
1.1 About This Manual ... 2
1.2 Typographical and Syntax Conventions ... 2
1.3 Overview of the MySQL Database Management System .. 4

1.3.1 What is MySQL? ... 4
1.3.2 The Main Features of MySQL .. 5
1.3.3 History of MySQL .. 8

1.4 What Is New in MySQL 5.7 .. 9
1.5 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.7 20
1.6 MySQL Information Sources ... 27

1.6.1 MySQL Mailing Lists .. 27
1.6.2 MySQL Community Support at the MySQL Forums ... 30
1.6.3 MySQL Community Support on Internet Relay Chat (IRC) .. 30
1.6.4 MySQL Enterprise ... 30

1.7 How to Report Bugs or Problems .. 31
1.8 MySQL Standards Compliance .. 35

1.8.1 MySQL Extensions to Standard SQL .. 36
1.8.2 MySQL Differences from Standard SQL .. 39
1.8.3 How MySQL Deals with Constraints ... 41

1.9 Credits ... 44
1.9.1 Contributors to MySQL ... 44
1.9.2 Documenters and translators .. 48
1.9.3 Packages that support MySQL ... 50
1.9.4 Tools that were used to create MySQL ... 50
1.9.5 Supporters of MySQL .. 51

The MySQL™ software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured
Query Language) database server. MySQL Server is intended for mission-critical, heavy-load
production systems as well as for embedding into mass-deployed software. Oracle is a registered
trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/
or its affiliates, and shall not be used by Customer without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open
Source product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or
can purchase a standard commercial license from Oracle. See http://www.mysql.com/company/legal/
licensing/ for more information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion of MySQL Database Server capabilities, see Section 1.3.2, “The Main Features of
MySQL”.

• For an overview of new MySQL features, see Section 1.4, “What Is New in MySQL 5.7”. For
information about the changes in each version, see the Release Notes.

• For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about
upgrading MySQL, see Section 2.11.1, “Upgrading MySQL”.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.

• For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server
Administration.

• For information about security in MySQL, see Chapter 6, Security.

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

About This Manual

2

• For information about setting up replication servers, see Chapter 17, Replication.

• For information about MySQL Enterprise, the commercial MySQL release with advanced features
and management tools, see Chapter 25, MySQL Enterprise Edition.

• For answers to a number of questions that are often asked concerning the MySQL Database Server
and its capabilities, see Appendix A, MySQL 5.7 Frequently Asked Questions.

• For a history of new features and bug fixes, see the Release Notes.

Important

To report problems or bugs, please use the instructions at Section 1.7, “How
to Report Bugs or Problems”. If you find a sensitive security bug in MySQL
Server, please let us know immediately by sending an email message to
<secalert_us@oracle.com>. Exception: Support customers should report
all problems, including security bugs, to Oracle Support.

1.1 About This Manual
This is the Reference Manual for the MySQL Database System, version 5.7, through release 5.7.11.
Differences between minor versions of MySQL 5.7 are noted in the present text with reference to
release numbers (5.7.x). For license information, see the Legal Notices. This product may contain
third-party code. For license information on third-party code, see Appendix D, Licenses for Third-Party
Components.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 5.7 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.6
Reference Manual covers the 5.6 series of MySQL software releases.

Because this manual serves as a reference, it does not provide general instruction on SQL or relational
database concepts. It also does not teach you how to use your operating system or command-line
interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is updated
frequently as well. The most recent version of the manual is available online in searchable form at
http://dev.mysql.com/doc/. Other formats also are available there, including HTML, PDF, and EPUB
versions.

The Reference Manual source files are written in DocBook XML format. The HTML version and other
formats are produced automatically, primarily using the DocBook XSL stylesheets. For information
about DocBook, see http://docbook.org/

If you have questions about using MySQL, you can ask them using our mailing lists or forums. See
Section 1.6.1, “MySQL Mailing Lists”, and Section 1.6.2, “MySQL Community Support at the MySQL
Forums”. If you have suggestions concerning additions or corrections to the manual itself, please send
them to the http://www.mysql.com/company/contact/.

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by
the MySQL Documentation Team, consisting of Chris Cole, Paul DuBois, Edward Gilmore, Stefan Hinz,
David Moss, Philip Olson, Daniel Price, Daniel So, and Jon Stephens.

1.2 Typographical and Syntax Conventions
This manual uses certain typographical conventions:

• Text in this style is used for SQL statements; database, table, and column names; program
listings and source code; and environment variables. Example: “To reload the grant tables, use the
FLUSH PRIVILEGES statement.”

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/
http://docbook.org/
http://www.mysql.com/company/contact/

Typographical and Syntax Conventions

3

• Text in this style indicates input that you type in examples.

• Text in this style indicates the names of executable programs and scripts, examples being
mysql (the MySQL command-line client program) and mysqld (the MySQL server executable).

• Text in this style is used for variable input for which you should substitute a value of your
own choosing.

• Text in this style is used for emphasis.

• Text in this style is used in table headings and to convey especially strong emphasis.

• Text in this style is used to indicate a program option that affects how the program is
executed, or that supplies information that is needed for the program to function in a certain way.
Example: “The --host option (short form -h) tells the mysql client program the hostname or IP
address of the MySQL server that it should connect to”.

• File names and directory names are written like this: “The global my.cnf file is located in the /etc
directory.”

• Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”

When commands are shown that are meant to be executed from within a particular program, the
prompt shown preceding the command indicates which command to use. For example, shell>
indicates a command that you execute from your login shell, root-shell> is similar but should be
executed as root, and mysql> indicates a statement that you execute from the mysql client program:

shell> type a shell command here
root-shell> type a shell command as root here
mysql> type a mysql statement here

In some areas different systems may be distinguished from each other to show that commands should
be executed in two different environments. For example, while working with replication the commands
might be prefixed with master and slave:

master> type a mysql command on the replication master here
slave> type a mysql command on the replication slave here

The “shell” is your command interpreter. On Unix, this is typically a program such as sh, csh, or bash.
On Windows, the equivalent program is command.com or cmd.exe, typically run in a console window.

When you enter a command or statement shown in an example, do not type the prompt shown in the
example.

Database, table, and column names must often be substituted into statements. To indicate that such
substitution is necessary, this manual uses db_name, tbl_name, and col_name. For example, you
might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, table,
and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case sensitive and may be written in any lettercase. This manual uses
uppercase.

In syntax descriptions, square brackets (“[” and “]”) indicate optional words or clauses. For example, in
the following statement, IF EXISTS is optional:

Overview of the MySQL Database Management System

4

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical
bars (“|”). When one member from a set of choices may be chosen, the alternatives are listed within
square brackets (“[” and “]”):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within braces (“{”
and “}”):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter
version of more complex syntax. For example, SELECT ... INTO OUTFILE is shorthand for the form
of SELECT statement that has an INTO OUTFILE clause following other parts of the statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In
the following example, multiple reset_option values may be given, with each of those after the first
preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence
to set the CC environment variable and run the configure command looks like this in Bourne shell
syntax:

shell> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

shell> setenv CC gcc
shell> ./configure

1.3 Overview of the MySQL Database Management System

1.3.1 What is MySQL?

MySQL, the most popular Open Source SQL database management system, is developed, distributed,
and supported by Oracle Corporation.

The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL software.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to
a picture gallery or the vast amounts of information in a corporate network. To add, access, and
process data stored in a computer database, you need a database management system such
as MySQL Server. Since computers are very good at handling large amounts of data, database
management systems play a central role in computing, as standalone utilities, or as parts of other
applications.

• MySQL databases are relational.

 A relational database stores data in separate tables rather than putting all the data in one big
storeroom. The database structures are organized into physical files optimized for speed. The
logical model, with objects such as databases, tables, views, rows, and columns, offers a flexible
programming environment. You set up rules governing the relationships between different data
fields, such as one-to-one, one-to-many, unique, required or optional, and “pointers” between

http://www.mysql.com/

The Main Features of MySQL

5

different tables. The database enforces these rules, so that with a well-designed database, your
application never sees inconsistent, duplicate, orphan, out-of-date, or missing data.

The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common
standardized language used to access databases. Depending on your programming environment,
you might enter SQL directly (for example, to generate reports), embed SQL statements into code
written in another language, or use a language-specific API that hides the SQL syntax.

SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986
and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992,
“SQL:1999” refers to the standard released in 1999, and “SQL:2003” refers to the current version
of the standard. We use the phrase “the SQL standard” to mean the current version of the SQL
Standard at any time.

• MySQL software is Open Source.

 Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you wish, you
may study the source code and change it to suit your needs. The MySQL software uses the GPL
(GNU General Public License), http://www.fsf.org/licenses/, to define what you may and may not do
with the software in different situations. If you feel uncomfortable with the GPL or need to embed
MySQL code into a commercial application, you can buy a commercially licensed version from us.
See the MySQL Licensing Overview for more information (http://www.mysql.com/company/legal/
licensing/).

• The MySQL Database Server is very fast, reliable, scalable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a
desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no
attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage
of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of
machines, networked together.

You can find a performance comparison of MySQL Server with other database managers on our
benchmark page. See The MySQL Benchmark Suite.

MySQL Server was originally developed to handle large databases much faster than existing
solutions and has been successfully used in highly demanding production environments for several
years. Although under constant development, MySQL Server today offers a rich and useful set of
functions. Its connectivity, speed, and security make MySQL Server highly suited for accessing
databases on the Internet.

• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multi-threaded SQL
server that supports different backends, several different client programs and libraries, administrative
tools, and a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that you can link into your
application to get a smaller, faster, easier-to-manage standalone product.

• A large amount of contributed MySQL software is available.

MySQL Server has a practical set of features developed in close cooperation with our users. It is
very likely that your favorite application or language supports the MySQL Database Server.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we do not mind if you
pronounce it as “my sequel” or in some other localized way.

1.3.2 The Main Features of MySQL

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
http://dev.mysql.com/doc/refman/5.6/en/mysql-benchmarks.html

The Main Features of MySQL

6

This section describes some of the important characteristics of the MySQL Database Software. In most
respects, the roadmap applies to all versions of MySQL. For information about features as they are
introduced into MySQL on a series-specific basis, see the “In a Nutshell” section of the appropriate
Manual:

• MySQL 5.7: Section 1.4, “What Is New in MySQL 5.7”

• MySQL 5.6: What Is New in MySQL 5.6

• MySQL 5.5: What Is New in MySQL 5.5

• MySQL 5.1: What Is New in MySQL 5.1

• MySQL 5.0: What Is New in MySQL 5.0

Internals and Portability

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See http://www.mysql.com/support/supportedplatforms/
database.html.

• For portability, uses CMake in MySQL 5.5 and up. Previous series use GNU Automake, Autoconf,
and Libtool.

• Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool
(http://developer.kde.org/~sewardj/).

• Uses multi-layered server design with independent modules.

• Designed to be fully multi-threaded using kernel threads, to easily use multiple CPUs if they are
available.

• Provides transactional and nontransactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

• Designed to make it relatively easy to add other storage engines. This is useful if you want to provide
an SQL interface for an in-house database.

• Uses a very fast thread-based memory allocation system.

• Executes very fast joins using an optimized nested-loop join.

• Implements in-memory hash tables, which are used as temporary tables.

• Implements SQL functions using a highly optimized class library that should be as fast as possible.
Usually there is no memory allocation at all after query initialization.

• Provides the server as a separate program for use in a client/server networked environment, and as
a library that can be embedded (linked) into standalone applications. Such applications can be used
in isolation or in environments where no network is available.

Data Types

• Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR,
VARCHAR, BINARY, VARBINARY, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET,
ENUM, and OpenGIS spatial types. See Chapter 11, Data Types.

• Fixed-length and variable-length string types.

Statements and Functions

• Full operator and function support in the SELECT list and WHERE clause of queries. For example:

http://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-nutshell.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://developer.kde.org/~sewardj/

The Main Features of MySQL

7

mysql> SELECT CONCAT(first_name, ' ', last_name)
 -> FROM citizen
 -> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(),
AVG(), STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC
syntax.

• Support for aliases on tables and columns as required by standard SQL.

• Support for DELETE, INSERT, REPLACE, and UPDATE to return the number of rows that were
changed (affected), or to return the number of rows matched instead by setting a flag when
connecting to the server.

• Support for MySQL-specific SHOW statements that retrieve information about databases, storage
engines, tables, and indexes. MySQL 5.0 adds support for the INFORMATION_SCHEMA database,
implemented according to standard SQL.

• An EXPLAIN statement to show how the optimizer resolves a query.

• Independence of function names from table or column names. For example, ABS is a valid column
name. The only restriction is that for a function call, no spaces are permitted between the function
name and the “(” that follows it. See Section 9.3, “Keywords and Reserved Words”.

• You can refer to tables from different databases in the same statement.

Security

• A privilege and password system that is very flexible and secure, and that enables host-based
verification.

• Password security by encryption of all password traffic when you connect to a server.

Scalability and Limits

• Support for large databases. We use MySQL Server with databases that contain 50 million records.
We also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.

• Support for up to 64 indexes per table. Each index may consist of 1 to 16 columns or parts of
columns. The maximum index width is 767 bytes for InnoDB tables, or 1000 for MyISAM. An index
may use a prefix of a column for CHAR, VARCHAR, BLOB, or TEXT column types.

Connectivity

• Clients can connect to MySQL Server using several protocols:

• Clients can connect using TCP/IP sockets on any platform.

• On Windows systems, clients can connect using named pipes if the server is started with the
--enable-named-pipe option. Windows servers also support shared-memory connections if
started with the --shared-memory option. Clients can connect through shared memory by using
the --protocol=memory option.

• On Unix systems, clients can connect using Unix domain socket files.

• MySQL client programs can be written in many languages. A client library written in C is available for
clients written in C or C++, or for any language that provides C bindings.

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL
clients to be written in many languages. See Chapter 23, Connectors and APIs.

History of MySQL

8

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use
ODBC (Open Database Connectivity) connections. For example, you can use MS Access to connect
to your MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available.
All ODBC 2.5 functions are supported, as are many others. See MySQL Connector/ODBC Developer
Guide.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC
connections. Clients can be run on Windows or Unix. Connector/J source is available. See MySQL
Connector/J Developer Guide.

• MySQL Connector/Net enables developers to easily create .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET
languages. MySQL Connector/Net is a fully managed ADO.NET driver written in 100% pure C#. See
MySQL Connector/Net Developer Guide.

Localization

• The server can provide error messages to clients in many languages. See Section 10.2, “Setting the
Error Message Language”.

• Full support for several different character sets, including latin1 (cp1252), german, big5, ujis,
several Unicode character sets, and more. For example, the Scandinavian characters “å”, “ä” and “ö”
are permitted in table and column names.

• All data is saved in the chosen character set.

• Sorting and comparisons are done according to the chosen character set and collation (using
latin1 and Swedish collation by default). It is possible to change this when the MySQL server is
started. To see an example of very advanced sorting, look at the Czech sorting code. MySQL Server
supports many different character sets that can be specified at compile time and runtime.

• The server time zone can be changed dynamically, and individual clients can specify their own time
zone. See Section 10.6, “MySQL Server Time Zone Support”.

Clients and Tools

• MySQL includes several client and utility programs. These include both command-line programs
such as mysqldump and mysqladmin, and graphical programs such as MySQL Workbench.

• MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These
statements are available from the command line through the mysqlcheck client. MySQL also
includes myisamchk, a very fast command-line utility for performing these operations on MyISAM
tables. See Chapter 4, MySQL Programs.

• MySQL programs can be invoked with the --help or -? option to obtain online assistance.

1.3.3 History of MySQL

We started out with the intention of using the mSQL database system to connect to our tables using
our own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that
mSQL was not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our
database but with almost the same API interface as mSQL. This API was designed to enable third-party
code that was written for use with mSQL to be ported easily for use with MySQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names
suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose
Twebaze, an Open Source software developer from Swaziland, Africa. According to Ambrose, the
feminine name Sakila has its roots in SiSwati, the local language of Swaziland. Sakila is also the name
of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html

What Is New in MySQL 5.7

9

1.4 What Is New in MySQL 5.7
This section summarizes what has been added to, deprecated in, and removed from MySQL 5.7.
A companion section lists MySQL server options and variables that have been added, deprecated,
or removed in MySQL 5.7. See Section 1.5, “Server and Status Variables and Options Added,
Deprecated, or Removed in MySQL 5.7”.

• Added Features

• Deprecated Features

• Removed Features

Added Features

The following features have been added to MySQL 5.7:

• Security improvements. These security enhancements were added:

• The server now requires account rows in the mysql.user table to have a nonempty plugin
column value and disables accounts with an empty value. For server upgrade instructions,
see Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.7”. DBAs are advised to
also convert accounts that use the mysql_old_password authentication plugin to use
mysql_native_password instead, because support for mysql_old_password has been
removed. For account upgrade instructions, see Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password Plugin”.

• MySQL now enables database administrators to establish a policy for automatic password
expiration: Any user who connects to the server using an account for which the password is
past its permitted lifetime must change the password. For more information, see Section 6.3.6,
“Password Expiration Policy”.

• Administrators can lock and unlock accounts for better control over who can log in. For more
information, see Section 6.3.11, “User Account Locking”.

• To make it easier to support secure connections, MySQL servers compiled using OpenSSL
can automatically generate missing SSL and RSA certificate and key files at startup. See
Section 6.3.13.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

All servers (whether compiled using OpenSSL or yaSSL), if not configured for SSL explicitly,
attempt to enable SSL automatically at startup if they find the requisite SSL files in the data
directory. See Section 6.3.12.4, “Configuring MySQL to Use Secure Connections”.

In addition, MySQL distributions include a mysql_ssl_rsa_setup utility that can be invoked
manually to create SSL and RSA key and certificate files. For more information, see Section 4.4.5,
“mysql_ssl_rsa_setup — Create SSL/RSA Files”.

• MySQL deployments installed using mysqld --initialize are secure by default. The following
changes have been implemented as the default deployment characteristics:

• The installation process creates only a single root account, 'root'@'localhost',
automatically generates a random password for this account, and marks the password expired.
The MySQL administrator must connect as root using the random password and assign a new
password. (The server writes the random password to the error log.)

• Installation creates no anonymous-user accounts.

• Installation creates no test database.

For more information, see Section 2.10.1.1, “Initializing the Data Directory Manually Using
mysqld”.

Added Features

10

• SQL mode changes. Strict SQL mode for transactional storage engines
(STRICT_TRANS_TABLES) is now enabled by default.

Implementation for the ONLY_FULL_GROUP_BY SQL mode has been made more sophisticated, to no
longer reject deterministic queries that previously were rejected. In consequence, this mode is now
enabled by default, to prohibit only nondeterministic queries containing expressions not guaranteed
to be uniquely determined within a group.

The ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL modes are
now deprecated but enabled by default. The long term plan is to have them included in strict SQL
mode and to remove them as explicit modes in a future MySQL release. See SQL Mode Changes in
MySQL 5.7.

The changes to the default SQL mode result in a default sql_mode system variable value with
these modes enabled: ONLY_FULL_GROUP_BY, STRICT_TRANS_TABLES, NO_ZERO_IN_DATE,
NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and
NO_ENGINE_SUBSTITUTION.

• Online ALTER TABLE. ALTER TABLE now supports a RENAME INDEX clause that renames an
index. The change is made in place without a table-copy operation. It works for all storage engines.
See Section 13.1.6, “ALTER TABLE Syntax”.

• ngram and MeCab full-text parser plugins. As of MySQL 5.7.6, MySQL provides a built-in full-
text ngram parser plugin that supports Chinese, Japanese, and Korean (CJK), and an installable
MeCab full-text parser plugin for Japanese.

For more information, see Section 12.9.8, “ngram Full-Text Parser”, and Section 12.9.9, “MeCab
Full-Text Parser Plugin”.

• InnoDB enhancements. These InnoDB enhancements were added:

• VARCHAR size may be increased using an in-place ALTER TABLE, as in this example:

ALTER TABLE t1 ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(255);

This is true as long as the number of length bytes required by a VARCHAR column remains the
same. For VARCHAR values of 0 to 255, one length byte is required to encode the value. For
VARCHAR values of 256 bytes or more, two length bytes are required. As a result, in-place ALTER
TABLE only supports increasing VARCHAR size from 0 to 255 bytes or increasing VARCHAR size
from a value equal to or greater than 256 bytes.

In-place ALTER TABLE does not support increasing VARCHAR size from less than 256 bytes to a
value equal to or greater than 256 bytes. In this case, the number of required length bytes would
change from 1 to 2, which is only supported by a table copy (ALGORITHM=COPY). For example,
attempting to change VARCHAR column size from 255 to 256 using in-place ALTER TABLE would
return an error:

ALTER TABLE t1 ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(256);
ERROR 0A000: ALGORITHM=INPLACE is not supported. Reason: Cannot change
column type INPLACE. Try ALGORITHM=COPY.

Decreasing VARCHAR size using in-place ALTER TABLE is not supported. Decreasing VARCHAR
size requires a table copy (ALGORITHM=COPY).

• DDL performance for InnoDB temporary tables is improved through optimization of CREATE
TABLE, DROP TABLE, TRUNCATE TABLE, and ALTER TABLE statements.

• InnoDB temporary table metadata is no longer stored to InnoDB system tables. Instead, a new
table, INNODB_TEMP_TABLE_INFO, provides users with a snapshot of active temporary tables.
The table contains metadata and reports on all user and system-created temporary tables that are

Added Features

11

active within a given InnoDB instance. The table is created when the first SELECT statement is run
against it.

• InnoDB now supports MySQL-supported spatial data types. Prior to this release, InnoDB would
store spatial data as binary BLOB data. BLOB remains the underlying data type but spatial data
types are now mapped to a new InnoDB internal data type, DATA_GEOMETRY.

• There is now a separate tablespace for all non-compressed InnoDB temporary tables. The new
tablespace is always recreated on server startup and is located in DATADIR by default. A newly
added configuration file option, innodb_temp_data_file_path, allows for a user-defined
temporary data file path.

• In MySQL 5.7.2, innochecksum functionality is enhanced with several new options and extended
capabilities. See Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”.

• A new type of non-redo undo log for both normal and compressed temporary tables and related
objects now resides in the temporary tablespace. For more information, see Section 14.2.6,
“InnoDB Temporary Table Undo Logs”.

• In MySQL 5.7.2, InnoDB buffer pool dump and load operations are enhanced. A new system
variable, innodb_buffer_pool_dump_pct, allows you to specify the percentage of most
recently used pages in each buffer pool to read out and dump. When there is other I/O activity
being performed by InnoDB background tasks, InnoDB attempts to limit the number of buffer pool
load operations per second using the innodb_io_capacity setting.

• In MySQL 5.7.3, support is added to InnoDB for full-text parser plugins. For information about full-
text parser plugins, see Section 24.2.3.2, “Full-Text Parser Plugins” and Section 24.2.4.4, “Writing
Full-Text Parser Plugins”.

• As of MySQL 5.7.4, InnoDB supports multiple page cleaner threads for flushing dirty pages from
buffer pool instances. A new system variable, innodb_page_cleaners, is used to specify
the number of page cleaner threads. The default value of 1 maintains the pre-MySQL 5.7.4
configuration in which there is a single page cleaner thread. This enhancement builds on work
completed in MySQL 5.6, which introduced a single page cleaner thread to offload buffer pool
flushing work from the InnoDB master thread.

• As of MySQL 5.7.4, MySQL supports rebuilding regular and partitioned InnoDB tables using
online DDL (ALGORITHM=INPLACE) for the following operations:

• OPTIMIZE TABLE

• ALTER TABLE ... FORCE

• ALTER TABLE ... ENGINE=INNODB (when run on an InnoDB table)

Online DDL support reduces table rebuild time and permits concurrent DML, which helps reduce
user application downtime. For additional information, see Section 14.10.1, “Overview of Online
DDL”.

• The Fusion-io Non-Volatile Memory (NVM) file system on Linux provides atomic write capability,
which makes the InnoDB doublewrite buffer redundant. In MySQL 5.7.4, the InnoDB doublewrite
buffer is automatically disabled for system tablespace files (ibdata files) located on Fusion-io
devices that support atomic writes.

• As of MySQL 5.7.4, InnoDB supports the Transportable Tablespace feature for partitioned
InnoDB tables and individual InnoDB table partitions. This enhancement eases backup
procedures for partitioned tables and enables copying of partitioned tables and individual table
partitions between MySQL instances. For additional information, see Section 14.4.6, “Copying File-
Per-Table Tablespaces to Another Server”.

Added Features

12

• As of MySQL 5.7.5, the innodb_buffer_pool_size parameter is dynamic, allowing you to
resize the buffer pool without restarting the server. The resizing operation, which involves moving
pages to a new location in memory, is performed in chunks. Chunk size is configurable using
the new innodb_buffer_pool_chunk_size configuration option. You can monitor resizing
progress using the new Innodb_buffer_pool_resize_status status variable. For more
information, see Section 14.3.3.7, “Resizing the InnoDB Buffer Pool Online”.

• Multi-threaded page cleaner support (innodb_page_cleaners) is extended to shutdown and
recovery phases in MySQL 5.7.5.

• As of MySQL 5.7.5, InnoDB supports indexing of spatial data types using SPATIAL indexes,
including use of ALTER TABLE ... ALGORITHM=INPLACE for online operations (ADD SPATIAL
INDEX).

• As of MySQL 5.7.5, InnoDB performs a bulk load when creating or rebuilding indexes. This
method of index creation is known as a “sorted index build”. This enhancement, which improves
the efficiency of index creation, also applies to full-text indexes. A new global configuration option,
innodb_fill_factor, defines the percentage of space on each page that is filled with data
during a sorted index build, with the remaining space reserved for future index growth. For more
information, see Section 14.2.7.8, “Sorted Index Builds”.

• As of MySQL 5.7.5, A new log record type (MLOG_FILE_NAME) is used to identify tablespaces that
have been modified since the last checkpoint. This enhancement simplifies tablespace discovery
during crash recovery and eliminates scans on the file system prior to redo log application. For
more information about the benefits of this enhancement, see Section 14.15.2, “Tablespace
Discovery During Crash Recovery”.

This enhancement changes the redo log format, requiring that MySQL be shut down cleanly before
upgrading to or downgrading from MySQL 5.7.5.

• As of MySQL 5.7.5, you can truncate undo logs that reside in undo tablespaces. This feature is
enabled using the innodb_undo_log_truncate configuration option. For more information, see
Section 14.4.8, “Truncating Undo Logs That Reside in Undo Tablespaces”.

• As of MySQL 5.7.6, InnoDB supports native partitioning. Previously, InnoDB relied on the
ha_partition handler, which creates a handler object for each partition. With native partitioning,
a partitioned InnoDB table uses a single partition-aware handler object. This enhancement
reduces the amount of memory required for partitioned InnoDB tables.

As of MySQL 5.7.9, mysql_upgrade looks for and attempts to upgrade partitioned InnoDB
tables that were created using the ha_partition handler. Also in MySQL 5.7.9 and later, you
can upgrade such tables by name in the mysql client using ALTER TABLE ... UPGRADE
PARTITIONING.

• As of MySQL 5.7.6, InnoDB supports the creation of general tablespaces using CREATE
TABLESPACE syntax.

CREATE TABLESPACE `tablespace_name`
 ADD DATAFILE 'file_name.ibd'
 [FILE_BLOCK_SIZE = n]

General tablespaces can be created outside of the MySQL data directory, are capable of holding
multiple tables, and support tables of all row formats.

Tables are added to a general tablespace using CREATE TABLE tbl_name ... TABLESPACE
[=] tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name
syntax.

For more information, see Section 14.4.9, “InnoDB General Tablespaces”.

Added Features

13

• In MySQL 5.7.9, DYNAMIC replaces COMPACT as the implicit default row format for InnoDB tables.
A new configuration option, innodb_default_row_format, specifies the default InnoDB row
format. For more information, see Section 14.8.2, “Specifying the Row Format for a Table”.

• JSON support. Beginning with MySQL 5.7.8, MySQL supports a native JSON type. JSON values
are not stored as strings, instead using an internal binary format that permits quick read access to
document elements. JSON documents stored in JSON columns are automatically validated whenever
they are inserted or updated, with an invalid document producing an error. JSON documents are
normalized on creation, and can be compared using most comparison operators such as =, <, <=,
>, >=, <>, !=, and <=>; for information about supported operators as well as precedence and other
rules that MySQL follows when comparing JSON values, see Comparison and Ordering of JSON
Values.

MySQL 5.7.8 also introduces a number of functions for working with JSON values. These functions
include those listed here:

• Functions that create JSON values: JSON_ARRAY(), JSON_MERGE(), and JSON_OBJECT(). See
Section 12.16.2, “Functions That Create JSON Values”.

• Functions that search JSON values: JSON_CONTAINS(), JSON_CONTAINS_PATH(),
JSON_EXTRACT(), JSON_KEYS(), and JSON_SEARCH(). See Section 12.16.3, “Functions That
Search JSON Values”.

• Functions that modify JSON values: JSON_APPEND(), JSON_ARRAY_APPEND(),
JSON_ARRAY_INSERT(), JSON_INSERT(), JSON_QUOTE(), JSON_REMOVE(),
JSON_REPLACE(), JSON_SET(), and JSON_UNQUOTE(). See Section 12.16.4, “Functions That
Modify JSON Values”.

• Functions that provide information about JSON values: JSON_DEPTH(), JSON_LENGTH(),
JSON_TYPE(), and JSON_VALID(). See Section 12.16.5, “Functions That Return JSON Value
Attributes”.

In MySQL 5.7.9 and later, you can use column->path as shorthand for JSON_EXTRACT(column,
path). This works as an alias for a column wherever a column identifier can occur in an SQL
statement, including WHERE, ORDER BY, and GROUP BY clauses. This includes SELECT, UPDATE,
DELETE, CREATE TABLE, and other SQL statements. The left hand side must be a JSON column
identifier (and not an alias). The right hand side is a quoted JSON path expression which is
evaluated against the JSON document returned as the column value.

See Section 12.16.3, “Functions That Search JSON Values”, for more information about -> and
JSON_EXTRACT(). For information about JSON path support in MySQL 5.7, see Searching and
Modifying JSON Values. See also Secondary Indexes and Virtual Generated Columns.

• System and status variables. System and status variable information is now available in
Performance Schema tables, in preference to use of INFORMATION_SCHEMA tables to obtain these
variable. This also affects the operation of the SHOW VARIABLES and SHOW STATUS statements.
The value of the show_compatibility_56 system variable affects the output produced from
and privileges required for system and status variable statements and tables. For details, see the
description of that variable in Section 5.1.4, “Server System Variables”.

Note

The default for show_compatibility_56 is OFF. Applications that require
5.6 behavior should set this variable to ON until such time as they have been
migrated to the new behavior for system variables and status variables.
See Section 21.17, “Migrating to Performance Schema System and Status
Variable Tables”

Added Features

14

• sys schema. MySQL distributions now include the sys schema, which is a set of objects that
help DBAs and developers interpret data collected by the Performance Schema. sys schema
objects can be used for typical tuning and diagnosis use cases. For more information, see
Chapter 22, MySQL sys Schema.

• Condition handling. MySQL now supports stacked diagnostics areas. When the diagnostics area
stack is pushed, the first (current) diagnostics area becomes the second (stacked) diagnostics area
and a new current diagnostics area is created as a copy of it. Within a condition handler, executed
statements modify the new current diagnostics area, but GET STACKED DIAGNOSTICS can be
used to inspect the stacked diagnostics area to obtain information about the condition that caused
the handler to activate, independent of current conditions within the handler itself. (Previously, there
was a single diagnostics area. To inspect handler-activating conditions within a handler, it was
necessary to check this diagnostics area before executing any statements that could change it.) See
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”, and Section 13.6.7.7, “The MySQL Diagnostics
Area”.

• Optimizer. These optimizer enhancements were added:

• EXPLAIN can be used to obtain the execution plan for an explainable statement executing in a
named connection:

EXPLAIN [options] FOR CONNECTION connection_id;

For more information, see Section 8.8.4, “Obtaining Execution Plan Information for a Named
Connection”.

• It is possible to provide hints to the optimizer within individual SQL statements, which enables
finer control over statement execution plans than can be achieved using the optimizer_switch
system variable. Hints are also permitted in statements used with EXPLAIN, enabling you to see
how hints affect execution plans. For more information, see Section 8.9.3, “Optimizer Hints”.

• Triggers. Previously, a table could have at most one trigger for each combination of trigger event
(INSERT, UPDATE, DELETE) and action time (BEFORE, AFTER). This limitation has been lifted and
multiple triggers are permitted. For more information, see Section 19.3, “Using Triggers”.

• Logging. These logging enhancements were added:

• Previously, on Unix and Unix-like systems, MySQL support for sending the server error log to
syslog was implemented by having mysqld_safe capture server error output and pass it to
syslog. The server now includes native syslog support, which has been extended to include
Windows. For more information about sending server error output to syslog, see Section 5.2.2,
“The Error Log”.

• The mysql client now has a --syslog option that causes interactive statements to be sent to
the system syslog facility. Logging is suppressed for statements that match the default “ignore”
pattern list ("*IDENTIFIED*:*PASSWORD*"), as well as statements that match any patterns
specified using the --histignore option. See Section 4.5.1.3, “mysql Logging”.

• Generated Columns. MySQL now supports the specification of generated columns in CREATE
TABLE and ALTER TABLE statements. Values of a generated column are computed from an
expression specified at column creation time. Generated columns can be virtual (computed “on
the fly” when rows are read) or stored (computed when rows are inserted or updated). For more
information, see CREATE TABLE and Generated Columns.

• mysql client. Previously, Control+C in mysql interrupted the current statement if there was one,
or exited mysql if not. Now Control+C interrupts the current statement if there was one, or cancels
any partial input line otherwise, but does not exit.

Added Features

15

• Database name rewriting with mysqlbinlog. Renaming of databases by mysqlbinlog
when reading from binary logs written using the row-based format is now supported using the --
rewrite-db option added in MySQL 5.7.1.

This option uses the format --rewrite-db='dboldname->dbnewname'. You can implement
multiple rewrite rules, by specifying the option multiple times.

• HANDLER with partitioned tables. The HANDLER statement may now be used with user-
partitioned tables. Such tables may use any of the available partitioning types (see Section 18.2,
“Partitioning Types”).

• Index condition pushdown support for partitioned tables. In MySQL 5.7.3 and later, queries
on partitioned tables using the InnoDB or MyISAM storage engine may employ the index condition
pushdown optimization that was introduced in MySQL 5.6. See Section 8.2.1.6, “Index Condition
Pushdown Optimization”, for more information.

• WITHOUT VALIDATION support for ALTER TABLE ... EXCHANGE PARTITION. As of MySQL
5.7.5, ALTER TABLE ... EXCHANGE PARTITION syntax includes an optional {WITH|WITHOUT}
VALIDATION clause. When WITHOUT VALIDATION is specified, ALTER TABLE ... EXCHANGE
PARTITION does not perform row-by-row validation when exchanging a populated table with the
partition, permitting database administrators to assume responsibility for ensuring that rows are
within the boundaries of the partition definition. WITH VALIDATION is the default behaviour and
need not be specified explicitly. For more information, see Section 18.3.3, “Exchanging Partitions
and Subpartitions with Tables”.

• Master dump thread improvements. The master dump thread was refactored to reduce lock
contention and improve master throughput. Previous to MySQL 5.7.2, the dump thread took a lock
on the binary log whenever reading an event; in MySQL 5.7.2 and later, this lock is held only while
reading the position at the end of the last successfully written event. This means both that multiple
dump threads are now able to read concurrently from the binary log file, and that dump threads are
now able to read while clients are writing to the binary log.

• Globalization improvements. MySQL 5.7.4 includes a gb18030 character set that supports the
China National Standard GB18030 character set. For more information about MySQL character set
support, see Section 10.1, “Character Set Support”.

• Changing the replication master without STOP SLAVE. In MySQL 5.7.4 and later, the strict
requirement to execute STOP SLAVE prior to issuing any CHANGE MASTER TO statement is
removed. Instead of depending on whether the slave is stopped, the behavior of CHANGE MASTER
TO now depends on the states of the slave SQL thread and slave I/O threads; which of these
threads is stopped or running now determines the options that can or cannot be used with a CHANGE
MASTER TO statement at a given point in time. The rules for making this determination are listed
here:

• If the SQL thread is stopped, you can execute CHANGE MASTER TO using any combination of
RELAY_LOG_FILE, RELAY_LOG_POS, and MASTER_DELAY options, even if the slave I/O thread is
running. No other options may be used with this statement when the I/O thread is running.

• If the I/O thread is stopped, you can execute CHANGE MASTER TO using any of the options for
this statement (in any allowed combination) except RELAY_LOG_FILE, RELAY_LOG_POS, or
MASTER_DELAY, even when the SQL thread is running. These three options may not be used
when the I/O thread is running.

• Both the SQL thread and the I/O thread must be stopped before issuing CHANGE MASTER
TO ... MASTER_AUTO_POSITION = 1.

You can check the current state of the slave SQL and I/O threads using SHOW SLAVE STATUS.

If you are using statement-based replication and temporary tables, it is possible for a CHANGE
MASTER TO statement following a STOP SLAVE statement to leave behind temporary tables
on the slave. As part of this set of improvements, a warning is now issued whenever CHANGE

Deprecated Features

16

MASTER TO is issued following STOP SLAVE when statement-based replication is in use and
Slave_open_temp_tables remains greater than 0.

For more information, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”, and Section 17.3.6,
“Switching Masters During Failover”.

• Test suite. The MySQL test suite now uses InnoDB as the default storage engine.

• Multi-source replication is now possible. MySQL Multi-Source Replication adds the ability to
replicate from multiple masters to a slave. MySQL Multi-Source Replication topologies can be used
to back up multiple servers to a single server, to merge table shards, and consolidate data from
multiple servers to a single server. See Section 17.1.4, “MySQL Multi-Source Replication”.

As part of MySQL Multi-Source Replication, replication channels have been added. Replication
channels enable a slave to open multiple connections to replicate from, with each channel being a
connection to a master. See Section 17.2.3, “Replication Channels”.

• Group Replication Performance Schema tables. MySQL 5.7 adds a number of new tables
to the Performance Schema to provide information about replication groups and channels. These
include the following tables:

• replication_applier_configuration

• replication_applier_status

• replication_applier_status_by_coordinator

• replication_applier_status_by_worker

• replication_connection_configuration

• replication_connection_status

• replication_group_members

• replication_group_member_stats

All of these tables were added in MySQL 5.7.2, except for replication_group_members and
replication_group_member_stats, which were added in MySQL 5.7.6. For more information,
see Section 21.9.10, “Performance Schema Replication Tables”.

• Group Replication SQL. The following statements were added in MySQL 5.7.6 for controlling
group replication:

• START GROUP_REPLICATION

• STOP GROUP_REPLICATION

For more information, see Section 13.4.3, “SQL Statements for Controlling Group Replication”.

Deprecated Features

The following features are deprecated in MySQL 5.7 and may be or will be removed in a future series.
Where alternatives are shown, applications should be updated to use them.

• The ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL modes are
now deprecated but enabled by default. The long term plan is to have them included in strict SQL
mode and to remove them as explicit modes in a future MySQL release.

The deprecated ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE
SQL modes are still recognized so that statements that name them do not produce an error, but will
be removed in a future version of MySQL. To make advance preparation for versions of MySQL in

Deprecated Features

17

which these mode names do not exist, applications should be modified to not refer to them. See SQL
Mode Changes in MySQL 5.7.

• Changes to account-management statements make the following features obsolete. They are now
deprecated:

• Using GRANT to create users. Instead, use CREATE USER. Following this practice makes the
NO_AUTO_CREATE_USER SQL mode immaterial for GRANT statements, so it too is deprecated.

• Using GRANT to modify account properties other than privilege assignments. This includes
authentication, SSL, and resource-limit properties. Instead, establish such properties at account-
creation time with CREATE USER or modify them afterward with ALTER USER.

• IDENTIFIED BY PASSWORD 'hash_string' syntax for CREATE USER and GRANT. Instead,
use IDENTIFIED WITH auth_plugin AS 'hash_string' for CREATE USER and ALTER
USER, where the 'hash_string' value is in a format compatible with the named plugin.

• The SET PASSWORD statement and the PASSWORD() function. Instead, use ALTER USER to
change account passwords, and avoid using PASSWORD() in any context.

• The old_passwords system variable. Account authentication plugins can no longer be left
unspecified in the mysql.user table, so any statement that assigns a password from a cleartext
string can unambiguously determine the hashing method to use on the string before storing it in
the mysql.user table. This renders old_passwords superflous.

• Relying on implicit GROUP BY sorting in MySQL 5.7 is deprecated. To achieve a specific sort order of
grouped results, it is preferable to use an explicit ORDER BY clause. GROUP BY sorting is a MySQL
extension that may change in a future release; for example, to make it possible for the optimizer to
order groupings in whatever manner it deems most efficient and to avoid the sorting overhead.

• The EXTENDED and PARTITIONS keywords for the EXPLAIN statement. These keywords are still
recognized but are now unnecessary because their effect is always enabled.

• The --skip-innodb option and its synonyms (--innodb=OFF, --disable-innodb, and so
forth). These options have no effect as of MySQL 5.7. because InnoDB cannot be disabled.

• The log_warnings system variable and --log-warnings server option. Use the
log_error_verbosity system variable instead.

• The binlog_max_flush_queue_time system variable does nothing in MySQL 5.7, and is
deprecated as of MySQL 5.7.9.

• The innodb_support_xa system variable, which enables InnoDB support for two-phase commit
in XA transactions, is deprecated as of MySQL 5.7.10. InnoDB support for two-phase commit in XA
transactions is always enabled as of MySQL 5.7.10.

• The metadata_locks_cache_size and metadata_locks_hash_instances system variables.
These do nothing as of MySQL 5.7.4.

• The sync_frm system variable.

• The global character_set_database and collation_database system variables are
deprecated and will be removed in a future version of MySQL.

Assigning a value to the session character_set_database and collation_database system
variables is deprecated and assignments produce a warning. The session variables will become read
only in a future version of MySQL and assignments will produce an error. It will remain possible to
access the session variables to determine the database character set and collation for the default
database.

• The ENCRYPT(), ENCODE(), DECODE(), DES_ENCRYPT(), and DES_DECRYPT() encryption
functions. Consider using AES_ENCRYPT() and AES_DECRYPT() instead.

Removed Features

18

• The MBREqual() spatial function. Use MBREquals() instead.

• The INFORMATION_SCHEMA.PROFILING table. Use the Performance Schema instead; see
Chapter 21, MySQL Performance Schema.

• mysqld_safe support for syslog output. Use the native server syslog support used instead. See
Section 5.2.2, “The Error Log”.

• Conversion of pre-MySQL 5.1 database names containing special characters to 5.1 format with the
addition of a #mysql50# prefix. Because such conversions are deprecated, the --fix-db-names
and --fix-table-names options for mysqlcheck and the UPGRADE DATA DIRECTORY NAME
clause for the ALTER DATABASE statement are also deprecated.

Upgrades are supported only from one release series to another (for example, 5.0 to 5.1, or 5.1 to
5.5), so there should be little remaining need for conversion of older 5.0 database names to current
versions of MySQL. As a workaround, upgrade a MySQL 5.0 installation to MySQL 5.1 before
upgrading to a more recent release.

• The mysql_plugin utility. Alternatives include loading plugins at server startup using the --
plugin-load or --plugin-load-add option, or at runtime using the INSTALL PLUGIN
statement.

Removed Features

The following items are obsolete and have been removed in MySQL 5.7. Where alternatives are
shown, applications should be updated to use them.

• Support for passwords that use the older pre-4.1 password hashing format is removed, which
involves the following changes. Applications that use any feature no longer supported must be
modified.

• The mysql_old_password authentication plugin is removed. Accounts that use this plugin
are disabled at startup and the server writes an “unknown plugin” message to the error log. For
instructions on upgrading accounts that use this plugin, see Section 6.3.9.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• The --secure-auth option to the server and client programs is the default, but is now a no-op. It
is deprecated and will be removed in a future MySQL release.

• The --skip-secure-auth option to the server and client programs is no longer supported and
using it produces an error.

• The secure_auth system variable permits only a value of 1; a value of 0 is no longer permitted.

• For the old_passwords system variable, a value of 1 (produce pre-4.1 hashes) is no longer
permitted.

• The OLD_PASSWORD() function is removed.

• In MySQL 5.6.6, the YEAR(2) data type was deprecated. Support for YEAR(2) is now removed.
Once you upgrade to MySQL 5.7.5 or newer, any remaining YEAR(2) columns must be converted
to YEAR(4) to become usable again. For conversion strategies, see Section 11.3.4, “YEAR(2)
Limitations and Migrating to YEAR(4)”. For example, run mysql_upgrade after upgrading.

• The innodb_mirrored_log_groups system variable. The only supported value was 1, so it had
no purpose.

• The storage_engine system variable. Use default_storage_engine instead.

• The thread_concurrency system variable.

• The timed_mutexes system variable. It does nothing and has no effect.

Removed Features

19

• The IGNORE clause for ALTER TABLE.

• INSERT DELAYED is no longer supported. The server recognizes but ignores the
DELAYED keyword, handles the insert as a nondelayed insert, and generates an
ER_WARN_LEGACY_SYNTAX_CONVERTED warning. (“INSERT DELAYED is no longer supported. The
statement was converted to INSERT.”) Similarly, REPLACE DELAYED is handled as a nondelayed
replace. The DELAYED keyword will be removed in a future release.

In addition, several DELAYED-related options or features were removed:

• The --delayed-insert option for mysqldump.

• The COUNT_WRITE_DELAYED, SUM_TIMER_WRITE_DELAYED, MIN_TIMER_WRITE_DELAYED,
AVG_TIMER_WRITE_DELAYED, and MAX_TIMER_WRITE_DELAYED columns of the Performance
Schema table_lock_waits_summary_by_table table.

• mysqlbinlog no longer writes comments mentioning INSERT DELAYED.

• Database symlinking on Windows using for .sym files has been removed because it is redundant
with native symlink support available using mklink. Any .sym file symbolic links will be ignored and
should be replaced with symlinks created using mklink. See Section 8.12.4.3, “Using Symbolic
Links for Databases on Windows”.

• The unused --basedir, --datadir, and --tmpdir options for mysql_upgrade were removed.

• Previously, program options could be specified in full or as any unambiguous prefix. For example,
the --compress option could be given to mysqldump as --compr, but not as --comp because
the latter is ambiguous. Option prefixes are no longer supported; only full options are accepted. This
is because prefixes can cause problems when new options are implemented for programs and a
prefix that is currently unambiguous might become ambiguous in the future. Some implications of this
change:

• The --key-buffer option must now be specified as --key-buffer-size.

• The --skip-grant option must now be specified as --skip-grant-tables.

• SHOW ENGINE INNODB MUTEX output is removed in MySQL 5.7.2. Comparable information can be
generated by creating views on Performance Schema tables.

• The InnoDB Tablespace Monitor and InnoDB Table Monitor are removed in MySQL 5.7.4. For the
Tablespace Monitor, equivalent functionality will be introduced before the GA release of MySQL 5.7.
For the Table Monitor, equivalent information can be obtained from InnoDB INFORMATION_SCHEMA
tables.

• The specially named tables used to enable and disable the standard InnoDB Monitor and
InnoDB Lock Monitor (innodb_monitor and innodb_lock_monitor) are removed in
MySQL 5.7.4 and replaced by two dynamic system variables: innodb_status_output and
innodb_status_output_locks. For additional information, see Section 14.14, “InnoDB
Monitors”.

• The innodb_use_sys_malloc and innodb_additional_mem_pool_size system variables,
which were deprecated in MySQL 5.6.3, are removed in MySQL 5.7.4.

• The msql2mysql, mysql_convert_table_format, mysql_find_rows,
mysql_fix_extensions, mysql_setpermission, mysql_waitpid, mysql_zap,
mysqlaccess, and mysqlbug utilities.

• The mysqlhotcopy utility. Alternatives include mysqldump and MySQL Enterprise Backup.

• The binary-configure.sh script.

• The INNODB_PAGE_ATOMIC_REF_COUNT CMake option is removed in MySQL 5.7.5.

Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.7

20

• The innodb_create_intrinsic option is removed in MySQL 5.7.6.

• The innodb_optimize_point_storage option and related internal data types (DATA_POINT and
DATA_VAR_POINT) were removed.

• The innodb_log_checksum_algorithm option is removed in MySQL 5.7.9.

1.5 Server and Status Variables and Options Added, Deprecated,
or Removed in MySQL 5.7

This section lists server variables, status variables, and options that were added for the first time,
have been deprecated, or have been removed in MySQL 5.7. These are grouped into the following
categories of options and variables:

• Server/General

• InnoDB Storage Engine

• Replication and Binary Logging

• Performance Schema

Where applicable, separate lists have been provided—for variables and options which have been
added, removed, or deprecated —within each section.

Variables and Options Added or Removed in MySQL 5.7: Server/General

This section lists server variables and options of a general nature that were added or removed in
MySQL 5.7.

Variables and Options Added in MySQL 5.7: Server/General

Variables and Options Deprecated in MySQL 5.7: Server/General

Variables and Options Removed in MySQL 5.7: Server/General

Variables and Options Added in MySQL 5.7: Server/General

• auto_generate_certs: Whether to autogenerate SSL key and certificate files. Added in MySQL
5.7.5.

• check_proxy_users: Whether built-in authentication plugins do proxying. Added in MySQL 5.7.7.

• Com_change_repl_filter: Count of CHANGE REPLICATION FILTER statements. Added in
MySQL 5.7.3.

• Com_explain_other: Count of EXPLAIN FOR CONNECTION statements. Added in MySQL 5.7.2.

• Com_show_create_user: Count of SHOW CREATE USER statements. Added in MySQL 5.7.6.

• Com_signal: Count of SHUTDOWN statements. Added in MySQL 5.7.9.

• daemonize: Run as System V daemon. Added in MySQL 5.7.6.

• default_authentication_plugin: The default authentication plugin. Added in MySQL 5.7.2.

• default_password_lifetime: Age in days when passwords effectively expire. Added in MySQL
5.7.4.

• disabled_storage_engines: Storage engines that cannot be used to create tables. Added in
MySQL 5.7.8.

• have_statement_timeout: Whether statement execution timeout is available. Added in MySQL
5.7.4.

Variables and Options Added or Removed in MySQL 5.7: Server/General

21

• initialize: Whether to run in initialization mode (secure). Added in MySQL 5.7.6.

• initialize-insecure: Whether to run in initialization mode (insecure). Added in MySQL 5.7.6.

• internal_tmp_disk_storage_engine: Storage engine for internal temporary tables. Added in
MySQL 5.7.5.

• Locked_connects: Number of attempts to connect to locked accounts. Added in MySQL 5.7.6.

• log_backward_compatible_user_definitions: Whether to log CREATE/ALTER USER,
GRANT in backward-compatible fashion. Added in MySQL 5.7.6.

• log_builtin_as_identified_by_password: Whether to log CREATE/ALTER USER, GRANT
in backward-compatible fashion. Added in MySQL 5.7.9.

• log_error_verbosity: Error logging verbosity level. Added in MySQL 5.7.2.

• log_syslog: Whether to write error log to syslog. Added in MySQL 5.7.5.

• log_syslog_facility: Facility for syslog messages. Added in MySQL 5.7.5.

• log_syslog_include_pid: Whether to include server PID in syslog messages. Added in MySQL
5.7.5.

• log_syslog_tag: Tag for server identifier in syslog messages. Added in MySQL 5.7.5.

• log_timestamps: Log timestamp format. Added in MySQL 5.7.2.

• max_execution_time: Statement execution timeout value. Added in MySQL 5.7.8.

• Max_execution_time_exceeded: Number of statements that exceeded the execution timeout
value. Added in MySQL 5.7.8.

• Max_execution_time_set: Number of statements for which execution timeout was set. Added in
MySQL 5.7.8.

• Max_execution_time_set_failed: Number of statements for which execution timeout setting
failed. Added in MySQL 5.7.8.

• max_points_in_geometry: Maximum number of points in geometry values for
ST_Buffer_Strategy(). Added in MySQL 5.7.8.

• max_statement_time: Statement execution timeout value. Added in MySQL 5.7.4.

• Max_statement_time_exceeded: Number of statements that exceeded the execution timeout
value. Added in MySQL 5.7.4.

• Max_statement_time_set: Number of statements for which execution timeout was set. Added in
MySQL 5.7.4.

• Max_statement_time_set_failed: Number of statements for which execution timeout setting
failed. Added in MySQL 5.7.4.

• Max_used_connections_time: The time at which Max_used_connections reached its current
value. Added in MySQL 5.7.5.

• mecab_charset: The character set currently used by the MeCab full-text parser plugin. Added in
MySQL 5.7.6.

• mysql_native_password_proxy_users: Whether the mysql_native_password authentication
plugin does proxying. Added in MySQL 5.7.7.

• offline_mode: Whether server is offline. Added in MySQL 5.7.5.

• Ongoing_anonymous_gtid_violating_transaction_count: Number of ongoing anonymous
transactions that violate GTID consistency. Added in MySQL .

Variables and Options Added or Removed in MySQL 5.7: Server/General

22

• Ongoing_anonymous_transaction_count: Number of ongoing anonymous transactions. Added
in MySQL .

• Ongoing_automatic_gtid_violating_transaction_count: Number of ongoing automatic
transactions that violate GTID consistency. Added in MySQL .

• Performance_schema_index_stat_lost: Number of indexes for which statistics were lost.
Added in MySQL 5.7.6.

• performance_schema_max_index_stat: Maximum number of indexes to keep statistics for.
Added in MySQL 5.7.6.

• performance_schema_max_sql_text_length: The maximum number of bytes stored from
SQL statements. Added in MySQL 5.7.6.

• performance_schema_max_table_lock_stat: Maximum number of tables to keep lock
statistics for. Added in MySQL 5.7.6.

• Performance_schema_table_lock_stat_lost: Number of tables for which lock statistics were
lost. Added in MySQL 5.7.6.

• range_optimizer_max_mem_size: Limit on range optimizer memory consumption. Added in
MySQL 5.7.9.

• rbr_exec_mode: Allows for switching the server between IDEMPOTENT mode (key and some
other errors suppressed) and STRICT mode; STRICT mode is the default. Added in MySQL 5.7.1.

• require_secure_transport: Whether client connections must use secure transport. Added in
MySQL 5.7.8.

• rewriter_enabled: Whether the example query rewrite plugin is enabled. Added in MySQL 5.7.6.

• rewriter_verbose: For internal use. Added in MySQL 5.7.6.

• Rewriter_number_loaded_rules: Number of rewrite rules successfully loaded into memory.
Added in MySQL 5.7.6.

• Rewriter_number_reloads: Number of reloads of rules table into memory. Added in MySQL
5.7.6.

• Rewriter_number_rewritten_queries: Number of queries rewritten since the plugin was
loaded. Added in MySQL 5.7.6.

• Rewriter_reload_error: Whether an error occurred when last loading the rewriting rules into
memory. Added in MySQL 5.7.6.

• session_track_gtids: Enables a tracker which can be configured to track different GTIDs.
Added in MySQL 5.7.6.

• session_track_schema: Whether to track schema changes. Added in MySQL 5.7.4.

• session_track_state_change: Whether to track session state changes. Added in MySQL 5.7.4.

• session_track_system_variables: Session variables to track changes for. Added in MySQL
5.7.4.

• sha256_password_auto_generate_rsa_keys: Whether to autogenerate RSA key-pair files.
Added in MySQL 5.7.5.

• sha256_password_proxy_users: Whether the sha256_password authentication plugin does
proxying. Added in MySQL 5.7.7.

• show_compatibility_56: Compatibility for SHOW STATUS/VARIABLES. Added in MySQL 5.7.6.

Variables and Options Added or Removed in MySQL 5.7: InnoDB

23

• super_read_only: Whether to ignore SUPER exceptions to read-only mode. Added in MySQL
5.7.8.

• transaction_write_set_extraction: Reserved for future use. Added in MySQL 5.7.6.

• version_tokens_session: Client token list for Version Tokens. Added in MySQL 5.7.8.

• version_tokens_session_number: For internal use. Added in MySQL 5.7.8.

Variables and Options Deprecated in MySQL 5.7: Server/General

• avoid_temporal_upgrade: Whether ALTER TABLE should upgrade pre-5.6.4 temporal columns.
Deprecated in MySQL 5.7.6.

• bootstrap: Used by mysql installation scripts. Deprecated in MySQL 5.7.6.

• log-warnings: Log some noncritical warnings to the log file. Deprecated in MySQL 5.7.2.

• metadata_locks_cache_size: Size of the metadata locks cache. Deprecated in MySQL 5.7.4.

• metadata_locks_hash_instances: Number of metadata lock hashes. Deprecated in MySQL
5.7.4.

• show_compatibility_56: Compatibility for SHOW STATUS/VARIABLES. Deprecated in MySQL
5.7.6.

• show_old_temporals: Whether SHOW CREATE TABLE should indicate pre-5.6.4 temporal
columns. Deprecated in MySQL 5.7.6.

• sync_frm: Sync .frm to disk on create. Enabled by default. Deprecated in MySQL 5.7.6.

Variables and Options Removed in MySQL 5.7: Server/General

• default-authentication-plugin: The default authentication plugin. Removed in MySQL 5.7.2.

• enable-pstack: Print a symbolic stack trace on failure. Removed in MySQL 5.5.7.

• log-slow-admin-statements: Log slow OPTIMIZE, ANALYZE, ALTER and other administrative
statements to the slow query log if it is open. Removed in MySQL 5.7.1.

• log-slow-slave-statements: Cause slow statements as executed by the slave to be written to
the slow query log. Removed in MySQL 5.7.1.

• log_backward_compatible_user_definitions: Whether to log CREATE/ALTER USER,
GRANT in backward-compatible fashion. Removed in MySQL 5.7.9.

• max_statement_time: Statement execution timeout value. Removed in MySQL 5.7.8.

• Max_statement_time_exceeded: Number of statements that exceeded the execution timeout
value. Removed in MySQL 5.7.8.

• Max_statement_time_set: Number of statements for which execution timeout was set. Removed
in MySQL 5.7.8.

• Max_statement_time_set_failed: Number of statements for which execution timeout setting
failed. Removed in MySQL 5.7.8.

• storage_engine: The default storage engine. Removed in MySQL 5.7.5.

• thread_concurrency: Permits the application to give the threads system a hint for the desired
number of threads that should be run at the same time. Removed in MySQL 5.7.2.

Variables and Options Added or Removed in MySQL 5.7: InnoDB

This section lists server variables and options relating to the InnoDB storage engine that were added,
deprecated, or removed in MySQL 5.7.

http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_enable-pstack

Variables and Options Added or Removed in MySQL 5.7: InnoDB

24

Variables and Options Added in MySQL 5.7: InnoDB

Variables and Options Deprecated in MySQL 5.7: InnoDB

Variables and Options Removed in MySQL 5.7: InnoDB

Variables and Options Added in MySQL 5.7: InnoDB

• innodb_adaptive_hash_index_parts: Partitions the adaptive hash index search system into
n partitions, with each partition protected by a separate latch. Each index is bound to a specific
partition based on space ID and index ID attributes. Added in MySQL 5.7.8.

• innodb_background_drop_list_empty: This debug option delays table creation until the
background drop list is empty. Added in MySQL 5.7.10.

• innodb_buffer_pool_chunk_size: Defines the chunk size that is used when resizing the buffer
pool dynamically. Added in MySQL 5.7.5.

• innodb_buffer_pool_dump_pct: Specifies the percentage of the most recently used pages for
each buffer pool to read out and dump. Added in MySQL 5.7.2.

• Innodb_buffer_pool_resize_status: The status of the dynamic buffer pool resizing operation.
Added in MySQL 5.7.5.

• innodb_compress_debug: Compresses all tables using a specified compression algorithm. Added
in MySQL 5.7.8.

• innodb_create_intrinsic: Enable this option to create performance-optimized temporary tables
using CREATE TEMPORY TABLE syntax. Added in MySQL 5.7.5.

• innodb_default_row_format: Defines the default row format (ROW_FORMAT) for InnoDB
tables. Added in MySQL 5.7.9.

• innodb_disable_resize_buffer_pool_debug: Disables resizing of the InnoDB buffer pool.
Added in MySQL 5.7.6.

• innodb_fill_factor: Defines the percentage B-tree leaf and non-leaf page space that is to be
filled with data. The remaining space is reserved for future growth. Added in MySQL 5.7.5.

• innodb_flush_sync: Enable innodb_flush_sync to ignore the innodb_io_capacity setting for
bursts of I/O activity that occur at checkpoints. Disable innodb_flush_sync to adhere to the limit on I/
O activity defined by the innodb_io_capacity setting. Added in MySQL 5.7.8.

• innodb_log_checksum_algorithm: Specifies how to generate and verify the checksum stored in
each redo log disk block. Added in MySQL 5.7.8.

• innodb_log_checksums: Enables or disables checksums for redo log pages. Added in MySQL
5.7.9.

• innodb_log_write_ahead_size: The write-ahead block size for the redo log. Added in MySQL
5.7.4.

• innodb_max_undo_log_size: Sets the threshold for truncating the InnoDB undo log. Added in
MySQL 5.7.5.

• innodb_merge_threshold_set_all_debug: Overrides the current MERGE_THRESHOLD
setting with the specified value for all indexes that are currently in the dictionary cache. Added in
MySQL 5.7.6.

• innodb_optimize_point_storage: Enable this option to store POINT data as fixed-length data
rather than a variable-length data. Added in MySQL 5.7.5.

• innodb_page_cleaners: Number of page cleaner threads. Added in MySQL 5.7.4.

Variables and Options Added or Removed in MySQL 5.7: Replication/Binary Log

25

• innodb_purge_rseg_truncate_frequency: The rate at which undo log purge should be
invoked as part of the purge action. A value of n invokes undo log purge on every nth iteration of
purge invocation. Added in MySQL 5.7.5.

• innodb_sync_debug: Enables InnoDB sync debug checking. Added in MySQL 5.7.8.

• innodb_temp_data_file_path: Defines the path to temporary tablespace data files and their
sizes. Added in MySQL 5.7.1.

• innodb_undo_log_truncate: Enable this option to mark the InnoDB undo tablespace for
truncation. Added in MySQL 5.7.5.

• mecab_rc_file: Defines the path to the mecabrc configuration file for the MeCab parser for
InnoDB Full-Text Search. Added in MySQL 5.7.6.

• ngram_token_size: Defines the n-gram token size for the InnoDB Full-Text Search n-gram parser.
Added in MySQL 5.7.6.

Variables and Options Deprecated in MySQL 5.7: InnoDB

• innodb: Enable InnoDB (if this version of MySQL supports it). Deprecated in MySQL 5.7.5.

• innodb_file_format: The format for new InnoDB tables. Deprecated in MySQL 5.7.7.

• innodb_file_format_check: Whether InnoDB performs file format compatibility checking.
Deprecated in MySQL 5.7.7.

• innodb_file_format_max: The file format tag in the shared tablespace. Deprecated in MySQL
5.7.7.

• innodb_large_prefix: Enables longer keys for column prefix indexes. Deprecated in MySQL
5.7.7.

• innodb_support_xa: Enable InnoDB support for the XA two-phase commit. Deprecated in MySQL
5.7.10.

Variables and Options Removed in MySQL 5.7: InnoDB

• innodb_additional_mem_pool_size: Size of a memory pool InnoDB uses to store data
dictionary information and other internal data structures. Removed in MySQL 5.7.4.

• innodb_create_intrinsic: Enable this option to create performance-optimized temporary tables
using CREATE TEMPORY TABLE syntax. Removed in MySQL 5.7.6.

• innodb_log_checksum_algorithm: Specifies how to generate and verify the checksum stored in
each redo log disk block. Removed in MySQL 5.7.9.

• innodb_optimize_point_storage: Enable this option to store POINT data as fixed-length data
rather than a variable-length data. Removed in MySQL 5.7.6.

• innodb_use_sys_malloc: Whether InnoDB uses the OS or its own memory allocator. Removed in
MySQL 5.7.4.

• timed_mutexes: Specify whether to time mutexes (only InnoDB mutexes are currently supported).
Removed in MySQL 5.7.5.

Variables and Options Added or Removed in MySQL 5.7: Replication/Binary
Log

This section lists server variables and options relating to MySQL Replication and binary logging that
were added or deprecated in MySQL 5.7. No variables or options relating to replication or binary
logging have been removed in MySQL 5.7.

Variables and Options Added or Removed in MySQL 5.7: Replication/Binary Log

26

Variables and Options Added in MySQL 5.7: Replication and Binary Log

Variables and Options Deprecated in MySQL 5.7: Replication and Binary Log

Variables and Options Added in MySQL 5.7: Replication and Binary Log

• binlog_group_commit_sync_delay: Sets the number of microseconds to wait before
synchronizing transactions to disk. Added in MySQL 5.7.5.

• binlog_group_commit_sync_no_delay_count: Sets the maximum number of transactions to
wait for before aborting the current delay specified by binlog_group_commit_sync_delay. Added in
MySQL 5.7.5.

• Com_show_slave_status_nonblocking: Count of SHOW SLAVE STATUS NONBLOCKING
statements. Added in MySQL 5.7.2.

• executed-gtids-compression-period: Deprecated and will be removed in a future version.
Use the renamed gtid-executed-compression-period instead. Added in MySQL 5.7.5.

• executed_gtids_compression_period: Deprecated and will be removed in a future version.
Use the renamed gtid_executed_compression_period instead. Added in MySQL 5.7.5.

• gtid-executed-compression-period: Compress gtid_executed table each time this many
transactions have occurred. 0 means never compress this table. Applies only when binary logging is
disabled. Added in MySQL 5.7.6.

• gtid_executed_compression_period: Compress gtid_executed table each time this many
transactions have occurred. 0 means never compress this table. Applies only when binary logging is
disabled. Added in MySQL 5.7.6.

• rpl_semi_sync_master_wait_for_slave_count: How many slave acknowledgments the
master must receive per transaction before proceeding. Added in MySQL 5.7.3.

• rpl_semi_sync_master_wait_point: The wait point for slave transaction receipt
acknowledgment. Added in MySQL 5.7.2.

• slave-parallel-type: Tells the slave to use database partioning (DATABASE) or timestamp
information (LOGICAL_CLOCK) from the master to parallelize transactions. The default is
DATABASE. Added in MySQL 5.7.2.

• slave_parallel_type: Tells the slave to use database partioning (DATABASE) or information
(LOGICAL_CLOCK) from master to parallelize transactions. The default is DATABASE. Added in
MySQL 5.7.2.

• slave_preserve_commit_order: Ensures that all commits by slave workers happen in the same
order as on the master to maintain consistency when using parallel worker threads. Added in MySQL
5.7.5.

Variables and Options Deprecated in MySQL 5.7: Replication and Binary Log

• binlog_max_flush_queue_time: How long to read transactions before flushing to binary log.
Deprecated in MySQL 5.7.9.

• binlogging_impossible_mode: Deprecated and will be removed in a future version. Use the
renamed binlog_error_action instead. Deprecated in MySQL 5.7.6.

• executed-gtids-compression-period: Deprecated and will be removed in a future version.
Use the renamed gtid-executed-compression-period instead. Deprecated in MySQL 5.7.6.

• executed_gtids_compression_period: Deprecated and will be removed in a future version.
Use the renamed gtid_executed_compression_period instead. Deprecated in MySQL 5.7.6.

Variables and Options Added or Removed in MySQL 5.7: Performance Schema

27

• simplified_binlog_gtid_recovery: Controls how binary logs are iterated during GTID
recovery. Deprecated in MySQL 5.7.6.

Variables and Options Added or Removed in MySQL 5.7: Performance
Schema

This section lists server variables and options relating to PERFORMANCE_SCHEMA that were added
in MySQL 5.7. No variables or options relating to Performance Schema have been deprecated or
removed in MySQL 5.7.

• performance-schema-consumer-events-transactions-current: Configure events-
transactions-current consumer. Added in MySQL 5.7.3.

• performance-schema-consumer-events-transactions-history: Configure events-
transactions-history consumer. Added in MySQL 5.7.3.

• performance-schema-consumer-events-transactions-history-long: Configure events-
transactions-history-long consumer. Added in MySQL 5.7.3.

• performance_schema_events_transactions_history_long_size: Number of rows in the
events_transactions_history_long table. Added in MySQL 5.7.3.

• performance_schema_events_transactions_history_size: Number of rows per thread in
the events_transactions_history table. Added in MySQL 5.7.3.

• performance_schema_max_memory_classes: The maximum number of memory instruments.
Added in MySQL 5.7.2.

• performance_schema_max_metadata_locks: The maximum number of metadata locks to track.
Added in MySQL 5.7.3.

• performance_schema_max_prepared_statements_instances: Number of rows in the
prepared_statements_instances table. Added in MySQL 5.7.4.

• performance_schema_max_program_instances: The maximum number of stored programs for
statistics. Added in MySQL 5.7.2.

• performance_schema_max_statement_stack: The maximum stored program nesting for
statistics. Added in MySQL 5.7.2.

• Performance_schema_memory_classes_lost: How many memory instruments could not be
loaded. Added in MySQL 5.7.2.

• Performance_schema_metadata_lock_lost: Number of metadata locks that could not be
recorded. Added in MySQL 5.7.3.

• Performance_schema_nested_statement_lost: Number of stored program statements for
which statistics were lost. Added in MySQL 5.7.2.

• Performance_schema_prepared_statements_lost: Number of prepared statements that
could not be instrumented. Added in MySQL 5.7.4.

• Performance_schema_program_lost: Number of stored programs for which statistics were lost.
Added in MySQL 5.7.2.

1.6 MySQL Information Sources
This section lists sources of additional information that you may find helpful, such as the MySQL
mailing lists and user forums, and Internet Relay Chat.

1.6.1 MySQL Mailing Lists

MySQL Mailing Lists

28

This section introduces the MySQL mailing lists and provides guidelines as to how the lists should be
used. When you subscribe to a mailing list, you receive all postings to the list as email messages. You
can also send your own questions and answers to the list.

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit http://
lists.mysql.com/. For most of them, you can select the regular version of the list where you get
individual messages, or a digest version where you get one large message per day.

Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because
such messages are distributed automatically to thousands of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may have a local
mailing list, so that messages sent from lists.mysql.com to your site are propagated to the local
list. In such cases, please contact your system administrator to be added to or dropped from the local
MySQL list.

To have traffic for a mailing list go to a separate mailbox in your mail program, set up a filter based on
the message headers. You can use either the List-ID: or Delivered-To: headers to identify list
messages.

The MySQL mailing lists are as follows:

• announce

The list for announcements of new versions of MySQL and related programs. This is a low-volume
list to which all MySQL users should subscribe.

• mysql

The main list for general MySQL discussion. Please note that some topics are better discussed on
the more-specialized lists. If you post to the wrong list, you may not get an answer.

• bugs

The list for people who want to stay informed about issues reported since the last release of MySQL
or who want to be actively involved in the process of bug hunting and fixing. See Section 1.7, “How
to Report Bugs or Problems”.

• internals

The list for people who work on the MySQL code. This is also the forum for discussions on MySQL
development and for posting patches.

• mysqldoc

The list for people who work on the MySQL documentation.

• benchmarks

The list for anyone interested in performance issues. Discussions concentrate on database
performance (not limited to MySQL), but also include broader categories such as performance of the
kernel, file system, disk system, and so on.

• packagers

The list for discussions on packaging and distributing MySQL. This is the forum used by distribution
maintainers to exchange ideas on packaging MySQL and on ensuring that MySQL looks and feels as
similar as possible on all supported platforms and operating systems.

• java

The list for discussions about the MySQL server and Java. It is mostly used to discuss JDBC drivers
such as MySQL Connector/J.

http://lists.mysql.com/
http://lists.mysql.com/

MySQL Mailing Lists

29

• win32

The list for all topics concerning the MySQL software on Microsoft operating systems, such as
Windows 9x, Me, NT, 2000, XP, and 2003.

• myodbc

The list for all topics concerning connecting to the MySQL server with ODBC.

• gui-tools

The list for all topics concerning MySQL graphical user interface tools such as MySQL Workbench.

• cluster

The list for discussion of MySQL Cluster.

• dotnet

The list for discussion of the MySQL server and the .NET platform. It is mostly related to MySQL
Connector/Net.

• plusplus

The list for all topics concerning programming with the C++ API for MySQL.

• perl

The list for all topics concerning Perl support for MySQL with DBD::mysql.

If you're unable to get an answer to your questions from a MySQL mailing list or forum, one option is to
purchase support from Oracle. This puts you in direct contact with MySQL developers.

The following MySQL mailing lists are in languages other than English. These lists are not operated by
Oracle.

• <mysql-france-subscribe@yahoogroups.com>

A French mailing list.

• <list@tinc.net>

A Korean mailing list. To subscribe, email subscribe mysql your@email.address to this list.

• <mysql-de-request@lists.4t2.com>

A German mailing list. To subscribe, email subscribe mysql-de your@email.address to this
list. You can find information about this mailing list at http://www.4t2.com/mysql/.

• <mysql-br-request@listas.linkway.com.br>

A Portuguese mailing list. To subscribe, email subscribe mysql-br your@email.address to
this list.

• <mysql-alta@elistas.net>

A Spanish mailing list. To subscribe, email subscribe mysql your@email.address to this list.

1.6.1.1 Guidelines for Using the Mailing Lists

Please do not post mail messages from your browser with HTML mode turned on. Many users do not
read mail with a browser.

http://www.4t2.com/mysql/

MySQL Community Support at the MySQL Forums

30

When you answer a question sent to a mailing list, if you consider your answer to have broad interest,
you may want to post it to the list instead of replying directly to the individual who asked. Try to make
your answer general enough that people other than the original poster may benefit from it. When you
post to the list, please make sure that your answer is not a duplication of a previous answer.

Try to summarize the essential part of the question in your reply. Do not feel obliged to quote the entire
original message.

When answers are sent to you individually and not to the mailing list, it is considered good etiquette to
summarize the answers and send the summary to the mailing list so that others may have the benefit
of responses you received that helped you solve your problem.

1.6.2 MySQL Community Support at the MySQL Forums

The forums at http://forums.mysql.com are an important community resource. Many forums are
available, grouped into these general categories:

• Migration

• MySQL Usage

• MySQL Connectors

• Programming Languages

• Tools

• 3rd-Party Applications

• Storage Engines

• MySQL Technology

• SQL Standards

• Business

1.6.3 MySQL Community Support on Internet Relay Chat (IRC)

In addition to the various MySQL mailing lists and forums, you can find experienced community people
on Internet Relay Chat (IRC). These are the best networks/channels currently known to us:

freenode (see http://www.freenode.net/ for servers)

• #mysql is primarily for MySQL questions, but other database and general SQL questions are
welcome. Questions about PHP, Perl, or C in combination with MySQL are also common.

• #workbench is primarily for MySQL Workbench related questions and thoughts, and it is also a
good place to meet the MySQL Workbench developers.

If you are looking for IRC client software to connect to an IRC network, take a look at xChat (http://
www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as for Windows platforms (a free
Windows build of X-Chat is available at http://www.silverex.org/download/).

1.6.4 MySQL Enterprise

Oracle offers technical support in the form of MySQL Enterprise. For organizations that rely on the
MySQL DBMS for business-critical production applications, MySQL Enterprise is a commercial
subscription offering which includes:

• MySQL Enterprise Server

• MySQL Enterprise Monitor

http://forums.mysql.com
http://www.freenode.net/
http://www.xchat.org/
http://www.xchat.org/
http://www.silverex.org/download/

How to Report Bugs or Problems

31

• Monthly Rapid Updates and Quarterly Service Packs

• MySQL Knowledge Base

• 24x7 Technical and Consultative Support

MySQL Enterprise is available in multiple tiers, giving you the flexibility to choose the level of service
that best matches your needs. For more information, see MySQL Enterprise.

1.7 How to Report Bugs or Problems
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been
reported already:

• Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to keep the
manual up to date by updating it frequently with solutions to newly found problems. In addition, the
release notes accompanying the manual can be particularly useful since it is quite possible that a
newer version contains a solution to your problem. The release notes are available at the location
just given for the manual.

• If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find
something wrong with it, it is extremely likely that your current version of MySQL Server doesn't
support the syntax you are using. If you are using the current version and the manual doesn't cover
the syntax that you are using, MySQL Server doesn't support your statement.

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you
should check the MySQL change history to see when the syntax was implemented. In this case, you
have the option of upgrading to a newer version of MySQL Server.

• For solutions to some common problems, see Section B.5, “Problems and Common Errors”.

• Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and
fixed.

• Search the MySQL mailing list archives at http://lists.mysql.com/. See Section 1.6.1, “MySQL Mailing
Lists”.

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual)
that are located at the MySQL Web site.

If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with
your local MySQL expert. If you still cannot find an answer to your question, please use the following
guidelines for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are
noted in the release notes.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an
email message to <secalert_us@oracle.com>. Exception: Support customers should report all
problems, including security bugs, to Oracle Support at http://support.oracle.com/.

To discuss problems with other users, you can use one of the MySQL mailing lists. Section 1.6.1,
“MySQL Mailing Lists”.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
the bug in the next release. This section helps you write your report correctly so that you do not waste

http://www.mysql.com/products/enterprise/
http://dev.mysql.com/doc/
http://bugs.mysql.com/
http://lists.mysql.com/
http://www.mysql.com/search/
http://bugs.mysql.com/
http://bugs.mysql.com/
http://support.oracle.com/

How to Report Bugs or Problems

32

your time doing things that may not help us much or at all. Please read this section carefully and make
sure that all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL
Server before posting. Anyone should be able to repeat the bug by just using mysql test <
script_file on your test case or by running the shell or Perl script that you include in the bug report.
Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a
good example of everything you did that led to the problem and describe, in exact detail, the problem
itself. The best reports are those that include a full example showing how to reproduce the bug or
problem. See Section 24.5, “Debugging and Porting MySQL”.

Remember that it is possible for us to respond to a report containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem
and assume that some details do not matter. A good principle to follow is that if you are in doubt about
stating something, state it. It is faster and less troublesome to write a couple more lines in your report
than to wait longer for the answer if we must ask you to provide information that was missing from the
initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL
distribution that you use, and (b) not fully describing the platform on which the MySQL server is
installed (including the platform type and version number). These are highly relevant pieces of
information, and in 99 cases out of 100, the bug report is useless without them. Very often we get
questions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't
implemented in that MySQL version, or that a bug described in a report has been fixed in newer
MySQL versions. Errors often are platform-dependent. In such cases, it is next to impossible for us to
fix anything without knowing the operating system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if
it is related to the problem. Often people find bugs in compilers and think the problem is MySQL-
related. Most compilers are under development all the time and become better version by version. To
determine whether your problem depends on your compiler, we need to know what compiler you used.
Note that every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If
we try to search for something from the archives, it is better that the error message reported exactly
matches the one that the program produces. (Even the lettercase should be observed.) It is best
to copy and paste the entire error message into your report. You should never try to reproduce the
message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it
with your report. See How to Report Connector/ODBC Problems or Bugs.

If your report includes long query output lines from test cases that you run with the mysql command-
line tool, you can make the output more readable by using the --vertical option or the \G statement
terminator. The EXPLAIN SELECT example later in this section demonstrates the use of \G.

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 5.7.10). You can
find out which version you are running by executing mysqladmin version. The mysqladmin
program can be found in the bin directory under your MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the name
and version number by double-clicking your My Computer icon and pulling down the “Help/About
Windows” menu. For most Unix-like operating systems, you can get this information by executing the
command uname -a.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-support-bug-report.html

How to Report Bugs or Problems

33

• If you are using a source distribution of the MySQL software, include the name and version number
of the compiler that you used. If you have a binary distribution, include the distribution name.

• If the problem occurs during compilation, include the exact error messages and also a few lines of
context around the offending code in the file where the error occurs.

• If mysqld died, you should also report the statement that crashed mysqld. You can usually get this
information by running mysqld with query logging enabled, and then looking in the log after mysqld
crashes. See Section 24.5, “Debugging and Porting MySQL”.

• If a database table is related to the problem, include the output from the SHOW CREATE TABLE
db_name.tbl_name statement in the bug report. This is a very easy way to get the definition of
any table in a database. The information helps us create a situation matching the one that you have
experienced.

• The SQL mode in effect when the problem occurred can be significant, so please report the value
of the sql_mode system variable. For stored procedure, stored function, and trigger objects, the
relevant sql_mode value is the one in effect when the object was created. For a stored procedure
or function, the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement shows the
relevant SQL mode, or you can query INFORMATION_SCHEMA for the information:

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES;

For triggers, you can use this statement:

SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS;

• For performance-related bugs or problems with SELECT statements, you should always include
the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT statement
produces. You should also include the output from SHOW CREATE TABLE tbl_name for each
table that is involved. The more information you provide about your situation, the more likely it is that
someone can help you.

The following is an example of a very good bug report. The statements are run using the mysql
command-line tool. Note the use of the \G statement terminator for statements that would otherwise
provide very long output lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
 <output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
 <output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
 <A short version of the output from SELECT,
 including the time taken to run the query>
mysql> SHOW STATUS;
 <output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the
anomaly. This script should include any necessary source files. The more closely the script can
reproduce your situation, the better. If you can make a reproducible test case, you should upload it to
be attached to the bug report.

If you cannot provide a script, you should at least include the output from mysqladmin variables
extended-status processlist in your report to provide some information on how your system
is performing.

• If you cannot produce a test case with only a few rows, or if the test table is too big to be included in
the bug report (more than 10 rows), you should dump your tables using mysqldump and create a

How to Report Bugs or Problems

34

README file that describes your problem. Create a compressed archive of your files using tar and
gzip or zip. After you initiate a bug report for our bugs database at http://bugs.mysql.com/, click the
Files tab in the bug report for instructions on uploading the archive to the bugs database.

• If you believe that the MySQL server produces a strange result from a statement, include not only the
result, but also your opinion of what the result should be, and an explanation describing the basis for
your opinion.

• When you provide an example of the problem, it is better to use the table names, variable names,
and so forth that exist in your actual situation than to come up with new names. The problem could
be related to the name of a table or variable. These cases are rare, perhaps, but it is better to be
safe than sorry. After all, it should be easier for you to provide an example that uses your actual
situation, and it is by all means better for us. If you have data that you do not want to be visible
to others in the bug report, you can upload it using the Files tab as previously described. If the
information is really top secret and you do not want to show it even to us, go ahead and provide an
example using other names, but please regard this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the
options that you use when you start the mysqld server, as well as the options that you use to run
any MySQL client programs. The options to programs such as mysqld and mysql, and to the
configure script, are often key to resolving problems and are very relevant. It is never a bad idea
to include them. If your problem involves a program written in a language such as Perl or PHP,
please include the language processor's version number, as well as the version for any modules
that the program uses. For example, if you have a Perl script that uses the DBI and DBD::mysql
modules, include the version numbers for Perl, DBI, and DBD::mysql.

• If your question is related to the privilege system, please include the output of mysqladmin
reload, and all the error messages you get when trying to connect. When you test your privileges,
you should execute mysqladmin reload version and try to connect with the program that gives
you trouble.

• If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that
we can use it, if you do not provide some necessary information such as test cases showing the bug
that your patch fixes. We might find problems with your patch or we might not understand it at all. If
so, we cannot use it.

If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show
that the patch handles all the situations that may occur. If we find a borderline case (even a rare one)
where the patch will not work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team cannot guess such things without first using a debugger to determine the real cause of
a bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that
others know you have tried to solve the problem yourself.

• If your data appears corrupt or you get errors when you access a particular table, first check your
tables with CHECK TABLE. If that statement reports any errors:

• The InnoDB crash recovery mechanism handles cleanup when the server is restarted after being
killed, so in typical operation there is no need to “repair” tables. If you encounter an error with
InnoDB tables, restart the server and see whether the problem persists, or whether the error
affected only cached data in memory. If data is corrupted on disk, consider restarting with the
innodb_force_recovery option enabled so that you can dump the affected tables.

• For non-transactional tables, try to repair them with REPAIR TABLE or with myisamchk. See
Chapter 5, MySQL Server Administration.

If you are running Windows, please verify the value of lower_case_table_names using the SHOW
VARIABLES LIKE 'lower_case_table_names' statement. This variable affects how the server

http://bugs.mysql.com/

MySQL Standards Compliance

35

handles lettercase of database and table names. Its effect for a given value should be as described
in Section 9.2.2, “Identifier Case Sensitivity”.

• If you often get corrupted tables, you should try to find out when and why this happens. In this case,
the error log in the MySQL data directory may contain some information about what happened. (This
is the file with the .err suffix in the name.) See Section 5.2.2, “The Error Log”. Please include any
relevant information from this file in your bug report. Normally mysqld should never crash a table
if nothing killed it in the middle of an update. If you can find the cause of mysqld dying, it is much
easier for us to provide you with a fix for the problem. See Section B.5.1, “How to Determine What Is
Causing a Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it
solves your problem. All versions of the MySQL software are thoroughly tested and should work
without problems. We believe in making everything as backward-compatible as possible, and you
should be able to switch MySQL versions without difficulty. See Section 2.1.1, “Which MySQL
Version and Distribution to Install”.

1.8 MySQL Standards Compliance
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many
extensions to the SQL standard, and here you can find out what they are and how to use them. You
can also find information about functionality missing from MySQL Server, and how to work around
some of the differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92”
refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999,
“SQL:2003” refers to the standard released in 2003, and “SQL:2008” refers to the most recent version
of the standard, released in 2008. We use the phrase “the SQL standard” or “standard SQL” to mean
the current version of the SQL Standard at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL
standard, but without sacrificing speed or reliability. We are not afraid to add extensions to SQL
or support for non-SQL features if this greatly increases the usability of MySQL Server for a large
segment of our user base. The HANDLER interface is an example of this strategy. See Section 13.2.4,
“HANDLER Syntax”.

We continue to support transactional and nontransactional databases to satisfy both mission-critical
24/7 usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows,
or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-
sized databases, but the code can also be compiled in a reduced version suitable for hand-held and
embedded devices. The compact design of the MySQL server makes development in both directions
possible without any conflicts in the source tree.

We are not targeting real-time support, although MySQL replication capabilities offer significant
functionality.

MySQL supports ODBC levels 0 to 3.51.

MySQL supports high-availability database clustering using the NDBCLUSTER storage engine. See
MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4.

We implement XML functionality which supports most of the W3C XPath standard. See Section 12.11,
“XML Functions”.

Selecting SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. DBAs can set the global

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Running MySQL in ANSI Mode

36

SQL mode to match site server operating requirements, and each application can set its session SQL
mode to its own requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes
it easier to use MySQL in different environments and to use MySQL together with other database
servers.

For more information on setting the SQL mode, see Section 5.1.7, “Server SQL Modes”.

Running MySQL in ANSI Mode

To run MySQL Server in ANSI mode, start mysqld with the --ansi option. Running the server in
ANSI mode is the same as starting it with the following options:

--transaction-isolation=SERIALIZABLE --sql-mode=ANSI

To achieve the same effect at runtime, execute these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';

You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that
are relevant for ANSI mode as follows:

mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@global.sql_mode;
 -> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode to
'ANSI' because the --ansi option also sets the transaction isolation level.

See Section 5.1.3, “Server Command Options”.

1.8.1 MySQL Extensions to Standard SQL

MySQL Server supports some extensions that you probably will not find in other SQL DBMSs. Be
warned that if you use them, your code will not be portable to other SQL servers. In some cases, you
can write code that includes MySQL extensions, but is still portable, by using comments of the following
form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other
SQL statement, but other SQL servers will ignore the extensions. For example, MySQL Server
recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the “!” character, the syntax within the comment is executed only if
the MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword
in the following comment is executed only by servers from MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The following descriptions list MySQL extensions, organized by category.

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables
within a database to file names in the database directory. This has a few implications:

MySQL Extensions to Standard SQL

37

• Database and table names are case sensitive in MySQL Server on operating systems that
have case-sensitive file names (such as most Unix systems). See Section 9.2.2, “Identifier Case
Sensitivity”.

• You can use standard system commands to back up, rename, move, delete, and copy tables that
are managed by the MyISAM storage engine. For example, it is possible to rename a MyISAM table
by renaming the .MYD, .MYI, and .frm files to which the table corresponds. (Nevertheless, it is
preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the server rename the
files.)

• General language syntax

• By default, strings can be enclosed by “"” as well as “'”. If the ANSI_QUOTES SQL mode is
enabled, strings can be enclosed only by “'” and the server interprets strings enclosed by “"” as
identifiers.

• “\” is the escape character in strings.

• In SQL statements, you can access tables from different databases with the db_name.tbl_name
syntax. Some SQL servers provide the same functionality but call this User space. MySQL
Server doesn't support tablespaces such as used in statements like this: CREATE TABLE
ralph.my_table ... IN my_tablespace.

• SQL statement syntax

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See
Section 13.1.8, “CREATE DATABASE Syntax”, Section 13.1.18, “DROP DATABASE Syntax”, and
Section 13.1.1, “ALTER DATABASE Syntax”.

• The DO statement.

• EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.

• The FLUSH and RESET statements.

• The SET statement. See Section 13.7.4, “SET Syntax”.

• The SHOW statement. See Section 13.7.5, “SHOW Syntax”. The information produced by many of
the MySQL-specific SHOW statements can be obtained in more standard fashion by using SELECT
to query INFORMATION_SCHEMA. See Chapter 20, INFORMATION_SCHEMA Tables.

• Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle's LOAD DATA
INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• Use of RENAME TABLE. See Section 13.1.28, “RENAME TABLE Syntax”.

• Use of REPLACE instead of DELETE plus INSERT. See Section 13.2.8, “REPLACE Syntax”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in ALTER
TABLE statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE
statement. See Section 13.1.6, “ALTER TABLE Syntax”.

• Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE TABLE
statements. See Section 13.1.14, “CREATE TABLE Syntax”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE and DROP DATABASE.

MySQL Extensions to Standard SQL

38

• The capability of dropping multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO tbl_name SET col_name = ... syntax.

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

• Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 13.2.9, “SELECT
Syntax”.

• Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.

• You don't need to name all selected columns in the GROUP BY clause. This gives better
performance for some very specific, but quite normal queries. See Section 12.20, “Functions and
Modifiers for Use with GROUP BY Clauses”.

• You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

• The ability to set variables in a statement with the := assignment operator. See Section 9.4, “User-
Defined Variables”.

• Data types

• The MEDIUMINT, SET, and ENUM data types, and the various BLOB and TEXT data types.

• The AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL data type attributes.

• Functions and operators

• To make it easier for users who migrate from other SQL environments, MySQL Server supports
aliases for many functions. For example, all string functions support both standard SQL syntax and
ODBC syntax.

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the C
programming language. In MySQL Server, || and OR are synonyms, as are && and AND. Because
of this nice syntax, MySQL Server doesn't support the standard SQL || operator for string
concatenation; use CONCAT() instead. Because CONCAT() takes any number of arguments, it is
easy to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT value_list) where value_list has more than one element.

• String comparisons are case-insensitive by default, with sort ordering determined by the collation
of the current character set, which is latin1 (cp1252 West European) by default. If you don't like
this, you should declare your columns with the BINARY attribute or use the BINARY cast, which
causes comparisons to be done using the underlying character code values rather than a lexical
ordering.

• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is
supported for C programmers and for compatibility with PostgreSQL.

• The =, <>, <=, <, >=, >, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions in
the output column list (to the left of the FROM) in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM my_table;

• The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See
Section 12.14, “Information Functions”.

MySQL Differences from Standard SQL

39

• LIKE is permitted on numeric values.

• The REGEXP and NOT REGEXP extended regular expression operators.

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these
functions can take a variable number of arguments.)

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), ENCRYPT(),
MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(), and WEEKDAY()
functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and GROUP_CONCAT().
See Section 12.20, “Functions and Modifiers for Use with GROUP BY Clauses”.

1.8.2 MySQL Differences from Standard SQL

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but
MySQL Server performs operations differently in some cases:

• There are several differences between the MySQL and standard SQL privilege systems. For
example, in MySQL, privileges for a table are not automatically revoked when you delete a table.
You must explicitly issue a REVOKE statement to revoke privileges for a table. For more information,
see Section 13.7.1.6, “REVOKE Syntax”.

• The CAST() function does not support cast to REAL or BIGINT. See Section 12.10, “Cast Functions
and Operators”.

1.8.2.1 SELECT INTO TABLE Differences

MySQL Server doesn't support the SELECT ... INTO TABLE Sybase SQL extension. Instead,
MySQL Server supports the INSERT INTO ... SELECT standard SQL syntax, which is basically the
same thing. See Section 13.2.5.1, “INSERT ... SELECT Syntax”. For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.

You can use SELECT ... INTO with user-defined variables. The same syntax can also be used
inside stored routines using cursors and local variables. See Section 13.2.9.1, “SELECT ... INTO
Syntax”.

1.8.2.2 UPDATE Differences

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. The second assignment in the following statement sets col2 to the current (updated)
col1 value, not the original col1 value. The result is that col1 and col2 have the same value. This
behavior differs from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

1.8.2.3 Foreign Key Differences

MySQL's implementation of foreign keys differs from the SQL standard in the following key respects:

• If there are several rows in the parent table that have the same referenced key value, InnoDB acts
in foreign key checks as if the other parent rows with the same key value do not exist. For example,

MySQL Differences from Standard SQL

40

if you have defined a RESTRICT type constraint, and there is a child row with several parent rows,
InnoDB does not permit the deletion of any of those parent rows.

InnoDB performs cascading operations through a depth-first algorithm, based on records in the
indexes corresponding to the foreign key constraints.

• A FOREIGN KEY constraint that references a non-UNIQUE key is not standard SQL but rather an
InnoDB extension.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the same cascade, it acts like RESTRICT. This means that you cannot
use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent
infinite loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the
other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not
be nested more than 15 levels deep.

• In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique
constraints) are checked row-by-row. When performing foreign key checks, InnoDB sets shared row-
level locks on child or parent records that it must examine. MySQL checks foreign key constraints
immediately; the check is not deferred to transaction commit. According to the SQL standard, the
default behavior should be deferred checking. That is, constraints are only checked after the entire
SQL statement has been processed. This means that it is not possible to delete a row that refers to
itself using a foreign key.

For information about how the InnoDB storage engine handles foreign keys, see Section 14.5.6,
“InnoDB and FOREIGN KEY Constraints”.

1.8.2.4 '--' as the Start of a Comment

Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific
SQL to be embedded in the comment, as described in Section 9.6, “Comment Syntax”.

Standard SQL uses “--” as a start-comment sequence. MySQL Server uses “#” as the start comment
character. MySQL Server 3.23.3 and up also supports a variant of the “--” comment style. That is,
the “--” start-comment sequence must be followed by a space (or by a control character such as a
newline). The space is required to prevent problems with automatically generated SQL queries that use
constructs such as the following, where we automatically insert the value of the payment for payment:

UPDATE account SET credit=credit-payment

Consider about what happens if payment has a negative value such as -1:

UPDATE account SET credit=credit--1

credit--1 is a valid expression in SQL, but “--” is interpreted as the start of a comment, part of
the expression is discarded. The result is a statement that has a completely different meaning than
intended:

UPDATE account SET credit=credit

The statement produces no change in value at all. This illustrates that permitting comments to start with
“--” can have serious consequences.

Using our implementation requires a space following the “--” for it to be recognized as a start-comment
sequence in MySQL Server 3.23.3 and newer. Therefore, credit--1 is safe to use.

Another safe feature is that the mysql command-line client ignores lines that start with “--”.

The following information is relevant only if you are running a MySQL version earlier than 3.23.3:

How MySQL Deals with Constraints

41

If you have an SQL script in a text file that contains “--” comments, you should use the replace utility
as follows to convert the comments to use “#” characters before executing the script:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
 | mysql db_name

That is safer than executing the script in the usual way:

shell> mysql db_name < text-file-with-funny-comments.sql

You can also edit the script file “in place” to change the “--” comments to “#” comments:

shell> replace " --" " #" -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace " #" " --" -- text-file-with-funny-comments.sql

See Section 4.8.3, “replace — A String-Replacement Utility”.

1.8.3 How MySQL Deals with Constraints

MySQL enables you to work both with transactional tables that permit rollback and with
nontransactional tables that do not. Because of this, constraint handling is a bit different in MySQL
than in other DBMSs. We must handle the case when you have inserted or updated a lot of rows in a
nontransactional table for which changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect
while parsing a statement to be executed, and tries to recover from any errors that occur while
executing the statement. We do this in most cases, but not yet for all.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover as
well as possible from the problem and continue. By default, the server follows the latter course. This
means, for example, that the server may coerce invalid values to the closest valid values.

Several SQL mode options are available to provide greater control over handling of bad data values
and whether to continue statement execution or abort when errors occur. Using these options, you
can configure MySQL Server to act in a more traditional fashion that is like other DBMSs that reject
improper input. The SQL mode can be set globally at server startup to affect all clients. Individual
clients can set the SQL mode at runtime, which enables each client to select the behavior most
appropriate for its requirements. See Section 5.1.7, “Server SQL Modes”.

The following sections describe how MySQL Server handles different types of constraints.

1.8.3.1 PRIMARY KEY and UNIQUE Index Constraints

Normally, errors occurs for data-change statements (such as INSERT or UPDATE) that would violate
primary-key, unique-key, or foreign-key constraints. If you are using a transactional storage engine
such as InnoDB, MySQL automatically rolls back the statement. If you are using a nontransactional
storage engine, MySQL stops processing the statement at the row for which the error occurred and
leaves any remaining rows unprocessed.

MySQL supports an IGNORE keyword for INSERT, UPDATE, and so forth. If you use it, MySQL ignores
primary-key or unique-key violations and continues processing with the next row. See the section
for the statement that you are using (Section 13.2.5, “INSERT Syntax”, Section 13.2.11, “UPDATE
Syntax”, and so forth).

You can get information about the number of rows actually inserted or updated with the
mysql_info() C API function. You can also use the SHOW WARNINGS statement. See
Section 23.8.7.36, “mysql_info()”, and Section 13.7.5.40, “SHOW WARNINGS Syntax”.

How MySQL Deals with Constraints

42

Only InnoDB tables support foreign keys. See Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”.

1.8.3.2 FOREIGN KEY Constraints

Foreign keys let you cross-reference related data across tables, and foreign key constraints help keep
this spread-out data consistent.

MySQL supports ON UPDATE and ON DELETE foreign key references in CREATE TABLE and ALTER
TABLE statements. The available referential actions are RESTRICT (the default), CASCADE, SET NULL,
and NO ACTION.

SET DEFAULT is also supported by the MySQL Server but is currently rejected as invalid by InnoDB.
Since MySQL does not support deferred constraint checking, NO ACTION is treated as RESTRICT. For
the exact syntax supported by MySQL for foreign keys, see Section 13.1.14.3, “Using FOREIGN KEY
Constraints”.

MATCH FULL, MATCH PARTIAL, and MATCH SIMPLE are allowed, but their use should be avoided,
as they cause the MySQL Server to ignore any ON DELETE or ON UPDATE clause used in the same
statement. MATCH options do not have any other effect in MySQL, which in effect enforces MATCH
SIMPLE semantics full-time.

MySQL requires that foreign key columns be indexed; if you create a table with a foreign key constraint
but no index on a given column, an index is created.

You can obtain information about foreign keys from the INFORMATION_SCHEMA.KEY_COLUMN_USAGE
table. An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
 > FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 > WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+---------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+---------------+-------------+-----------------+
fk1	myuser	myuser_id	f
fk1	product_order	customer_id	f2
fk1	product_order	product_id	f1
+--------------+---------------+-------------+-----------------+
3 rows in set (0.01 sec)

Information about foreign keys on InnoDB tables can also be found in the INNODB_SYS_FOREIGN and
INNODB_SYS_FOREIGN_COLS tables, in the INFORMATION_SCHEMA database.

Currently, only InnoDB tables support foreign keys. See Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”, for information specific to foreign key support in InnoDB.

1.8.3.3 Constraints on Invalid Data

By default, MySQL is forgiving of invalid or improper data values and coerces them to valid values for
data entry. However, you can enable strict SQL mode to select more traditional treatment of bad values
such that the server rejects them and aborts the statement in which they occur. See Section 5.1.7,
“Server SQL Modes”.

This section describes the default (forgiving) behavior of MySQL, as well as the strict SQL mode and
how it differs.

If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as
a NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the
column to the “best possible value” instead of producing an error: The following rules describe in more
detail how this works:

How MySQL Deals with Constraints

43

• If you try to store an out of range value into a numeric column, MySQL Server instead stores zero,
the smallest possible value, or the largest possible value, whichever is closest to the invalid value.

• For strings, MySQL stores either the empty string or as much of the string as can be stored in the
column.

• If you try to store a string that does not start with a number into a numeric column, MySQL Server
stores 0.

• Invalid values for ENUM and SET columns are handled as described in Section 1.8.3.4, “ENUM and
SET Constraints”.

• MySQL permits you to store certain incorrect date values into DATE and DATETIME columns (such
as '2000-02-31' or '2000-02-00'). In this case, when an application has not enabled strict
SQL mode, it up to the application to validate the dates before storing them. If MySQL can store a
date value and retrieve exactly the same value, MySQL stores it as given. If the date is totally wrong
(outside the server's ability to store it), the special “zero” date value '0000-00-00' is stored in the
column instead.

• If you try to store NULL into a column that doesn't take NULL values, an error occurs for single-
row INSERT statements. For multiple-row INSERT statements or for INSERT INTO ... SELECT
statements, MySQL Server stores the implicit default value for the column data type. In general, this
is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time
types. Implicit default values are discussed in Section 11.7, “Data Type Default Values”.

• If an INSERT statement specifies no value for a column, MySQL inserts its default value if the
column definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT clause,
MySQL inserts the implicit default value for the column data type.

The reason for using the preceding rules in nonstrict mode is that we can't check these conditions until
the statement has begun executing. We can't just roll back if we encounter a problem after updating
a few rows, because the storage engine may not support rollback. The option of terminating the
statement is not that good; in this case, the update would be “half done,” which is probably the worst
possible scenario. In this case, it is better to “do the best you can” and then continue as if nothing
happened.

You can select stricter treatment of input values by using the STRICT_TRANS_TABLES or
STRICT_ALL_TABLES SQL modes:

SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode = 'STRICT_ALL_TABLES';

STRICT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some
extent for nontransactional engines. It works like this:

• For transactional storage engines, bad data values occurring anywhere in a statement cause the
statement to abort and roll back.

• For nontransactional storage engines, a statement aborts if the error occurs in the first row to be
inserted or updated. (When the error occurs in the first row, the statement can be aborted to leave
the table unchanged, just as for a transactional table.) Errors in rows after the first do not abort the
statement, because the table has already been changed by the first row. Instead, bad data values
are adjusted and result in warnings rather than errors. In other words, with STRICT_TRANS_TABLES,
a wrong value causes MySQL to roll back all updates done so far, if that can be done without
changing the table. But once the table has been changed, further errors result in adjustments and
warnings.

For even stricter checking, enable STRICT_ALL_TABLES. This is the same as
STRICT_TRANS_TABLES except that for nontransactional storage engines, errors abort the statement
even for bad data in rows following the first row. This means that if an error occurs partway through

Credits

44

a multiple-row insert or update for a nontransactional table, a partial update results. Earlier rows are
inserted or updated, but those from the point of the error on are not. To avoid this for nontransactional
tables, either use single-row statements or else use STRICT_TRANS_TABLES if conversion warnings
rather than errors are acceptable. To avoid problems in the first place, do not use MySQL to check
column content. It is safest (and often faster) to let the application ensure that it passes only valid
values to the database.

With either of the strict mode options, you can cause errors to be treated as warnings by using INSERT
IGNORE or UPDATE IGNORE rather than INSERT or UPDATE without IGNORE.

1.8.3.4 ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given set of
values. See Section 11.4.4, “The ENUM Type”, and Section 11.4.5, “The SET Type”.

With strict mode enabled (see Section 5.1.7, “Server SQL Modes”), the definition of a ENUM or SET
column acts as a constraint on values entered into the column. An error occurs for values that do not
satisfy these conditions:

• An ENUM value must be one of those listed in the column definition, or the internal numeric equivalent
thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined as
ENUM('a','b','c'), values such as '', 'd', or 'ax' are invalid and are rejected.

• A SET value must be the empty string or a value consisting only of the values listed in the column
definition separated by commas. For a column defined as SET('a','b','c'), values such as 'd'
or 'a,b,c,d' are invalid and are rejected.

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE
IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as
the error member (0). For SET, the value is inserted as given except that any invalid substrings are
deleted. For example, 'a,x,b,y' results in a value of 'a,b'.

1.9 Credits

The following sections list developers, contributors, and supporters that have helped to make MySQL
what it is today.

1.9.1 Contributors to MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and the
MySQL manual, we wish to recognize those who have made contributions of one kind or another to
the MySQL distribution. Contributors are listed here, in somewhat random order:

• Gianmassimo Vigazzola <qwerg@mbox.vol.it> or <qwerg@tin.it>

The initial port to Win32/NT.

• Per Eric Olsson

For constructive criticism and real testing of the dynamic record format.

• Irena Pancirov <irena@mail.yacc.it>

Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe.

• David J. Hughes

For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we
started with mSQL, but found that it couldn't satisfy our purposes so instead we wrote an SQL
interface to our application builder Unireg. mysqladmin and mysql client are programs that were

Contributors to MySQL

45

largely influenced by their mSQL counterparts. We have put a lot of effort into making the MySQL
syntax a superset of mSQL. Many of the API's ideas are borrowed from mSQL to make it easy to port
free mSQL programs to the MySQL API. The MySQL software doesn't contain any code from mSQL.
Two files in the distribution (client/insert_test.c and client/select_test.c) are based
on the corresponding (noncopyrighted) files in the mSQL distribution, but are modified as examples
showing the changes necessary to convert code from mSQL to MySQL Server. (mSQL is copyrighted
David J. Hughes.)

• Patrick Lynch

For helping us acquire http://www.mysql.com/.

• Fred Lindberg

For setting up qmail to handle the MySQL mailing list and for the incredible help we got in managing
the MySQL mailing lists.

• Igor Romanenko <igor@frog.kiev.ua>

mysqldump (previously msqldump, but ported and enhanced by Monty).

• Yuri Dario

For keeping up and extending the MySQL OS/2 port.

• Tim Bunce

Author of mysqlhotcopy.

• Zarko Mocnik <zarko.mocnik@dem.si>

Sorting for Slovenian language.

• "TAMITO" <tommy@valley.ne.jp>

The _MB character set macros and the ujis and sjis character sets.

• Joshua Chamas <joshua@chamas.com>

Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL
mailing list.

• Yves Carlier <Yves.Carlier@rug.ac.be>

mysqlaccess, a program to show the access rights for a user.

• Rhys Jones <rhys@wales.com> (And GWE Technologies Limited)

For one of the early JDBC drivers.

• Dr Xiaokun Kelvin ZHU <X.Zhu@brad.ac.uk>

Further development of one of the early JDBC drivers and other MySQL-related Java tools.

• James Cooper <pixel@organic.com>

For setting up a searchable mailing list archive at his site.

• Rick Mehalick <Rick_Mehalick@i-o.com>

For xmysql, a graphical X client for MySQL Server.

• Doug Sisk <sisk@wix.com>

http://www.mysql.com/

Contributors to MySQL

46

For providing RPM packages of MySQL for Red Hat Linux.

• Diemand Alexander V. <axeld@vial.ethz.ch>

For providing RPM packages of MySQL for Red Hat Linux-Alpha.

• Antoni Pamies Olive <toni@readysoft.es>

For providing RPM versions of a lot of MySQL clients for Intel and SPARC.

• Jay Bloodworth <jay@pathways.sde.state.sc.us>

For providing RPM versions for MySQL 3.21.

• David Sacerdote <davids@secnet.com>

Ideas for secure checking of DNS host names.

• Wei-Jou Chen <jou@nematic.ieo.nctu.edu.tw>

Some support for Chinese(BIG5) characters.

• Wei He <hewei@mail.ied.ac.cn>

A lot of functionality for the Chinese(GBK) character set.

• Jan Pazdziora <adelton@fi.muni.cz>

Czech sorting order.

• Zeev Suraski <bourbon@netvision.net.il>

FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor. Active mailing list
member.

• Luuk de Boer <luuk@wxs.nl>

Ported (and extended) the benchmark suite to DBI/DBD. Have been of great help with crash-me
and running benchmarks. Some new date functions. The mysql_setpermission script.

• Alexis Mikhailov <root@medinf.chuvashia.su>

User-defined functions (UDFs); CREATE FUNCTION and DROP FUNCTION.

• Andreas F. Bobak <bobak@relog.ch>

The AGGREGATE extension to user-defined functions.

• Ross Wakelin <R.Wakelin@march.co.uk>

Help to set up InstallShield for MySQL-Win32.

• Jethro Wright III <jetman@li.net>

The libmysql.dll library.

• James Pereria <jpereira@iafrica.com>

Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.

• Curt Sampson <cjs@portal.ca>

Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.

Contributors to MySQL

47

• Martin Ramsch <m.ramsch@computer.org>

Examples in the MySQL Tutorial.

• Steve Harvey

For making mysqlaccess more secure.

• Konark IA-64 Centre of Persistent Systems Private Limited

Help with the Win64 port of the MySQL server.

• Albert Chin-A-Young.

Configure updates for Tru64, large file support and better TCP wrappers support.

• John Birrell

Emulation of pthread_mutex() for OS/2.

• Benjamin Pflugmann

Extended MERGE tables to handle INSERTS. Active member on the MySQL mailing lists.

• Jocelyn Fournier

Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).

• Marc Liyanage

Maintaining the OS X packages and providing invaluable feedback on how to create OS X packages.

• Robert Rutherford

Providing invaluable information and feedback about the QNX port.

• Previous developers of NDB Cluster

Lots of people were involved in various ways summer students, master thesis students, employees.
In total more than 100 people so too many to mention here. Notable name is Ataullah Dabaghi who
up until 1999 contributed around a third of the code base. A special thanks also to developers of
the AXE system which provided much of the architectural foundations for NDB Cluster with blocks,
signals and crash tracing functionality. Also credit should be given to those who believed in the ideas
enough to allocate of their budgets for its development from 1992 to present time.

• Google Inc.

We wish to recognize Google Inc. for contributions to the MySQL distribution: Mark Callaghan's SMP
Performance patches and other patches.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech
Tryc, Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, <jehamby@lightside>,
<psmith@BayNetworks.com>, <duane@connect.com.au>, Ted Deppner <ted@psyber.com>,
Mike Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

• Daniel Koch <dkoch@amcity.com>

Irix setup.

• Luuk de Boer <luuk@wxs.nl>

Documenters and translators

48

Benchmark questions.

• Tim Sailer <tps@users.buoy.com>

DBD::mysql questions.

• Boyd Lynn Gerber <gerberb@zenez.com>

SCO-related questions.

• Richard Mehalick <RM186061@shellus.com>

xmysql-related questions and basic installation questions.

• Zeev Suraski <bourbon@netvision.net.il>

Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related
questions and other general questions.

• Francesc Guasch <frankie@citel.upc.es>

General questions.

• Jonathan J Smith <jsmith@wtp.net>

Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some
work.

• David Sklar <sklar@student.net>

Using MySQL from PHP and Perl.

• Alistair MacDonald <A.MacDonald@uel.ac.uk>

Is flexible and can handle Linux and perhaps HP-UX.

• John Lyon <jlyon@imag.net>

Questions about installing MySQL on Linux systems, using either .rpm files or compiling from
source.

• Lorvid Ltd. <lorvid@WOLFENET.com>

Simple billing/license/support/copyright issues.

• Patrick Sherrill <patrick@coconet.com>

ODBC and VisualC++ interface questions.

• Randy Harmon <rjharmon@uptimecomputers.com>

DBD, Linux, some SQL syntax questions.

1.9.2 Documenters and translators

The following people have helped us with writing the MySQL documentation and translating the
documentation or error messages in MySQL.

• Paul DuBois

Ongoing help with making this manual correct and understandable. That includes rewriting Monty's
and David's attempts at English into English as other people know it.

Documenters and translators

49

• Kim Aldale

Helped to rewrite Monty's and David's early attempts at English into English.

• Michael J. Miller Jr. <mke@terrapin.turbolift.com>

For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the
MySQL manual a long time ago).

• Yan Cailin

First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which the
Big5 and HK coded versions were based.

• Jay Flaherty <fty@mediapulse.com>

Big parts of the Perl DBI/DBD section in the manual.

• Paul Southworth <pauls@etext.org>, Ray Loyzaga <yar@cs.su.oz.au>

Proof-reading of the Reference Manual.

• Therrien Gilbert <gilbert@ican.net>, Jean-Marc Pouyot <jmp@scalaire.fr>

French error messages.

• Petr Snajdr, <snajdr@pvt.net>

Czech error messages.

• Jaroslaw Lewandowski <jotel@itnet.com.pl>

Polish error messages.

• Miguel Angel Fernandez Roiz

Spanish error messages.

• Roy-Magne Mo <rmo@www.hivolda.no>

Norwegian error messages and testing of MySQL 3.21.xx.

• Timur I. Bakeyev <root@timur.tatarstan.ru>

Russian error messages.

• <brenno@dewinter.com> & Filippo Grassilli <phil@hyppo.com>

Italian error messages.

• Dirk Munzinger <dirk@trinity.saar.de>

German error messages.

• Billik Stefan <billik@sun.uniag.sk>

Slovak error messages.

• Stefan Saroiu <tzoompy@cs.washington.edu>

Romanian error messages.

• Peter Feher

Hungarian error messages.

Packages that support MySQL

50

• Roberto M. Serqueira

Portuguese error messages.

• Carsten H. Pedersen

Danish error messages.

• Arjen Lentz

Dutch error messages, completing earlier partial translation (also work on consistency and spelling).

1.9.3 Packages that support MySQL

The following is a list of creators/maintainers of some of the most important API/packages/applications
that a lot of people use with MySQL.

We cannot list every possible package here because the list would then be way to hard to maintain. For
other packages, please refer to the software portal at http://solutions.mysql.com/software/.

• Tim Bunce, Alligator Descartes

For the DBD (Perl) interface.

• Andreas Koenig <a.koenig@mind.de>

For the Perl interface for MySQL Server.

• Jochen Wiedmann <wiedmann@neckar-alb.de>

For maintaining the Perl DBD::mysql module.

• Eugene Chan <eugene@acenet.com.sg>

For porting PHP for MySQL Server.

• Georg Richter

MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for use with MySQL 4.1
and up.

• Giovanni Maruzzelli <maruzz@matrice.it>

For porting iODBC (Unix ODBC).

• Xavier Leroy <Xavier.Leroy@inria.fr>

The author of LinuxThreads (used by the MySQL Server on Linux).

1.9.4 Tools that were used to create MySQL

The following is a list of some of the tools we have used to create MySQL. We use this to express our
thanks to those that has created them as without these we could not have made MySQL what it is
today.

• Free Software Foundation

From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the libc library
(from which we have borrowed strto.c to get some code working in Linux).

• Free Software Foundation & The XEmacs development team

For a really great editor/environment.

http://solutions.mysql.com/software/

Supporters of MySQL

51

• Julian Seward

Author of valgrind, an excellent memory checker tool that has helped us find a lot of otherwise
hard to find bugs in MySQL.

• Dorothea Lütkehaus and Andreas Zeller

For DDD (The Data Display Debugger) which is an excellent graphical front end to gdb).

1.9.5 Supporters of MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and
the MySQL manual, we wish to recognize the following companies, which helped us finance the
development of the MySQL server, such as by paying us for developing a new feature or giving us
hardware for development of the MySQL server.

• VA Linux / Andover.net

Funded replication.

• NuSphere

Editing of the MySQL manual.

• Stork Design studio

The MySQL Web site in use between 1998-2000.

• Intel

Contributed to development on Windows and Linux platforms.

• Compaq

Contributed to Development on Linux/Alpha.

• SWSoft

Development on the embedded mysqld version.

• FutureQuest

The --skip-show-database option.

52

53

Chapter 2 Installing and Upgrading MySQL

Table of Contents
2.1 General Installation Guidance ... 55

2.1.1 Which MySQL Version and Distribution to Install ... 55
2.1.2 How to Get MySQL ... 57
2.1.3 Verifying Package Integrity Using MD5 Checksums or GnuPG 57
2.1.4 Installation Layouts .. 67
2.1.5 Compiler-Specific Build Characteristics ... 67

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 67
2.3 Installing MySQL on Microsoft Windows .. 70

2.3.1 MySQL Installation Layout on Microsoft Windows .. 72
2.3.2 Choosing An Installation Package ... 73
2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installer 74
2.3.4 MySQL Notifier .. 101
2.3.5 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive 112
2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation 120
2.3.7 Windows Postinstallation Procedures .. 121
2.3.8 Upgrading MySQL on Windows .. 124

2.4 Installing MySQL on OS X .. 125
2.4.1 General Notes on Installing MySQL on OS X .. 125
2.4.2 Installing MySQL on OS X Using Native Packages .. 126
2.4.3 Installing a MySQL Launch Daemon ... 131
2.4.4 Installing and Using the MySQL Preference Pane .. 134

2.5 Installing MySQL on Linux .. 138
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository 139
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository 143
2.5.3 Installing MySQL on Linux Using the MySQL APT Repository 146
2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository 146
2.5.5 Installing MySQL on Linux Using RPM Packages ... 146
2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle 151
2.5.7 Installing MySQL on Linux from the Native Software Repositories 152
2.5.8 Installing MySQL on Linux with docker .. 156
2.5.9 Installing MySQL on Linux with juju .. 156
2.5.10 Managing MySQL Server with systemd ... 156

2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ... 159
2.7 Installing MySQL on Solaris and OpenSolaris .. 159

2.7.1 Installing MySQL on Solaris Using a Solaris PKG .. 160
2.7.2 Installing MySQL on OpenSolaris Using IPS .. 161

2.8 Installing MySQL on FreeBSD ... 162
2.9 Installing MySQL from Source ... 163

2.9.1 MySQL Layout for Source Installation ... 164
2.9.2 Installing MySQL Using a Standard Source Distribution .. 164
2.9.3 Installing MySQL Using a Development Source Tree ... 169
2.9.4 MySQL Source-Configuration Options ... 170
2.9.5 Dealing with Problems Compiling MySQL .. 187
2.9.6 MySQL Configuration and Third-Party Tools .. 189

2.10 Postinstallation Setup and Testing ... 189
2.10.1 Initializing the Data Directory .. 189
2.10.2 Starting the Server ... 197
2.10.3 Testing the Server ... 200
2.10.4 Securing the Initial MySQL Accounts ... 202
2.10.5 Starting and Stopping MySQL Automatically .. 206

2.11 Upgrading or Downgrading MySQL .. 207
2.11.1 Upgrading MySQL .. 207

54

2.11.2 Downgrading MySQL ... 221
2.11.3 Checking Whether Tables or Indexes Must Be Rebuilt .. 228
2.11.4 Rebuilding or Repairing Tables or Indexes .. 228
2.11.5 Copying MySQL Databases to Another Machine .. 230

2.12 Environment Variables .. 231
2.13 Perl Installation Notes ... 232

2.13.1 Installing Perl on Unix .. 232
2.13.2 Installing ActiveState Perl on Windows .. 233
2.13.3 Problems Using the Perl DBI/DBD Interface .. 234

This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later
sections provide the details. If you plan to upgrade an existing version of MySQL to a newer version
rather than install MySQL for the first time, see Section 2.11.1, “Upgrading MySQL”, for information
about upgrade procedures and about issues that you should consider before upgrading.

If you are interested in migrating to MySQL from another database system, see Section A.8, “MySQL
5.7 FAQ: Migration”, which contains answers to some common questions concerning migration issues.

Installation of MySQL generally follows the steps outlined here:

1. Determine whether MySQL runs and is supported on your platform.

Please note that not all platforms are equally suitable for running MySQL, and that not all platforms
on which MySQL is known to run are officially supported by Oracle Corporation.

2. Choose which distribution to install.

Several versions of MySQL are available, and most are available in several distribution formats.
You can choose from pre-packaged distributions containing binary (precompiled) programs or
source code. When in doubt, use a binary distribution. Oracle also provides access to the MySQL
source code for those who want to see recent developments and test new code. To determine
which version and type of distribution you should use, see Section 2.1.1, “Which MySQL Version
and Distribution to Install”.

3. Download the distribution that you want to install.

For instructions, see Section 2.1.2, “How to Get MySQL”. To verify the integrity of the distribution,
use the instructions in Section 2.1.3, “Verifying Package Integrity Using MD5 Checksums or
GnuPG”.

4. Install the distribution.

To install MySQL from a binary distribution, use the instructions in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”.

To install MySQL from a source distribution or from the current development source tree, use the
instructions in Section 2.9, “Installing MySQL from Source”.

5. Perform any necessary postinstallation setup.

After installing MySQL, see Section 2.10, “Postinstallation Setup and Testing” for information
about making sure the MySQL server is working properly. Also refer to the information provided in
Section 2.10.4, “Securing the Initial MySQL Accounts”. This section describes how to secure the
initial MySQL root user account, which has no password until you assign one. The section applies
whether you install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See
Section 2.13, “Perl Installation Notes”.

Instructions for installing MySQL on different platforms and environments is available on a platform by
platform basis:

General Installation Guidance

55

• Unix, Linux, FreeBSD

For instructions on installing MySQL on most Linux and Unix platforms using a generic binary (for
example, a .tar.gz package), see Section 2.2, “Installing MySQL on Unix/Linux Using Generic
Binaries”.

For information on building MySQL entirely from the source code distributions or the source code
repositories, see Section 2.9, “Installing MySQL from Source”

For specific platform help on installation, configuration, and building from source see the
corresponding platform section:

• Linux, including notes on distribution specific methods, see Section 2.5, “Installing MySQL on
Linux”.

• Solaris and OpenSolaris, including PKG and IPS formats, see Section 2.7, “Installing MySQL on
Solaris and OpenSolaris”.

• IBM AIX, see Section 2.7, “Installing MySQL on Solaris and OpenSolaris”.

• FreeBSD, see Section 2.8, “Installing MySQL on FreeBSD”.

• Microsoft Windows

For instructions on installing MySQL on Microsoft Windows, using either the MySQL Installer or
Zipped binary, see Section 2.3, “Installing MySQL on Microsoft Windows”.

For information about managing MySQL instances, see Section 2.3.4, “MySQL Notifier”.

For details and instructions on building MySQL from source code using Microsoft Visual Studio, see
Section 2.9, “Installing MySQL from Source”.

• OS X

For installation on OS X, including using both the binary package and native PKG formats, see
Section 2.4, “Installing MySQL on OS X”.

For information on making use of an OS X Launch Daemon to automatically start and stop MySQL,
see Section 2.4.3, “Installing a MySQL Launch Daemon”.

For information on the MySQL Preference Pane, see Section 2.4.4, “Installing and Using the MySQL
Preference Pane”.

2.1 General Installation Guidance
The immediately following sections contain the information necessary to choose, download, and verify
your distribution. The instructions in later sections of the chapter describe how to install the distribution
that you choose. For binary distributions, see the instructions at Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries” or the corresponding section for your platform if available. To build
MySQL from source, use the instructions in Section 2.9, “Installing MySQL from Source”.

2.1.1 Which MySQL Version and Distribution to Install

MySQL is available on many operating systems and platforms. For information about platforms
supported by GA releases of MySQL, see http://www.mysql.com/support/supportedplatforms/
database.html. For development versions of MySQL, builds are available for a number of platforms
at http://dev.mysql.com/downloads/mysql/5.7.html. To learn more about MySQL Support, see http://
www.mysql.com/support/.

When preparing to install MySQL, you should decide which version to use, and which distribution
format (binary or source) to use for the installation.

http://dev.mysql.com/doc/mysql-development-cycle/en/ga-releases.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/downloads/mysql/5.7.html
http://www.mysql.com/support/
http://www.mysql.com/support/

Which MySQL Version and Distribution to Install

56

First, decide if you want to install a development release or a GA release. Development releases have
the newest features, but are not recommended for production use. GA (General Availability) releases,
also called production or stable releases, are meant for production use. We recommend to use the
most recent GA release.

The naming scheme in MySQL 5.7 uses release names that consist of three numbers and a suffix; for
example, mysql-5.6.1-m1. The numbers within the release name are interpreted as follows:

• The first number (5) is the major version and describes the file format. All MySQL 5 releases have
the same file format.

• The second number (6) is the release level. Taken together, the major version and release level
constitute the release series number.

• The third number (1) is the version number within the release series. This is incremented for each
new release. Usually you want the latest version for the series you have chosen.

For each minor update, the last number in the version string is incremented. When there are major new
features or minor incompatibilities with previous versions, the second number in the version string is
incremented. When the file format changes, the first number is increased.

Release names can also include a suffix that indicates the stability level of the release. Releases within
a series progress through a set of suffixes to indicate how the stability level improves. The possible
suffixes are:

• If there is no suffix, it indicates that the release is a General Availability (GA) or Production release.
GA releases are stable, having successfully passed through all earlier release stages and are
believed to be reliable, free of serious bugs, and suitable for use in production systems. Only critical
bugfixes are applied to the release.

• mN (for example, m1, m2, m3, ...) indicate a milestone number. MySQL development uses a
milestone model, in which each milestone proceeds through a small number of versions with a tight
focus on a small subset of thoroughly tested features. Following the releases for one milestone,
development proceeds with another small number of releases that focuses on the next small set of
features, also thoroughly tested. Features within milestone releases may be considered to be of pre-
production quality.

• rc indicates a Release Candidate. Release candidates are believed to be stable, having passed all of
MySQL's internal testing, and with all known fatal runtime bugs fixed. However, the release has not
been in widespread use long enough to know for sure that all bugs have been identified. Only minor
fixes are added.

Once you've chosen which MySQL version to install, you need to decide which distribution to
install for your operating system. For most use cases, a binary distribution is the right choice. Binary
distributions are available in native format for many platforms, such as RPM packages for Linux, or
DMG packages for OS X. Distributions are also available in more generic formats such as Zip archives
or compressed tar files. On Windows, you can use the MySQL Installer to install a binary distribution.

Under some circumstances, you may be better off installing MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready
to run at any installation location, but you might require even more flexibility to place MySQL
components where you want.

• You want to configure mysqld to ensure that features are available that might not be included in the
standard binary distributions. Here is a list of the most common extra options that you may want to
use to ensure feature availability:

• -DWITH_LIBWRAP=1 for TCP wrappers support.

• -DWITH_ZLIB={system|bundled} for features that depend on compression

How to Get MySQL

57

• -DWITH_DEBUG=1 for debugging support

For additional information, see Section 2.9.4, “MySQL Source-Configuration Options”.

• You want to configure mysqld without some features that are included in the standard binary
distributions. For example, distributions normally are compiled with support for all character sets. If
you want a smaller MySQL server, you can recompile it with support for only the character sets you
need.

• You want to use the latest sources from one of the Git repositories to have access to all current
bugfixes. For example, if you have found a bug and reported it to the MySQL development team, the
bugfix is committed to the source repository and you can access it there. The bugfix does not appear
in a release until a release actually is issued.

• You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you
should get a source distribution.

• Source distributions contain more tests and examples than binary distributions.

2.1.2 How to Get MySQL

Check our downloads page at http://dev.mysql.com/downloads/ for information about the current
version of MySQL and for downloading instructions. For a complete up-to-date list of MySQL download
mirror sites, see http://dev.mysql.com/downloads/mirrors.html. You can also find information there
about becoming a MySQL mirror site and how to report a bad or out-of-date mirror.

For RPM-based Linux platforms that use Yum as their package management system, MySQL can be
installed using the MySQL Yum Repository. See Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository” for details.

For a number of Debian-based Linux platforms, such as Ubuntu, MySQL can be installed using
the MySQL APT Repository. See Section 2.5.3, “Installing MySQL on Linux Using the MySQL APT
Repository” for details.

For SUSE Linux Enterprise Server (SLES) platforms, MySQL can be installed using the MySQL SLES
Repository. See Section 2.5.4, “Installing MySQL on Linux Using the MySQL SLES Repository” for
details.

To obtain the latest development source, see Section 2.9.3, “Installing MySQL Using a Development
Source Tree”.

2.1.3 Verifying Package Integrity Using MD5 Checksums or GnuPG

After you have downloaded the MySQL package that suits your needs and before you attempt to install
it, you should make sure that it is intact and has not been tampered with. There are three means of
integrity checking:

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the
respective package one more time, perhaps from another mirror site.

2.1.3.1 Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum that

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/mirrors.html
http://dev.mysql.com/downloads/repo/yum/
http://dev.mysql.com/downloads/repo/apt/
http://dev.mysql.com/downloads/repo/suse/
http://dev.mysql.com/downloads/repo/suse/

Verifying Package Integrity Using MD5 Checksums or GnuPG

58

you can verify against the package that you downloaded. The correct MD5 checksum is listed on the
downloads page for each MySQL product, and you will compare it against the MD5 checksum of the
file (product) that you download.

Each operating system and setup offers its own version of tools for checking the MD5 checksum.
Typically the command is named md5sum, or it may be named md5, and some operating systems do
not ship it at all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide
range of platforms. You can also download the source code from http://www.gnu.org/software/textutils/.
If you have OpenSSL installed, you can use the command openssl md5 package_name instead.
A Windows implementation of the md5 command line utility is available from http://www.fourmilab.ch/
md5/. winMd5Sum is a graphical MD5 checking tool that can be obtained from http://www.nullriver.com/
index/products/winmd5sum. Our Microsoft Windows examples will assume the name md5.exe.

Linux and Microsoft Windows examples:

shell> md5sum mysql-standard-5.7.11-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-5.7.11-linux-i686.tar.gz

shell> md5.exe mysql-installer-community-5.7.11.msi
aaab65abbec64d5e907dcd41b8699945 mysql-installer-community-5.7.11.msi

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one
displayed on the download page immediately below the respective package.

Note

Make sure to verify the checksum of the archive file (for example, the .zip,
.tar.gz, or .msi file) and not of the files that are contained inside of the
archive. In other words, verify the file before extracting its contents.

2.1.3.2 Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic
signatures. This is more reliable than using MD5 checksums, but requires more work.

We sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open
Source alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See http://
www.gnupg.org/ for more information about GnuPG and how to obtain and install it on your system.
Most Linux distributions ship with GnuPG installed by default. For more information about GnuPG, see
http://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of our public GPG build
key, which you can download from http://pgp.mit.edu/. The key that you want to obtain is named
mysql-build@oss.oracle.com. Alternatively, you can cut and paste the key directly from the
following text:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.9 (SunOS)

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q2TXlTUUwgUmVs
ZWFzZSBFbmdpbmVlcmluZyA8bXlzcWwtYnVpbGRAb3NzLm9yYWNsZS5jb20+iGkE
ExECACkCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAIZAQUCUwHUZgUJGmbLywAK
CRCMcY07UHLh9V+DAKCjS1gGwgVI/eut+5L+l2v3ybl+ZgCcD7ZoA341HtoroV3U
6xRD09fUgeq0O015U1FMIFBhY2thZ2Ugc2lnbmluZyBrZXkgKHd3dy5teXNxbC5j
b20pIDxidWlsZEBteXNxbC5jb20+iG8EMBECAC8FAk53Pa0oHSBidWlsZEBteXNx

http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.nullriver.com/index/products/winmd5sum
http://www.gnupg.org/
http://www.gnupg.org/
http://www.openpgp.org/
http://pgp.mit.edu/

Verifying Package Integrity Using MD5 Checksums or GnuPG

59

bC5jb20gd2lsbCBzdG9wIHdvcmtpbmcgc29vbgAKCRCMcY07UHLh9bU9AJ9xDK0o
xJFL9vTl9OSZC4lX0K9AzwCcCrS9cnJyz79eaRjL0s2r/CcljdyIZQQTEQIAHQUC
R6yUtAUJDTBYqAULBwoDBAMVAwIDFgIBAheAABIJEIxxjTtQcuH1B2VHUEcAAQGu
kgCffz4GUEjzXkOi71VcwgCxASTgbe0An34LPr1j9fCbrXWXO14msIADfb5piEwE
ExECAAwFAj4+o9EFgwlmALsACgkQSVDhKrJykfIk4QCfWbEeKN+3TRspe+5xKj+k
QJSammIAnjUz0xFWPlVx0f8o38qNG1bq0cU9iEwEExECAAwFAj5CggMFgwliIokA
CgkQtvXNTca6JD+WkQCgiGmnoGjMojynp5ppvMXkyUkfnykAoK79E6h8rwkSDZou
iz7nMRisH8uyiEYEEBECAAYFAj+s468ACgkQr8UjSHiDdA/2lgCg21IhIMMABTYd
p/IBiUsP/JQLiEoAnRzMywEtujQz/E9ono7H1DkebDa4iEYEEBECAAYFAj+0Q3cA
CgkQhZavqzBzTmbGwwCdFqD1frViC7WRt8GKoOS7hzNN32kAnirlbwpnT7a6NOsQ
83nk11a2dePhiEYEEBECAAYFAkNbs+oACgkQi9gubzC5S1x/dACdELKoXQKkwJN0
gZztsM7kjsIgyFMAnRRMbHQ7V39XC90OIpaPjk3a01tgiEYEExECAAYFAkTxMyYA
CgkQ9knE9GCTUwwKcQCgibak/SwhxWH1ijRhgYCo5GtM4vcAnAhtzL57wcw1Kg1X
m7nVGetUqJ7fiEwEEBECAAwFAkGBywEFgwYi2YsACgkQGFnQH2d7oexCjQCcD8sJ
NDc/mS8m8OGDUOx9VMWcnGkAnj1YWOD+Qhxo3mI/Ul9oEAhNkjcfiEwEEBECAAwF
AkGByzQFgwYi2VgACgkQgcL36+ITtpIiIwCdFVNVUB8xe8mFXoPm4d9Z54PTjpMA
niSPA/ZsfJ3oOMLKar4F0QPPrdrGiEwEEBECAAwFAkGBy2IFgwYi2SoACgkQa3Ds
2V3D9HMJqgCbBYzr5GPXOXgP88jKzmdbjweqXeEAnRss4G2G/3qD7uhTL1SPT1SH
jWUXiEwEEBECAAwFAkHQkyQFgwXUEWgACgkQfSXKCsEpp8JiVQCghvWvkPqowsw8
w7WSseTcw1tflvkAni+vLHl/DqIly0LkZYn5jzK1dpvfiEwEEBECAAwFAkIrW7oF
gwV5SNIACgkQ5hukiRXruavzEwCgkzL5QkLSypcw9LGHcFSx1ya0VL4An35nXkum
g6cCJ1NP8r2I4NcZWIrqiEwEEhECAAwFAkAqWToFgwd6S1IACgkQPKEfNJT6+GEm
XACcD+A53A5OGM7w750W11ukq4iZ9ckAnRMvndAqn3YTOxxlLPj2UPZiSgSqiEwE
EhECAAwFAkA9+roFgwdmqdIACgkQ8tdcY+OcZZyy3wCgtDcwlaq20w0cNuXFLLNe
EUaFFTwAni6RHN80moSVAdDTRkzZacJU3M5QiEwEEhECAAwFAkEOCoQFgwaWmggA
CgkQOcor9D1qil/83QCeITZ9wIo7XAMjC6y4ZWUL4m+edZsAoMOhRIRi42fmrNFu
vNZbnMGej81viEwEEhECAAwFAkKApTQFgwUj/1gACgkQBA3AhXyDn6jjJACcD1A4
UtXk84J13JQyoH9+dy24714Aniwlsso/9ndICJOkqs2j5dlHFq6oiEwEExECAAwF
Aj5NTYQFgwlXVwgACgkQLbt2v63UyTMFDACglT5G5NVKf5Mj65bFSlPzb92zk2QA
n1uc2h19/IwwrsbIyK/9POJ+JMP7iEwEExECAAwFAkHXgHYFgwXNJBYACgkQZu/b
yM2C/T4/vACfXe67xiSHB80wkmFZ2krb+oz/gBAAnjR2ucpbaonkQQgnC3GnBqmC
vNaJiEwEExECAAwFAkIYgQ4FgwWMI34ACgkQdsEDHKIxbqGg7gCfQi2HcrHn+yLF
uNlH1oSOh48ZM0oAn3hKV0uIRJphonHaUYiUP1ttWgdBiGUEExECAB0FCwcKAwQD
FQMCAxYCAQIXgAUCS3AvygUJEPPzpwASB2VHUEcAAQEJEIxxjTtQcuH1sNsAniYp
YBGqy/HhMnw3WE8kXahOOR5KAJ4xUmWPGYP4l3hKxyNK9OAUbpDVYIh7BDARAgA7
BQJCdzX1NB0AT29wcy4uLiBzaG91bGQgaGF2ZSBiZWVuIGxvY2FsISBJJ20gKnNv
KiBzdHVwaWQuLi4ACgkQOcor9D1qil/vRwCdFo08f66oKLiuEAqzlf9iDlPozEEA
n2EgvCYLCCHjfGosrkrU3WK5NFVgiI8EMBECAE8FAkVvAL9IHQBTaG91bGQgaGF2
ZSBiZWVuIGEgbG9jYWwgc2lnbmF0dXJlLCBvciBzb21ldGhpbmcgLSBXVEYgd2Fz
IEkgdGhpbmtpbmc/AAoJEDnKK/Q9aopfoPsAn3BVqKOalJeF0xPSvLR90PsRlnmG
AJ44oisY7Tl3NJbPgZal8W32fbqgbIkCIgQQAQIADAUCQYHLhQWDBiLZBwAKCRCq
4+bOZqFEaKgvEACCErnaHGyUYa0wETjj6DLEXsqeOiXad4i9aBQxnD35GUgcFofC
/nCY4XcnCMMEnmdQ9ofUuU3OBJ6BNJIbEusAabgLooebP/3KEaiCIiyhHYU5jarp
ZAh+Zopgs3Oc11mQ1tIaS69iJxrGTLodkAsAJAeEUwTPq9fHFFzC1eGBysoyFWg4
bIjz/zClI+qyTbFA5g6tRoiXTo8ko7QhY2AA5UGEg+83Hdb6akC04Z2QRErxKAqr
phHzj8XpjVOsQAdAi/qVKQeNKROlJ+iq6+YesmcWGfzeb87dGNweVFDJIGA0qY27
pTb2lExYjsRFN4Cb13NfodAbMTOxcAWZ7jAPCxAPlHUG++mHMrhQXEToZnBFE4nb
nC7vOBNgWdjUgXcpkUCkop4b17BFpR+k8ZtYLSS8p2LLz4uAeCcSm2/msJxT7rC/
FvoH8428oHincqs2ICo9zO/Ud4HmmO0O+SsZdVKIIjinGyOVWb4OOzkAlnnhEZ3o
6hAHcREIsBgPwEYVTj/9ZdC0AO44Nj9cU7awaqgtrnwwfr/o4V2gl8bLSkltZU27
/29HeuOeFGjlFe0YrDd/aRNsxbyb2O28H4sG1CVZmC5uK1iQBDiSyA7Q0bbdofCW
oQzm5twlpKWnY8Oe0ub9XP5p/sVfck4FceWFHwv+/PC9RzSl33lQ6vM2wIkCIgQT
AQIADAUCQp8KHAWDBQWacAAKCRDYwgoJWiRXzyE+D/9uc7z6fIsalfOYoLN60ajA
bQbI/uRKBFugyZ5RoaItusn9Z2rAtn61WrFhu4uCSJtFN1ny2RERg40f56pTghKr
D+YEt+Nze6+FKQ5AbGIdFsR/2bUk+ZZRSt83e14Lcb6ii/fJfzkoIox9ltkifQxq
Y7Tvk4noKu4oLSc8O1Wsfc/y0B9sYUUCmUfcnq58DEmGie9ovUslmyt5NPnveXxp
5UeaRc5Rqt9tK2B4A+7/cqENrdZJbAMSunt2+2fkYiRunAFPKPBdJBsY1sxeL/A9
aKe0viKEXQdAWqdNZKNCi8rd/oOP99/9lMbFudAbX6nL2DSb1OG2Z7NWEqgIAzjm
pwYYPCKeVz5Q8R+if9/fe5+STY/55OaI33fJ2H3v+U435VjYqbrerWe36xJItcJe
qUzW71fQtXi1CTEl3w2ch7VF5oj/QyjabLnAlHgSlkSi6p7By5C2MnbCHlCfPnIi
nPhFoRcRGPjJe9nFwGs+QblvS/Chzc2WX3s/2SWm4gEUKRX4zsAJ5ocyfa/vkxCk
SxK/erWlCPf/J1T70+i5waXDN/E3enSet/WL7h94pQKpjz8OdGL4JSBHuAVGA+a+
dknqnPF0KMKLhjrgV+L7O84FhbmAP7PXm3xmiMPriXf+el5fZZequQoIagf8rdRH
HhRJxQgI0HNknkaOqs8dtrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWs
EN/lxaZoJYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLm
RDRiRjd1DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hk
AWzE7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkb
f4fmLe11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHb
uE5p/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+
Lwqqa8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1Z
aSafanFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGo
TbOWI39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev4

Verifying Package Integrity Using MD5 Checksums or GnuPG

60

2LmuQT5NdKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkK
Ht926s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUO
etdZWhe70YGNPw1yjWJT1IhUBBgRAgAMBQJOdz3tBQkT+wG4ABIHZUdQRwABAQkQ
jHGNO1By4fUUmwCbBYr2+bBEn/L2BOcnw9Z/QFWuhRMAoKVgCFm5fadQ3Afi+UQl
AcOphrnJ
=443I
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if
you have saved the key in a file named mysql_pubkey.asc, the import command looks like this:

shell> gpg --import mysql_pubkey.asc
gpg: key 5072E1F5: public key "MySQL Release Engineering
<mysql-build@oss.oracle.com>" imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: no ultimately trusted keys found

You can also download the key from the public keyserver using the public key id, 5072E1F5:

shell> gpg --recv-keys 5072E1F5
gpg: requesting key 5072E1F5 from hkp server keys.gnupg.net
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
1 new user ID
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
53 new signatures
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: new user IDs: 1
gpg: new signatures: 53

If you want to import the key into your RPM configuration to validate RPM install packages, you should
be able to import the key directly:

shell> rpm --import mysql_pubkey.asc

If you experience problems or require RPM specific information, see Section 2.1.3.4, “Signature
Checking Using RPM”.

After you have downloaded and imported the public build key, download your desired MySQL package
and the corresponding signature, which also is available from the download page. The signature file
has the same name as the distribution file with an .asc extension, as shown by the examples in the
following table.

Table 2.1 MySQL Package and Signature Files for Source files

File Type File Name

Distribution file mysql-standard-5.7.11-linux-i686.tar.gz

Signature file mysql-standard-5.7.11-linux-i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file:

shell> gpg --verify package_name.asc

If the downloaded package is valid, you will see a "Good signature" similar to:

shell> gpg --verify mysql-standard-5.7.11-linux-i686.tar.gz.asc
gpg: Signature made Tue 01 Feb 2011 02:38:30 AM CST using DSA key ID 5072E1F5
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"

The Good signature message indicates that the file signature is valid, when compared to the
signature listed on our site. But you might also see warnings, like so:

Verifying Package Integrity Using MD5 Checksums or GnuPG

61

shell> gpg --verify mysql-standard-5.7.11-linux-i686.tar.gz.asc
gpg: Signature made Wed 23 Jan 2013 02:25:45 AM PST using DSA key ID 5072E1F5
gpg: checking the trustdb
gpg: no ultimately trusted keys found
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5

That is normal, as they depend on your setup and configuration. Here are explanations for these
warnings:

• gpg: no ultimately trusted keys found: This means that the specific key is not "ultimately trusted" by
you or your web of trust, which is okay for the purposes of verifying file signatures.

• WARNING: This key is not certified with a trusted signature! There is no indication that the signature
belongs to the owner.: This refers to your level of trust in your belief that you possess our real public
key. This is a personal decision. Ideally, a MySQL developer would hand you the key in person,
but more commonly, you downloaded it. Was the download tampered with? Probably not, but this
decision is up to you. Setting up a web of trust is one method for trusting them.

See the GPG documentation for more information on how to work with public keys.

2.1.3.3 Signature Checking Using Gpg4win for Windows

The Section 2.1.3.2, “Signature Checking Using GnuPG” section describes how to verify MySQL
downloads using GPG. That guide also applies to Microsoft Windows, but another option is to use a
GUI tool like Gpg4win. You may use a different tool but our examples are based on Gpg4win, and
utilize its bundled Kleopatra GUI.

Download and install Gpg4win, and then load Kleopatra. The dialog should look similar to:

Figure 2.1 Initial screen after loading Kleopatra

http://www.gpg4win.org/

Verifying Package Integrity Using MD5 Checksums or GnuPG

62

Next, add the MySQL Release Engineering certificate. Do this by clicking File, Lookup Certificates on
Server. Type "Mysql Release Engineering" into the search box and press Search.

Figure 2.2 Finding the MySQL Release Engineering certificate

Select the "MySQL Release Engineering" certificate. The Fingerprint and Key-ID must be "5072E1F5",
or choose Details... to confirm the certificate is valid. Now, import it by clicking Import. An import dialog
will be displayed, choose Okay, and this certificate will now be listed under the Imported Certificates
tab.

Next, configure the trust level for our certificate. Select our certificate, then from the main menu select
Certificates, Change Owner Trust.... We suggest choosing I believe checks are very accurate for our
certificate, as otherwise you might not be able to verify our signature. Select I believe checks are very
accurate and then press OK.

Verifying Package Integrity Using MD5 Checksums or GnuPG

63

Figure 2.3 Changing the Trust level

Next, verify the downloaded MySQL package file. This requires files for both the packaged file, and
the signature. The signature file must have the same name as the packaged file but with an appended
.asc extension, as shown by the example in the following table. The signature is linked to on the
downloads page for each MySQL product. You must create the .asc file with this signature.

Table 2.2 MySQL Package and Signature Files for MySQL Installer for Microsoft Windows

File Type File Name

Distribution file mysql-installer-community-5.7.11.msi

Signature file mysql-installer-community-5.7.11.msi.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file. Either drag and drop the signature (.asc) file into Kleopatra, or
load the dialog from File, Decrypt/Verify Files..., and then choose either the .msi or .asc file.

Verifying Package Integrity Using MD5 Checksums or GnuPG

64

Figure 2.4 The Decrypt/Verify Files dialog

Click Decrypt/Verify to check the file. The two most common results will look like the following, and
although the yellow warning looks problematic, the following means that the file check passed with
success. You may now run this installer.

Verifying Package Integrity Using MD5 Checksums or GnuPG

65

Figure 2.5 The Decrypt/Verify Results: Good

Seeing a red "The signature is bad" error means the file is invalid. Do not execute the MSI file if you
see this error.

Verifying Package Integrity Using MD5 Checksums or GnuPG

66

Figure 2.6 The Decrypt/Verify Results: Bad

The Section 2.1.3.2, “Signature Checking Using GnuPG” section explains why you probably don't see a
green Good signature result.

2.1.3.4 Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

shell> rpm --checksig package_name.rpm

Example:

shell> rpm --checksig MySQL-server-5.7.11-0.linux_glibc2.5.i386.rpm
MySQL-server-5.7.11-0.linux_glibc2.5.i386.rpm: md5 gpg OK

Note

If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING
KEYS: GPG#5072e1f5), even though you have imported the MySQL public
build key into your own GPG keyring, you need to import the key into the RPM
keyring first. RPM 4.1 no longer uses your personal GPG keyring (or GPG
itself). Rather, RPM maintains a separate keyring because it is a system-wide
application and a user's GPG public keyring is a user-specific file. To import the

Installation Layouts

67

MySQL public key into the RPM keyring, first obtain the key, then use rpm --
import to import the key. For example:

shell> gpg --export -a 5072e1f5 > 5072e1f5.asc
shell> rpm --import 5072e1f5.asc

Alternatively, rpm also supports loading the key directly from a URL, and you can use this manual
page:

shell> rpm --import http://dev.mysql.com/doc/refman/5.7/en/checking-gpg-signature.html

If you need to obtain the MySQL public key, see Section 2.1.3.2, “Signature Checking Using GnuPG”.

2.1.4 Installation Layouts

The installation layout differs for different installation types (for example, native packages, binary
tarballs, and source tarballs), which can lead to confusion when managing different systems or using
different installation sources. The individual layouts are given in the corresponding installation type or
platform chapter, as described following. Note that the layout of installations from vendors other than
Oracle may differ from these layouts.

• Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”

• Section 2.9.1, “MySQL Layout for Source Installation”

• Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”

• Table 2.9, “MySQL Installation Layout for Linux RPM Packages from the MySQL Developer Zone”

• Table 2.5, “MySQL Installation Layout on OS X”

2.1.5 Compiler-Specific Build Characteristics

In some cases, the compiler used to build MySQL affects the features available for use. The notes in
this section apply for binary distributions provided by Oracle Corporation or that you compile yourself
from source.

icc (Intel C++ Compiler) Builds

A server built with icc has these characteristics:

• SSL support is not included.

2.2 Installing MySQL on Unix/Linux Using Generic Binaries

Oracle provides a set of binary distributions of MySQL. These include generic binary distributions in the
form of compressed tar files (files with a .tar.gz extension) for a number of platforms, and binaries
in platform-specific package formats for selected platforms.

This section covers the installation of MySQL from a compressed tar file binary distribution. For other
platform-specific package formats, see the other platform-specific sections. For example, for Windows
distributions, see Section 2.3, “Installing MySQL on Microsoft Windows”.

To obtain MySQL, see Section 2.1.2, “How to Get MySQL”.

MySQL compressed tar file binary distributions have names of the form
mysql-VERSION-OS.tar.gz, where VERSION is a number (for example, 5.7.11), and OS indicates
the type of operating system for which the distribution is intended (for example, pc-linux-i686 or
winx64).

Installing MySQL on Unix/Linux Using Generic Binaries

68

Warning

If you have previously installed MySQL using your operating system native
package management system, such as yum or apt-get, you may experience
problems installing using a native binary. Make sure your previous MySQL
installation has been removed entirely (using your package management
system), and that any additional files, such as old versions of your data files,
have also been removed. You should also check for configuration files such as
/etc/my.cnf or the /etc/mysql directory and delete them.

For information about replacing third-party packages with official MySQL
packages, see the related Apt guide or Yum guide.

Warning

MySQL has a dependency on the libaio library. Data directory initialization
and subsequent server startup steps will fail if this library is not installed locally.
If necessary, install it using the appropriate package manager. For example, on
Yum-based systems:

shell> yum search libaio # search for info
shell> yum install libaio # install library

Or, on APT-based systems:

shell> apt-cache search libaio # search for info
shell> apt-get install libaio1 # install library

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How
to Report Bugs or Problems”.

On Unix, to install a compressed tar file binary distribution, unpack it at the installation location you
choose (typically /usr/local/mysql). This creates the directories shown in the following table.

Table 2.3 MySQL Installation Layout for Generic Unix/Linux Binary Package

Directory Contents of Directory

bin, scripts mysqld server, client and utility programs

data Log files, databases

docs MySQL manual in Info format

man Unix manual pages

include Include (header) files

lib Libraries

share Miscellaneous support files, including error messages,
sample configuration files, SQL for database installation

Debug versions of the mysqld binary are available as mysqld-debug. To compile your own debug
version of MySQL from a source distribution, use the appropriate configuration options to enable
debugging support. See Section 2.9, “Installing MySQL from Source”.

To install and use a MySQL binary distribution, the command sequence looks like this:

shell> groupadd mysql
shell> useradd -r -g mysql -s /bin/false mysql
shell> cd /usr/local
shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/

Create a mysql User and Group

69

shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> mkdir mysql-files
shell> chmod 770 mysql-files
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> bin/mysql_install_db --user=mysql # Before MySQL 5.7.6
shell> bin/mysqld --initialize --user=mysql # MySQL 5.7.6 and up
shell> bin/mysql_ssl_rsa_setup # MySQL 5.7.6 and up
shell> chown -R root .
shell> chown -R mysql data mysql-files
shell> bin/mysqld_safe --user=mysql &
Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server

Note

This procedure assumes that you have root (administrator) access to your
system. Alternatively, you can prefix each command using the sudo (Linux) or
pfexec (OpenSolaris) command.

Note

Before MySQL 5.7.4, the procedure does not assign passwords to MySQL
accounts. To do so, use the instructions in Section 2.10.4, “Securing the Initial
MySQL Accounts”.

The mysql-files directory provides a convenient location to use as the value of the
secure_file_priv system variable that limits import/export operations to a specific directory. See
Section 5.1.4, “Server System Variables”.

Before MySQL 5.7.5, mysql_install_db creates a default option file named my.cnf in the base
installation directory. This file is created from a template included in the distribution package named
my-default.cnf. For more information, see Section 5.1.2, “Server Configuration Defaults”.

A more detailed version of the preceding description for installing a binary distribution follows.

Create a mysql User and Group

If your system does not already have a user and group to use for running mysqld, you may need to
create one. The following commands add the mysql group and the mysql user. You might want to
call the user and group something else instead of mysql. If so, substitute the appropriate name in the
following instructions. The syntax for useradd and groupadd may differ slightly on different versions
of Unix, or they may have different names such as adduser and addgroup.

shell> groupadd mysql
shell> useradd -r -g mysql -s /bin/false mysql

Note

Because the user is required only for ownership purposes, not login purposes,
the useradd command uses the -r and -s /bin/false options to create
a user that does not have login permissions to your server host. Omit these
options if your useradd does not support them.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it. The
example here unpacks the distribution under /usr/local. The instructions, therefore, assume that
you have permission to create files and directories in /usr/local. If that directory is protected, you
must perform the installation as root.

Perform Postinstallation Setup

70

shell> cd /usr/local

Obtain a distribution file using the instructions in Section 2.1.2, “How to Get MySQL”. For a given
release, binary distributions for all platforms are built from the same MySQL source distribution.

Unpack the distribution, which creates the installation directory. Then create a symbolic link to that
directory. tar can uncompress and unpack the distribution if it has z option support:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
shell> ln -s full-path-to-mysql-VERSION-OS mysql

The tar command creates a directory named mysql-VERSION-OS. The ln command makes a
symbolic link to that directory. This enables you to refer more easily to the installation directory as /
usr/local/mysql.

To install MySQL from a compressed tar file binary distribution, your system must have GNU gunzip
to uncompress the distribution and a reasonable tar to unpack it. If your tar program supports the z
option, it can both uncompress and unpack the file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or if
available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar
within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is
available from http://www.gnu.org/software/tar/.

If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack
it. Replace the preceding tar command with the following alternative command to uncompress and
extract the distribution:

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -

Perform Postinstallation Setup

The remainder of the installation process involves setting distribution ownership and access
permissions, initializing the data directory, starting the MySQL server, and setting up the configuration
file. For instructions, see Section 2.10, “Postinstallation Setup and Testing”.

2.3 Installing MySQL on Microsoft Windows

There are several different methods to install MySQL on Microsoft Windows.

Simple Installation Method

The simplest and recommended method is to download MySQL Installer (for Windows) and let it install
and configure all of the MySQL products on your system. Here is how:

• Download MySQL Installer from http://dev.mysql.com/downloads/installer/ and execute it.

Note

Unlike the standard MySQL Installer, the smaller "web-community" version
does not bundle any MySQL applications but it will download the MySQL
products you choose to install.

• Choose the appropriate Setup Type for your system. Typically you will choose Developer Default
to install MySQL server and other MySQL tools related to MySQL development, helpful tools like
MySQL Workbench. Or, choose the Custom setup type to manually select your desired MySQL
products.

http://www.gnu.org/software/tar/
http://dev.mysql.com/downloads/installer/

Additional Installation Information

71

Note

Multiple versions of MySQL server can exist on a single system. You can
choose one or multiple versions.

• Complete the installation process by following the MySQL Installation wizard's instructions. This will
install several MySQL products and start the MySQL server.

• MySQL is now installed. You probably configured MySQL as a service that will automatically start
MySQL server every time you restart your system.

Note

You probably also installed other helpful MySQL products like MySQL
Workbench and MySQL Notifier on your system. Consider loading Chapter 26,
MySQL Workbench to check your new MySQL server connection, and
Section 2.3.4, “MySQL Notifier” to view the connection's status. By default,
these two programs automatically start after installing MySQL.

This process also installs the MySQL Installer application on your system, and later you can use
MySQL Installer to upgrade or reconfigure your MySQL products.

Additional Installation Information

MySQL is available for Microsoft Windows, for both 32-bit and 64-bit versions. For supported Windows
platform information, see http://www.mysql.com/support/supportedplatforms/database.html.

It is possible to run MySQL as a standard application or as a Windows service. By using a service,
you can monitor and control the operation of the server through the standard Windows service
management tools. For more information, see Section 2.3.5.8, “Starting MySQL as a Windows
Service”.

Generally, you should install MySQL on Windows using an account that has administrator rights.
Otherwise, you may encounter problems with certain operations such as editing the PATH environment
variable or accessing the Service Control Manager. Once installed, MySQL does not need to be
executed using a user with Administrator privileges.

For a list of limitations on the use of MySQL on the Windows platform, see Section C.10.6, “Windows
Platform Limitations”.

In addition to the MySQL Server package, you may need or want additional components to use MySQL
with your application or development environment. These include, but are not limited to:

• To connect to the MySQL server using ODBC, you must have a Connector/ODBC driver. For more
information, including installation and configuration instructions, see MySQL Connector/ODBC
Developer Guide.

Note

MySQL Installer will install and configure Connector/ODBC for you.

• To use MySQL server with .NET applications, you must have the Connector/Net driver. For more
information, including installation and configuration instructions, see MySQL Connector/Net
Developer Guide.

Note

MySQL Installer will install and configure Connector/NET for you.

http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html

MySQL Installation Layout on Microsoft Windows

72

MySQL distributions for Windows can be downloaded from http://dev.mysql.com/downloads/. See
Section 2.1.2, “How to Get MySQL”.

MySQL for Windows is available in several distribution formats, detailed here. Generally speaking,
you should use MySQL Installer. It contains more features and MySQL products than the older MSI, is
simpler to use than the Zip file, and you need no additional tools to get MySQL up and running. MySQL
Installer automatically installs MySQL Server and additional MySQL products, creates an options file,
starts the server, and enables you to create default user accounts. For more information on choosing a
package, see Section 2.3.2, “Choosing An Installation Package”.

• A MySQL Installer distribution includes MySQL Server and additional MySQL products including
MySQL Workbench, MySQL Notifier, and MySQL for Excel. MySQL Installer can also be used to
upgrade these products in the future.

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”.

• The standard binary distribution (packaged as a Zip file) contains all of the necessary files that you
unpack into your chosen location. This package contains all of the files in the full Windows MSI
Installer package, but does not include an installation program.

For instructions on installing MySQL using the Zip file, see Section 2.3.5, “Installing MySQL on
Microsoft Windows Using a noinstall Zip Archive”.

• The source distribution format contains all the code and support files for building the executables
using the Visual Studio compiler system.

For instructions on building MySQL from source on Windows, see Section 2.9, “Installing MySQL
from Source”.

MySQL on Windows considerations:

• Large Table Support

If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer file system. Do
not forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Section 13.1.14,
“CREATE TABLE Syntax”.

• MySQL and Virus Checking Software

Virus-scanning software such as Norton/Symantec Anti-Virus on directories containing MySQL data
and temporary tables can cause issues, both in terms of the performance of MySQL and the virus-
scanning software misidentifying the contents of the files as containing spam. This is due to the
fingerprinting mechanism used by the virus-scanning software, and the way in which MySQL rapidly
updates different files, which may be identified as a potential security risk.

After installing MySQL Server, it is recommended that you disable virus scanning on the main
directory (datadir) used to store your MySQL table data. There is usually a system built into the
virus-scanning software to enable specific directories to be ignored.

In addition, by default, MySQL creates temporary files in the standard Windows temporary directory.
To prevent the temporary files also being scanned, configure a separate temporary directory for
MySQL temporary files and add this directory to the virus scanning exclusion list. To do this, add
a configuration option for the tmpdir parameter to your my.ini configuration file. For more
information, see Section 2.3.5.2, “Creating an Option File”.

2.3.1 MySQL Installation Layout on Microsoft Windows

For MySQL 5.7 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL
Server 5.7. Some Windows users prefer to install in C:\mysql, the directory that formerly was used
as the default. However, the layout of the subdirectories remains the same.

http://dev.mysql.com/downloads/

Choosing An Installation Package

73

All of the files are located within this parent directory, using the structure shown in the following table.

Table 2.4 Default MySQL Installation Layout for Microsoft Windows

Directory Contents of Directory Notes

bin, scripts mysqld server, client and utility
programs

%ALLUSERSPROFILE%
\MySQL\MySQL Server
5.7\

Log files, databases (Windows XP,
Windows Server 2003)

The Windows
system variable
%ALLUSERSPROFILE%
defaults to C:\Documents
and Settings\All Users
\Application Data

%PROGRAMDATA%\MySQL
\MySQL Server 5.7\

Log files, databases (Vista, Windows 7,
Windows Server 2008, and newer)

The Windows system
variable %PROGRAMDATA
% defaults to C:
\ProgramData

examples Example programs and scripts

include Include (header) files

lib Libraries

share Miscellaneous support files, including
error messages, character set files,
sample configuration files, SQL for
database installation

If you install MySQL using the MySQL Installer, this package creates and sets up the data directory
that the installed server will use, and also creates a pristine “template” data directory named data
under the installation directory. After an installation has been performed using this package, the
template data directory can be copied to set up additional MySQL instances. See Section 5.3, “Running
Multiple MySQL Instances on One Machine”.

2.3.2 Choosing An Installation Package

For MySQL 5.7, there are multiple installation package formats to choose from when installing MySQL
on Windows.

Note

Program Database (PDB) files (with file name extension pdb) provide
information for debugging your MySQL installation in the event of a problem.
These files are included in ZIP Archive distributions (but not MSI distributions) of
MySQL.

• MySQL Installer: This package has a file name similar to mysql-installer-
community-5.7.11.0.msi or mysql-installer-commercial-5.7.11.0.msi, and utilizes
MSIs to automatically install MySQL server and other products. It will download and apply updates to
itself, and for each of the installed products. It also configures the additional non-server products.

The installed products are configurable, and this includes: documentation with samples and
examples, connectors (such as C, C++, J, NET, and ODBC), MySQL Workbench, MySQL Notifier,
MySQL for Excel, and the MySQL Server with its components.

Note

As of MySQL 5.7.8, MySQL Installer no longer includes debugging binaries/
information components (including PDB files). These are available in a
separate Zip archive named mysql-VERSION-winx64-debug-test.zip
for 64-bit and mysql-VERSION-win32-debug-test.zip for 32-bit.

Installing MySQL on Microsoft Windows Using MySQL Installer

74

MySQL Installer operates on all MySQL supported versions of Windows (see http://www.mysql.com/
support/supportedplatforms/database.html).

Note

Because MySQL Installer is not a native component of Microsoft Windows
and depends on .NET, it will not work on minimal installation options like the
"Server Core" version of Windows Server 2008.

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”.

• The Noinstall Archives: These packages contain the files found in the complete installation
package, with the exception of the GUI. This format does not include an automated installer, and
must be manually installed and configured.

Note

As of MySQL 5.7.6, noinstall archives are split into two separate Zip files.
The main package is named mysql-VERSION-winx64.zip for 64-bit and
mysql-VERSION-win32.zip for 32-bit. This contains the components
needed to use MySQL on your system. The optional MySQL test suite,
MySQL benchmark suite, and debugging binaries/information components
(including PDB files) are in a separate Zip file named mysql-VERSION-
winx64-debug-test.zip for 64-bit and mysql-VERSION-win32-
debug-test.zip for 32-bit.

Before MySQL 5.7.6, a single noinstall archive contained both the main and
debugging files.

MySQL Installer is recommended for most users.

Your choice of install package affects the installation process you must follow. If you choose to use
MySQL Installer, see Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”.
If you choose to install a Noinstall archive, see Section 2.3.5, “Installing MySQL on Microsoft Windows
Using a noinstall Zip Archive”.

2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installer

MySQL Installer is an application that manages MySQL products on Microsoft Windows. It installs,
updates, removes, and configures MySQL products, and remains on the system as its own application.
MySQL Installer is only available for Microsoft Windows, and includes both GUI and command-line
interfaces.

The supported MySQL products include:

• MySQL Server (one or multiple versions on the same system)

• MySQL Workbench

• MySQL Connectors (.Net / Python / ODBC / Java / C / C++)

• MySQL Notifier

• MySQL for Excel

• MySQL for Visual Studio

• MySQL Utilities and MySQL Fabric

• MySQL Samples and Examples

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/index-connectors.html
http://dev.mysql.com/doc/mysql-for-excel/en/index.html
http://dev.mysql.com/doc/connector-net/en/connector-net-visual-studio.html
http://dev.mysql.com/doc/index-utils-fabric.html

Installing MySQL on Microsoft Windows Using MySQL Installer

75

• MySQL Documentation

• MySQL Installer is also installed and remains on the system as its own application, that is used to
install additional MySQL products, and also to update and configure existing MySQL products

• The Enterprise edition installs the Enterprise versions of the above products, and also includes
MySQL Enterprise Backup and MySQL Enterprise Firewall

Installer package types

• Full: Bundles all of the MySQL products (including the MySQL server). The file size is over
300MB, and its name has the form mysql-installer-community-VERSION.N.msi where
VERSION is the MySQL Server version number such as 5.7 and N is the package number, which
begins at 0.

• Web: Only contains the Installer and configuration files, and it downloads the MySQL products
you choose to install. The size of this file is about 2MB; the name of the file has the form mysql-
installer-community-web-VERSION.N.msi where VERSION is the MySQL Server version
number such as 5.7 and N is the package number, which begins at 0.

• Updates: MySQL Installer can upgrade itself, so an additional download is not requires to update
MySQL Installer.

Installer editions

• Community edition: Downloadable at http://dev.mysql.com/downloads/installer/. It installs the
community edition of all MySQL products.

• Commercial edition: Downloadable at either My Oracle Support (MOS) or https://
edelivery.oracle.com/. It installs the commercial version of all MySQL products, including Workbench
SE/EE, MySQL Enterprise Backup, and MySQL Enterprise Firewall. It also integrates with your MOS
account.

Note

Entering your MOS credentials is optional when installing bundled MySQL
products, but your credentials are required when choosing non-bundled
MySQL products that MySQL Installer must download.

For notes detailing the changes in each release of MySQL Installer, see MySQL Installer Release
Notes.

MySQL Installer is compatible with pre-existing installations, and adds them to its list of installed
components. While the standard MySQL Installer is bundled with a specific version of MySQL server, a
single MySQL Installer instance can install and manage multiple MySQL server versions. For example,
a single MySQL Installer instance can install (and update) versions 5.5, 5.6, and 5.7 on the same host.

Note

A single host can not have both community and commercial editions of MySQL
server installed. For example, if you want both MySQL Server 5.6 and 5.7
installed on a single host, both must be the same edition.

MySQL Installer handles the initial configuration and set up of the applications. For example:

1. It creates the configuration file (my.ini) that is used to configure the MySQL Server. The values
written to this file are influenced by choices you make during the installation process.

Note

Some definitions are host dependent. For example, query_cache is enabled
if the host has fewer than three cores.

http://dev.mysql.com/downloads/installer/
https://support.oracle.com/
https://edelivery.oracle.com/
https://edelivery.oracle.com/
http://dev.mysql.com/doc/relnotes/mysql-installer/en/
http://dev.mysql.com/doc/relnotes/mysql-installer/en/

Installing MySQL on Microsoft Windows Using MySQL Installer

76

2. It can optionally import example databases.

3. By default, a Windows service for the MySQL server is added.

4. It can optionally create MySQL Server user accounts with configurable permissions based on
general roles, such as DB Administrator, DB Designer, and Backup Admin. It optionally creates a
Windows user named MysqlSys with limited privileges, which would then run the MySQL Server.

User accounts may also be added and configured in MySQL Workbench.

5. Checking Show Advanced Options allows additional Logging Options to be set. This includes
defining custom file paths for the error log, general log, slow query log (including the configuration
of seconds it requires to execute a query), and the binary log.

MySQL Installer can optionally check for updated components and download them for you.

2.3.3.1 MySQL Installer GUI

Installing MySQL Installer adds a link to the Start menu under the MySQL group. Click Start, All
Programs MySQL, MySQL Installer to reload the MySQL Installer GUI.

Note

Full permissions are granted to the user executing MySQL Installer to all
generated files, such as my.ini. This does not apply to files and directories for
specific products, such as the MySQL server data directory in %ProgramData%
that is owned by SYSTEM.

MySQL Installer requires you to accept the license agreement before it will install MySQL products.

Figure 2.7 MySQL Installer - License Agreement

Installing MySQL on Microsoft Windows Using MySQL Installer

77

Installing New Packages

Choose the appropriate Setup Type for your system. This type determines which MySQL products are
initially installed on your system, or select Custom to manually choose the products.

• Developer: Install all products needed to develop applications with MySQL. This is the default
option.

• Server only: Only install the MySQL server.

• Client only: Only install the MySQL client products, such as MySQL Workbench. This does not
include the MySQL server.

• Full: Install all available MySQL products.

• Custom: Manually select the MySQL products to install, and optionally configure custom MySQL
data and installation paths.

Note

After the initial installation, you may use MySQL Installer to manually select
MySQL products to install or remove. In other words, MySQL Installer
becomes a MySQL product management system.

Figure 2.8 MySQL Installer - Choosing a Setup Type

MySQL Installer checks your system for the external requirements (pre-requisites) required to install
the selected MySQL products. MySQL Installer can download and install some prerequisites, but
others require manual intervention. Download and install all prerequisites that have Status set to
"Manual". Click Check to recheck if a manual prerequisite was installed. After manually installing those
requirements, click Execute to download and install the other prerequisites. Once finished, click Next to
continue.

Installing MySQL on Microsoft Windows Using MySQL Installer

78

Figure 2.9 MySQL Installer - Check Requirements

The next window lists the MySQL products that are scheduled for installation:

Installing MySQL on Microsoft Windows Using MySQL Installer

79

Figure 2.10 MySQL Installer - Installation Progress

As components are installed, their Status changes from a progress percentage to "Complete".

After all components are installed, the next step configures some of the recently installed MySQL
products. The Configuration Overview window displays the progress and then loads a
configuration window, if required. Our example configures MySQL Server 5.6.x.

Configuring MySQL Server

Configuring the MySQL server begins with defining several Type and Networking options.

Installing MySQL on Microsoft Windows Using MySQL Installer

80

Figure 2.11 MySQL Installer - Configuration Overview

Server Configuration Type

Choose the MySQL server configuration type that describes your setup. This setting defines the
amount of system resources (memory) that will be assigned to your MySQL server instance.

• Developer: A machine that will host many other applications, and typically this is your personal
workstation. This option configures MySQL to use the least amount of memory.

• Server: Several other applications will be running on this machine, such as a web server. This option
configures MySQL to use a medium amount of memory.

• Dedicated: A machine that is dedicated to running the MySQL server. Because no other major
applications will run on this server, such as a web server, this option configures MySQL to use the
majority of available memory.

Connectivity

Connectivity options control how the connection to MySQL is made. Options include:

• TCP/IP: You may enable TCP/IP Networking here as otherwise only localhost connections are
allowed. Also define the Port Number and whether to open the firewall port for network access.

• Named Pipe: Enable and define the pipe name, similar to using the --enable-named-pipe
option.

• Shared Memory: Enable and then define the memory name, similar to using the --shared-
memory option.

Advanced Configuration

Installing MySQL on Microsoft Windows Using MySQL Installer

81

Check Show Advanced Options to set additional Logging Options. This includes defining custom file
paths for the error log, general log, slow query log (including the configuration of seconds it requires to
execute a query), and the binary log.

Figure 2.12 MySQL Installer - MySQL Server Configuration: Type and Networking

Accounts and Roles

Next, define your MySQL account information. Assigning a root password is required.

Optionally, you can add additional MySQL user accounts with predefined user roles. Each predefined
role, such as "DB Admin", are configured with their own set of privileges. For example, the "DB
Admin" role has more privileges than the "DB Designer" role. Click the Role dropdown for a list of role
descriptions.

Note

If the MySQL Server is already installed, then you must also enter the Current
Root Password.

Installing MySQL on Microsoft Windows Using MySQL Installer

82

Figure 2.13 MySQL Installer - MySQL Server Configuration: User Accounts and Roles

Figure 2.14 MySQL Installer - MySQL Server Configuration: User Accounts and Roles: Adding a
User

Windows Service

Next, configure the Windows Service details. This includes the service name, whether the MySQL
server should be loaded at startup, and how the MySQL server Windows service is executed.

Installing MySQL on Microsoft Windows Using MySQL Installer

83

Figure 2.15 MySQL Installer - MySQL Server Configuration: Windows Service

Note

When configuring Run Windows Services as ... using a Custom User, the
custom user must have privileges to log on to Microsoft Windows as a service.
The Next button will be disabled until this user is configured with the required
privileges.

On Microsoft Windows 7, this is configured by loading the Start Menu,
Control Panel, Administrative Tools, Local Security Policy,
Local Policies, User Rights Assignment, then Log On As A
Service. Choose Add User or Group here to add the custom user, and
then OK, OK to save.

Advanced Options

The next configuration step is available if the Advanced Configuration option was checked. This
section includes options that are related to the MySQL log files:

Installing MySQL on Microsoft Windows Using MySQL Installer

84

Figure 2.16 MySQL Installer - MySQL Server Configuration: Logging Options

Click Next to continue on to the final page before all of the requested changes are applied. This Apply
Server Configuration page details the configuration steps that will be performed.

Installing MySQL on Microsoft Windows Using MySQL Installer

85

Figure 2.17 MySQL Installer - MySQL Server Configuration: Apply Server Configuration

Click Execute to execute the configuration steps. The icon for each step toggles from white to green on
success, or the process stops on failure. Click the Log tab to view the log.

After the MySQL Installer configuration process is finished, MySQL Installer reloads the opening page
where you can execute other installation and configuration related actions.

MySQL Installer is added to the Microsoft Windows Start menu under the MySQL group. Opening
MySQL Installer loads its dashboard where installed MySQL products are listed, and other MySQL
Installer actions are available:

Installing MySQL on Microsoft Windows Using MySQL Installer

86

Figure 2.18 MySQL Installer - Main Dashboard

Adding MySQL Products

Click Add to add new products. This loads the Select Products and Features page:

Installing MySQL on Microsoft Windows Using MySQL Installer

87

Figure 2.19 MySQL Installer - Select Products and Features

From here, choose the MySQL products you want to install from the left Available Products pane, and
then click the green right arrow to queue products for installation.

Optionally, click Edit to open the product and features search filter:

Installing MySQL on Microsoft Windows Using MySQL Installer

88

Figure 2.20 MySQL Installer - Select Products and Features Filter

For example, you might choose to include Pre-Release products in your selections, such as a Beta
product that has not yet reached General Availability (GA) status.

Select all of the MySQL products you want to install, then click Next to continue using the defaults,
or highlight a selected product and click Advanced Options to optionally alter options such as the
MySQL server data and installation paths. Click Execute to execute the installation process to install all
of the selected products.

MySQL Product Catalog

MySQL Installer stores a MySQL product catalog. The catalog can be updated either manually or
automatically, and the catalog change history is also available. The automatic update is enabled by
default.

Note

The product catalog update also checks for a newer version of MySQL Installer,
and prompts for an update if one is present.

Manual updates

You can update the MySQL product catalog at any time by clicking Catalog on the Installer dashboard.

Installing MySQL on Microsoft Windows Using MySQL Installer

89

Figure 2.21 MySQL Installer - Open the MySQL Product Catalog

From there, click Execute to update the product catalog.

Automatic updates

MySQL Installer can automatically update the MySQL product catalog. By default, this feature is
enabled to execute each day at 12:00 AM. To configure this feature, click the wrench icon on the
Installer dashboard.

The next window configures the Automatic Catalog Update. Enable or disable this feature, and also
set the hour.

Figure 2.22 MySQL Installer - Configure the Catalog Scheduler

Installing MySQL on Microsoft Windows Using MySQL Installer

90

This option uses the Windows Task Scheduler to schedule a task named "ManifestUpdate".

Change History

MySQL Installer tracks the change history for all of the MySQL products. Click Catalog from the
dashboard, optionally update the catalog (or, toggle the Do not update at this time checkbox), click
Next/Execute, and then view the change history.

Figure 2.23 MySQL Installer - Catalog Change History

Remove MySQL Products

MySQL Installer can also remove MySQL products from your system. To remove a MySQL product,
click Remove from the Installer dashboard. This opens a window with a list of installed MySQL
products. Select the MySQL products you want to remove (uninstall), and then click Execute to begin
the removal process.

Note

To select all MySQL products, click the [] checkbox to the left of the Product
label.

Installing MySQL on Microsoft Windows Using MySQL Installer

91

Figure 2.24 MySQL Installer - Removing Products: Select

Installing MySQL on Microsoft Windows Using MySQL Installer

92

Figure 2.25 MySQL Installer - Removing Products: Executed

Alter MySQL Products

Use MySQL Installer to modify, configure, or upgrade your MySQL product installations.

Upgrade

Upgradable MySQL products are listed on the main dashboard with an arrow icon () next to their
version number.

Installing MySQL on Microsoft Windows Using MySQL Installer

93

Figure 2.26 MySQL Installer - Upgrade a MySQL Product

Note

The "upgrade" functionality requires a current product catalog. This catalog is
updated either manually or automatically (daily) by enabling the Automatic
Catalog Update feature. For additional information, see MySQL Product
Catalog.

Click Upgrade to upgrade the available products. Our example indicates that MySQL Workbench 6.2.4
can be upgraded version 6.3.1 or 6.2.5, and MySQL server from 5.5.41 to 5.5.42.

Installing MySQL on Microsoft Windows Using MySQL Installer

94

Figure 2.27 MySQL Installer - Select Products To Upgrade

If multiple upgrade versions are available (such as our MySQL Workbench example above), select the
desired version for the upgrade in the Available Upgrades area.

Note

Optionally, click the Changes link to view the version's release notes.

After selecting (checking) the products and versions to upgrade, click Next to begin the upgrade
process.

Installing MySQL on Microsoft Windows Using MySQL Installer

95

Figure 2.28 MySQL Installer - Apply Updates

A MySQL server upgrade will also check and upgrade the server's database. Although optional, this
step is recommended.

Installing MySQL on Microsoft Windows Using MySQL Installer

96

Figure 2.29 MySQL Installer - Check and Upgrade Database

Upon completion, your upgraded products will be upgraded and available to use. A MySQL server
upgrade also restarts the MySQL server.

Reconfigure

Some MySQL products, such as the MySQL server, include a Reconfigure option. It opens the same
configuration options that were set when the MySQL product was installed, and is pre-populated with
the current values.

To execute, click the Reconfigure link under the Quick Action column on the main dashboard for
the MySQL product that you want to reconfigure.

Installing MySQL on Microsoft Windows Using MySQL Installer

97

Figure 2.30 MySQL Installer - Reconfigure a MySQL Product

In the case of the MySQL server, this opens a configuration wizard that relates to the selected product.
For example, for MySQL Server this includes setting the type, ports, log paths, and so on.

Modify

Many MySQL products contain feature components that can be added or removed. For example,
Debug binaries and Client Programs are subcomponents of the MySQL server.

The modify the features of a product, click Modify on the main dashboard.

Installing MySQL on Microsoft Windows Using MySQL Installer

98

Figure 2.31 MySQL Installer - Modify Product Features

Click Execute to execute the modification request.

2.3.3.2 MySQL Installer Console

MySQLInstallerConsole provides functionality similar to the GUI version of MySQL Installer, but
from the command-line. It is installed when MySQL Installer is initially executed, and then available
within the MySQL Installer directory. Typically that is in C:\Program Files (x86)\MySQL
\MySQL Installer\, and the console must be executed with administrative privileges.

To use, invoke the Command Prompt with administrative privileges by choosing Start, Accessories,
then right-click on Command Prompt and choose Run as administrator. And from the command-
line, optionally change the directory to where MySQLInstallerConsole is located:

C:\> cd "C:\Program Files (x86)\MySQL\MySQL Installer for Windows"
C:\> MySQLInstallerConsole.exe help

C:\Program Files (x86)\MySQL\MySQL Installer for Windows>MySQLInstallerConsole.exe help

The following commands are available:

Configure - Configures one or more of your installed programs.
Help - Provides list of available commands.
Install - Install and configure one or more available MySQL programs.
List - Provides an interactive way to list all products available.
Modify - Modifies the features of installed products.
Remove - Removes one or more products from your system.
Status - Shows the status of all installed products.
Update - Update the current product catalog.
Upgrade - Upgrades one or more of your installed programs.

MySQLInstallerConsole supports the following options, which are specified on the command line:

Installing MySQL on Microsoft Windows Using MySQL Installer

99

Note

Configuration block values that contain a colon (":") must be wrapped in double
quotes. For example, installdir="C:\MySQL\MySQL Server 5.6".

• configure [product1]:[setting]=[value]; [product2]:[setting]=[value]; [...]

Configure one or more MySQL products on your system. Multiple setting=value pairs can be
configured for each product.

Switches include:

• -showsettings : Displays the available options for the selected product, by passing in the
product name after -showsettings.

• -silent : Disable confirmation prompts.

C:\> MySQLInstallerConsole configure -showsettings server
C:\> MySQLInstallerConsole configure server:port=3307

• help [command]

Displays a help message with usage examples, and then exits. Pass in an additional command to
receive help specific to that command.

C:\> MySQLInstallerConsole help
C:\> MySQLInstallerConsole help install

• install [product]:[features]:[config block]:[config block]:[config block]; [...]

Install one or more MySQL products on your system.

Switches and syntax options include:

• -type=[SetupType] : Installs a predefined set of software. The "SetupType" can be one of the
following:

Note

Non-custom setup types can only be chosen if no other MySQL products
are installed.

• Developer: Installs a complete development environment.

• Server: Installs a single MySQL server

• Client: Installs client programs and libraries

• Full: Installs everything

• Custom: Installs user selected products. This is the default option.

• -showsettings : Displays the available options for the selected product, by passing in the
product name after -showsettings.

• -silent : Disable confirmation prompts.

• [config block]: One or more configuration blocks can be specified. Each configuration block
is a semicolon separated list of key value pairs. A block can include either a "config" or "user" type
key, where "config" is the default type if one is not defined.

Installing MySQL on Microsoft Windows Using MySQL Installer

100

Configuration block values that contain a colon (":") must be wrapped in double quotes. For
example, installdir="C:\MySQL\MySQL Server 5.6".

Only one "config" type block can be defined per product. A "user" block should be defined for each
user that should be created during the product's installation.

Note

Adding users is not supported when a product is being reconfigured.

• [feature]: The feature block is a semicolon separated list of features, or '*' to select all features.

C:\> MySQLInstallerConsole install server;5.6.25:*:port=3307;serverid=2:type=user;username=foo;password=bar;role=DBManager
C:\> MySQLInstallerConsole install server;5.6.25;x64 -silent

An example that passes in additional configuration blocks, broken up by ^ to fit this screen:

C:\> MySQLInstallerConsole install server;5.6.25;x64:*:type=config;openfirewall=true; ^
 generallog=true;binlog=true;serverid=3306;enable_tcpip=true;port=3306;rootpasswd=pass; ^
 installdir="C:\MySQL\MySQL Server 5.6":type=user;datadir="C:\MySQL\data";username=foo;password=bar;role=DBManager

• list

Lists an interactive console where all of the available MySQL products can be searched. Execute
MySQLInstallerConsole list to launch the console, and enter in a substring to search.

C:\> MySQLInstallerConsole list

• modify [product1:-removelist|+addlist] [product2:-removelist|+addlist]
[...]

Modifies or displays features of a previously installed MySQL product.

• -silent : Disable confirmation prompts.

C:\> MySQLInstallerConsole modify server
C:\> MySQLInstallerConsole modify server:+documentation
C:\> MySQLInstallerConsole modify server:-debug

• remove [product1] [product2] [...]

Removes one ore more products from your system.

• * : Pass in * to remove all of the MySQL products.

• -continue : Continue the operation even if an error occurs.

• -silent : Disable confirmation prompts.

C:\> MySQLInstallerConsole remove *
C:\> MySQLInstallerConsole remove server

• status

Provides a quick overview of the MySQL products that are installed on the system. Information
includes product name and version, architecture, date installed, and install location.

C:\> MySQLInstallerConsole status

MySQL Notifier

101

• upgrade [product1:version] [product2:version], [...]

Upgrades one or more products on your system. Syntax options include:

• * : Pass in * to upgrade all products to the latest version, or pass in specific products.

• ! : Pass in ! as a version number to upgrade the MySQL product to its latest version.

• -silent : Disable confirmation prompts.

C:\> MySQLInstallerConsole upgrade *
C:\> MySQLInstallerConsole upgrade workbench:6.3.5
C:\> MySQLInstallerConsole upgrade workbench:!
C:\> MySQLInstallerConsole upgrade workbench:6.3.5 excel:1.3.2

• update

Downloads the latest MySQL product catalog to your system. On success, the download catalog will
be applied the next time either MySQLInstaller or MySQLInstallerConsole is executed.

C:\> MySQLInstallerConsole update

Note

The Automatic Catalog Update GUI option executes this command from the
Windows Task Scheduler.

2.3.4 MySQL Notifier

The MySQL Notifier is a tool that enables you to monitor and adjust the status of your local and remote
MySQL Server instances through an indicator that resides in the system tray. The MySQL Notifier
also gives quick access to several MySQL GUI tools (such as MySQL Workbench) through its context
menu.

The MySQL Notifier is installed by MySQL Installer, and (by default) will start-up when Microsoft
Windows is started.

Note

To install, download and execute the MySQL Installer, be sure the MySQL
Notifier product is selected, then proceed with the installation. See the MySQL
Installer manual for additional details.

For notes detailing the changes in each release of MySQL Notifier, see the
MySQL Notifier Release Notes.

Visit the MySQL Notifier forum for additional MySQL Notifier help and support.

Features include:

• Start, Stop, and Restart instances of the MySQL Server.

• Automatically detects (and adds) new MySQL Server services. These are listed under Manage
Monitored Items, and may also be configured.

• The Tray icon changes, depending on the status. It's green if all monitored MySQL Server instances
are running, or red if at least one service is stopped. The Update MySQL Notifier tray icon based
on service status option, which dictates this behavior, is enabled by default for each service.

• Links to other applications like MySQL Workbench, MySQL Installer, and the MySQL Utilities. For
example, choosing Configure Instance will load the MySQL Workbench Server Administration
window for that particular instance.

http://dev.mysql.com/downloads/installer/
http://dev.mysql.com/doc/relnotes/mysql-notifier/en/
http://forums.mysql.com/list.php?173

MySQL Notifier

102

• If MySQL Workbench is also installed, then the Configure Instance and SQL Editor options are
available for local (but not remote) MySQL instances.

• Monitoring of both local and remote MySQL instances.

Note

Remote monitoring is available since MySQL Notifier 1.1.0.

The MySQL Notifier resides in the system tray and provides visual status information for your MySQL
Server instances. A green icon is displayed at the top left corner of the tray icon if the current MySQL
Server is running, or a red icon if the service is stopped.

The MySQL Notifier automatically adds discovered MySQL Services on the local machine, and each
service is saved and configurable. By default, the Automatically add new services whose name
contains option is enabled and set to mysql. Related Notifications Options include being notified
when new services are either discovered or experience status changes, and are also enabled by
default. And uninstalling a service will also remove the service from the MySQL Notifier.

Note

The Automatically add new services whose name contains option default
changed from ".*mysqld.*" to "mysql" in Notifier 1.1.0.

Clicking the system tray icon will reveal several options, as seen in the screenshots below:

The Service Instance menu is the main MySQL Notifier window, and enables you to Stop, Start, and
Restart the MySQL Server.

Figure 2.32 MySQL Notifier Service Instance menu

The Actions menu includes several links to external applications (if they are installed), and a Refresh
Status option to manually refresh the status of all monitored services (in both local and remote
computers) and MySQL instances.

Note

The main menu will not show the Actions menu when there are no services
being monitored by MySQL Notifier.

Note

The Refresh Status feature is available since MySQL Notifier 1.1.0.

MySQL Notifier

103

Figure 2.33 MySQL Notifier Actions menu

The Actions, Options menu configures MySQL Notifier and includes options to:

• Use colorful status icons: Enables a colorful style of icons for the tray of the MySQL Notifier.

• Run at Windows Startup: Allows the application to be loaded when Microsoft Windows starts.

• Automatically Check For Updates Every # Weeks: Checks for a new version of MySQL Notifier,
and runs this check every # weeks.

• Automatically add new services whose name contains: The text used to filter services and add
them automatically to the monitored list of the local computer running MySQL Notifier, and on remote
computers already monitoring Windows services. monitored services, and also filters the list of the
Microsoft Windows services for the Add New Service dialog.

Prior to version 1.1.0, this option was named "Automatically add new services that match this
pattern."

• Notify me when a service is automatically added: Will display a balloon notification from the
taskbar when a newly discovered service is added to the monitored services list.

• Notify me when a service changes status: Will display a balloon notification from the taskbar when
a monitored service changes its status.

MySQL Notifier

104

Figure 2.34 MySQL Notifier Options menu

The Actions, Manage Monitored Items menu enables you to configure the monitored services and
MySQL instances. First, with the Services tab open:

Figure 2.35 MySQL Notifier Manage Services menu

The Instances tab is similar:

MySQL Notifier

105

Figure 2.36 MySQL Notifier Manage Instances menu

Adding a service or instance (after clicking Add in the Manage Monitored Items window) enables you
to select a running Microsoft Windows service or instance connection, and configure MySQL Notifier
to monitor it. Add a new service or instance by clicking service name from the list, then OK to accept.
Multiple services and instances may be selected.

MySQL Notifier

106

Figure 2.37 MySQL Notifier Adding new services

And instances:

MySQL Notifier

107

Figure 2.38 MySQL Notifier Adding new instances

Note

The Instances tab available since MySQL Notifier 1.1.0.

2.3.4.1 Remote monitoring set up and installation instructions

The MySQL Notifier uses Windows Management Instrumentation (WMI) to manage and monitor
services in remote computers running Windows XP or later. This guide explains how it works, and how
to set up your system to monitor remote MySQL instances.

Note

Remote monitoring is available since MySQL Notifier 1.1.0.

In order to configure WMI, it is important to understand that the underlying Distributed Component
Object Model (DCOM) architecture is doing the WMI work. Specifically, MySQL Notifier is using
asynchronous notification queries on remote Microsoft Windows hosts as .NET events. These events
send an asynchronous callback to the computer running the MySQL Notifier so it knows when a service
status has changed on the remote computer. Asynchronous notifications offer the best performance
compared to semisynchronous notifications or synchronous notifications that use timers.

Asynchronous notifications requires the remote computer to send a callback to the client computer
(thus opening a reverse connection), so the Windows Firewall and DCOM settings must be properly
configured for the communication to function properly.

MySQL Notifier

108

Figure 2.39 MySQL Notifier Distributed Component Object Model (DCOM)

Most of the common errors thrown by asynchronous WMI notifications are related to Windows Firewall
blocking the communication, or to DCOM / WMI settings not being set up properly. For a list of
common errors with solutions, see Common Errors.

The following steps are required to make WMI function. These steps are divided between two
machines. A single host computer that runs MySQL Notifier (Computer A), and multiple remote
machines that are being monitored (Computer B).

Computer running MySQL Notifier (Computer A)

1. Allow for remote administration by either editing the Group Policy Editor, or using NETSH:

Using the Group Policy Editor:

a. Click Start, click Run, type GPEDIT.MSC, and then click OK.

b. Under the Local Computer Policy heading, double-click Computer Configuration.

c. Double-click Administrative Templates, then Network, Network Connections, and then
Windows Firewall.

d. If the computer is in the domain, then double-click Domain Profile; otherwise, double-click
Standard Profile.

e. Click Windows Firewall: Allow inbound remote administration exception.

f. On the Action menu either select Edit, or double-click the selection from the previous step.

g. Check the Enabled radio button, and then click OK.

Using the NETSH command:

Note

The "netsh firewall" command is deprecated as of Microsoft Server 2008
and Vista, and replaced with "netsh advfirewall firewall".

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command:

NETSH advfirewall firewall set service RemoteAdmin enable

2. Open the DCOM port TCP 135:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator) .

MySQL Notifier

109

b. Execute the following command:

NETSH advfirewall firewall add portopening protocol=tcp port=135 name=DCOM_TCP135

3. Add the client application which contains the sink for the callback (MySqlNotifier.exe) to the
Windows Firewall Exceptions List (use either the Windows Firewall configuration or NETSH):

Using the Windows Firewall configuration:

a. In the Control Panel, double-click Windows Firewall.

b. In the Windows Firewall window's left panel, click Allow a program or feature through
Windows Firewall.

c. In the Allowed Programs window, click Change Settings.

d. If MySqlNotifier.exe is in the Allowed programs and features list, make sure it is checked
for the type of networks the computer connects to (Private, Public or both).

e. If MySqlNotifier.exe is not in the list, click Allow another program....

f. In the Add a Program window, select the MySqlNotifier.exe if it exists in the Programs list,
otherwise click Browse... and go to the directory where MySqlNotifier.exe was installed to
select it, then click Add.

g. Make sure MySqlNotifier.exe is checked for the type of networks the computer connects to
(Private, Public or both).

Using the NETSH command:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command, where you change "[YOUR_INSTALL_DIRECTORY]":

NETSH advfirewall firewall add allowedprogram program=[YOUR_INSTALL_DIRECTORY]\MySqlNotifier.exe name=MySqlNotifier

4. If Computer B is either a member of WORKGROUP or is in a different domain that is untrusted by
Computer A, then the callback connection (Connection 2) is created as an Anonymous connection.
To grant Anonymous connections DCOM Remote Access permissions:

a. Click Start, click Run, type DCOMCNFG, and then click OK.

b. In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. In the My Computer Properties dialog box, click the COM Security tab.

d. Under Access Permissions, click Edit Limits.

e. In the Access Permission dialog box, select ANONYMOUS LOGON name in the Group or user
names box. In the Allow column under Permissions for User, select Remote Access, and then
click OK.

Monitored Remote Computer (Computer B)

If the user account that is logged into the computer running the MySQL Notifier (Computer A) is a local
administrator on the remote computer (Computer B), such that the same account is an administrator on
Computer B, you can skip to the "Allow for remote administration" step.

MySQL Notifier

110

Setting DCOM security to allow a non-administrator user to access a computer remotely:

1. Grant "DCOM remote launch" and activation permissions for a user or group:

a. Click Start, click Run, type DCOMCNFG, and then click OK.

b. In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. In the My Computer Properties dialog box, click the COM Security tab.

d. Under Access Permissions, click Edit Limits.

e. In the Launch Permission dialog box, follow these steps if your name or your group does not
appear in the Groups or user names list:

i. In the Launch Permission dialog box, click Add.

ii. In the Select Users, Computers, or Groups dialog box, add your name and the group in the
"Enter the object names to select" box, and then click OK.

f. In the Launch Permission dialog box, select your user and group in the Group or user names
box. In the Allow column under Permissions for User, select Remote Launch, select Remote
Activation, and then click OK.

Grant DCOM remote access permissions:

a. Click Start, click Run, type DCOMCNFG, and then click OK.

b. In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. In the My Computer Properties dialog box, click the COM Security tab.

d. Under Access Permissions, click Edit Limits.

e. In the Access Permission dialog box, select ANONYMOUS LOGON name in the Group or user
names box. In the Allow column under Permissions for User, select Remote Access, and then
click OK.

2. Allowing non-administrator users access to a specific WMI namespace:

a. In the Control Panel, double-click Administrative Tools.

b. In the Administrative Tools window, double-click Computer Management.

c. In the Computer Management window, expand the Services and Applications tree and
double-click the WMI Control.

d. Right-click the WMI Control icon and select Properties.

e. In the WMI Control Properties window, click the Security tab.

f. In the Security tab, select the namespace and click Security.

g. Locate the appropriate account and check Remote Enable in the Permissions list.

3. Allow for remote administration by either editing the Group Policy Editor or using NETSH:

Using the Group Policy Editor:

a. Click Start, click Run, type GPEDIT.MSC, and then click OK.

MySQL Notifier

111

b. Under the Local Computer Policy heading, double-click Computer Configuration.

c. Double-click Administrative Templates, then Network, Network Connections, and then
Windows Firewall.

d. If the computer is in the domain, then double-click Domain Profile; otherwise, double-click
Standard Profile.

e. Click Windows Firewall: Allow inbound remote administration exception.

f. On the Action menu either select Edit, or double-click the selection from the previous step.

g. Check the Enabled radio button, and then click OK.

Using the NETSH command:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command:

NETSH advfirewall firewall set service RemoteAdmin enable

4. Now, be sure the user you are logging in with uses the Name value and not the Full Name value:

a. In the Control Panel, double-click Administrative Tools.

b. In the Administrative Tools window, double-click Computer Management.

c. In the Computer Management window, expand the System Tools then Local Users and
Groups.

d. Click the Users node, and on the right side panel locate your user and make sure it uses the
Name value to connect, and not the Full Name value.

5. If the remote computer is running on Windows XP Professional, make sure that remote logins
are not being forcefully changed to the guest account user (also known as ForceGuest), which is
enabled by default on computers that are not attached to a domain.

a. Click Start, click Run, type SECPOL.MSC, and then click OK.

b. Under the Local Policies node, double-click Security Options.

c. Select Network Access: Sharing and security model for local accounts and save.

Common Errors

• 0x80070005

• DCOM Security was not configured properly (see Computer B, the Setting DCOM
security... step).

• The remote computer (Computer B) is a member of WORKGROUP or is in a domain that is
untrusted by the client computer (Computer A) (see Computer A, the Grant Anonymous
connections DCOM Remote Access permissions step).

• 0x8007000E

• The remote computer (Computer B) is a member of WORKGROUP or is in a domain that is
untrusted by the client computer (Computer A) (see Computer A, the Grant Anonymous
connections DCOM Remote Access permissions step).

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

112

• 0x80041003

• Access to the remote WMI namespace was not configured properly (see Computer B, the
Allowing non-administrator users access to a specific WMI namespace step).

• 0x800706BA

• The DCOM port is not open on the client computers (Computer A) firewall. See the Open the
DCOM port TCP 135 step for Computer A.

• The remote computer (Computer B) is inaccessible because its network location is set to Public.
Make sure you can access it through the Windows Explorer.

2.3.5 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

Users who are installing from the noinstall package can use the instructions in this section to
manually install MySQL. The process for installing MySQL from a Zip archive is as follows:

1. Extract the main archive to the desired install directory

Optional: also extract the debug-test archive if you plan to execute the MySQL benchmark and test
suite

2. Create an option file

3. Choose a MySQL server type

4. Initialize MySQL

5. Start the MySQL server

6. Secure the default user accounts

This process is described in the sections that follow.

2.3.5.1 Extracting the Install Archive

To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.3.8, “Upgrading MySQL on
Windows”, before beginning the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. The
MySQL Installation Wizard installs MySQL under C:\Program Files\MySQL. If you do not install
MySQL at C:\mysql, you must specify the path to the install directory during startup or in an
option file. See Section 2.3.5.2, “Creating an Option File”.

Note

The MySQL Installer installs MySQL under C:\Program Files\MySQL.

4. Extract the install archive to the chosen installation location using your preferred Zip archive tool.
Some tools may extract the archive to a folder within your chosen installation location. If this occurs,
you can move the contents of the subfolder into the chosen installation location.

2.3.5.2 Creating an Option File

If you need to specify startup options when you run the server, you can indicate them on the command
line or place them in an option file. For options that are used every time the server starts, you may find
it most convenient to use an option file to specify your MySQL configuration. This is particularly true
under the following circumstances:

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

113

• The installation or data directory locations are different from the default locations (C:\Program
Files\MySQL\MySQL Server 5.7 and C:\Program Files\MySQL\MySQL Server
5.7\data).

• You need to tune the server settings, such as memory, cache, or InnoDB configuration information.

When the MySQL server starts on Windows, it looks for option files in several locations, such as
the Windows directory, C:\, and the MySQL installation directory (for the full list of locations, see
Section 4.2.6, “Using Option Files”). The Windows directory typically is named something like C:
\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable
using the following command:

C:\> echo %WINDIR%

MySQL looks for options in each location first in the my.ini file, and then in the my.cnf file. However,
to avoid confusion, it is best if you use only one file. If your PC uses a boot loader where C: is not the
boot drive, your only option is to use the my.ini file. Whichever option file you use, it must be a plain
text file.

Note

When using the MySQL Installer to install MySQL Server, it will create the
my.ini at the default location, and the user executing MySQL Installer is
granted full permissions to this new my.ini file.

In other words, be sure that the MySQL Server user has permission to read the
my.ini file.

You can also make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.

An option file can be created and modified with any text editor, such as Notepad. For example, if
MySQL is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an
option file containing a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data

The rules for use of backslash in option file values are given in Section 4.2.6, “Using Option Files”.

As of MySQL 5.7.6, the Zip Archive no longer includes a data directory. To initialize a MySQL
installation by creating the data directory and populating the tables in the mysql system database,
initialize MySQL using either --initialize or --initialize-insecure. For additional
information, see Section 2.10.1.1, “Initializing the Data Directory Manually Using mysqld”.

If you would like to use a data directory in a different location, you should copy the entire contents
of the data directory to the new location. For example, if you want to use E:\mydata as the data
directory instead, you must do two things:

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

114

1. Move the entire data directory and all of its contents from the default location (for example C:
\Program Files\MySQL\MySQL Server 5.7\data) to E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

2.3.5.3 Selecting a MySQL Server Type

The following table shows the available servers for Windows in MySQL 5.7.

Binary Description

mysqld Optimized binary with named-pipe support

mysqld-debug Like mysqld, but compiled with full debugging and automatic memory allocation
checking

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel
i386-class or higher processor.

Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES
statement displays which engines a given server supports.

All Windows MySQL 5.7 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows also support named
pipes, if you start the server with the --enable-named-pipe option. It is necessary to use this option
explicitly because some users have experienced problems with shutting down the MySQL server when
named pipes were used. The default is to use TCP/IP regardless of platform because named pipes are
slower than TCP/IP in many Windows configurations.

2.3.5.4 Initializing the Data Directory

If you installed MySQL using the Noinstall package, you may need to initialize the data directory:

• Windows distributions prior to MySQL 5.7.7 include a data directory with a set of preinitialized
accounts in the mysql database.

• As of 5.7.7, Windows installation operations performed using the Noinstall package do not
include a data directory. To initialize the data directory, use the instructions at Section 2.10.1.1,
“Initializing the Data Directory Manually Using mysqld”.

2.3.5.5 Starting the Server for the First Time

This section gives a general overview of starting the MySQL server. The following sections provide
more specific information for starting the MySQL server from the command line or as a Windows
service.

The information here applies primarily if you installed MySQL using the Noinstall version, or if you
wish to configure and test MySQL manually rather than with the GUI tools.

Note

The MySQL server will automatically start after using the MySQL Installer, and
the MySQL Notifier GUI can be used to start/stop/restart at any time.

The examples in these sections assume that MySQL is installed under the default location of C:
\Program Files\MySQL\MySQL Server 5.7. Adjust the path names shown in the examples if
you have MySQL installed in a different location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports
named-pipe connections.

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

115

MySQL for Windows also supports shared-memory connections if the server is started with
the --shared-memory option. Clients can connect through shared memory by using the --
protocol=MEMORY option.

For information about which server binary to run, see Section 2.3.5.3, “Selecting a MySQL Server
Type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you
can have the server display status messages in the window where they are easy to see. If something is
wrong with your configuration, these messages make it easier for you to identify and fix any problems.

Note

The database must be initialized before MySQL can be started. For additional
information about the initialization process, see Section 2.10.1.1, “Initializing the
Data Directory Manually Using mysqld”.

To start the server, enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --console

For a server that includes InnoDB support, you should see the messages similar to those following as
it starts (the path names and sizes may differ):

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which indicates that
the server is ready to service client connections:

mysqld: ready for connections
Version: '5.7.11' socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a
new console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data
directory (C:\Program Files\MySQL\MySQL Server 5.7\data by default). The error log is the
file with the .err extension, and may be set using the --log-error option.

Note

The initial root account in the MySQL grant tables has no password. After
starting the server, you should set up a password for it using the instructions in
Section 2.10.4, “Securing the Initial MySQL Accounts”.

2.3.5.6 Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on any version
of Windows.

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

116

Note

The MySQL Notifier GUI can also be used to start/stop/restart the MySQL
server.

To start the mysqld server from the command line, you should start a console window (or “DOS
window”) and enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"

The path to mysqld may vary depending on the install location of MySQL on your system.

You can stop the MySQL server by executing this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell
it to shut down. The command connects as the MySQL root user, which is the default administrative
account in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any login users
under Microsoft Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to
indicate the cause of the problem. By default, the error log is located in the C:\Program Files
\MySQL\MySQL Server 5.7\data directory. It is the file with a suffix of .err, or may be specified
by passing in the --log-error option. Alternatively, you can try to start the server with the --
console option; in this case, the server may display some useful information on the screen that will
help solve the problem.

The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld
writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See
Section 24.5.3, “The DBUG Package”.

Use mysqld --verbose --help to display all the options that mysqld supports.

2.3.5.7 Customizing the PATH for MySQL Tools

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory
to your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL
\MySQL Server 5.7\bin)

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

117

Note

There must be a semicolon separating this path from any values present in
this field.

Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were
opened have been dismissed. You should now be able to invoke any MySQL executable program
by typing its name at the DOS prompt from any directory on the system, without having to supply
the path. This includes the servers, the mysql client, and all MySQL command-line utilities such as
mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand;
accidental deletion or modification of any portion of the existing PATH value can
leave you with a malfunctioning or even unusable system.

2.3.5.8 Starting MySQL as a Windows Service

On Windows, the recommended way to run MySQL is to install it as a Windows service, so that MySQL
starts and stops automatically when Windows starts and stops. A MySQL server installed as a service
can also be controlled from the command line using NET commands, or with the graphical Services
utility. Generally, to install MySQL as a Windows service you should be logged in using an account that
has administrator rights.

Note

The MySQL Notifier GUI can also be used to monitor the status of the MySQL
service.

The Services utility (the Windows Service Control Manager) can be found in the Windows
Control Panel (under Administrative Tools on Windows 2000, XP, Vista, and Server 2003). To avoid
conflicts, it is advisable to close the Services utility while performing server installation or removal
operations from the command line.

Installing the service

Before installing MySQL as a Windows service, you should first stop the current server if it is running
by using the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin"
 -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell
it to shut down. The command connects as the MySQL root user, which is the default administrative
account in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any login users
under Windows.

Install the server as a service using this command:

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

118

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this
section.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory
to your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL
\MySQL Server 5.7\bin), and there should be a semicolon separating this path from any values
present in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the
dialogues that were opened have been dismissed. You should now be able to invoke any MySQL
executable program by typing its name at the DOS prompt from any directory on the system, without
having to supply the path. This includes the servers, the mysql client, and all MySQL command-line
utilities such as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand;
accidental deletion or modification of any portion of the existing PATH value can
leave you with a malfunctioning or even unusable system.

The following additional arguments can be used when installing the service:

• You can specify a service name immediately following the --install option. The default service
name is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be --
defaults-file=file_name to specify the name of an option file from which the server should
read options when it starts.

The use of a single option other than --defaults-file is possible but discouraged. --
defaults-file is more flexible because it enables you to specify multiple startup options for the
server by placing them in the named option file.

• You can also specify a --local-service option following the service name. This causes the
server to run using the LocalService Windows account that has limited system privileges. This
account is available only for Windows XP or newer. If both --defaults-file and --local-
service are given following the service name, they can be in any order.

For a MySQL server that is installed as a Windows service, the following rules determine the service
name and option files that the server uses:

• If the service-installation command specifies no service name or the default service name (MySQL)
following the --install option, the server uses the service name of MySQL and reads options from
the [mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the --
install option, the server uses that service name. It reads options from the [mysqld] group

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

119

and the group that has the same name as the service in the standard option files. This enables you
to use the [mysqld] group for options that should be used by all MySQL services, and an option
group with the service name for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name,
the server reads options the same way as described in the previous item, except that it reads options
only from the named file and ignores the standard option files.

As a more complex example, consider the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"
 --install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no --defaults-
file option had been given, this command would have the effect of causing the server to read the
[mysqld] group from the standard option files. However, because the --defaults-file option is
present, the server reads options from the [mysqld] option group, and only from the named file.

Note

On Windows, if the server is started with the --defaults-file and --
install options, --install must be first. Otherwise, mysqld.exe will
attempt to start the MySQL server.

You can also specify options as Start parameters in the Windows Services utility before you start the
MySQL service.

Starting the service

Once a MySQL server has been installed as a service, Windows starts the service automatically
whenever Windows starts. The service also can be started immediately from the Services utility, or
by using a NET START MySQL command. The NET command is not case sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen
there. If mysqld does not start, check the error log to see whether the server wrote any messages
there to indicate the cause of the problem. The error log is located in the MySQL data directory (for
example, C:\Program Files\MySQL\MySQL Server 5.7\data). It is the file with a suffix of
.err.

When a MySQL server has been installed as a service, and the service is running, Windows stops the
service automatically when Windows shuts down. The server also can be stopped manually by using
the Services utility, the NET STOP MySQL command, or the mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service
to be started automatically during the boot process. To do this, use the --install-manual option
rather than the --install option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --install-manual

Removing the service

To remove a server that is installed as a service, first stop it if it is running by executing NET STOP
MySQL. Then use the --remove option to remove it:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see
Section 2.3.5.6, “Starting MySQL from the Windows Command Line”.

If you encounter difficulties during installation. see Section 2.3.6, “Troubleshooting a Microsoft
Windows MySQL Server Installation”.

Troubleshooting a Microsoft Windows MySQL Server Installation

120

2.3.5.9 Testing The MySQL Installation

You can test whether the MySQL server is working by executing any of the following commands:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem
with your DNS. In this case, start mysqld with the --skip-name-resolve option and use only
localhost and IP addresses in the Host column of the MySQL grant tables. (Be sure that an account
exists that specifies an IP address or you may not be able to connect.)

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --
pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket
option to specify the name of the pipe if you do not want to use the default pipe name.

If you have set a password for the root account, deleted the anonymous account, or created a new
user account, then to connect to the MySQL server you must use the appropriate -u and -p options
with the commands shown previously. See Section 4.2.2, “Connecting to the MySQL Server”.

For more information about mysqlshow, see Section 4.5.7, “mysqlshow — Display Database, Table,
and Column Information”.

2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation

When installing and running MySQL for the first time, you may encounter certain errors that prevent the
MySQL server from starting. This section helps you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the
error log to record information relevant to the error that prevents the server from starting. The error log
is located in the data directory specified in your my.ini file. The default data directory location is C:
\Program Files\MySQL\MySQL Server 5.7\data, or C:\ProgramData\Mysql on Windows
7 and Windows Server 2008. The C:\ProgramData directory is hidden by default. You need to
change your folder options to see the directory and contents. For more information on the error log and
understanding the content, see Section 5.2.2, “The Error Log”.

For information regarding possible errors, also consult the console messages displayed when the
MySQL service is starting. Use the NET START MySQL command from the command line after
installing mysqld as a service to see any error messages regarding the starting of the MySQL server
as a service. See Section 2.3.5.8, “Starting MySQL as a Windows Service”.

The following examples show other common error messages you might encounter when installing
MySQL and starting the server for the first time:

• If the MySQL server cannot find the mysql privileges database or other critical files, it displays these
messages:

System error 1067 has occurred.
Fatal error: Can't open and lock privilege tables:
Table 'mysql.user' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different
locations than the default locations (C:\Program Files\MySQL\MySQL Server 5.7 and C:
\Program Files\MySQL\MySQL Server 5.7\data, respectively).

This situation can occur when MySQL is upgraded and installed to a new location, but the
configuration file is not updated to reflect the new location. In addition, old and new configuration files
might conflict. Be sure to delete or rename any old configuration files when upgrading MySQL.

Windows Postinstallation Procedures

121

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server
5.7, ensure that the MySQL server is aware of this through the use of a configuration (my.ini)
file. Put the my.ini file in your Windows directory, typically C:\WINDOWS. To determine its exact
location from the value of the WINDIR environment variable, issue the following command from the
command prompt:

C:\> echo %WINDIR%

You can create or modify an option file with any text editor, such as Notepad. For example, if MySQL
is installed in E:\mysql and the data directory is D:\MySQLdata, you can create the option file and
set up a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.7
set datadir to the location of your data directory
datadir=D:\\MySQLdata

The rules for use of backslash in option file values are given in Section 4.2.6, “Using Option Files”.

If you change the datadir value in your MySQL configuration file, you must move the contents of
the existing MySQL data directory before restarting the MySQL server.

See Section 2.3.5.2, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service
and install MySQL using the MySQL Installer, you might see this error:

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service
with the same name.

One solution to this problem is to choose a service name other than mysql when using the
configuration wizard. This enables the new service to be installed correctly, but leaves the outdated
service in place. Although this is harmless, it is best to remove old services that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with
administrative privileges, on the command line:

C:\> sc delete mysql
[SC] DeleteService SUCCESS

If the sc utility is not available for your version of Windows, download the delsrv utility from http://
www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv
mysql syntax.

2.3.7 Windows Postinstallation Procedures

GUI tools exist that perform most of the tasks described in this section, including:

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp

Windows Postinstallation Procedures

122

• MySQL Installer: Used to install and upgrade MySQL products.

• MySQL Workbench: Manages the MySQL server and edits SQL statements.

• MySQL Notifier: Starts, stops, or restarts the MySQL server, and monitors its status.

• MySQL for Excel: Edits MySQL data with Microsoft Excel.

If necessary, initialize the data directory and create the MySQL grant tables. Windows distributions
prior to MySQL 5.7.7 include a data directory with a set of preinitialized accounts in the mysql
database. As of 5.7.7, Windows installation operations performed by MySQL Installer initialize the
data directory automatically. For installation from a Zip package, you can initialize the data directory as
described at Section 2.10.1.1, “Initializing the Data Directory Manually Using mysqld”.

Regarding passwords, if you installed MySQL using the MySQL Installer, you may have already
assigned a passwords to the initial root account. (See Section 2.3.3, “Installing MySQL on Microsoft
Windows Using MySQL Installer”.) Otherwise, use the password-assignment procedure given in
Section 2.10.4, “Securing the Initial MySQL Accounts”.

Before assigning passwords, you might want to try running some client programs to make sure that
you can connect to the server and that it is operating properly. Make sure that the server is running
(see Section 2.3.5.5, “Starting the Server for the First Time”). You can also set up a MySQL service
that runs automatically when Windows starts (see Section 2.3.5.8, “Starting MySQL as a Windows
Service”).

These instructions assume that your current location is the MySQL installation directory and that it has
a bin subdirectory containing the MySQL programs used here. If that is not true, adjust the command
path names accordingly.

If you installed MySQL using MySQL Installer (see Section 2.3.3, “Installing MySQL on Microsoft
Windows Using MySQL Installer”), the default installation directory is C:\Program Files\MySQL
\MySQL Server 5.7:

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.7"

A common installation location for installation from a Zip package is C:\mysql:

C:\> cd C:\mysql

Alternatively, add the bin directory to your PATH environment variable setting. That enables your
command interpreter to find MySQL programs properly, so that you can run a program by typing only
its name, not its path name. See Section 2.3.5.7, “Customizing the PATH for MySQL Tools”.

With the server running, issue the following commands to verify that you can retrieve information from
the server. The output should be similar to that shown here.

Use mysqlshow to see what databases exist:

C:\> bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+

The list of installed databases may vary, but will always include the minimum of mysql and
information_schema. Before MySQL 5.7.7, a test database may also be created automatically.

http://dev.mysql.com/doc/mysql-for-excel/en/index.html

Windows Postinstallation Procedures

123

The preceding command (and commands for other MySQL programs such as mysql) may not work
if the correct MySQL account does not exist. For example, the program may fail with an error, or you
may not be able to view all databases. If you installed MySQL using MySQL Installer, the root user
will have been created automatically with the password you supplied. In this case, you should use the
-u root and -p options. (You must use those options if you have already secured the initial MySQL
accounts.) With -p, the client program prompts for the root password. For example:

C:\> bin\mysqlshow -u root -p
Enter password: (enter root password here)
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+

If you specify a database name, mysqlshow displays a list of the tables within the database:

C:\> bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| engine_cost |
| event |
| func |
| general_log |
| gtid_executed |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| plugin |
| proc |
| procs_priv |
| proxies_priv |
| server_cost |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

C:\> bin\mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host | plugin |
+------+-----------+-----------------------+
| root | localhost | mysql_native_password |
+------+-----------+-----------------------+

Upgrading MySQL on Windows

124

For more information about mysql and mysqlshow, see Section 4.5.1, “mysql — The MySQL
Command-Line Tool”, and Section 4.5.7, “mysqlshow — Display Database, Table, and Column
Information”.

2.3.8 Upgrading MySQL on Windows

To upgrade MySQL on Windows, follow these steps:

1. Review Section 2.11.1, “Upgrading MySQL”, for additional information on upgrading MySQL that is
not specific to Windows.

2. Always back up your current MySQL installation before performing an upgrade. See Section 7.2,
“Database Backup Methods”.

3. Download the latest Windows distribution of MySQL from http://dev.mysql.com/downloads/.

4. Before upgrading MySQL, stop the server. If the server is installed as a service, stop the service
with the following command from the command prompt:

C:\> NET STOP MySQL

If you are not running the MySQL server as a service, use mysqladmin to stop it. For example,
before upgrading from MySQL 5.6 to 5.7, use mysqladmin from MySQL 5.6 as follows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, invoke mysqladmin with
the -p option and enter the password when prompted.

5. Before upgrading to MySQL 5.7 from a version previous to 4.1.5, or from a version of MySQL
installed from a Zip archive to a version of MySQL installed with the MySQL Installation Wizard, you
must first manually remove the previous installation and MySQL service (if the server is installed as
a service).

To remove the MySQL service, use the following command:

C:\> C:\mysql\bin\mysqld --remove

If you do not remove the existing service, the MySQL Installation Wizard may fail to properly
install the new MySQL service.

6. If you are using the MySQL Installer, start it as described in Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”.

7. If you are upgrading MySQL from a Zip archive, extract the archive. You may either overwrite your
existing MySQL installation (usually located at C:\mysql), or install it into a different directory,
such as C:\mysql5. Overwriting the existing installation is recommended. However, for upgrades
(as opposed to installing for the first time), you must remove the data directory from your existing
MySQL installation to avoid replacing your current data files. To do so, follow these steps:

a. Unzip the Zip archive in some location other than your current MySQL installation

b. Remove the data directory

c. Rezip the Zip archive

d. Unzip the modified Zip archive on top of your existing installation

Alternatively:

http://dev.mysql.com/downloads/

Installing MySQL on OS X

125

a. Unzip the Zip archive in some location other than your current MySQL installation

b. Remove the data directory

c. Move the data directory from the current MySQL installation to the location of the just-removed
data directory

d. Remove the current MySQL installation

e. Move the unzipped installation to the location of the just-removed installation

8. If you were running MySQL as a Windows service and you had to remove the service earlier in this
procedure, reinstall the service. (See Section 2.3.5.8, “Starting MySQL as a Windows Service”.)

9. Restart the server. For example, use NET START MySQL if you run MySQL as a service, or invoke
mysqld directly otherwise.

10. As Administrator, run mysql_upgrade to check your tables, attempt to repair them if necessary,
and update your grant tables if they have changed so that you can take advantage of any new
capabilities. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

11. If you encounter errors, see Section 2.3.6, “Troubleshooting a Microsoft Windows MySQL Server
Installation”.

2.4 Installing MySQL on OS X
For a list of OS X versions that the MySQL server supports, see http://www.mysql.com/support/
supportedplatforms/database.html.

MySQL for OS X is available in a number of different forms:

• Native Package Installer, which uses the native OS X installer (DMG) to walk you through the
installation of MySQL. For more information, see Section 2.4.2, “Installing MySQL on OS X Using
Native Packages”. You can use the package installer with OS X. The user you use to perform the
installation must have administrator privileges.

• Compressed TAR archive, which uses a file packaged using the Unix tar and gzip commands.
To use this method, you will need to open a Terminal window. You do not need administrator
privileges using this method, as you can install the MySQL server anywhere using this method.
For more information on using this method, you can use the generic instructions for using a tarball,
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

In addition to the core installation, the Package Installer also includes Section 2.4.3, “Installing a
MySQL Launch Daemon” and Section 2.4.4, “Installing and Using the MySQL Preference Pane”,
both of which simplify the management of your installation.

For additional information on using MySQL on OS X, see Section 2.4.1, “General Notes on Installing
MySQL on OS X”.

2.4.1 General Notes on Installing MySQL on OS X

You should keep the following issues and notes in mind:

• As of MySQL server 5.7.8, the DMG bundles a launchd daemon instead of the deprecated startup
item. Startup items do not function as of OS X 10.10 (Yosemite), so using launchd is preferred.
The available MySQL preference pane under OS X System Preferences was also updated to use
launchd.

• You may need (or want) to create a specific mysql user to own the MySQL directory and data. You
can do this through the Directory Utility, and the mysql user should already exist. For use in

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html

Installing MySQL on OS X Using Native Packages

126

single user mode, an entry for _mysql (note the underscore prefix) should already exist within the
system /etc/passwd file.

• Because the MySQL package installer installs the MySQL contents into a version and platform
specific directory, you can use this to upgrade and migrate your database between versions. You
will need to either copy the data directory from the old version to the new version, or alternatively
specify an alternative datadir value to set location of the data directory. By default, the MySQL
directories are installed under /usr/local/.

• You might want to add aliases to your shell's resource file to make it easier to access commonly
used programs such as mysql and mysqladmin from the command line. The syntax for bash is:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this
by modifying the appropriate startup file for your shell. For more information, see Section 4.2.1,
“Invoking MySQL Programs”.

• After you have copied over the MySQL database files from the previous installation and have
successfully started the new server, you should consider removing the old installation files to save
disk space. Additionally, you should also remove older versions of the Package Receipt directories
located in /Library/Receipts/mysql-VERSION.pkg.

• Prior to OS X 10.7, MySQL server was bundled with OS X Server.

2.4.2 Installing MySQL on OS X Using Native Packages

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking
its icon in the Finder. It should then mount the image and display its contents.

Note

Before proceeding with the installation, be sure to stop all running MySQL
server instances by using either the MySQL Manager Application (on OS X
Server), the preference pane, or mysqladmin shutdown on the command
line.

When installing from the package version, you can also install the MySQL preference pane, which will
enable you to control the startup and execution of your MySQL server from System Preferences. For
more information, see Section 2.4.4, “Installing and Using the MySQL Preference Pane”.

When installing using the package installer, the files are installed into a directory within /usr/
local matching the name of the installation version and platform. For example, the installer file
mysql-5.7.11-osx10.9-x86_64.dmg installs MySQL into /usr/local/mysql-5.7.11-
osx10.9-x86_64/ . The following table shows the layout of the installation directory.

Table 2.5 MySQL Installation Layout on OS X

Directory Contents of Directory

bin, scripts mysqld server, client and utility programs

data Log files, databases

Installing MySQL on OS X Using Native Packages

127

Directory Contents of Directory

docs Helper documents, like the Release Notes and build
information

include Include (header) files

lib Libraries

man Unix manual pages

mysql-test MySQL test suite

share Miscellaneous support files, including error messages,
sample configuration files, SQL for database installation

sql-bench Benchmarks

support-files Scripts and sample configuration files

/tmp/mysql.sock Location of the MySQL Unix socket

During the package installer process, a symbolic link from /usr/local/mysql to the version/platform
specific directory created during installation will be created automatically.

1. Download and open the MySQL package installer, which is provided on a disk image (.dmg) that
includes the main MySQL installation package file. Double-click the disk image to open it.

Figure 2.40 MySQL Package Installer: DMG Contents

2. Double-click the MySQL installer package. It will be named according to the version of MySQL
you have downloaded. For example, if you have downloaded MySQL server 5.7.11, double-click
mysql-5.7.11-osx-10.9-x86_64.pkg.

3. You will be presented with the opening installer dialog. Click Continue to begin installation.

Installing MySQL on OS X Using Native Packages

128

Figure 2.41 MySQL Package Installer: Introduction

4. If you have downloaded the community version of MySQL, you will be shown a copy of the relevant
GNU General Public License. Click Continue and then Agree to continue.

5. From the Installation Type page you can either click Install to execute the installation wizard using
all defaults, click Customize to alter which components to install (MySQL server, Preference Pane,
Launchd Support -- all enabled by default), or click Change Installation Location to change the type
of installation for either all users, only the user executing the Installer, or define a custom location.

Installing MySQL on OS X Using Native Packages

129

Figure 2.42 MySQL Package Installer: Installation Type

Figure 2.43 MySQL Package Installer: Destination Select (Change Installation Location)

Installing MySQL on OS X Using Native Packages

130

Figure 2.44 MySQL Package Installer: Customize

6. Click Install to begin the installation process.

7. Once the installation has been completed successfully, you will be shown an Install Succeeded
message with a short summary. Now, Close the wizard and begin using the MySQL server.

Installing a MySQL Launch Daemon

131

Figure 2.45 MySQL Package Installer: Summary

MySQL server is now installed, but it is not loaded (started) by default. Use either launchctl from the
command line, or start MySQL by clicking "Start" using the MySQL preference pane. For additional
information, see Section 2.4.3, “Installing a MySQL Launch Daemon”, and Section 2.4.4, “Installing and
Using the MySQL Preference Pane”.

2.4.3 Installing a MySQL Launch Daemon

OS X uses launch daemons to automatically start, stop, and manage processes and applications such
as MySQL.

Note

Before MySQL 5.7.8, the OS X builds installed startup items instead of launchd
daemons. However, startup items do not function as of OS X 10.10 (Yosemite).
The OS X builds now install launchd daemons.

By default, the installation package (DMG) on OS X installs a launchd file named /Library/
LaunchDaemons/com.oracle.oss.mysql.mysqld.plist that contains a plist definition similar
to:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key> <string>com.oracle.oss.mysql.mysqld</string>
 <key>ProcessType</key> <string>Interactive</string>
 <key>Disabled</key> <false/>
 <key>RunAtLoad</key> <true/>
 <key>KeepAlive</key> <true/>

Installing a MySQL Launch Daemon

132

 <key>SessionCreate</key> <true/>
 <key>LaunchOnlyOnce</key> <false/>
 <key>UserName</key> <string>_mysql</string>
 <key>GroupName</key> <string>_mysql</string>
 <key>ExitTimeOut</key> <integer>600</integer>
 <key>Program</key> <string>/usr/local/mysql/bin/mysqld</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/mysql/bin/mysqld</string>
 <string>--user=_mysql</string>
 <string>--basedir=/usr/local/mysql</string>
 <string>--datadir=/usr/local/mysql/data</string>
 <string>--plugin-dir=/usr/local/mysql/lib/plugin</string>
 <string>--log-error=/usr/local/mysql/data/mysqld.local.err</string>
 <string>--pid-file=/usr/local/mysql/data/mysqld.local.pid</string>
 <string>--port=3306</string>
 </array>
 <key>WorkingDirectory</key> <string>/usr/local/mysql</string>
</dict>
</plist>

Note

Some users report that adding a plist DOCTYPE declaration causes the
launchd operation to fail, despite it passing the lint check. We suspect it's a
copy-n-paste error. The md5 checksum of a file containing the above snippet is
60d7963a0bb2994b69b8b9c123db09df.

To enable the launchd service, you can either:

• Click Start MySQL Server from the MySQL preference pane.

Installing a MySQL Launch Daemon

133

Figure 2.46 MySQL Preference Pane: Location

Installing and Using the MySQL Preference Pane

134

Figure 2.47 MySQL Preference Pane: Usage

• Or, manually load the launchd file.

shell> cd /Library/LaunchDaemons
shell> sudo launchctl load -F com.oracle.oss.mysql.mysqld.plist

Note

When upgrading MySQL server, the launchd installation process will remove the
old startup items that were installed with MySQL server 5.7.7 and below.

2.4.4 Installing and Using the MySQL Preference Pane

The MySQL Installation Package includes a MySQL preference pane that enables you to start, stop,
and control automated startup during boot of your MySQL installation.

This preference pane is installed by default, and is listed under your system's System Preferences
window.

Installing and Using the MySQL Preference Pane

135

Figure 2.48 MySQL Preference Pane: Location

To install the MySQL Preference Pane:

1. Download and open the MySQL package installer, which is provided on a disk image (.dmg) that
includes the main MySQL installation package.

Note

Before MySQL 5.7.8, OS X packages included the deprecated startup
items instead of launchd daemons, and the preference pane managed that
intstead of launchd.

Installing and Using the MySQL Preference Pane

136

Figure 2.49 MySQL Package Installer: DMG Contents

2. Go through the process of installing the MySQL server, as described in the documentation at
Section 2.4.2, “Installing MySQL on OS X Using Native Packages”.

3. Click Customize at the Installation Type step. The "Preference Pane" option is listed there and
enabled by default.

Figure 2.50 MySQL Installer on OS X: Customize

4. Complete the MySQL server installation process.

Installing and Using the MySQL Preference Pane

137

Note

The MySQL preference pane only starts and stops MySQL installation installed
from the MySQL package installation that have been installed in the default
location.

Once the MySQL preference pane has been installed, you can control your MySQL server instance
using the preference pane. To use the preference pane, open the System Preferences... from the
Apple menu. Select the MySQL preference pane by clicking the MySQL logo within the bottom section
of the preference panes list.

Figure 2.51 MySQL Preference Pane: Location

Installing MySQL on Linux

138

Figure 2.52 MySQL Preference Pane: Usage

The MySQL Preference Pane shows the current status of the MySQL server, showing stopped (in
red) if the server is not running and running (in green) if the server has already been started. The
preference pane also shows the current setting for whether the MySQL server has been set to start
automatically.

• To start the MySQL server using the preference pane:

Click Start MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to start the MySQL server.

• To stop the MySQL server using the preference pane:

Click Stop MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to stop the MySQL server.

• To automatically start the MySQL server when the system boots:

Check the check box next to Automatically Start MySQL Server on Startup.

• To disable automatic MySQL server startup when the system boots:

Uncheck the check box next to Automatically Start MySQL Server on Startup.

You can close the System Preferences... window once you have completed your settings.

2.5 Installing MySQL on Linux
Linux supports a number of different solutions for installing MySQL. We recommend that you use one
of the distributions from Oracle, for which several methods for installation are available:

• Installing with Yum using the MySQL Yum repository. For details, see Section 2.5.1, “Installing
MySQL on Linux Using the MySQL Yum Repository”.

• Installing with APT using the MySQL APT Repository. For details, see Section 2.5.3, “Installing
MySQL on Linux Using the MySQL APT Repository”.

• Installing with Zypper using the MySQL SLES Repository. For details, see Section 2.5.4, “Installing
MySQL on Linux Using the MySQL SLES Repository”.

http://dev.mysql.com/downloads/repo/yum/
http://dev.mysql.com/downloads/repo/apt/
http://dev.mysql.com/downloads/repo/suse/

Installing MySQL on Linux Using the MySQL Yum Repository

139

• Installing using a precompiled RPM package. For more information, see Section 2.5.5, “Installing
MySQL on Linux Using RPM Packages”.

• Installing using a precompiled Debian package. For more information, see Section 2.5.6, “Installing
MySQL on Linux Using Debian Packages from Oracle”.

• Installing from a generic binary package in .tar.gz format. See Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries” for more information.

• Installing using Oracle's Unbreakable Linux Network (ULN). For more information, see Section 2.6,
“Installing MySQL Using Unbreakable Linux Network (ULN)”.

• Extracting and compiling MySQL from a source distribution. For detailed instructions, see
Section 2.9, “Installing MySQL from Source”.

As an alternative, you can use the package manager on your system to automatically download
and install MySQL with packages from the native software repositories of your Linux distribution.
These native packages are often several versions behind the currently available release. You will also
normally be unable to install development milestone releases (DMRs), as these are not usually made
available in the native repositories. For more information on using the native package installers, see
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”.

Note

For many Linux installations, you will want to set up MySQL to be started
automatically when your machine starts. Many of the native package
installations perform this operation for you, but for source, binary and RPM
solutions you may need to set this up separately. The required script,
mysql.server, can be found in the support-files directory under the
MySQL installation directory or in a MySQL source tree. You can install it
as /etc/init.d/mysql for automatic MySQL startup and shutdown. See
Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository

MySQL provides a Yum-style software repository for the following Linux platforms:

• EL5, EL6, and EL7-based platforms (for example, the corresponding versions of Red Hat Enterprise
Linux, Oracle Linux, and CentOS)

• Fedora 22 and 23

Currently, the MySQL Yum repository for the above-mentioned platforms provides RPM packages
for installing the MySQL server, client, MySQL Workbench, MySQL Utilities, Connector/ODBC, and
Connector/Python (not all packages are available for all the platforms; see Installing Additional MySQL
Products and Components with Yum for details).

Before You Start

As a popular, open-source software, MySQL, in its original or re-packaged form, is widely installed on
many systems from various sources, including different software download sites, software repositories,
and so on. The following instructions assume that MySQL is not already installed on your system
using a third-party-distributed RPM package; if that is not the case, follow the instructions given in
Section 2.11.1.2, “Upgrading MySQL with the MySQL Yum Repository” or Section 2.5.2, “Replacing a
Third-Party Distribution of MySQL Using the MySQL Yum Repository”.

Steps for a Fresh Installation of MySQL

Follow the steps below to install the latest GA version of MySQL with the MySQL Yum repository:

http://dev.mysql.com/downloads/repo/yum/

Installing MySQL on Linux Using the MySQL Yum Repository

140

1.Adding the MySQL Yum Repository

First, add the MySQL Yum repository to your system's repository list. This is a one-time operation,
which can be performed by installing an RPM provided by MySQL. Follow these steps:

a. Go to the Download MySQL Yum Repository page (http://dev.mysql.com/downloads/repo/yum/)
in the MySQL Developer Zone.

b. Select and download the release package for your platform.

c. Install the downloaded release package with the following command (except for EL5-based
systems), replacing platform-and-version-specific-package-name with the name of
the downloaded RPM package:

shell> sudo yum localinstall platform-and-version-specific-package-name.rpm

For an EL6-based system, the command is in the form of:

shell> sudo yum localinstall mysql57-community-release-el6-{version-number}.noarch.rpm

For an EL7-based system:

shell> sudo yum localinstall mysql57-community-release-el7-{version-number}.noarch.rpm

For Fedora 22:

shell> sudo dnf localinstall mysql57-community-release-fc22-{version-number}.noarch.rpm

For Fedora 23:

shell> sudo dnf localinstall mysql57-community-release-fc23-{version-number}.noarch.rpm

For an EL5-based system, use the following command instead:

shell> sudo rpm -Uvh mysql57-community-release-el5-{version-number}.noarch.rpm

The installation command adds the MySQL Yum repository to your system's repository list and
downloads the GnuPG key to check the integrity of the software packages. See Section 2.1.3.2,
“Signature Checking Using GnuPG” for details on GnuPG key checking.

You can check that the MySQL Yum repository has been successfully added by the following
command (for dnf-enabled systems, replace yum in the command with dnf):

shell> yum repolist enabled | grep "mysql.*-community.*"

Note

Once the MySQL Yum repository is enabled on your system, any system-
wide update by the yum update command (or dnf upgrade for dnf-
enabled systems) will upgrade MySQL packages on your system and also
replace any native third-party packages, if Yum finds replacements for them
in the MySQL Yum repository; see Section 2.11.1.2, “Upgrading MySQL with
the MySQL Yum Repository” and, for a discussion on some possible effects
of that on your system, see Upgrading the Shared Client Libraries.

http://dev.mysql.com/downloads/repo/yum/

Installing MySQL on Linux Using the MySQL Yum Repository

141

2.Selecting a Release Series

When using the MySQL Yum repository, the latest GA series (currently MySQL 5.7) is selected for
installation by default. If this is what you want, you can skip to the next step, Installing MySQL.

Within the MySQL Yum repository, different release series of the MySQL Community Server are
hosted in different subrepositories. The subrepository for the latest GA series (currently MySQL
5.7) is enabled by default, and the subrepositories for all other series (for example, the MySQL 5.6
series) are disabled by default. Use this command to see all the subrepositories in the MySQL Yum
repository, and see which of them are enabled or disabled (for dnf-enabled systems, replace yum in
the command with dnf):

shell> yum repolist all | grep mysql

To install the latest release from the latest GA series, no configuration is needed. To install the
latest release from a specific series other than the latest GA series, disable the subrepository
for the latest GA series and enable the subrepository for the specific series before running the
installation command. If your platform supports yum-config-manager, you can do that by issuing
these commands, which disable the subrepository for the 5.7 series and enable the one for the 5.6
series:

shell> sudo yum-config-manager --disable mysql57-community
shell> sudo yum-config-manager --enable mysql56-community

For dnf-enabled platforms:

shell> sudo dnf config-manager --disable mysql57-community
shell> sudo dnf config-manager --enable mysql56-community

Besides using yum-config-manager or the dnf config-manager command, you can also
select a release series by editing manually the /etc/yum.repos.d/mysql-community.repo
file. This is a typical entry for a release series' subrepository in the file:

[mysql57-community]
name=MySQL 5.7 Community Server
baseurl=http://repo.mysql.com/yum/mysql-5.7-community/el/6/$basearch/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

Find the entry for the subrepository you want to configure, and edit the enabled option. Specify
enabled=0 to disable a subrepository, or enabled=1 to enable a subrepository. For example, to
install MySQL 5.6, make sure you have enabled=0 for the above subrepository entry for MySQL
5.7, and have enabled=1 for the entry for the 5.6 series:

Enable to use MySQL 5.6
[mysql56-community]
name=MySQL 5.6 Community Server
baseurl=http://repo.mysql.com/yum/mysql-5.6-community/el/6/$basearch/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

You should only enable subrepository for one release series at any time. When subrepositories for
more than one release series are enabled, the latest series will be used by Yum.

Verify that the correct subrepositories have been enabled and disabled by running the following
command and checking its output (for dnf-enabled systems, replace yum in the command with
dnf):

Installing MySQL on Linux Using the MySQL Yum Repository

142

shell> yum repolist enabled | grep mysql

3.Installing MySQL

Install MySQL by the following command (for dnf-enabled systems, replace yum in the command
with dnf):

shell> sudo yum install mysql-community-server

This installs the package for MySQL server (mysql-community-server) and also packages for
the components required to run the server, including packages for the client (mysql-community-
client), the common error messages and character sets for client and server (mysql-
community-common), and the shared client libraries (mysql-community-libs).

4.Starting the MySQL Server

Start the MySQL server with the following command:

shell> sudo service mysqld start
Starting mysqld:[OK]

You can check the status of the MySQL server with the following command:

shell> sudo service mysqld status
mysqld (pid 3066) is running.

At the initial start up of the server, the following happens, given that the data directory of the server is
empty:

• The server is initialized.

• An SSL certificate and key files are generated in the data directory.

• The validate_password plugin is installed and enabled.

• A superuser account 'root'@'localhost is created. A password for the superuser is set and
stored in the error log file. To reveal it, use the following command:

shell> sudo grep 'temporary password' /var/log/mysqld.log

Change the root password as soon as possible by logging in with the generated, temporary
password and set a custom password for the superuser account:

shell> mysql -uroot -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass4!';

Note

MySQL's validate_password plugin is installed by default. This will require
that passwords contain at least one upper case letter, one lower case letter,
one digit, and one special character, and that the total password length is at
least 8 characters.

For more information on the postinstallation procedures, see Section 2.10, “Postinstallation Setup and
Testing”.

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

143

Note

Compatibility Information for EL7-based platforms: The following RPM packages
from the native software repositories of the platforms are incompatible with the
package from the MySQL Yum repository that installs the MySQL server. Once
you have installed MySQL using the MySQL Yum repository, you will not be
able to install these packages (and vice versa).

• akonadi-mysql

• ocsinventory

Installing Additional MySQL Products and Components with Yum

You can use Yum to install and manage individual components of MySQL. Some of these components
are hosted in sub-repositories of the MySQL Yum repository: for example, the MySQL Connectors
are to be found in the MySQL Connectors Community sub-repository, and the MySQL Workbench in
MySQL Tools Community. You can use the following command to list the packages for all the MySQL
components available for your platform from the MySQL Yum repository (for dnf-enabled systems,
replace yum in the command with dnf):

shell> sudo yum --disablerepo=* --enablerepo='mysql*-community*' list available

Install any packages of your choice with the following command, replacing package-name with name
of the package (for dnf-enabled systems, replace yum in the command with dnf):

shell> sudo yum install package-name

For example, to install MySQL Workbench on Fedora 22:

shell> sudo dnf install mysql-workbench-community

To install the shared client libraries (for dnf-enabled systems, replace yum in the command with dnf):

shell> sudo yum install mysql-community-libs

Updating MySQL with Yum

Besides installation, you can also perform updates for MySQL products and components using the
MySQL Yum repository. See Section 2.11.1.2, “Upgrading MySQL with the MySQL Yum Repository”
for details.

2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum
Repository

For supported Yum-based platforms (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL
Yum Repository”, for a list), you can replace a third-party distribution of MySQL with the latest GA
release (from the MySQL 5.7 series currently) from the MySQL Yum repository. According to how your
third-party distribution of MySQL was installed, there are different steps to follow:

Replacing a Native Third-Party Distribution of MySQL

If you have installed a third-party distribution of MySQL from a native software repository (that is, a
software repository provided by your own Linux distribution), follow these steps:

1.Backing Up Your Database

To avoid loss of data, always back up your database before trying to replace your MySQL
installation using the MySQL Yum repository. See Chapter 7, Backup and Recovery, on how to
back up your database.

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

144

2.Adding the MySQL Yum Repository

Add the MySQL Yum repository to your system's repository list by following the instructions given in
Adding the MySQL Yum Repository.

3.Replacing the Native Third-Party Distribution by a Yum Update or a DNF Upgrade

By design, the MySQL Yum repository will replace your native, third-party MySQL with the latest GA
release (from the MySQL 5.7 series currently) from the MySQL Yum repository when you perform
a yum update command (or dnf upgrade for dnf-enabled systems) on the system, or a yum
update mysql-server (or dnf upgrade mysql-server for dnf-enabled systems).

After updating MySQL using the Yum repository, applications compiled with older versions of the
shared client libraries should continue to work. However, if you want to recompile applications and
dynamically link them with the updated libraries, see Upgrading the Shared Client Libraries, for some
special considerations.

Replacing a Nonnative Third-Party Distribution of MySQL

If you have installed a third-party distribution of MySQL from a nonnative software repository (that is, a
software repository not provided by your own Linux distribution), follow these steps:

1.Backing Up Your Database

To avoid loss of data, always back up your database before trying to replace your MySQL
installation using the MySQL Yum repository. See Chapter 7, Backup and Recovery, on how to
back up your database.

2.Stopping Yum from Receiving MySQL Packages from Third-Party, Nonnative
Repositories

Before you can use the MySQL Yum repository for installing MySQL, you must stop your system
from receiving MySQL packages from any third-party, nonnative Yum repositories.

For example, if you have installed MariaDB using their own software repository, get a list of the
installed MariaDB packages using the following command (for dnf-enabled systems, replace yum in
the command with dnf):

shell> yum list installed mariadb*
MariaDB-common.i686 10.0.4-1 @mariadb
MariaDB-compat.i686 10.0.4-1 @mariadb
MariaDB-server.i686 10.0.4-1 @mariadb

From the command output, we can identify the installed packages (MariaDB-common, MariaDB-
compat, and MariaDB-server) and the source of them (a nonnative software repository named
mariadb).

As another example, if you have installed Percona using their own software repository, get a list
of the installed Percona packages using the following command (for dnf-enabled systems, replace
yum in the command with dnf):

shell> yum list installed Percona*
Percona-Server-client-55.i686 5.5.39-rel36.0.el6 @percona-release-i386
Percona-Server-server-55.i686 5.5.39-rel36.0.el6 @percona-release-i386
Percona-Server-shared-55.i686 5.5.39-rel36.0.el6 @percona-release-i386
percona-release.noarch 0.1-3 @/percona-release-0.1-3.noarch

From the command output, we can identify the installed packages (Percona-Server-client,
Percona-Server-server, Percona-Server-shared, and percona-release.noarch) and
the source of them (a nonnative software repository named percona-release).

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

145

If you are not sure which third-party MySQL fork you have installed, this command should reveal
it and list the RPM packages installed for it, as well as the third-party repository that supplies the
packages (for dnf-enabled systems, replace yum in the command with dnf):

shell> yum --disablerepo=* provides mysql*

The next step is to stop Yum from receiving packages from the nonnative repository. If the yum-
config-manager utility is supported on your platform, you can, for example, use this command
for stopping delivery from MariaDB (on dnf-enabled systems, use the dnf config-manager
command instead of yum-config-manager):

shell> sudo yum-config-manager --disable mariadb

Use this command for stopping delivery from Percona (on dnf-enabled systems, use the dnf
config-manager command instead of yum-config-manager):

shell> sudo yum-config-manager --disable percona-release

You can perform the same task by removing the entry for the software repository existing in one of
the repository files under the /etc/yum.repos.d/ directory. This is how the entry typically looks
for MariaDB:

[mariadb] name = MariaDB
 baseurl = [base URL for repository]
 gpgkey = [URL for GPG key]
 gpgcheck =1

The entry is usually found in the file /etc/yum.repos.d/MariaDB.repo for MariaDB—delete
the file, or remove entry from it (or from the file in which you find the entry).

Note

This step is not necessary for an installation that was configured with a Yum
repository release package (like Percona) if you are going to remove the
release package (percona-release.noarch for Percona), as shown in
the uninstall command for Percona in Step 3 below.

3.Uninstalling the Nonnative Third-Party MySQL Distribution of MySQL

The nonnative third-party MySQL distribution must first be uninstalled before you can use the
MySQL Yum repository to install MySQL. For the MariaDB packages found in Step 2 above,
uninstall them with the following command (for dnf-enabled systems, replace yum in the command
with dnf):

shell> sudo yum remove MariaDB-common MariaDB-compat MariaDB-server

For the Percona packages we found in Step 2 above (for dnf-enabled systems, replace yum in the
command with dnf):

shell> sudo yum remove Percona-Server-client-55 Percona-Server-server-55 \
 Percona-Server-shared-55.i686 percona-release

4.Installing MySQL with the MySQL Yum Repository

Then, install MySQL with the MySQL Yum repository by following the instructions given in
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”: .

Installing MySQL on Linux Using the MySQL APT Repository

146

Important

If you have chosen to replace your third-party MySQL distribution with
a newer version of MySQL from the MySQL Yum repository, remember
to run mysql_upgrade after the server starts, to check and possibly
resolve any incompatibilities between the old data and the upgraded
software. mysql_upgrade also performs other functions; see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables” for details.

For EL7-based platforms: See Compatibility Information for EL7-based
platforms [143].

2.5.3 Installing MySQL on Linux Using the MySQL APT Repository

The MySQL APT repository provides deb packages for installing and managing the MySQL server,
client, and other components on the following Linux platforms: :

• Debian 7.x (“wheezy”)

• Debian 8.x (“jessie”)

• Ubuntu 12.04 LTS (“Precise Pangolin”)

• Ubuntu 14.04 LTS (“Trusty Tahr”)

• Ubuntu 14.10 (“Utopic Unicorn”)

• Ubuntu 15.04 (“Vivid Vervet”)

Instructions for using the MySQL APT Repository are available in A Quick Guide to Using the MySQL
APT Repository.

2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository

The MySQL SLES repository provides RPM packages for installing and managing the MySQL server,
client, and other components on SUSE Enterprise Linux Server.

Instructions for using the MySQL SLES repository are available in A Quick Guide to Using the MySQL
SLES Repository.

Note

The MySQL SLES repository is now in development release. We encourage
you to try it and provide us with feedback. Please report any bugs or
inconsistencies you observe to our Bugs Database.

2.5.5 Installing MySQL on Linux Using RPM Packages

The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM
packages provided by Oracle. There are two sources for obtaining them, for the Community Edition of
MySQL:

• From the MySQL software repositories:

• The MySQL Yum repository (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum
Repository” for details).

• The MySQL SLES repository (see Section 2.5.4, “Installing MySQL on Linux Using the MySQL
SLES Repository” for details).

http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
http://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/
http://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/
http://bugs.mysql.com

Installing MySQL on Linux Using RPM Packages

147

• From the MySQL Downloads page in the MySQL Developer Zone.

Note

RPM distributions of MySQL are also provided by other vendors. Be aware
that they may differ from those built by Oracle in features, capabilities,
and conventions (including communication setup), and that the installation
instructions in this manual do not necessarily apply to them. The vendor's
instructions should be consulted instead.

If you have such a third-party distribution of MySQL running on your system
and now want to migrate to Oracle's distribution using the RPM packages
downloaded from the MySQL Developer Zone, see Compatibility with RPM
Packages from Other Vendors below. The preferred method of migration,
however, is to use the MySQL Yum repository or MySQL SLES repository.

RPM packages for MySQL are listed in the following tables:

Table 2.6 RPM Packages for MySQL Community Edition

Package Name Summary

mysql-community-server Database server and related tools

mysql-community-client MySQL client applications and tools

mysql-community-common Common files for server and client
libraries

mysql-community-devel Development header files and libraries for
MySQL database client applications

mysql-community-libs Shared libraries for MySQL database
client applications

mysql-community-libs-compat Shared compatibility libraries for previous
MySQL installations

mysql-community-embedded MySQL embedded library

mysql-community-embedded-devel Development header files and libraries for
MySQL as an embeddable library

mysql-community-test Test suite for the MySQL server

Table 2.7 RPM Packages for the MySQL Enterprise Edition

Package Name Summary

mysql-commercial-server Database server and related tools

mysql-commercial-client MySQL client applications and tools

mysql-commercial-common Common files for server and client
libraries

mysql-commercial-devel Development header files and libraries for
MySQL database client applications

mysql-commercial-libs Shared libraries for MySQL database
client applications

mysql-commercial-libs-compat Shared compatibility libraries for previous
MySQL installations

mysql-commercial-embedded MySQL embedded library

mysql-commercial-embedded-devel Development header files and libraries for
MySQL as an embeddable library

http://dev.mysql.com/downloads/
http://dev.mysql.com/

Installing MySQL on Linux Using RPM Packages

148

Package Name Summary

mysql-commercial-test Test suite for the MySQL server

Dependency relationships exist among some of the packages. If you plan to install many of the
packages, you may wish to download the RPM bundle tar file instead, which contains all the RPM
packages listed above, so that you need not download them separately.

The full names for the RPMs have the following syntax:

packagename-version-distribution-arch.rpm

The distribution and arch values indicate the Linux distribution and the processor type for which
the package was built. See the table below for lists of the distribution identifiers:

Table 2.8 MySQL Linux RPM Package Distribution Identifiers

distribution Value Intended Use

el5, el6, el7 Red Hat Enterprise Linux/Oracle Linux/CentOS 5, 6, or 7

fc22, fc23 Fedora 22 or 23

sles12 SUSE Linux Enterprise Server 12

To see all files in an RPM package (for example, mysql-community-server), use the following
command:

shell> rpm -qpl mysql-community-server-version-distribution-arch.rpm

In most cases, you need to install the mysql-community-server, mysql-community-client,
mysql-community-libs, mysql-community-common, and mysql-community-libs-compat
to get a functional, standard MySQL installation. To perform such a standard, minimal installation, go
to the folder that contains all those packages (and, preferably, no other RPM packages with similar
names), and issue the following command for platforms other than Red Hat Enterprise Linux/Oracle
Linux/CentOS 5:

shell> yum install mysql-community-{server,client,common,libs}-*

For Red Hat Enterprise Linux/Oracle Linux/CentOS 5 systems, there is an extra package
(mysql-version-el5-arch.rpm) to be installed; use the following command:

shell> yum install mysql-community-{server,client,common,libs}-* mysql-5.*

Replace yum with zypper for SLES systems, and with dnf for dnf-enabled systems (like Fedora 22).

While it is much preferable to use a high-level package management tool like yum to install the
packages, users who preferred direct rpm commands can replace the yum install command with
the rpm -Uvh command; however, using rpm -Uvh instead makes the installation process more
prone to failure, due to potential dependency issues the installation process might run into.

To install only the client programs, you can skip mysql-community-server in your list of packages
to install; issue the following command for platforms other than Red Hat Enterprise Linux/Oracle Linux/
CentOS 5:

shell> yum install mysql-community-{client,common,libs}-*

For Red Hat Enterprise Linux/Oracle Linux/CentOS 5 systems:

shell> yum install mysql-community-{client,common,libs}-* mysql-5.*

Installing MySQL on Linux Using RPM Packages

149

Installations with these packages result in files and resources created under the system directories,
shown in the following table.

Table 2.9 MySQL Installation Layout for Linux RPM Packages from the MySQL Developer Zone

Files or Resources Location

Client programs and scripts /usr/bin

mysqld server /usr/sbin

Configuration file /etc/my.cnf

Data directory /var/lib/mysql

Error log file For RHEL, Oracle Linux, CentOS or Fedora
platforms: /var/log/mysqld.log

For SLES: /var/log/mysql/mysqld.log

Value of secure_file_priv /var/lib/mysql-files

System V init script For RHEL, Oracle Linux, CentOS or Fedora
platforms: /etc/init.d/mysqld

For SLES: /etc/init.d/mysql

Systemd service For RHEL, Oracle Linux, CentOS or Fedora
platforms: mysqld

For SLES: mysql

Pid file /var/run/mysql/mysqld.pid

Unix manual pages /usr/share/man

Include (header) files /usr/include/mysql

Libraries /usr/lib/mysql

Socket /var/lib/mysql/mysql.sock

Miscellaneous support files (for example, error
messages and character set files)

/usr/share/mysql

The installation also creates a user named mysql and a group named mysql on the system.

MySQL is NOT automatically started at the end of the installation process. Use the following command
to start MySQL:

shell> service mysqld start

If the operating system is systemd enabled, standard service commands such as stop, start,
status and restart should be used to manage the MySQL server service. The mysqld service is
enabled by default, and it starts on system reboot. Notice that certain things might work differently on
systemd platforms: for example, changing the location of the data directory might cause issues. See
Section 2.5.10, “Managing MySQL Server with systemd” for additional information.

At the initial start up of the server, the following happens, given that the data directory of the server is
empty:

• The server is initialized.

• An SSL certificate and key files are generated in the data directory.

• The validate_password plugin is installed and enabled.

• A superuser account 'root'@'localhost' is created. A password for the superuser is set and
stored in the error log file. To reveal it, use the following command for RHEL, Oracle Linux, CentOS,
and Fedora platform:

Installing MySQL on Linux Using RPM Packages

150

shell> grep 'temporary password' /var/log/mysqld.log

Use the following command for SLES platform:

shell> grep 'temporary password' /var/log/mysql/mysqld.log

The next step is to log in with the generated, temporary password and set a custom password for the
superuser account:

shell> mysql -uroot -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass4!';

Note

MySQL's validate_password plugin is installed by default. This will require that
passwords contain at least one upper case letter, one lower case letter, one
digit, and one special character, and that the total password length is at least 8
characters.

If something goes wrong during installation, you might find debug information in the error log file /var/
log/mysqld.log.

Compatibility with RPM Packages from Other Vendors. If you have installed packages for
MySQL from your Linux distribution's local software repository, it is much preferable to install the
new, directly-downloaded packages from Oracle using the package management system of your
platform (yum, dnf, or zypper), as described above. The command replaces old packages with new
ones to ensure compatibility of old applications with the new installation; for example, the old mysql-
libs package is replaced with the mysql-community-libs-compat package, which provides a
replacement-compatible client library for applications that were using your older MySQL installation. If
there was an older version of mysql-community-libs-compat on the system, it also gets replaced.

If you have installed third-party packages for MySQL that are NOT from your Linux distribution's local
software repository (for example, packages directly downloaded from a vendor other than Oracle),
you should uninstall all those packages before installing the new, directly-downloaded packages from
Oracle. This is because conflicts may arise between those vendor's RPM packages and Oracle's: for
example, a vendor's convention about which files belong with the server and which belong with the
client library may differ from that used for Oracle packages. Attempts to install an Oracle RPM may
then result in messages saying that files in the RPM to be installed conflict with files from an installed
package.

Debug Package. A special variant of MySQL Server compiled with the debug package has been
included in the server RPM packages. It performs debugging and memory allocation checks and
produces a trace file when the server is running. To use that debug version, start MySQL with /
usr/sbin/mysqld-debug, instead of starting it as a service or with /usr/sbin/mysqld. See
Section 24.5.3, “The DBUG Package” for the debug options you can use.

Rebuilding RPMs from source SRPMs. Source code SRPM packages for MySQL are available
from the MySQL Yum repository. They can be used as-is to rebuild the MySQL RPMs with the
standard rpmbuild tool chain.

root passwords for pre-GA releases. For MySQL 5.7.4 and 5.7.5, the initial random root
password is written to the .mysql_secret file in the directory named by the HOME environment
variable. When trying to access the file, bear in mind that depending on operating system, using a
command such as sudo may cause the value of HOME to refer to the home directory of the root
system user . .mysql_secret is created with mode 600 to be accessible only to the system user for
whom it is created. Before MySQL 5.7.4, the accounts (including root) created in the MySQL grant

Installing MySQL on Linux Using Debian Packages from Oracle

151

tables for an RPM installation initially have no passwords; after starting the server, you should assign
passwords to them using the instructions in Section 2.10, “Postinstallation Setup and Testing”."

2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle

Oracle provides Debian packages for installing MySQL on Debian or Debian-like Linux systems. The
packages are available through two different channels:

• The MySQL APT Repository. For details, see Section 2.5.3, “Installing MySQL on Linux Using the
MySQL APT Repository”.

• The MySQL Developer Zone's Download Area. For details, see Section 2.1.2, “How to Get MySQL”.
The following are some information on the Debian packages available there and the instructions for
installing them:

• Various Debian packages are provided in the MySQL Developer Zone for installing different
components of MySQL on different Debian or Ubuntu platforms (currently, Debian 7 and 8, and
Ubuntu 12, 14, and 15 are supported). The preferred method is to use the tarball bundle, which
contains the packages needed for a basic setup of MySQL. The tarball bundles have names in
the format of mysql-server_MVER-DVER_CPU.deb-bundle.tar. MVER is the MySQL version
and DVER is the Linux distribution version. The CPU value indicates the processor type or family for
which the package is built, as shown in the following table:

Table 2.10 MySQL Debian and Ubuntu Installation Packages CPU Identifiers

CPU Value Intended Processor Type or Family

i386 Pentium processor or better, 32 bit

amd64 64-bit x86 processor

• After downloading the tarball, unpack it with the following command:

shell> tar -xvf mysql-server_MVER-DVER_CPU.deb-bundle.tar

• You may need to install the libaio library if it is not already present on your system:

shell> sudo apt-get install libaio1

• For a basic installation of the MySQL server, install the database common files package, the client
package, the client metapackage, the server package, and the server metapackage (in that order);
you can do that with a single command:

shell> sudo dpkg -i mysql-{common,community-client,client,community-server,server}_*.deb

If you are being warned of unmet dependencies by dpkg, you can fix them using apt-get:

sudo apt-get -f install

When dpkg configures the server package (either during installation of the package or after all
dependency issues have been resolved), you will be asked to supply a password for the root user
for your MySQL installation.

Important

Make sure you remember the root password you set. Users who want
to set a password later can leave the password field blank in the
dialogue box and just press OK; in that case, root access to the server is
authenticated using the MySQL Socket Peer-Credential Authentication
Plugin for connections using a Unix socket file. You can set the root
password later using mysql_secure_installation.

http://dev.mysql.com/downloads/repo/apt/
http://dev.mysql.com/downloads/

Installing MySQL on Linux from the Native Software Repositories

152

Here are where the files are installed on the system:

• All configuration files (like my.cnf) are under /etc/mysql

• All binaries, libraries, headers, etc., are under /usr/bin and /usr/sbin

• The data directory is under /var/lib/mysql

Note

Debian distributions of MySQL are also provided by other vendors. Be aware
that they may differ from those built by Oracle in features, capabilities, and
conventions (including communication setup), and that the instructions in this
manual do not necessarily apply to installing them. The vendor's instructions
should be consulted instead.

2.5.7 Installing MySQL on Linux from the Native Software Repositories

Many Linux distributions include a version of the MySQL server, client tools, and development
components in their native software repositories and can be installed with the platforms' standard
package management systems. This section provides basic instructions for installing MySQL using
those package management systems.

Important

Native packages are often several versions behind the currently available
release. You will also normally be unable to install development milestone
releases (DMRs), as these are not usually made available in the native
repositories. Before proceeding, we recommend that you check out the other
installation options described in Section 2.5, “Installing MySQL on Linux”.

Distribution specific instructions are shown below:

• Red Hat Linux, Fedora, CentOS

Note

For EL5, EL6, or EL7-based Linux platforms and Fedora 22 or 23, you can
install MySQL using the MySQL Yum repository instead of the platform's
native software repository. See Section 2.5.1, “Installing MySQL on Linux
Using the MySQL Yum Repository” for details.

For Red Hat and similar distributions, the MySQL distribution is divided into a number of separate
packages, mysql for the client tools, mysql-server for the server and associated tools, and
mysql-libs for the libraries. The libraries are required if you want to provide connectivity from
different languages and environments such as Perl, Python and others.

To install, use the yum command to specify the packages that you want to install. For example:

root-shell> yum install mysql mysql-server mysql-libs mysql-server
Loaded plugins: presto, refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package mysql.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-libs.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-server.x86_64 0:5.1.48-2.fc13 set to be updated
--> Processing Dependency: perl-DBD-MySQL for package: mysql-server-5.1.48-2.fc13.x86_64
--> Running transaction check
---> Package perl-DBD-MySQL.x86_64 0:4.017-1.fc13 set to be updated
--> Finished Dependency Resolution

Installing MySQL on Linux from the Native Software Repositories

153

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 mysql x86_64 5.1.48-2.fc13 updates 889 k
 mysql-libs x86_64 5.1.48-2.fc13 updates 1.2 M
 mysql-server x86_64 5.1.48-2.fc13 updates 8.1 M
Installing for dependencies:
 perl-DBD-MySQL x86_64 4.017-1.fc13 updates 136 k

Transaction Summary
==
Install 4 Package(s)
Upgrade 0 Package(s)

Total download size: 10 M
Installed size: 30 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 10 M
(1/4): mysql-5.1.48-2.fc13.x86_64.rpm | 889 kB 00:04
(2/4): mysql-libs-5.1.48-2.fc13.x86_64.rpm | 1.2 MB 00:06
(3/4): mysql-server-5.1.48-2.fc13.x86_64.rpm | 8.1 MB 00:40
(4/4): perl-DBD-MySQL-4.017-1.fc13.x86_64.rpm | 136 kB 00:00
--
Total 201 kB/s | 10 MB 00:52
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : mysql-libs-5.1.48-2.fc13.x86_64 1/4
 Installing : mysql-5.1.48-2.fc13.x86_64 2/4
 Installing : perl-DBD-MySQL-4.017-1.fc13.x86_64 3/4
 Installing : mysql-server-5.1.48-2.fc13.x86_64 4/4

Installed:
 mysql.x86_64 0:5.1.48-2.fc13 mysql-libs.x86_64 0:5.1.48-2.fc13
 mysql-server.x86_64 0:5.1.48-2.fc13

Dependency Installed:
 perl-DBD-MySQL.x86_64 0:4.017-1.fc13

Complete!

MySQL and the MySQL server should now be installed. A sample configuration file is installed into /
etc/my.cnf. An init script, to start and stop the server, will have been installed into /etc/init.d/
mysqld. To start the MySQL server use service:

root-shell> service mysqld start

To enable the server to be started and stopped automatically during boot, use chkconfig:

root-shell> chkconfig --levels 235 mysqld on

Which enables the MySQL server to be started (and stopped) automatically at the specified the run
levels.

The database tables will have been automatically created for you, if they do not already exist. You
should, however, run mysql_secure_installation to set the root passwords on your server.

• Debian, Ubuntu, Kubuntu

Installing MySQL on Linux from the Native Software Repositories

154

Note

For Debian 7 and 8, and Ubuntu 12, 14, and 15, MySQL can be installed
using the MySQL APT Repository instead of the platform's native software
repository. See Section 2.5.3, “Installing MySQL on Linux Using the MySQL
APT Repository” for details.

On Debian and related distributions, there are two packages for MySQL in their software
repositories, mysql-client and mysql-server, for the client and server components
respectively. You should specify an explicit version, for example mysql-client-5.1, to ensure
that you install the version of MySQL that you want.

To download and install, including any dependencies, use the apt-get command, specifying the
packages that you want to install.

Note

Before installing, make sure that you update your apt-get index files to
ensure you are downloading the latest available version.

A sample installation of the MySQL packages might look like this (some sections trimmed for clarity):

root-shell> apt-get install mysql-client-5.1 mysql-server-5.1
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
 linux-headers-2.6.28-11 linux-headers-2.6.28-11-generic
Use 'apt-get autoremove' to remove them.
The following extra packages will be installed:
 bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
 mysql-common postfix
Suggested packages:
 dbishell libipc-sharedcache-perl tinyca procmail postfix-mysql postfix-pgsql
 postfix-ldap postfix-pcre sasl2-bin resolvconf postfix-cdb
The following NEW packages will be installed
 bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
 mysql-client-5.1 mysql-common mysql-server-5.1 postfix
0 upgraded, 13 newly installed, 0 to remove and 182 not upgraded.
Need to get 1907kB/25.3MB of archives.
After this operation, 59.5MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
Get: 1 http://gb.archive.ubuntu.com jaunty-updates/main mysql-common 5.1.30really5.0.75-0ubuntu10.5 [63.6kB]
Get: 2 http://gb.archive.ubuntu.com jaunty-updates/main libmysqlclient15off 5.1.30really5.0.75-0ubuntu10.5 [1843kB]
Fetched 1907kB in 9s (205kB/s)
Preconfiguring packages ...
Selecting previously deselected package mysql-common.
(Reading database ... 121260 files and directories currently installed.)
...
Processing 1 added doc-base file(s)...
Registering documents with scrollkeeper...
Setting up libnet-daemon-perl (0.43-1) ...
Setting up libplrpc-perl (0.2020-1) ...
Setting up libdbi-perl (1.607-1) ...
Setting up libmysqlclient15off (5.1.30really5.0.75-0ubuntu10.5) ...

Setting up libdbd-mysql-perl (4.008-1) ...
Setting up libmysqlclient16 (5.1.31-1ubuntu2) ...

Setting up mysql-client-5.1 (5.1.31-1ubuntu2) ...

Setting up mysql-server-5.1 (5.1.31-1ubuntu2) ...
 * Stopping MySQL database server mysqld
 ...done.

http://dev.mysql.com/downloads/repo/apt/

Installing MySQL on Linux from the Native Software Repositories

155

2013-09-24T13:03:09.048353Z 0 [Note] InnoDB: 5.7.11 started; log sequence number 1566036
2013-09-24T13:03:10.057269Z 0 [Note] InnoDB: Starting shutdown...
2013-09-24T13:03:10.857032Z 0 [Note] InnoDB: Shutdown completed; log sequence number 1566036
 * Starting MySQL database server mysqld
 ...done.
 * Checking for corrupt, not cleanly closed and upgrade needing tables.
...
Processing triggers for libc6 ...
ldconfig deferred processing now taking place

Note

The apt-get command will install a number of packages, including
the MySQL server, in order to provide the typical tools and application
environment. This can mean that you install a large number of packages in
addition to the main MySQL package.

During installation, the initial database will be created, and you will be prompted for the MySQL root
password (and confirmation). A configuration file will have been created in /etc/mysql/my.cnf.
An init script will have been created in /etc/init.d/mysql.

The server will already be started. You can manually start and stop the server using:

root-shell> service mysql [start|stop]

The service will automatically be added to the 2, 3 and 4 run levels, with stop scripts in the single,
shutdown and restart levels.

• Gentoo Linux

As a source-based distribution, installing MySQL on Gentoo involves downloading the source,
patching the Gentoo specifics, and then compiling the MySQL server and installing it. This process is
handled automatically by the emerge command. Depending on the version of MySQL that you want
to install, you may need to unmask the specific version that you want for your chosen platform.

The MySQL server and client tools are provided within a single package, dev-db/mysql. You can
obtain a list of the versions available to install by looking at the portage directory for the package:

root-shell> ls /usr/portage/dev-db/mysql/mysql-5.1*
mysql-5.1.39-r1.ebuild
mysql-5.1.44-r1.ebuild
mysql-5.1.44-r2.ebuild
mysql-5.1.44-r3.ebuild
mysql-5.1.44.ebuild
mysql-5.1.45-r1.ebuild
mysql-5.1.45.ebuild
mysql-5.1.46.ebuild

To install a specific MySQL version, you must specify the entire atom. For example:

root-shell> emerge =dev-db/mysql-5.1.46

A simpler alternative is to use the virtual/mysql-5.1 package, which will install the latest
version:

root-shell> emerge =virtual/mysql-5.1

If the package is masked (because it is not tested or certified for the current platform), use the
ACCEPT_KEYWORDS environment variable. For example:

root-shell> ACCEPT_KEYWORDS="~x86" emerge =virtual/mysql-5.1

Installing MySQL on Linux with docker

156

After installation, you should create a new database using mysql_install_db, and set the
password for the root user on MySQL. You can use the configuration interface to set the password
and create the initial database:

root-shell> emerge --config =dev-db/mysql-5.1.46

A sample configuration file will have been created for you in /etc/mysql/my.cnf, and an init script
will have been created in /etc/init.d/mysql.

To enable MySQL to start automatically at the normal (default) run levels, you can use:

root-shell> rc-update add mysql default

2.5.8 Installing MySQL on Linux with docker

The docker deployment framework supports easy installation and configuration of MySQL servers.
For instructions, see https://hub.docker.com/r/mysql/mysql-server/. This page also provides extensive
documentation about using MySQL under docker.

2.5.9 Installing MySQL on Linux with juju

The juju deployment framework supports easy installation and configuration of MySQL servers. For
instructions, see https://jujucharms.com/mysql/.

2.5.10 Managing MySQL Server with systemd

As of MySQL 5.7.6, if you install MySQL using an RPM distribution on the following Linux platforms,
server startup and shutdown is managed by systemd:

• Red Hat Enterprise Linux 7, Oracle Linux 7, CentOS 7

• SUSE Linux Enterprise Server 12

• Fedora 22 and 23

To can obtain systemd support if you install from a source distribution, configure the distribution using
the -DWITH_SYSTEMD=1 CMake option.

systemd provides automatic server startup and shutdown. It also enables manual server management
using the systemctl command. For example:

systemctl {start|stop|restart|status} mysqld

Alternatively, use the service command (with the arguments reversed), which is compatible with
System V systems:

service mysqld {start|stop|restart|status}

For the systemctl or service commands, if the MySQL service name is not mysqld, use the
appropriate name (for example, mysql on SLES systems).

Support for systemd includes these files:

• mysqld.service: systemd service unit configuration, with details about the mysqld service.

• mysqld.tmpfiles.d: File containing information to support the tmpfiles feature. This file is
installed under the name mysql.conf.

• mysqld_pre_systemd: Support script for the unit file.

https://hub.docker.com/r/mysql/mysql-server/
https://jujucharms.com/mysql/

Managing MySQL Server with systemd

157

On platforms for which systemd support is installed, scripts such as mysqld_safe and the System V
initialization script are not installed because they are unnecessary. For example, mysqld_safe can
handle server restarts, but systemd provides the same capability, and does so in a manner consistent
with management of other services rather than using an application-specific program.

Configuring MySQL Using systemd

To add or change systemd options for MySQL, these methods are available:

• Use a localized systemd configuration file.

• Arrange for systemd to set environment variables for the MySQL server process.

• Set the MYSQLD_OPTS systemd variable.

To use a localized systemd configuration file, create the /etc/systemd/system/
mysqld.service.d directory if it does not exist. In that directory, create a file that contains a
[Service] section listing the desired settings. For example:

[Service]
LimitNOFILE=max_open_files
PIDFile=/path/to/pid/file
Nice=nice_level
LimitCore=core_file_limit
Environment="LD_PRELOAD=/path/to/malloc/library"
Environment="TZ=time_zone_setting"

The discussion here uses override.conf as the name of this file. Newer versions of systemd
support the following command, which opens an editor and permits you to edit the file:

systemctl edit mysqld

Whenever you create or change override.conf, reload the systemd configuration, then tell systemd
to restart the MySQL service:

systemctl daemon-reload
systemctl restart mysqld

Support for configuration using override.conf was added in MySQL 5.7.7.

With systemd, the override.conf configuration method must be used for certain parameters, rather
than settings in a [mysqld_safe] or [mysqld] group in a MySQL option file:

• For some parameters, override.conf must be used because systemd itself must know their
values and it cannot read MySQL option files to get them.

• Parameters that specify values otherwise settable only using options known to mysqld_safe must
be specified using systemd because there is no corresponding mysqld parameter.

For additional information about using systemd rather than mysqld_safe, see Migrating from
mysqld_safe to systemd.

You can set the following parameters in override.conf:

• To specify the process ID file:

• As of MySQL 5.7.10: Use override.conf and change both PIDFile and ExecStart to name
the PID file path name. Any setting of the process ID file in MySQL option files will be ignored.

• Before MySQL 5.7.10: Use PIDFile in override.conf rather than the --pid-file option
for mysqld_safe or mysqld. systemd must know the PID file location so that it can restart or

Managing MySQL Server with systemd

158

stop the server. If the PID file value is specified in a MySQL option file, the value must match the
PIDFile value or MySQL startup may fail.

• To set the number of file descriptors available to the MySQL server, use LimitNOFILE in
override.conf rather than the --open-files-limit option for mysqld_safe or mysqld.

• To set the maximum core file size, use LimitCore in override.conf rather than the --core-
file-size option for mysqld_safe.

• To set the scheduling priority for the MySQL server, use Nice in override.conf rather than the
--nice option for mysqld_safe.

Some MySQL parameters are configured using environment variables:

• LD_PRELOAD: Set this variable if the MySQL server should use a specific memory-allocation library.

• TZ: Set this variable to specify the default time zone for the server.

There are multiple ways to specify the value of environment values that should be in effect for the
MySQL server process managed by systemd:

• Use Environment lines in the override.conf file. For the syntax, see the example in the
preceding discussion that describes how to use this file.

• Specify the values in the /etc/sysconfig/mysql file (create the file if it does not exist). Assign
values using the following syntax:

LD_PRELOAD=/path/to/malloc/library
TZ=time_zone_setting

After modifying /etc/sysconfig/mysql, restart the server to make the changes effective:

systemctl restart mysqld

To specify options for mysqld without modifying systemd configuration files directly, set or unset the
MYSQLD_OPTS systemd variable. For example:

systemctl set-environment MYSQLD_OPTS="--general_log=1"
systemctl unset-environment MYSQLD_OPTS

After modifying the systemd environment, restart the server to make the changes effective:

systemctl restart mysqld

Migrating from mysqld_safe to systemd

Because mysqld_safe is not installed when systemd is used, options previously specified for that
program (for example, in an [mysqld_safe] option group) must be specified another way:

• Some mysqld_safe options are also understood by mysqld and can be moved from the
[mysqld_safe] option group to the [mysqld] group. This does not include --pid-file or --
open-files-limit. To specify those options, use the override.conf systemd file, described
previously.

• For some mysqld_safe options, there are similar mysqld options. For example, the mysqld_safe
option for enabling syslog logging is --syslog. For mysqld, enable the log_syslog system
variable instead. For details, see Section 5.2.2, “The Error Log”.

• mysqld_safe options not understood by mysqld can be specified in override.conf or
environment variables. For example, with mysqld_safe, if the server should use a specific memory
allocation library, this is specified using the --malloc-lib option. For installations that manage the

Installing MySQL Using Unbreakable Linux Network (ULN)

159

server with systemd, arrange to set the LD_PRELOAD environment variable instead, as described
previously.

2.6 Installing MySQL Using Unbreakable Linux Network (ULN)
Linux supports a number of different solutions for installing MySQL, covered in Section 2.5,
“Installing MySQL on Linux”. One of the methods, covered in this section, is installing from Oracle's
Unbreakable Linux Network (ULN). You can find information about Oracle Linux and ULN under http://
linux.oracle.com/.

To use ULN, you need to obtain a ULN login and register the machine used for installation with
ULN. This is described in detail in the ULN FAQ. The page also describes how to install and update
packages.The MySQL packages are in the “MySQL for Oracle Linux 6” and “MySQL for Oracle Linux
7” channels for your system architecture on ULN.

Note

At the time of this writing, ULN provides MySQL 5.7 for Oracle Linux 6 and
Oracle Linux 7.

Once MySQL has been installed using ULN, you can find information on starting and stopping the
server, and more, in this section, particularly under Section 2.5.5, “Installing MySQL on Linux Using
RPM Packages”.

If you're updating an existing MySQL installation to an installation using ULN, the recommended
procedure is to export your data using mysqldump, remove the existing installation, install MySQL from
ULN, and load the exported data into your freshly installed MySQL.

If the existing MySQL installation you're upgrading from is from a previous release series (prior to
MySQL 5.7), make sure to read the section on upgrading MySQL, Section 2.11.1, “Upgrading MySQL”.

2.7 Installing MySQL on Solaris and OpenSolaris
MySQL on Solaris and OpenSolaris is available in a number of different formats.

• For information on installing using the native Solaris PKG format, see Section 2.7.1, “Installing
MySQL on Solaris Using a Solaris PKG”.

• On OpenSolaris, the standard package repositories include MySQL packages specially built for
OpenSolaris that include entries for the Service Management Framework (SMF) to enable control of
the installation using the SMF administration commands. For more information, see Section 2.7.2,
“Installing MySQL on OpenSolaris Using IPS”.

• To use a standard tar binary installation, use the notes provided in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”. Check the notes and hints at the end of this section for
Solaris specific notes that you may need before or after installation.

To obtain a binary MySQL distribution for Solaris in tarball or PKG format, http://dev.mysql.com/
downloads/mysql/5.7.html.

Additional notes to be aware of when installing and using MySQL on Solaris:

• If you want to use MySQL with the mysql user and group, use the groupadd and useradd
commands:

groupadd mysql
useradd -g mysql -s /bin/false mysql

• If you install MySQL using a binary tarball distribution on Solaris, you may run into trouble even
before you get the MySQL distribution unpacked, as the Solaris tar cannot handle long file names.
This means that you may see errors when you try to unpack MySQL.

http://linux.oracle.com/
http://linux.oracle.com/
https://linux.oracle.com/uln_faq.html
http://dev.mysql.com/downloads/mysql/5.7.html
http://dev.mysql.com/downloads/mysql/5.7.html

Installing MySQL on Solaris Using a Solaris PKG

160

If this occurs, you must use GNU tar (gtar) to unpack the distribution. In Solaris 10 and
OpenSolaris gtar is normally located in /usr/sfw/bin/gtar, but may not be included in the
default path definition.

• When using Solaris 10 for x86_64, you should mount any file systems on which you intend to store
InnoDB files with the forcedirectio option. (By default mounting is done without this option.)
Failing to do so will cause a significant drop in performance when using the InnoDB storage engine
on this platform.

• If you would like MySQL to start automatically, you can copy support-files/mysql.server to /
etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

• If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL
log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this.

• To configure the generation of core files on Solaris you should use the coreadm command. Because
of the security implications of generating a core on a setuid() application, by default, Solaris
does not support core files on setuid() programs. However, you can modify this behavior using
coreadm. If you enable setuid() core files for the current user, they will be generated using the
mode 600 and owned by the superuser.

2.7.1 Installing MySQL on Solaris Using a Solaris PKG

You can install MySQL on Solaris and OpenSolaris using a binary package using the native Solaris
PKG format instead of the binary tarball distribution.

To use this package, download the corresponding mysql-VERSION-solaris10-
PLATFORM.pkg.gz file, then uncompress it. For example:

shell> gunzip mysql-5.7.11-solaris10-x86_64.pkg.gz

To install a new package, use pkgadd and follow the onscreen prompts. You must have root privileges
to perform this operation:

shell> pkgadd -d mysql-5.7.11-solaris10-x86_64.pkg

The following packages are available:
 1 mysql MySQL Community Server (GPL)
 (i86pc) 5.7.11

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:

The PKG installer installs all of the files and tools needed, and then initializes your database if
one does not exist. To complete the installation, you should set the root password for MySQL
as provided in the instructions at the end of the installation. Alternatively, you can run the
mysql_secure_installation script that comes with the installation.

By default, the PKG package installs MySQL under the root path /opt/mysql. You can change only
the installation root path when using pkgadd, which can be used to install MySQL in a different Solaris
zone. If you need to install in a specific directory, use a binary tar file distribution.

The pkg installer copies a suitable startup script for MySQL into /etc/init.d/mysql. To enable
MySQL to startup and shutdown automatically, you should create a link between this file and the init
script directories. For example, to ensure safe startup and shutdown of MySQL you could use the
following commands to add the right links:

Installing MySQL on OpenSolaris Using IPS

161

shell> ln /etc/init.d/mysql /etc/rc3.d/S91mysql
shell> ln /etc/init.d/mysql /etc/rc0.d/K02mysql

To remove MySQL, the installed package name is mysql. You can use this in combination with the
pkgrm command to remove the installation.

To upgrade when using the Solaris package file format, you must remove the existing installation
before installing the updated package. Removal of the package does not delete the existing database
information, only the server, binaries and support files. The typical upgrade sequence is therefore:

shell> mysqladmin shutdown
shell> pkgrm mysql
shell> pkgadd -d mysql-5.7.11-solaris10-x86_64.pkg
shell> mysqld_safe &
shell> mysql_upgrade

You should check the notes in Section 2.11, “Upgrading or Downgrading MySQL” before performing
any upgrade.

2.7.2 Installing MySQL on OpenSolaris Using IPS

OpenSolaris includes standard packages for MySQL in the core repository. The MySQL packages
are based on a specific release of MySQL and updated periodically. For the latest release you must
use either the native Solaris PKG, tar, or source installations. The native OpenSolaris packages
include SMF files so that you can easily control your MySQL installation, including automatic startup
and recovery, using the native service management tools.

To install MySQL on OpenSolaris, use the pkg command. You will need to be logged in as root, or use
the pfexec tool, as shown in the example below:

shell> pfexec pkg install SUNWmysql57

The package set installs three individual packages, SUNWmysql57lib, which contains the MySQL
client libraries; SUNWmysql57r which contains the root components, including SMF and configuration
files; and SUNWmysql57u which contains the scripts, binary tools and other files. You can install these
packages individually if you only need the corresponding components.

The MySQL files are installed into /usr/mysql which symbolic links for the sub directories (bin,
lib, etc.) to a version specific directory. For MySQL 5.7, the full installation is located in /usr/
mysql/5.7. The default data directory is /var/mysql/5.7/data. The configuration file is installed
in /etc/mysql/5.7/my.cnf. This layout permits multiple versions of MySQL to be installed, without
overwriting the data and binaries from other versions.

Once installed, you must run mysql_install_db to initialize the database, and use the
mysql_secure_installation to secure your installation.

Using SMF to manage your MySQL installation

Once installed, you can start and stop your MySQL server using the installed SMF configuration. The
service name is mysql, or if you have multiple versions installed, you should use the full version name,
for example mysql:version_57. To start and enable MySQL to be started at boot time:

shell> svcadm enable mysql

To disable MySQL from starting during boot time, and shut the MySQL server down if it is running, use:

shell> svcadm disable mysql

To restart MySQL, for example after a configuration file changes, use the restart option:

shell> svcadm restart mysql

Installing MySQL on FreeBSD

162

You can also use SMF to configure the data directory and enable full 64-bit mode. For example, to set
the data directory used by MySQL:

shell> svccfg
svc:> select mysql:version_57
svc:/application/database/mysql:version_57> setprop mysql/data=/data0/mysql

By default, the 32-bit binaries are used. To enable the 64-bit server on 64-bit platforms, set the
enable_64bit parameter. For example:

svc:/application/database/mysql:version_57> setprop mysql/enable_64bit=1

You need to refresh the SMF after settings these options:

shell> svcadm refresh mysql

2.8 Installing MySQL on FreeBSD
This section provides information about installing MySQL on variants of FreeBSD Unix.

You can install MySQL on FreeBSD by using the binary distribution provided by Oracle. For more
information, see Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client
ports available at http://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.

• Automatic configuration and build.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you
must install it first before compiling MySQL.

To install using the ports system:

cd /usr/ports/databases/mysql51-server
make
...
cd /usr/ports/databases/mysql51-client
make
...

The standard port installation places the server into /usr/local/libexec/mysqld, with the startup
script for the MySQL server placed in /usr/local/etc/rc.d/mysql-server.

Some additional notes on the BSD implementation:

• To remove MySQL after installation using the ports system:

cd /usr/ports/databases/mysql51-server
make deinstall
...
cd /usr/ports/databases/mysql51-client
make deinstall
...

• If you get problems with the current date in MySQL, setting the TZ variable should help. See
Section 2.12, “Environment Variables”.

http://www.freebsd.org/

Installing MySQL from Source

163

2.9 Installing MySQL from Source
Building MySQL from the source code enables you to customize build parameters, compiler
optimizations, and installation location. For a list of systems on which MySQL is known to run, see
http://www.mysql.com/support/supportedplatforms/database.html.

Before you proceed with an installation from source, check whether Oracle produces a precompiled
binary distribution for your platform and whether it works for you. We put a great deal of effort into
ensuring that our binaries are built with the best possible options for optimal performance. Instructions
for installing binary distributions are available in Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”.

Source Installation Methods

There are two methods for installing MySQL from source:

• Use a standard MySQL source distribution. To obtain a standard distribution, see Section 2.1.2,
“How to Get MySQL”. For instructions on building from a standard distribution, see Section 2.9.2,
“Installing MySQL Using a Standard Source Distribution”.

Standard distributions are available as compressed tar files, Zip archives, or RPM packages.
Distribution files have names of the form mysql-VERSION.tar.gz, mysql-VERSION.zip,
or mysql-VERSION.rpm, where VERSION is a number like 5.7.11. File names for source
distributions can be distinguished from those for precompiled binary distributions in that source
distribution names are generic and include no platform name, whereas binary distribution names
include a platform name indicating the type of system for which the distribution is intended (for
example, pc-linux-i686 or winx64).

• Use a MySQL development tree. For information on building from one of the development trees, see
Section 2.9.3, “Installing MySQL Using a Development Source Tree”.

Source Installation System Requirements

Installation of MySQL from source requires several development tools. Some of these tools are needed
no matter whether you use a standard source distribution or a development source tree. Other tool
requirements depend on which installation method you use.

To install MySQL from source, the following system requirements must be satisfied, regardless of
installation method:

• CMake, which is used as the build framework on all platforms. CMake can be downloaded from http://
www.cmake.org.

• A good make program. Although some platforms come with their own make implementations, it is
highly recommended that you use GNU make 3.75 or newer. It may already be available on your
system as gmake. GNU make is available from http://www.gnu.org/software/make/.

• A working ANSI C++ compiler. GCC 4.4.6 or later, Clang 3.3 or later (FreeBSD and OS X), Visual
Studio 2013 or later, and many current vendor-supplied compilers are known to work.

• The Boost C++ libraries are required to build MySQL (but not to use it). Boost 1.59.0 or newer must
be installed. To obtain Boost and its installation instructions, visit the official site. After Boost is
installed, tell the build system where the Boost files are located by defining the WITH_BOOST option
when you invoke CMake. For example:

shell> cmake . -DWITH_BOOST=/usr/local/boost_1_59_0

Adjust the path as necessary to match your installation.

• Perl is needed if you intend to run test scripts. Most Unix-like systems include Perl. On Windows, you
can use a version such as ActiveState Perl.

http://www.mysql.com/support/supportedplatforms/database.html
http://www.cmake.org
http://www.cmake.org
http://www.gnu.org/software/make/
http://www.boost.org

MySQL Layout for Source Installation

164

To install MySQL from a standard source distribution, one of the following tools is required to unpack
the distribution file:

• For a .tar.gz compressed tar file: GNU gunzip to uncompress the distribution and a reasonable
tar to unpack it. If your tar program supports the z option, it can both uncompress and unpack the
file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or
if available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as
tar within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU
tar is available from http://www.gnu.org/software/tar/.

• For a .zip Zip archive: WinZip or another tool that can read .zip files.

• For an .rpm RPM package: The rpmbuild program used to build the distribution unpacks it.

To install MySQL from a development source tree, the following additional tools are required:

• The Git revision control system is required to obtain the development source code. The GitHub
Help provides instructions for downloading and installing Git on different platforms. MySQL officially
joined GitHub in September, 2014. For more information about MySQL's move to GitHub, refer to the
announcement on the MySQL Release Engineering blog: MySQL on GitHub

• bison 2.1 or newer, available from http://www.gnu.org/software/bison/. (Version 1 is no longer
supported.) Use the latest version of bison where possible; if you experience problems, upgrade to
a later version, rather than revert to an earlier one.

bison is available from http://www.gnu.org/software/bison/. bison for Windows can be downloaded
from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete
package, excluding sources”. On Windows, the default location for bison is the C:\Program
Files\GnuWin32 directory. Some utilities may fail to find bison because of the space in the
directory name. Also, Visual Studio may simply hang if there are spaces in the path. You can
resolve these problems by installing into a directory that does not contain a space; for example C:
\GnuWin32.

• On OpenSolaris and Solaris Express, m4 must be installed in addition to bison. m4 is available from
http://www.gnu.org/software/m4/.

Note

If you have to install any programs, modify your PATH environment variable to
include any directories in which the programs are located. See Section 4.2.10,
“Setting Environment Variables”.

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How
to Report Bugs or Problems”.

2.9.1 MySQL Layout for Source Installation

By default, when you install MySQL after compiling it from source, the installation step installs files
under /usr/local/mysql. The component locations under the installation directory are the same
as for binary distributions. See Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary
Package”, and Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”. To configure
installation locations different from the defaults, use the options described at Section 2.9.4, “MySQL
Source-Configuration Options”.

2.9.2 Installing MySQL Using a Standard Source Distribution

To install MySQL from a standard source distribution:

http://www.gnu.org/software/tar/
https://help.github.com/
https://help.github.com/
http://mysqlrelease.com/2014/09/mysql-on-github/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://gnuwin32.sourceforge.net/packages/bison.htm
http://www.gnu.org/software/m4/

Installing MySQL Using a Standard Source Distribution

165

1. Verify that your system satisfies the tool requirements listed at Section 2.9, “Installing MySQL from
Source”.

2. Obtain a distribution file using the instructions in Section 2.1.2, “How to Get MySQL”.

3. Configure, build, and install the distribution using the instructions in this section.

4. Perform postinstallation procedures using the instructions in Section 2.10, “Postinstallation Setup
and Testing”.

In MySQL 5.7, CMake is used as the build framework on all platforms. The instructions given here
should enable you to produce a working installation. For additional information on using CMake to build
MySQL, see How to Build MySQL Server with CMake.

If you start from a source RPM, use the following command to make a binary RPM that you can install.
If you do not have rpmbuild, use rpm instead.

shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

The result is one or more binary RPM packages that you install as indicated in Section 2.5.5, “Installing
MySQL on Linux Using RPM Packages”.

The sequence for installation from a compressed tar file or Zip archive source distribution is similar to
the process for installing from a generic binary distribution (see Section 2.2, “Installing MySQL on Unix/
Linux Using Generic Binaries”), except that it is used on all platforms and includes steps to configure
and compile the distribution. For example, with a compressed tar file source distribution on Unix, the
basic installation command sequence looks like this:

Preconfiguration setup
shell> groupadd mysql
shell> useradd -r -g mysql -s /bin/false mysql
Beginning of source-build specific instructions
shell> tar zxvf mysql-VERSION.tar.gz
shell> cd mysql-VERSION
shell> cmake .
shell> make
shell> make install
End of source-build specific instructions
Postinstallation setup
shell> cd /usr/local/mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> bin/mysql_install_db --user=mysql # Before MySQL 5.7.6
shell> bin/mysqld --initialize --user=mysql # MySQL 5.7.6 and up
shell> bin/mysql_ssl_rsa_setup # MySQL 5.7.6 and up
shell> chown -R root .
shell> chown -R mysql data
shell> bin/mysqld_safe --user=mysql &
Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server

Before MySQL 5.7.5, mysql_install_db creates a default option file named my.cnf in the base
installation directory. This file is created from a template included in the distribution package named
my-default.cnf. For more information, see Section 5.1.2, “Server Configuration Defaults”.

A more detailed version of the source-build specific instructions is shown following.

Note

The procedure shown here does not set up any passwords for MySQL
accounts. After following the procedure, proceed to Section 2.10,
“Postinstallation Setup and Testing”, for postinstallation setup and testing.

http://dev.mysql.com/doc/internals/en/cmake.html

Installing MySQL Using a Standard Source Distribution

166

Perform Preconfiguration Setup

On Unix, set up the mysql user and group that will be used to run and execute the MySQL server and
own the database directory. For details, see Creating a mysql System User and Group, in Section 2.2,
“Installing MySQL on Unix/Linux Using Generic Binaries”. Then perform the following steps as the
mysql user, except as noted.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it.

Obtain a distribution file using the instructions in Section 2.1.2, “How to Get MySQL”.

Unpack the distribution into the current directory:

• To unpack a compressed tar file, tar can uncompress and unpack the distribution if it has z option
support:

shell> tar zxvf mysql-VERSION.tar.gz

If your tar does not have z option support, use gunzip to unpack the distribution and tar to
unpack it:

shell> gunzip < mysql-VERSION.tar.gz | tar xvf -

Alternatively, CMake can uncompress and unpack the distribution:

shell> cmake -E tar zxvf mysql-VERSION.tar.gz

• To unpack a Zip archive, use WinZip or another tool that can read .zip files.

Unpacking the distribution file creates a directory named mysql-VERSION.

Configure the Distribution

Change location into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION

Configure the source directory. The minimum configuration command includes no options to override
configuration defaults:

shell> cmake .

On Windows, specify the development environment. For example, the following commands configure
MySQL for 32-bit or 64-bit builds, respectively:

shell> cmake . -G "Visual Studio 10 2010"
shell> cmake . -G "Visual Studio 10 2010 Win64"

On OS X, to use the Xcode IDE:

shell> cmake . -G Xcode

When you run cmake, you might want to add options to the command line. Here are some examples:

• -DBUILD_CONFIG=mysql_release: Configure the source with the same build options used by
Oracle to produce binary distributions for official MySQL releases.

Installing MySQL Using a Standard Source Distribution

167

• -DCMAKE_INSTALL_PREFIX=dir_name: Configure the distribution for installation under a
particular location.

• -DCPACK_MONOLITHIC_INSTALL=1: Cause make package to generate a single installation file
rather than multiple files.

• -DWITH_DEBUG=1: Build the distribution with debugging support.

For a more extensive list of options, see Section 2.9.4, “MySQL Source-Configuration Options”.

To list the configuration options, use one of the following commands:

shell> cmake . -L # overview
shell> cmake . -LH # overview with help text
shell> cmake . -LAH # all params with help text
shell> ccmake . # interactive display

If CMake fails, you might need to reconfigure by running it again with different options. If you do
reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts up, it looks
for that file and reads its contents if it exists, on the assumption that the information is still correct.
That assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old object files or configuration information from being used, run these commands on Unix
before re-running CMake:

shell> make clean
shell> rm CMakeCache.txt

Or, on Windows:

shell> devenv MySQL.sln /clean
shell> del CMakeCache.txt

If you build out of the source tree (as described later), the CMakeCache.txt file and all built files
are in the build directory, so you can remove that directory to object files and cached configuration
information.

If you are going to send mail to a MySQL mailing list to ask for configuration assistance, first check the
files in the CMakeFiles directory for useful information about the failure. To file a bug report, please
use the instructions in Section 1.7, “How to Report Bugs or Problems”.

Build the Distribution

On Unix:

shell> make
shell> make VERBOSE=1

The second command sets VERBOSE to show the commands for each compiled source.

Use gmake instead on systems where you are using GNU make and it has been installed as gmake.

On Windows:

Installing MySQL Using a Standard Source Distribution

168

shell> devenv MySQL.sln /build RelWithDebInfo

It is possible to build out of the source tree to keep the tree clean. If the top-level source directory is
named mysql-src under your current working directory, you can build in a directory named bld at the
same level like this:

shell> mkdir bld
shell> cd bld
shell> cmake ../mysql-src

The build directory need not actually be outside the source tree. For example, to build in a directory,
you can build in a directory named bld under the top-level source tree, do this, starting with mysql-
src as your current working directory:

shell> mkdir bld
shell> cd bld
shell> cmake ..

If you have multiple source trees at the same level (for example, to build multiple versions of MySQL),
the second strategy can be advantageous. The first strategy places all build directories at the same
level, which requires that you choose a unique name for each. With the second strategy, you can use
the same name for the build directory within each source tree.

If you have gotten to the compilation stage, but the distribution does not build, see Section 2.9.5,
“Dealing with Problems Compiling MySQL”, for help. If that does not solve the problem, please enter it
into our bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”.
If you have installed the latest versions of the required tools, and they crash trying to process our
configuration files, please report that also. However, if you get a command not found error or a
similar problem for required tools, do not report it. Instead, make sure that all the required tools are
installed and that your PATH variable is set correctly so that your shell can find them.

Install the Distribution

On Unix:

shell> make install

This installs the files under the configured installation directory (by default, /usr/local/mysql). You
might need to run the command as root.

To install in a specific directory, add a DESTDIR parameter to the command line:

shell> make install DESTDIR="/opt/mysql"

Alternatively, generate installation package files that you can install where you like:

shell> make package

This operation produces one or more .tar.gz files that can be installed like generic binary distribution
packages. See Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”. If you run CMake
with -DCPACK_MONOLITHIC_INSTALL=1, the operation produces a single file. Otherwise, it produces
multiple files.

On Windows, generate the data directory, then create a .zip archive installation package:

shell> devenv MySQL.sln /build RelWithDebInfo /project initial_database
shell> devenv MySQL.sln /build RelWithDebInfo /project package

You can install the resulting .zip archive where you like. See Section 2.3.5, “Installing MySQL on
Microsoft Windows Using a noinstall Zip Archive”.

Installing MySQL Using a Development Source Tree

169

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core
databases, and starting the MySQL server. For instructions, see Section 2.10, “Postinstallation Setup
and Testing”.

Note

The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.10, “Postinstallation Setup and Testing”.

2.9.3 Installing MySQL Using a Development Source Tree

This section describes how to install MySQL from the latest development source code, which is
currently hosted on GitHub. To obtain the MySQL Server source code from this repository hosting
service, you can set up a local MySQL Git repository.

On GitHub, MySQL Server and other MySQL projects are found on the MySQL page. The MySQL
Server project is a single repository that contains branches for several MySQL series, such as 5.5, 5.6,
and 5.7.

MySQL officially joined GitHub in September, 2014. For more information about MySQL's move to
GitHub, refer to the announcement on the MySQL Release Engineering blog: MySQL on GitHub

Prerequisites for Installing from Development Source

To install MySQL from a development source tree, your system must satisfy the tool requirements
outlined in Section 2.9, “Installing MySQL from Source”.

Setting Up a MySQL Git Repository

To set up a MySQL Git repository on your machine, use this procedure:

1. Clone the MySQL Git repository to your machine. The following command clones the MySQL Git
repository to a directory named mysql-server. The download size is approximately 437 MB. The
initial download will take some time to complete, depending on the speed of your connection.

~$ git clone https://github.com/mysql/mysql-server.git
Cloning into 'mysql-server'...
remote: Counting objects: 1035465, done.
remote: Total 1035465 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1035465/1035465), 437.48 MiB | 5.10 MiB/s, done.
Resolving deltas: 100% (855607/855607), done.
Checking connectivity... done.
Checking out files: 100% (21902/21902), done.

2. When the clone operation completes, the contents of your local MySQL Git repository appear
similar to the following:

~$ cd mysql-server

~/mysql-server$ ls
BUILD COPYING libmysqld regex tests
BUILD-CMAKE dbug libservices scripts unittest
client Docs man sql VERSION
cmake extra mysql-test sql-bench vio
CMakeLists.txt include mysys sql-common win
cmd-line-utils INSTALL-SOURCE packaging storage zlib
config.h.cmake INSTALL-WIN-SOURCE plugin strings
configure.cmake libmysql README support-files

3. Use the git branch -r command to view the remote tracking branches for the MySQL
repository.

~/mysql-server$ git branch -r

https://github.com/
https://github.com/
https://github.com/mysql
http://mysqlrelease.com/2014/09/mysql-on-github/

MySQL Source-Configuration Options

170

 origin/5.5
 origin/5.6
 origin/5.7
 origin/HEAD -> origin/5.7
 origin/cluster-7.2
 origin/cluster-7.3
 origin/cluster-7.4

4. To view the branches that are checked out in your local repository, issue the git branch
command. When you cloned the MySQL Git repository, the MySQL 5.7 branch was checked out
automatically. The asterisk identifies the 5.7 branch as the active branch.

~/mysql-server$ git branch
* 5.7

5. To check out a different MySQL branch, run the git checkout command, specifying the branch
name. For example, to checkout the MySQL 5.5 branch:

~/mysql-server$ git checkout 5.5
Branch 5.5 set up to track remote branch 5.5 from origin.
Switched to a new branch '5.5'

6. Run git branch to verify that the MySQL 5.5 branch is present. MySQL 5.5, which is the last
branch you checked out, is marked by an asterisk indicating that it is the active branch.

~/mysql-server$ git branch
* 5.5
 5.7

7. Use the git checkout command to switch back to the MySQL 5.7 branch:

~/mysql-server$ git checkout 5.7

8. To obtain changes made after your initial setup of the MySQL Git repository, switch to the branch
you want to update and issue the git pull command:

~/mysql-server$ git checkout 5.7
~/mysql-server$ git pull

To examine the commit history, use the git log option:

~/mysql-server$ git log

You can also browse commit history and source code on the GitHub MySQL site.

If you see changes or code that you have a question about, send an email to the MySQL
internals mailing list. See Section 1.6.1, “MySQL Mailing Lists”. For information about
contributing a patch, see Contributing to MySQL Server.

9. After you have cloned the MySQL Git repository and have checked out the branch you want to
build, you can build MySQL Server from the source code. Instructions are provided in Section 2.9.2,
“Installing MySQL Using a Standard Source Distribution”, except that you skip the part about
obtaining and unpacking the distribution.

Be careful about installing a build from a distribution source tree on a production machine. The
installation command may overwrite your live release installation. If you already have MySQL
installed and do not want to overwrite it, run CMake with values for the CMAKE_INSTALL_PREFIX,
MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options different from those used by your production
server. For additional information about preventing multiple servers from interfering with each other,
see Section 5.3, “Running Multiple MySQL Instances on One Machine”.

Play hard with your new installation. For example, try to make new features crash. Start by running
make test. See Section 24.1.2, “The MySQL Test Suite”.

2.9.4 MySQL Source-Configuration Options

https://github.com/mysql
http://mysqlserverteam.com/contributing-to-mysql-server/

MySQL Source-Configuration Options

171

The CMake program provides a great deal of control over how you configure a MySQL source
distribution. Typically, you do this using options on the CMake command line. For information about
options supported by CMake, run either of these commands in the top-level source directory:

shell> cmake . -LH
shell> ccmake .

You can also affect CMake using certain environment variables. See Section 2.12, “Environment
Variables”.

The following table shows the available CMake options. In the Default column, PREFIX stands for
the value of the CMAKE_INSTALL_PREFIX option, which specifies the installation base directory. This
value is used as the parent location for several of the installation subdirectories.

Table 2.11 MySQL Source-Configuration Option Reference (CMake)

Formats Description Default IntroducedRemoved

BUILD_CONFIG Use same build options as
official releases

CMAKE_BUILD_TYPE Type of build to produce RelWithDebInfo

CMAKE_CXX_FLAGS Flags for C++ Compiler

CMAKE_C_FLAGS Flags for C Compiler

CMAKE_INSTALL_PREFIX Installation base directory /usr/local/
mysql

COMPILATION_COMMENT Comment about compilation
environment

CPACK_MONOLITHIC_INSTALLWhether package build
produces single file

OFF

DEFAULT_CHARSET The default server character
set

latin1

DEFAULT_COLLATION The default server collation latin1_swedish_ci

DISABLE_PSI_COND Exclude Performance
Schema condition
instrumentation

OFF 5.7.3

DISABLE_PSI_FILE Exclude Performance
Schema file instrumentation

OFF 5.7.3

DISABLE_PSI_IDLE Exclude Performance
Schema idle instrumentation

OFF 5.7.3

DISABLE_PSI_MEMORY Exclude Performance
Schema memory
instrumentation

OFF 5.7.3

DISABLE_PSI_METADATA Exclude Performance
Schema metadata
instrumentation

OFF 5.7.3

DISABLE_PSI_MUTEX Exclude Performance
Schema mutex
instrumentation

OFF 5.7.3

DISABLE_PSI_RWLOCK Exclude Performance
Schema rwlock
instrumentation

OFF 5.7.3

DISABLE_PSI_SOCKET Exclude Performance
Schema socket
instrumentation

OFF 5.7.3

MySQL Source-Configuration Options

172

Formats Description Default IntroducedRemoved

DISABLE_PSI_SP Exclude Performance
Schema stored program
instrumentation

OFF 5.7.3

DISABLE_PSI_STAGE Exclude Performance
Schema stage
instrumentation

OFF 5.7.3

DISABLE_PSI_STATEMENT Exclude Performance
Schema statement
instrumentation

OFF 5.7.3

DISABLE_PSI_STATEMENT_DIGESTExclude Performance
Schema statement_digest
instrumentation

OFF 5.7.3

DISABLE_PSI_TABLE Exclude Performance
Schema table instrumentation

OFF 5.7.3

DOWNLOAD_BOOST Whether to download the
Boost library

OFF 5.7.5

DOWNLOAD_BOOST_TIMEOUT Timeout in seconds for
downloading the Boost library

600 5.7.6

ENABLED_LOCAL_INFILE Whether to enable LOCAL for
LOAD DATA INFILE

OFF

ENABLED_PROFILING Whether to enable query
profiling code

ON

ENABLE_DEBUG_SYNC Whether to enable Debug
Sync support

ON

ENABLE_DOWNLOADS Whether to download optional
files

OFF

ENABLE_DTRACE Whether to include DTrace
support

ENABLE_GCOV Whether to include gcov
support

ENABLE_GPROF Enable gprof (optimized Linux
builds only)

OFF

FORCE_UNSUPPORTED_COMPILERWhether to permit
unsupported compiler

OFF 5.7.5

IGNORE_AIO_CHECK With -
DBUILD_CONFIG=mysql_release,
ignore libaio check

OFF

INNODB_PAGE_ATOMIC_REF_COUNTEnable or disable atomic
page reference counting

ON 5.7.4

INSTALL_BINDIR User executables directory PREFIX/bin

INSTALL_DOCDIR Documentation directory PREFIX/docs

INSTALL_DOCREADMEDIR README file directory PREFIX

INSTALL_INCLUDEDIR Header file directory PREFIX/include

INSTALL_INFODIR Info file directory PREFIX/docs

INSTALL_LAYOUT Select predefined installation
layout

STANDALONE

INSTALL_LIBDIR Library file directory PREFIX/lib

MySQL Source-Configuration Options

173

Formats Description Default IntroducedRemoved

INSTALL_MANDIR Manual page directory PREFIX/man

INSTALL_MYSQLSHAREDIR Shared data directory PREFIX/share

INSTALL_MYSQLTESTDIR mysql-test directory PREFIX/mysql-
test

INSTALL_PKGCONFIGDIR Directory for mysqlclient.pc
pkg-config file

INSTALL_LIBDIR/
pkgconfig

5.7.9

INSTALL_PLUGINDIR Plugin directory PREFIX/lib/
plugin

INSTALL_SBINDIR Server executable directory PREFIX/bin

INSTALL_SCRIPTDIR Scripts directory PREFIX/scripts

INSTALL_SECURE_FILE_PRIVDIRsecure_file_priv default value 5.7.6

INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIRsecure_file_priv default value
for libmysqld

 5.7.8

INSTALL_SHAREDIR aclocal/mysql.m4 installation
directory

PREFIX/share

INSTALL_SQLBENCHDIR sql-bench directory PREFIX 5.7.8

INSTALL_SUPPORTFILESDIRExtra support files directory PREFIX/
support-files

MAX_INDEXES Maximum indexes per table 64 5.7.1

MUTEX_TYPE InnoDB mutex type event 5.7.2

MYSQL_DATADIR Data directory

MYSQL_MAINTAINER_MODE Whether to enable MySQL
maintainer-specific
development environment

OFF

MYSQL_PROJECT_NAME Windows/OS X project name 3306

MYSQL_TCP_PORT TCP/IP port number 3306

MYSQL_UNIX_ADDR Unix socket file /tmp/
mysql.sock

ODBC_INCLUDES ODBC includes directory

ODBC_LIB_DIR ODBC library directory

OPTIMIZER_TRACE Whether to support optimizer
tracing

SUNPRO_CXX_LIBRARY Client link library on Solaris
10+

 5.7.5

SYSCONFDIR Option file directory

SYSTEMD_PID_DIR Directory for PID file under
systemd

/var/run/
mysqld

5.7.6

SYSTEMD_SERVICE_NAME Name of MySQL service
under systemd

mysqld 5.7.6

TMPDIR tmpdir default value 5.7.4

WIN_DEBUG_NO_INLINE Whether to disable function
inlining

OFF 5.7.6

WITHOUT_SERVER Do not build the server OFF

WITHOUT_xxx_STORAGE_ENGINEExclude storage engine xxx
from build

MySQL Source-Configuration Options

174

Formats Description Default IntroducedRemoved

WITH_ASAN Enable AddressSanitizer OFF 5.7.3

WITH_AUTHENTICATION_PAMBuild PAM authentication
plugin

OFF

WITH_BOOST The location of the Boost
library sources

 5.7.5

WITH_CLIENT_PROTOCOL_TRACINGBuild client-side protocol
tracing framework

ON 5.7.2

WITH_DEBUG Whether to include
debugging support

OFF

WITH_DEFAULT_COMPILER_OPTIONSWhether to use default
compiler options

ON

WITH_DEFAULT_FEATURE_SETWhether to use default
feature set

ON

WITH_EDITLINE Which libedit/editline library to
use

bundled 5.7.2

WITH_EMBEDDED_SERVER Whether to build embedded
server

OFF

WITH_EMBEDDED_SHARED_LIBRARYWhether to build a shared
embedded server library

OFF 5.7.4

WITH_EXTRA_CHARSETS Which extra character sets to
include

all

WITH_INNODB_EXTRA_DEBUGWhether to include extra
debugging support for
InnoDB.

OFF 5.7.2

WITH_INNODB_MEMCACHED Whether to generate
memcached shared libraries.

OFF

WITH_LIBEVENT Which libevent library to use bundled

WITH_LIBWRAP Whether to include libwrap
(TCP wrappers) support

OFF

WITH_MECAB Compiles MeCab 5.7.6

WITH_MSAN Enable MemorySanitizer OFF 5.7.4

WITH_MSCRT_DEBUG Enable Visual Studio CRT
memory leak tracing

OFF 5.7.6

WITH_SSL Type of SSL support bundled

WITH_SYSTEMD Enable installation of systemd
support files

OFF 5.7.6

WITH_TEST_TRACE_PLUGIN Build test protocol trace
plugin

OFF 5.7.2

WITH_UBSAN Enable Undefined Behavior
Sanitizer

OFF 5.7.6

WITH_UNIXODBC Enable unixODBC support OFF

WITH_VALGRIND Whether to compile in
Valgrind header files

OFF

WITH_ZLIB Type of zlib support system

WITH_xxx_STORAGE_ENGINECompile storage engine xxx
statically into server

MySQL Source-Configuration Options

175

The following sections provide more information about CMake options.

• General Options

• Installation Layout Options

• Feature Options

• Compiler Flags

For boolean options, the value may be specified as 1 or ON to enable the option, or as 0 or OFF to
disable the option.

Many options configure compile-time defaults that can be overridden at server startup. For example,
the CMAKE_INSTALL_PREFIX, MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options that configure the
default installation base directory location, TCP/IP port number, and Unix socket file can be changed at
server startup with the --basedir, --port, and --socket options for mysqld. Where applicable,
configuration option descriptions indicate the corresponding mysqld startup option.

General Options

• -DBUILD_CONFIG=mysql_release

This option configures a source distribution with the same build options used by Oracle to produce
binary distributions for official MySQL releases.

• -DCMAKE_BUILD_TYPE=type

The type of build to produce:

• RelWithDebInfo: Enable optimizations and generate debugging information. This is the default
MySQL build type.

• Debug: Disable optimizations and generate debugging information. This build type is also used
if the WITH_DEBUG option is enabled. That is, -DWITH_DEBUG=1 has the same effect as -
DCMAKE_BUILD_TYPE=Debug.

• -DCPACK_MONOLITHIC_INSTALL=bool

This option affects whether the make package operation produces multiple installation package
files or a single file. If disabled, the operation produces multiple installation package files, which may
be useful if you want to install only a subset of a full MySQL installation. If enabled, it produces a
single file for installing everything.

Installation Layout Options

The CMAKE_INSTALL_PREFIX option indicates the base installation directory. Other options with
names of the form INSTALL_xxx that indicate component locations are interpreted relative to the
prefix and their values are relative pathnames. Their values should not include the prefix.

• -DCMAKE_INSTALL_PREFIX=dir_name

The installation base directory.

This value can be set at server startup with the --basedir option.

• -DINSTALL_BINDIR=dir_name

Where to install user programs.

• -DINSTALL_DOCDIR=dir_name

Where to install documentation.

MySQL Source-Configuration Options

176

• -DINSTALL_DOCREADMEDIR=dir_name

Where to install README files.

• -DINSTALL_INCLUDEDIR=dir_name

Where to install header files.

• -DINSTALL_INFODIR=dir_name

Where to install Info files.

• -DINSTALL_LAYOUT=name

Select a predefined installation layout:

• STANDALONE: Same layout as used for .tar.gz and .zip packages. This is the default.

• RPM: Layout similar to RPM packages.

• SVR4: Solaris package layout.

• DEB: DEB package layout (experimental).

You can select a predefined layout but modify individual component installation locations by
specifying other options. For example:

shell> cmake . -DINSTALL_LAYOUT=SVR4 -DMYSQL_DATADIR=/var/mysql/data

As of MySQL 5.7.6, the INSTALL_LAYOUT value determines the default value of the
secure_file_priv system variable, as shown in the following table.

INSTALL_LAYOUT Value Default secure_file_priv Value

STANDALONE, WIN empty

DEB, RPM, SLES, SVR4 /var/lib/mysql-files

Otherwise mysql-files under the CMAKE_INSTALL_PREFIX value

• -DINSTALL_LIBDIR=dir_name

Where to install library files.

• -DINSTALL_MANDIR=dir_name

Where to install manual pages.

• -DINSTALL_MYSQLSHAREDIR=dir_name

Where to install shared data files.

• -DINSTALL_MYSQLTESTDIR=dir_name

Where to install the mysql-test directory. As of MySQL 5.7.2, to suppress installation of this
directory, explicitly set the option to the empty value (-DINSTALL_MYSQLTESTDIR=).

• -DINSTALL_PKGCONFIGDIR=dir_name

The directory in which to install the mysqlclient.pc file for use by pkg-config. The default
value is INSTALL_LIBDIR/pkgconfig, unless INSTALL_LIBDIR ends with /mysql, in which
case that is removed first.

This option was added in MySQL 5.7.9.

MySQL Source-Configuration Options

177

• -DINSTALL_PLUGINDIR=dir_name

The location of the plugin directory.

This value can be set at server startup with the --plugin_dir option.

• -DINSTALL_SBINDIR=dir_name

Where to install the mysqld server.

• -DINSTALL_SCRIPTDIR=dir_name

Where to install mysql_install_db.

• -DINSTALL_SECURE_FILE_PRIVDIR=dir_name

The default value for the secure_file_priv system variable. This option was
added in MySQL 5.7.6. To set the value for the libmysqld embedded server, use
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR.

• -DINSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR=dir_name

The default value for the secure_file_priv system variable, for the libmysqld embedded
server. This option was added in MySQL 5.7.8.

• -DINSTALL_SHAREDIR=dir_name

Where to install aclocal/mysql.m4.

• -DINSTALL_SQLBENCHDIR=dir_name

Where to install the sql-bench directory. To suppress installation of this directory, explicitly set the
option to the empty value (-DINSTALL_SQLBENCHDIR=).

As of MySQL 5.7.8, the sql-bench directory is no longer included in MYSQL distributions, so the
INSTALL_SQLBENCHDIR= option is removed as well.

• -DINSTALL_SUPPORTFILESDIR=dir_name

Where to install extra support files.

• -DMYSQL_DATADIR=dir_name

The location of the MySQL data directory.

This value can be set at server startup with the --datadir option.

• -DODBC_INCLUDES=dir_name

The location of the ODBC includes directory, and may be used while configuring Connector/ODBC.

• -DODBC_LIB_DIR=dir_name

The location of the ODBC library directory, and may be used while configuring Connector/ODBC.

• -DSYSCONFDIR=dir_name

The default my.cnf option file directory.

This location cannot be set at server startup, but you can start the server with a given option file
using the --defaults-file=file_name option, where file_name is the full path name to the
file.

• -DSYSTEMD_PID_DIR=dir_name

MySQL Source-Configuration Options

178

The name of the directory in which to create the PID file when MySQL is managed by systemd. The
default is /var/run/mysqld; this might be changed implicitly according to the INSTALL_LAYOUT
value.

This option is ignored unless WITH_SYSTEMD is enabled. It was added in MySQL 5.7.6.

• -DSYSTEMD_SERVICE_NAME=name

The name of the MySQL service to use when MySQL is managed by systemd. The default is
mysqld; this might be changed implicitly according to the INSTALL_LAYOUT value.

This option is ignored unless WITH_SYSTEMD is enabled. It was added in MySQL 5.7.6.

• -DTMPDIR=dir_name

The default location to use for the tmpdir system variable. If unspecified, the value defaults to
P_tmpdir in <stdio.h>. This option was added in MySQL 5.7.4.

Storage Engine Options

Storage engines are built as plugins. You can build a plugin as a static module (compiled into the
server) or a dynamic module (built as a dynamic library that must be installed into the server using the
INSTALL PLUGIN statement or the --plugin-load option before it can be used). Some plugins
might not support static or dynamic building.

The MyISAM, MERGE, MEMORY, and CSV engines are mandatory (always compiled into the server) and
need not be installed explicitly.

To compile a storage engine statically into the server, use -DWITH_engine_STORAGE_ENGINE=1.
Some permissible engine values are ARCHIVE, BLACKHOLE, EXAMPLE, FEDERATED, INNOBASE
(InnoDB), PARTITION (partitioning support), and PERFSCHEMA (Performance Schema). Examples:

-DWITH_INNOBASE_STORAGE_ENGINE=1
-DWITH_ARCHIVE_STORAGE_ENGINE=1
-DWITH_BLACKHOLE_STORAGE_ENGINE=1
-DWITH_PERFSCHEMA_STORAGE_ENGINE=1

Note

As of MySQL 5.7.9, it is not possible to compile without Performance Schema
support. If it is desired to compile without particular types of instrumentation,
that can be done with the following CMake options:

DISABLE_PSI_COND
DISABLE_PSI_FILE
DISABLE_PSI_IDLE
DISABLE_PSI_MEMORY
DISABLE_PSI_METADATA
DISABLE_PSI_MUTEX
DISABLE_PSI_PS
DISABLE_PSI_RWLOCK
DISABLE_PSI_SOCKET
DISABLE_PSI_SP
DISABLE_PSI_STAGE
DISABLE_PSI_STATEMENT
DISABLE_PSI_STATEMENT_DIGEST
DISABLE_PSI_TABLE
DISABLE_PSI_THREAD
DISABLE_PSI_TRANSACTION

For example, to compile without mutex instrumentation, configure MySQL using
the -DDISABLE_PSI_MUTEX=1 option.

MySQL Source-Configuration Options

179

As of MySQL 5.7.4, to exclude a storage engine from the build, use -
DWITH_engine_STORAGE_ENGINE=0. Examples:

-DWITH_EXAMPLE_STORAGE_ENGINE=0
-DWITH_FEDERATED_STORAGE_ENGINE=0
-DWITH_PARTITION_STORAGE_ENGINE=0

Before MySQL 5.7.4, to exclude a storage engine from the build, use -
DWITHOUT_engine_STORAGE_ENGINE=1. (That syntax also works in 5.7.4 or later, but -
DWITH_engine_STORAGE_ENGINE=0 is preferred.) Examples:

-DWITHOUT_EXAMPLE_STORAGE_ENGINE=1
-DWITHOUT_FEDERATED_STORAGE_ENGINE=1
-DWITHOUT_PARTITION_STORAGE_ENGINE=1

If neither -DWITH_engine_STORAGE_ENGINE nor -DWITHOUT_engine_STORAGE_ENGINE are
specified for a given storage engine, the engine is built as a shared module, or excluded if it cannot be
built as a shared module.

Feature Options

• -DCOMPILATION_COMMENT=string

A descriptive comment about the compilation environment.

• -DDEFAULT_CHARSET=charset_name

The server character set. By default, MySQL uses the latin1 (cp1252 West European) character
set.

charset_name may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256,
cp1257, cp850, cp852, cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8,
greek, hebrew, hp8, keybcs2, koi8r, koi8u, latin1, latin2, latin5, latin7, macce,
macroman, sjis, swe7, tis620, ucs2, ujis, utf8, utf8mb4, utf16, utf16le, utf32. The
permissible character sets are listed in the cmake/character_sets.cmake file as the value of
CHARSETS_AVAILABLE.

This value can be set at server startup with the --character_set_server option.

• -DDEFAULT_COLLATION=collation_name

The server collation. By default, MySQL uses latin1_swedish_ci. Use the SHOW COLLATION
statement to determine which collations are available for each character set.

This value can be set at server startup with the --collation_server option.

• -DDISABLE_PSI_COND=bool

Whether to exclude the Performance Schema condition instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_FILE=bool

Whether to exclude the Performance Schema file instrumentation. The default is OFF (include). This
option was added in MySQL 5.7.3.

• -DDISABLE_PSI_IDLE=bool

Whether to exclude the Performance Schema idle instrumentation. The default is OFF (include). This
option was added in MySQL 5.7.3.

• -DDISABLE_PSI_MEMORY=bool

MySQL Source-Configuration Options

180

Whether to exclude the Performance Schema memory instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_METADATA=bool

Whether to exclude the Performance Schema metadata instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_MUTEX=bool

Whether to exclude the Performance Schema mutex instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_RWLOCK=bool

Whether to exclude the Performance Schema rwlock instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_SOCKET=bool

Whether to exclude the Performance Schema socket instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_SP=bool

Whether to exclude the Performance Schema stored program instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_STAGE=bool

Whether to exclude the Performance Schema stage instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_STATEMENT=bool

Whether to exclude the Performance Schema statement instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_STATEMENT_DIGEST=bool

Whether to exclude the Performance Schema statement_digest instrumentation. The default is OFF
(include). This option was added in MySQL 5.7.3.

• -DDISABLE_PSI_TABLE=bool

Whether to exclude the Performance Schema table instrumentation. The default is OFF (include).
This option was added in MySQL 5.7.3.

• -DDOWNLOAD_BOOST=bool

Whether to download the Boost library. The default is OFF. This option was added in MySQL 5.7.5.

See the WITH_BOOST option for additional discussion about using Boost.

• -DDOWNLOAD_BOOST_TIMEOUT=seconds

The timeout in seconds for downloading the Boost library. The default is 600 seconds. This option
was added in MySQL 5.7.6.

See the WITH_BOOST option for additional discussion about using Boost.

• -DENABLE_DEBUG_SYNC=bool

MySQL Source-Configuration Options

181

Whether to compile the Debug Sync facility into the server. This facility is used for testing and
debugging. This option is enabled by default, but has no effect unless MySQL is configured
with debugging enabled. If debugging is enabled and you want to disable Debug Sync, use -
DENABLE_DEBUG_SYNC=0.

When compiled in, Debug Sync is disabled by default at runtime. To enable it, start mysqld with the
--debug-sync-timeout=N option, where N is a timeout value greater than 0. (The default value is
0, which disables Debug Sync.) N becomes the default timeout for individual synchronization points.

As of MySQL 5.7.8, sync debug checking for the InnoDB storage engine is available when
debugging support is compiled in using the WITH_DEBUG option.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• -DENABLE_DOWNLOADS=bool

Whether to download optional files. For example, with this option enabled, CMake downloads the
Google Test distribution that is used by the test suite to run unit tests.

• -DENABLE_DTRACE=bool

Whether to include support for DTrace probes. For information about DTrace, wee Section 5.4,
“Tracing mysqld Using DTrace”

• -DENABLE_GCOV=bool

Whether to include gcov support (Linux only).

• -DENABLE_GPROF=bool

Whether to enable gprof (optimized Linux builds only).

• -DENABLED_LOCAL_INFILE=bool

Whether to enable LOCAL capability in the client library for LOAD DATA INFILE.

This option controls client-side LOCAL capability, but the capability can be set on the server side at
server startup with the --local-infile option. See Section 6.1.6, “Security Issues with LOAD
DATA LOCAL”.

• -DENABLED_PROFILING=bool

Whether to enable query profiling code (for the SHOW PROFILE and SHOW PROFILES statements).

• -DFORCE_UNSUPPORTED_COMPILER=bool

By default, CMake checks for minimum versions of supported compilers: gcc 4.4 (Linux, Solaris);
Sun Studio 12u2 (Solaris client library); Clang 3.3 (OS X, FreeBSD). To disable this check, use -
DFORCE_UNSUPPORTED_COMPILER=ON. This option was added in MySQL 5.7.5.

• -DIGNORE_AIO_CHECK=bool

If the -DBUILD_CONFIG=mysql_release option is given on Linux, the libaio library must be
linked in by default. If you do not have libaio or do not want to install it, you can suppress the
check for it by specifying -DIGNORE_AIO_CHECK=1.

• -DINNODB_PAGE_ATOMIC_REF_COUNT=bool

Whether to enable or disable atomic page reference counting. Fetching and releasing pages from
the buffer pool and tracking the page state are expensive and complex operations. Using a page

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html

MySQL Source-Configuration Options

182

mutex to track these operations does not scale well. With INNODB_PAGE_ATOMIC_REF_COUNT=ON
(default), fetch and release is tracked using atomics where available. For platforms that do not
support atomics, set INNODB_PAGE_ATOMIC_REF_COUNT=OFF to disable atomic page reference
counting.

When atomic page reference counting is enabled (default), “[Note] InnoDB: Using atomics
to ref count buffer pool pages” is printed to the error log at server startup. If atomic page
reference counting is disabled, “[Note] InnoDB: Using mutexes to ref count buffer
pool pages” is printed instead.

INNODB_PAGE_ATOMIC_REF_COUNT was introduced with the fix for MySQL Bug #68079. The
option is removed in MySQL 5.7.5. Support for atomics is required to build MySQL as of MySQL
5.7.5, which makes the option obsolete.

• -DMAX_INDEXES=num

The maximum number of indexes per table. The default is 64. The maximum is 255. Values smaller
than 64 are ignored and the default of 64 is used.

• -DMYSQL_MAINTAINER_MODE=bool

Whether to enable a MySQL maintainer-specific development environment. If enabled, this option
causes compiler warnings to become errors.

• -DMUTEX_TYPE=type

The mutex type used by InnoDB. Options include:

• event: Use event mutexes. This is the default value and the original InnoDB mutex
implementation.

• sys: Use POSIX mutexes on UNIX systems. Use CRITICAL_SECTION onjects on Windows, if
available.

• futex: Use Linux futexes instead of condition variables to schedule waiting threads.

• -DMYSQL_PROJECT_NAME=name

For Windows or OS X, the project name to incorporate into the project file name.

• -DMYSQL_TCP_PORT=port_num

The port number on which the server listens for TCP/IP connections. The default is 3306.

This value can be set at server startup with the --port option.

• -DMYSQL_UNIX_ADDR=file_name

The Unix socket file path on which the server listens for socket connections. This must be an
absolute path name. The default is /tmp/mysql.sock.

This value can be set at server startup with the --socket option.

• -DOPTIMIZER_TRACE=bool

Whether to support optimizer tracing. See MySQL Internals: Tracing the Optimizer.

• -DWIN_DEBUG_NO_INLINE=bool

Whether to disable function inlining on Windows. The default is off (inlining enabled). This option was
added in MySQL 5.7.6.

• -DWITH_ASAN=bool

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

MySQL Source-Configuration Options

183

Whether to enable the AddressSanitizer, for compilers that support it. The default is off. This option
was added in MySQL 5.7.3.

• -DWITH_AUTHENTICATION_PAM=bool

Whether to build the PAM authentication plugin, for source trees that include this plugin. (See
Section 6.3.9.5, “The PAM Authentication Plugin”.) Beginning with MySQL 5.7.2, if this option is
specified and the plugin cannot be compiled, the build fails.

• -DWITH_BOOST=path_name

As of MySQL 5.7.5, the Boost library is required to build MySQL. These CMake options enable
control over the library source location, and whether to download it automatically:

• -DWITH_BOOST=path_name specifies the Boost library directory location. It is also possible to
specify the Boost location by setting the BOOST_ROOT or WITH_BOOST environment variable.

As of MySQL 5.7.11, -DWITH_BOOST=system is permitted and indicates that the correct version
of Boost is installed on the compilation host in the standard location. In this case, the installed
version of Boost is used rather than any version included with a MySQL source distribution.

• -DDOWNLOAD_BOOST=bool specifies whether to download the Boost source if it is not present in
the specified location. The default is OFF.

• -DDOWNLOAD_BOOST_TIMEOUT=seconds the timeout in seconds for downloading the Boost
library. The default is 600 seconds.

For example, if you normally build MySQL placing the object output in the bld subdirectory of your
MySQL source tree, you can build with Boost like this:

mkdir bld
cd bld
cmake .. -DDOWNLOAD_BOOST=ON -DWITH_BOOST=$HOME/my_boost

This causes Boost to be downloaded into the my_boost directory under your home directory. If the
required Boost version is already there, no download is done. If the required Boost version changes,
the newer version is downloaded.

If Boost is already installed locally and your compiler finds the Boost header files on its own, it may
not be necessary to specify the preceding CMake options. However, if the version of Boost required
by MySQL changes and the locally installed version has not been upgraded, you may have build
problems. Using the CMake options should give you a successful build.

• -DWITH_CLIENT_PROTOCOL_TRACING=bool

Whether to build the client-side protocol tracing framework into the client library. By default, this
option is enabled. This option was added in MySQL 5.7.2.

For information about writing protocol trace client plugins, see Section 24.2.4.11, “Writing Protocol
Trace Plugins”.

See also the WITH_TEST_TRACE_PLUGIN option.

• -DWITH_DEBUG=bool

Whether to include debugging support.

Configuring MySQL with debugging support enables you to use the --debug="d,parser_debug"
option when you start the server. This causes the Bison parser that is used to process SQL

MySQL Source-Configuration Options

184

statements to dump a parser trace to the server's standard error output. Typically, this output is
written to the error log.

As of MySQL 5.7.8, sync debug checking for the InnoDB storage engine is defined under
UNIV_DEBUG and is available when debugging support is compiled in using the WITH_DEBUG option.
When debugging support is compiled in, the innodb_sync_debug configuration option can be used
to enable or disable InnoDB sync debug checking.

• -DWITH_DEFAULT_FEATURE_SET=bool

Whether to use the flags from cmake/build_configurations/feature_set.cmake.

• -DWITH_EDITLINE=value

Which libedit/editline library to use. The permitted values are bundled (the default) and
system.

WITH_EDITLINE was added in MySQL 5.7.2. It replaces WITH_LIBEDIT, which has been removed.

• -DWITH_EMBEDDED_SERVER=bool

Whether to build the libmysqld embedded server library.

• -DWITH_EMBEDDED_SHARED_LIBRARY=bool

Whether to build a shared libmysqld embedded server library. This option was added in MySQL
5.7.4.

• -DWITH_EXTRA_CHARSETS=name

Which extra character sets to include:

• all: All character sets. This is the default.

• complex: Complex character sets.

• none: No extra character sets.

• -DWITH_INNODB_EXTRA_DEBUG=bool

Whether to include extra InnoDB debugging support.

Enabling WITH_INNODB_EXTRA_DEBUG turns on extra InnoDB debug checks. This option can only
be enabled when WITH_DEBUG is enabled.

• -DWITH_INNODB_MEMCACHED=bool

Whether to generate memcached shared libraries (libmemcached.so and innodb_engine.so).

• -DWITH_LIBEVENT=string

Which libevent library to use. Permitted values are bundled (default), system, and yes. If
you specify system or yes, the system libevent library is used if present. If the system library
is not found, the bundled libevent library is used. The libevent library is required by InnoDB
memcached.

• -DWITH_LIBWRAP=bool

Whether to include libwrap (TCP wrappers) support.

• -DWITH_MSAN=bool

Whether to enable MemorySanitizer, for compilers that support it. The default is off. This option was
added in MySQL 5.7.4.

http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_libedit

MySQL Source-Configuration Options

185

• -DWITH_MECAB={disabled|system|path_name}

Use this option to compile the MeCab parser. If you have installed MeCab to its default installation
directory, set -DWITH_MECAB=system. The system option applies to MeCab installations
performed from source or from binaries using a native package management utility. If you installed
MeCab to a custom installation directory, specify the path to the MeCab installation. For example, -
DWITH_MECAB=/opt/mecab. If the system option does not work, specifying the MeCab installation
path should work in all cases.

For related information, see Section 12.9.9, “MeCab Full-Text Parser Plugin”.

• -DWITH_MSCRT_DEBUG=bool

Whether to enable Visual Studio CRT memory leak tracing. The default is off. This option was added
in MySQL 5.7.6.

• -DWITH_SSL={ssl_type|path_name}

The type of SSL support to include or the path name to the OpenSSL installation to use.

• ssl_type can be one of the following values:

• yes: Use the system SSL library if present, else the library bundled with the distribution.

• bundled: Use the SSL library bundled with the distribution. This is the default.

• system: Use the system SSL library.

• path_name is the path name to the OpenSSL installation to use. Using this can be preferable to
using the ssl_type value of system, for it can prevent CMake from detecting and using an older
or incorrect OpenSSL version installed on the system. (Another permitted way to do the same
thing is to set the CMAKE_PREFIX_PATH option to path_name.)

For information about using SSL support, see Section 6.3.12, “Using Secure Connections”.

• -DWITH_SYSTEMD=bool

Whether to enable installation of systemd support files. By default, this option is disabled. When
enabled, systemd support files are installed, and scripts such as mysqld_safe and the System
V initialization script are not installed. On platforms where systemd is not available, enabling
WITH_SYSTEMD results in an error from CMake.

For more information about using systemd, see Section 2.5.10, “Managing MySQL Server with
systemd”. That section also includes information about specifying options previously specified in
[mysqld_safe] option groups. Because mysqld_safe is not installed when systemd is used,
such options must be specified another way.

This option was added in MySQL 5.7.6.

• -DWITH_TEST_TRACE_PLUGIN=bool

Whether to build the test protocol trace client plugin (see Using the Test Protocol Trace
Plugin). By default, this option is disabled. Enabling this option has no effect unless the
WITH_CLIENT_PROTOCOL_TRACING option is enabled. If MySQL is configured with both options
enabled, the libmysqlclient client library is built with the test protocol trace plugin built in, and all
the standard MySQL clients load the plugin. However, even when the test plugin is enabled, it has no
effect by default. Control over the plugin is afforded using environment variables; see Using the Test
Protocol Trace Plugin.

This option was added in MySQL 5.7.2.

MySQL Source-Configuration Options

186

Note

Do not enable the WITH_TEST_TRACE_PLUGIN option if you want to use
your own protocol trace plugins because only one such plugin can be loaded
at a time and an error occurs for attempts to load a second one. If you have
already built MySQL with the test protocol trace plugin enabled to see how
it works, you must rebuild MySQL without it before you can use your own
plugins.

For information about writing trace plugins, see Section 24.2.4.11, “Writing Protocol Trace Plugins”.

• -DWITH_UBSAN=bool

Whether to enable the Undefined Behavior Sanitizer, for compilers that support it. The default is off.
This option was added in MySQL 5.7.6.

• -DWITH_UNIXODBC=1

Enables unixODBC support, for Connector/ODBC.

• -DWITH_VALGRIND=bool

Whether to compile in the Valgrind header files, which exposes the Valgrind API to MySQL code.
The default is OFF.

To generate a Valgrind-aware debug build, -DWITH_VALGRIND=1 normally is combined with -
DWITH_DEBUG=1. See Building Debug Configurations.

• -DWITH_ZLIB=zlib_type

Some features require that the server be built with compression library support, such as the
COMPRESS() and UNCOMPRESS() functions, and compression of the client/server protocol. The
WITH_ZLIB indicates the source of zlib support:

• bundled: Use the zlib library bundled with the distribution.

• system: Use the system zlib library. This is the default.

• -DWITHOUT_SERVER=bool

Whether to build without the MySQL server. The default is OFF, which does build the server.

Compiler Flags

• -DCMAKE_C_FLAGS="flags"

Flags for the C Compiler.

• -DCMAKE_CXX_FLAGS="flags"

Flags for the C++ Compiler.

• -DWITH_DEFAULT_COMPILER_OPTIONS=bool

Whether to use the flags from cmake/build_configurations/compiler_options.cmake.

Note

All optimization flags were carefully chosen and tested by the MySQL build
team. Overriding them can lead to unexpected results and is done at your
own risk.

http://dev.mysql.com/doc/internals/en/debug-configurations.html

Dealing with Problems Compiling MySQL

187

• -DSUNPRO_CXX_LIBRARY="lib_name"

Enable linking against libCstd instead of stlport4 on Solaris 10 or later. This works only for
client code because the server depends on C++98. Example usage:

cmake -DWITHOUT_SERVER=1 -DSUNPRO_CXX_LIBRARY=Cstd

This option was added in MySQL 5.7.5.

To specify your own C and C++ compiler flags, for flags that do not affect optimization, use the
CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options.

When providing your own compiler flags, you might want to specify CMAKE_BUILD_TYPE as well.

For example, to create a 32-bit release build on a 64-bit Linux machine, do this:

shell> mkdir bld
shell> cd bld
shell> cmake .. -DCMAKE_C_FLAGS=-m32 \
 -DCMAKE_CXX_FLAGS=-m32 \
 -DCMAKE_BUILD_TYPE=RelWithDebInfo

If you set flags that affect optimization (-Onumber), you must set the CMAKE_C_FLAGS_build_type
and/or CMAKE_CXX_FLAGS_build_type options, where build_type corresponds
to the CMAKE_BUILD_TYPE value. To specify a different optimization for the default
build type (RelWithDebInfo) set the CMAKE_C_FLAGS_RELWITHDEBINFO and
CMAKE_CXX_FLAGS_RELWITHDEBINFO options. For example, to compile on Linux with -O3 and with
debug symbols, do this:

shell> cmake .. -DCMAKE_C_FLAGS_RELWITHDEBINFO="-O3 -g" \
 -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O3 -g"

2.9.5 Dealing with Problems Compiling MySQL

The solution to many problems involves reconfiguring. If you do reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts up, it looks
for that file and reads its contents if it exists, on the assumption that the information is still correct.
That assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old object files or configuration information from being used, run the following commands
before re-running CMake:

On Unix:

shell> make clean
shell> rm CMakeCache.txt

On Windows:

shell> devenv MySQL.sln /clean
shell> del CMakeCache.txt

If you build outside of the source tree, remove and recreate your build directory before re-running
CMake. For instructions on building outside of the source tree, see How to Build MySQL Server with
CMake.

http://dev.mysql.com/doc/internals/en/cmake.html
http://dev.mysql.com/doc/internals/en/cmake.html

Dealing with Problems Compiling MySQL

188

On some systems, warnings may occur due to differences in system include files. The following list
describes other problems that have been found to occur most often when compiling MySQL:

• To define which C and C++ compilers to use, you can define the CC and CXX environment
variables. For example:

shell> CC=gcc
shell> CXX=g++
shell> export CC CXX

To specify your own C and C++ compiler flags, use the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS
CMake options. See Compiler Flags.

To see what flags you might need to specify, invoke mysql_config with the --cflags and --
cxxflags options.

• To see what commands are executed during the compile stage, after using CMake to configure
MySQL, run make VERBOSE=1 rather than just make.

• If compilation fails, check whether the MYSQL_MAINTAINER_MODE option is enabled. This mode
causes compiler warnings to become errors, so disabling it may enable compilation to proceed.

• If your compile fails with errors such as any of the following, you must upgrade your version of make
to GNU make:

make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need
to create sql_yacc.cc because MySQL comes with a pregenerated copy. However, if you do need
to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install a recent version of
bison (the GNU version of yacc) and use that instead.

Versions of bison older than 1.75 may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of
bison.

For information about acquiring or updating tools, see the system requirements in Section 2.9,
“Installing MySQL from Source”.

MySQL Configuration and Third-Party Tools

189

2.9.6 MySQL Configuration and Third-Party Tools

Third-party tools that need to determine the MySQL version from the MySQL source can read the
VERSION file in the top-level source directory. The file lists the pieces of the version separately. For
example, if the version is MySQL 5.7.4-m14, the file looks like this:

MYSQL_VERSION_MAJOR=5
MYSQL_VERSION_MINOR=7
MYSQL_VERSION_PATCH=4
MYSQL_VERSION_EXTRA=-m14

If the source is not for a General Availablility (GA) release, the MYSQL_VERSION_EXTRA value will be
nonempty. For the example, the value corresponds to Milestone 14.

To construct a five-digit number from the version components, use this formula:

MYSQL_VERSION_MAJOR*10000 + MYSQL_VERSION_MINOR*100 + MYSQL_VERSION_PATCH

2.10 Postinstallation Setup and Testing
This section discusses tasks that you should perform after installing MySQL:

• If necessary, initialize the data directory and create the MySQL grant tables. For some MySQL
installation methods, data directory initialization may be done for you automatically:

• Windows distributions prior to MySQL 5.7.7 include a data directory with pre-built tables in the
mysql database. As of 5.7.7, Windows installation operations performed by MySQL Installer
initialize the data directory automatically.

• Installation on Linux using a server RPM distribution.

• Installation using the native packaging system on many platforms, including Debian Linux, Ubuntu
Linux, Gentoo Linux, and others.

• Installation on OS X using a DMG distribution.

For other platforms and installation types, including installation from generic binary and source
distributions, you must initialize the data directory yourself. For instructions, see Section 2.10.1,
“Initializing the Data Directory”.

• Start the server and make sure that it can be accessed. For instructions, see Section 2.10.2,
“Starting the Server”, and Section 2.10.3, “Testing the Server”.

• Assign passwords to the initial root account in the grant tables, if that was not already done during
data directory initialization. Passwords prevent unauthorized access to the MySQL server. For
instructions, see Section 2.10.4, “Securing the Initial MySQL Accounts”.

• Optionally, arrange for the server to start and stop automatically when your system starts and stops.
For instructions, see Section 2.10.5, “Starting and Stopping MySQL Automatically”.

• Optionally, populate time zone tables to enable recognition of named time zones. For instructions,
see Section 10.6, “MySQL Server Time Zone Support”.

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Section 6.2, “The MySQL Access Privilege System”, and
Section 6.3, “MySQL User Account Management”.

2.10.1 Initializing the Data Directory

After installing MySQL, you must initialize the data directory, including the tables in the mysql
system database. For some MySQL installation methods, data directory initialization may be done

Initializing the Data Directory

190

automatically, as described in Section 2.10, “Postinstallation Setup and Testing”. For other installation
methods, including installation from generic binary and source distributions, you must initialize the data
directory yourself.

This section describes how to initialize the data directory on Unix and Unix-like systems. (For Windows,
see Section 2.3.7, “Windows Postinstallation Procedures”.) For some suggested commands that you
can use to test whether the server is accessible and working properly, see Section 2.10.3, “Testing the
Server”.

In the examples shown here, the server runs under the user ID of the mysql login account. This
assumes that such an account exists. Either create the account if it does not exist, or substitute the
name of a different existing login account that you plan to use for running the server. For information
about creating the account, see Creating a mysql System User and Group, in Section 2.2, “Installing
MySQL on Unix/Linux Using Generic Binaries”.

1. Change location into the top-level directory of your MySQL installation, represented here by
BASEDIR:

shell> cd BASEDIR

BASEDIR is likely to be something like /usr/local/mysql or /usr/local. The following steps
assume that you have changed location to this directory.

You will find several files and subdirectories in the BASEDIR directory. The most important for
installation purposes are the bin and scripts subdirectories, which contain the server as well as
client and utility programs.

2. Create a directory that provides a location to use as the value of the secure_file_priv system
variable that limits import/export operations to a specific directory. See Section 5.1.4, “Server
System Variables”.

shell> mkdir mysql-files
shell> chmod 770 mysql-files

3. If necessary, ensure that the distribution contents are accessible to mysql. If you installed the
distribution as mysql, no further action is required. If you installed the distribution as root, its
contents will be owned by root. Change its ownership to mysql by executing the following
commands as root in the installation directory. The first command changes the owner attribute of
the files to the mysql user. The second changes the group attribute to the mysql group.

shell> chown -R mysql .
shell> chgrp -R mysql .

4. If necessary, initialize the data directory, including the mysql database containing the initial MySQL
grant tables that determine how users are permitted to connect to the server.

Typically, data directory initialization need be done only the first time you install MySQL. If you are
upgrading an existing installation, you should run mysql_upgrade instead (see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”). However, the command that initializes
the data directory does not overwrite any existing privilege tables, so it should be safe to run in any
circumstances.

As of MySQL 5.7.6, use the server to initialize the data directory:

shell> bin/mysqld --initialize --user=mysql

Before MySQL 5.7.6, use mysql_install_db:

shell> bin/mysql_install_db --user=mysql

Initializing the Data Directory

191

For more information, see Section 2.10.1.1, “Initializing the Data Directory Manually Using mysqld”,
or Section 2.10.1.2, “Initializing the Data Directory Manually Using mysql_install_db”, depending on
which command you use.

5. If you want the server to be able to deploy with automatic support for secure connections, use the
mysql_ssl_rsa_setup utility to create default SSL and RSA files:

shell> mysql_ssl_rsa_setup

For more information, see Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”.

6. After initializing the data directory, you can establish the final installation ownership settings.
To leave the installation owned by mysql, no action is required here. Otherwise, most of the
MySQL installation can be owned by root if you like. The exception is that the data directory
and the mysql-files directory must be owned by mysql. To accomplish this, run the following
commands as root in the installation directory. For some distribution types, the data directory
might be named var rather than data; adjust the second command accordingly.

shell> chown -R root .
shell> chown -R mysql data mysql-files

If the plugin directory (the directory named by the plugin_dir system variable) is writable by
the server, it may be possible for a user to write executable code to a file in the directory using
SELECT ... INTO DUMPFILE. This can be prevented by making the plugin directory read only
to the server or by setting the secure_file_priv system variable at server startup to a directory
where SELECT writes can be performed safely. (For example, set it to the mysql-files directory
created earlier.)

7. To specify options that the MySQL server should use at startup, put them in a /etc/my.cnf or /
etc/mysql/my.cnf file. You can use such a file, for example, to set the secure_file_priv
system variable. See Section 5.1.2, “Server Configuration Defaults”. If you do not do this, the server
starts with its default settings.

8. If you want MySQL to start automatically when you boot your machine, see Section 2.10.5,
“Starting and Stopping MySQL Automatically”.

Data directory initialization creates time zone tables in the mysql database but does not populate
them. To do so, use the instructions in Section 10.6, “MySQL Server Time Zone Support”.

2.10.1.1 Initializing the Data Directory Manually Using mysqld

This section describes how to initialize the data directory using mysqld, the MySQL server.

Note

The procedure described here is available for all platforms as of MySQL
5.7.6. Prior to 5.7.6, use mysql_install_db on Unix and Unix-like
systems (see Section 2.10.1.2, “Initializing the Data Directory Manually Using
mysql_install_db”). Prior to MySQL 5.7.7, Windows distributions include a data
directory with prebuilt tables in the mysql database.

The following instructions assume that your current location is the MySQL installation directory,
represented here by BASEDIR:

shell> cd BASEDIR

To initialize the data directory, invoke mysqld with the --initialize or --initialize-insecure
option, depending on whether you want the server to generate a random initial password for the
'root'@'localhost' account.

Initializing the Data Directory

192

On Windows, use one of these commands:

C:\> bin\mysqld --initialize
C:\> bin\mysqld --initialize-insecure

On Unix and Unix-like systems, it is important to make sure that the database directories and files are
owned by the mysql login account so that the server has read and write access to them when you run
it later. To ensure this if you run mysqld as root, include the --user option as shown here:

shell> bin/mysqld --initialize --user=mysql
shell> bin/mysqld --initialize-insecure --user=mysql

Otherwise, execute the program while logged in as mysql, in which case you can omit the --user
option from the command.

Regardless of platform, use --initialize for “secure by default” installation (that is, including
generation of a random initial root password). In this case, the password is marked as expired and
you will need to choose a new one. With the --initialize-insecure option, no root password is
generated; it is assumed that you will assign a password to the account in timely fashion before putting
the server into production use.

It might be necessary to specify other options such as --basedir or --datadir if mysqld does
not identify the correct locations for the installation directory or data directory. For example (enter the
command on one line):

shell> bin/mysqld --initialize --user=mysql
 --basedir=/opt/mysql/mysql
 --datadir=/opt/mysql/mysql/data

Alternatively, put the relevant option settings in an option file and pass the name of that file to mysqld.
For Unix and Unix-like systems, suppose that the option file name is /opt/mysql/mysql/etc/
my.cnf. Put these lines in the file:

[mysqld]
basedir=/opt/mysql/mysql
datadir=/opt/mysql/mysql/data

Then invoke mysqld as follows (enter the command on a single line with the --defaults-file
option first):

shell> bin/mysqld --defaults-file=/opt/mysql/mysql/etc/my.cnf
 --initialize --user=mysql

On Windows, suppose that C:\my.ini contains these lines:

[mysqld]
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.7
datadir=D:\\MySQLdata

Then invoke mysqld as follows (the --defaults-file option must be first):

C:\> bin/mysqld --defaults-file=C:\my.ini --initialize

When invoked with the --initialize or --initialize-insecure option, mysqld performs the
following initialization sequence.

Note

The server writes any messages to its standard error output. This may be
redirected to the error log, so look there if you do not see the messages on your
screen.

Initializing the Data Directory

193

On Windows, use the --console option to direct messages to the console.

1. The server checks for the existence of the data directory as follows:

• If no data directory exists, the server creates it.

• If a data directory exists and is not empty (that is, it contains files or subdirectories), the server
exits after producing an error message:

[ERROR] --initialize specified but the data directory exists. Aborting.

In this case, remove or rename the data directory and try again.

As of MySQL 5.7.11, an existing data directory is permitted to be nonempty if every entry either
has a name that begins with a period (.) or is named using an --ignore-db-dir option.

2. Within the data directory, the server creates the mysql system database and its tables, including
the grant tables, server-side help tables, and time zone tables. For a complete listing and
description of the grant tables, see Section 6.2, “The MySQL Access Privilege System”.

3. The server initializes the system tablespace and related data structures needed to manage InnoDB
tables.

Note

After mysqld sets up the InnoDB system tablespace, changes to some
tablespace characteristics require setting up a whole new instance.
This includes the file name of the first file in the system tablespace
and the number of undo logs. If you do not want to use the default
values, make sure that the settings for the innodb_data_file_path
and innodb_log_file_size configuration parameters are in place
in the MySQL configuration file before running mysqld. Also make
sure to specify as necessary other parameters that affect the creation
and location of InnoDB files, such as innodb_data_home_dir and
innodb_log_group_home_dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the --
defaults-extra-file option when you run mysqld.

4. The server creates a 'root'@'localhost' superuser account. The server's action with respect
to a password for this account depends on how you invoke it:

• With --initialize but not --initialize-insecure, the server generates a random
password, marks it as expired, and writes a message displaying the password:

[Warning] A temporary password is generated for root@localhost:
iTag*AfrH5ej

• With --initialize-insecure, (either with or without --initialize because --
initialize-insecure implies --initialize), the server does not generate a password or
mark it expired, and writes a warning message:

Warning] root@localhost is created with an empty password ! Please
consider switching off the --initialize-insecure option.

5. The server populates the server-side help tables if content is available (in the
fill_help_tables.sql file). The server does not populate the time zone tables; to do so, see
Section 10.6, “MySQL Server Time Zone Support”.

Initializing the Data Directory

194

6. If the --init-file option was given to name a file of SQL statements, the server executes the
statements in the file. This option enables you to perform custom bootstrapping sequences.

When the server operates in bootstrap mode, some functionality is unavailable that limits the
statements permitted in the file. These include statements that relate to account management (such
as CREATE USER or GRANT), replication, and global transaction identifiers.

7. The server exits.

After you initialize the data directory by starting the server with --initialize or --initialize-
insecure, start the server normally (that is, without either of those options) and assign the
'root'@'localhost' account a new password:

1. Start the server. For instructions, see Section 2.10.2, “Starting the Server”.

2. Connect to the server:

• If you used --initialize but not --initialize-insecure to initialize the data directory,
connect to the server as root using the random password that the server generated during the
initialization sequence:

shell> mysql -u root -p
Enter password: (enter the random root password here)

Look in the server error log if you do not know this password.

• If you used --initialize-insecure to initialize the data directory, connect to the server as
root without a password:

shell> mysql -u root --skip-password

3. After connecting, assign a new root password:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'new_password';

Note

The data directory initialization sequence performed by
the server does not substitute for the actions performed by
mysql_secure_installation or mysql_ssl_rsa_setup. See
Section 4.4.4, “mysql_secure_installation — Improve MySQL
Installation Security”, and Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”.

2.10.1.2 Initializing the Data Directory Manually Using mysql_install_db

This section describes how to initialize the data directory using mysql_install_db.

Note

The procedure described here is used on Unix and Unix-like systems
prior to MySQL 5.7.6. (For Windows, MySQL distributions include a data
directory with prebuilt tables in the mysql database.) As of MySQL 5.7.6,
mysql_install_db is deprecated. To initialize the data directory, use
the procedure described at Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”.

The following instructions assume that your current location is the MySQL installation directory,
represented here by BASEDIR:

Initializing the Data Directory

195

shell> cd BASEDIR

To initialize the data directory, invoke mysql_install_db. This program might be located under the
base directory in either bin or scripts, depending on your version of MySQL. If it is in scripts,
adjust the following commands appropriately.

shell> bin/mysql_install_db --user=mysql

It is important to make sure that the database directories and files are owned by the mysql login
account so that the server has read and write access to them when you run it later. To ensure this if
you run mysql_install_db as root, include the --user option as shown. Otherwise, execute the
program while logged in as mysql, in which case you can omit the --user option from the command.

The mysql_install_db command creates the server's data directory. Under the data directory,
it creates directories for the mysql database that holds the grant tables and (prior to MySQL 5.7.4)
a test database that you can use to test MySQL. The program also creates privilege table entries
for the initial account or accounts. For a complete listing and description of the grant tables, see
Section 6.2, “The MySQL Access Privilege System”.

It might be necessary to specify other options such as --basedir or --datadir if
mysql_install_db does not identify the correct locations for the installation directory or data
directory. For example:

shell> bin/mysql_install_db --user=mysql \
 --basedir=/opt/mysql/mysql \
 --datadir=/opt/mysql/mysql/data

If mysql_install_db generates a random password for the root account, start the server and
assign a new password:

1. Start the server (use the first command if your installation includes mysqld_safe, the second it if
includes systemd support):

shell> bin/mysqld_safe --user=mysql &
shell> systemctl start mysqld

Substitute the appropriate service name if it differs from mysqld; for example, mysql on SLES
systems.

2. Look in the $HOME/.mysql_secret file to find the random password that mysql_install_db
wrote there. Then connect to the server as root using that password:

shell> mysql -u root -h 127.0.0.1 -p
Enter password: (enter the random password here)

3. After connecting, assign a new root password:

mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('new_password');

After resetting the password, remove the .mysql_secret file; otherwise, if you run
mysql_secure_installation, that command may see the file and expire the root password
again as part of ensuring secure deployment.

If mysql_install_db did not generate a random password, you should still assign one. For
instructions, see Section 2.10.4, “Securing the Initial MySQL Accounts”. That section also describes
how to remove the test database, if mysql_install_db created one and you do not want it.

If you have trouble with mysql_install_db at this point, see Section 2.10.1.3, “Problems Running
mysql_install_db”.

Initializing the Data Directory

196

2.10.1.3 Problems Running mysql_install_db

The purpose of the mysql_install_db program is to initialize the data directory, including the tables
in the mysql system database. It does not overwrite existing MySQL privilege tables, and it does not
affect any other data.

To re-create your privilege tables, first stop the mysqld server if it is running. Then rename the
mysql directory under the data directory to save it, and run mysql_install_db. Suppose that
your current directory is the MySQL installation directory and that mysql_install_db is located in
the bin directory and the data directory is named data. To rename the mysql database and re-run
mysql_install_db, use these commands.

shell> mv data/mysql data/mysql.old
shell> bin/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after
displaying the following messages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the
directory XXXXXX named by the error message and should indicate why mysqld did not start. If you
do not understand what happened, include the log when you post a bug report. See Section 1.7,
“How to Report Bugs or Problems”.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been created
already. If so, there is no need to run mysql_install_db at all because it needs to be run only
once, when you first install MySQL.

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation
in a different location. For example, you might have a production installation, but you want to create
a second installation for testing purposes. Generally the problem that occurs when you try to run a
second server is that it tries to use a network interface that is in use by the first server. In this case,
you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.3, “Running Multiple MySQL Instances
on One Machine”.

• You do not have write access to the /tmp directory

If you do not have write access to create temporary files or a Unix socket file in the default location
(the /tmp directory) or the TMPDIR environment variable, if it has been set, an error occurs when
you run mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing
these commands prior to starting mysql_install_db or mysqld, where some_tmp_dir is the full
path name to some directory for which you have write permission:

Starting the Server

197

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

See Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”, and Section 2.12,
“Environment Variables”.

There are some alternatives to running the mysql_install_db program provided in the MySQL
distribution:

• If you want the initial privileges to be different from the standard defaults, use account-management
statements such as CREATE USER, GRANT, and REVOKE to change the privileges after the grant
tables have been set up. In other words, run mysql_install_db, and then use mysql -u root
mysql to connect to the server as the MySQL root user so that you can issue the necessary
statements. (See Section 13.7.1, “Account Management Statements”.)

To install MySQL on several machines with the same privileges, put the CREATE USER, GRANT,
and REVOKE statements in a file and execute the file as a script using mysql after running
mysql_install_db. For example:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

This enables you to avoid issuing the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You
might want to do this if you are just learning how to use CREATE USER, GRANT, and REVOKE and
have made so many modifications after running mysql_install_db that you want to wipe out the
tables and start over.

To re-create the grant tables, stop the server if it is running and remove the mysql database
directory. Then run mysql_install_db again.

2.10.2 Starting the Server

This section describes how start the server on Unix and Unix-like systems. (For Windows, see
Section 2.3.5.5, “Starting the Server for the First Time”.) For some suggested commands that you can
use to test whether the server is accessible and working properly, see Section 2.10.3, “Testing the
Server”.

Start the MySQL server like this if your installation includes mysqld_safe:

shell> bin/mysqld_safe --user=mysql &

Start the server like this if your installation includes systemd support:

shell> systemctl start mysqld

Substitute the appropriate service name if it differs from mysqld; for example, mysql on SLES
systems.

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure
this if you run mysqld_safe as root, include the --user option as shown. Otherwise, you should

Starting the Server

198

execute the program while logged in as mysql, in which case you can omit the --user option from the
command.

For further instructions for running MySQL as an unprivileged user, see Section 6.1.5, “How to Run
MySQL as a Normal User”.

If the command fails immediately and prints mysqld ended, look for information in the error log (which
by default is the host_name.err file in the data directory).

If the server is unable to access the data directory it starts or read the grant tables in the mysql
database, it writes a message to its error log. Such problems can occur if you neglected to create the
grant tables by initializing the data directory before proceeding to this step, or if you ran the command
that initializes the data directory without the --user option. Remove the data directory and run the
command with the --user option.

If you have other problems starting the server, see Section 2.10.2.1, “Troubleshooting Problems
Starting the MySQL Server”. For more information about mysqld_safe, see Section 4.3.2,
“mysqld_safe — MySQL Server Startup Script”. For more information about systemd support, see
Section 2.5.10, “Managing MySQL Server with systemd”.

2.10.2.1 Troubleshooting Problems Starting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server. For additional
suggestions for Windows systems, see Section 2.3.6, “Troubleshooting a Microsoft Windows MySQL
Server Installation”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start. Log files are located in the data directory
(typically C:\Program Files\MySQL\MySQL Server 5.7\data on Windows, /usr/local/
mysql/data for a Unix/Linux binary distribution, and /usr/local/var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host_name.err and
host_name.log, where host_name is the name of your server host. Then examine the last few
lines of these files. Use tail to display them:

shell> tail host_name.err
shell> tail host_name.log

• Specify any special options needed by the storage engines you are using. You can create a my.cnf
file and specify startup options for the engines that you plan to use. If you are going to use storage
engines that support transactional tables (InnoDB, NDB), be sure that you have them configured the
way you want before starting the server. If you are using InnoDB tables, see Section 14.3, “InnoDB
Configuration” for guidelines and Section 14.11, “InnoDB Startup Options and System Variables” for
option syntax.

Although storage engines use default values for options that you omit, Oracle recommends that
you review the available options and specify explicit values for any options whose defaults are not
appropriate for your installation.

• Make sure that the server knows where to find the data directory. The mysqld server uses this
directory as its current directory. This is where it expects to find databases and where it expects to
write log files. The server also writes the pid (process ID) file in the data directory.

The default data directory location is hardcoded when the server is compiled. To determine what
the default path settings are, invoke mysqld with the --verbose and --help options. If the data
directory is located somewhere else on your system, specify that location with the --datadir option
to mysqld or mysqld_safe, on the command line or in an option file. Otherwise, the server will not
work properly. As an alternative to the --datadir option, you can specify mysqld the location of
the base directory under which MySQL is installed with the --basedir, and mysqld looks for the
data directory there.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Starting the Server

199

To check the effect of specifying path options, invoke mysqld with those options followed by the --
verbose and --help options. For example, if you change location into the directory where mysqld
is installed and then run the following command, it shows the effect of starting the server with a base
directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be
the last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this
command:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

• Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must allow the server to read and modify them.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means
that the privileges of the data directory or its contents do not permit server access. In this case, you
change the permissions for the involved files and directories so that the server has the right to use
them. You can also start the server as root, but this raises security issues and should be avoided.

Change location into the data directory and check the ownership of the data directory and its
contents to make sure the server has access. For example, if the data directory is /usr/local/
mysql/var, use this command:

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use
for running the server, change their ownership to that account. If the account is named mysql, use
these commands:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running
on your system that manages application access to various parts of the file system. In this case,
reconfigure that software to enable mysqld to access the directories it uses during normal operation.

• Verify that the network interfaces the server wants to use are available.

If either of the following errors occur, it means that some other program (perhaps another mysqld
server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Testing the Server

200

Use ps to determine whether you have another mysqld server running. If so, shut down the server
before starting mysqld again. (If another server is running, and you really want to run multiple
servers, you can find information about how to do so in Section 5.3, “Running Multiple MySQL
Instances on One Machine”.)

If no other server is running, execute the command telnet your_host_name
tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple
of times. If you do not get an error message like telnet: Unable to connect to remote
host: Connection refused, some other program is using the TCP/IP port that mysqld is trying
to use. Track down what program this is and disable it, or tell mysqld to listen to a different port with
the --port option. In this case, specify the same non-default port number for client programs when
connecting to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks
connections to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, make sure that you have an entry in /etc/hosts
that looks like this:

127.0.0.1 localhost

• If you cannot get mysqld to start, try to make a trace file to find the problem by using the --debug
option. See Section 24.5.3, “The DBUG Package”.

2.10.3 Testing the Server

After the data directory is initialized and you have started the server, perform some simple tests to
make sure that it works satisfactorily. This section assumes that your current location is the MySQL
installation directory and that it has a bin subdirectory containing the MySQL programs used here. If
that is not true, adjust the command path names accordingly.

Alternatively, add the bin directory to your PATH environment variable setting. That enables your shell
(command interpreter) to find MySQL programs properly, so that you can run a program by typing only
its name, not its path name. See Section 4.2.10, “Setting Environment Variables”.

Use mysqladmin to verify that the server is running. The following commands provide simple tests to
check whether the server is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

If you cannot connect to the server, specify a -u root option to connect as root. If you have
assigned a password for the root account already, you'll also need to specify -p on the command line
and enter the password when prompted. For example:

shell> bin/mysqladmin -u root -p version
Enter password: (enter root password here)

The output from mysqladmin version varies slightly depending on your platform and version of
MySQL, but should be similar to that shown here:

shell> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 5.7.11, for pc-linux-gnu on i686
...

Server version 5.7.11
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock

Testing the Server

201

Uptime: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

Verify that you can shut down the server (include a -p option if the root account has a password
already):

shell> bin/mysqladmin -u root shutdown

Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld
directly. For example:

shell> bin/mysqld_safe --user=mysql &

If mysqld_safe fails, see Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”.

Run some simple tests to verify that you can retrieve information from the server. The output should be
similar to that shown here.

Use mysqlshow to see what databases exist:

shell> bin/mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+

The list of installed databases may vary, but will always include the minimum of mysql and
information_schema.

If you specify a database name, mysqlshow displays a list of the tables within the database:

shell> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| engine_cost |
| event |
| func |
| general_log |
| gtid_executed |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| plugin |
| proc |
| procs_priv |
| proxies_priv |
| server_cost |
| servers |
| slave_master_info |

Securing the Initial MySQL Accounts

202

| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

shell> bin/mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host | plugin |
+------+-----------+-----------------------+
| root | localhost | mysql_native_password |
+------+-----------+-----------------------+

At this point, your server is running and you can access it. To tighten security if you have not yet
assigned a password to the initial account, follow the instructions in Section 2.10.4, “Securing the Initial
MySQL Accounts”.

For more information about mysql, mysqladmin, and mysqlshow, see Section 4.5.1, “mysql —
The MySQL Command-Line Tool”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL
Server”, and Section 4.5.7, “mysqlshow — Display Database, Table, and Column Information”.

2.10.4 Securing the Initial MySQL Accounts

The MySQL installation process involves initializing the data directory, including the mysql database
containing the grant tables that define MySQL accounts. For details, see Section 2.10, “Postinstallation
Setup and Testing”.

This section describes how to assign passwords to the initial accounts created during the MySQL
installation procedure, if you have not already done so.

Note

On Windows, you can also perform the process described in this section during
installation with MySQL Installer (see Section 2.3.3, “Installing MySQL on
Microsoft Windows Using MySQL Installer”). On all platforms, the MySQL
distribution includes mysql_secure_installation, a command-line utility
that automates much of the process of securing a MySQL installation. MySQL
Workbench is available on all platforms, and also offers the ability to manage
user accounts (see Chapter 26, MySQL Workbench).

Passwords may already be assigned under these circumstances:

• On Windows, installations performed using MySQL Installer give you the option of assigning
passwords.

• As of MySQL 5.7.6, if you initialized the data directory manually using mysqld --initialize and
followed the instructions in Section 2.10.1.1, “Initializing the Data Directory Manually Using mysqld”,
you should have assigned a password to the initial account.

The mysql.user grant table defines the initial MySQL user accounts and their access privileges.
Current versions of MySQL 5.7 create only a 'root'@'localhost' account, but for earlier versions,
there might be multiple accounts such as described here:

• Some accounts have the user name root. These are superuser accounts that have all privileges
and can do anything. If these root accounts have empty passwords, anyone can connect to the
MySQL server as root without a password and be granted all privileges.

Securing the Initial MySQL Accounts

203

• On Windows, root accounts are created that permit connections from the local host only.
Connections can be made by specifying the host name localhost, the IP address 127.0.0.1,
or the IPv6 address ::1. If the user selects the Enable root access from remote machines
option during installation, the Windows installer creates another root account that permits
connections from any host.

• On Unix, each root account permits connections from the local host. Connections can be made
by specifying the host name localhost, the IP address 127.0.0.1, the IPv6 address ::1, or
the actual host name or IP address.

• The 'root'@'localhost' account also has a row in the mysql.proxies_priv table that
enables granting the PROXY privilege for ''@'', that is, for all users and all hosts. This enables
root to set up proxy users, as well as to delegate to other accounts the authority to set up proxy
users. See Section 6.3.10, “Proxy Users”.

• If accounts for anonymous users were created, these have an empty user name. The anonymous
accounts have no password, so anyone can use them to connect to the MySQL server.

• On Windows, there is one anonymous account that permits connections from the local host.
Connections can be made by specifying a host name of localhost.

• On Unix, each anonymous account permits connections from the local host. Connections can be
made by specifying a host name of localhost for one of the accounts, or the actual host name
or IP address for the other.

Checking Which Accounts Exist

Start the server if it is not running. For instructions, see Section 2.10.2, “Starting the Server”.

Assuming that no root password has been assigned, you should be able to connect to the server as
root without one:

shell> mysql -u root

Once connected, determine which accounts exist in the mysql.user table and whether their
passwords are empty:

• As of MySQL 5.7.6, use this statement:

mysql> SELECT User, Host, HEX(authentication_string) FROM mysql.user;

The statement uses HEX() because passwords stored in the authentication_string column
might contain binary data that does not display well.

• Before MySQL 5.7.6, use this statement:

mysql> SELECT User, Host, Password FROM mysql.user;

The SELECT statement results can vary depending on your version of MySQL and installation method.
The following example output includes several root and anonymous-user accounts, none of which
have passwords:

+------+--------------------+----------+
| User | Host | Password |
+------+--------------------+----------+
root	localhost	
root	myhost.example.com	
root	127.0.0.1	
root	::1	

Securing the Initial MySQL Accounts

204

| | localhost | |
| | myhost.example.com | |
+------+--------------------+----------+

If the output on your system shows any accounts with empty passwords, your MySQL installation is
unprotected until you do something about it:

• Assign a password to each MySQL root account that does not have one.

• To prevent clients from connecting as anonymous users without a password, either assign a
password to each anonymous account or remove the accounts.

In addition, some installation methods create a test database and add rows to the mysql.db table
that permit all accounts to access that database and other databases with names that start with test_.
This is true even for accounts that otherwise have no special privileges such as the default anonymous
accounts. This is convenient for testing but inadvisable on production servers. Administrators who want
database access restricted only to accounts that have permissions granted explicitly for that purpose
should remove these mysql.db table rows.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for any
root accounts, then for anonymous accounts. The instructions also cover how to remove anonymous
accounts, should you prefer not to permit anonymous access at all, and describe how to remove
permissive access to test databases.

Replace new_password in the examples with the password that you want to use. Replace
host_name with the name of the server host. You can determine this name from the output of the
SELECT statement shown earlier. For the output shown, host_name is myhost.example.com.

Note

For additional information about setting passwords, see Section 6.3.5,
“Assigning Account Passwords”. If you forget your root password after setting
it, see Section B.5.3.2, “How to Reset the Root Password”.

To set up additional accounts, see Section 6.3.2, “Adding User Accounts”.

You might want to defer setting the passwords until later, to avoid the need to specify them while you
perform additional setup or testing. However, be sure to set them before using your installation for
production purposes.

Assigning root Account Passwords

To assign a password to an account, connect to the server as root using the mysql client and issue
the appropriate SQL statement:

• As of MySQL 5.7.6, use ALTER USER:

mysql> ALTER USER user IDENTIFIED BY 'new_password';

• Before 5.7.6, use SET PASSWORD:

mysql> SET PASSWORD FOR user = PASSWORD('new_password');

The following instructions use ALTER USER. If your version of MySQL is older than 5.7.6, substitute
equivalent SET PASSWORD statements.

To assign the 'root'@'localhost' account a password, connect to the server as root:

shell> mysql -u root

Then issue an ALTER USER statement:

Securing the Initial MySQL Accounts

205

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'new_password';

Issue a similar ALTER USER statement for any other root account present in your mysql.user table
that has no password. (Vary the host name appropriately.)

After an account has been assigned a password, you must supply that password whenever you
connect to the server using the account. For example, to shut down the server with mysqladmin, use
this command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

The mysql commands in the following instructions include a -p option based on the assumption that
you have assigned the root account password using the preceding instructions and must specify that
password when connecting to the server.

Assigning Anonymous Account Passwords

In MySQL 5.7, installation methods that create anonymous accounts tend to be for early versions for
which ALTER USER cannot be used to assign passwords. Consequently, the instructions in this section
use SET PASSWORD.

To assign the ''@'localhost' anonymous account a password, connect to the server as root:

shell> mysql -u root -p
Enter password: (enter root password here)

Then issue a SET PASSWORD statement:

mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('new_password');

Issue a similar SET PASSWORD statement for any other anonymous account present in your
mysql.user table that has no password. (Vary the host name appropriately.)

Removing Anonymous Accounts

If you prefer to remove any anonymous accounts rather than assigning them passwords, use DROP
USER. To drop the ''@'localhost' account, connect to the server as root:

shell> mysql -u root -p
Enter password: (enter root password here)

Then issue a DROP USER statement:

mysql> DROP USER ''@'localhost';

Issue a similar DROP USER statement for any other anonymous account that you want to drop. (Vary
the host name appropriately.)

Securing Test Databases

Some installation methods create a test database and set up privileges for accessing it. If that is
true on your system, the mysql.db table will contain rows that permit access by any user to the test
database and other databases with names that start with test_. (These rows have an empty User
column value, which for access-checking purposes matches any user name.) This means that such
databases can be used even by accounts that otherwise possess no privileges. If you want to remove
any-user access to test databases, do so as follows:

Starting and Stopping MySQL Automatically

206

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DELETE FROM mysql.db WHERE Db LIKE 'test%';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the privilege change
remains unnoticed by the server until you restart it.

With the preceding change, only users who have global database privileges or privileges granted
explicitly for the test database can use it. However, if you prefer that the database not exist at all,
drop it:

mysql> DROP DATABASE test;

2.10.5 Starting and Stopping MySQL Automatically

This section discusses methods for starting and stopping the MySQL server.

Generally, you start the mysqld server in one of these ways:

• Invoke mysqld directly. This works on any platform.

• On Windows, you can set up a MySQL service that runs automatically when Windows starts. See
Section 2.3.5.8, “Starting MySQL as a Windows Service”.

• On Unix and Unix-like systems, you can invoke mysqld_safe, which tries to determine the proper
options for mysqld and then runs it with those options. See Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.

• On Linux systems that support systemd, you can use it to control the server. See Section 2.5.10,
“Managing MySQL Server with systemd”.

• On systems that use System V-style run directories (that is, /etc/init.d and run-level specific
directories), invoke mysql.server. This script is used primarily at system startup and shutdown. It
usually is installed under the name mysql. The mysql.server script starts the server by invoking
mysqld_safe. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• On OS X, install a launchd daemon to enable automatic MySQL startup at system startup. The
daemon starts the server by invoking mysqld_safe. For details, see Section 2.4.3, “Installing a
MySQL Launch Daemon”. A MySQL Preference Pane also provides control for starting and stopping
MySQL through the System Preferences. See Section 2.4.4, “Installing and Using the MySQL
Preference Pane”.

• On Solaris/OpenSolaris, use the service management framework (SMF) system to initiate and
control MySQL startup. For more information, see Section 2.7.2, “Installing MySQL on OpenSolaris
Using IPS”.

systemd, the mysqld_safe and mysql.server scripts, Solaris/OpenSolaris SMF, and the OS X
Startup Item (or MySQL Preference Pane) can be used to start the server manually, or automatically
at system startup time. systemd, mysql.server, and the Startup Item also can be used to stop the
server.

The following table shows which option groups the server and startup scripts read from option files.

Table 2.12 MySQL Startup Scripts and Supported Server Option Groups

Script Option Groups

mysqld [mysqld], [server], [mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

Upgrading or Downgrading MySQL

207

[mysqld-major_version] means that groups with names like [mysqld-5.6] and
[mysqld-5.7] are read by servers having versions 5.6.x, 5.7.x, and so forth. This feature can be
used to specify options that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. To be current, you should update your option
files to use the [mysql.server] and [mysqld_safe] groups instead.

For more information on MySQL configuration files and their structure and contents, see Section 4.2.6,
“Using Option Files”.

2.11 Upgrading or Downgrading MySQL

This section describes the steps to upgrade or downgrade a MySQL installation.

Upgrading is a common procedure, as you pick up bug fixes within the same MySQL release series
or significant features between major MySQL releases. You perform this procedure first on some test
systems to make sure everything works smoothly, and then on the production systems.

Downgrading is less common. Typically, you undo an upgrade because of some compatibility or
performance issue that occurs on a production system, and was not uncovered during initial upgrade
verification on the test systems. As with the upgrade procedure, perform and verify the downgrade
procedure on some test systems first, before using it on a production system.

2.11.1 Upgrading MySQL

This section describes how to upgrade to a new MySQL version.

• Supported Upgrade Methods

• Supported Upgrade Paths

• Before You Begin

• Performing an In-place Upgrade

• Performing a Logical Upgrade

• Upgrade Troubleshooting

Supported Upgrade Methods

Supported upgrade methods include:

• In-place Upgrade: Involves shutting down the old MySQL version, replacing the old MySQL binaries
or packages with the new ones, restarting MySQL on the existing data directory, and running
mysql_upgrade.

• Logical Upgrade: Involves exporting existing data from the old MySQL version using mysqldump,
installing the new MySQL version, loading the dump file into the new MySQL version, and running
mysql_upgrade.

For in-place and logical upgrade procedures, see Performing an In-place Upgrade, and Performing a
Logical Upgrade.

If you run MySQL Server on Windows, refer to the upgrade procedure described in Section 2.3.8,
“Upgrading MySQL on Windows”.

If your current MySQL installation was installed on an Enterprise Linux platform or Fedora using the
MySQL Yum Repository, see Section 2.11.1.2, “Upgrading MySQL with the MySQL Yum Repository”.

Upgrading MySQL

208

If your current MySQL installation was installed on Ubuntu using the MySQL APT repository, see
Section 2.11.1.3, “Upgrading MySQL with the MySQL APT Repository”.

Supported Upgrade Paths

Unless otherwise documented, the following upgrade paths are supported:

• Upgrading from a release series version to a newer release series version is supported. For
example, upgrading from 5.7.9 to 5.7.10 is supported. Skipping release series versions is also
supported. For example, upgrading from 5.7.9 to 5.7.11 is supported.

• Upgrading one release level is supported. For example, upgrading from 5.6 to 5.7 is supported.
Upgrading to the latest release series version is recommended before upgrading to the next release
level. For example, upgrade to the latest 5.6 release before upgrading to 5.7.

• Upgrading more than one release level is supported, but only if you upgrade one release level
at a time. For example, if you currently are running MySQL 5.5 and wish to upgrade to a newer
series, upgrade to MySQL 5.6 first before upgrading to MySQL 5.7, and so forth. For information on
upgrading to MySQL 5.6 see the MySQL 5.6 Reference Manual.

• Direct upgrades that skip a release level (for example, upgrading directly from MySQL 5.5 to 5.7) are
not recommended or supported.

The following conditions apply to all upgrade paths:

• Upgrades between General Availability (GA) status releases are supported.

• Upgrades between milestone releases (or from a milestone release to a GA release) are not
supported. For example, upgrading from 5.7.7 to 5.7.8 is not supported, as neither are GA status
releases.

• For upgrades between versions of a MySQL release series that has reached GA status, you can
move the MySQL format files and data files between different versions on systems with the same
architecture. This is not necessarily true for upgrades between milestone releases. Use of milestone
releases is at your own risk.

Before You Begin

Before upgrading, review the following information and perform the recommended steps:

• Before upgrading, protect your data by creating a backup of your current databases and log files.
The backup should include the mysql database, which contains the MySQL system tables. See
Section 7.2, “Database Backup Methods”.

• Review the Release Notes which provide information about features that are new in the MySQL
5.7 or differ from those found in earlier MySQL releases. Some of these changes may result in
incompatibilities.

For listings of MySQL server variables and options that have been added, deprecated, or removed
in MySQL 5.7, see Section 1.5, “Server and Status Variables and Options Added, Deprecated, or
Removed in MySQL 5.7”.

• Review Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.7”. This section describes
changes that may require action before or after upgrading.

• Check Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, to see whether
changes to table formats or to character sets or collations were made between your current
version of MySQL and the version to which you are upgrading. If such changes have resulted in
an incompatibility between MySQL versions, you will need to upgrade the affected tables using the
instructions in Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Upgrading MySQL

209

• If you use replication, review Section 17.4.3, “Upgrading a Replication Setup”.

• If you use XA transactions with InnoDB, run XA RECOVER before upgrading to check for
uncommitted XA transactions. If results are returned, either commit or rollback the XA transactions
by issuing an XA COMMIT or XA ROLLBACK statement.

• If your MySQL installation contains a large amount of data that might take a long time to convert after
an in-place upgrade, you might find it useful to create a “dummy” database instance for assessing
what conversions might be needed and the work involved to perform them. Make a copy of your
MySQL instance that contains a full copy of the mysql database, plus all other databases without
data. Run your upgrade procedure on this dummy instance to see what actions might be needed
so that you can better evaluate the work involved when performing actual data conversion on your
original database instance.

• Rebuilding and reinstalling the Perl DBD::mysql module whenever you install or upgrade to a new
release of MySQL is recommended. The same applies to other MySQL interfaces as well, such as
PHP mysql extensions and the Python MySQLdb module.

Performing an In-place Upgrade

This section describes how to perform an in-place upgrade. Review Before you Begin before
proceeding.

Note

If you upgrade an installation originally produced by installing multiple RPM
packages, upgrade all the packages, not just some. For example, if you
previously installed the server and client RPMs, do not upgrade just the server
RPM.

To perform an in-place upgrade:

1. Review the changes described in Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.7” for
steps to be performed before upgrading.

2. Configure MySQL to perform a slow shutdown by setting innodb_fast_shutdown to 0. For
example:

shell> bin/mysql -u root -p password --execute="set global innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting
down, which ensures that data files are fully prepared in case of file format differences between
releases.

3. Shut down the old MySQL server. For example:

shell> bin/mysqladmin -u root -p password shutdown

4. Upgrade the MySQL binaries or packages in place (replace the old binaries with the new ones).

5. Start the MySQL 5.7 server, using the existing data directory. For example:

shell> bin/mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

6. Run mysql_upgrade. For example:

shell> bin/mysql_upgrade -u root -p password

mysql_upgrade examines all tables in all databases for incompatibilities with the current version
of MySQL. mysql_upgrade also upgrades the system tables so that you can take advantage of
new privileges or capabilities.

Upgrading MySQL

210

Note

mysql_upgrade should not be used when the server is running with --
gtid-mode=ON. See GTID mode and mysql_upgrade for more information.

mysql_upgrade does not upgrade the contents of the help tables. For
upgrade instructions, see Section 5.1.10, “Server-Side Help”.

Performing a Logical Upgrade

This section describes how to perform a logical upgrade. Review Before you Begin before proceeding.

To perform a logical upgrade:

1. Review the changes described in Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.7” for
steps to be performed before upgrading.

2. Export your existing data from the previous MySQL version:

shell> mysqldump --add-drop-table --routines --events --add-drop-table
 -> --all-databases --force > data-for-upgrade.sql

Note

Use the --routines and --events options with mysqldump (as shown
above) if your databases include stored programs. The --all-databases
option includes all databases in the dump, including the mysql database
that holds the system tables.

Important

If you have tables that contain generated columns, use the mysqldump
utility provided with MySQL 5.7.9 or higher to create your dump files.
The mysqldump utility provided in earlier releases uses incorrect syntax
for generated column definitions (Bug #20769542). You can use the
INFORMATION_SCHEMA.COLUMNS table to identify tables with generated
columns.

3. Shut down the old MySQL server. For example:

shell> bin/mysqladmin -u root -p password shutdown

4. Install MySQL 5.7. For installation instructions, see Chapter 2, Installing and Upgrading MySQL.

5. Initialize a new data directory:

shell> mysqld --initialize --datadir=/path/to/5.7-datadir

Copy the temporary 'root'@'localhost' password printed to your screen or written to your
error log for later use.

6. Start the MySQL 5.7 server, using the new data directory. For example:

shell> bin/mysqld_safe --user=mysql --datadir=/path/to/5.7-datadir

7. Set the root password:

shell> mysql -u root -p
Enter password: **** <- enter temporary root password
mysql> ALTER USER USER() IDENTIFIED BY 'your new password';

Upgrading MySQL

211

8. Load the previously created dump file into the new MySQL server. For example:

shell> bin/mysql -u root -p password --execute="source data-for-upgrade.sql" --force

9. Run mysql_upgrade. For example:

shell> bin/mysql_upgrade -u root -p password

mysql_upgrade examines all tables in all databases for incompatibilities with the current version
of MySQL. mysql_upgrade also upgrades the system tables so that you can take advantage of
new privileges or capabilities.

Note

mysql_upgrade should not be used when the server is running with --
gtid-mode=ON. See GTID mode and mysql_upgrade for more information.

mysql_upgrade does not upgrade the contents of the help tables. For
upgrade instructions, see Section 5.1.10, “Server-Side Help”.

10. Configure MySQL to perform a slow shutdown by setting innodb_fast_shutdown to 0. For
example:

shell> bin/mysql -u root -p password --execute="set global innodb_fast_shutdown=0"

11. Shut down and restart the MySQL server to ensure a clean shutdown and startup. For example:

shell> bin/mysqladmin -u root -p password shutdown
shell> bin/mysqld_safe --user=mysql --datadir=/path/to/5.7-datadir

Upgrade Troubleshooting

• If problems occur, such as that the new mysqld server does not start or that you cannot connect
without a password, verify that you do not have an old my.cnf file from your previous installation.
You can check this with the --print-defaults option (for example, mysqld --print-
defaults). If this command displays anything other than the program name, you have an active
my.cnf file that affects server or client operation.

• If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, you probably have used old header or library
files when compiling your programs. In this case, check the date for your mysql.h file and
libmysqlclient.a library to verify that they are from the new MySQL distribution. If not, recompile
your programs with the new headers and libraries. Recompilation might also be necessary for
programs compiled against the shared client library if the library major version number has changed
(for example from libmysqlclient.so.15 to libmysqlclient.so.16.

• If you have created a user-defined function (UDF) with a given name and upgrade MySQL to a
version that implements a new built-in function with the same name, the UDF becomes inaccessible.
To correct this, use DROP FUNCTION to drop the UDF, and then use CREATE FUNCTION to
re-create the UDF with a different nonconflicting name. The same is true if the new version of
MySQL implements a built-in function with the same name as an existing stored function. See
Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

2.11.1.1 Changes Affecting Upgrades to MySQL 5.7

Before upgrading to MySQL 5.7, review the changes described in this section to identify upgrade
issues that apply to your current MySQL installation and applications.

Note

In addition to the changes outlined in this section, review the Release Notes and
other important information outlined in Before You Begin.

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Upgrading MySQL

212

Changes marked as either Known issue or Incompatible change are incompatibilities with earlier
versions of MySQL, and may require your attention before you upgrade. Our aim is to avoid these
changes, but occasionally they are necessary to correct problems that would be worse than an
incompatibility between releases. If any upgrade issue applicable to your installation involves an
incompatibility that requires special handling, follow the instructions given in the incompatibility
description. Sometimes this involves dumping and reloading tables, or use of a statement such as
CHECK TABLE or REPAIR TABLE.

For dump and reload instructions, see Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”. Any
procedure that involves REPAIR TABLE with the USE_FRM option must be done before upgrading. Use
of this statement with a version of MySQL different from the one used to create the table (that is, using
it after upgrading) may damage the table. See Section 13.7.2.5, “REPAIR TABLE Syntax”.

• Configuration Changes

• System Table Changes

• Server Changes

• InnoDB Changes

• SQL Changes

Configuration Changes

• Incompatible change: The INFORMATION_SCHEMA has tables that contain system and status
variable information (see Section 20.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES
and SESSION_VARIABLES Tables”, and Section 20.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”). As of MySQL 5.7.6, the Performance Schema
also contains system and status variable tables (see Section 21.9.12, “Performance Schema
System Variable Tables”, and Section 21.9.13, “Performance Schema Status Variable Tables”). The
Performance Schema tables are intended to replace the INFORMATION_SCHEMA tables, which are
deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.

For advice on migrating away from the INFORMATION_SCHEMA tables to the Performance Schema
tables, see Section 21.17, “Migrating to Performance Schema System and Status Variable Tables”.
To assist in the migration, you can use the show_compatibility_56 system variable, which
affects how system and status variable information is provided by the INFORMATION_SCHEMA and
Performance Schema tables, and also by the SHOW VARIABLES and SHOW STATUS statements.
show_compatibility_56 is enabled by default in 5.7.6 and 5.7.7, and disabled by default in
MySQL 5.7.8.

For details about the effects of show_compatibility_56, see Section 5.1.4, “Server System
Variables” For better understanding, it is strongly recommended that you read also these sections:

• Section 21.9.12, “Performance Schema System Variable Tables”

• Section 21.9.13, “Performance Schema Status Variable Tables”

• Section 21.9.14.11, “Performance Schema Status Variable Summary Tables”

• Incompatible change: As of MySQL 5.7.6, for Linux systems on which MySQL is installed
using RPM packages, server startup and shutdown now is managed using systemd rather than
mysqld_safe, and mysqld_safe is no longer installed. This may require some adjustment to
the manner in which you specify server options. For details, see Section 2.5.10, “Managing MySQL
Server with systemd”.

• Incompatible change: In MySQL 5.7.5, these SQL mode changes were made:

• Strict SQL mode for transactional storage engines (STRICT_TRANS_TABLES) is now enabled by
default.

Upgrading MySQL

213

• Implementation of the ONLY_FULL_GROUP_BY SQL mode has been made more sophisticated,
to no longer reject deterministic queries that previously were rejected. In consequence,
ONLY_FULL_GROUP_BY is now enabled by default, to prohibit nondeterministic queries containing
expressions not guaranteed to be uniquely determined within a group.

• The changes to the default SQL mode result in a default sql_mode system variable
value with these modes enabled: ONLY_FULL_GROUP_BY, STRICT_TRANS_TABLES,
NO_ENGINE_SUBSTITUTION.

• The ONLY_FULL_GROUP_BY mode is also now included in the modes comprised by the ANSI SQL
mode.

If you find that having ONLY_FULL_GROUP_BY enabled causes queries for existing applications to be
rejected, either of these actions should restore operation:

• If it is possible to modify an offending query, do so, either so that nondeterministic nonaggregated
columns are functionally dependent on GROUP BY columns, or by referring to nonaggregated
columns using ANY_VALUE().

• If it is not possible to modify an offending query (for example, if it is generated by a third-
party application), set the sql_mode system variable at server startup to not enable
ONLY_FULL_GROUP_BY.

For more information about SQL modes and GROUP BY queries, see Section 5.1.7, “Server SQL
Modes”, and Section 12.20.3, “MySQL Handling of GROUP BY”.

System Table Changes

• Incompatible change: The Password column of the mysql.user table was removed in MySQL
5.7.6. All credentials are stored in the authentication_string column, including those formerly
stored in the Password column. If performing an in-place upgrade to MySQL 5.7.6 or later, run
mysql_upgrade as directed by the in-place upgrade procedure to migrate the Password column
contents to the authentication_string column.

If performing a logical upgrade using a mysqldump dump file from a pre-5.7.6 MySQL installation,
you must observe these conditions for the mysqldump command used to generate the dump file:

• You must include the --add-drop-table option

• You must not include the --flush-privileges option

As outlined in the logical upgrade procedure, load the pre-5.7.6 dump file into the 5.7.6 (or later)
server before running mysql_upgrade.

Server Changes

• Incompatible change: As of MySQL 5.7.5, support for passwords that use the older pre-4.1
password hashing format is removed, which involves the following changes. Applications that use
any feature no longer supported must be modified.

• The mysql_old_password authentication plugin is removed. Accounts that use this plugin
are disabled at startup and the server writes an “unknown plugin” message to the error log. For
instructions on upgrading accounts that use this plugin, see Section 6.3.9.3, “Migrating Away from
Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

• The --secure-auth option to the server and client programs is the default, but is now a no-op. It
is deprecated and will be removed in a future MySQL release.

• The --skip-secure-auth option to the server and client programs is no longer supported and
using it produces an error.

Upgrading MySQL

214

• The secure_auth system variable permits only a value of 1; a value of 0 is no longer permitted.

• For the old_passwords system variable, a value of 1 (produce pre-4.1 hashes) is no longer
permitted.

• The OLD_PASSWORD() function is removed.

• Incompatible change: In MySQL 5.6.6, the YEAR(2) data type was deprecated. In MySQL 5.7.5,
support for YEAR(2) is removed. Once you upgrade to MySQL 5.7.5 or newer, any remaining
YEAR(2) columns must be converted to YEAR(4) to become usable again. For conversion
strategies, see Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”. Running
mysql_upgrade after upgrading is one of the possible conversion strategies.

• Incompatible change: As of MySQL 5.7.2, the server requires account rows in the mysql.user
table to have a nonempty plugin column value and disables accounts with an empty value. This
requires that you upgrade your mysql.user table to fill in all plugin values. As of MySQL 5.7.6,
use this procedure:

If you plan to upgrade using the data directory from your existing MySQL installation:

1. Stop the old (MySQL 5.6) server

2. Upgrade the MySQL binaries in place (replace the old binaries with the new ones)

3. Start the MySQL 5.7 server normally (no special options)

4. Run mysql_upgrade to upgrade the system tables

5. Restart the MySQL 5.7 server

If you plan to upgrade by reloading a dump file generated from your existing MySQL installation:

1. To generate the dump file, run mysqldump with the --add-drop-table option and without the
--flush-privileges option

2. Stop the old (MySQL 5.6) server

3. Upgrade the MySQL binaries in place (replace the old binaries with the new ones)

4. Start the MySQL 5.7 server normally (no special options)

5. Reload the dump file (mysql < dump_file)

6. Run mysql_upgrade to upgrade the system tables

7. Restart the MySQL 5.7 server

Before MySQL 5.7.6, the procedure is more involved:

If you plan to upgrade using the data directory from your existing MySQL installation:

1. Stop the old (MySQL 5.6) server

2. Upgrade the MySQL binaries in place (replace the old binaries with the new ones)

3. Restart the server with the --skip-grant-tables option to disable privilege checking

4. Run mysql_upgrade to upgrade the system tables

5. Restart the server normally (without --skip-grant-tables)

Upgrading MySQL

215

If you plan to upgrade by reloading a dump file generated from your existing MySQL installation:

1. To generate the dump file, run mysqldump without the --flush-privileges option

2. Stop the old (MySQL 5.6) server

3. Upgrade the MySQL binaries in place (replace the old binaries with the new ones)

4. Restart the server with the --skip-grant-tables option to disable privilege checking

5. Reload the dump file (mysql < dump_file)

6. Run mysql_upgrade to upgrade the system tables

7. Restart the server normally (without --skip-grant-tables)

mysql_upgrade runs by default as the MySQL root user. For the preceding procedures, if the
root password is expired when you run mysql_upgrade, you will see a message that your
password is expired and that mysql_upgrade failed as a result. To correct this, reset the root
password to unexpire it and run mysql_upgrade again:

shell> mysql -u root -p
Enter password: **** <- enter root password here
mysql> ALTER USER USER() IDENTIFIED BY 'root-password'; # MySQL 5.7.6 and up
mysql> SET PASSWORD = PASSWORD('root-password'); # Before MySQL 5.7.6
mysql> quit

shell> mysql_upgrade -p
Enter password: **** <- enter root password here

The password-resetting statement normally does not work if the server is started with --skip-
grant-tables, but the first invocation of mysql_upgrade flushes the privileges, so when you run
mysql, the statement is accepted.

If mysql_upgrade itself expires the root password, you will need to reset it password again in the
same manner.

After following the preceding instructions, DBAs are advised also to convert accounts that use the
mysql_old_password authentication plugin to use mysql_native_password instead, because
support for mysql_old_password has been removed. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password
Plugin”.

• Incompatible change: It is possible for a column DEFAULT value to be valid for the sql_mode
value at table-creation time but invalid for the sql_mode value when rows are inserted or updated.
Example:

SET sql_mode = '';
CREATE TABLE t (d DATE DEFAULT 0);
SET sql_mode = 'NO_ZERO_DATE,STRICT_ALL_TABLES';
INSERT INTO t (d) VALUES(DEFAULT);

In this case, 0 should be accepted for the CREATE TABLE but rejected for the INSERT. However,
previously the server did not evaluate DEFAULT values used for inserts or updates against the
current sql_mode. In the example, the INSERT succeeds and inserts '0000-00-00' into the DATE
column.

As of MySQL 5.7.2, the server applies the proper sql_mode checks to generate a warning or error
at insert or update time.

Upgrading MySQL

216

A resulting incompatibility for replication if you use statement-based logging
(binlog_format=STATEMENT) is that if a slave is upgraded, a nonupgraded master will execute
the preceding example without error, whereas the INSERT will fail on the slave and replication will
stop.

To deal with this, stop all new statements on the master and wait until the slaves catch up. Then
upgrade the slaves followed by the master. Alternatively, if you cannot stop new statements,
temporarily change to row-based logging on the master (binlog_format=ROW) and wait until all
slaves have processed all binary logs produced up to the point of this change. Then upgrade the
slaves followed by the master and change the master back to statement-based logging.

• Incompatible change: Several changes were made to the audit log plugin for better compatibility
with Oracle Audit Vault. For upgrading purpose, the main issue is that the default format of the
audit log file has changed: Information within <AUDIT_RECORD> elements previously written using
attributes now is written using subelements.

Example of old <AUDIT_RECORD> format:

<AUDIT_RECORD
 TIMESTAMP="2013-04-15T15:27:27"
 NAME="Query"
 CONNECTION_ID="3"
 STATUS="0"
 SQLTEXT="SELECT 1"
/>

Example of new format:

<AUDIT_RECORD>
 <TIMESTAMP>2013-04-15T15:27:27 UTC</TIMESTAMP>
 <RECORD_ID>3998_2013-04-15T15:27:27</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>select</COMMAND_CLASS>
 <SQLTEXT>SELECT 1</SQLTEXT>
</AUDIT_RECORD>

If you previously used an older version of the audit log plugin, use this procedure to avoid writing
new-format log entries to an existing log file that contains old-format entries:

1. Stop the server.

2. Rename the current audit log file manually. This file will contain only old-format log entries.

3. Update the server and restart it. The audit log plugin will create a new log file, which will contain
only new-format log entries.

For information about the audit log plugin, see Section 6.3.15, “MySQL Enterprise Audit Log Plugin”.

InnoDB Changes

• Incompatible change: To simplify InnoDB tablespace discovery during crash recovery,
new redo log record types were introduced in MySQL 5.7.5. This enhancement changes the
redo log format. Before performing an in-place upgrade, perform a clean shutdown using an
innodb_fast_shutdown setting of 0 or 1. A slow shutdown using innodb_fast_shutdown=0 is
a recommended step in Performing an In-place Upgrade.

Upgrading MySQL

217

• Incompatible change: MySQL 5.7.8 and 5.7.9 undo logs may contain insufficient information
about spatial columns, which could result in a upgrade failure (Bug #21508582). Before
performing an in-place upgrade from MySQL 5.7.8 or 5.7.9 to 5.7.10 or higher, perform a slow
shutdown using innodb_fast_shutdown=0 to clear the undo logs. A slow shutdown using
innodb_fast_shutdown=0 is a recommended step in Performing an In-place Upgrade.

• Incompatible change: MySQL 5.7.8 undo logs may contain insufficient information about virtual
columns and virtual column indexes, which could result in a upgrade failure (Bug #21869656).
Before performing an in-place upgrade from MySQL 5.7.8 to MySQL 5.7.9 or higher, perform a
slow shutdown using innodb_fast_shutdown=0 to clear the undo logs. A slow shutdown using
innodb_fast_shutdown=0 is a recommended step in Performing an In-place Upgrade.

• Incompatible change: As of MySQL 5.7.9, the redo log header of the first redo log file
(ib_logfile0) includes a format version identifier and a text string that identifies the MySQL
version that created the redo log files. This enhancement changes the redo log format, requiring that
MySQL be shutdown cleanly using an innodb_fast_shutdown setting of 0 or 1 before performing
an in-place upgrade to MySQL 5.7.9 or higher. A slow shutdown using innodb_fast_shutdown=0
is a recommended step in Performing an In-place Upgrade.

• In MySQL 5.7.9, DYNAMIC replaces COMPACT as the implicit default row format for InnoDB tables.
A new configuration option, innodb_default_row_format, specifies the default InnoDB row
format. Permitted values include DYNAMIC (the default), COMPACT, and REDUNDANT.

After upgrading to 5.7.9, any new tables that you create will use the row format defined by
innodb_default_row_format unless you explicitly define a row format (ROW_FORMAT).

For existing tables that do not explicitly define a ROW_FORMAT option or that use
ROW_FORMAT=DEFAULT, any operation that rebuilds a table also silently changes the row format
of the table to the format defined by innodb_default_row_format. Otherwise, existing tables
retain their current row format setting. For more information, see Section 14.8.2, “Specifying the Row
Format for a Table”.

SQL Changes

• Incompatible change: The GET_LOCK() function was reimplemented in MySQL 5.7.5 using the
metadata locking (MDL) subsystem and its capabilities have been extended:

• Previously, GET_LOCK() permitted acquisition of only one named lock at a time, and a second
GET_LOCK() call released any existing lock. Now GET_LOCK() permits acquisition of more than
one simultaneous named lock and does not release existing locks.

Applications that rely on the behavior of GET_LOCK() releasing any previous lock must be
modified for the new behavior.

• The capability of acquiring multiple locks introduces the possibility of deadlock among clients. The
MDL subsystem detects deadlock and returns an ER_USER_LOCK_DEADLOCK error when this
occurs.

• The MDL subsystem imposes a limit of 64 characters on lock names, so this limit now also applies
to named locks. Previously, no length limit was enforced.

• Locks acquired with GET_LOCK() now appear in the Performance Schema metadata_locks
table. The OBJECT_TYPE column says USER LEVEL LOCK and the OBJECT_NAME column
indicates the lock name.

• A new function, RELEASE_ALL_LOCKS() permits release of all acquired named locks at once.

For more information, see Section 12.19, “Miscellaneous Functions”.

• The optimizer now handles derived tables and views in the FROM clause in consistent fashion to
better avoid unnecessary materialization and to enable use of pushed-down conditions that produce

Upgrading MySQL

218

more efficient execution plans. However, for statements such as DELETE or UPDATE that modify
tables, using the merge strategy for a derived table that previously was materialized can result in an
ER_UPDATE_TABLE_USED error:

mysql> DELETE FROM t1
 -> WHERE id IN (SELECT id
 -> FROM (SELECT t1.id
 -> FROM t1 INNER JOIN t2 USING (id)
 -> WHERE t2.status = 0) AS t);
ERROR 1093 (HY000): You can't specify target table 't1'
for update in FROM clause

The error occurs when merging a derived table into the outer query block results in a statement
that both selects from and modifies a table. (Materialization does not cause the problem because,
in effect, it converts the derived table to a separate table.) To avoid this error, disable the
derived_merge flag of the optimizer_switch system variable before executing the statement:

mysql> SET optimizer_switch = 'derived_merge=off';

The derived_merge flag controls whether the optimizer attempts to merge subqueries and views in
the FROM clause into the outer query block, assuming that no other rule prevents merging. By default,
the flag is on to enable merging. Setting the flag to off prevents merging and avoids the error just
described. For more information, see Optimizing Derived Tables and View References.

• Some keywords may be reserved in MySQL 5.7 that were not reserved in MySQL 5.6. See
Section 9.3, “Keywords and Reserved Words”.

2.11.1.2 Upgrading MySQL with the MySQL Yum Repository

For supported Yum-based platforms (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL
Yum Repository”, for a list), you can perform an in-place upgrade for MySQL (that is, replacing the old
version and then running the new version off the old data files) with the MySQL Yum repository.

Notes

• Before performing any update to MySQL, follow carefully the instructions in
Section 2.11.1, “Upgrading MySQL”. Among other instructions discussed
there, it is especially important to back up your database before the update.

• The following instructions assume you have installed MySQL with the MySQL
Yum repository or with an RPM package directly downloaded from MySQL
Developer Zone's MySQL Download page; if that is not the case, following the
instructions in Section 2.5.2, “Replacing a Third-Party Distribution of MySQL
Using the MySQL Yum Repository”.

1.Selecting a Target Series

By default, the MySQL Yum repository updates MySQL to the latest version in the release series
you have chosen during installation (see Selecting a Release Series for details), which means,
for example, a 5.6.x installation will NOT be updated to a 5.7.x release automatically. To update
to another release series, you need to first disable the subrepository for the series that has been
selected (by default, or by yourself) and enable the subrepository for your target series. To do
that, see the general instructions given in Selecting a Release Series. For upgrading from MySQL
5.6 to 5.7, perform the reverse of the steps illustrated in Selecting a Release Series, disabling the
subrepository for the MySQL 5.6 series and enabling that for the MySQL 5.7 series.

As a general rule, to upgrade from one release series to another, go to the next series rather than
skipping a series. For example, if you are currently running MySQL 5.6 and wish to upgrade to 5.7,
upgrade to MySQL 5.6 first before upgrading to 5.7.

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

Upgrading MySQL

219

Important

For important information about upgrading from MySQL 5.6 to 5.7, see
Upgrading from MySQL 5.6 to 5.7.

2.Upgrading MySQL

Upgrade MySQL and its components by the following command, for platforms that are not dnf-
enabled:

shell> sudo yum update mysql-server

For platforms that are dnf-enabled:

shell> sudo dnf upgrade mysql-server

Alternatively, you can update MySQL by telling Yum to update everything on your system, which
might take considerably more time; for platforms that are not dnf-enabled:

shell> sudo yum update

For platforms that are dnf-enabled:

shell> sudo dnf upgrade

3.Restarting MySQL

The MySQL server always restarts after an update by Yum. Once the server restarts, run
mysql_upgrade to check and possibly resolve any incompatibilities between the old data and
the upgraded software. mysql_upgrade also performs other functions; see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables” for details.

You can also update only a specific component. Use the following command to list all the installed
packages for the MySQL components (for dnf-enabled systems, replace yum in the command with
dnf):

shell> sudo yum list installed | grep "^mysql"

After identifying the package name of the component of your choice, for platforms that are not dnf-
enabled, update the package with the following command, replacing package-name with the name of
the package:

shell> sudo yum update package-name

For dnf-enabled platforms:

shell> sudo dnf upgrade package-name

Upgrading the Shared Client Libraries

After updating MySQL using the Yum repository, applications compiled with older versions of the
shared client libraries should continue to work.

If you recompile applications and dynamically link them with the updated libraries: As typical with new
versions of shared libraries where there are differences or additions in symbol versioning between
the newer and older libraries (for example, between the newer, standard 5.7 shared client libraries
and some older—prior or variant—versions of the shared libraries shipped natively by the Linux
distributions' software repositories, or from some other sources), any applications compiled using the
updated, newer shared libraries will require those updated libraries on systems where the applications
are deployed. And, as expected, if those libraries are not in place, the applications requiring the
shared libraries will fail. So, be sure to deploy the packages for the shared libraries from MySQL on

http://dev.mysql.com/doc/refman/5.7/en/upgrading-from-previous-series.html

Upgrading MySQL

220

those systems. You can do this by adding the MySQL Yum repository to the systems (see Adding the
MySQL Yum Repository) and install the latest shared libraries using the instructions given in Installing
Additional MySQL Products and Components with Yum.

2.11.1.3 Upgrading MySQL with the MySQL APT Repository

On Debian 7 or 8 and Ubuntu 12, 14, or 15, you can perform an in-place upgrade of MySQL and its
components with the MySQL APT repository. See Upgrading MySQL with the MySQL APT Repository
in A Quick Guide to Using the MySQL APT Repository.

2.11.1.4 Upgrading MySQL with Directly-Downloaded RPM Packages

It is preferable to use the MySQL Yum repository or MySQL SLES Repository to upgrade MySQL on
RPM-based platforms. However, if you have to upgrade MySQL using the RPM packages downloaded
directly from the MySQL Developer Zone (see Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages” for information on the packages), go to the folder that contains all the downloaded packages
(and, preferably, no other RPM packages with similar names), and issue the following command for
platforms other than Red Hat Enterprise Linux/Oracle Linux/CentOS 5:

shell> yum install mysql-community-{server,client,common,libs}-*

For Red Hat Enterprise Linux/Oracle Linux/CentOS 5 systems, there is an extra package
(mysql-version-el5-arch.rpm) to be installed; use the following command:

shell> yum install mysql-community-{server,client,common,libs}-* mysql-5.*

Replace yum with zypper for SLES systems, and with dnf for dnf-enabled systems.

While it is much preferable to use a high-level package management tool like yum to install the
packages, users who preferred direct rpm commands can replace the yum install command with
the rpm -Uvh command; however, using rpm -Uvh instead makes the installation process more
prone to failure, due to potential dependency issues the installation process might run into.

For an upgrade installation using RPM packages, the MySQL server is automatically restarted at
the end of the installation if it was running when the upgrade installation began. If the server was not
running when the upgrade installation began, you have to restart the server yourself after the upgrade
installation is completed; do that with, for example, the follow command:

shell> service mysqld start

Once the server restarts, run mysql_upgrade to check and possibly resolve any incompatibilities
between the old data and the upgraded software. mysql_upgrade also performs other functions; see
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables” for details.

Note

Because of the dependency relationships among the RPM packages, all of
the installed packages must be of the same version. Therefore, always update
all your installed packages for MySQL. For example, do not just update the
server without also upgrading the client, the common files for server and client
libraries, and so on.

Migration and Upgrade from installations by older RPM packages. Some older versions of
MySQL Server RPM packages have names in the form of MySQL-* (for example, MySQL-server-* and
MySQL-client-*). The latest versions of RPMs, when installed using the standard package management
tool (yum, dnf, or zypper), seamlessly upgrade those older installations, making it unnecessary to
uninstall those old packages before installing the new ones. Here are some differences in behavior
between the older and the current RPM packages:

http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/index.html#repo-qg-apt-upgrading
http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
http://dev.mysql.com/downloads/repo/suse/
http://dev.mysql.com/

Downgrading MySQL

221

Table 2.13 Differences Between the Previous and the Current RPM Packages for Installing
MySQL

Feature Behavior of Previous
Packages

Behavior of Current
Packages

Service starts after installation is
finished

Yes No, unless it is an upgrade
installation, and the server
was running when the
upgrade began.

Service name mysql For RHEL, Oracle Linux,
CentOS, and Fedora:
mysqld

For SLES: mysql

Error log file At /var/lib/
mysql/hostname.err

For RHEL, Oracle Linux,
CentOS, and Fedora: at /
var/log/mysqld.log

For SLES: at /var/log/
mysql/mysqld.log

Shipped with the /etc/my.cnf file No Yes

Multilib support No Yes

Note

Installation of previous versions of MySQL using the older packages might have
created a configuration file named /usr/my.cnf. It is highly recommended
that you examine the contents of the file and migrate the desired settings inside
to the file /etc/my.cnf file, then remove /usr/my.cnf.

Upgrading to MySQL Enterprise Server. It is not necessary to remove the MySQL Community
Server before upgrading to the MySQL Enterprise Server. Follow the steps given in the README file
included with the MySQL Enterprise RPMs.

Interoperability with operating system native MySQL packages. Many Linux distributions
ship MySQL as an integrated part of the operating system. The latest versions of RPMs from Oracle,
when installed using the standard package management tool (yum, dnf, or zypper), will seamlessly
upgrade and replace the MySQL version that comes with the operating system, and the package
manager will automatically replace system compatibility packages such as mysql-community-libs-
compat with relevant new versions.

Upgrading from non-native MySQL packages. If you have installed MySQL with third-party
packages NOT from your Linux distribution's native software repository (for example, packages directly
downloaded from the vendor), you will need to uninstall all those packages before you can upgrade
using the packages from Oracle.

2.11.2 Downgrading MySQL

This section describes how to downgrade to an older MySQL version.

• Supported Downgrade Methods

• Supported Downgrade Paths

• Before You Begin

• Performing an In-place Downgrade

• Performing a Logical Downgrade

Downgrading MySQL

222

• Downgrade Troubleshooting

Supported Downgrade Methods

Supported downgrade methods include:

• In-place Downgrade: Involves shutting down the new MySQL version, replacing the new MySQL
binaries or packages with the old ones, and restarting the old MySQL version on the existing data
directory. In-place downgrades are supported for downgrades between GA versions within the same
release series. For example, in-place downgrades are supported for downgrades from 5.7.10 to
5.7.9.

• Logical Downgrade: Involves using mysqldump to dump all tables from the new MySQL version,
and then loading the dump file into the old MySQL version. Logical downgrades are supported for
downgrades between GA versions within the same release series and for downgrades between
release levels. For example, logical downgrades are supported for downgrades from 5.7.10 to 5.7.9
and for downgrades from 5.7 to 5.6.

For procedures, see Performing an In-place Downgrade, and Performing a Logical Downgrade.

Supported Downgrade Paths

Unless otherwise documented, the following downgrade paths are supported:

• Downgrading from a release series version to an older release series version is supported using all
downgrade methods. For example, downgrading from 5.7.10 to 5.7.9 is supported. Skipping release
series versions is also supported. For example, downgrading from 5.7.11 to 5.7.9 is supported.

• Downgrading one release level is supported using the logical downgrade method. For example,
downgrading from 5.7 to 5.6 is supported.

• Downgrading more than one release level is supported using the logical downgrade method, but only
if you downgrade one release level at a time. For example, you can downgrade from 5.7 to 5.6, and
then to 5.5.

The following conditions apply to all downgrade paths:

• Downgrades between General Availability (GA) status releases are supported.

• Downgrades between milestone releases (or from a GA release to a milestone release) are not
supported. For example, downgrading from MySQL 5.7.9 to MySQL 5.7.8 is not supported, as 5.7.8
is not a GA status release.

Before You Begin

Before downgrading, the following steps are recommended:

• Review the Release Notes for the MySQL version you are downgrading from to ensure that there are
no features or fixes that you really need.

• Review Section 2.11.2.1, “Changes Affecting Downgrades from MySQL 5.7”. This section describes
changes that may require action before or after downgrading.

Note

The downgrade procedures described in the following sections assume
you are downgrading with data files created or modified by the newer
MySQL version. However, if you did not modify your data after upgrading,
downgrading using backups taken before upgrading to the new MySQL
version is recommended. Many of the changes described in Section 2.11.2.1,
“Changes Affecting Downgrades from MySQL 5.7” that require action before

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/

Downgrading MySQL

223

or after downgrading are not applicable when downgrading using backups
taken before upgrading to the new MySQL version.

• Always back up your current databases and log files before downgrading. The backup should include
the mysql database, which contains the MySQL system tables. See Section 7.2, “Database Backup
Methods”.

• Use of new features, new configuration options, or new configuration option values that are not
supported by a previous release may cause downgrade errors or failures. Before downgrading,
it is recommended that you reverse changes resulting from the use of new features and remove
configuration settings that are not supported by the release you are downgrading to.

• Check Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, to see whether
changes to table formats or to character sets or collations were made between your current version
of MySQL and the version to which you are downgrading. If such changes have resulted in an
incompatibility between MySQL versions, downgrade the affected tables using the instructions in
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.

• If you use XA transactions with InnoDB, run XA RECOVER before downgrading to check for
uncommitted XA transactions. If results are returned, either commit or rollback the XA transactions
by issuing an XA COMMIT or XA ROLLBACK statement.

Performing an In-place Downgrade

In-place downgrades are supported for downgrades between GA status releases within the same
release series. Review Before you Begin before proceeding.

Warning

For a supported downgrade path within the MySQL 5.7 release series, there
must be at least two MySQL 5.7 GA status versions available.

To perform an in-place downgrade:

1. Review the changes described in Section 2.11.2.1, “Changes Affecting Downgrades from MySQL
5.7” for steps to be performed before downgrading.

2. Configure MySQL to perform a slow shutdown by setting innodb_fast_shutdown to 0. For
example:

shell> bin/mysql -u root -p password --execute="set global innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting
down, which ensures that data files are fully prepared in case of file format differences between
releases.

3. Shut down the newer MySQL server. For example:

shell> bin/mysqladmin -u root -p password shutdown

4. After the slow shutdown, remove the InnoDB redo log files (the ib_logfile* files) from the data
directory to avoid downgrade issues related to redo log file format changes that may have occurred
between releases.

shell> rm ib_logfile*

5. Downgrade the MySQL binaries or packages in-place by replacing the newer binaries or packages
with the older ones.

6. Start the older (downgraded) MySQL server, using the existing data directory. For example:

shell> bin/mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

Downgrading MySQL

224

7. Run mysql_upgrade. For example:

shell> bin/mysql_upgrade -u root -p password

mysql_upgrade examines all tables in all databases for incompatibilities with the current version
of MySQL, and attempts to repair the tables if problems are found.

Performing a Logical Downgrade

Logical downgrades are supported for downgrades between releases within the same release series
and for downgrades to the previous release level. Only downgrades between General Availability (GA)
status releases are supported. Review Before you Begin before proceeding.

To perform a logical downgrade:

1. Review the changes described in Section 2.11.2.1, “Changes Affecting Downgrades from MySQL
5.7” for steps to be performed before downgrading.

2. Dump all databases. For example:

shell> bin/mysqldump --add-drop-table --events -u root -p password --all-databases --force > all_5_7_databases_dump.sql

3. Shut down the newer MySQL server. For example:

shell> bin/mysqladmin -u root -p password shutdown

4. Initialize an older MySQL instance, with a new data directory. For example, to initialize a MySQL
5.6 instance, use mysql_install_db:

shell> scripts/mysql_install_db --user=mysql

Note

mysql_install_db is deprecated as of MySQL 5.7.6 because its
functionality has been integrated into mysqld.

To initialize a MySQL 5.7 instance, use mysqld with the --initialize or --initialize-
insecure option.

shell> bin/mysqld --initialize --user=mysql

5. Start the older MySQL server, using the new data directory. For example:

shell> bin/mysqld_safe --user=mysql --datadir=/path/to/new-datadir

6. Load the dump file into the older MySQL server. For example:

shell> bin/mysql -u root -p password --execute="source all_5_7_databases_dump.sql" --force

7. Run mysql_upgrade. For example:

shell> bin/mysql_upgrade -u root -p password

mysql_upgrade examines all tables in all databases for incompatibilities with the current version
of MySQL, and attempts to repair the tables if problems are found.

8. Configure MySQL to perform a slow shutdown by setting innodb_fast_shutdown to 0. For
example:

shell> bin/mysql -u root -p password --execute="set global innodb_fast_shutdown=0"

9. Shut down and restart the MySQL server to ensure a clean shutdown and startup. For example:

shell> bin/mysqladmin -u root -p password shutdown

Downgrading MySQL

225

shell> bin/mysqld_safe --user=mysql --datadir=/path/to/new-datadir

Downgrade Troubleshooting

If you downgrade from one release series to another, there may be incompatibilities in table storage
formats. In this case, use mysqldump to dump your tables before downgrading. After downgrading,
reload the dump file using mysql or mysqlimport to re-create your tables. For examples, see
Section 2.11.5, “Copying MySQL Databases to Another Machine”.

A typical symptom of a downward-incompatible table format change when you downgrade is that you
cannot open tables. In that case, use the following procedure:

1. Stop the older MySQL server that you are downgrading to.

2. Restart the newer MySQL server you are downgrading from.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump
file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

2.11.2.1 Changes Affecting Downgrades from MySQL 5.7

Before downgrading from MySQL 5.7, review the changes described in this section. Some changes
may require action before or after downgrading.

• System Table Changes

• InnoDB Changes

• Logging Changes

• SQL Changes

System Table Changes

• The maximum length of MySQL user names was increased from 16 characters to 32 characters
in MySQL 5.7.8. Before downgrading to a previous release, ensure that there are no user names
greater than 16 characters in length, and perform the following mysql system table alterations:

mysql> ALTER TABLE mysql.tables_priv MODIFY User char(16) NOT NULL default '';
mysql> ALTER TABLE mysql.columns_priv MODIFY User char(16) NOT NULL default '';
mysql> ALTER TABLE mysql.user MODIFY User char(16) NOT NULL default '';
mysql> ALTER TABLE mysql.db MODIFY User char(16) NOT NULL default '';
mysql> ALTER TABLE mysql.procs_priv MODIFY User char(16) binary DEFAULT '' NOT NULL;

• The Password column of the mysql.user table was removed in MySQL 5.7.6. All credentials are
stored in the authentication_string column, including those formerly stored in the Password
column. To make the mysql.user table compatible with previous releases, perform the following
alterations before downgrading:

mysql> ALTER TABLE mysql.user ADD Password char(41) character set latin1
 -> collate latin1_bin NOT NULL default '' AFTER user;
mysql> UPDATE mysql.user SET password = authentication_string where
 -> LENGTH(authentication_string) = 41 and plugin = 'mysql_native_password';
mysql> UPDATE mysql.user SET authentication_string = '' where
 -> LENGTH(authentication_string) = 41 and plugin = 'mysql_native_password';

• The help_* and time_zone* system tables changed from MyISAM to InnoDB in MySQL 5.7.5.
Before downgrading to a previous release, change each affected table back to MyISAM by running
the following statements:

mysql> ALTER TABLE mysql.help_category ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;

Downgrading MySQL

226

mysql> ALTER TABLE mysql.help_keyword ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
mysql> ALTER TABLE mysql.help_relation ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
mysql> ALTER TABLE mysql.help_topic ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
mysql> ALTER TABLE mysql.time_zone ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
mysql> ALTER TABLE mysql.time_zone_leap_second ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
mysql> ALTER TABLE mysql.time_zone_name ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
mysql> ALTER TABLE mysql.time_zone_transition ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
mysql> ALTER TABLE mysql.time_zone_transition_type ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;

• The plugin and servers system tables changed from MyISAM to InnoDB in MySQL 5.7.6. Before
downgrading to a previous release, change each affected table back to MyISAM by running the
following statements:

mysql> ALTER TABLE mysql.plugin ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;
mysql> ALTER TABLE mysql.servers ENGINE='MyISAM' STATS_PERSISTENT=DEFAULT;

• The definition of the plugin column in the mysql.user table differs in MySQL 5.7. Before
downgrading to a MySQL 5.6 server for versions 5.6.23 and up, alter the plugin column definition
using this statement:

mysql> ALTER TABLE mysql.user MODIFY plugin CHAR(64) COLLATE utf8_bin
 -> DEFAULT 'mysql_native_password';

Before downgrading to a MySQL 5.6.22 server or older, alter the plugin column definition using this
statement:

mysql> ALTER TABLE mysql.user MODIFY plugin CHAR(64) COLLATE utf8_bin DEFAULT '';

• As of MySQL 5.7.7, the sys schema is installed by default during data directory installation. Before
downgrading to a previous version, it is recommended that you drop the sys schema:

mysql> DROP DATABASE sys;

If you are downgrading to a release that includes the sys schema, mysql_upgrade recreates the
sys schema in a compatible form. The sys schema is not included in MySQL 5.6.

InnoDB Changes

• As of MySQL 5.7.5, the FIL_PAGE_FLUSH_LSN field, written to the first page of each InnoDB
system tablespace file and to InnoDB undo tablespace files, is only written to the first file of the
InnoDB system tablespace (page number 0:0). As a result, if you have a multiple-file system
tablespace and decide to downgrade from MySQL 5.7 to MySQL 5.6, you may encounter an invalid
message on MySQL 5.6 startup stating that the log sequence numbers x and y in ibdata
files do not match the log sequence number y in the ib_logfiles. If you
encounter this message, restart MySQL 5.6. The invalid message should no longer appear.

• To simplify InnoDB tablespace discovery during crash recovery, new redo log record types
were introduced in MySQL 5.7.5. This enhancement changes the redo log format. Before
performing an in-place downgrade from MySQL 5.7.5 or later, perform a clean shutdown using an
innodb_fast_shutdown setting of 0 or 1. A slow shutdown using innodb_fast_shutdown=0 is
a recommended step in Performing an In-place Downgrade.

• MySQL 5.7.8 and 5.7.9 undo logs could contain insufficient information about spatial columns (Bug
#21508582). Before performing an in-place downgrade from MySQL 5.7.10 or higher to MySQL 5.7.9
or earlier, perform a slow shutdown using innodb_fast_shutdown=0 to clear the undo logs. A
slow shutdown using innodb_fast_shutdown=0 is a recommended step in Performing an In-
place Downgrade.

• MySQL 5.7.8 undo logs could contain insufficient information about virtual columns and virtual
column indexes (Bug #21869656). Before performing an in-place downgrade from MySQL 5.7.9 or
later to MySQL 5.7.8 or earlier, perform a slow shutdown using innodb_fast_shutdown=0 to
clear the undo logs. A slow shutdown using innodb_fast_shutdown=0 is a recommended step in
Performing an In-place Downgrade.

Downgrading MySQL

227

• As of MySQL 5.7.9, the redo log header of the first redo log file (ib_logfile0) includes a
format version identifier and a text string that identifies the MySQL version that created the
redo log files. This enhancement changes the redo log format. To prevent older versions of
MySQL from starting on redo log files created in MySQL 5.7.9 or later, the checksum for redo log
checkpoint pages was changed. As a result, you must perform a slow shutdown of MySQL (using
innodb_fast_shutdown=0) and remove the redo log files (the ib_logfile* files) before performing
an in-place downgrade. A slow shutdown using innodb_fast_shutdown=0 and removing the redo
log files are recommended steps in Performing an In-place Downgrade.

Logging Changes

• Support for sending the server error log to syslog in MySQL 5.7.5 and up differs from older
versions. If you use syslog and downgrade to a version older than 5.7.5, you must stop using the
relevant mysqld system variables and use the corresponding mysqld_safe command options
instead. Suppose that you use syslog by setting these system variables in the [mysqld] group of
an option file:

[mysqld]
log_syslog=ON
log_syslog_tag=mytag

To downgrade, remove those settings and add option settings in the [mysqld_safe] option file
group:

[mysqld_safe]
syslog
syslog-tag=mytag

syslog-related system variables that have no corresponding mysqld_safe option cannot be used
after a downgrade.

SQL Changes

• A trigger can have triggers for different combinations of trigger event (INSERT, UPDATE, DELETE)
and action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have
the same trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are
permitted. This change has implications for downgrades.

If you downgrade a server that supports multiple triggers to an older version that does not, the
downgrade has these effects:

• For each table that has triggers, all trigger definitions remain in the .TRG file for the table.
However, if there are multiple triggers with the same trigger event and action time, the server
executes only one of them when the trigger event occurs. For information about .TRG files, see
Table Trigger Storage.

• If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites
the table's .TRG file. The rewritten file retains only one trigger per combination of trigger event and
action time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed
using NEW and OLD can be passed to the routine using parameters. If the trigger needs a single
result value from the code, you can put the code in a stored function and have the function return
the value. If the trigger needs multiple result values from the code, you can put the code in a
stored procedure and return the values using OUT parameters.

http://dev.mysql.com/doc/internals/en/sp-storage.html#sp-storage-trigger

Checking Whether Tables or Indexes Must Be Rebuilt

228

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for
this trigger is thus the same as the multiple triggers it replaces.

2.11.3 Checking Whether Tables or Indexes Must Be Rebuilt

A binary upgrade or downgrade is one that installs one version of MySQL “in place” over an existing
version, without dumping and reloading tables:

1. Stop the server for the existing version if it is running.

2. Install a different version of MySQL. This is an upgrade if the new version is higher than the original
version, a downgrade if the version is lower.

3. Start the server for the new version.

In many cases, the tables from the previous version of MySQL can be used without problem by the
new version. However, sometimes changes occur that require tables or table indexes to be rebuilt,
as described in this section. If you have tables that are affected by any of the issues described here,
rebuild the tables or indexes as necessary using the instructions given in Section 2.11.4, “Rebuilding or
Repairing Tables or Indexes”.

Index Incompatibilities

Modifications to the handling of character sets or collations might change the character sort order,
which causes the ordering of entries in any index that uses an affected character set or collation to be
incorrect. Such changes result in several possible problems:

• Comparison results that differ from previous results

• Inability to find some index values due to misordered index entries

• Misordered ORDER BY results

• Tables that CHECK TABLE reports as being in need of repair

The solution to these problems is to rebuild any indexes that use an affected character set or collation,
either by dropping and re-creating the indexes, or by dumping and reloading the entire table. In
some cases, it is possible to alter affected columns to use a different collation. For information about
rebuilding indexes, see Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.

In many cases, you can use CHECK TABLE ... FOR UPGRADE to identify tables for which index
rebuilding is required. It will report this message:

Table upgrade required.
Please do "REPAIR TABLE `tbl_name`" or dump/reload to fix it!

In these cases, you can also use mysqlcheck --check-upgrade or mysql_upgrade, which
execute CHECK TABLE. However, the use of CHECK TABLE applies only after upgrades, not
downgrades. Also, CHECK TABLE is not applicable to all storage engines. For details about which
storage engines CHECK TABLE supports, see Section 13.7.2.2, “CHECK TABLE Syntax”.

2.11.4 Rebuilding or Repairing Tables or Indexes

This section describes how to rebuild a table, following changes to MySQL such as how data types or
character sets are handled. For example, an error in a collation might have been corrected, requiring
a table rebuild to update the indexes for character columns that use the collation. (For examples, see
Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.) You might also need to repair

Rebuilding or Repairing Tables or Indexes

229

or upgrade a table, as indicated by a table check operation such as that performed by CHECK TABLE,
mysqlcheck, or mysql_upgrade.

Methods for rebuilding a table include dumping and reloading it, or using ALTER TABLE or REPAIR
TABLE. REPAIR TABLE only applies to MyISAM, ARCHIVE, and CSV tables.

Note

If you are rebuilding tables because a different version of MySQL will not handle
them after a binary (in-place) upgrade or downgrade, you must use the dump-
and-reload method. Dump the tables before upgrading or downgrading using
your original version of MySQL. Then reload the tables after upgrading or
downgrading.

If you use the dump-and-reload method of rebuilding tables only for the purpose
of rebuilding indexes, you can perform the dump either before or after upgrading
or downgrading. Reloading still must be done afterward.

To rebuild a table by dumping and reloading it, use mysqldump to create a dump file and mysql to
reload the file:

shell> mysqldump db_name t1 > dump.sql
shell> mysql db_name < dump.sql

To rebuild all the tables in a single database, specify the database name without any following table
name:

shell> mysqldump db_name > dump.sql
shell> mysql db_name < dump.sql

To rebuild all tables in all databases, use the --all-databases option:

shell> mysqldump --all-databases > dump.sql
shell> mysql < dump.sql

To rebuild a table with ALTER TABLE, use a “null” alteration; that is, an ALTER TABLE statement that
“changes” the table to use the storage engine that it already has. For example, if t1 is an InnoDB
table, use this statement:

mysql> ALTER TABLE t1 ENGINE = InnoDB;

If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOW CREATE
TABLE to display the table definition.

If you need to rebuild an InnoDB table because a CHECK TABLE operation indicates that a
table upgrade is required, use mysqldump to create a dump file and mysql to reload the file, as
described earlier. If the CHECK TABLE operation indicates that there is a corruption or causes
InnoDB to fail, refer to Section 14.18.2, “Forcing InnoDB Recovery” for information about using the
innodb_force_recovery option to restart InnoDB. To understand the type of problem that CHECK
TABLE may be encountering, refer to the InnoDB notes in Section 13.7.2.2, “CHECK TABLE Syntax”.

For MyISAM, ARCHIVE, or CSV tables, you can use REPAIR TABLE if the table checking operation
indicates that there is a corruption or that an upgrade is required. For example, to repair a MyISAM
table, use this statement:

mysql> REPAIR TABLE t1;

mysqlcheck --repair provides command-line access to the REPAIR TABLE statement. This can
be a more convenient means of repairing tables because you can use the --databases or --all-
databases option to repair all tables in specific databases or all databases, respectively:

Copying MySQL Databases to Another Machine

230

shell> mysqlcheck --repair --databases db_name ...
shell> mysqlcheck --repair --all-databases

2.11.5 Copying MySQL Databases to Another Machine

In cases where you need to transfer databases between different architectures, you can use
mysqldump to create a file containing SQL statements. You can then transfer the file to the other
machine and feed it as input to the mysql client.

Note

You can copy the .frm, .MYI, and .MYD files for MyISAM tables between
different architectures that support the same floating-point format. (MySQL
takes care of any byte-swapping issues.) See Section 15.2, “The MyISAM
Storage Engine”.

Use mysqldump --help to see what options are available.

The easiest (although not the fastest) way to move a database between two machines is to run the
following commands on the machine on which the database is located:

shell> mysqladmin -h 'other_hostname' create db_name
shell> mysqldump db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these
commands:

shell> mysqladmin create db_name
shell> mysqldump -h 'other_hostname' --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file
into the database there. For example, you can dump a database to a compressed file on the source
machine like this:

shell> mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands
there:

shell> mysqladmin create db_name
shell> gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is
much faster than simply using mysqldump. In the following commands, DUMPDIR represents the full
path name of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine
and load the files into MySQL there:

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Environment Variables

231

Do not forget to copy the mysql database because that is where the grant tables are stored. You
might have to run commands as the MySQL root user on the new machine until you have the mysql
database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-
privileges so that the server reloads the grant table information.

2.12 Environment Variables
This section lists environment variables that are used directly or indirectly by MySQL. Most of these
can also be found in other places in this manual.

Options on the command line take precedence over values specified in option files and environment
variables, and values in option files take precedence over values in environment variables. In many
cases, it is preferable to use an option file instead of environment variables to modify the behavior of
MySQL. See Section 4.2.6, “Using Option Files”.

Variable Description

CXX The name of your C++ compiler (for running CMake).

CC The name of your C compiler (for running CMake).

DBI_USER The default user name for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is $HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of libmysqlclient.so.

LIBMYSQL_ENABLE_CLEARTEXT_PLUGINEnable mysql_clear_password authentication plugin; see
Section 6.3.9.8, “The Cleartext Client-Side Authentication Plugin”.

LIBMYSQL_PLUGIN_DIRDirectory in which to look for client plugins.

LIBMYSQL_PLUGINS Client plugins to preload.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFIX Option group suffix value (like specifying --defaults-group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this variable is set, its value overrides
the default for $HOME/.mysql_history.

MYSQL_HISTIGNORE Patterns specifying statements that mysql should not log to
$HOME/.mysql_history, or syslog if --syslog is given.

MYSQL_HOME The path to the directory in which the server-specific my.cnf file resides.

MYSQL_HOST The default host name used by the mysql command-line client.

MYSQL_PS1 The command prompt to use in the mysql command-line client.

MYSQL_PWD The default password when connecting to mysqld. Using this is insecure.
See Section 6.1.2.1, “End-User Guidelines for Password Security”.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_TEST_LOGIN_FILEThe name of the .mylogin.cnf login path file.

MYSQL_TEST_TRACE_CRASHWhether the test protocol trace plugin crashes clients. See note following
table.

MYSQL_TEST_TRACE_DEBUGWhether the test protocol trace plugin produces output. See note following
table.

MYSQL_UNIX_PORT The default Unix socket file name; used for connections to localhost.

PATH Used by the shell to find MySQL programs.

PKG_CONFIG_PATH Location of mysqlclient.pc pkg-config file. See note following table.

TMPDIR The directory in which temporary files are created.

Perl Installation Notes

232

Variable Description

TZ This should be set to your local time zone. See Section B.5.3.7, “Time Zone
Problems”.

UMASK The user-file creation mode when creating files. See note following table.

UMASK_DIR The user-directory creation mode when creating directories. See note
following table.

USER The default user name on Windows when connecting to mysqld.

For information about the mysql history file, see Section 4.5.1.3, “mysql Logging”.

MYSQL_TEST_LOGIN_FILE is the path name of the login path file (the file created by
mysql_config_editor). If not set, the default value is %APPDATA%\MySQL\.mylogin.cnf
directory on Windows and $HOME/.mylogin.cnf on non-Windows systems. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

The MYSQL_TEST_TRACE_DEBUG and MYSQL_TEST_TRACE_CRASH variables control the test protocol
trace client plugin, if MySQL is built with that plugin enabled. For more information, see Using the Test
Protocol Trace Plugin.

The default UMASK and UMASK_DIR values are 0640 and 0750, respectively (0660 and 0700 prior
to MySQL 5.7.6). MySQL assumes that the value for UMASK or UMASK_DIR is in octal if it starts with
a zero. For example, setting UMASK=0600 is equivalent to UMASK=384 because 0600 octal is 384
decimal.

The UMASK and UMASK_DIR variables, despite their names, are used as modes, not masks:

• If UMASK is set, mysqld uses ($UMASK | 0600) as the mode for file creation, so that newly
created files have a mode in the range from 0600 to 0666 (all values octal).

• If UMASK_DIR is set, mysqld uses ($UMASK_DIR | 0700) as the base mode for directory
creation, which then is AND-ed with ~(~$UMASK & 0666), so that newly created directories have
a mode in the range from 0700 to 0777 (all values octal). The AND operation may remove read and
write permissions from the directory mode, but not execute permissions.

It may be necessary to set PKG_CONFIG_PATH if you use pkg-config for building MySQL programs.
See Section 23.8.4.2, “Building C API Client Programs Using pkg-config”.

2.13 Perl Installation Notes
The Perl DBI module provides a generic interface for database access. You can write a DBI script
that works with many different database engines without change. To use DBI, you must install the DBI
module, as well as a DataBase Driver (DBD) module for each type of database server you want to
access. For MySQL, this driver is the DBD::mysql module.

Note

Perl support is not included with MySQL distributions. You can obtain the
necessary modules from http://search.cpan.org for Unix, or by using the
ActiveState ppm program on Windows. The following sections describe how to
do this.

The DBI/DBD interface requires Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not work if you
have an older version of Perl. You should use DBD::mysql 4.009 or higher. Although earlier versions
are available, they do not support the full functionality of MySQL 5.7.

2.13.1 Installing Perl on Unix

MySQL Perl support requires that you have installed MySQL client programming support (libraries and
header files). Most installation methods install the necessary files. If you install MySQL from RPM files

http://search.cpan.org

Installing ActiveState Perl on Windows

233

on Linux, be sure to install the developer RPM as well. The client programs are in the client RPM, but
client programming support is in the developer RPM.

The files you need for Perl support can be obtained from the CPAN (Comprehensive Perl Archive
Network) at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local
MySQL server using the default user name and password. (The default user name is your login name
on Unix, and ODBC on Windows. The default password is “no password.”) If you cannot connect to
the server with those values (for example, if your account has a password), the tests fail. You can use
force install DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before
installing DBI.

It is also possible to download the module distributions in the form of compressed tar archives and
build the modules manually. For example, to unpack and build a DBI distribution, use a procedure such
as this:

1. Unpack the distribution into the current directory:

shell> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

shell> cd DBI-VERSION

3. Build the distribution and compile everything:

shell> perl Makefile.PL
shell> make
shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note that when
you run that command during the DBD::mysql installation to exercise the interface code, the MySQL
server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new
release of MySQL. This ensures that the latest versions of the MySQL client libraries are installed
correctly.

If you do not have access rights to install Perl modules in the system directory or if you want to install
local Perl modules, the following reference may be useful: http://learn.perl.org/faq/perlfaq8.html#How-
do-I-keep-my-own-module-library-directory-

2.13.2 Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

http://search.cpan.org
http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://www.activestate.com/Products/ActivePerl/

Problems Using the Perl DBI/DBD Interface

234

2. Open a console window.

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

C:\> set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

ppm> install DBI

6. If this succeeds, run the following command:

ppm> install DBD-mysql

This procedure should work with ActiveState Perl 5.6 or newer.

If you cannot get the procedure to work, you should install the ODBC driver instead and connect to the
MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
 die "Got error $DBI::errstr when connecting to $dsn\n";

2.13.3 Problems Using the Perl DBI/DBD Interface

If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl
cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one
of the following methods:

• Copy libmysqlclient.so to the directory where your other shared libraries are located (probably
/usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of
libmysqlclient.so.

• On Linux, you can add the path name of the directory where libmysqlclient.so is located to the
/etc/ld.so.conf file.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable. Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to
find. For example, if the linker cannot find libc because it is in /lib and the link command specifies -
L/usr/lib, change the -L option to -L/lib or add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary
compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built
(check the output from make for mysql.so when you compile the Perl client). The -L option should
specify the path name of the directory where libgcc.a is located on your system.

Problems Using the Perl DBI/DBD Interface

235

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this
case, you can solve the mismatch by compiling both with gcc.

236

237

Chapter 3 Tutorial

Table of Contents
3.1 Connecting to and Disconnecting from the Server .. 237
3.2 Entering Queries ... 238
3.3 Creating and Using a Database .. 241

3.3.1 Creating and Selecting a Database ... 242
3.3.2 Creating a Table .. 243
3.3.3 Loading Data into a Table .. 244
3.3.4 Retrieving Information from a Table .. 245

3.4 Getting Information About Databases and Tables ... 258
3.5 Using mysql in Batch Mode .. 259
3.6 Examples of Common Queries .. 261

3.6.1 The Maximum Value for a Column .. 261
3.6.2 The Row Holding the Maximum of a Certain Column ... 261
3.6.3 Maximum of Column per Group .. 262
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 262
3.6.5 Using User-Defined Variables ... 263
3.6.6 Using Foreign Keys ... 263
3.6.7 Searching on Two Keys ... 265
3.6.8 Calculating Visits Per Day .. 265
3.6.9 Using AUTO_INCREMENT ... 266

3.7 Using MySQL with Apache ... 268

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client
program to create and use a simple database. mysql (sometimes referred to as the “terminal monitor”
or just “monitor”) is an interactive program that enables you to connect to a MySQL server, run
queries, and view the results. mysql may also be used in batch mode: you place your queries in a file
beforehand, then tell mysql to execute the contents of the file. Both ways of using mysql are covered
here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the
administrator, you need to consult the relevant portions of this manual, such as Chapter 5, MySQL
Server Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only
in accessing an existing database, you may want to skip over the sections that describe how to create
the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you will usually need to provide a MySQL user name when you invoke mysql
and, most likely, a password. If the server runs on a machine other than the one where you log in,
you will also need to specify a host name. Contact your administrator to find out what connection
parameters you should use to connect (that is, what host, user name, and password to use). Once you
know the proper parameters, you should be able to connect like this:

Entering Queries

238

shell> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of
your MySQL account. Substitute appropriate values for your setup. The ******** represents your
password; enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 5.7.11-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter SQL statements.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

shell> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't
connect to local MySQL server through socket '/tmp/mysql.sock' (2), it means
that the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator
or see the section of Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating
system.

For help with other problems often encountered when trying to log in, see Section B.5.2, “Common
Errors When Using MySQL Programs”.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that
server by invoking mysql without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the
mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate
this by the mysql> prompt.

3.2 Entering Queries

Make sure that you are connected to the server, as discussed in the previous section. Doing so does
not in itself select any database to work with, but that is okay. At this point, it is more important to find
out a little about how to issue queries than to jump right in creating tables, loading data into them, and
retrieving data from them. This section describes the basic principles of entering queries, using several
queries you can try out to familiarize yourself with how mysql works.

Entering Queries

239

Here is a simple query that asks the server to tell you its version number and the current date. Type it
in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+--------------+--------------+
| VERSION() | CURRENT_DATE |
+--------------+--------------+
| 5.7.1-m4-log | 2012-12-25 |
+--------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A query normally consists of an SQL statement followed by a semicolon. (There are some
exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to
others later.)

• When you issue a query, mysql sends it to the server for execution and displays the results, then
prints another mysql> prompt to indicate that it is ready for another query.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which gives
you a rough idea of server performance. These values are imprecise because they represent wall
clock time (not CPU or machine time), and because they are affected by factors such as server load
and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining
examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter
multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+--------------+
| VERSION() |
+--------------+
| 5.7.1-m4-log |
+--------------+
1 row in set (0.00 sec)
+---------------------+
| NOW() |
+---------------------+
| 2010-08-06 12:17:13 |
+---------------------+
1 row in set (0.00 sec)

Entering Queries

240

A query need not be given all on a single line, so lengthy queries that require several lines are not a
problem. mysql determines where your statement ends by looking for the terminating semicolon, not
by looking for the end of the input line. (In other words, mysql accepts free-format input: it collects
input lines but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

mysql> SELECT
 -> USER()
 -> ,
 -> CURRENT_DATE;
+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2010-08-06 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a
multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a query that you are in the process of entering, cancel it by
typing \c:

mysql> SELECT
 -> USER()
 -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to
indicate that mysql is ready for a new query.

The following table shows each of the prompts you may see and summarizes what they mean about
the state that mysql is in.

Prompt Meaning

mysql> Ready for new query

-> Waiting for next line of multiple-line query

'> Waiting for next line, waiting for completion of a string that began with a single quote (“'”)

"> Waiting for next line, waiting for completion of a string that began with a double quote (“"”)

`> Waiting for next line, waiting for completion of an identifier that began with a backtick (“`”)

/*> Waiting for next line, waiting for completion of a comment that began with /*

Multiple-line statements commonly occur by accident when you intend to issue a query on a single line,
but forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
 ->

If this happens to you (you think you've entered a statement but the only response is a -> prompt),
most likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you
might sit there for a while before realizing what you need to do. Enter a semicolon to complete the
statement, and mysql executes it:

mysql> SELECT USER()
 -> ;
+---------------+

Creating and Using a Database

241

| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting for
completion of a string). In MySQL, you can write strings surrounded by either “'” or “"” characters (for
example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When
you see a '> or "> prompt, it means that you have entered a line containing a string that begins with a
“'” or “"” quote character, but have not yet entered the matching quote that terminates the string. This
often indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that
mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The
string 'Smith is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the query. However, you cannot just type
\c in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the
closing quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new query.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not
completed a backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter
an unterminated string, any further lines you type appear to be ignored by mysql—including a line
containing QUIT. This can be quite confusing, especially if you do not know that you need to supply the
terminating quote before you can cancel the current query.

3.3 Creating and Using a Database
Once you know how to enter SQL statements, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track
of various types of information about them. You can do so by creating tables to hold your data and
loading them with the desired information. Then you can answer different sorts of questions about
your animals by retrieving data from the tables. This section shows you how to perform the following
operations:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations
in which a similar type of database might be used. For example, a database like this could be used by
a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie

Creating and Selecting a Database

242

distribution containing some of the queries and sample data used in the following sections can be
obtained from the MySQL Web site. It is available in both compressed tar file and Zip formats at http://
dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The mysql database describes user access privileges. The test database often is available as a
workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES
does not show databases that you have no privileges for if you do not have the SHOW DATABASES
privilege. See Section 13.7.5.14, “SHOW DATABASES Syntax”.

If the test database exists, try to access it:

mysql> USE test
Database changed

USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon
if you like; it does no harm.) The USE statement is special in another way, too: it must be given on a
single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that
you want to call yours menagerie. The administrator needs to execute a statement like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the
host from which you connect to the server.

3.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin
using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer
to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is
also true for table names. (Under Windows, this restriction does not apply, although you must refer to
databases and tables using the same lettercase throughout a given query. However, for a variety of
reasons, the recommended best practice is always to use the same lettercase that was used when the
database was created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied
for user 'micah'@'localhost' to database 'menagerie' when
attempting to create a database, this means that your user account does not

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

Creating a Table

243

have the necessary privileges to do so. Discuss this with the administrator or
see Section 6.2, “The MySQL Access Privilege System”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the
current database, use this statement:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a
mysql session. You can do this by issuing a USE statement as shown in the example. Alternatively,
you can select the database on the command line when you invoke mysql. Just specify its name after
any connection parameters that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Important

menagerie in the command just shown is not your password. If you want
to supply your password on the command line after the -p option, you must
do so with no intervening space (for example, as -pmypassword, not as -p
mypassword). However, putting your password on the command line is not
recommended, because doing so exposes it to snooping by other users logged
in on your machine.

Note

You can see at any time which database is currently selected using SELECT
DATABASE().

3.3.2 Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and
what columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very
interesting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some
basic descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age
changes as time passes, which means you'd have to update your records often. Instead, it is better
to store a fixed value such as date of birth. Then, whenever you need age, you can calculate it as
the difference between the current date and the birth date. MySQL provides functions for doing date
arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If
you think this type of query is somewhat silly, note that it is the same question you might ask in the
context of a business database to identify clients to whom you need to send out birthday greetings in
the current week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

Loading Data into a Table

244

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
 -> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values
vary in length. The lengths in those column definitions need not all be the same, and need not be 20.
You can normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you
make a poor choice and it turns out later that you need a longer field, MySQL provides an ALTER
TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or
perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or
what types they have.

For more information about MySQL data types, see Chapter 11, Data Types.

3.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful
for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates
in 'YYYY-MM-DD' format; this may be different from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Retrieving Information from a Table

245

name owner species sex birth death

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a single
statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs,
and given in the order in which the columns were listed in the CREATE TABLE statement. For missing
values (such as unknown sexes or death dates for animals that are still living), you can use NULL
values. To represent these in your text file, use \N (backslash, capital-N). For example, the record for
Whistler the bird would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this statement:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use
this statement instead:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
 -> LINES TERMINATED BY '\r\n';

(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA
statement if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to
read the file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled
by default. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”, for information on how to
change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest
form, you supply values for each column, in the order in which the columns were listed in the CREATE
TABLE statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new
record using an INSERT statement like this:

mysql> INSERT INTO pet
 -> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL
directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load
your records initially using several INSERT statements rather than a single LOAD DATA statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select

Retrieving Information from a Table

246

FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT is useful if you want to review your entire table, for example, after you've just
loaded it with your initial data set. For example, you may happen to think that the birth date for Bowser
doesn't seem quite right. Consulting your original pedigree papers, you find that the correct birth year
should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.3.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause
from the SELECT statement. But typically you don't want to see the entire table, particularly when it
becomes large. Instead, you're usually more interested in answering a particular question, in which
case you specify some constraints on the information you want. Let's look at some selection queries in
terms of questions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that
you made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |

Retrieving Information from a Table

247

+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser',
'BOWSER', and so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which
animals were born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both
operators, it is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
 -> OR (species = 'dog' AND sex = 'f');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.3.4.3 Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are
interested, separated by commas. For example, if you want to know when your animals were born,
select the name and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
| Fluffy | 1993-02-04 |
| Claws | 1994-03-17 |

Retrieving Information from a Table

248

Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear
more than once. To minimize the output, retrieve each unique output record just once by adding the
keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
 -> WHERE species = 'dog' OR species = 'cat';
+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular
order. It is often easier to examine query output when the rows are sorted in some meaningful way. To
sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+

Retrieving Information from a Table

249

| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting—like all other comparison operations—is normally performed in a
case-insensitive fashion. This means that the order is undefined for columns that are identical except
for their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY
BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order,
add the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For
example, to sort by type of animal in ascending order, then by birth date within animal type in
descending order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
 -> ORDER BY species, birth DESC;
+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

The DESC keyword applies only to the column name immediately preceding it (birth); it does not
affect the species column sort order.

3.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, use the TIMESTAMPDIFF() function. Its
arguments are the unit in which you want the result expressed, and the two date for which to take the

Retrieving Information from a Table

250

difference. The following query shows, for each pet, the birth date, the current date, and the age in
years. An alias (age) is used to make the final output column label more meaningful.

mysql> SELECT name, birth, CURDATE(),
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 -> FROM pet;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

The query works, but the result could be scanned more easily if the rows were presented in some
order. This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 -> FROM pet ORDER BY name;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 -> FROM pet ORDER BY age;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine
which animals these are by checking whether the death value is NULL. Then, for those with non-NULL
values, compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
 -> TIMESTAMPDIFF(YEAR,birth,death) AS age
 -> FROM pet WHERE death IS NOT NULL ORDER BY age;
+--------+------------+------------+------+

Retrieving Information from a Table

251

| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed later. See
Section 3.3.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation,
year and day are irrelevant; you simply want to extract the month part of the birth column.
MySQL provides several functions for extracting parts of dates, such as YEAR(), MONTH(), and
DAYOFMONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query
that displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the
month number (12) and look for animals born in month 13, because there is no such month. Instead,
you look for animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date.
If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result
produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet
 -> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
 -> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between
0 and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to
January (1).

3.3.4.6 Working with NULL Values

Retrieving Information from a Table

252

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing
unknown value” and it is treated somewhat differently from other values.

To test for NULL, use the IS NULL and IS NOT NULL operators, as shown here:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate
this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any
meaningful results from such comparisons.

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a
boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if
you do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an
empty string into a column defined as NOT NULL, but this is not the case. These are in fact values,
whereas NULL means “not having a value.” You can test this easily enough by using IS [NOT] NULL
as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Section B.5.4.3, “Problems with NULL Values”.

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on
extended regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching enables you to use “_” to match any single character and “%” to match an
arbitrary number of characters (including zero characters). In MySQL, SQL patterns are case-
insensitive by default. Some examples are shown here. You do not use = or <> when you use SQL
patterns; use the LIKE or NOT LIKE comparison operators instead.

To find names beginning with “b”:

Retrieving Information from a Table

253

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with “fy”:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the “_” pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and
NOT RLIKE, which are synonyms).

The following list describes some characteristics of extended regular expressions:

• “.” matches any single character.

• A character class “[...]” matches any character within the brackets. For example, “[abc]”
matches “a”, “b”, or “c”. To name a range of characters, use a dash. “[a-z]” matches any letter,
whereas “[0-9]” matches any digit.

• “*” matches zero or more instances of the thing preceding it. For example, “x*” matches any
number of “x” characters, “[0-9]*” matches any number of digits, and “.*” matches any number of
anything.

• A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This
differs from a LIKE pattern match, which succeeds only if the pattern matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use “^” at
the beginning or “$” at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are
rewritten here to use REGEXP.

Retrieving Information from a Table

254

To find names beginning with “b”, use “^” to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

If you really want to force a REGEXP comparison to be case sensitive, use the BINARY keyword to
make one of the strings a binary string. This query matches only lowercase “b” at the beginning of a
name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with “fy”, use “$” to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in
the previous query to put a wildcard on either side of the pattern to get it to match the entire value like it
would be if you used an SQL pattern.

To find names containing exactly five characters, use “^” and “$” to match the beginning and end of the
name, and five instances of “.” in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

Section 12.5.2, “Regular Expressions”, provides more information about the syntax for regular
expressions.

Retrieving Information from a Table

255

3.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a
table?” For example, you might want to know how many pets you have, or how many pets each owner
has, or you might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to
count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to
find out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

The preceding query uses GROUP BY to group all records for each owner. The use of COUNT()
in conjunction with GROUP BY is useful for characterizing your data under various groupings. The
following examples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;

Retrieving Information from a Table

256

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
 -> WHERE species = 'dog' OR species = 'cat'
 -> GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
 -> WHERE sex IS NOT NULL
 -> GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present
that names those same columns. Otherwise, the following occurs:

• If the ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'menagerie.pet.owner';
this is incompatible with sql_mode=only_full_group_by

• If ONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single
group, but the value selected for each named column is indeterminate. The server is free to select
the value from any row:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;

Retrieving Information from a Table

257

+--------+----------+
| owner | COUNT(*) |
+--------+----------+
| Harold | 8 |
+--------+----------+
1 row in set (0.00 sec)

See also Section 12.20.3, “MySQL Handling of GROUP BY”.

3.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs to contain the following information:

• The pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
 -> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file
containing the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy

Claws 1998-03-17 birthday Gave him a new flea collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be
able to perform retrievals on the records in the event table; the principles are the same. But when is
the event table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate
her age on that date you need her birth date, which is stored in the pet table. This means the query
requires both tables:

Getting Information About Databases and Tables

258

mysql> SELECT pet.name,
 -> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
 -> remark
 -> FROM pet INNER JOIN event
 -> ON pet.name = event.name
 -> WHERE event.type = 'litter';
+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one
table can be matched to records in the other. This is easy because they both have a name column.
The query uses an ON clause to match up records in the two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN permits rows from either
table to appear in the result if and only if both tables meet the conditions specified in the ON clause.
In this example, the ON clause specifies that the name column in the pet table must match the name
column in the event table. If a name appears in one table but not the other, the row will not appear
in the result because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean
when referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself,
if you want to compare records in a table to other records in that same table. For example, to find
breeding pairs among your pets, you can join the pet table with itself to produce candidate pairs of
males and females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
 -> FROM pet AS p1 INNER JOIN pet AS p2
 -> ON p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';
+--------+------+--------+------+---------+
| name | sex | name | sex | species |
+--------+------+--------+------+---------+
Fluffy	f	Claws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which
instance of the table each column reference is associated with.

3.4 Getting Information About Databases and Tables
What if you forget the name of a database or table, or what the structure of a given table is (for
example, what its columns are called)? MySQL addresses this problem through several statements
that provide information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To
find out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |

Using mysql in Batch Mode

259

+------------+

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the
name of a table), use this statement:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |
+---------------------+
| event |
| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name,
where db_name is the name of the database. See Section 13.7.5.37, “SHOW TABLES Syntax”, for
more information.

If you want to find out about the structure of a table, the DESCRIBE statement is useful; it displays
information about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Default specifies
the column's default value. Extra displays special information about columns: If a column was created
with the AUTO_INCREMENT option, the value will be auto_increment rather than empty.

DESC is a short form of DESCRIBE. See Section 13.8.1, “DESCRIBE Syntax”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW
CREATE TABLE statement. See Section 13.7.5.10, “SHOW CREATE TABLE Syntax”.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See
Section 13.7.5.22, “SHOW INDEX Syntax”, for more about this statement.

3.5 Using mysql in Batch Mode

In the previous sections, you used mysql interactively to enter statements and view the results. You
can also run mysql in batch mode. To do this, put the statements you want to run in a file, then tell
mysql to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause
problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

Using mysql in Batch Mode

260

shell> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use
the --force command-line option.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid
retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line
statements or multiple-statement sequences. If you make a mistake, you don't have to retype
everything. Just edit your script to correct the error, then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

shell> mysql < batch-file | more

• You can catch the output in a file for further processing:

shell> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the statements.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job.
In this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when
you use it interactively. For example, the output of SELECT DISTINCT species FROM pet looks
like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output
the statements that are executed, use mysql -vvv.

You can also use scripts from the mysql prompt by using the source command or \. command:

Examples of Common Queries

261

mysql> source filename;
mysql> \. filename

See Section 4.5.1.5, “Executing SQL Statements from a Text File”, for more information.

3.6 Examples of Common Queries
Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain
traders (dealers). Supposing that each trader has a single fixed price per article, then (article,
dealer) is a primary key for the records.

Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database named test).

You can create and populate the example table with these statements:

CREATE TABLE shop (
 article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
 dealer CHAR(20) DEFAULT '' NOT NULL,
 price DOUBLE(16,2) DEFAULT '0.00' NOT NULL,
 PRIMARY KEY(article, dealer));
INSERT INTO shop VALUES
 (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
 (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
+---------+--------+-------+

3.6.1 The Maximum Value for a Column

“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
| 4 |
+---------+

3.6.2 The Row Holding the Maximum of a Certain Column

Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

Maximum of Column per Group

262

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Other solutions are to use a LEFT JOIN or to sort all rows descending by price and get only the first
row using the MySQL-specific LIMIT clause:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.price < s2.price
WHERE s2.article IS NULL;

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the
LIMIT solution would show only one of them.

3.6.3 Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article;

+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)
 FROM shop s2
 WHERE s1.article = s2.article);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

Using User-Defined Variables

263

The preceding example uses a correlated subquery, which can be inefficient (see Section 13.2.10.7,
“Correlated Subqueries”). Other possibilities for solving the problem are to use an uncorrelated
subquery in the FROM clause or a LEFT JOIN.

Uncorrelated subquery:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
 SELECT article, MAX(price) AS price
 FROM shop
 GROUP BY article) AS s2
 ON s1.article = s2.article AND s1.price = s2.price;

LEFT JOIN:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no
s2.price with a greater value and the s2 rows values will be NULL. See Section 13.2.9.2, “JOIN
Syntax”.

3.6.5 Using User-Defined Variables

You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See Section 9.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a
column in a user variable and then to use this variable in an SQL statement;
however, this requires the use of a prepared statement. See Section 13.5, “SQL
Syntax for Prepared Statements”, for more information.

3.6.6 Using Foreign Keys

In MySQL, InnoDB tables support checking of foreign key constraints. See Chapter 14, The InnoDB
Storage Engine, and Section 1.8.2.3, “Foreign Key Differences”.

A foreign key constraint is not required merely to join two tables. For storage engines other than
InnoDB, it is possible when defining a column to use a REFERENCES tbl_name(col_name) clause,
which has no actual effect, and serves only as a memo or comment to you that the column which
you are currently defining is intended to refer to a column in another table. It is extremely important to
realize when using this syntax that:

• MySQL does not perform any sort of CHECK to make sure that col_name actually exists in
tbl_name (or even that tbl_name itself exists).

Using Foreign Keys

264

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to
actions taken on rows in the table which you are defining; in other words, this syntax induces no
ON DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON
UPDATE clause as part of the REFERENCES clause, it is also ignored.)

• This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(60) NOT NULL,
 PRIMARY KEY (id)
);

CREATE TABLE shirt (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
 color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
 owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
 PRIMARY KEY (id)
);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
 ON s.owner = p.id
 WHERE p.name LIKE 'Lilliana%'
 AND s.color <> 'white';

+----+-------+--------+-------+

Searching on Two Keys

265

| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE
TABLE or DESCRIBE:

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

The use of REFERENCES in this way as a comment or “reminder” in a column definition works with
MyISAM tables.

3.6.7 Searching on Two Keys

An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized. See Section 8.2.1.4, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate
SELECT statements. See Section 13.2.9.3, “UNION Syntax”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
 FROM test_table WHERE field1_index = '1'
UNION
SELECT field1_index, field2_index
 FROM test_table WHERE field2_index = '1';

3.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days
per month a user has visited a Web page.

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
 day INT(2) UNSIGNED ZEROFILL);
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
 (2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To
determine how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
 GROUP BY year,month;

Which returns:

Using AUTO_INCREMENT

266

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination,
with automatic removal of duplicate entries.

3.6.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO animals (name) VALUES
 ('dog'),('cat'),('penguin'),
 ('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

No value was specified for the AUTO_INCREMENT column, so MySQL assigned sequence numbers
automatically. You can also explicitly assign 0 to the column to generate sequence numbers. If the
column is declared NOT NULL, it is also possible to assign NULL to the column to generate sequence
numbers. When you insert any other value into an AUTO_INCREMENT column, the column is set to that
value and the sequence is reset so that the next automatically generated value follows sequentially
from the largest column value.

You can retrieve the most recent automatically generated AUTO_INCREMENT value with the
LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. These functions
are connection-specific, so their return values are not affected by another connection which is also
performing inserts.

Use the smallest integer data type for the AUTO_INCREMENT column that is large enough to hold the
maximum sequence value you will need. When the column reaches the upper limit of the data type, the
next attempt to generate a sequence number fails. Use the UNSIGNED attribute if possible to allow a
greater range. For example, if you use TINYINT, the maximum permissible sequence number is 127.
For TINYINT UNSIGNED, the maximum is 255. See Section 11.2.1, “Integer Types (Exact Value) -
INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT” for the ranges of all the integer types.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id()
actually return the AUTO_INCREMENT key from the first of the inserted rows.

Using AUTO_INCREMENT

267

This enables multiple-row inserts to be reproduced correctly on other servers in
a replication setup.

To start with an AUTO_INCREMENT value other than 1, set that value with CREATE TABLE or ALTER
TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

InnoDB Notes

For InnoDB tables, be careful if you modify the column containing the auto-increment value in the
middle of a sequence of INSERT statements. For example, if you use an UPDATE statement to put a
new, larger value in the auto-increment column, a subsequent INSERT could encounter a “Duplicate
entry” error. The test whether an auto-increment value is already present occurs if you do a DELETE
followed by more INSERT statements, or when you COMMIT the transaction, but not after an UPDATE
statement.

For more information about AUTO_INCREMENT and InnoDB, see Section 14.5.5, “AUTO_INCREMENT
Handling in InnoDB”.

MyISAM Notes

• For MyISAM tables, you can specify AUTO_INCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as
MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you
want to put data into ordered groups.

CREATE TABLE animals (
 grp ENUM('fish','mammal','bird') NOT NULL,
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (grp,id)
) ENGINE=MyISAM;

INSERT INTO animals (grp,name) VALUES
 ('mammal','dog'),('mammal','cat'),
 ('bird','penguin'),('fish','lax'),('mammal','whale'),
 ('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

In this case (when the AUTO_INCREMENT column is part of a multiple-column index),
AUTO_INCREMENT values are reused if you delete the row with the biggest AUTO_INCREMENT value
in any group. This happens even for MyISAM tables, for which AUTO_INCREMENT values normally
are not reused.

• If the AUTO_INCREMENT column is part of multiple indexes, MySQL generates sequence values
using the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the
animals table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would

Using MySQL with Apache

268

ignore the PRIMARY KEY for generating sequence values. As a result, the table would contain a
single sequence, not a sequence per grp value.

Further Reading

More information about AUTO_INCREMENT is available here:

• How to assign the AUTO_INCREMENT attribute to a column: Section 13.1.14, “CREATE TABLE
Syntax”, and Section 13.1.6, “ALTER TABLE Syntax”.

• How AUTO_INCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode:
Section 5.1.7, “Server SQL Modes”.

• How to use the LAST_INSERT_ID() function to find the row that contains the most recent
AUTO_INCREMENT value: Section 12.14, “Information Functions”.

• Setting the AUTO_INCREMENT value to be used: Section 5.1.4, “Server System Variables”.

• Section 14.5.5, “AUTO_INCREMENT Handling in InnoDB”

• AUTO_INCREMENT and replication: Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Section 5.1.4, “Server System
Variables”.

3.7 Using MySQL with Apache

There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following
into the Apache configuration file:

LogFormat \
 "\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
 \"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line
writes to the log file.

269

Chapter 4 MySQL Programs

Table of Contents
4.1 Overview of MySQL Programs .. 270
4.2 Using MySQL Programs ... 274

4.2.1 Invoking MySQL Programs ... 274
4.2.2 Connecting to the MySQL Server ... 274
4.2.3 Specifying Program Options ... 278
4.2.4 Using Options on the Command Line .. 279
4.2.5 Program Option Modifiers ... 280
4.2.6 Using Option Files ... 281
4.2.7 Command-Line Options that Affect Option-File Handling ... 285
4.2.8 Using Options to Set Program Variables ... 286
4.2.9 Option Defaults, Options Expecting Values, and the = Sign .. 287
4.2.10 Setting Environment Variables .. 291

4.3 MySQL Server and Server-Startup Programs ... 292
4.3.1 mysqld — The MySQL Server ... 292
4.3.2 mysqld_safe — MySQL Server Startup Script ... 292
4.3.3 mysql.server — MySQL Server Startup Script ... 297
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 300

4.4 MySQL Installation-Related Programs .. 303
4.4.1 comp_err — Compile MySQL Error Message File .. 304
4.4.2 mysql_install_db — Initialize MySQL Data Directory .. 304
4.4.3 mysql_plugin — Configure MySQL Server Plugins ... 314
4.4.4 mysql_secure_installation — Improve MySQL Installation Security 316
4.4.5 mysql_ssl_rsa_setup — Create SSL/RSA Files ... 319
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables ... 322
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables ... 322

4.5 MySQL Client Programs ... 329
4.5.1 mysql — The MySQL Command-Line Tool .. 329
4.5.2 mysqladmin — Client for Administering a MySQL Server .. 354
4.5.3 mysqlcheck — A Table Maintenance Program .. 362
4.5.4 mysqldump — A Database Backup Program .. 370
4.5.5 mysqlimport — A Data Import Program ... 391
4.5.6 mysqlpump — A Database Backup Program .. 397
4.5.7 mysqlshow — Display Database, Table, and Column Information 411
4.5.8 mysqlslap — Load Emulation Client ... 416

4.6 MySQL Administrative and Utility Programs ... 424
4.6.1 innochecksum — Offline InnoDB File Checksum Utility .. 424
4.6.2 myisam_ftdump — Display Full-Text Index information ... 430
4.6.3 myisamchk — MyISAM Table-Maintenance Utility ... 431
4.6.4 myisamlog — Display MyISAM Log File Contents .. 447
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 448
4.6.6 mysql_config_editor — MySQL Configuration Utility ... 454
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files .. 460
4.6.8 mysqldumpslow — Summarize Slow Query Log Files .. 481

4.7 MySQL Program Development Utilities .. 483
4.7.1 mysql_config — Display Options for Compiling Clients ... 483
4.7.2 my_print_defaults — Display Options from Option Files 485
4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 486

4.8 Miscellaneous Programs ... 486
4.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output 486
4.8.2 perror — Explain Error Codes ... 486
4.8.3 replace — A String-Replacement Utility .. 487
4.8.4 resolveip — Resolve Host name to IP Address or Vice Versa 488

Overview of MySQL Programs

270

4.8.5 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output 488

This chapter provides a brief overview of the MySQL command-line programs provided by Oracle
Corporation. It also discusses the general syntax for specifying options when you run these programs.
Most programs have options that are specific to their own operation, but the option syntax is similar for
all of them. Finally, the chapter provides more detailed descriptions of individual programs, including
which options they recognize.

4.1 Overview of MySQL Programs

There are many different programs in a MySQL installation. This section provides a brief overview
of them. Later sections provide a more detailed description of each one. Each program's description
indicates its invocation syntax and the options that it supports.

Most MySQL distributions include all of these programs, except for those programs that are platform-
specific. (For example, the server startup scripts are not used on Windows.) The exception is that RPM
distributions are more specialized. There is one RPM for the server, another for client programs, and
so forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading
MySQL, for information on types of distributions and what they contain. It may be that you have a
distribution that does not include all programs and you need to install an additional package.

Each MySQL program takes many different options. Most programs provide a --help option that you
can use to get a description of the program's different options. For example, try mysql --help.

You can override default option values for MySQL programs by specifying options on the command
line or in an option file. See Section 4.2, “Using MySQL Programs”, for general information on invoking
programs and specifying program options.

The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation.
The server is accompanied by several related scripts that assist you in starting and stopping the server:

• mysqld

The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running,
because clients gain access to databases by connecting to the server. See Section 4.3.1, “mysqld
— The MySQL Server”.

• mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld. See Section 4.3.2, “mysqld_safe
— MySQL Server Startup Script”.

• mysql.server

A server startup script. This script is used on systems that use System V-style run directories
containing scripts that start system services for particular run levels. It invokes mysqld_safe to start
the MySQL server. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”.

Several programs perform setup operations during MySQL installation or upgrading:

• comp_err

This program is used during the MySQL build/installation process. It compiles error message files
from the error source files. See Section 4.4.1, “comp_err — Compile MySQL Error Message File”.

• mysql_install_db

Overview of MySQL Programs

271

This program initializes the MySQL data directory, creates the mysql database and initializes
its grant tables with default privileges, and sets up the InnoDB system tablespace. It is
usually executed only once, when first installing MySQL on a system. See Section 4.4.2,
“mysql_install_db — Initialize MySQL Data Directory”, and Section 2.10, “Postinstallation Setup
and Testing”.

• mysql_plugin

This program configures MySQL server plugins. See Section 4.4.3, “mysql_plugin — Configure
MySQL Server Plugins”.

• mysql_secure_installation

This program enables you to improve the security of your MySQL installation. See Section 4.4.4,
“mysql_secure_installation — Improve MySQL Installation Security”.

• mysql_ssl_rsa_setup

This program creates the SSL certificate and key files and RSA key-pair files required to support
secure connections, if those files are missing. Files created by mysql_ssl_rsa_setup can be
used for secure connections using SSL or RSA. See Section 4.4.5, “mysql_ssl_rsa_setup —
Create SSL/RSA Files”.

• mysql_tzinfo_to_sql

This program loads the time zone tables in the mysql database using the contents of the
host system zoneinfo database (the set of files describing time zones). See Section 4.4.6,
“mysql_tzinfo_to_sql — Load the Time Zone Tables”.

• mysql_upgrade

This program is used after a MySQL upgrade operation. It checks tables for incompatibilities and
repairs them if necessary, and updates the grant tables with any changes that have been made in
newer versions of MySQL. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL
Tables”.

MySQL client programs that connect to the MySQL server:

• mysql

The command-line tool for interactively entering SQL statements or executing them from a file in
batch mode. See Section 4.5.1, “mysql — The MySQL Command-Line Tool”.

• mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reloading
the grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be used to
retrieve version, process, and status information from the server. See Section 4.5.2, “mysqladmin
— Client for Administering a MySQL Server”.

• mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

• mysqldump

A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 4.5.4,
“mysqldump — A Database Backup Program”.

• mysqlimport

Overview of MySQL Programs

272

A client that imports text files into their respective tables using LOAD DATA INFILE. See
Section 4.5.5, “mysqlimport — A Data Import Program”.

• mysqlpump

A client that dumps a MySQL database into a file as SQL. See Section 4.5.6, “mysqlpump — A
Database Backup Program”.

• mysqlshow

A client that displays information about databases, tables, columns, and indexes. See Section 4.5.7,
“mysqlshow — Display Database, Table, and Column Information”.

• mysqlslap

A client that is designed to emulate client load for a MySQL server and report the timing of each
stage. It works as if multiple clients are accessing the server. See Section 4.5.8, “mysqlslap —
Load Emulation Client”.

MySQL administrative and utility programs:

• innochecksum

An offline InnoDB offline file checksum utility. See Section 4.6.1, “innochecksum — Offline InnoDB
File Checksum Utility”.

• myisam_ftdump

A utility that displays information about full-text indexes in MyISAM tables. See Section 4.6.2,
“myisam_ftdump — Display Full-Text Index information”.

• myisamchk

A utility to describe, check, optimize, and repair MyISAM tables. See Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”.

• myisamlog

A utility that processes the contents of a MyISAM log file. See Section 4.6.4, “myisamlog — Display
MyISAM Log File Contents”.

• myisampack

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 4.6.5,
“myisampack — Generate Compressed, Read-Only MyISAM Tables”.

• mysql_config_editor

A utility that enables you to store authentication credentials in a secure, encrypted login path file
named .mylogin.cnf. See Section 4.6.6, “mysql_config_editor — MySQL Configuration
Utility”.

• mysqlbinlog

A utility for reading statements from a binary log. The log of executed statements contained in the
binary log files can be used to help recover from a crash. See Section 4.6.7, “mysqlbinlog —
Utility for Processing Binary Log Files”.

• mysqldumpslow

A utility to read and summarize the contents of a slow query log. See Section 4.6.8,
“mysqldumpslow — Summarize Slow Query Log Files”.

Overview of MySQL Programs

273

MySQL program-development utilities:

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs. See
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”.

• my_print_defaults

A utility that shows which options are present in option groups of option files. See Section 4.7.2,
“my_print_defaults — Display Options from Option Files”.

• resolve_stack_dump

A utility program that resolves a numeric stack trace dump to symbols. See Section 4.7.3,
“resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”.

Miscellaneous utilities:

• lz4_decompress

A utility that decompresses mysqlpump output that was created using LZ4 compression. See
Section 4.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”.

• perror

A utility that displays the meaning of system or MySQL error codes. See Section 4.8.2, “perror —
Explain Error Codes”.

• replace

A utility program that performs string replacement in the input text. See Section 4.8.3, “replace — A
String-Replacement Utility”.

• resolveip

A utility program that resolves a host name to an IP address or vice versa. See Section 4.8.4,
“resolveip — Resolve Host name to IP Address or Vice Versa”.

• zlib_decompress

A utility that decompresses mysqlpump output that was created using ZLIB compression. See
Section 4.8.5, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”.

Oracle Corporation also provides the MySQL Workbench GUI tool, which is used to administer MySQL
servers and databases, to create, execute, and evaluate queries, and to migrate schemas and data
from other relational database management systems for use with MySQL. Additional GUI tools include
MySQL Notifier and MySQL for Excel.

MySQL client programs that communicate with the server using the MySQL client/server library use the
following environment variables.

Environment Variable Meaning

MYSQL_UNIX_PORT The default Unix socket file; used for connections to localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP connections

MYSQL_PWD The default password

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are created

For a full list of environment variables used by MySQL programs, see Section 2.12, “Environment
Variables”.

http://dev.mysql.com/doc/mysql-for-excel/en/index.html

Using MySQL Programs

274

Use of MYSQL_PWD is insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

4.2 Using MySQL Programs

4.2.1 Invoking MySQL Programs

To invoke a MySQL program from the command line (that is, from your shell or command prompt),
enter the program name followed by any options or other arguments needed to instruct the program
what you want it to do. The following commands show some sample program invocations. “shell>”
represents the prompt for your command interpreter; it is not part of what you type. The particular
prompt you see depends on your command interpreter. Typical prompts are $ for sh, ksh, or bash, %
for csh or tcsh, and C:\> for the Windows command.com or cmd.exe command interpreters.

shell> mysql --user=root test
shell> mysqladmin extended-status variables
shell> mysqlshow --help
shell> mysqldump -u root personnel

Arguments that begin with a single or double dash (“-”, “--”) specify program options. Options typically
indicate the type of connection a program should make to the server or affect its operational mode.
Option syntax is described in Section 4.2.3, “Specifying Program Options”.

Nonoption arguments (arguments with no leading dash) provide additional information to the program.
For example, the mysql program interprets the first nonoption argument as a database name, so the
command mysql --user=root test indicates that you want to use the test database.

Later sections that describe individual programs indicate which options a program supports and
describe the meaning of any additional nonoption arguments.

Some options are common to a number of programs. The most frequently used of these are the --
host (or -h), --user (or -u), and --password (or -p) options that specify connection parameters.
They indicate the host where the MySQL server is running, and the user name and password of your
MySQL account. All MySQL client programs understand these options; they enable you to specify
which server to connect to and the account to use on that server. Other connection options are --port
(or -P) to specify a TCP/IP port number and --socket (or -S) to specify a Unix socket file on Unix (or
named pipe name on Windows). For more information on options that specify connection options, see
Section 4.2.2, “Connecting to the MySQL Server”.

You may find it necessary to invoke MySQL programs using the path name to the bin directory in
which they are installed. This is likely to be the case if you get a “program not found” error whenever
you attempt to run a MySQL program from any directory other than the bin directory. To make it more
convenient to use MySQL, you can add the path name of the bin directory to your PATH environment
variable setting. That enables you to run a program by typing only its name, not its entire path name.
For example, if mysql is installed in /usr/local/mysql/bin, you can run the program by invoking it
as mysql, and it is not necessary to invoke it as /usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on setting your PATH variable.
The syntax for setting environment variables is interpreter-specific. (Some information is given in
Section 4.2.10, “Setting Environment Variables”.) After modifying your PATH setting, open a new
console window on Windows or log in again on Unix so that the setting goes into effect.

4.2.2 Connecting to the MySQL Server

This section describes how to establish a connection to the MySQL server. For additional information if
you are unable to connect, see Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”.

For a client program to be able to connect to the MySQL server, it must use the proper connection
parameters, such as the name of the host where the server is running and the user name and
password of your MySQL account. Each connection parameter has a default value, but you can

Connecting to the MySQL Server

275

override them as necessary using program options specified either on the command line or in an option
file.

The examples here use the mysql client program, but the principles apply to other clients such as
mysqldump, mysqladmin, or mysqlshow.

This command invokes mysql without specifying any connection parameters explicitly:

shell> mysql

Because there are no parameter options, the default values apply:

• The default host name is localhost. On Unix, this has a special meaning, as described later.

• The default user name is ODBC on Windows or your Unix login name on Unix.

• No password is sent if neither -p nor --password is given.

• For mysql, the first nonoption argument is taken as the name of the default database. If there is no
such option, mysql does not select a default database.

To specify the host name and user name explicitly, as well as a password, supply appropriate options
on the command line:

shell> mysql --host=localhost --user=myname --password=mypass mydb
shell> mysql -h localhost -u myname -pmypass mydb

For password options, the password value is optional:

• If you use a -p or --password option and specify the password value, there must be no space
between -p or --password= and the password following it.

• If you use a -p or --password option but do not specify the password value, the client program
prompts you to enter the password. The password is not displayed as you enter it. This is more
secure than giving the password on the command line. Other users on your system may be able to
see a password specified on the command line by executing a command such as ps auxw. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

As just mentioned, including the password value on the command line can be a security risk. To avoid
this problem, specify the --password or -p option without any following password value:

shell> mysql --host=localhost --user=myname --password mydb
shell> mysql -h localhost -u myname -p mydb

When the password option has no password value, the client program prints a prompt and waits for
you to enter the password. (In these examples, mydb is not interpreted as a password because it is
separated from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits
the password to eight characters. That is a problem with the system library, not with MySQL. Internally,
MySQL does not have any limit for the length of the password. To work around the problem, change
your MySQL password to a value that is eight or fewer characters long, or put your password in an
option file.

On Unix, MySQL programs treat the host name localhost specially, in a way that is likely different
from what you expect compared to other network-based programs. For connections to localhost,
MySQL programs attempt to connect to the local server by using a Unix socket file. This occurs even
if a --port or -P option is given to specify a port number. To ensure that the client makes a TCP/IP
connection to the local server, use --host or -h to specify a host name value of 127.0.0.1, or the
IP address or name of the local server. You can also specify the connection protocol explicitly, even for
localhost, by using the --protocol=TCP option. For example:

Connecting to the MySQL Server

276

shell> mysql --host=127.0.0.1
shell> mysql --protocol=TCP

The --protocol option enables you to establish a particular type of connection even when the other
options would normally default to some other protocol.

If the server is configured to accept IPv6 connections, clients can connect over IPv6 using --
host=::1. See Section 5.1.9, “IPv6 Support”.

On Windows, you can force a MySQL client to use a named-pipe connection by specifying the --pipe
or --protocol=PIPE option, or by specifying . (period) as the host name. If named-pipe connections
are not enabled, an error occurs. Use the --socket option to specify the name of the pipe if you do
not want to use the default pipe name.

Connections to remote servers always use TCP/IP. This command connects to the server running on
remote.example.com using the default port number (3306):

shell> mysql --host=remote.example.com

To specify a port number explicitly, use the --port or -P option:

shell> mysql --host=remote.example.com --port=13306

You can specify a port number for connections to a local server, too. However, as indicated previously,
connections to localhost on Unix will use a socket file by default. You will need to force a TCP/IP
connection as already described or any option that specifies a port number will be ignored.

For this command, the program uses a socket file on Unix and the --port option is ignored:

shell> mysql --port=13306 --host=localhost

To cause the port number to be used, invoke the program in either of these ways:

shell> mysql --port=13306 --host=127.0.0.1
shell> mysql --port=13306 --protocol=TCP

The following list summarizes the options that can be used to control how client programs connect to
the server:

• --host=host_name, -h host_name

The host where the server is running. The default value is localhost.

• --password[=pass_val], -p[pass_val]

The password of the MySQL account. As described earlier, the password value is optional, but if
given, there must be no space between -p or --password= and the password following it. The
default is to send no password.

• --pipe, -W

On Windows, connect to the server using a named pipe. The server must be started with the --
enable-named-pipe option to enable named-pipe connections.

• --port=port_num, -P port_num

The port number to use for the connection, for connections made using TCP/IP. The default port
number is 3306.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Connecting to the MySQL Server

277

This option explicitly specifies a protocol to use for connecting to the server. It is useful when the
other connection parameters normally would cause a protocol to be used other than the one you
want. For example, connections on Unix to localhost are made using a Unix socket file by default:

shell> mysql --host=localhost

To force a TCP/IP connection to be used instead, specify a --protocol option:

shell> mysql --host=localhost --protocol=TCP

The following table shows the permissible --protocol option values and indicates the platforms on
which each value may be used. The values are not case sensitive.

--protocol
Value

Connection Protocol Permissible Operating
Systems

TCP TCP/IP connection to local or remote server All

SOCKET Unix socket file connection to local server Unix only

PIPE Named-pipe connection to local or remote server Windows only

MEMORY Shared-memory connection to local server Windows only

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --socket=file_name, -S file_name

On Unix, the name of the Unix socket file to use, for connections made using a named pipe to a local
server. The default Unix socket file name is /tmp/mysql.sock.

On Windows, the name of the named pipe to use, for connections to a local server. The default
Windows pipe name is MySQL. The pipe name is not case sensitive.

The server must be started with the --enable-named-pipe option to enable named-pipe
connections.

• --ssl*

Options that begin with --ssl are used for establishing a secure connection to the server using
SSL, if the server is configured with SSL support. For details, see Section 6.3.12.5, “SSL Command
Options”.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

The user name of the MySQL account you want to use. The default user name is ODBC on Windows
or your Unix login name on Unix.

Specifying Program Options

278

It is possible to specify different default values to be used when you make a connection so that you
need not enter them on the command line each time you invoke a client program. This can be done in
a couple of ways:

• You can specify connection parameters in the [client] section of an option file. The relevant
section of the file might look like this:

[client]
host=host_name
user=user_name
password=your_pass

Section 4.2.6, “Using Option Files”, discusses option files further.

• You can specify some connection parameters using environment variables. The host can be
specified for mysql using MYSQL_HOST. The MySQL user name can be specified using USER (this
is for Windows only). The password can be specified using MYSQL_PWD, although this is insecure;
see Section 6.1.2.1, “End-User Guidelines for Password Security”. For a list of variables, see
Section 2.12, “Environment Variables”.

4.2.3 Specifying Program Options

There are several ways to specify options for MySQL programs:

• List the options on the command line following the program name. This is common for options that
apply to a specific invocation of the program.

• List the options in an option file that the program reads when it starts. This is common for options
that you want the program to use each time it runs.

• List the options in environment variables (see Section 4.2.10, “Setting Environment Variables”).
This method is useful for options that you want to apply each time the program runs. In practice,
option files are used more commonly for this purpose, but Section 5.3.3, “Running Multiple MySQL
Instances on Unix”, discusses one situation in which environment variables can be very helpful. It
describes a handy technique that uses such variables to specify the TCP/IP port number and Unix
socket file for the server and for client programs.

Options are processed in order, so if an option is specified multiple times, the last occurrence takes
precedence. The following command causes mysql to connect to the server running on localhost:

shell> mysql -h example.com -h localhost

If conflicting or related options are given, later options take precedence over earlier options. The
following command runs mysql in “no column names” mode:

shell> mysql --column-names --skip-column-names

MySQL programs determine which options are given first by examining environment variables, then by
reading option files, and then by checking the command line. This means that environment variables
have the lowest precedence and command-line options the highest.

You can take advantage of the way that MySQL programs process options by specifying default option
values for a program in an option file. That enables you to avoid typing them each time you run the
program while enabling you to override the defaults if necessary by using command-line options.

Note

Prior to MySQL 5.7.2, program options could be specified in full or as any
unambiguous prefix. For example, the --compress option could be given to
mysqldump as --compr, but not as --comp because the latter is ambiguous.

Using Options on the Command Line

279

As of MySQL 5.7.2, option prefixes are no longer supported; only full options
are accepted. This is because prefixes can cause problems when new options
are implemented for programs and a prefix that is currently unambiguous might
become ambiguous in the future. Some implications of this change:

• The --key-buffer option must now be specified as --key-buffer-size.

• The --skip-grant option must now be specified as --skip-grant-
tables.

4.2.4 Using Options on the Command Line

Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it is a short form or
long form of the option name. Many options have both short and long forms. For example, -? and --
help are the short and long forms of the option that instructs a MySQL program to display its help
message.

• Option names are case sensitive. -v and -V are both legal and have different meanings. (They are
the corresponding short forms of the --verbose and --version options.)

• Some options take a value following the option name. For example, -h localhost or --
host=localhost indicate the MySQL server host to a client program. The option value tells the
program the name of the host where the MySQL server is running.

• For a long option that takes a value, separate the option name and the value by an “=” sign. For a
short option that takes a value, the option value can immediately follow the option letter, or there
can be a space between: -hlocalhost and -h localhost are equivalent. An exception to this
rule is the option for specifying your MySQL password. This option can be given in long form as --
password=pass_val or as --password. In the latter case (with no password value given), the
program prompts you for the password. The password option also may be given in short form as -
ppass_val or as -p. However, for the short form, if the password value is given, it must follow the
option letter with no intervening space. The reason for this is that if a space follows the option letter,
the program has no way to tell whether a following argument is supposed to be the password value
or some other kind of argument. Consequently, the following two commands have two completely
different meanings:

shell> mysql -ptest
shell> mysql -p test

The first command instructs mysql to use a password value of test, but specifies no default
database. The second instructs mysql to prompt for the password value and to use test as the
default database.

• Within option names, dash (“-”) and underscore (“_”) may be used interchangeably. For example, --
skip-grant-tables and --skip_grant_tables are equivalent. (However, the leading dashes
cannot be given as underscores.)

• For options that take a numeric value, the value can be given with a suffix of K, M, or G (either
uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243. For example, the following
command tells mysqladmin to ping the server 1024 times, sleeping 10 seconds between each ping:

shell> mysqladmin --count=1K --sleep=10 ping

Option values that contain spaces must be quoted when given on the command line. For example, the
--execute (or -e) option can be used with mysql to pass SQL statements to the server. When this
option is used, mysql executes the statements in the option value and exits. The statements must be

Program Option Modifiers

280

enclosed by quotation marks. For example, you can use the following command to obtain a list of user
accounts:

shell> mysql -u root -p --execute="SELECT User, Host FROM mysql.user"
Enter password: ******
+------+-----------+
| User | Host |
+------+-----------+
	gigan
root	gigan
	localhost
jon	localhost
root	localhost
+------+-----------+
shell>

Note

The long form (--execute) is followed by an equals sign (=).

If you wish to use quoted values within a statement, you will either need to escape the inner quotation
marks, or use a different type of quotation marks within the statement from those used to quote the
statement itself. The capabilities of your command processor dictate your choices for whether you can
use single or double quotation marks and the syntax for escaping quote characters. For example, if
your command processor supports quoting with single or double quotation marks, you can use double
quotation marks around the statement, and single quotation marks for any quoted values within the
statement.

Multiple SQL statements may be passed in the option value on the command line, separated by
semicolons:

shell> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"
Enter password: ******
+------------------+
| VERSION() |
+------------------+
| 5.7.10-debug-log |
+------------------+
+---------------------+
| NOW() |
+---------------------+
| 2015-11-05 20:01:02 |
+---------------------+

4.2.5 Program Option Modifiers

Some options are “boolean” and control behavior that can be turned on or off. For example, the mysql
client supports a --column-names option that determines whether or not to display a row of column
names at the beginning of query results. By default, this option is enabled. However, you may want
to disable it in some instances, such as when sending the output of mysql into another program that
expects to see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option
off.

The “enabled” form of the option may be specified in any of these ways:

Using Option Files

281

--column-names
--enable-column-names
--column-names=1

The values ON, TRUE, OFF, and FALSE are also recognized for boolean options (not case sensitive).

If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the
option, but instead issues only a warning:

shell> mysql --loose-no-such-option
mysql: WARNING: unknown option '--loose-no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL on the
same machine and list options in an option file. An option that may not be recognized by all versions of
a program can be given using the --loose prefix (or loose in an option file). Versions of the program
that recognize the option process it normally, and versions that do not recognize it issue a warning and
ignore it.

mysqld enables a limit to be placed on how large client programs can set dynamic system
variables. To do this, use a --maximum prefix with the variable name. For example, --maximum-
query_cache_size=4M prevents any client from making the query cache size larger than 4MB.

4.2.6 Using Option Files

Most MySQL programs can read startup options from option files (also sometimes called configuration
files). Option files provide a convenient way to specify commonly used options so that they need not be
entered on the command line each time you run a program. For the MySQL server, MySQL provides a
number of preconfigured option files.

To determine whether a program reads option files, invoke it with the --help option. (For mysqld, use
--verbose and --help.) If the program reads option files, the help message indicates which files it
looks for and which option groups it recognizes.

The .mylogin.cnf file that contains login path options is created by the mysql_config_editor
utility. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”. A “login path” is
an option group that permits only certain options: host, user, password, port and socket. Client
programs specify which login path to read from .mylogin.cnf using the --login-path option.

To specify an alternate file name, set the MYSQL_TEST_LOGIN_FILE environment variable.
This variable is used by the mysql-test-run.pl testing utility, but also is recognized by
mysql_config_editor and by MySQL clients such as mysql, mysqladmin, and so forth.

On Windows, MySQL programs read startup options from the following files, in the specified order (top
files are read first, later files take precedence).

File Name Purpose

%PROGRAMDATA
%\MySQL\MySQL
Server 5.7\my.ini,
%PROGRAMDATA%\MySQL
\MySQL Server
5.7\my.cnf

Global options

%WINDIR%\my.ini,
%WINDIR%\my.cnf

Global options

C:\my.ini, C:\my.cnf Global options

INSTALLDIR\my.ini,
INSTALLDIR\my.cnf

Global options

Using Option Files

282

File Name Purpose

defaults-extra-file The file specified with --defaults-extra-file=file_name, if any

%APPDATA%\MySQL
\.mylogin.cnf

Login path options

In table items, %PROGRAMDATA% represents the file system directory that contains application data
for all users on the host. This path defaults to C:\ProgramData on Microsoft Windows Vista and
greater, and C:\Documents and Settings\All Users\Application Data on older versions
of Microsoft Windows.

%WINDIR% represents the location of your Windows directory. This is commonly C:\WINDOWS. You
can determine its exact location from the value of the WINDIR environment variable using the following
command:

C:\> echo %WINDIR%

INSTALLDIR represents the MySQL installation directory. This is typically C:\PROGRAMDIR\MySQL
\MySQL 5.7 Server where PROGRAMDIR represents the programs directory (usually Program
Files on English-language versions of Windows), when MySQL 5.7 has been installed using the
installation and configuration wizards. See Section 2.3.3, “Installing MySQL on Microsoft Windows
Using MySQL Installer”.

%APPDATA% represents the value of the Windows application data directory. You can determine its
exact location from the value of the APPDATA environment variable using the following command:

C:\> echo %APPDATA%

On Unix, Linux and OS X, MySQL programs read startup options from the following files, in the
specified order (top files are read first, later files take precedence).

File Name Purpose

/etc/my.cnf Global options

/etc/mysql/my.cnf Global options

SYSCONFDIR/my.cnf Global options

$MYSQL_HOME/my.cnf Server-specific options

defaults-extra-file The file specified with --defaults-extra-file=file_name, if any

~/.my.cnf User-specific options

~/.mylogin.cnf Login path options

In table items, ~ represents the current user's home directory (the value of $HOME).

SYSCONFDIR represents the directory specified with the SYSCONFDIR option to CMake when MySQL
was built. By default, this is the etc directory located under the compiled-in installation directory.

MYSQL_HOME is an environment variable containing the path to the directory in which the
server-specific my.cnf file resides. If MYSQL_HOME is not set and you start the server using the
mysqld_safe program, mysqld_safe attempts to set MYSQL_HOME as follows:

• Let BASEDIR and DATADIR represent the path names of the MySQL base directory and data
directory, respectively.

• As of MySQL 5.7.8, if MYSQL_HOME is not set, mysqld_safe sets it to BASEDIR.

• Prior to MySQL 5.7.8, if there is a my.cnf file in DATADIR but not in BASEDIR, mysqld_safe sets
MYSQL_HOME to DATADIR. Otherwise, if there is no my.cnf file in DATADIR, mysqld_safe sets
MYSQL_HOME to BASEDIR.

Using Option Files

283

Typically, DATADIR is /usr/local/mysql/data for a binary installation or /usr/local/var for
a source installation. This is the data directory location that was specified at configuration time, not
the one specified with the --datadir option when mysqld starts. Use of --datadir at runtime has
no effect on where the server looks for option files, because it looks for them before processing any
options.

MySQL looks for option files in the order just described and reads any that exist. If an option file that
you want to use does not exist, create it with a plain text editor.

If multiple instances of a given option are found, the last instance takes precedence. There is one
exception: For mysqld, the first instance of the --user option is used as a security precaution, to
prevent a user specified in an option file from being overridden on the command line.

Note

On Unix platforms, MySQL ignores configuration files that are world-writable.
This is intentional as a security measure.

Any long option that may be given on the command line when running a MySQL program can be given
in an option file as well. To get the list of available options for a program, run it with the --help option.

The syntax for specifying options in an option file is similar to command-line syntax (see Section 4.2.4,
“Using Options on the Command Line”). However, in an option file, you omit the leading two dashes
from the option name and you specify only one option per line. For example, --quick and --
host=localhost on the command line should be specified as quick and host=localhost on
separate lines in an option file. To specify an option of the form --loose-opt_name in an option file,
write it as loose-opt_name.

Empty lines in option files are ignored. Nonempty lines can take any of the following forms:

• #comment, ;comment

Comment lines start with “#” or “;”. A “#” comment can start in the middle of a line as well.

• [group]

group is the name of the program or group for which you want to set options. After a group line, any
option-setting lines apply to the named group until the end of the option file or another group line is
given. Option group names are not case sensitive.

• opt_name

This is equivalent to --opt_name on the command line.

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can have
spaces around the “=” character, something that is not true on the command line. You can optionally
enclose the value within single quotation marks or double quotation marks, which is useful if the
value contains a “#” comment character.

Leading and trailing spaces are automatically deleted from option names and values.

You can use the escape sequences “\b”, “\t”, “\n”, “\r”, “\\”, and “\s” in option values to represent
the backspace, tab, newline, carriage return, backslash, and space characters. The escaping rules in
option files are:

• If a backslash is followed by a valid escape sequence character, the sequence is converted to the
character represented by the sequence. For example, “\s” is converted to a space.

• If a backslash is not followed by a valid escape sequence character, it remains unchanged. For
example, “\S” is retained as is.

Using Option Files

284

The preceding rules mean that a literal backslash can be given as “\\”, or as “\” if it is not followed by
a valid escape sequence character.

The rules for escape sequences in option files differ slightly from the rules for escape sequences in
string literals in SQL statements. In the latter context, if “x” is not a valid escape sequence character,
“\x” becomes “x” rather than “\x”. See Section 9.1.1, “String Literals”.

The escaping rules for option file values are especially pertinent for Windows path names, which use
“\” as a path name separator. A separator in a Windows path name must be written as “\\” if it is
followed by an escape sequence character. It can be written as “\\” or “\” if it is not. Alternatively, “/”
may be used in Windows path names and will be treated as “\”. Suppose that you want to specify a
base directory of C:\Program Files\MySQL\MySQL Server 5.7 in an option file. This can be
done several ways. Some examples:

basedir="C:\Program Files\MySQL\MySQL Server 5.7"
basedir="C:\\Program Files\\MySQL\\MySQL Server 5.7"
basedir="C:/Program Files/MySQL/MySQL Server 5.7"
basedir=C:\\Program\sFiles\\MySQL\\MySQL\sServer\s5.7

If an option group name is the same as a program name, options in the group apply specifically to
that program. For example, the [mysqld] and [mysql] groups apply to the mysqld server and the
mysql client program, respectively.

The [client] option group is read by all client programs (but not by mysqld). This enables you to
specify options that apply to all clients. For example, [client] is the perfect group to use to specify
the password that you use to connect to the server. (But make sure that the option file is readable and
writable only by yourself, so that other people cannot find out your password.) Be sure not to put an
option in the [client] group unless it is recognized by all client programs that you use. Programs
that do not understand the option quit after displaying an error message if you try to run them.

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M

[mysqldump]
quick

The preceding option file uses var_name=value syntax for the lines that set the key_buffer_size
and max_allowed_packet variables.

Here is a typical user option file:

[client]
The following password will be sent to all standard MySQL clients
password="my_password"

[mysql]
no-auto-rehash
connect_timeout=2

If you want to create option groups that should be read by mysqld servers from a specific MySQL
release series only, you can do this by using groups with names of [mysqld-5.6], [mysqld-5.7],
and so forth. The following group indicates that the sql_mode setting should be used only by MySQL
servers with 5.7.x version numbers:

Command-Line Options that Affect Option-File Handling

285

[mysqld-5.7]
sql_mode=TRADITIONAL

It is possible to use !include directives in option files to include other option files and !includedir
to search specific directories for option files. For example, to include the /home/mydir/myopt.cnf
file, use the following directive:

!include /home/mydir/myopt.cnf

To search the /home/mydir directory and read option files found there, use this directive:

!includedir /home/mydir

There is no guarantee about the order in which the option files in the directory will be read.

Note

Any files to be found and included using the !includedir directive on Unix
operating systems must have file names ending in .cnf. On Windows, this
directive checks for files with the .ini or .cnf extension.

Write the contents of an included option file like any other option file. That is, it should contain groups of
options, each preceded by a [group] line that indicates the program to which the options apply.

While an included file is being processed, only those options in groups that the current program is
looking for are used. Other groups are ignored. Suppose that a my.cnf file contains this line:

!include /home/mydir/myopt.cnf

And suppose that /home/mydir/myopt.cnf looks like this:

[mysqladmin]
force

[mysqld]
key_buffer_size=16M

If my.cnf is processed by mysqld, only the [mysqld] group in /home/mydir/myopt.cnf is used.
If the file is processed by mysqladmin, only the [mysqladmin] group is used. If the file is processed
by any other program, no options in /home/mydir/myopt.cnf are used.

The !includedir directive is processed similarly except that all option files in the named directory
are read.

4.2.7 Command-Line Options that Affect Option-File Handling

Most MySQL programs that support option files handle the following options. Because these options
affect option-file handling, they must be given on the command line and not in an option file. To work
properly, each of these options must be given before other options, with these exceptions:

• --print-defaults may be used immediately after --defaults-file, --defaults-extra-
file, or --login-path.

• On Windows, if the server is started with the --defaults-file and --install options, --
install must be first. See Section 2.3.5.8, “Starting MySQL as a Windows Service”.

When specifying file names, avoid the use of the “~” shell metacharacter because it might not be
interpreted as you expect.

• --defaults-extra-file=file_name

Using Options to Set Program Variables

286

Read this option file after the global option file but (on Unix) before the user option file and (on all
platforms) before the login path file. (For information about the order in which option files are used,
see Section 4.2.6, “Using Option Files”.) If the file does not exist or is otherwise inaccessible, an
error occurs. file_name is interpreted relative to the current directory if given as a relative path
name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, the mysql client normally reads the [client] and [mysql] groups. If the --
defaults-group-suffix=_other option is given, mysql also reads the [client_other] and
[mysql_other] groups.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

A client program reads the option group corresponding to the named login path, in addition to option
groups that the program reads by default. Consider this command:

shell> mysql --login-path=mypath

By default, the mysql client reads the [client] and [mysql] option groups. So for the command
shown, mysql reads [client] and [mysql] from other option files, and [client], [mysql],
and [mypath] from the login path file.

Client programs read the login path file even when the --no-defaults option is used.

To specify an alternate login path file name, set the MYSQL_TEST_LOGIN_FILE environment
variable.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that client programs read the .mylogin.cnf login path file, if it exists, even
when --no-defaults is used. This permits passwords to be specified in a safer way than
on the command line even if --no-defaults is present. (.mylogin.cnf is created by the
mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”.)

• --print-defaults

Print the program name and all options that it gets from option files. As of MySQL 5.7.8, password
values are masked.

4.2.8 Using Options to Set Program Variables

Many MySQL programs have internal variables that can be set at runtime using the SET statement.
See Section 13.7.4, “SET Syntax”, and Section 5.1.5, “Using System Variables”.

Option Defaults, Options Expecting Values, and the = Sign

287

Most of these program variables also can be set at server startup by using the same syntax that
applies to specifying program options. For example, mysql has a max_allowed_packet variable that
controls the maximum size of its communication buffer. To set the max_allowed_packet variable for
mysql to a value of 16MB, use either of the following commands:

shell> mysql --max_allowed_packet=16777216
shell> mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes. For
variables that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase
or lowercase) to indicate a multiplier of 1024, 10242 or 10243. (For example, when used to set
max_allowed_packet, the suffixes indicate units of kilobytes, megabytes, or gigabytes.)

In an option file, variable settings are given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in a variable name can be specified as dashes. The following option groups are
equivalent. Both set the size of the server's key buffer to 512MB:

[mysqld]
key_buffer_size=512M

[mysqld]
key-buffer-size=512M

A variable can be specified by writing it in full or as any unambiguous prefix. For example, the
max_allowed_packet variable can be set for mysql as --max_a, but not as --max because the
latter is ambiguous:

shell> mysql --max=1000000
mysql: ambiguous option '--max=1000000' (max_allowed_packet, max_join_size)

Be aware that the use of variable prefixes can cause problems in the event that new variables are
implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

4.2.9 Option Defaults, Options Expecting Values, and the = Sign

By convention, long forms of options that assign a value are written with an equals (=) sign, like this:

shell> mysql --host=tonfisk --user=jon

Option Defaults, Options Expecting Values, and the = Sign

288

For options that require a value (that is, not having a default value), the equals sign is not required, and
so the following is also valid:

shell> mysql --host tonfisk --user jon

In both cases, the mysql client attempts to connect to a MySQL server running on the host named
“tonfisk” using an account with the user name “jon”.

Due to this behavior, problems can occasionally arise when no value is provided for an option that
expects one. Consider the following example, where a user connects to a MySQL server running on
host tonfisk as user jon:

shell> mysql --host 85.224.35.45 --user jon
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.7.11 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| jon@% |
+----------------+
1 row in set (0.00 sec)

Omitting the required value for one of these option yields an error, such as the one shown here:

shell> mysql --host 85.224.35.45 --user
mysql: option '--user' requires an argument

In this case, mysql was unable to find a value following the --user option because nothing came
after it on the command line. However, if you omit the value for an option that is not the last option to
be used, you obtain a different error that you may not be expecting:

shell> mysql --host --user jon
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

Because mysql assumes that any string following --host on the command line is a host name, --
host --user is interpreted as --host=--user, and the client attempts to connect to a MySQL
server running on a host named “--user”.

Options having default values always require an equals sign when assigning a value; failing to do
so causes an error. For example, the MySQL server --log-error option has the default value
host_name.err, where host_name is the name of the host on which MySQL is running. Assume
that you are running MySQL on a computer whose host name is “tonfisk”, and consider the following
invocation of mysqld_safe:

shell> mysqld_safe &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

After shutting down the server, restart it as follows:

shell> mysqld_safe --log-error &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

Option Defaults, Options Expecting Values, and the = Sign

289

The result is the same, since --log-error is not followed by anything else on the command line,
and it supplies its own default value. (The & character tells the operating system to run MySQL in the
background; it is ignored by MySQL itself.) Now suppose that you wish to log errors to a file named
my-errors.err. You might try starting the server with --log-error my-errors, but this does not
have the intended effect, as shown here:

shell> mysqld_safe --log-error my-errors &
[1] 31357
shell> 080111 22:53:31 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080111 22:53:32 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

[1]+ Done ./mysqld_safe --log-error my-errors

The server attempted to start using /usr/local/mysql/var/tonfisk.err as the error log, but
then shut down. Examining the last few lines of this file shows the reason:

shell> tail /usr/local/mysql/var/tonfisk.err
2013-09-24T15:36:22.278034Z 0 [ERROR] Too many arguments (first extra is 'my-errors').
2013-09-24T15:36:22.278059Z 0 [Note] Use --verbose --help to get a list of available options!
2013-09-24T15:36:22.278076Z 0 [ERROR] Aborting
2013-09-24T15:36:22.279704Z 0 [Note] InnoDB: Starting shutdown...
2013-09-24T15:36:23.777471Z 0 [Note] InnoDB: Shutdown completed; log sequence number 2319086
2013-09-24T15:36:23.780134Z 0 [Note] mysqld: Shutdown complete

Because the --log-error option supplies a default value, you must use an equals sign to assign a
different value to it, as shown here:

shell> mysqld_safe --log-error=my-errors &
[1] 31437
shell> 080111 22:54:15 mysqld_safe Logging to '/usr/local/mysql/var/my-errors.err'.
080111 22:54:15 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var

shell>

Now the server has been started successfully, and is logging errors to the file /usr/local/mysql/
var/my-errors.err.

Similar issues can arise when specifying option values in option files. For example, consider a my.cnf
file that contains the following:

[mysql]

host
user

When the mysql client reads this file, these entries are parsed as --host --user or --host=--
user, with the result shown here:

shell> mysql
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

However, in option files, an equals sign is not assumed. Suppose the my.cnf file is as shown here:

[mysql]

user jon

Trying to start mysql in this case causes a different error:

shell> mysql
mysql: unknown option '--user jon'

Option Defaults, Options Expecting Values, and the = Sign

290

A similar error would occur if you were to write host tonfisk in the option file rather than
host=tonfisk. Instead, you must use the equals sign:

[mysql]

user=jon

Now the login attempt succeeds:

shell> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.7.11 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+
1 row in set (0.00 sec)

This is not the same behavior as with the command line, where the equals sign is not required:

shell> mysql --user jon --host tonfisk
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.7.11 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@tonfisk |
+---------------+
1 row in set (0.00 sec)

Specifying an option requiring a value without a value in an option file causes the server to abort with
an error. Suppose that my.cnf contains the following:

[mysqld]
log_error
relay_log
relay_log_index

This causes the server to fail on startup, as shown here:

shell> mysqld_safe &

130924 10:41:46 mysqld_safe Logging to '/home/jon/bin/mysql/var/tonfisk.err'.
130924 10:41:46 mysqld_safe Starting mysqld daemon with databases from /home/jon/bin/mysql/var
130924 10:41:47 mysqld_safe mysqld from pid file /home/jon/bin/mysql/var/tonfisk.pid ended

The --log-error option does not require an argument; however, the --relay-log option
requires one, as shown in the error log (which in the absence of a specified value, defaults to
datadir/hostname.err):

shell> tail -n 3 ../var/tonfisk.err

130924 10:41:46 mysqld_safe Starting mysqld daemon with databases from /home/jon/bin/mysql/var
2013-09-24T15:41:47.217180Z 0 [ERROR] /home/jon/bin/mysql/libexec/mysqld: option '--relay-log' requires an argument

Setting Environment Variables

291

2013-09-24T15:41:47.217479Z 0 [ERROR] Aborting

This is a change from previous behavior, where the server would have interpreted the last two lines
in the example my.cnf file as --relay-log=relay_log_index and created a relay log file using
“relay_log_index” as the base name. (Bug #25192)

4.2.10 Setting Environment Variables

Environment variables can be set at the command prompt to affect the current invocation of your
command processor, or set permanently to affect future invocations. To set a variable permanently,
you can set it in a startup file or by using the interface provided by your system for this purpose.
Consult the documentation for your command interpreter for specific details. Section 2.12,
“Environment Variables”, lists all environment variables that affect MySQL program operation.

To specify a value for an environment variable, use the syntax appropriate for your command
processor. For example, on Windows, you can set the USER variable to specify your MySQL account
name. To do so, use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number
using the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, ksh, bash, zsh, and so on) is as
follows:

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT

The first command sets the variable, and the export command exports the variable to the shell
environment so that its value becomes accessible to MySQL and other processes.

For csh and tcsh, use setenv to make the shell variable available to the environment:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect
immediately, but the settings persist only until you log out. To have the settings take effect each time
you log in, use the interface provided by your system or place the appropriate command or commands
in a startup file that your command interpreter reads each time it starts.

On Windows, you can set environment variables using the System Control Panel (under Advanced).

On Unix, typical shell startup files are .bashrc or .bash_profile for bash, or .tcshrc for tcsh.

Suppose that your MySQL programs are installed in /usr/local/mysql/bin and that you want to
make it easy to invoke these programs. To do this, set the value of the PATH environment variable to
include that directory. For example, if your shell is bash, add the following line to your .bashrc file:

PATH=${PATH}:/usr/local/mysql/bin

bash uses different startup files for login and nonlogin shells, so you might want to add the setting to
.bashrc for login shells and to .bash_profile for nonlogin shells to make sure that PATH is set
regardless.

If your shell is tcsh, add the following line to your .tcshrc file:

setenv PATH ${PATH}:/usr/local/mysql/bin

If the appropriate startup file does not exist in your home directory, create it with a text editor.

After modifying your PATH setting, open a new console window on Windows or log in again on Unix so
that the setting goes into effect.

MySQL Server and Server-Startup Programs

292

4.3 MySQL Server and Server-Startup Programs
This section describes mysqld, the MySQL server, and several programs that are used to start the
server.

4.3.1 mysqld — The MySQL Server

mysqld, also known as MySQL Server, is the main program that does most of the work in a MySQL
installation. MySQL Server manages access to the MySQL data directory that contains databases and
tables. The data directory is also the default location for other information such as log files and status
files.

When MySQL server starts, it listens for network connections from client programs and manages
access to databases on behalf of those clients.

The mysqld program has many options that can be specified at startup. For a complete list of options,
run this command:

shell> mysqld --verbose --help

MySQL Server also has a set of system variables that affect its operation as it runs. System variables
can be set at server startup, and many of them can be changed at runtime to effect dynamic server
reconfiguration. MySQL Server also has a set of status variables that provide information about its
operation. You can monitor these status variables to access runtime performance characteristics.

For a full description of MySQL Server command options, system variables, and status variables, see
Section 5.1, “The MySQL Server”. For information about installing MySQL and setting up the initial
configuration, see Chapter 2, Installing and Upgrading MySQL.

4.3.2 mysqld_safe — MySQL Server Startup Script

mysqld_safe is the recommended way to start a mysqld server on Unix. mysqld_safe adds some
safety features such as restarting the server when an error occurs and logging runtime information to
an error log file. A description of error logging is given later in this section.

Note

As of MySQL 5.7.6, for MySQL installation using an RPM distribution, server
startup and shutdown is managed by systemd on several Linux platforms. On
these platforms, mysqld_safe is no longer installed because it is unnecessary.
For more information, see Section 2.5.10, “Managing MySQL Server with
systemd”.

mysqld_safe tries to start an executable named mysqld. To override the default behavior and
specify explicitly the name of the server you want to run, specify a --mysqld or --mysqld-version
option to mysqld_safe. You can also use --ledir to indicate the directory where mysqld_safe
should look for the server.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.1.3,
“Server Command Options”.

Options unknown to mysqld_safe are passed to mysqld if they are specified on the command line,
but ignored if they are specified in the [mysqld_safe] group of an option file. See Section 4.2.6,
“Using Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in
option files. For example, if you specify a [mysqld] section like this, mysqld_safe will find and use
the --log-error option:

[mysqld]
log-error=error.log

mysqld_safe — MySQL Server Startup Script

293

For backward compatibility, mysqld_safe also reads [safe_mysqld] sections, but to be current you
should rename such sections to [mysqld_safe].

mysqld_safe accepts options on the command line and in option files, as described in the following
table. For information about option files used by MySQL programs, see Section 4.2.6, “Using Option
Files”.

Table 4.1 mysqld_safe Options

Format Description Introduced

--basedir Path to MySQL installation directory

--core-file-size Size of core file that mysqld should be able to create

--datadir Path to data directory

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--help Display help message and exit

--ledir Path to directory where server is located

--log-error Write error log to named file

--malloc-lib Alternative malloc library to use for mysqld

--mysqld Name of server program to start (in ledir directory)

--mysqld-safe-log-timestamps Timestamp format for logging 5.7.11

--mysqld-version Suffix for server program name

--nice Use nice program to set server scheduling priority

--no-defaults Read no option files

--open-files-limit Number of files that mysqld should be able to open

--pid-file Path name of process ID file

--plugin-dir Directory where plugins are installed

--port Port number on which to listen for TCP/IP connections

--skip-kill-mysqld Do not try to kill stray mysqld processes

--skip-syslog Do not write error messages to syslog; use error log file

--socket Socket file on which to listen for Unix socket connections

--syslog Write error messages to syslog

--syslog-tag Tag suffix for messages written to syslog

--timezone Set TZ time zone environment variable to named value

--user Run mysqld as user having name user_name or numeric
user ID user_id

• --help

Display a help message and exit.

• --basedir=dir_name

The path to the MySQL installation directory.

• --core-file-size=size

The size of the core file that mysqld should be able to create. The option value is passed to ulimit
-c.

• --datadir=dir_name

mysqld_safe — MySQL Server Startup Script

294

The path to the data directory.

• --defaults-extra-file=file_name

The name of an option file to be read in addition to the usual option files. This must be the first option
on the command line if it is used. If the file does not exist or is otherwise inaccessible, the server will
exit with an error.

• --defaults-file=file_name

The name of an option file to be read instead of the usual option files. This must be the first option on
the command line if it is used.

• --ledir=dir_name

If mysqld_safe cannot find the server, use this option to indicate the path name to the directory
where the server is located.

• --log-error=file_name

Write the error log to the given file. See Section 5.2.2, “The Error Log”.

• --mysqld-safe-log-timestamps

This option controls the format for timestamps in log output produced by mysqld_safe. The
following list describes the permitted values. For any other value, mysqld_safe logs a warning and
uses UTC format.

• UTC, utc

ISO 8601 UTC format (same as --log_timestamps=UTC for the server). This is the default.

• SYSTEM, system

ISO 8601 local time format (same as --log_timestamps=SYSTEM for the server).

• HYPHEN, hyphen

YY-MM-DD h:mm:ss format, as in mysqld_safe for MySQL 5.6.

• LEGACY, legacy

YYMMDD hh:mm:ss format, as in mysqld_safe prior to MySQL 5.6.

This option was added in MySQL 5.7.11.

• --malloc-lib=[lib_name]

The name of the library to use for memory allocation instead of the system malloc() library. Any
library can be used by specifying its path name, but there is a shortcut form to enable use of the
tcmalloc library that is shipped with binary MySQL distributions for Linux in MySQL 5.7. It is
possible that the shortcut form will not work under certain configurations, in which case you should
specify a path name instead.

The --malloc-lib option works by modifying the LD_PRELOAD environment value to affect
dynamic linking to enable the loader to find the memory-allocation library when mysqld runs:

• If the option is not given, or is given without a value (--malloc-lib=), LD_PRELOAD is not
modified and no attempt is made to use tcmalloc.

• If the option is given as --malloc-lib=tcmalloc, mysqld_safe looks for a tcmalloc library
in /usr/lib and then in the MySQL pkglibdir location (for example, /usr/local/mysql/

mysqld_safe — MySQL Server Startup Script

295

lib or whatever is appropriate). If tmalloc is found, its path name is added to the beginning of
the LD_PRELOAD value for mysqld. If tcmalloc is not found, mysqld_safe aborts with an error.

• If the option is given as --malloc-lib=/path/to/some/library, that full path is added to
the beginning of the LD_PRELOAD value. If the full path points to a nonexistent or unreadable file,
mysqld_safe aborts with an error.

• For cases where mysqld_safe adds a path name to LD_PRELOAD, it adds the path to the
beginning of any existing value the variable already has.

Note

On systems that manage the server using systemd, mysqld_safe is not
available. Instead, specify the allocation library by setting LD_PRELOAD in /
etc/sysconfig/mysql.

Linux users can use the libtcmalloc_minimal.so included in binary packages by adding these
lines to the my.cnf file:

[mysqld_safe]
malloc-lib=tcmalloc

Those lines also suffice for users on any platform who have installed a tcmalloc package in /usr/
lib. To use a specific tcmalloc library, specify its full path name. Example:

[mysqld_safe]
malloc-lib=/opt/lib/libtcmalloc_minimal.so

• --mysqld=prog_name

The name of the server program (in the ledir directory) that you want to start. This option is
needed if you use the MySQL binary distribution but have the data directory outside of the binary
distribution. If mysqld_safe cannot find the server, use the --ledir option to indicate the path
name to the directory where the server is located.

• --mysqld-version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server
program name. The base name is assumed to be mysqld. For example, if you use --mysqld-
version=debug, mysqld_safe starts the mysqld-debug program in the ledir directory. If the
argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir directory.

• --nice=priority

Use the nice program to set the server's scheduling priority to the given value.

• --no-defaults

Do not read any option files. This must be the first option on the command line if it is used.

• --open-files-limit=count

The number of files that mysqld should be able to open. The option value is passed to ulimit -n.

Note

You must start mysqld_safe as root for this to function properly.

• --pid-file=file_name

The path name of the process ID file.

mysqld_safe — MySQL Server Startup Script

296

In MySQL 5.7.2 and later, mysqld_safe creates a PID file named mysqld_safe.pid in the
MySQL data directory when starting up (Bug #16776528).

• --plugin-dir=dir_name

The path name of the plugin directory.

• --port=port_num

The port number that the server should use when listening for TCP/IP connections. The port number
must be 1024 or higher unless the server is started by the root system user.

• --skip-kill-mysqld

Do not try to kill stray mysqld processes at startup. This option works only on Linux.

• --socket=path

The Unix socket file that the server should use when listening for local connections.

• --syslog, --skip-syslog

--syslog causes error messages to be sent to syslog on systems that support the logger
program. --skip-syslog suppresses the use of syslog; messages are written to an error log file.

When syslog is used, the daemon.err facility/severity is used for all log messages.

Using these options to control mysqld logging is deprecated as of MySQL 5.7.5. Use
the server log_syslog system variable instead. To control the facility, use the server
log_syslog_facility system variable. See Section 5.2.2, “The Error Log”.

• --syslog-tag=tag

For logging to syslog, messages from mysqld_safe and mysqld are written with identifiers of
mysqld_safe and mysqld, respectively. To specify a suffix for the identifiers, use --syslog-
tag=tag, which modifies the identifiers to be mysqld_safe-tag and mysqld-tag.

Using this option to control mysqld logging is deprecated as of MySQL 5.7.5. Use the server
log_syslog_tag system variable instead. See Section 5.2.2, “The Error Log”.

• --timezone=timezone

Set the TZ time zone environment variable to the given option value. Consult your operating system
documentation for legal time zone specification formats.

• --user={user_name|user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

If you execute mysqld_safe with the --defaults-file or --defaults-extra-file option to
name an option file, the option must be the first one given on the command line or the option file will not
be used. For example, this command will not use the named option file:

mysql> mysqld_safe --port=port_num --defaults-file=file_name

Instead, use the following command:

mysql> mysqld_safe --defaults-file=file_name --port=port_num

The mysqld_safe script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install the

mysql.server — MySQL Server Startup Script

297

server in slightly different locations. (See Section 2.1.4, “Installation Layouts”.) mysqld_safe expects
one of the following conditions to be true:

• The server and databases can be found relative to the working directory (the directory from which
mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working directory
for bin and data directories. For source distributions, it looks for libexec and var directories. This
condition should be met if you execute mysqld_safe from your MySQL installation directory (for
example, /usr/local/mysql for a binary distribution).

• If the server and databases cannot be found relative to the working directory, mysqld_safe
attempts to locate them by absolute path names. Typical locations are /usr/local/libexec
and /usr/local/var. The actual locations are determined from the values configured into the
distribution at the time it was built. They should be correct if MySQL is installed in the location
specified at configuration time.

Because mysqld_safe tries to find the server and databases relative to its own working directory,
you can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the
MySQL installation directory:

shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, specify the --ledir
and --datadir options to indicate the directories in which the server and databases are located on
your system.

mysqld_safe tries to use the sleep and date system utilities to determine how many times per
second it has attempted to start. If these utilities are present and the attempted starts per second is
greater than 5, mysqld_safe waits 1 full second before starting again. This is intended to prevent
excessive CPU usage in the event of repeated failures. (Bug #11761530, Bug #54035)

When you use mysqld_safe to start mysqld, mysqld_safe arranges for error (and notice)
messages from itself and from mysqld to go to the same destination.

There are several mysqld_safe options for controlling the destination of these messages:

• --log-error=file_name: Write error messages to the named error file.

• --syslog: Write error messages to syslog on systems that support the logger program.

• --skip-syslog: Do not write error messages to syslog. Messages are written to the default error
log file (host_name.err in the data directory), or to a named file if the --log-error option is
given.

If none of these options is given, the default is --skip-syslog.

When mysqld_safe writes a message, notices go to the logging destination (syslog or the error log
file) and stdout. Errors go to the logging destination and stderr.

Note

Controlling mysqld logging from mysqld_safe is deprecated as of MySQL
5.7.5. Use the server's native syslog support instead. For more information,
see Section 5.2.2, “The Error Log”.

4.3.3 mysql.server — MySQL Server Startup Script

MySQL distributions on Unix include a script named mysql.server, which starts the server using
mysqld_safe. It can be used on systems such as Linux and Solaris that use System V-style run
directories to start and stop system services. It is also used by the OS X Startup Item for MySQL.

mysql.server — MySQL Server Startup Script

298

Note

As of MySQL 5.7.6, for MySQL installation using an RPM distribution, server
startup and shutdown is managed by systemd on several Linux platforms. On
these platforms, mysql.server and mysqld_safe are no longer installed
because they are unnecessary. For more information, see Section 2.5.10,
“Managing MySQL Server with systemd”.

To start or stop the server manually using the mysql.server script, invoke it with start or stop
arguments:

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and
then invokes mysqld_safe. To run the server as some specific user, add an appropriate user option
to the [mysqld] group of the /etc/my.cnf option file, as shown later in this section. (It is possible
that you must edit mysql.server if you've installed a binary distribution of MySQL in a nonstandard
location. Modify it to change location into the proper directory before it runs mysqld_safe. If you do
this, your modified version of mysql.server may be overwritten if you upgrade MySQL in the future,
so you should make a copy of your edited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server
manually by executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you must add start and stop commands to the
appropriate places in your /etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), or a native Linux package
installation, the mysql.server script may be installed in the /etc/init.d directory with the name
mysql. See Section 2.5.5, “Installing MySQL on Linux Using RPM Packages”, for more information on
the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as
mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install
mysql.server automatically, you can install it manually. The script can be found in the support-
files directory under the MySQL installation directory or in a MySQL source tree. Copy it to the /
etc/init.d directory with the name mysql, and then make it executable:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Note

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /
etc/init.d. Adjust the preceding commands accordingly. Alternatively, first
create /etc/init.d as a symbolic link that points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on your
operating system. On Linux, you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql
script:

mysql.server — MySQL Server Startup Script

299

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual
page states that scripts in this directory are executed only if their base name matches the *.sh shell
file name pattern. Any other files or directories present within the directory are silently ignored. In
other words, on FreeBSD, you should install the mysql.server script as /usr/local/etc/rc.d/
mysql.server.sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/
init.d/boot.local to start additional services on startup. To start up MySQL using this method,
append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files. For
backward compatibility, it also reads [mysql_server] sections, but to be current you should rename
such sections to [mysql.server].

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf file
might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script supports the following options. If specified, they must be placed in an
option file, not on the command line. mysql.server supports only start and stop as command-line
arguments.

Table 4.2 mysql.server Options

Format Description

--basedir Path to MySQL installation directory

--datadir Path to MySQL data directory

--pid-file File in which server should write its process ID

--service-startup-timeout How long to wait for server startup

• --basedir=dir_name

The path to the MySQL installation directory.

• --datadir=dir_name

The path to the MySQL data directory.

• --pid-file=file_name

The path name of the file in which the server should write its process ID.

If this option is not given, mysql.server uses a default value of host_name.pid. The PID file
value passed to mysqld_safe overrides any value specified in the [mysqld_safe] option file
group. Because mysql.server reads the [mysqld] option file group but not the [mysqld_safe]
group, you can ensure that mysqld_safe gets the same value when invoke using mysql.server

mysqld_multi — Manage Multiple MySQL Servers

300

as when invoked manually by putting the same pid-file setting in both the [mysqld_safe] and
[mysqld] groups.

• --service-startup-timeout=seconds

How long in seconds to wait for confirmation of server startup. If the server does not start within this
time, mysql.server exits with an error. The default value is 900. A value of 0 means not to wait at
all for startup. Negative values mean to wait forever (no timeout).

4.3.4 mysqld_multi — Manage Multiple MySQL Servers

mysqld_multi is designed to manage several mysqld processes that listen for connections on
different Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --
defaults-file option). N can be any positive integer. This number is referred to in the following
discussion as the option group number, or GNR. Group numbers distinguish option groups from one
another and are used as arguments to mysqld_multi to specify which servers you want to start,
stop, or obtain a status report for. Options listed in these groups are the same that you would use in the
[mysqld] group used for starting mysqld. (See, for example, Section 2.10.5, “Starting and Stopping
MySQL Automatically”.) However, when using multiple servers, it is necessary that each one use its
own value for options such as the Unix socket file and TCP/IP port number. For more information on
which options must be unique per server in a multiple-server environment, see Section 5.3, “Running
Multiple MySQL Instances on One Machine”.

To invoke mysqld_multi, use the following syntax:

shell> mysqld_multi [options] {start|stop|reload|report} [GNR[,GNR] ...]

start, stop, reload (stop and restart), and report indicate which operation to perform. You can
perform the designated operation for a single server or multiple servers, depending on the GNR list that
follows the option name. If there is no list, mysqld_multi performs the operation for all servers in the
option file.

Each GNR value represents an option group number or range of group numbers. The value should be
the number at the end of the group name in the option file. For example, the GNR for a group named
[mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The
GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group
ranges can be specified on the command line, separated by commas. There must be no whitespace
characters (spaces or tabs) in the GNR list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:

shell> mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through
[mysqld13]:

shell> mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

shell> mysqld_multi --example

mysqld_multi searches for option files as follows:

• With --no-defaults, no option files are read.

• With --defaults-file=file_name, only the named file is read.

mysqld_multi — Manage Multiple MySQL Servers

301

• Otherwise, option files in the standard list of locations are read, including any file named by the --
defaults-extra-file=file_name option, if one is given. (If the option is given multiple times,
the last value is used.)

Option files read are searched for [mysqld_multi] and [mysqldN] option groups. The
[mysqld_multi] group can be used for options to mysqld_multi itself. [mysqldN] groups can be
used for options passed to specific mysqld instances.

The [mysqld] or [mysqld_safe] groups can be used for common options read by all instances
of mysqld or mysqld_safe. You can specify a --defaults-file=file_name option to use a
different configuration file for that instance, in which case the [mysqld] or [mysqld_safe] groups
from that file will be used for that instance.

mysqld_multi supports the following options.

• --help

Display a help message and exit.

• --example

Display a sample option file.

• --log=file_name

Specify the name of the log file. If the file exists, log output is appended to it.

• --mysqladmin=prog_name

The mysqladmin binary to be used to stop servers.

• --mysqld=prog_name

The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this option
also. If you use mysqld_safe to start the server, you can include the mysqld or ledir options
in the corresponding [mysqldN] option group. These options indicate the name of the server that
mysqld_safe should start and the path name of the directory where the server is located. (See the
descriptions for these options in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.)
Example:

[mysqld38]
mysqld = mysqld-debug
ledir = /opt/local/mysql/libexec

• --no-log

Print log information to stdout rather than to the log file. By default, output goes to the log file.

• --password=password

The password of the MySQL account to use when invoking mysqladmin. Note that the password
value is not optional for this option, unlike for other MySQL programs.

• --silent

Silent mode; disable warnings.

• --tcp-ip

Connect to each MySQL server through the TCP/IP port instead of the Unix socket file. (If a socket
file is missing, the server might still be running, but accessible only through the TCP/IP port.) By
default, connections are made using the Unix socket file. This option affects stop and report
operations.

mysqld_multi — Manage Multiple MySQL Servers

302

• --user=user_name

The user name of the MySQL account to use when invoking mysqladmin.

• --verbose

Be more verbose.

• --version

Display version information and exit.

Some notes about mysqld_multi:

• Most important: Before using mysqld_multi be sure that you understand the meanings of the
options that are passed to the mysqld servers and why you would want to have separate mysqld
processes. Beware of the dangers of using multiple mysqld servers with the same data directory.
Use separate data directories, unless you know what you are doing. Starting multiple servers with
the same data directory does not give you extra performance in a threaded system. See Section 5.3,
“Running Multiple MySQL Instances on One Machine”.

• Important

Make sure that the data directory for each server is fully accessible to the
Unix account that the specific mysqld process is started as. Do not use
the Unix root account for this, unless you know what you are doing. See
Section 6.1.5, “How to Run MySQL as a Normal User”.

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin
program) has the same user name and password for each server. Also, make sure that the account
has the SHUTDOWN privilege. If the servers that you want to manage have different user names or
passwords for the administrative accounts, you might want to create an account on each server that
has the same user name and password. For example, you might set up a common multi_admin
account by executing the following commands for each server:

shell> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> CREATE USER 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';
mysql> GRANT SHUTDOWN ON *.* TO 'multi_admin'@'localhost';

See Section 6.2, “The MySQL Access Privilege System”. You have to do this for each mysqld
server. Change the connection parameters appropriately when connecting to each one. Note that
the host name part of the account name must permit you to connect as multi_admin from the host
where you want to run mysqld_multi.

• The Unix socket file and the TCP/IP port number must be different for every mysqld. (Alternatively, if
the host has multiple network addresses, you can use --bind-address to cause different servers
to listen to different interfaces.)

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for
example, --mysqld=mysqld_safe) Every mysqld should have its own process ID file. The
advantage of using mysqld_safe instead of mysqld is that mysqld_safe monitors its mysqld
process and restarts it if the process terminates due to a signal sent using kill -9 or for other
reasons, such as a segmentation fault. Please note that the mysqld_safe script might require
that you start it from a certain place. This means that you might have to change location to a
certain directory before running mysqld_multi. If you have problems starting, please see the
mysqld_safe script. Check especially the lines:

--
MY_PWD=`pwd`
Check if we are starting this relative (for the binary release)

MySQL Installation-Related Programs

303

if test -d $MY_PWD/data/mysql -a \
 -f ./share/mysql/english/errmsg.sys -a \
 -x ./bin/mysqld
--

The test performed by these lines should be successful, or you might encounter problems. See
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

• You might want to use the --user option for mysqld, but to do this you need to run the
mysqld_multi script as the Unix superuser (root). Having the option in the option file doesn't
matter; you just get a warning if you are not the superuser and the mysqld processes are started
under your own Unix account.

The following example shows how you might set up an option file for use with mysqld_multi. The
order in which the mysqld programs are started or stopped depends on the order in which they appear
in the option file. Group numbers need not form an unbroken sequence. The first and fifth [mysqldN]
groups were intentionally omitted from the example to illustrate that you can have “gaps” in the option
file. This gives you more flexibility.

This is an example of a my.cnf file for mysqld_multi.
Usually this file is located in home dir ~/.my.cnf or /etc/my.cnf

[mysqld_multi]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = multi_admin
password = my_password

[mysqld2]
socket = /tmp/mysql.sock2
port = 3307
pid-file = /usr/local/mysql/data2/hostname.pid2
datadir = /usr/local/mysql/data2
language = /usr/local/mysql/share/mysql/english
user = unix_user1

[mysqld3]
mysqld = /path/to/mysqld_safe
ledir = /path/to/mysqld-binary/
mysqladmin = /path/to/mysqladmin
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/data3/hostname.pid3
datadir = /usr/local/mysql/data3
language = /usr/local/mysql/share/mysql/swedish
user = unix_user2

[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/data4/hostname.pid4
datadir = /usr/local/mysql/data4
language = /usr/local/mysql/share/mysql/estonia
user = unix_user3

[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/data6/hostname.pid6
datadir = /usr/local/mysql/data6
language = /usr/local/mysql/share/mysql/japanese
user = unix_user4

See Section 4.2.6, “Using Option Files”.

4.4 MySQL Installation-Related Programs
The programs in this section are used when installing or upgrading MySQL.

comp_err — Compile MySQL Error Message File

304

4.4.1 comp_err — Compile MySQL Error Message File

comp_err creates the errmsg.sys file that is used by mysqld to determine the error messages
to display for different error codes. comp_err normally is run automatically when MySQL is built. It
compiles the errmsg.sys file from the text file located at sql/share/errmsg.txt in MySQL source
distributions.

comp_err also generates mysqld_error.h, mysqld_ername.h, and sql_state.h header files.

For more information about how error messages are defined, see the MySQL Internals Manual.

Invoke comp_err like this:

shell> comp_err [options]

comp_err supports the following options.

• --help, -?

Display a help message and exit.

• --charset=dir_name, -C dir_name

The character set directory. The default is ../sql/share/charsets.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:O,file_name. The default is
d:t:O,/tmp/comp_err.trace.

• --debug-info, -T

Print some debugging information when the program exits.

• --header_file=file_name, -H file_name

The name of the error header file. The default is mysqld_error.h.

• --in_file=file_name, -F file_name

The name of the input file. The default is ../sql/share/errmsg.txt.

• --name_file=file_name, -N file_name

The name of the error name file. The default is mysqld_ername.h.

• --out_dir=dir_name, -D dir_name

The name of the output base directory. The default is ../sql/share/.

• --out_file=file_name, -O file_name

The name of the output file. The default is errmsg.sys.

• --statefile=file_name, -S file_name

The name for the SQLSTATE header file. The default is sql_state.h.

• --version, -V

Display version information and exit.

4.4.2 mysql_install_db — Initialize MySQL Data Directory

http://dev.mysql.com/doc/internals/en

mysql_install_db — Initialize MySQL Data Directory

305

Note

mysql_install_db is deprecated as of MySQL 5.7.6 because its functionality
has been integrated into mysqld, the MySQL server. To initialize a MySQL
installation, invoke mysqld with the --initialize or --initialize-
insecure option. For more information, see Section 2.10.1.1, “Initializing the
Data Directory Manually Using mysqld”. mysql_install_db will be removed
in a future MySQL release.

mysql_install_db handles initialization tasks that must be performed before the MySQL server,
mysqld, is ready to use:

• It iinitializes the MySQL data directory and creates the system tables that it contains.

• It initializes the system tablespace and related data structures needed to manage InnoDB tables.

• It loads the server-side help tables.

• It installs the sys schema.

• It creates an administrative account. Older versions of mysql_install_db may create anonymous-
user accounts.

Before MySQL 5.7.5, mysql_install_db is a Perl script and requires that Perl be installed. As of
5.7.5, mysql_install_db is written in C++ and supplied in binary distributions as an executable
binary. In addition, a number of new options were added and old options removed. If you find that
an option does not work as you expect, be sure to check which options apply in your version of
mysql_install_db (invoke it with the --help option).

Secure-by-Default Deployment

Current versions of mysql_install_db produce a MySQL deployment that is secure by default.
It is recommended that you use mysql_install_db from MySQL 5.7.5 or up for best security,
but version-dependent information about security characteristics is included here for completeness
(secure-by-default deployment was introduced in stages in MySQL 5.7).

MySQL 5.7.5 and up is secure by default, with these characteristics:

• A single administrative account named 'root'@'localhost' is created with a randomly
generated password, which is marked expired.

• No anonymous-user accounts are created.

• No test database accessible by all users is created.

• --admin-xxx options are available to control characteristics of the administrative account.

• The --random-password-file option is available to control where the random password is
written.

• The --insecure option is available to suppress random password generation.

MySQL 5.7.4 is secure by default, with these characteristics:

• A single administrative account named 'root'@'localhost' is created with a randomly
generated password, which is marked expired.

• No anonymous-user accounts are created.

• No test database accessible by all users is created.

• The --skip-random-passwords option is available to suppress random password generation,
and to create a test database.

mysql_install_db — Initialize MySQL Data Directory

306

MySQL 5.7.3 and earlier are not secure by default, with these characteristics:

• Multiple administrative root accounts are created with no password.

• Anonymous-user accounts are created.

• A test database accessible by all users is created.

• The --random-passwords option is available to generate random passwords for administrative
accounts and mark them expired, and to not create anonymous-user accounts.

 If mysql_install_db generates a random administative password, it writes the password to a file
and displays the file name. The password entry includes a timestamp to indicate when it was written.
By default, the file is .mysql_secret in the home directory of the effective user running the script.
.mysql_secret is created with mode 600 to be accessible only to the system user for whom it is
created.

Important

When mysql_install_db generates a random password for the
administrative account, it is necessary after mysql_install_db has been
run to start the server, connect using the administrative account with the
password written to the .mysql_secret file, and specify a new administrative
password. Until this is done, the administrative account cannot be used for
anything else. To change the password, you can use the SET PASSWORD
statement (for example, with the mysql or mysqladmin client). After resetting
the password, remove the .mysql_secret file; otherwise, if you run
mysql_secure_installation, that command may see the file and expire
the root password again as part of ensuring secure deployment.

Invocation Syntax

Several changes to mysql_install_db were made in MySQL 5.7.5 that affect the invocation syntax.
Change location to the MySQL installation directory and use the command appropriate to your version
of MySQL:

• Invocation syntax for MySQL 5.7.5 and up:

shell> bin/mysql_install_db --datadir=path/to/datadir [other_options]

The --datadir option is mandatory. mysql_install_db creates the data directory, which must
not already exist:

• If the data directory does already exist, you are performing an upgrade operation (not an install
operation) and should run mysql_upgrade, not mysql_install_db. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

• If the data directory does not exist but mysql_install_db fails, you must remove any partially
created data directory before running mysql_install_db again.

• Invocation syntax before MySQL 5.7.5:

shell> scripts/mysql_install_db [options]

Because the MySQL server, mysqld, must access the data directory when it runs later, you should
either run mysql_install_db from the same system account that will be used for running mysqld,
or run it as root and specify the --user option to indicate the user name that mysqld will run as. It
might be necessary to specify other options such as --basedir if mysql_install_db does not use
the correct location for the installation directory. For example:

mysql_install_db — Initialize MySQL Data Directory

307

shell> bin/mysql_install_db --user=mysql \
 --basedir=/opt/mysql/mysql \
 --datadir=/opt/mysql/mysql/data

Note

After mysql_install_db sets up the InnoDB system tablespace, changes to
some tablespace characteristics require setting up a whole new instance. This
includes the file name of the first file in the system tablespace and the number
of undo logs. If you do not want to use the default values, make sure that the
settings for the innodb_data_file_path and innodb_log_file_size
configuration parameters are in place in the MySQL configuration file before
running mysql_install_db. Also make sure to specify as necessary other
parameters that affect the creation and location of InnoDB files, such as
innodb_data_home_dir and innodb_log_group_home_dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the --defaults-
extra-file option when you run mysql_install_db.

Note

If you have set a custom TMPDIR environment variable when performing the
installation, and the specified directory is not accessible, mysql_install_db
may fail. If so, unset TMPDIR or set TMPDIR to point to the system temporary
directory (usually /tmp).

Administrative Account Creation

mysql_install_db creates an administrative account named 'root'@'localhost' by
default. (Before MySQL 5.7.4, mysql_install_db creates additional root accounts, such as
'root'@'127.0.0.1'. This is no longer done.)

As of MySQL 5.7.5, mysql_install_db provides options that enable you to control several aspects
of the administrative account:

• To change the user or host parts of the account name, use --login-path, or --admin-user and
--admin-host.

• --insecure suppresses generation of a random password.

• --admin-auth-plugin specifies the authentication plugin.

• --admin-require-ssl specifies whether the account must use SSL connections.

For more information, see the descriptions of those options.

mysql_install_db assigns user table rows a nonempty plugin column value to set the
authentication plugin. The default value is mysql_native_password. The value can be changed
using the --admin-auth-plugin option in MySQL 5.7.5 and up (as noted previously), or by setting
the default_authentication_plugin system variable in MySQL 5.7.2 to 5.7.4.

Default my.cnf File

As of MySQL 5.7.5, mysql_install_db creates no default my.cnf file.

Before MySQL 5.7.5, mysql_install_db creates a default option file named my.cnf in the base
installation directory. This file is created from a template included in the distribution package named
my-default.cnf. You can find the template in or under the base installation directory. When
started using mysqld_safe, the server uses my.cnf file by default. If my.cnf already exists,
mysql_install_db assumes it to be in use and writes a new file named my-new.cnf instead.

mysql_install_db — Initialize MySQL Data Directory

308

With one exception, the settings in the default option file are commented and have
no effect. The exception is that the file sets the sql_mode system variable to
NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES. This setting produces a server configuration
that results in errors rather than warnings for bad data in operations that modify transactional tables.
See Section 5.1.7, “Server SQL Modes”.

Command Options

mysql_install_db supports the following options, which can be specified on the command line or in
the [mysql_install_db] group of an option file. For information about option files used by MySQL
programs, see Section 4.2.6, “Using Option Files”.

Before MySQL 5.7.5, mysql_install_db passes unrecognized options to mysqld.

Table 4.3 mysql_install_db Options

Format Description IntroducedRemoved

--admin-auth-plugin Administrative account authentication plugin 5.7.5

--admin-host Administrative account name host part 5.7.5

--admin-require-ssl Require SSL for administrative account 5.7.5

--admin-user Administrative account name user part 5.7.5

--basedir Path to base directory

--builddir Path to build directory (for out-of-source builds)

--cross-bootstrap For internal use 5.7.5

--datadir Path to data directory

--defaults Read default option files 5.7.5

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--extra-sql-file Optional SQL file to execute during bootstrap 5.7.5

--force Run even if DNS does not work 5.7.5

--help Display help message and exit

--insecure Do not generate administrative account random
password

5.7.5

--keep-my-cnf Keep existing my.cnf file, do not create new one 5.7.4 5.7.5

--lc-messages Locale for error messages 5.7.5

--lc-messages-dir Directory where error messages are installed 5.7.5

--ldata Synonym for --datadir 5.7.5

--login-file File to read for login path information 5.7.5

--login-path Read login path options from .mylogin.cnf 5.7.5

--mysqld-file Path to mysqld binary 5.7.5

--no-defaults Read no option files

--random-password-file File in which to write administrative account
random password

5.7.5

--random-passwords Generate administrative account random password 5.7.4

--rpm For internal use 5.7.5

--skip-name-resolve Use IP addresses rather than host names in grant
tables

 5.7.5

mysql_install_db — Initialize MySQL Data Directory

309

Format Description IntroducedRemoved

--skip-random-passwords Do not generate administrative account random
password

5.7.4 5.7.5

--skip-sys-schema Do not install or upgrade the sys schema 5.7.7

--srcdir For internal use

--user System login user under which to execute mysqld

--verbose Verbose mode

--version Display version information and exit 5.7.5

--windows For internal use 5.7.5

• --help, -?

Display a help message and exit.

The -? form of this option was added in MySQL 5.7.5.

• --admin-auth-plugin=plugin_name

The authentication plugin to use for the administrative account. The default is
mysql_native_password.

This option was added in MySQL 5.7.5.

• --admin-host=host_name

The host part to use for the adminstrative account name. The default is localhost. This option is
ignored if --login-path is also specified.

This option was added in MySQL 5.7.5.

• --admin-require-ssl

Whether to require SSL for the administrative account. The default is not to require it. With this option
enabled, the statement that mysql_install_db uses to create the account includes a REQUIRE
SSL clause. As a result, the administrative account must use secure connections when connecting to
the server.

This option was added in MySQL 5.7.5.

• --admin-user=user_name

The user part to use for the adminstrative account name. The default is root. This option is ignored
if --login-path is also specified.

This option was added in MySQL 5.7.5.

• --basedir=dir_name

The path to the MySQL installation directory.

• --builddir=dir_name

For use with --srcdir and out-of-source builds. Set this to the location of the directory where the
built files reside.

• --cross-bootstrap

For internal use. This option is used for building system tables on one host intended for another.

This option was removed in MySQL 5.7.5.

mysql_install_db — Initialize MySQL Data Directory

310

• --datadir=dir_name

The path to the MySQL data directory. Only the last component of the path name is created if it does
not exist; the parent directory must already exist or an error occurs.

Note

As of MySQL 5.7.5, the --datadir option is mandatory and the data
directory must not already exist. (It remains true that the parent directory must
exist.)

• --defaults

This option causes mysql_install_db to invoke mysqld in such a way that it reads option files
from the default locations. If given as --no-defaults, and --defaults-file or --defaults-
extra-file is not also specified, mysql_install_db passes --no-defaults to mysqld, to
prevent option files from being read. This may help if program startup fails due to reading unknown
options from an option file.

This option was added in MySQL 5.7.5. (Before 5.7.5, only the --no-defaults variant was
supported.)

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

This option is passed by mysql_install_db to mysqld.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

This option is passed by mysql_install_db to mysqld.

• --extra-sql-file=file_name, -f file_name

This option names a file containing additional SQL statements to be executed after the standard
bootstrapping statements. Accepted statement syntax in the file is like that of the mysql command-
line client, including support for multiple-line C-style comments and delimiter handling to enable
definition of stored programs.

This option was added in MySQL 5.7.5.

• --force

Cause mysql_install_db to run even if DNS does not work. Grant table entries normally created
using host names will use IP addresses instead.

This option was removed in MySQL 5.7.5.

• --insecure

Do not generate a random password for the adminstrative account.

Note

The --insecure option was added in MySQL 5.7.5, replacing the --skip-
random-passwords option.

mysql_install_db — Initialize MySQL Data Directory

311

If --insecure is not given, it is necessary after mysql_install_db has been run to start the
server, connect using the administrative account with the password written to the .mysql_secret
file, and specify a new administrative password. Until this is done, the administrative account cannot
be used for anything else. To change the password, you can use the SET PASSWORD statement
(for example, with the mysql or mysqladmin client). After resetting the password, remove the
.mysql_secret file; otherwise, if you run mysql_secure_installation, that command may
see the file and expire the root password again as part of ensuring secure deployment.

• --keep-my-cnf

Tell mysql_install_db to preserve any existing my.cnf file and not create a new default my.cnf
file.

This option was added in MySQL 5.7.4 and removed in 5.7.5. As of 5.7.5, mysql_install_db
does not create a default my.cnf file.

• --lc-messages=name

The locale to use for error messages. The default is en_US. The argument is converted to a
language name and combined with the value of --lc-messages-dir to produce the location for
the error message file. See Section 10.2, “Setting the Error Message Language”.

This option was added in MySQL 5.7.5.

• --lc-messages-dir=dir_name

The directory where error messages are located. The value is used together with the value of --lc-
messages to produce the location for the error message file. See Section 10.2, “Setting the Error
Message Language”.

This option was added in MySQL 5.7.5.

• --ldata=dir_name

A synonym for --datadir.

This option was removed in MySQL 5.7.5.

• --login-file=file_name

The file from which to read the login path if the --login-path=file_name option is specified. The
default file is .mylogin.cnf.

This option was added in MySQL 5.7.5.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. The default login
path is client. (To read a different file, use the --login-file=name option.) A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

If the --login-path option is specified, the user, host, and password values are taken from the
login path and used to create the administrative account. The password must be defined in the login
path or an error occurs, unless the --insecure option is also specified. In addition, with --login-
path, any --admin-host and --admin-user options are ignored.

This option was added in MySQL 5.7.5.

• --mysqld-file=file_name

mysql_install_db — Initialize MySQL Data Directory

312

The path name of the mysqld binary to execute. The option value must be an absolute path name or
an error occurs.

If this option is not given, mysql_install_db searches for mysqld in these locations:

• In the bin directory under the --basedir option value, if that option was given.

• In the bin directory under the --srcdir option value, if that option was given.

• In the bin directory under the --builddir option value, if that option was given.

• In the local directory and in the bin and sbin directories under the local directory.

• In /usr/bin, /usr/sbin, /usr/local/bin, /usr/local/sbin, /opt/local/bin, /opt/
local/sbin.

This option was added in MySQL 5.7.5.

• --no-defaults

Before MySQL 5.7.5, do not read any option files. If program startup fails due to reading unknown
options from an option file, --no-defaults can be used to prevent them from being read. For
behavior of this option as of MySQL 5.7.5, see the description of --defaults.

• --random-password-file=file_name

The path name of the file in which to write the randomly generated password for the administrative
account. The option value must be an absolute path name or an error occurs. The default is
$HOME/.mysql_secret.

This option was added in MySQL 5.7.5.

• --random-passwords

Note

This option was removed in MySQL 5.7.4 and replaced with --skip-
random-passwords, which was in turn removed in MySQL 5.7.5 and
replaced with --insecure.

On Unix platforms, this option provides for more secure MySQL installation. Invoking
mysql_install_db with --random-passwords causes it to perform the following actions in
addition to its normal operation:

• The installation process creates a random password, assigns it to the initial MySQL root
accounts, and marks the password expired for those accounts.

• The initial random root password is written to the .mysql_secret file in the directory named
by the HOME environment variable. Depending on operating system, using a command such
as sudo may cause the value of HOME to refer to the home directory of the root system user.
.mysql_secret is created with mode 600 to be accessible only to the system user for whom it is
created.

If .mysql_secret already exists, the new password information is appended to it. Each
password entry includes a timestamp to indicate when it was written.

• No anonymous-user MySQL accounts are created.

As a result of these actions, it is necessary after installation to start the server, connect as root
using the password written to the .mysql_secret file, and specify a new root password. Until this
is done, root cannot do anything else. This must be done for each root account you intend to use.

mysql_install_db — Initialize MySQL Data Directory

313

To change the password, you can use the SET PASSWORD statement (for example, with the mysql
client). You can also use mysqladmin or mysql_secure_installation.

New install operations (not upgrades) using RPM packages and Solaris PKG packages invoke
mysql_install_db with the --random-passwords option. (Install operations using RPMs for
Unbreakable Linux Network are unaffected because they do not use mysql_install_db.)

For install operations using a binary .tar.gz distribution or a source distribution, you can invoke
mysql_install_db with the --random-passwords option manually to make your MySQL
installation more secure. This is recommended, particularly for sites with sensitive data.

• --rpm

For internal use. This option is used during the MySQL installation process for install operations
performed using RPM packages.

This option was removed in MySQL 5.7.5.

• --skip-name-resolve

Use IP addresses rather than host names when creating grant table entries. This option can be
useful if your DNS does not work.

This option was removed in MySQL 5.7.5.

• --skip-random-passwords

Note

The --skip-random-passwords option was added in MySQL 5.7.4,
replacing the --random-passwords option. --skip-random-passwords
was in turn removed in MySQL 5.7.5 and replaced with --insecure.

As of MySQL 5.7.4, MySQL deployments produced using mysql_install_db are secure by
default. When invoked without the --skip-random-passwords option, mysql_install_db uses
these default deployment characteristics:

• The installation process creates a single root account, 'root'@'localhost', automatically
generates a random password for this account, and marks the password expired.

• The initial random root password is written to the .mysql_secret file in the home directory of
the effective user running the script. .mysql_secret is created with mode 600 to be accessible
only to the system user for whom it is created.

If .mysql_secret already exists, the new password information is appended to it. Each
password entry includes a timestamp to indicate when it was written.

• No anonymous-user MySQL accounts are created.

• No test database is created.

As a result of these actions, it is necessary after installation to start the server, connect as root
using the password written to the .mysql_secret file, and specify a new root password. Until
this is done, the administrative account cannot be used for anything else. To change the password,
you can use the SET PASSWORD statement (for example, with the mysql client). You can also use
mysqladmin or mysql_secure_installation.

To produce a MySQL deployment that is not secure by default, you must explicitly specify the
--skip-random-passwords option when you invoke mysql_install_db. With this option,
mysql_install_db performs the following actions:

mysql_plugin — Configure MySQL Server Plugins

314

• No random password is generated for the 'root'@'localhost' account.

• A test database is created that is accessible by any user.

• --skip-sys-schema

As of MySQL 5.7.7, mysql_install_db installs the sys schema. The --skip-sys-schema
option suppresses this behavior. This option was added in MySQL 5.7.7.

• --srcdir=dir_name

For internal use. This option specifies the directory under which mysql_install_db looks for
support files such as the error message file and the file for populating the help tables.

• --user=user_name, -u user_name

The system (login) user name to use for running mysqld. Files and directories created by mysqld
will be owned by this user. You must be the system root user to use this option. By default, mysqld
runs using your current login name and files and directories that it creates will be owned by you.

The -u form of this option was added in MySQL 5.7.5.

• --verbose, -v

Verbose mode. Print more information about what the program does. You can use this option to see
the mysqld command that mysql_install_db invokes to start the server in bootstrap mode.

The -v form of this option was added in MySQL 5.7.5.

• --version, -V

Display version information and exit.

This option was added in MySQL 5.7.5.

• --windows

For internal use. This option is used for creating Windows distributions. It is a deprecated alias for --
cross-bootstrap

This option was removed in MySQL 5.7.5.

4.4.3 mysql_plugin — Configure MySQL Server Plugins

Note

mysql_plugin is deprecated as of MySQL 5.7.11 and removed in MySQL
5.8. Alternatives include loading plugins at server startup using the --plugin-
load or --plugin-load-add option, or at runtime using the INSTALL
PLUGIN statement.

The mysql_plugin utility enables MySQL administrators to manage which plugins a MySQL server
loads. It provides an alternative to manually specifying the --plugin-load option at server startup or
using the INSTALL PLUGIN and UNINSTALL PLUGIN statements at runtime.

Depending on whether mysql_plugin is invoked to enable or disable plugins, it inserts or deletes
rows in the mysql.plugin table that serves as a plugin registry. (To perform this operation,
mysql_plugin invokes the MySQL server in bootstrap mode. This means that the server must
not already be running.) For normal server startups, the server loads and enables plugins listed in
mysql.plugin automatically. For additional control over plugin activation, use --plugin_name
options named for specific plugins, as described in Section 5.1.8.1, “Installing and Uninstalling Plugins”.

mysql_plugin — Configure MySQL Server Plugins

315

Each invocation of mysql_plugin reads a configuration file to determine how to configure the plugins
contained in a single plugin library object file. To invoke mysql_plugin, use this syntax:

mysql_plugin [options] plugin {ENABLE|DISABLE}

plugin is the name of the plugin to configure. ENABLE or DISABLE (not case sensitive) specify
whether to enable or disable components of the plugin library named in the configuration file. The order
of the plugin and ENABLE or DISABLE arguments does not matter.

For example, to configure components of a plugin library file named myplugins.so on Linux or
myplugins.dll on Windows, specify a plugin value of myplugins. Suppose that this plugin
library contains three plugins, plugin1, plugin2, and plugin3, all of which should be configured
under mysql_plugin control. By convention, configuration files have a suffix of .ini and the
same base name as the plugin library, so the default configuration file name for this plugin library is
myplugins.ini. The configuration file contents look like this:

myplugins
plugin1
plugin2
plugin3

The first line in the myplugins.ini file is the name of the library object file, without any extension
such as .so or .dll. The remaining lines are the names of the components to be enabled or disabled.
Each value in the file should be on a separate line. Lines on which the first character is '#' are taken
as comments and ignored.

To enable the plugins listed in the configuration file, invoke mysql_plugin this way:

shell> mysql_plugin myplugins ENABLE

To disable the plugins, use DISABLE rather than ENABLE.

An error occurs if mysql_plugin cannot find the configuration file or plugin library file, or if
mysql_plugin cannot start the MySQL server.

mysql_plugin supports the following options, which can be specified on the command line or in
the [mysqld] group of any option file. For options specified in a [mysqld] group, mysql_plugin
recognizes the --basedir, --datadir, and --plugin-dir options and ignores others. For
information about option files used by MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.4 mysql_plugin Options

Format Description

--basedir The server base directory

--datadir The server data directory

--help Display help message and exit

--my-print-defaults Path to my_print_defaults

--mysqld Path to server

--no-defaults Do not read configuration file

--plugin-dir Directory where plugins are installed

--plugin-ini The plugin configuration file

--print-defaults Show configuration file defaults

--verbose Verbose mode

--version Display version information and exit

mysql_secure_installation — Improve MySQL Installation Security

316

• --help, -?

Display a help message and exit.

• --basedir=dir_name, -b dir_name

The server base directory.

• --datadir=dir_name, -d dir_name

The server data directory.

• --my-print-defaults=file_name, -b file_name

The path to the my_print_defaults program.

• --mysqld=file_name, -b file_name

The path to the mysqld server.

• --no-defaults, -p

Do not read values from the configuration file. This option enables an administrator to skip reading
defaults from the configuration file.

With mysql_plugin, this option need not be given first on the command line, unlike most other
MySQL programs that support --no-defaults.

• --plugin-dir=dir_name, -p dir_name

The server plugin directory.

• --plugin-ini=file_name, -i file_name

The mysql_plugin configuration file. Relative path names are interpreted relative to the current
directory. If this option is not given, the default is plugin.ini in the plugin directory, where plugin
is the plugin argument on the command line.

• --print-defaults, -P

Display the default values from the configuration file. This option causes mysql_plugin to print the
defaults for --basedir, --datadir, and --plugin-dir if they are found in the configuration file.
If no value for a variable is found, nothing is shown.

With mysql_plugin, this option need not be given first on the command line, unlike most other
MySQL programs that support --print-defaults.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

• --version, -V

Display version information and exit.

4.4.4 mysql_secure_installation — Improve MySQL Installation
Security

This program enables you to improve the security of your MySQL installation in the following ways:

• You can set a password for root accounts.

mysql_secure_installation — Improve MySQL Installation Security

317

• You can remove root accounts that are accessible from outside the local host.

• You can remove anonymous-user accounts.

• You can remove the test database (which by default can be accessed by all users, even
anonymous users), and privileges that permit anyone to access databases with names that start with
test_.

mysql_secure_installation helps you implement security recommendations similar to those
described at Section 2.10.4, “Securing the Initial MySQL Accounts”.

As of MySQL 5.7.2, mysql_secure_installation is an executable binary available on all
platforms. Before 5.7.2, it was a script available for Unix and Unix-like systems.

Normal usage is to connect to the local MySQL server; invoke mysql_secure_installation
without arguments:

shell> mysql_secure_installation

When executed, mysql_secure_installation prompts you to determine which actions to perform.

As of MySQL 5.7.2, mysql_secure_installation supports these additional features:

• The validate_password plugin can be used for password strength checking. If the plugin is not
installed, mysql_secure_installation prompts the user whether to install it. Any passwords
entered later are checked using the plugin if it is enabled.

• Most of the usual MySQL client options such as --host and --port can be used on the command
line and in option files. For example, to connect to the local server over IPv6 using port 3307, use
this command:

shell> mysql_secure_installation --host=::1 --port=3307

mysql_secure_installation supports the following options, which can be specified on the
command line or in the [mysql_secure_installation] and [client] groups of an option file.
For information about option files used by MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.5 mysql_secure_installation Options

Format Description Introduced

--defaults-extra-file Read named option file in addition to usual option files 5.7.2

--defaults-file Read only named option file 5.7.2

--defaults-group-suffix Option group suffix value 5.7.2

--help Display help message and exit 5.7.2

--host Host to connect to (IP address or host name) 5.7.2

--no-defaults Read no option files 5.7.2

--password Accepted but always ignored. Whenever
mysql_secure_installation is invoked, the user is
prompted for a password, regardless.

5.7.2

--port TCP/IP port number to use for connection 5.7.2

--print-defaults Print default options 5.7.2

--protocol Connection protocol to use 5.7.2

--socket For connections to localhost, the Unix socket file to use 5.7.2

--ssl Enable SSL for connection 5.7.2

--ssl-ca Path of file that contains list of trusted SSL CAs 5.7.2

mysql_secure_installation — Improve MySQL Installation Security

318

Format Description Introduced

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

5.7.2

--ssl-cert Path of file that contains X509 certificate in PEM format 5.7.2

--ssl-cipher List of permitted ciphers to use for SSL encryption 5.7.2

--ssl-crl Path of file that contains certificate revocation lists 5.7.2

--ssl-crlpath Path of directory that contains certificate revocation list
files

5.7.2

--ssl-key Path of file that contains X509 key in PEM format 5.7.2

--ssl-verify-server-cert Verify Common Name value in server certificate against
host name used when connecting to server

5.7.2

--tls-version Protocols permitted for encrypted connections 5.7.10

--use-default Execute with no user interactivity 5.7.4

--user MySQL user name to use when connecting to server 5.7.2

• --help, -?

Display a help message and exit.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix
of str. For example, mysql_secure_installation normally reads the [client] and
[mysql_secure_installation] groups. If the --defaults-group-suffix=_other
option is given, mysql_secure_installation also reads the [client_other] and
[mysql_secure_installation_other] groups.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --password=password, -p password

This option is accepted but ignored. Whether or not this option is used,
mysql_secure_installation always prompts the user for a password.

mysql_ssl_rsa_setup — Create SSL/RSA Files

319

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --use-default

Execute noninteractively. This option can be used for unattended installation operations. This option
was added in MySQL 5.7.4.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

4.4.5 mysql_ssl_rsa_setup — Create SSL/RSA Files

This program creates the SSL certificate and key files and RSA key-pair files required to support
secure connections using SSL and secure password exchange using RSA over unencrypted
connections, if those files are missing. mysql_ssl_rsa_setup can also be used to create new SSL
files if the existing ones have expired.

Note

mysql_ssl_rsa_setup uses the openssl command, so its use is contingent
on having OpenSSL installed on your machine.

Another way to generate SSL and RSA files, for MySQL distributions compiled
using OpenSSL, is to have the server generated them automatically. See
Section 6.3.13.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

Important

mysql_ssl_rsa_setup helps lower the barrier to using SSL by making
it easier to generate the required files. However, certificates generated by
mysql_ssl_rsa_setup are self-signed, which is not very secure. After you

mysql_ssl_rsa_setup — Create SSL/RSA Files

320

gain experience using the files created by mysql_ssl_rsa_setup, consider
obtaining a CA certificate from a registered certificate authority.

Invoke mysql_ssl_rsa_setup like this:

shell> mysql_ssl_rsa_setup [options]

Typical options are --datadir to specify where to create the files, and --verbose to see the
openssl commands that mysql_ssl_rsa_setup executes.

mysql_ssl_rsa_setup attempts to create SSL and RSA files using a default set of file names. It
works as follows:

1. mysql_ssl_rsa_setup checks for the openssl binary at the locations specified by the PATH
environment variable. If openssl is not found, mysql_ssl_rsa_setup does nothing. If openssl
is present, mysql_ssl_rsa_setup looks for default SSL and RSA files in the MySQL data
directory specified by the --datadir option, or the compiled-in data directory if that option is not
given.

2. mysql_ssl_rsa_setup checks the data directory for SSL files with the following names:

ca.pem
server-cert.pem
server-key.pem

3. If any of those files are present, mysql_ssl_rsa_setup creates no SSL files. Otherwise, it
invokes openssl to create them, plus some additional files:

ca.pem Self-signed CA certificate
ca-key.pem CA private key
server-cert.pem Server certificate
server-key.pem Server private key
client-cert.pem Client certificate
client-key.pem Client private key

These files enable secure client connections using SSL; see Section 6.3.12.4, “Configuring MySQL
to Use Secure Connections”.

4. mysql_ssl_rsa_setup checks the data directory for RSA files with the following names:

private_key.pem Private member of private/public key pair
public_key.pem Public member of private/public key pair

5. If any of these files are present, mysql_ssl_rsa_setup creates no RSA files. Otherwise, it
invokes openssl to create them. These files enable secure password exchange using RSA
over unencrypted connections for accounts authenticated by the sha256_password plugin; see
Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

For information about the characteristics of files created by mysql_ssl_rsa_setup, see
Section 6.3.13.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

At startup, the MySQL server automatically uses the SSL files created by mysql_ssl_rsa_setup to
enable SSL if no explicit SSL options are given other than --ssl. If you prefer to designate the files
explicitly, use the --ssl-ca, --ssl-cert, and --ssl-key options at startup to name the ca.pem,
server-cert.pem, and server-key.pem files, respectively.

The server also automatically uses the RSA files created by mysql_ssl_rsa_setup to enable RSA if
no explicit RSA options are given.

If the server is SSL-enabled, clients need only use --ssl on the command line to use SSL
for the connection. To specify certificate and key files explicitly, use the --ssl-ca, --ssl-

mysql_ssl_rsa_setup — Create SSL/RSA Files

321

cert, and --ssl-key options to name the ca.pem, client-cert.pem, and client-
key.pem files, respectively. However, some additional client setup may be required first because
mysql_ssl_rsa_setup by default creates those files in the data directory. The permissions for the
data directory normally enable access only to the system account that runs the MySQL server, so client
programs cannot use files located there. To make the files available, copy them to a directory that is
readable (but not writable) by clients:

• For local clients, the MySQL installation directory can be used. For example, if the data directory is a
subdirectory of the installation directory and your current location is the data directory, you can copy
the files like this:

shell> cp ca.pem client-cert.pem client-key.pem ..

• For remote clients, distribute the files using a secure channel to ensure they are not tampered with
during transit.

If the SSL files used for a MySQL installation have expired, you can use mysql_ssl_rsa_setup to
create new ones:

1. Stop the server.

2. Rename or remove the existing SSL files. You may wish to make a backup of them first. (The RSA
files do not expire, so you need not remove them. mysql_ssl_rsa_setup will see that they exist
and not overwrite them.)

3. Run mysql_ssl_rsa_setup with the --datadir option to specify where to create the new files.

4. Restart the server.

mysql_ssl_rsa_setup supports the following command-line options, which can be specified on the
command line or in the [mysql_ssl_rsa_setup], [mysql_install_db], and [mysqld] groups
of an option file. For information about option files used by MySQL programs, see Section 4.2.6, “Using
Option Files”.

Table 4.6 mysql_ssl_rsa_setup Options

Format Description Introduced

--datadir Path to data directory

--help Display help message and exit

--suffix Suffix for X509 certificate Common Name attribute

--uid Name of effective user to use for file permissions 5.7.8

--verbose Verbose mode

--version Display version information and exit

• --help, ?

Display a help message and exit.

• --datadir=dir_name

The path to the directory that mysql_ssl_rsa_setup should check for default SSL and RSA files
and in which it should create files if they are missing. The default is the compiled-in data directory.

• --suffix=str

The suffix for the Common Name attribute in X509 certificates. The suffix value is limited to 17
characters. The default is based on the MySQL version number.

• --uid=name, -v

mysql_tzinfo_to_sql — Load the Time Zone Tables

322

The name of the user who should be the owner of any created files. The value is a user name, not
a numeric user ID. In the absence of this option, files created by mysql_ssl_rsa_setup are
owned by the user who executes it. This option is valid only if you execute the program as root on a
system that supports the chown() system call. This option was added in MySQL 5.7.8.

• --verbose, -v

Verbose mode. Produce more output about what the program does. For example, the program
shows the openssl commands it runs, and produces output to indicate whether it skips SSL or RSA
file creation because some default file already exists.

• --version, -V

Display version information and exit.

4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables

The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used
on systems that have a zoneinfo database (the set of files describing time zones). Examples of such
systems are Linux, FreeBSD, Solaris, and OS X. One likely location for these files is the /usr/share/
zoneinfo directory (/usr/share/lib/zoneinfo on Solaris). If your system does not have a
zoneinfo database, you can use the downloadable package described in Section 10.6, “MySQL Server
Time Zone Support”.

mysql_tzinfo_to_sql can be invoked several ways:

shell> mysql_tzinfo_to_sql tz_dir
shell> mysql_tzinfo_to_sql tz_file tz_name
shell> mysql_tzinfo_to_sql --leap tz_file

For the first invocation syntax, pass the zoneinfo directory path name to mysql_tzinfo_to_sql and
send the output into the mysql program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from
them. mysql processes those statements to load the time zone tables.

The second syntax causes mysql_tzinfo_to_sql to load a single time zone file tz_file that
corresponds to a time zone name tz_name:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

If your time zone needs to account for leap seconds, invoke mysql_tzinfo_to_sql using the third
syntax, which initializes the leap second information. tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to
use any previously cached time zone data.

4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL Server. mysql_upgrade also upgrades the system tables so that you can take advantage of
new privileges or capabilities that might have been added.

mysql_upgrade — Check and Upgrade MySQL Tables

323

If mysql_upgrade finds that a table has a possible incompatibility, it performs a table check and,
if problems are found, attempts a table repair. If the table cannot be repaired, see Section 2.11.4,
“Rebuilding or Repairing Tables or Indexes” for manual table repair strategies.

You should execute mysql_upgrade each time you upgrade MySQL.

As of MySQL 5.7.5, mysql_upgrade communicates directly with the MySQL server, sending it the
SQL statements required to perform an upgrade. Before 5.7.5, mysql_upgrade invokes the mysql
and mysqlcheck client programs to perform the required operations. For the older implementation,
if you install MySQL from RPM packages on Linux, you must install the server and client RPMs.
mysql_upgrade is included in the server RPM but requires the client RPM because the latter includes
mysqlcheck. (See Section 2.5.5, “Installing MySQL on Linux Using RPM Packages”.)

Important

If you upgrade to MySQL 5.7.2 or later from a version older than 5.7.2, a
change to the mysql.user table requires a special sequence of steps to
perform an upgrade using mysql_upgrade. For details, see Section 2.11.1.1,
“Changes Affecting Upgrades to MySQL 5.7”.

Note

On Windows Server 2008, Vista, and newer, you must run mysql_upgrade
with administrator privileges. You can do this by running a Command Prompt
as Administrator and running the command. Failure to do so may result in the
upgrade failing to execute correctly.

Caution

You should always back up your current MySQL installation before performing
an upgrade. See Section 7.2, “Database Backup Methods”.

Some upgrade incompatibilities may require special handling before
you upgrade your MySQL installation and run mysql_upgrade. See
Section 2.11.1, “Upgrading MySQL”, for instructions on determining whether
any such incompatibilities apply to your installation and how to handle them.

To use mysql_upgrade, make sure that the server is running. Then invoke it like this to check and
repair tables and to upgrade the system tables:

shell> mysql_upgrade [options]

After running mysql_upgrade, stop the server and restart it so that any changes made to the system
tables take effect.

If you have multiple MySQL server instances running, invoke mysql_upgrade with connection
parameters appropriate for connecting to the desired server. For example, with servers running on the
local host on parts 3306 through 3308, upgrade each of them by connecting to the appropriate port:

shell> mysql_upgrade --protocol=tcp -P 3306 [other_options]
shell> mysql_upgrade --protocol=tcp -P 3307 [other_options]
shell> mysql_upgrade --protocol=tcp -P 3308 [other_options]

For local host connections on Unix, the --protocol=tcp option forces a connection using TCP/IP
rather than the Unix socket file.

mysql_upgrade processes all tables in all databases, which might take a long time to complete. Each
table is locked and therefore unavailable to other sessions while it is being processed. Check and
repair operations can be time-consuming, particularly for large tables.

mysql_upgrade — Check and Upgrade MySQL Tables

324

For details about what table-checking operations entail, see the description of the FOR UPGRADE
option of the CHECK TABLE statement (see Section 13.7.2.2, “CHECK TABLE Syntax”).

All checked and repaired tables are marked with the current MySQL version number. This ensures that
next time you run mysql_upgrade with the same version of the server, it can tell whether there is any
need to check or repair the table again.

mysql_upgrade also saves the MySQL version number in a file named mysql_upgrade_info in
the data directory. This is used to quickly check whether all tables have been checked for this release
so that table-checking can be skipped. To ignore this file and perform the check regardless, use the --
force option.

As of MySQL 5.7.2, mysql_upgrade checks user table rows and, for any row with an empty
plugin column, sets that column to 'mysql_native_password' or 'mysql_old_password'
depending on the hash format of the Password column value. As of MySQL 5.7.5, support for pre-4.1
password hashing and mysql_old_password is removed, so mysql_upgrade sets empty plugin
values to 'mysql_native_password' if the Password column uses a hash format compatible
with that plugin. Rows with a pre-4.1 password hash must be upgraded manually. For account
upgrade instructions, see Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

mysql_upgrade does not upgrade the contents of the help tables. For upgrade instructions, see
Section 5.1.10, “Server-Side Help”.

As of MySQL 5.7.7, unless invoked with the --skip-sys-schema option, mysql_upgrade installs
the sys schema if it is not installed, and upgrades it to the current version otherwise. mysql_upgrade
returns an error if a sys schema exists but has no version view, on the assumption that its absence
indicates a user-created schema:

Error occurred: A sys schema exists with no sys.version view. If
you have a user created sys schema, this must be renamed for the
upgrade to succeed.

To upgrade in this case, remove or rename the existing sys schema first.

In MySQL 5.7.9 and later, mysql_upgrade checks for partitioned InnoDB tables that were created
using the generic partitioning handler and attempts to upgrade them to InnoDB native partitioning
(used in MySQL 5.7.6 and later). (Bug #76734, Bug #20727344) Also beginning with MySQL 5.7.9,
you can upgrade such tables individually in the mysql client using the ALTER TABLE ... UPGRADE
PARTITIONING SQL statement.

By default, mysql_upgrade runs as the MySQL root user. If the root password is expired when you
run mysql_upgrade, you will see a message that your password is expired and that mysql_upgrade
failed as a result. To correct this, reset the root password to unexpire it and run mysql_upgrade
again. First, connect to the server as root:

shell> mysql -u root -p
Enter password: **** <- enter root password here

Reset the password using the appropriate SQL statement. As of MySQL 5.7.6, use ALTER USER:

mysql> ALTER USER USER() IDENTIFIED BY 'root-password';

Before 5.7.6, use SET PASSWORD:

mysql> SET PASSWORD = PASSWORD('root-password');

Then exit mysql and run mysql_upgrade again:

mysql_upgrade — Check and Upgrade MySQL Tables

325

shell> mysql_upgrade [options]

mysql_upgrade supports the following options, which can be specified on the command line or in the
[mysql_upgrade] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.7 mysql_upgrade Options

Format Description IntroducedRemoved

--basedir Not used 5.7.2

--bind-address Use specified network interface to connect to
MySQL Server

5.7.5

--character-sets-dir Directory where character sets are installed

--compress Compress all information sent between client and
server

--datadir Not used 5.7.2

--debug Write debugging log

--debug-check Print debugging information when program exits

--debug-info Print debugging information, memory, and CPU
statistics when program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--force Force execution even if mysql_upgrade has
already been executed for current version of
MySQL

--help Display help message and exit

--host Connect to MySQL server on given host

--login-path Read login path options from .mylogin.cnf

--max-allowed-packet Maximum packet length to send to or receive from
server

5.7.5

--net-buffer-length Buffer size for TCP/IP and socket communication 5.7.5

--no-defaults Read no option files

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

--skip-sys-schema Do not install or upgrade the sys schema 5.7.7

--socket For connections to localhost, the Unix socket file to
use

--ssl Enable SSL for connection

mysql_upgrade — Check and Upgrade MySQL Tables

326

Format Description IntroducedRemoved

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM
format

--ssl-cipher List of permitted ciphers to use for SSL encryption

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate
revocation list files

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify Common Name value in server certificate
against host name used when connecting to server

--tls-version Protocols permitted for encrypted connections 5.7.10

--tmpdir Directory for temporary files 5.7.5

--upgrade-system-tables Update only system tables, not data

--user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version-check Check for proper server version 5.7.2

--write-binlog Write all statements to binary log

• --help

Display a short help message and exit.

• --basedir=dir_name

The path to the MySQL installation directory. This option was removed in MySQL 5.7.2.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server. This option was added in MySQL 5.7.5.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --compress, -C

Compress all information sent between the client and the server if both support compression. The -C
form of this option was added in MySQL 5.7.5.

• --datadir=dir_name

The path to the data directory. This option was removed in MySQL 5.7.2.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:O,/tmp/mysql_upgrade.trace.

• --debug-check

Print some debugging information when the program exits.

mysql_upgrade — Check and Upgrade MySQL Tables

327

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysql_upgrade normally reads the [client] and [mysql_upgrade] groups.
If the --defaults-group-suffix=_other option is given, mysql_upgrade also reads the
[client_other] and [mysql_upgrade_other] groups.

• --force

Ignore the mysql_upgrade_info file and force execution even if mysql_upgrade has already
been executed for the current version of MySQL.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --max-allowed-packet=value

The maximum size of the buffer for client/server communication. The default value is 24MB. The
minimum and maximum values are 4KB and 2GB. This option was added in MySQL 5.7.5.

• --net-buffer-length=value

The initial size of the buffer for client/server communication. The default value is 1MB − 1KB. The
minimum and maximum values are 4KB and 16MB. This option was added in MySQL 5.7.5.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

mysql_upgrade — Check and Upgrade MySQL Tables

328

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysql_upgrade prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysql_upgrade does not find it. See Section 6.3.8,
“Pluggable Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --skip-sys-schema

As of MySQL 5.7.7, mysql_upgrade installs the sys schema if it is not installed, and upgrades it
to the current version otherwise. The --skip-sys-schema option suppresses this behavior. This
option was added in MySQL 5.7.7.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

MySQL Client Programs

329

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --tmpdir=dir_name, -t dir_name

The path name of the directory to use for creating temporary files. This option was removed in
MySQL 5.7.5 due to a reimplementation that no longer uses temporary files.

• --upgrade-system-tables, -s

Upgrade only the system tables, do not upgrade data.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server. The default user name is root.

• --verbose

Verbose mode. Print more information about what the program does.

• --version-check, -k

Check the version of the server to which mysql_upgrade is connecting to verify that it is the same
as the version for which mysql_upgrade was built. If not, mysql_upgrade exits. This option is
enabled by default; to disable the check, use --skip-version-check. This option was added in
MySQL 5.7.2.

• --write-binlog

By default, binary logging by mysql_upgrade is disabled. Invoke the program with --write-
binlog if you want its actions to be written to the binary log.

Running mysql_upgrade is not recommended with a MySQL Server that is running with global
transaction identifiers enabled (Bug #13833710). This is because enabling GTIDs means that any
updates which mysql_upgrade might need to perform on system tables using a nontransactional
storage engine such as MyISAM to fail. See Section 17.1.3.4, “Restrictions on Replication with
GTIDs”, for more information.

4.5 MySQL Client Programs
This section describes client programs that connect to the MySQL server.

4.5.1 mysql — The MySQL Command-Line Tool

mysql is a simple SQL shell with input line editing capabilities. It supports interactive and
noninteractive use. When used interactively, query results are presented in an ASCII-table format.
When used noninteractively (for example, as a filter), the result is presented in tab-separated format.
The output format can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option.
This forces mysql to retrieve results from the server a row at a time rather than retrieving the
entire result set and buffering it in memory before displaying it. This is done by returning the

mysql — The MySQL Command-Line Tool

330

result set using the mysql_use_result() C API function in the client/server library rather than
mysql_store_result().

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

shell> mysql db_name

Or:

shell> mysql --user=user_name --password=your_password db_name

Then type an SQL statement, end it with “;”, \g, or \G and press Enter.

Typing Control+C interrupts the current statement if there is one, or cancels any partial input line
otherwise.

You can execute SQL statements in a script file (batch file) like this:

shell> mysql db_name < script.sql > output.tab

On Unix, the mysql client logs statements executed interactively to a history file. See Section 4.5.1.3,
“mysql Logging”.

4.5.1.1 mysql Options

mysql supports the following options, which can be specified on the command line or in the [mysql]
and [client] groups of an option file. For information about option files used by MySQL programs,
see Section 4.2.6, “Using Option Files”.

Table 4.8 mysql Options

Format Description IntroducedDeprecated

--auto-rehash Enable automatic rehashing

--auto-vertical-output Enable automatic vertical result set display

--batch Don't use history file

--binary-mode Disable \r\n - to - \n translation and treatment of \0
as end-of-query

--bind-address Use specified network interface to connect to
MySQL Server

--character-sets-dir Directory where character sets are installed

--column-names Write column names in results

--column-type-info Display result set metadata

--comments Whether to retain or strip comments in statements
sent to the server

--compress Compress all information sent between client and
server

--connect-expired-
password

Indicate to server that client can handle expired-
password sandbox mode.

5.7.2

--connect_timeout Number of seconds before connection timeout

--database The database to use

--debug Write debugging log; supported only if MySQL was
built with debugging support

--debug-check Print debugging information when program exits

mysql — The MySQL Command-Line Tool

331

Format Description IntroducedDeprecated

--debug-info Print debugging information, memory, and CPU
statistics when program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--delimiter Set the statement delimiter

--enable-cleartext-plugin Enable cleartext authentication plugin

--execute Execute the statement and quit

--force Continue even if an SQL error occurs

--help Display help message and exit

--histignore Patterns specifying which statements to ignore for
logging

--host Connect to MySQL server on given host

--html Produce HTML output

--ignore-spaces Ignore spaces after function names

--init-command SQL statement to execute after connecting

--line-numbers Write line numbers for errors

--local-infile Enable or disable for LOCAL capability for LOAD
DATA INFILE

--login-path Read login path options from .mylogin.cnf

--max_allowed_packet Maximum packet length to send to or receive from
server

--max_join_size The automatic limit for rows in a join when using --
safe-updates

--named-commands Enable named mysql commands

--net_buffer_length Buffer size for TCP/IP and socket communication

--no-auto-rehash Disable automatic rehashing

--no-beep Do not beep when errors occur

--no-defaults Read no option files

--one-database Ignore statements except those for the default
database named on the command line

--pager Use the given command for paging query output

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--print-defaults Print default options

--prompt Set the prompt to the specified format

--protocol Connection protocol to use

--quick Do not cache each query result

mysql — The MySQL Command-Line Tool

332

Format Description IntroducedDeprecated

--raw Write column values without escape conversion

--reconnect If the connection to the server is lost, automatically
try to reconnect

--i-am-a-dummy, --safe-
updates

Allow only UPDATE and DELETE statements that
specify key values

--secure-auth Do not send passwords to server in old (pre-4.1)
format

 5.7.5

--select_limit The automatic limit for SELECT statements when
using --safe-updates

--server-public-key-path Path name to file containing RSA public key

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

--show-warnings Show warnings after each statement if there are
any

--sigint-ignore Ignore SIGINT signals (typically the result of typing
Control+C)

--silent Silent mode

--skip-auto-rehash Disable automatic rehashing

--skip-column-names Do not write column names in results

--skip-line-numbers Skip line numbers for errors

--skip-named-commands Disable named mysql commands

--skip-pager Disable paging

--skip-reconnect Disable reconnecting

--socket For connections to localhost, the Unix socket file to
use

--ssl Enable SSL for connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM
format

--ssl-cipher List of permitted ciphers to use for SSL encryption

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate
revocation list files

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify Common Name value in server certificate
against host name used when connecting to server

--syslog Log interactive statements to syslog 5.7.1

--table Display output in tabular format

--tee Append a copy of output to named file

--tls-version Protocols permitted for encrypted connections 5.7.10

--unbuffered Flush the buffer after each query

mysql — The MySQL Command-Line Tool

333

Format Description IntroducedDeprecated

--user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

--vertical Print query output rows vertically (one line per
column value)

--wait If the connection cannot be established, wait and
retry instead of aborting

--xml Produce XML output

• --help, -?

Display a help message and exit.

• --auto-rehash

Enable automatic rehashing. This option is on by default, which enables database, table, and column
name completion. Use --disable-auto-rehash to disable rehashing. That causes mysql to
start faster, but you must issue the rehash command or its \# shortcut if you want to use name
completion.

To complete a name, enter the first part and press Tab. If the name is unambiguous, mysql
completes it. Otherwise, you can press Tab again to see the possible names that begin with what
you have typed so far. Completion does not occur if there is no default database.

Note

This feature requires a MySQL client that is compiled with the readline
library. Typically, the readline library is not available on Windows.

• --auto-vertical-output

Cause result sets to be displayed vertically if they are too wide for the current window, and using
normal tabular format otherwise. (This applies to statements terminated by ; or \G.)

• --batch, -B

Print results using tab as the column separator, with each row on a new line. With this option, mysql
does not use the history file.

Batch mode results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --binary-mode

This option helps when processing mysqlbinlog output that may contain BLOB values. By default,
mysql translates \r\n in statement strings to \n and interprets \0 as the statement terminator.
--binary-mode disables both features. It also disables all mysql commands except charset
and delimiter in non-interactive mode (for input piped to mysql or loaded using the source
command).

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

mysql — The MySQL Command-Line Tool

334

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --column-names

Write column names in results.

• --column-type-info

Display result set metadata.

• --comments, -c

Whether to preserve comments in statements sent to the server. The default is --skip-comments
(discard comments), enable with --comments (preserve comments).

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --connect-expired-password

Indicate to the server that the client can handle sandbox mode if the account used to connect has an
expired password. This can be useful for noninteractive invocations of mysql because normally the
server disconnects noninteractive clients that attempt to connect using an account with an expired
password. (See Section 6.3.7, “Password Expiration and Sandbox Mode”.) This option was added in
MySQL 5.7.2.

• --database=db_name, -D db_name

The database to use. This is useful primarily in an option file.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysql.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Print some debugging information when the program exits.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --default-character-set=charset_name

Use charset_name as the default character set for the client and connection.

A common issue that can occur when the operating system uses utf8 or another multibyte
character set is that output from the mysql client is formatted incorrectly, due to the fact that the
MySQL client uses the latin1 character set by default. You can usually fix such issues by using
this option to force the client to use the system character set instead.

See Section 10.5, “Character Set Configuration”, for more information.

mysql — The MySQL Command-Line Tool

335

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysql normally reads the [client] and [mysql] groups. If the --defaults-group-
suffix=_other option is given, mysql also reads the [client_other] and [mysql_other]
groups.

• --delimiter=str

Set the statement delimiter. The default is the semicolon character (“;”).

• --disable-named-commands

Disable named commands. Use the * form only, or use named commands only at the beginning
of a line ending with a semicolon (“;”). mysql starts with this option enabled by default. However,
even with this option, long-format commands still work from the first line. See Section 4.5.1.2, “mysql
Commands”.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.8, “The
Cleartext Client-Side Authentication Plugin”.)

• --execute=statement, -e statement

Execute the statement and quit. The default output format is like that produced with --batch. See
Section 4.2.4, “Using Options on the Command Line”, for some examples. With this option, mysql
does not use the history file.

• --force, -f

Continue even if an SQL error occurs.

• --histignore

A colon-separated list of one or more patterns specifying statements to ignore for logging purposes.
These patterns are added to the default pattern list ("*IDENTIFIED*:*PASSWORD*"). The value
specified for this option affects logging of statements written to the history file, and to syslog if the
--syslog option is given. For more information, see Section 4.5.1.3, “mysql Logging”.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --html, -H

Produce HTML output.

• --ignore-spaces, -i

mysql — The MySQL Command-Line Tool

336

Ignore spaces after function names. The effect of this is described in the discussion for the
IGNORE_SPACE SQL mode (see Section 5.1.7, “Server SQL Modes”).

• --init-command=str

SQL statement to execute after connecting to the server. If auto-reconnect is enabled, the statement
is executed again after reconnection occurs.

• --line-numbers

Write line numbers for errors. Disable this with --skip-line-numbers.

• --local-infile[={0|1}]

Enable or disable LOCAL capability for LOAD DATA INFILE. With no value, the option enables
LOCAL. The option may be given as --local-infile=0 or --local-infile=1 to explicitly
disable or enable LOCAL. Enabling LOCAL has no effect if the server does not also support it.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --named-commands, -G

Enable named mysql commands. Long-format commands are permitted, not just short-format
commands. For example, quit and \q both are recognized. Use --skip-named-commands to
disable named commands. See Section 4.5.1.2, “mysql Commands”.

• --no-auto-rehash, -A

This has the same effect as --skip-auto-rehash. See the description for --auto-rehash.

• --no-beep, -b

Do not beep when errors occur.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --one-database, -o

Ignore statements except those that occur while the default database is the one named on the
command line. This option is rudimentary and should be used with care. Statement filtering is based
only on USE statements.

Initially, mysql executes statements in the input because specifying a database db_name on the
command line is equivalent to inserting USE db_name at the beginning of the input. Then, for each
USE statement encountered, mysql accepts or rejects following statements depending on whether
the database named is the one on the command line. The content of the statements is immaterial.

Suppose that mysql is invoked to process this set of statements:

mysql — The MySQL Command-Line Tool

337

DELETE FROM db2.t2;
USE db2;
DROP TABLE db1.t1;
CREATE TABLE db1.t1 (i INT);
USE db1;
INSERT INTO t1 (i) VALUES(1);
CREATE TABLE db2.t1 (j INT);

If the command line is mysql --force --one-database db1, mysql handles the input as
follows:

• The DELETE statement is executed because the default database is db1, even though the
statement names a table in a different database.

• The DROP TABLE and CREATE TABLE statements are not executed because the default database
is not db1, even though the statements name a table in db1.

• The INSERT and CREATE TABLE statements are executed because the default database is db1,
even though the CREATE TABLE statement names a table in a different database.

• --pager[=command]

Use the given command for paging query output. If the command is omitted, the default pager is the
value of your PAGER environment variable. Valid pagers are less, more, cat [> filename],
and so forth. This option works only on Unix and only in interactive mode. To disable paging, use --
skip-pager. Section 4.5.1.2, “mysql Commands”, discusses output paging further.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysql prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysql does not find it. See Section 6.3.8, “Pluggable
Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --prompt=format_str

Set the prompt to the specified format. The default is mysql>. The special sequences that the
prompt can contain are described in Section 4.5.1.2, “mysql Commands”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

mysql — The MySQL Command-Line Tool

338

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --quick, -q

Do not cache each query result, print each row as it is received. This may slow down the server if the
output is suspended. With this option, mysql does not use the history file.

• --raw, -r

For tabular output, the “boxing” around columns enables one column value to be distinguished from
another. For nontabular output (such as is produced in batch mode or when the --batch or --
silent option is given), special characters are escaped in the output so they can be identified
easily. Newline, tab, NUL, and backslash are written as \n, \t, \0, and \\. The --raw option
disables this character escaping.

The following example demonstrates tabular versus nontabular output and the use of raw mode to
disable escaping:

% mysql
mysql> SELECT CHAR(92);
+----------+
| CHAR(92) |
+----------+
| \ |
+----------+

% mysql -s
mysql> SELECT CHAR(92);
CHAR(92)
\\

% mysql -s -r
mysql> SELECT CHAR(92);
CHAR(92)
\

• --reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt
is made each time the connection is lost. To suppress reconnection behavior, use --skip-
reconnect.

• --safe-updates, --i-am-a-dummy, -U

Permit only those UPDATE and DELETE statements that specify which rows to modify by using key
values. If you have set this option in an option file, you can override it by using --safe-updates on
the command line. See Section 4.5.1.6, “mysql Tips”, for more information about this option.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

As of MySQL 5.7.5, this option is deprecated and will be removed in a future MySQL release. It
is always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0)
produces an error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should

mysql — The MySQL Command-Line Tool

339

be avoided. Pre-4.1 passwords are deprecated and support for them
is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --server-public-key-path=file_name

The path name to a file containing the server RSA public key. The file must be in PEM format. The
public key is used for RSA encryption of the client password for connections to the server made
using accounts that authenticate with the sha256_password plugin. This option is ignored for client
accounts that do not authenticate with that plugin. It is also ignored if password encryption is not
needed, as is the case when the client connects to the server using an SSL connection.

The server sends the public key to the client as needed, so it is not necessary to use this option for
RSA password encryption to occur. It is more efficient to do so because then the server need not
send the key.

For additional discussion regarding use of the sha256_password plugin, including how to get the
RSA public key, see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

This option is available only if MySQL was built using OpenSSL.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --show-warnings

Cause warnings to be shown after each statement if there are any. This option applies to interactive
and batch mode.

• --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control+C).

• --silent, -s

Silent mode. Produce less output. This option can be given multiple times to produce less and less
output.

This option results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --skip-column-names, -N

Do not write column names in results.

• --skip-line-numbers, -L

Do not write line numbers for errors. Useful when you want to compare result files that include error
messages.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

mysql — The MySQL Command-Line Tool

340

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --syslog, -j

This option causes mysql to send interactive statements to the system logging facility. On Unix,
this is syslog; on Windows, it is the Windows Event Log. The destination where logged messages
appear is system dependent. On Linux, the destination is often the /var/log/messages file.

Here is a sample of output generated on Linux by using --syslog. This output is formatted for
readability; each logged message actually takes a single line.

Mar 7 12:39:25 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'
Mar 7 12:39:28 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'test', QUERY:'SHOW TABLES;'

For more information, see Section 4.5.1.3, “mysql Logging”.

The --syslog option was added in MySQL 5.7.1.

• --table, -t

Display output in table format. This is the default for interactive use, but can be used to produce table
output in batch mode.

• --tee=file_name

Append a copy of output to the given file. This option works only in interactive mode. Section 4.5.1.2,
“mysql Commands”, discusses tee files further.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --unbuffered, -n

Flush the buffer after each query.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Produce more output about what the program does. This option can be given
multiple times to produce more and more output. (For example, -v -v -v produces table output
format even in batch mode.)

• --version, -V

Display version information and exit.

• --vertical, -E

mysql — The MySQL Command-Line Tool

341

Print query output rows vertically (one line per column value). Without this option, you can specify
vertical output for individual statements by terminating them with \G.

• --wait, -w

If the connection cannot be established, wait and retry instead of aborting.

• --xml, -X

Produce XML output.

<field name="column_name">NULL</field>

The output when --xml is used with mysql matches that of mysqldump --xml. See Section 4.5.4,
“mysqldump — A Database Backup Program” for details.

The XML output also uses an XML namespace, as shown here:

shell> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%'"
<?xml version="1.0"?>

<resultset statement="SHOW VARIABLES LIKE 'version%'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="Variable_name">version</field>
<field name="Value">5.0.40-debug</field>
</row>

<row>
<field name="Variable_name">version_comment</field>
<field name="Value">Source distribution</field>
</row>

<row>
<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>
</row>

<row>
<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>
</row>
</resultset>

(See Bug #25946.)

You can also set the following variables by using --var_name=value.

• connect_timeout

The number of seconds before connection timeout. (Default value is 0.)

• max_allowed_packet

The maximum size of the buffer for client/server communication. The default is 16MB, the maximum
is 1GB.

• max_join_size

The automatic limit for rows in a join when using --safe-updates. (Default value is 1,000,000.)

• net_buffer_length

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• select_limit

mysql — The MySQL Command-Line Tool

342

The automatic limit for SELECT statements when using --safe-updates. (Default value is 1,000.)

4.5.1.2 mysql Commands

mysql sends each SQL statement that you issue to the server to be executed. There is also a set of
commands that mysql itself interprets. For a list of these commands, type help or \h at the mysql>
prompt:

mysql> help

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
clear (\c) Clear the current input statement.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given
 outfile.
use (\u) Use another database. Takes database name as argument.
charset (\C) Switch to another charset. Might be needed for processing
 binlog with multi-byte charsets.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.
resetconnection(\x) Clean session context.

For server side help, type 'help contents'

If mysql is invoked with the --binary-mode option, all mysql commands are disabled except
charset and delimiter in non-interactive mode (for input piped to mysql or loaded using the
source command).

Each command has both a long and short form. The long form is not case sensitive; the short form is.
The long form can be followed by an optional semicolon terminator, but the short form should not.

The use of short-form commands within multiple-line /* ... */ comments is not supported.

• help [arg], \h [arg], \? [arg], ? [arg]

Display a help message listing the available mysql commands.

If you provide an argument to the help command, mysql uses it as a search string to access
server-side help from the contents of the MySQL Reference Manual. For more information, see
Section 4.5.1.4, “mysql Server-Side Help”.

• charset charset_name, \C charset_name

Change the default character set and issue a SET NAMES statement. This enables the character set
to remain synchronized on the client and server if mysql is run with auto-reconnect enabled (which
is not recommended), because the specified character set is used for reconnects.

mysql — The MySQL Command-Line Tool

343

• clear, \c

Clear the current input. Use this if you change your mind about executing the statement that you are
entering.

• connect [db_name host_name]], \r [db_name host_name]]

Reconnect to the server. The optional database name and host name arguments may be given to
specify the default database or the host where the server is running. If omitted, the current values are
used.

• delimiter str, \d str

Change the string that mysql interprets as the separator between SQL statements. The default is
the semicolon character (“;”).

The delimiter string can be specified as an unquoted or quoted argument on the delimiter
command line. Quoting can be done with either single quote ('), double quote ("), or backtick (`)
characters. To include a quote within a quoted string, either quote the string with a different quote
character or escape the quote with a backslash (“\”) character. Backslash should be avoided outside
of quoted strings because it is the escape character for MySQL. For an unquoted argument, the
delimiter is read up to the first space or end of line. For a quoted argument, the delimiter is read up to
the matching quote on the line.

mysql interprets instances of the delimiter string as a statement delimiter anywhere it occurs, except
within quoted strings. Be careful about defining a delimiter that might occur within other words. For
example, if you define the delimiter as X, you will be unable to use the word INDEX in statements.
mysql interprets this as INDE followed by the delimiter X.

When the delimiter recognized by mysql is set to something other than the default of “;”, instances
of that character are sent to the server without interpretation. However, the server itself still interprets
“;” as a statement delimiter and processes statements accordingly. This behavior on the server side
comes into play for multiple-statement execution (see Section 23.8.17, “C API Support for Multiple
Statement Execution”), and for parsing the body of stored procedures and functions, triggers, and
events (see Section 19.1, “Defining Stored Programs”).

• edit, \e

Edit the current input statement. mysql checks the values of the EDITOR and VISUAL environment
variables to determine which editor to use. The default editor is vi if neither variable is set.

The edit command works only in Unix.

• ego, \G

Send the current statement to the server to be executed and display the result using vertical format.

• exit, \q

Exit mysql.

• go, \g

Send the current statement to the server to be executed.

• nopager, \n

Disable output paging. See the description for pager.

The nopager command works only in Unix.

• notee, \t

mysql — The MySQL Command-Line Tool

344

Disable output copying to the tee file. See the description for tee.

• nowarning, \w

Disable display of warnings after each statement.

• pager [command], \P [command]

Enable output paging. By using the --pager option when you invoke mysql, it is possible to
browse or search query results in interactive mode with Unix programs such as less, more, or any
other similar program. If you specify no value for the option, mysql checks the value of the PAGER
environment variable and sets the pager to that. Pager functionality works only in interactive mode.

Output paging can be enabled interactively with the pager command and disabled with nopager.
The command takes an optional argument; if given, the paging program is set to that. With no
argument, the pager is set to the pager that was set on the command line, or stdout if no pager
was specified.

Output paging works only in Unix because it uses the popen() function, which does not exist on
Windows. For Windows, the tee option can be used instead to save query output, although it is not
as convenient as pager for browsing output in some situations.

• print, \p

Print the current input statement without executing it.

• prompt [str], \R [str]

Reconfigure the mysql prompt to the given string. The special character sequences that can be
used in the prompt are described later in this section.

If you specify the prompt command with no argument, mysql resets the prompt to the default of
mysql>.

• quit, \q

Exit mysql.

• rehash, \#

Rebuild the completion hash that enables database, table, and column name completion while you
are entering statements. (See the description for the --auto-rehash option.)

• resetconnection, \x

Reset the connection to clear the session state. This command was added in MySQL 5.7.3.

Resetting a connection has effects similar to mysql_change_user() or an auto-reconnect
except that the connection is not closed and reopened, and re-authentication is not done. See
Section 23.8.7.3, “mysql_change_user()”) and see Section 23.8.16, “Controlling Automatic
Reconnection Behavior”).

This example shows how resetconnection clears a value maintained in the session state:

mysql> SELECT LAST_INSERT_ID(3);
+-------------------+
| LAST_INSERT_ID(3) |
+-------------------+
| 3 |
+-------------------+

mysql> SELECT LAST_INSERT_ID();

mysql — The MySQL Command-Line Tool

345

+------------------+
| LAST_INSERT_ID() |
+------------------+
| 3 |
+------------------+

mysql> resetconnection;

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 0 |
+------------------+

• source file_name, \. file_name

Read the named file and executes the statements contained therein. On Windows, you can specify
path name separators as / or \\.

• status, \s

Provide status information about the connection and the server you are using. If you are running in
--safe-updates mode, status also prints the values for the mysql variables that affect your
queries.

• system command, \! command

Execute the given command using your default command interpreter.

The system command works only in Unix.

• tee [file_name], \T [file_name]

By using the --tee option when you invoke mysql, you can log statements and their output. All the
data displayed on the screen is appended into a given file. This can be very useful for debugging
purposes also. mysql flushes results to the file after each statement, just before it prints its next
prompt. Tee functionality works only in interactive mode.

You can enable this feature interactively with the tee command. Without a parameter, the previous
file is used. The tee file can be disabled with the notee command. Executing tee again re-enables
logging.

• use db_name, \u db_name

Use db_name as the default database.

• warnings, \W

Enable display of warnings after each statement (if there are any).

Here are a few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide query
results. Sometimes a very wide result set is difficult to read on the screen. The -S option to less
can make the result set much more readable because you can scroll it horizontally using the left-

mysql — The MySQL Command-Line Tool

346

arrow and right-arrow keys. You can also use -S interactively within less to switch the horizontal-
browse mode on and off. For more information, read the less manual page:

shell> man less

• The -F and -X options may be used with less to cause it to exit if output fits on one screen, which
is convenient when no scrolling is necessary:

mysql> pager less -n -i -S -F -X

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
 | tee /dr2/tmp/res2.txt | less -n -i -S

In this example, the command would send query results to two files in two different directories on two
different file systems mounted on /dr1 and /dr2, yet still display the results onscreen using less.

You can also combine the tee and pager functions. Have a tee file enabled and pager set to less,
and you are able to browse the results using the less program and still have everything appended
into a file the same time. The difference between the Unix tee used with the pager command and
the mysql built-in tee command is that the built-in tee works even if you do not have the Unix tee
available. The built-in tee also logs everything that is printed on the screen, whereas the Unix tee
used with pager does not log quite that much. Additionally, tee file logging can be turned on and
off interactively from within mysql. This is useful when you want to log some queries to a file, but not
others.

The prompt command reconfigures the default mysql> prompt. The string for defining the prompt can
contain the following special sequences.

Option Description

\C The current connection identifier (MySQL 5.7.6 and up)

\c A counter that increments for each statement you issue

\D The full current date

\d The default database

\h The server host

\l The current delimiter

\m Minutes of the current time

\n A newline character

\O The current month in three-letter format (Jan, Feb, …)

\o The current month in numeric format

\P am/pm

\p The current TCP/IP port or socket file

\R The current time, in 24-hour military time (0–23)

\r The current time, standard 12-hour time (1–12)

\S Semicolon

\s Seconds of the current time

\t A tab character

\U Your full user_name@host_name account name

\u Your user name

\v The server version

mysql — The MySQL Command-Line Tool

347

Option Description

\w The current day of the week in three-letter format (Mon, Tue, …)

\Y The current year, four digits

\y The current year, two digits

_ A space

\ A space (a space follows the backslash)

\' Single quote

\" Double quote

\\ A literal “\” backslash character

\x x, for any “x” not listed above

You can set the prompt in several ways:

• Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string.
For example:

shell> export MYSQL_PS1="(\u@\h) [\d]> "

• Use a command-line option. You can set the --prompt option on the command line to mysql. For
example:

shell> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

• Use an option file. You can set the prompt option in the [mysql] group of any MySQL option file,
such as /etc/my.cnf or the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>_

In this example, note that the backslashes are doubled. If you set the prompt using the prompt
option in an option file, it is advisable to double the backslashes when using the special prompt
options. There is some overlap in the set of permissible prompt options and the set of special escape
sequences that are recognized in option files. (The rules for escape sequences in option files are
listed in Section 4.2.6, “Using Option Files”.) The overlap may cause you problems if you use single
backslashes. For example, \s is interpreted as a space rather than as the current seconds value.
The following example shows how to define a prompt within an option file to include the current time
in HH:MM:SS> format:

[mysql]
prompt="\\r:\\m:\\s> "

• Set the prompt interactively. You can change your prompt interactively by using the prompt (or \R)
command. For example:

mysql> prompt (\u@\h) [\d]>_
PROMPT set to '(\u@\h) [\d]>_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

4.5.1.3 mysql Logging

The mysql client can do these types of logging for statements executed interactively:

mysql — The MySQL Command-Line Tool

348

• On Unix, mysql writes the statements to a history file. By default, this file is named
.mysql_history in your home directory. To specify a different file, set the value of the
MYSQL_HISTFILE environment variable.

• On all platforms, if the --syslog option is given, mysql writes the statements to the system logging
facility. On Unix, this is syslog; on Windows, it is the Windows Event Log. The destination where
logged messages appear is system dependent. On Linux, the destination is often the /var/log/
messages file.

The following discussion describes characteristics that apply to all logging types and provides
information specific to each logging type.

How Logging Occurs

For each enabled logging destination, statement logging occurs as follows:

• Statements are logged only when executed interactively. Statements are noninteractive, for example,
when read from a file or a pipe. It is also possible to suppress statement logging by using the --
batch or --execute option.

• Statements are ignored and not logged if they match any pattern in the “ignore” list. This list is
described later.

• mysql logs each nonignored, nonempty statement line individually.

• If a nonignored statement spans multiple lines (not including the terminating delimiter), mysql
concatenates the lines to form the complete statement, maps newlines to spaces, and logs the
result, plus a delimiter.

Consequently, an input statement that spans multiple lines can be logged twice. Consider this input:

mysql> SELECT
 -> 'Today is'
 -> ,
 -> CURDATE()
 -> ;

In this case, mysql logs the “SELECT”, “'Today is'”, “,”, “CURDATE()”, and “;” lines as it reads them.
It also logs the complete statement, after mapping SELECT\n'Today is'\n,\nCURDATE() to
SELECT 'Today is' , CURDATE(), plus a delimiter. Thus, these lines appear in logged output:

SELECT
'Today is'
,
CURDATE()
;
SELECT 'Today is' , CURDATE();

mysql ignores for logging purposes statements that match any pattern in the “ignore” list. By default,
the pattern list is "*IDENTIFIED*:*PASSWORD*", to ignore statements that refer to passwords.
Pattern matching is not case sensitive. Within patterns, two characters are special:

• ? matches any single character.

• * matches any sequence of zero or more characters.

To specify additional patterns, use the --histignore option or set the MYSQL_HISTIGNORE
environment variable. (If both are specified, the option value takes precedence.) The value should be a
colon-separated list of one or more patterns, which are appended to the default pattern list.

Patterns specified on the command line might need to be quoted or escaped to prevent your command
interpreter from treating them specially. For example, to suppress logging for UPDATE and DELETE
statements in addition to statements that refer to passwords, invoke mysql like this:

mysql — The MySQL Command-Line Tool

349

shell> mysql --histignore="*UPDATE*:*DELETE*"

Controlling the History File

The .mysql_history file should be protected with a restrictive access mode because sensitive
information might be written to it, such as the text of SQL statements that contain passwords. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

If you do not want to maintain a history file, first remove .mysql_history if it exists. Then use either
of the following techniques to prevent it from being created again:

• Set the MYSQL_HISTFILE environment variable to /dev/null. To cause this setting to take effect
each time you log in, put it in one of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null; this need be done only once:

shell> ln -s /dev/null $HOME/.mysql_history

syslog Logging Characteristics

If the --syslog option is given, mysql writes interactive statements to the system logging facility.
Message logging has the following characteristics.

Logging occurs at the “information” level. This corresponds to the LOG_INFO priority for syslog on
Unix/Linux syslog capability and to EVENTLOG_INFORMATION_TYPE for the Windows Event Log.
Consult your system documentation for configuration of your logging capability.

Message size is limited to 1024 bytes.

Messages consist of the identifier MysqlClient followed by these values:

• SYSTEM_USER

The system user name (login name) or -- if the user is unknown.

• MYSQL_USER

The MySQL user name (specified with the --user option) or -- if the user is unknown.

• CONNECTION_ID:

The client connection identifier. This is the same as the CONNECTION_ID() function value within the
session.

• DB_SERVER

The server host or -- if the host is unknown.

• DB

The default database or -- if no database has been selected.

• QUERY

The text of the logged statement.

Here is a sample of output generated on Linux by using --syslog. This output is formatted for
readability; each logged message actually takes a single line.

Mar 7 12:39:25 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'

mysql — The MySQL Command-Line Tool

350

Mar 7 12:39:28 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'test', QUERY:'SHOW TABLES;'

4.5.1.4 mysql Server-Side Help

mysql> help search_string

If you provide an argument to the help command, mysql uses it as a search string to access server-
side help from the contents of the MySQL Reference Manual. The proper operation of this command
requires that the help tables in the mysql database be initialized with help topic information (see
Section 5.1.10, “Server-Side Help”).

If there is no match for the search string, the search fails:

mysql> help me

Nothing found
Please try to run 'help contents' for a list of all accessible topics

Use help contents to see a list of the help categories:

mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:
 Account Management
 Administration
 Data Definition
 Data Manipulation
 Data Types
 Functions
 Functions and Modifiers for Use with GROUP BY
 Geographic Features
 Language Structure
 Plugins
 Storage Engines
 Stored Routines
 Table Maintenance
 Transactions
 Triggers

If the search string matches multiple items, mysql shows a list of matching topics:

mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
 SHOW
 SHOW BINARY LOGS
 SHOW ENGINE
 SHOW LOGS

Use a topic as the search string to see the help entry for that topic:

mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-binary-logs], that shows how
to determine which logs can be purged.

mysql — The MySQL Command-Line Tool

351

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

The search string can contain the wildcard characters “%” and “_”. These have the same meaning as
for pattern-matching operations performed with the LIKE operator. For example, HELP rep% returns a
list of topics that begin with rep:

mysql> HELP rep%
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
 REPAIR TABLE
 REPEAT FUNCTION
 REPEAT LOOP
 REPLACE
 REPLACE FUNCTION

4.5.1.5 Executing SQL Statements from a Text File

The mysql client typically is used interactively, like this:

shell> mysql db_name

However, it is also possible to put your SQL statements in a file and then tell mysql to read its input
from that file. To do so, create a text file text_file that contains the statements you wish to execute.
Then invoke mysql as shown here:

shell> mysql db_name < text_file

If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the
database name on the command line:

shell> mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source command or
\. command:

mysql> source file_name
mysql> \. file_name

Sometimes you may want your script to display progress information to the user. For this you can insert
statements like this:

SELECT '<info_to_display>' AS ' ';

The statement shown outputs <info_to_display>.

You can also invoke mysql with the --verbose option, which causes each statement to be displayed
before the result that it produces.

mysql ignores Unicode byte order mark (BOM) characters at the beginning of input files. Previously,
it read them and sent them to the server, resulting in a syntax error. Presence of a BOM does not
cause mysql to change its default character set. To do that, invoke mysql with an option such as --
default-character-set=utf8.

For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.

mysql — The MySQL Command-Line Tool

352

4.5.1.6 mysql Tips

This section describes some techniques that can help you use mysql more effectively.

Input-Line Editing

mysql supports input-line editing, which enables you to modify the current input line in place or recall
previous input lines. For example, the left-arrow and right-arrow keys move horizontally within the
current input line, and the up-arror and down-arrow keys move up and down through the set of
previously entered lines. Backspace deletes the character before the cursor and typing new characters
enters them at the cursor position. To enter the line, press Enter.

On Windows, the editing key sequences are the same as supported for command editing in console
windows. On Unix, the key sequences depend on the input library used to build mysql (for example,
the libedit or readline library).

Documentation for the libedit and readline libraries is available online. To change the set of key
sequences permitted by a given input library, define key bindings in the library startup file. This is a file
in your home directory: .editrc for libedit and .inputrc for readline.

For example, in libedit, Control+W deletes everything before the current cursor position and
Control+U deletes the entire line. In readline, Control+W deletes the word before the cursor and
Control+U deletes everything before the current cursor position. If mysql was built using libedit, a
user who prefers the readline behavior for these two keys can put the following lines in the .editrc
file (creating the file if necessary):

bind "^W" ed-delete-prev-word
bind "^U" vi-kill-line-prev

To see the current set of key bindings, temporarily put a line that says only bind at the end of
.editrc. mysql will show the bindings when it starts.

Unicode Support on Windows

Windows provides APIs based on UTF-16LE for reading from and writing to the console; the mysql
client for Windows is able to use these APIs. The Windows installer creates an item in the MySQL
menu named MySQL command line client - Unicode. This item invokes the mysql client with
properties set to communicate through the console to the MySQL server using Unicode.

To take advantage of this support manually, run mysql within a console that uses a compatible
Unicode font and set the default character set to a Unicode character set that is supported for
communication with the server:

1. Open a console window.

2. Go to the console window properties, select the font tab, and choose Lucida Console or some other
compatible Unicode font. This is necessary because console windows start by default using a DOS
raster font that is inadequate for Unicode.

3. Execute mysql.exe with the --default-character-set=utf8 (or utf8mb4) option. This
option is necessary because utf16le is not supported as a connection character set.

With those changes, mysql will use the Windows APIs to communicate with the console using
UTF-16LE, and communicate with the server using UTF-8. (The menu item mentioned previously sets
the font and character set as just described.)

To avoid those steps each time you run mysql, you can create a shortcut that invokes mysql.exe.
The shortcut should set the console font to Lucida Console or some other compatible Unicode font, and
pass the --default-character-set=utf8 (or utf8mb4) option to mysql.exe.

Alternatively, create a shortcut that only sets the console font, and set the character set in the [mysql]
group of your my.ini file:

mysql — The MySQL Command-Line Tool

353

[mysql]
default-character-set=utf8

Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual
horizontal table format. Queries can be displayed vertically by terminating the query with \G instead of
a semicolon. For example, longer text values that include newlines often are much easier to read with
vertical output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************
 msg_nro: 3068
 date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Monty
 reply: monty@no.spam.com
 mail_to: "Thimble Smith" <tim@no.spam.com>
 sbj: UTF-8
 txt: >>>>> "Thimble" == Thimble Smith writes:

Thimble> Hi. I think this is a good idea. Is anyone familiar
Thimble> with UTF-8 or Unicode? Otherwise, I'll put this on my
Thimble> TODO list and see what happens.

Yes, please do that.

Regards,
Monty
 file: inbox-jani-1
 hash: 190402944
1 row in set (0.09 sec)

Using the --safe-updates Option

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has
the same effect). It is helpful for cases when you might have issued a DELETE FROM tbl_name
statement but forgotten the WHERE clause. Normally, such a statement deletes all rows from the table.
With --safe-updates, you can delete rows only by specifying the key values that identify them. This
helps prevent accidents.

When you use the --safe-updates option, mysql issues the following statement when it connects
to the MySQL server:

SET sql_safe_updates=1, sql_select_limit=1000, max_join_size=1000000;

See Section 5.1.4, “Server System Variables”.

The SET statement has the following effects:

• You are not permitted to execute an UPDATE or DELETE statement unless you specify a key
constraint in the WHERE clause or provide a LIMIT clause (or both). For example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

UPDATE tbl_name SET not_key_column=val LIMIT 1;

• The server limits all large SELECT results to 1,000 rows unless the statement includes a LIMIT
clause.

• The server aborts multiple-table SELECT statements that probably need to examine more than
1,000,000 row combinations.

mysqladmin — Client for Administering a MySQL Server

354

To specify limits different from 1,000 and 1,000,000, you can override the defaults by using the --
select_limit and --max_join_size options:

shell> mysql --safe-updates --select_limit=500 --max_join_size=10000

Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a statement, it immediately and
automatically tries to reconnect once to the server and send the statement again. However, even if
mysql succeeds in reconnecting, your first connection has ended and all your previous session objects
and settings are lost: temporary tables, the autocommit mode, and user-defined and session variables.
Also, any current transaction rolls back. This behavior may be dangerous for you, as in the following
example where the server was shut down and restarted between the first and second statements
without you knowing it:

mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it
is important to have mysql terminate with an error if the connection has been lost, you can start the
mysql client with the --skip-reconnect option.

For more information about auto-reconnect and its effect on state information when a reconnection
occurs, see Section 23.8.16, “Controlling Automatic Reconnection Behavior”.

4.5.2 mysqladmin — Client for Administering a MySQL Server

mysqladmin is a client for performing administrative operations. You can use it to check the server's
configuration and current status, to create and drop databases, and more.

Invoke mysqladmin like this:

shell> mysqladmin [options] command [command-arg] [command [command-arg]] ...

mysqladmin supports the following commands. Some of the commands take an argument following
the command name.

• create db_name

Create a new database named db_name.

• debug

Tell the server to write debug information to the error log. Format and content of this information is
subject to change.

This includes information about the Event Scheduler. See Section 19.4.5, “Event Scheduler Status”.

mysqladmin — Client for Administering a MySQL Server

355

• drop db_name

Delete the database named db_name and all its tables.

• extended-status

Display the server status variables and their values.

• flush-hosts

Flush all information in the host cache.

• flush-logs [log_type ...]

Flush all logs.

As of MySQL 5.7.5, the mysqladmin flush-logs command permits optional log types to be
given, to specify which logs to flush. Following the flush-logs command, you can provide a
space-separated list of one or more of the following log types: binary, engine, error, general,
relay, slow. These correspond to the log types that can be specified for the FLUSH LOGS SQL
statement.

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

Clear status variables.

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache.

• kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

• old-password new_password

This is like the password command but stores the password using the old (pre-4.1) password-
hashing format. (See Section 6.1.2.4, “Password Hashing in MySQL”.)

• password new_password

Set a new password. This changes the password to new_password for the account that you use
with mysqladmin for connecting to the server. Thus, the next time you invoke mysqladmin (or any
other client program) using the same account, you will need to specify the new password.

If the new_password value contains spaces or other characters that are special to your command
interpreter, you need to enclose it within quotation marks. On Windows, be sure to use double
quotation marks rather than single quotation marks; single quotation marks are not stripped from the
password, but rather are interpreted as part of the password. For example:

shell> mysqladmin password "my new password"

In MySQL 5.7, the new password can be omitted following the password command. In this case,
mysqladmin prompts for the password value, which enables you to avoid specifying the password
on the command line. Omitting the password value should be done only if password is the final

mysqladmin — Client for Administering a MySQL Server

356

command on the mysqladmin command line. Otherwise, the next argument is taken as the
password.

Caution

Do not use this command used if the server was started with the --skip-
grant-tables option. No password change will be applied. This is true
even if you precede the password command with flush-privileges
on the same command line to re-enable the grant tables because the flush
operation occurs after you connect. However, you can use mysqladmin
flush-privileges to re-enable the grant table and then use a separate
mysqladmin password command to change the password.

• ping

Check whether the server is available. The return status from mysqladmin is 0 if the server is
running, 1 if it is not. This is 0 even in case of an error such as Access denied, because this
means that the server is running but refused the connection, which is different from the server not
running.

• processlist

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement.
If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST. (See
Section 13.7.5.29, “SHOW PROCESSLIST Syntax”.)

• reload

Reload the grant tables.

• refresh

Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-slave

Start replication on a slave server.

• status

Display a short server status message.

• stop-slave

Stop replication on a slave server.

• variables

Display the server system variables and their values.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

shell> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+---------+------+-------+------------------+

mysqladmin — Client for Administering a MySQL Server

357

| 51 | monty | localhost | | Query | 0 | | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624 Threads: 1 Questions: 39487
Slow queries: 0 Opens: 541 Flush tables: 1
Open tables: 19 Queries per second avg: 0.0268

The mysqladmin status command result displays the following values:

• Uptime

The number of seconds the MySQL server has been running.

• Threads

The number of active threads (clients).

• Questions

The number of questions (queries) from clients since the server was started.

• Slow queries

The number of queries that have taken more than long_query_time seconds. See Section 5.2.5,
“The Slow Query Log”.

• Opens

The number of tables the server has opened.

• Flush tables

The number of flush-*, refresh, and reload commands the server has executed.

• Open tables

The number of tables that currently are open.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file,
mysqladmin waits until the server's process ID file has been removed, to ensure that the server has
stopped properly.

mysqladmin supports the following options, which can be specified on the command line or in the
[mysqladmin] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.9 mysqladmin Options

Format Description IntroducedDeprecated

--bind-address Use specified network interface to connect to
MySQL Server

--compress Compress all information sent between client and
server

--connect_timeout Number of seconds before connection timeout

--count Number of iterations to make for repeated
command execution

--debug Write debugging log

--debug-check Print debugging information when program exits

--debug-info Print debugging information, memory, and CPU
statistics when program exits

--default-auth Authentication plugin to use

mysqladmin — Client for Administering a MySQL Server

358

Format Description IntroducedDeprecated

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--enable-cleartext-plugin Enable cleartext authentication plugin

--force Continue even if an SQL error occurs

--help Display help message and exit

--host Connect to MySQL server on given host

--login-path Read login path options from .mylogin.cnf

--no-beep Do not beep when errors occur

--no-defaults Read no option files

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--relative Show the difference between the current and
previous values when used with the --sleep option

--secure-auth Do not send passwords to server in old (pre-4.1)
format

5.7.4 5.7.5

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

--show-warnings Show warnings after statement execution 5.7.2

--shutdown_timeout The maximum number of seconds to wait for
server shutdown

--silent Silent mode

--sleep Execute commands repeatedly, sleeping for delay
seconds in between

--socket For connections to localhost, the Unix socket file to
use

--ssl Enable SSL for connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM
format

--ssl-cipher List of permitted ciphers to use for SSL encryption

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate
revocation list files

--ssl-key Path of file that contains X509 key in PEM format

mysqladmin — Client for Administering a MySQL Server

359

Format Description IntroducedDeprecated

--ssl-verify-server-cert Verify Common Name value in server certificate
against host name used when connecting to server

--tls-version Protocols permitted for encrypted connections 5.7.10

--user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

--vertical Print query output rows vertically (one line per
column value)

--wait If the connection cannot be established, wait and
retry instead of aborting

• --help, -?

Display a help message and exit.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count=N, -c N

The number of iterations to make for repeated command execution if the --sleep option is given.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqladmin.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --defaults-extra-file=file_name

mysqladmin — Client for Administering a MySQL Server

360

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqladmin normally reads the [client] and [mysqladmin] groups.
If the --defaults-group-suffix=_other option is given, mysqladmin also reads the
[client_other] and [mysqladmin_other] groups.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.8, “The
Cleartext Client-Side Authentication Plugin”.)

• --force, -f

Do not ask for confirmation for the drop db_name command. With multiple commands, continue
even if an error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --no-beep, -b

Suppress the warning beep that is emitted by default for errors such as a failure to connect to the
server.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqladmin prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

mysqladmin — Client for Administering a MySQL Server

361

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqladmin does not find it. See Section 6.3.8, “Pluggable
Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --relative, -r

Show the difference between the current and previous values when used with the --sleep option.
This option works only with the extended-status command.

• --show-warnings

Show warnings resulting from execution of statements sent to the server. This option was added in
MySQL 5.7.2.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option was added in MySQL 5.7.4.

As of MySQL 5.7.5, this option is deprecated and will be removed in a future MySQL release. It
is always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0)
produces an error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them
is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --silent, -s

mysqlcheck — A Table Maintenance Program

362

Exit silently if a connection to the server cannot be established.

• --sleep=delay, -i delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count option
determines the number of iterations. If --count is not given, mysqladmin executes commands
indefinitely until interrupted.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --vertical, -E

Print output vertically. This is similar to --relative, but prints output vertically.

• --wait[=count], -w[count]

If the connection cannot be established, wait and retry instead of aborting. If a count value is given,
it indicates the number of times to retry. The default is one time.

You can also set the following variables by using --var_name=value.

• connect_timeout

The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).

• shutdown_timeout

The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).

4.5.3 mysqlcheck — A Table Maintenance Program

The mysqlcheck client performs table maintenance: It checks, repairs, optimizes, or analyzes tables.

mysqlcheck — A Table Maintenance Program

363

Each table is locked and therefore unavailable to other sessions while it is being processed,
although for check operations, the table is locked with a READ lock only (see Section 13.3.5, “LOCK
TABLES and UNLOCK TABLES Syntax”, for more information about READ and WRITE locks).
Table maintenance operations can be time-consuming, particularly for large tables. If you use the
--databases or --all-databases option to process all tables in one or more databases, an
invocation of mysqlcheck might take a long time. (This is also true for mysql_upgrade because that
program invokes mysqlcheck to check all tables and repair them if necessary.)

mysqlcheck is similar in function to myisamchk, but works differently. The main operational
difference is that mysqlcheck must be used when the mysqld server is running, whereas
myisamchk should be used when it is not. The benefit of using mysqlcheck is that you do not have to
stop the server to perform table maintenance.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and
OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the
operation you want to perform, and then sends the statements to the server to be executed. For details
about which storage engines each statement works with, see the descriptions for those statements in
Section 13.7.2, “Table Maintenance Statements”.

The MyISAM storage engine supports all four maintenance operations, so mysqlcheck can be
used to perform any of them on MyISAM tables. Other storage engines do not necessarily support all
operations. In such cases, an error message is displayed. For example, if test.t is a MEMORY table,
an attempt to check it produces this result:

shell> mysqlcheck test t
test.t
note : The storage engine for the table doesn't support check

If mysqlcheck is unable to repair a table, see Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes” for manual table repair strategies. This will be the case, for example, for InnoDB tables,
which can be checked with CHECK TABLE, but not repaired with REPAIR TABLE.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible
causes include but are not limited to file system errors.

There are three general ways to invoke mysqlcheck:

shell> mysqlcheck [options] db_name [tbl_name ...]
shell> mysqlcheck [options] --databases db_name ...
shell> mysqlcheck [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-
databases option, entire databases are checked.

mysqlcheck has a special feature compared to other client programs. The default behavior of
checking tables (--check) can be changed by renaming the binary. If you want to have a tool that
repairs tables by default, you should just make a copy of mysqlcheck named mysqlrepair, or make
a symbolic link to mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs tables.

The names shown in the following table can be used to change mysqlcheck default behavior.

Command Meaning

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck — A Table Maintenance Program

364

mysqlcheck supports the following options, which can be specified on the command line or in the
[mysqlcheck] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.10 mysqlcheck Options

Format Description IntroducedDeprecated

--all-databases Check all tables in all databases

--all-in-1 Execute a single statement for each database that
names all the tables from that database

--analyze Analyze the tables

--auto-repair If a checked table is corrupted, automatically fix it

--bind-address Use specified network interface to connect to
MySQL Server

--character-sets-dir Directory where character sets are installed

--check Check the tables for errors

--check-only-changed Check only tables that have changed since the last
check

--check-upgrade Invoke CHECK TABLE with the FOR UPGRADE
option

--compress Compress all information sent between client and
server

--databases Interpret all arguments as database names

--debug Write debugging log

--debug-check Print debugging information when program exits

--debug-info Print debugging information, memory, and CPU
statistics when program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--enable-cleartext-plugin Enable cleartext authentication plugin 5.7.10

--extended Check and repair tables

--fast Check only tables that have not been closed
properly

--fix-db-names Convert database names to 5.1 format 5.7.6

--fix-table-names Convert table names to 5.1 format 5.7.6

--force Continue even if an SQL error occurs

--help Display help message and exit

--host Connect to MySQL server on given host

--login-path Read login path options from .mylogin.cnf

--medium-check Do a check that is faster than an --extended
operation

--no-defaults Read no option files

--optimize Optimize the tables

mysqlcheck — A Table Maintenance Program

365

Format Description IntroducedDeprecated

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--quick The fastest method of checking

--repair Perform a repair that can fix almost anything
except unique keys that are not unique

--secure-auth Do not send passwords to server in old (pre-4.1)
format

5.7.4 5.7.5

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

--silent Silent mode

--skip-database Omit this database from performed operations 5.7.1

--socket For connections to localhost, the Unix socket file to
use

--ssl Enable SSL for connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM
format

--ssl-cipher List of permitted ciphers to use for SSL encryption

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate
revocation list files

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify Common Name value in server certificate
against host name used when connecting to server

--tables Overrides the --databases or -B option

--tls-version Protocols permitted for encrypted connections 5.7.10

--use-frm For repair operations on MyISAM tables

--user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

--write-binlog Log ANALYZE, OPTIMIZE, REPAIR statements
to binary log. --skip-write-binlog adds
NO_WRITE_TO_BINLOG to these statements.

• --help, -?

Display a help message and exit.

• --all-databases, -A

mysqlcheck — A Table Maintenance Program

366

Check all tables in all databases. This is the same as using the --databases option and
naming all the databases on the command line, except that the INFORMATION_SCHEMA and
performace_schema databases are not dumped. They can be dumped by explicitly naming them
with the --databases option.

• --all-in-1, -1

Instead of issuing a statement for each table, execute a single statement for each database that
names all the tables from that database to be processed.

• --analyze, -a

Analyze the tables.

• --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables
have been checked.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --check, -c

Check the tables for errors. This is the default operation.

• --check-only-changed, -C

Check only tables that have changed since the last check or that have not been closed properly.

• --check-upgrade, -g

Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with the
current version of the server. This option automatically enables the --fix-db-names and --fix-
table-names options.

• --compress

Compress all information sent between the client and the server if both support compression.

• --databases, -B

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument
on the command line as a database name and any following names as table names. With this option,
it treats all name arguments as database names.

This option may be used to dump the INFORMATION_SCHEMA and performace_schema
databases, which normally are not dumped even with the --all-databases option. (Also use the
--skip-lock-tables option.)

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

• --debug-check

mysqlcheck — A Table Maintenance Program

367

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqlcheck normally reads the [client] and [mysqlcheck] groups.
If the --defaults-group-suffix=_other option is given, mysqlcheck also reads the
[client_other] and [mysqlcheck_other] groups.

• --extended, -e

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long
time.

If you are using this option to repair tables, it runs an extended repair that may not only take a long
time to execute, but may produce a lot of garbage rows also!

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.8, “The
Cleartext Client-Side Authentication Plugin”.)

This option was added in MySQL 5.7.10.

• --fast, -F

Check only tables that have not been closed properly.

• --fix-db-names

Convert database names to 5.1 format. Only database names that contain special characters are
affected.

This option is deprecated in MySQL 5.7.6 and will be removed in a future version of MySQL. If it is
necessary to convert MySQL 5.0 database or table names, a workaround is to upgrade a MySQL 5.0
installation to MySQL 5.1 before upgrading to a more recent release.

• --fix-table-names

mysqlcheck — A Table Maintenance Program

368

Convert table names to 5.1 format. Only table names that contain special characters are affected.
This option also applies to views.

This option is deprecated in MySQL 5.7.6 and will be removed in a future version of MySQL. If it is
necessary to convert MySQL 5.0 database or table names, a workaround is to upgrade a MySQL 5.0
installation to MySQL 5.1 before upgrading to a more recent release.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --medium-check, -m

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which
should be good enough in most cases.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --optimize, -o

Optimize the tables.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlcheck prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlcheck does not find it. See Section 6.3.8, “Pluggable
Authentication”.

mysqlcheck — A Table Maintenance Program

369

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --quick, -q

If you are using this option to check tables, it prevents the check from scanning the rows to check for
incorrect links. This is the fastest check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest
repair method.

• --repair, -r

Perform a repair that can fix almost anything except unique keys that are not unique.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option was added in MySQL 5.7.4.

As of MySQL 5.7.5, this option is deprecated and will be removed in a future MySQL release. It
is always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0)
produces an error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them
is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --silent, -s

Silent mode. Print only error messages.

• --skip-database=db_name

Do not include the named database (case sensitive) in the operations performed by mysqlcheck.

• --socket=path, -S path

mysqldump — A Database Backup Program

370

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --tables

Override the --databases or -B option. All name arguments following the option are regarded as
table names.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --use-frm

For repair operations on MyISAM tables, get the table structure from the .frm file so that the table
can be repaired even if the .MYI header is corrupted.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print information about the various stages of program operation.

• --version, -V

Display version information and exit.

• --write-binlog

This option is enabled by default, so that ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements generated by mysqlcheck are written to the binary log. Use --skip-write-binlog
to cause NO_WRITE_TO_BINLOG to be added to the statements so that they are not logged. Use
the --skip-write-binlog when these statements should not be sent to replication slaves or run
when using the binary logs for recovery from backup.

4.5.4 mysqldump — A Database Backup Program

• Performance and Scalability Considerations

• Invocation Syntax

• Option Syntax - Alphabetical Summary

• Connection Options

• Option-File Options

• DDL Options

• Debug Options

• Help Options

mysqldump — A Database Backup Program

371

• Internationalization Options

• Replication Options

• Format Options

• Filtering Options

• Performance Options

• Transactional Options

• Option Groups

• Examples

• Restrictions

The mysqldump client utility performs logical backups, producing a set of SQL statements that can be
executed to reproduce the original database object definitions and table data. It dumps one or more
MySQL databases for backup or transfer to another SQL server. The mysqldump command can also
generate output in CSV, other delimited text, or XML format.

Note

If you have tables that contain generated columns, use the mysqldump
utility provided with MySQL 5.7.9 or higher to create your dump files.
The mysqldump utility provided in earlier releases uses incorrect syntax
for generated column definitions (Bug #20769542). You can use the
INFORMATION_SCHEMA.COLUMNS table to identify tables with generated
columns.

mysqldump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views,
TRIGGER for dumped triggers, and LOCK TABLES if the --single-transaction option is not used.
Certain options might require other privileges as noted in the option descriptions.

To reload a dump file, you must have the privileges required to execute the statements that it contains,
such as the appropriate CREATE privileges for objects created by those statements.

mysqldump output can include ALTER DATABASE statements that change the database collation.
These may be used when dumping stored programs to preserve their character encodings. To reload a
dump file containing such statements, the ALTER privilege for the affected database is required.

Note

A dump made using PowerShell on Windows with output redirection creates a
file that has UTF-16 encoding:

shell> mysqldump [options] > dump.sql

However, UTF-16 is not permitted as a connection character set (see
Section 10.1.4, “Connection Character Sets and Collations”), so the dump file
will not load correctly. To work around this issue, use the --result-file
option, which creates the output in ASCII format:

shell> mysqldump [options] --result-file=dump.sql

Performance and Scalability Considerations

mysqldump advantages include the convenience and flexibility of viewing or even editing the output
before restoring. You can clone databases for development and DBA work, or produce slight variations
of an existing database for testing. It is not intended as a fast or scalable solution for backing up

mysqldump — A Database Backup Program

372

substantial amounts of data. With large data sizes, even if the backup step takes a reasonable time,
restoring the data can be very slow because replaying the SQL statements involves disk I/O for
insertion, index creation, and so on.

For large-scale backup and restore, a physical backup is more appropriate, to copy the data files in
their original format that can be restored quickly:

• If your tables are primarily InnoDB tables, or if you have a mix of InnoDB and MyISAM tables,
consider using the mysqlbackup command of the MySQL Enterprise Backup product. (Available
as part of the Enterprise subscription.) It provides the best performance for InnoDB backups
with minimal disruption; it can also back up tables from MyISAM and other storage engines; and
it provides a number of convenient options to accommodate different backup scenarios. See
Section 25.2, “MySQL Enterprise Backup Overview”.

mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from
a table and buffer it in memory before dumping it. Buffering in memory can be a problem if you are
dumping large tables. To dump tables row by row, use the --quick option (or --opt, which enables
--quick). The --opt option (and hence --quick) is enabled by default, so to enable memory
buffering, use --skip-quick.

If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old
MySQL server, use the --skip-opt option instead of the --opt or --extended-insert option.

For additional information about mysqldump, see Section 7.4, “Using mysqldump for Backups”.

Invocation Syntax

There are in general three ways to use mysqldump—in order to dump a set of one or more tables, a
set of one or more complete databases, or an entire MySQL server—as shown here:

shell> mysqldump [options] db_name [tbl_name ...]
shell> mysqldump [options] --databases db_name ...
shell> mysqldump [options] --all-databases

To dump entire databases, do not name any tables following db_name, or use the --databases or
--all-databases option.

To see a list of the options your version of mysqldump supports, issue the command mysqldump --
help.

Option Syntax - Alphabetical Summary

mysqldump supports the following options, which can be specified on the command line or in the
[mysqldump] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.11 mysqldump Options

Format Description IntroducedDeprecated

--add-drop-database Add DROP DATABASE statement before each
CREATE DATABASE statement

--add-drop-table Add DROP TABLE statement before each
CREATE TABLE statement

--add-drop-trigger Add DROP TRIGGER statement before each
CREATE TRIGGER statement

--add-locks Surround each table dump with LOCK TABLES
and UNLOCK TABLES statements

--all-databases Dump all tables in all databases

--allow-keywords Allow creation of column names that are keywords

mysqldump — A Database Backup Program

373

Format Description IntroducedDeprecated

--apply-slave-statements Include STOP SLAVE prior to CHANGE MASTER
statement and START SLAVE at end of output

--bind-address Use specified network interface to connect to
MySQL Server

--character-sets-dir Directory where character sets are installed

--comments Add comments to dump file

--compact Produce more compact output

--compatible Produce output that is more compatible with other
database systems or with older MySQL servers

--complete-insert Use complete INSERT statements that include
column names

--compress Compress all information sent between client and
server

--create-options Include all MySQL-specific table options in
CREATE TABLE statements

--databases Interpret all name arguments as database names

--debug Write debugging log

--debug-check Print debugging information when program exits

--debug-info Print debugging information, memory, and CPU
statistics when program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--delete-master-logs On a master replication server, delete the binary
logs after performing the dump operation

--disable-keys For each table, surround INSERT statements with
statements to disable and enable keys

--dump-date Include dump date as "Dump completed on"
comment if --comments is given

--dump-slave Include CHANGE MASTER statement that lists
binary log coordinates of slave's master

--enable-cleartext-plugin Enable cleartext authentication plugin 5.7.10

--events Dump events from dumped databases

--extended-insert Use multiple-row INSERT syntax

--fields-enclosed-by This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

--fields-escaped-by This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

--fields-optionally-
enclosed-by

This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

mysqldump — A Database Backup Program

374

Format Description IntroducedDeprecated

--fields-terminated-by This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

--flush-logs Flush MySQL server log files before starting dump

--flush-privileges Emit a FLUSH PRIVILEGES statement after
dumping mysql database

--force Continue even if an SQL error occurs during a
table dump

--help Display help message and exit

--hex-blob Dump binary columns using hexadecimal notation

--host Host to connect to (IP address or hostname)

--ignore-error Ignore specified errors 5.7.1

--ignore-table Do not dump given table

--include-master-host-port Include MASTER_HOST/MASTER_PORT options
in CHANGE MASTER statement produced with --
dump-slave

--insert-ignore Write INSERT IGNORE rather than INSERT
statements

--lines-terminated-by This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

--lock-all-tables Lock all tables across all databases

--lock-tables Lock all tables before dumping them

--log-error Append warnings and errors to named file

--login-path Read login path options from .mylogin.cnf

--master-data Write the binary log file name and position to the
output

--max_allowed_packet Maximum packet length to send to or receive from
server

--net_buffer_length Buffer size for TCP/IP and socket communication

--no-autocommit Enclose the INSERT statements for each dumped
table within SET autocommit = 0 and COMMIT
statements

--no-create-db Do not write CREATE DATABASE statements

--no-create-info Do not write CREATE TABLE statements that re-
create each dumped table

--no-data Do not dump table contents

--no-defaults Read no option files

--no-set-names Same as --skip-set-charset

--no-tablespaces Do not write any CREATE LOGFILE GROUP or
CREATE TABLESPACE statements in output

--opt Shorthand for --add-drop-table --add-locks --
create-options --disable-keys --extended-insert --
lock-tables --quick --set-charset.

--order-by-primary Dump each table's rows sorted by its primary key,
or by its first unique index

mysqldump — A Database Backup Program

375

Format Description IntroducedDeprecated

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--quick Retrieve rows for a table from the server a row at a
time

--quote-names Quote identifiers within backtick characters

--replace Write REPLACE statements rather than INSERT
statements

--result-file Direct output to a given file

--routines Dump stored routines (procedures and functions)
from dumped databases

--secure-auth Do not send passwords to server in old (pre-4.1)
format

5.7.4 5.7.5

--set-charset Add SET NAMES default_character_set to output

--set-gtid-purged Whether to add SET
@@GLOBAL.GTID_PURGED to output

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

--single-transaction Issue a BEGIN SQL statement before dumping
data from server

--skip-add-drop-table Do not add a DROP TABLE statement before each
CREATE TABLE statement

--skip-add-locks Do not add locks

--skip-comments Do not add comments to dump file

--skip-compact Do not produce more compact output

--skip-disable-keys Do not disable keys

--skip-extended-insert Turn off extended-insert

--skip-opt Turn off options set by --opt

--skip-quick Do not retrieve rows for a table from the server a
row at a time

--skip-quote-names Do not quote identifiers

--skip-set-charset Do not write SET NAMES statement

--skip-triggers Do not dump triggers

--skip-tz-utc Turn off tz-utc

--socket For connections to localhost, the Unix socket file to
use

--ssl Enable SSL for connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

mysqldump — A Database Backup Program

376

Format Description IntroducedDeprecated

--ssl-cert Path of file that contains X509 certificate in PEM
format

--ssl-cipher List of permitted ciphers to use for SSL encryption

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate
revocation list files

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify Common Name value in server certificate
against host name used when connecting to server

--tab Produce tab-separated data files

--tables Override --databases or -B option

--tls-version Protocols permitted for encrypted connections 5.7.10

--triggers Dump triggers for each dumped table

--tz-utc Add SET TIME_ZONE='+00:00' to dump file

--user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

--where Dump only rows selected by given WHERE
condition

--xml Produce XML output

Connection Options

The mysqldump command logs into a MySQL server to extract information. The following options
specify how to connect to the MySQL server, either on the same machine or a remote system.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.8, “The
Cleartext Client-Side Authentication Plugin”.)

This option was added in MySQL 5.7.10.

• --host=host_name, -h host_name

Dump data from the MySQL server on the given host. The default host is localhost.

• --login-path=name

mysqldump — A Database Backup Program

377

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqldump prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqldump does not find it. See Section 6.3.8, “Pluggable
Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option was added in MySQL 5.7.4.

As of MySQL 5.7.5, this option is deprecated and will be removed in a future MySQL release. It
is always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0)
produces an error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them
is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

mysqldump — A Database Backup Program

378

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

You can also set the following variables by using --var_name=value syntax:

• max_allowed_packet

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum
is 1GB.

• net_buffer_length

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert or --opt option), mysqldump creates rows up
to net_buffer_length bytes long. If you increase this variable, ensure that the MySQL server
net_buffer_length system variable has a value at least this large.

Option-File Options

These options are used to control which option files to read.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqldump normally reads the [client] and [mysqldump] groups. If the --
defaults-group-suffix=_other option is given, mysqldump also reads the [client_other]
and [mysqldump_other] groups.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

mysqldump — A Database Backup Program

379

• --print-defaults

Print the program name and all options that it gets from option files.

DDL Options

Usage scenarios for mysqldump include setting up an entire new MySQL instance (including database
tables), and replacing data inside an existing instance with existing databases and tables. The following
options let you specify which things to tear down and set up when restoring a dump, by encoding
various DDL statements within the dump file.

• --add-drop-database

Write a DROP DATABASE statement before each CREATE DATABASE statement. This option is
typically used in conjunction with the --all-databases or --databases option because no
CREATE DATABASE statements are written unless one of those options is specified.

• --add-drop-table

Write a DROP TABLE statement before each CREATE TABLE statement.

• --add-drop-trigger

Write a DROP TRIGGER statement before each CREATE TRIGGER statement.

• --all-tablespaces, -Y

Adds to a table dump all SQL statements needed to create any tablespaces used by an NDB table.
This information is not otherwise included in the output from mysqldump. This option is currently
relevant only to MySQL Cluster tables, which are not supported in MySQL 5.7.

• --no-create-db, -n

Suppress the CREATE DATABASE statements that are otherwise included in the output if the --
databases or --all-databases option is given.

• --no-create-info, -t

Do not write CREATE TABLE statements that create each dumped table.

Note

This option does not exclude statements creating log file groups or
tablespaces from mysqldump output; however, you can use the --no-
tablespaces option for this purpose.

• --no-tablespaces, -y

This option suppresses all CREATE LOGFILE GROUP and CREATE TABLESPACE statements in the
output of mysqldump.

• --replace

Write REPLACE statements rather than INSERT statements.

Debug Options

The following options print debugging information, encode debugging information in the dump file, or let
the dump operation proceed regardless of potential problems.

• --allow-keywords

Permit creation of column names that are keywords. This works by prefixing each column name with
the table name.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/create-logfile-group.html

mysqldump — A Database Backup Program

380

• --comments, -i

Write additional information in the dump file such as program version, server version, and host. This
option is enabled by default. To suppress this additional information, use --skip-comments.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default value is
d:t:o,/tmp/mysqldump.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --dump-date

If the --comments option is given, mysqldump produces a comment at the end of the dump of the
following form:

-- Dump completed on DATE

However, the date causes dump files taken at different times to appear to be different, even if the
data are otherwise identical. --dump-date and --skip-dump-date control whether the date is
added to the comment. The default is --dump-date (include the date in the comment). --skip-
dump-date suppresses date printing.

• --force, -f

Ignore all errors; continue even if an SQL error occurs during a table dump.

One use for this option is to cause mysqldump to continue executing even when it encounters a
view that has become invalid because the definition refers to a table that has been dropped. Without
--force, mysqldump exits with an error message. With --force, mysqldump prints the error
message, but it also writes an SQL comment containing the view definition to the dump output and
continues executing.

If the --ignore-error option is also given to ignore specific errors, --force takes precedence.

• --log-error=file_name

Log warnings and errors by appending them to the named file. The default is to do no logging.

• --skip-comments

See the description for the --comments option.

• --verbose, -v

Verbose mode. Print more information about what the program does.

Help Options

The following options display information about the mysqldump command itself.

• --help, -?

Display a help message and exit.

• --version, -V

mysqldump — A Database Backup Program

381

Display version information and exit.

Internationalization Options

The following options change how the mysqldump command represents character data with national
language settings.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”. If
no character set is specified, mysqldump uses utf8.

• --no-set-names, -N

Turns off the --set-charset setting, the same as specifying --skip-set-charset.

• --set-charset

Write SET NAMES default_character_set to the output. This option is enabled by default. To
suppress the SET NAMES statement, use --skip-set-charset.

Replication Options

The mysqldump command is frequently used to create an empty instance, or an instance including
data, on a slave server in a replication configuration. The following options apply to dumping and
restoring data on replication master and slave servers.

• --apply-slave-statements

For a slave dump produced with the --dump-slave option, add a STOP SLAVE statement before
the CHANGE MASTER TO statement and a START SLAVE statement at the end of the output.

• --delete-master-logs

On a master replication server, delete the binary logs by sending a PURGE BINARY LOGS statement
to the server after performing the dump operation. This option automatically enables --master-
data.

• --dump-slave[=value]

This option is similar to --master-data except that it is used to dump a replication slave server
to produce a dump file that can be used to set up another server as a slave that has the same
master as the dumped server. It causes the dump output to include a CHANGE MASTER TO
statement that indicates the binary log coordinates (file name and position) of the dumped slave's
master. The CHANGE MASTER TO statement reads the values of Relay_Master_Log_File
and Exec_Master_Log_Pos from the SHOW SLAVE STATUS output and uses them for
MASTER_LOG_FILE and MASTER_LOG_POS respectively. These are the master server coordinates
from which the slave should start replicating.

Note

Inconsistencies in the sequence of transactions from the relay log which
have been executed can cause the wrong position to be used. See
Section 17.4.1.34, “Replication and Transaction Inconsistencies” for more
information.

mysqldump — A Database Backup Program

382

--dump-slave causes the coordinates from the master to be used rather than those of the dumped
server, as is done by the --master-data option. In addition, specfiying this option causes the --
master-data option to be overridden, if used, and effectively ignored.

Warning

This option should not be used if the server where the dump is going to be
applied uses gtid_mode=ON and MASTER_AUTOPOSITION=1.

The option value is handled the same way as for --master-data (setting no value or 1 causes
a CHANGE MASTER TO statement to be written to the dump, setting 2 causes the statement to be
written but encased in SQL comments) and has the same effect as --master-data in terms of
enabling or disabling other options and in how locking is handled.

This option causes mysqldump to stop the slave SQL thread before the dump and restart it again
after.

In conjunction with --dump-slave, the --apply-slave-statements and --include-
master-host-port options can also be used.

• --include-master-host-port

For the CHANGE MASTER TO statement in a slave dump produced with the --dump-slave option,
add MASTER_HOST and MASTER_PORT options for the host name and TCP/IP port number of the
slave's master.

• --master-data[=value]

Use this option to dump a master replication server to produce a dump file that can be used to set
up another server as a slave of the master. It causes the dump output to include a CHANGE MASTER
TO statement that indicates the binary log coordinates (file name and position) of the dumped server.
These are the master server coordinates from which the slave should start replicating after you load
the dump file into the slave.

If the option value is 2, the CHANGE MASTER TO statement is written as an SQL comment, and
thus is informative only; it has no effect when the dump file is reloaded. If the option value is 1, the
statement is not written as a comment and takes effect when the dump file is reloaded. If no option
value is specified, the default value is 1.

This option requires the RELOAD privilege and the binary log must be enabled.

The --master-data option automatically turns off --lock-tables. It also turns on --lock-
all-tables, unless --single-transaction also is specified, in which case, a global read lock
is acquired only for a short time at the beginning of the dump (see the description for --single-
transaction). In all cases, any action on logs happens at the exact moment of the dump.

It is also possible to set up a slave by dumping an existing slave of the master, using the --dump-
slave option, which overrides --master-data and causes it to be ignored if both options are
used.

• --set-gtid-purged=value

This option enables control over global transaction ID (GTID) information written to the dump file,
by indicating whether to add a SET @@global.gtid_purged statement to the output. This option
may also cause a statement to be written to the output that disables binary logging while the dump
file is being reloaded.

The following table shows the permitted option values. The default value is AUTO.

mysqldump — A Database Backup Program

383

Value Meaning

OFF Add no SET statement to the output.

ON Add a SET statement to the output. An error occurs if GTIDs are not enabled on the
server.

AUTO Add a SET statement to the output if GTIDs are enabled on the server.

The --set-gtid-purged option has the following effect on binary logging when the dump file is
reloaded:

• --set-gtid-purged=OFF: SET @@SESSION.SQL_LOG_BIN=0; is not added to the output.

• --set-gtid-purged=ON: SET @@SESSION.SQL_LOG_BIN=0; is added to the output.

• --set-gtid-purged=AUTO: SET @@SESSION.SQL_LOG_BIN=0; is added to the output if
GTIDs are enabled on the server you are backing up (that is, if AUTO evaluates to ON).

Format Options

The following options specify how to represent the entire dump file or certain kinds of data in the dump
file. They also control whether certain optional information is written to the dump file.

• --compact

Produce more compact output. This option enables the --skip-add-drop-table, --skip-add-
locks, --skip-comments, --skip-disable-keys, and --skip-set-charset options.

• --compatible=name

Produce output that is more compatible with other database systems or with older MySQL servers.
The value of name can be ansi, mysql323, mysql40, postgresql, oracle, mssql, db2, maxdb,
no_key_options, no_table_options, or no_field_options. To use several values, separate
them by commas. These values have the same meaning as the corresponding options for setting the
server SQL mode. See Section 5.1.7, “Server SQL Modes”.

This option does not guarantee compatibility with other servers. It only enables those SQL mode
values that are currently available for making dump output more compatible. For example, --
compatible=oracle does not map data types to Oracle types or use Oracle comment syntax.

This option requires a server version of 4.1.0 or higher. With older servers, it does nothing.

• --complete-insert, -c

Use complete INSERT statements that include column names.

• --create-options

Include all MySQL-specific table options in the CREATE TABLE statements.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-
optionally-enclosed-by=..., --fields-escaped-by=...

These options are used with the --tab option and have the same meaning as the corresponding
FIELDS clauses for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, the BLOB types, and BIT.

• --lines-terminated-by=...

mysqldump — A Database Backup Program

384

This option is used with the --tab option and has the same meaning as the corresponding LINES
clause for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --quote-names, -Q

Quote identifiers (such as database, table, and column names) within “`” characters. If the
ANSI_QUOTES SQL mode is enabled, identifiers are quoted within “"” characters. This option is
enabled by default. It can be disabled with --skip-quote-names, but this option should be given
after any option such as --compatible that may enable --quote-names.

• --result-file=file_name, -r file_name

Direct output to the named file. The result file is created and its previous contents overwritten, even if
an error occurs while generating the dump.

This option should be used on Windows to prevent newline “\n” characters from being converted to
“\r\n” carriage return/newline sequences.

• --tab=dir_name, -T dir_name

Produce tab-separated text-format data files. For each dumped table, mysqldump creates a
tbl_name.sql file that contains the CREATE TABLE statement that creates the table, and the
server writes a tbl_name.txt file that contains its data. The option value is the directory in which to
write the files.

Note

This option should be used only when mysqldump is run on the same
machine as the mysqld server. Because the server creates files *.txt file
in the directory that you specify, the directory must be writable by the server
and the MySQL account that you use must have the FILE privilege. Because
mysqldump creates *.sql in the same directory, it must be writable by your
system login account.

By default, the .txt data files are formatted using tab characters between column values and a
newline at the end of each line. The format can be specified explicitly using the --fields-xxx and
--lines-terminated-by options.

Column values are converted to the character set specified by the --default-character-set
option.

• --tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers
in different time zones. mysqldump sets its connection time zone to UTC and adds SET
TIME_ZONE='+00:00' to the dump file. Without this option, TIMESTAMP columns are dumped and
reloaded in the time zones local to the source and destination servers, which can cause the values
to change if the servers are in different time zones. --tz-utc also protects against changes due to
daylight saving time. --tz-utc is enabled by default. To disable it, use --skip-tz-utc.

• --xml, -X

Write dump output as well-formed XML.

NULL, 'NULL', and Empty Values: For a column named column_name, the NULL value, an empty
string, and the string value 'NULL' are distinguished from one another in the output generated by
this option as follows.

mysqldump — A Database Backup Program

385

Value: XML Representation:

NULL (unknown value) <field name="column_name"
xsi:nil="true" />

'' (empty string) <field name="column_name"></field>

'NULL' (string value) <field name="column_name">NULL</
field>

The output from the mysql client when run using the --xml option also follows the preceding rules.
(See Section 4.5.1.1, “mysql Options”.)

XML output from mysqldump includes the XML namespace, as shown here:

shell> mysqldump --xml -u root world City
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<database name="world">
<table_structure name="City">
<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />
<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />
<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />
<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />
<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />
<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID"
Collation="A" Cardinality="4079" Null="" Index_type="BTREE" Comment="" />
<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079"
Avg_row_length="67" Data_length="273293" Max_data_length="18858823439613951"
Index_length="43008" Data_free="0" Auto_increment="4080"
Create_time="2007-03-31 01:47:01" Update_time="2007-03-31 01:47:02"
Collation="latin1_swedish_ci" Create_options="" Comment="" />
</table_structure>
<table_data name="City">
<row>
<field name="ID">1</field>
<field name="Name">Kabul</field>
<field name="CountryCode">AFG</field>
<field name="District">Kabol</field>
<field name="Population">1780000</field>
</row>

...

<row>
<field name="ID">4079</field>
<field name="Name">Rafah</field>
<field name="CountryCode">PSE</field>
<field name="District">Rafah</field>
<field name="Population">92020</field>
</row>
</table_data>
</database>
</mysqldump>

Filtering Options

The following options control which kinds of schema objects are written to the dump file: by category,
such as triggers or events; by name, for example, choosing which databases and tables to dump; or
even filtering rows from the table data using a WHERE clause.

• --all-databases, -A

Dump all tables in all databases. This is the same as using the --databases option and naming all
the databases on the command line.

• --databases, -B

mysqldump — A Database Backup Program

386

Dump several databases. Normally, mysqldump treats the first name argument on the command
line as a database name and following names as table names. With this option, it treats all name
arguments as database names. CREATE DATABASE and USE statements are included in the output
before each new database.

• --events, -E

Include Event Scheduler events for the dumped databases in the output. This option requires the
EVENT privileges for those databases.

The output generated by using --events contains CREATE EVENT statements to create the events.
However, these statements do not include attributes such as the event creation and modification
timestamps, so when the events are reloaded, they are created with timestamps equal to the reload
time.

If you require events to be created with their original timestamp attributes, do not use --events.
Instead, dump and reload the contents of the mysql.event table directly, using a MySQL account
that has appropriate privileges for the mysql database.

• --ignore-error=error[,error]...

Ignore the specified errors. The option value is a comma-separated list of error numbers specifying
the errors to ignore during mysqldump execution. If the --force option is also given to ignore all
errors, --force takes precedence.

This option was added in MySQL 5.7.1.

• --ignore-table=db_name.tbl_name

Do not dump the given table, which must be specified using both the database and table names. To
ignore multiple tables, use this option multiple times. This option also can be used to ignore views.

• --no-data, -d

Do not write any table row information (that is, do not dump table contents). This is useful if you want
to dump only the CREATE TABLE statement for the table (for example, to create an empty copy of
the table by loading the dump file).

• --routines, -R

Include stored routines (procedures and functions) for the dumped databases in the output. Use of
this option requires the SELECT privilege for the mysql.proc table.

The output generated by using --routines contains CREATE PROCEDURE and CREATE
FUNCTION statements to create the routines. However, these statements do not include attributes
such as the routine creation and modification timestamps, so when the routines are reloaded, they
are created with timestamps equal to the reload time.

If you require routines to be created with their original timestamp attributes, do not use --routines.
Instead, dump and reload the contents of the mysql.proc table directly, using a MySQL account
that has appropriate privileges for the mysql database.

• --tables

Override the --databases or -B option. mysqldump regards all name arguments following the
option as table names.

• --triggers

Include triggers for each dumped table in the output. This option is enabled by default; disable it with
--skip-triggers.

mysqldump — A Database Backup Program

387

Before MySQL 5.7.2, a table cannot have multiple triggers that have the same combination of trigger
event (INSERT, UPDATE, DELETE) and action time (BEFORE, AFTER). MySQL 5.7.2 lifts this limitation
and multiple triggers are permitted. mysqldump dumps triggers in activation order so that when the
dump file is reloaded, triggers are created in the same activation order. However, if a mysqldump
dump file contains multiple triggers for a table that have the same trigger event and action time, an
error occurs for attempts to load the dump file into an older server that does not support multiple
triggers. (For a workaround, see Section 2.11.2.1, “Changes Affecting Downgrades from MySQL
5.7”; you can convert triggers to be compatible with older servers.)

• --where='where_condition', -w 'where_condition'

Dump only rows selected by the given WHERE condition. Quotes around the condition are mandatory
if it contains spaces or other characters that are special to your command interpreter.

Examples:

--where="user='jimf'"
-w"userid>1"
-w"userid<1"

Performance Options

The following options are the most relevant for the performance particularly of the restore operations.
For large data sets, restore operation (processing the INSERT statements in the dump file) is the most
time-consuming part. When it is urgent to restore data quickly, plan and test the performance of this
stage in advance. For restore times measured in hours, you might prefer an alternative backup and
restore solution, such as MySQL Enterprise Backup for InnoDB-only and mixed-use databases.

Performance is also affected by the transactional options, primarily for the dump operation.

• --disable-keys, -K

For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name
DISABLE KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE KEYS */; statements.
This makes loading the dump file faster because the indexes are created after all rows are inserted.
This option is effective only for nonunique indexes of MyISAM tables.

• --extended-insert, -e

Write INSERT statements using multiple-row syntax that includes several VALUES lists. This results
in a smaller dump file and speeds up inserts when the file is reloaded.

• --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

• --opt

This option, enabled by default, is shorthand for the combination of --add-drop-table --add-
locks --create-options --disable-keys --extended-insert --lock-tables --quick
--set-charset. It gives a fast dump operation and produces a dump file that can be reloaded into
a MySQL server quickly.

Because the --opt option is enabled by default, you only specify its converse, the --skip-opt
to turn off several default settings. See the discussion of mysqldump option groups for information
about selectively enabling or disabling a subset of the options affected by --opt.

• --quick, -q

mysqldump — A Database Backup Program

388

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table from
the server a row at a time rather than retrieving the entire row set and buffering it in memory before
writing it out.

• --skip-opt

See the description for the --opt option.

Transactional Options

The following options trade off the performance of the dump operation, against the reliability and
consistency of the exported data.

• --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in
faster inserts when the dump file is reloaded. See Section 8.2.2.1, “Speed of INSERT Statements”.

• --flush-logs, -F

Flush the MySQL server log files before starting the dump. This option requires the RELOAD
privilege. If you use this option in combination with the --all-databases option, the logs
are flushed for each database dumped. The exception is when using --lock-all-tables,
--master-data, or --single-transaction: In this case, the logs are flushed only once,
corresponding to the moment that all tables are locked. If you want your dump and the log flush to
happen at exactly the same moment, you should use --flush-logs together with --lock-all-
tables, --master-data, or --single-transaction.

• --flush-privileges

Add a FLUSH PRIVILEGES statement to the dump output after dumping the mysql database. This
option should be used any time the dump contains the mysql database and any other database that
depends on the data in the mysql database for proper restoration.

Note

For upgrades to MySQL 5.7.2 or higher from older versions, do not use
--flush-privileges. For upgrade instructions in this case, see
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.7”.

• --lock-all-tables, -x

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration
of the whole dump. This option automatically turns off --single-transaction and --lock-
tables.

• --lock-tables, -l

For each dumped database, lock all tables to be dumped before dumping them. The tables are
locked with READ LOCAL to permit concurrent inserts in the case of MyISAM tables. For transactional
tables such as InnoDB, --single-transaction is a much better option than --lock-tables
because it does not need to lock the tables at all.

Because --lock-tables locks tables for each database separately, this option does not guarantee
that the tables in the dump file are logically consistent between databases. Tables in different
databases may be dumped in completely different states.

Some options, such as --opt, automatically enable --lock-tables. If you want to override this,
use --skip-lock-tables at the end of the option list.

• --no-autocommit

mysqldump — A Database Backup Program

389

Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT
statements.

• --order-by-primary

Dump each table's rows sorted by its primary key, or by its first unique index, if such an index exists.
This is useful when dumping a MyISAM table to be loaded into an InnoDB table, but makes the
dump operation take considerably longer.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional
tables such as InnoDB, because then it dumps the consistent state of the database at the time when
START TRANSACTION was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements:
ALTER TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent
read is not isolated from those statements, so use of them on a table to be dumped can cause the
SELECT that is performed by mysqldump to retrieve the table contents to obtain incorrect contents
or fail.

The --single-transaction option and the --lock-tables option are mutually exclusive
because LOCK TABLES causes any pending transactions to be committed implicitly.

To dump large tables, combine the --single-transaction option with the --quick option.

Option Groups

• The --opt option turns on several settings that work together to perform a fast dump operation. All
of these settings are on by default, because --opt is on by default. Thus you rarely if ever specify
--opt. Instead, you can turn these settings off as a group by specifying --skip-opt, the optionally
re-enable certain settings by specifying the associated options later on the command line.

• The --compact option turns off several settings that control whether optional statements and
comments appear in the output. Again, you can follow this option with other options that re-enable
certain settings, or turn all the settings on by using the --skip-compact form.

When you selectively enable or disable the effect of a group option, order is important because options
are processed first to last. For example, --disable-keys --lock-tables --skip-opt would not
have the intended effect; it is the same as --skip-opt by itself.

Examples

To make a backup of an entire database:

shell> mysqldump db_name > backup-file.sql

mysqldump — A Database Backup Program

390

To load the dump file back into the server:

shell> mysql db_name < backup-file.sql

Another way to reload the dump file:

shell> mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump is also very useful for populating databases by copying data from one MySQL server to
another:

shell> mysqldump --opt db_name | mysql --host=remote_host -C db_name

You can dump several databases with one command:

shell> mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

shell> mysqldump --all-databases > all_databases.sql

For InnoDB tables, mysqldump provides a way of making an online backup:

shell> mysqldump --all-databases --master-data --single-transaction > all_databases.sql

This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at
the beginning of the dump. As soon as this lock has been acquired, the binary log coordinates are read
and the lock is released. If long updating statements are running when the FLUSH statement is issued,
the MySQL server may get stalled until those statements finish. After that, the dump becomes lock free
and does not disturb reads and writes on the tables. If the update statements that the MySQL server
receives are short (in terms of execution time), the initial lock period should not be noticeable, even
with many updates.

For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup
and replay the changes that happened since that backup), it is often useful to rotate the binary log
(see Section 5.2.4, “The Binary Log”) or at least know the binary log coordinates to which the dump
corresponds:

shell> mysqldump --all-databases --master-data=2 > all_databases.sql

Or:

shell> mysqldump --all-databases --flush-logs --master-data=2
 > all_databases.sql

The --master-data and --single-transaction options can be used simultaneously, which
provides a convenient way to make an online backup suitable for use prior to point-in-time recovery if
tables are stored using the InnoDB storage engine.

For more information on making backups, see Section 7.2, “Database Backup Methods”, and
Section 7.3, “Example Backup and Recovery Strategy”.

• To select the effect of --opt except for some features, use the --skip option for each feature. To
disable extended inserts and memory buffering, use --opt --skip-extended-insert --skip-
quick. (Actually, --skip-extended-insert --skip-quick is sufficient because --opt is on
by default.)

• To reverse --opt for all features except index disabling and table locking, use --skip-opt --
disable-keys --lock-tables.

mysqlimport — A Data Import Program

391

Restrictions

mysqldump does not dump the INFORMATION_SCHEMA, performance_schema, or (as of
MySQL 5.7.8) sys schema by default. To dump any of these, name them explicitly on the command
line. You can also name them with the --databases option. For INFORMATION_SCHEMA and
performance_schema, also use the --skip-lock-tables option.

It is not recommended to restore from a dump made using mysqldump to a MySQL 5.6.9 or earlier
server that has GTIDs enabled. See Section 17.1.3.4, “Restrictions on Replication with GTIDs”.

mysqldump includes statements to recreate the general_log and slow_query_log tables for
dumps of the mysql database. Log table contents are not dumped.

If you encounter problems backing up views due to insufficient privileges, see Section C.5,
“Restrictions on Views” for a workaround.

4.5.5 mysqlimport — A Data Import Program

The mysqlimport client provides a command-line interface to the LOAD DATA INFILE SQL
statement. Most options to mysqlimport correspond directly to clauses of LOAD DATA INFILE
syntax. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

Invoke mysqlimport like this:

shell> mysqlimport [options] db_name textfile1 [textfile2 ...]

For each text file named on the command line, mysqlimport strips any extension from the file name
and uses the result to determine the name of the table into which to import the file's contents. For
example, files named patient.txt, patient.text, and patient all would be imported into a table
named patient.

mysqlimport supports the following options, which can be specified on the command line or in the
[mysqlimport] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.12 mysqlimport Options

Format Description IntroducedDeprecated

--bind-address Use specified network interface to connect to
MySQL Server

--columns This option takes a comma-separated list of
column names as its value

--compress Compress all information sent between client and
server

--debug Write debugging log

--debug-check Print debugging information when program exits

--debug-info Print debugging information, memory, and CPU
statistics when program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--delete Empty the table before importing the text file

--enable-cleartext-plugin Enable cleartext authentication plugin 5.7.10

mysqlimport — A Data Import Program

392

Format Description IntroducedDeprecated

--fields-enclosed-by This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--fields-escaped-by This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--fields-optionally-
enclosed-by

This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--fields-terminated-by This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--force Continue even if an SQL error occurs

--help Display help message and exit

--host Connect to MySQL server on given host

--ignore See the description for the --replace option

--ignore-lines Ignore the first N lines of the data file

--lines-terminated-by This option has the same meaning as the
corresponding clause for LOAD DATA INFILE

--local Read input files locally from the client host

--lock-tables Lock all tables for writing before processing any
text files

--login-path Read login path options from .mylogin.cnf

--low-priority Use LOW_PRIORITY when loading the table.

--no-defaults Read no option files

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--replace The --replace and --ignore options control handling
of input rows that duplicate existing rows on unique
key values

--secure-auth Do not send passwords to server in old (pre-4.1)
format

5.7.4 5.7.5

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

--silent Produce output only when errors occur

--socket For connections to localhost, the Unix socket file to
use

--ssl Enable SSL for connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM
format

--ssl-cipher List of permitted ciphers to use for SSL encryption

mysqlimport — A Data Import Program

393

Format Description IntroducedDeprecated

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate
revocation list files

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify Common Name value in server certificate
against host name used when connecting to server

--tls-version Protocols permitted for encrypted connections 5.7.10

--use-threads Number of threads for parallel file-loading

--user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --columns=column_list, -c column_list

This option takes a comma-separated list of column names as its value. The order of the column
names indicates how to match data file columns with table columns.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

mysqlimport — A Data Import Program

394

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqlimport normally reads the [client] and [mysqlimport] groups.
If the --defaults-group-suffix=_other option is given, mysqlimport also reads the
[client_other] and [mysqlimport_other] groups.

• --delete, -D

Empty the table before importing the text file.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.8, “The
Cleartext Client-Side Authentication Plugin”.)

This option was added in MySQL 5.7.10.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-
optionally-enclosed-by=..., --fields-escaped-by=...

These options have the same meaning as the corresponding clauses for LOAD DATA INFILE. See
Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --force, -f

Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining
files. Without --force, mysqlimport exits if a table does not exist.

• --host=host_name, -h host_name

Import data to the MySQL server on the given host. The default host is localhost.

• --ignore, -i

See the description for the --replace option.

• --ignore-lines=N

Ignore the first N lines of the data file.

• --lines-terminated-by=...

This option has the same meaning as the corresponding clause for LOAD DATA INFILE. For
example, to import Windows files that have lines terminated with carriage return/linefeed pairs, use
--lines-terminated-by="\r\n". (You might have to double the backslashes, depending on
the escaping conventions of your command interpreter.) See Section 13.2.6, “LOAD DATA INFILE
Syntax”.

• --local, -L

Read input files locally from the client host.

mysqlimport — A Data Import Program

395

• --lock-tables, -l

Lock all tables for writing before processing any text files. This ensures that all tables are
synchronized on the server.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --low-priority

Use LOW_PRIORITY when loading the table. This affects only storage engines that use only table-
level locking (such as MyISAM, MEMORY, and MERGE).

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlimport prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlimport does not find it. See Section 6.3.8, “Pluggable
Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --replace, -r

mysqlimport — A Data Import Program

396

The --replace and --ignore options control handling of input rows that duplicate existing rows
on unique key values. If you specify --replace, new rows replace existing rows that have the same
unique key value. If you specify --ignore, input rows that duplicate an existing row on a unique key
value are skipped. If you do not specify either option, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option was added in MySQL 5.7.4.

As of MySQL 5.7.5, this option is deprecated and will be removed in a future MySQL release. It
is always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0)
produces an error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them
is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --silent, -s

Silent mode. Produce output only when errors occur.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --use-threads=N

Load files in parallel using N threads.

mysqlpump — A Database Backup Program

397

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

Here is a sample session that demonstrates use of mysqlimport:

shell> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
shell> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
shell> od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
shell> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
shell> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

4.5.6 mysqlpump — A Database Backup Program

• mysqlpump Invocation Syntax

• mysqlpump Option Summary

• mysqlpump Option Descriptions

• mysqlpump Object Selection

• mysqlpump Parallel Processing

• mysqlpump Restrictions

The mysqlpump client utility performs logical backups, producing a set of SQL statements that can be
executed to reproduce the original database object definitions and table data. It dumps one or more
MySQL databases for backup or transfer to another SQL server.

mysqlpump features include:

• Parallel processing of databases, and of objects within databases, to speed up the dump process

• Better control over which databases and database objects (tables, stored programs, user accounts)
to dump

• Dumping of user accounts as account-management statements (CREATE USER, GRANT) rather than
as inserts into the mysql system database

• Capability of creating compressed output

• Progress indicator (the values are estimates)

• For dump file reloading, faster secondary index creation for InnoDB tables by adding indexes after
rows are inserted

mysqlpump — A Database Backup Program

398

Note

mysqlpump was added in MySQL 5.7.8. It uses recent MySQL features and
thus assumes use with a server at least as recent as mysqlpump itself.

mysqlpump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views,
TRIGGER for dumped triggers, and LOCK TABLES if the --single-transaction option is not used.
The SELECT privilege on the mysql system database is required to dump user definitions. Certain
options might require other privileges as noted in the option descriptions.

To reload a dump file, you must have the privileges required to execute the statements that it contains,
such as the appropriate CREATE privileges for objects created by those statements.

Note

A dump made using PowerShell on Windows with output redirection creates a
file that has UTF-16 encoding:

shell> mysqlpump [options] > dump.sql

However, UTF-16 is not permitted as a connection character set (see
Section 10.1.4, “Connection Character Sets and Collations”), so the dump file
will not load correctly. To work around this issue, use the --result-file
option, which creates the output in ASCII format:

shell> mysqlpump [options] --result-file=dump.sql

mysqlpump Invocation Syntax

By default, mysqlpump dumps all databases (with certain exceptions noted in mysqlpump
Restrictions). To specify this behavior explicitly, use the --all-databases option:

shell> mysqlpump --all-databases

To dump a single database, or certain tables within that database, name the database on the
command line, optionally followed by table names:

shell> mysqlpump db_name
shell> mysqlpump db_name tbl_name1 tbl_name2 ...

To treat all name arguments as database names, use the --databases option:

shell> mysqlpump --databases db_name1 db_name2 ...

By default, mysqlpump does not dump user account definitions, even if you dump the mysql system
database that contains the grant tables. To dump grant table contents as logical definitions in the
form of CREATE USER and GRANT statements, use the --users option and suppress all database
dumping:

shell> mysqlpump --exclude-databases=% --users

In the preceding command, % is a wildcard that matches all database names for the --exclude-
databases option.

mysqlpump supports several options for including or excluding databases, tables, stored programs,
and user definitions. See mysqlpump Object Selection.

To reload a dump file, execute the statements that it contains. For example, use the mysql client:

shell> mysqlpump [options] > dump.sql

mysqlpump — A Database Backup Program

399

shell> mysql < dump.sql

The following discussion provides additional mysqlpump usage examples.

To see a list of the options mysqlpump supports, issue the command mysqlpump --help.

mysqlpump Option Summary

mysqlpump supports the following options, which can be specified on the command line or in the
[mysqlpump] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.13 mysqlpump Options

Format Description Introduced

--add-drop-database Add DROP DATABASE statement before each CREATE
DATABASE statement

--add-drop-table Add DROP TABLE statement before each CREATE
TABLE statement

--add-drop-user Add DROP USER statement before each CREATE
USER statement

--add-locks Surround each table dump with LOCK TABLES and
UNLOCK TABLES statements

--all-databases Dump all databases

--bind-address Use specified network interface to connect to MySQL
Server

--character-sets-dir Directory where character sets are installed

--complete-insert Use complete INSERT statements that include column
names

--compress Compress all information sent between client and server

--compress-output Output compression algorithm

--databases Interpret all name arguments as database names

--debug Write debugging log

--debug-check Print debugging information when program exits

--debug-info Print debugging information, memory, and CPU statistics
when program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--default-parallelism Default number of threads for parallel processing

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--defer-table-indexes For reloading, defer index creation until after loading
table rows

--events Dump events from dumped databases

--exclude-databases Databases to exclude from dump

--exclude-events Events to exclude from dump

--exclude-routines Routines to exclude from dump

--exclude-tables Tables to exclude from dump

--exclude-triggers Triggers to exclude from dump

mysqlpump — A Database Backup Program

400

Format Description Introduced

--exclude-users Users to exclude from dump

--extended-insert Use multiple-row INSERT syntax

--help Display help message and exit

--hex-blob Dump binary columns using hexadecimal notation

--host Host to connect to (IP address or hostname)

--include-databases Databases to include in dump

--include-events Events to include in dump

--include-routines Routines to include in dump

--include-tables Tables to include in dump

--include-triggers Triggers to include in dump

--include-users Users to include in dump

--insert-ignore Write INSERT IGNORE rather than INSERT statements

--log-error-file Append warnings and errors to named file

--login-path Read login path options from .mylogin.cnf

--max-allowed-packet Maximum packet length to send to or receive from server

--net-buffer-length Buffer size for TCP/IP and socket communication

--no-create-db Do not write CREATE DATABASE statements

--no-create-info Do not write CREATE TABLE statements that re-create
each dumped table

--no-defaults Read no option files

--parallel-schemas Specify schema-processing parallelism

--password Password to use when connecting to server

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--replace Write REPLACE statements rather than INSERT
statements

--result-file Direct output to a given file

--routines Dump stored routines (procedures and functions) from
dumped databases

--secure-auth Do not send passwords to server in old (pre-4.1) format

--set-charset Add SET NAMES default_character_set to output

--single-transaction Dump tables within single transaction

--skip-definer Omit DEFINER and SQL SECURITY clauses from view
and stored program CREATE statements

--skip-dump-rows Do not dump table rows

--socket For connections to localhost, the Unix socket file to use

--ssl Enable SSL for connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

mysqlpump — A Database Backup Program

401

Format Description Introduced

--ssl-cert Path of file that contains X509 certificate in PEM format

--ssl-cipher List of permitted ciphers to use for SSL encryption

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate revocation list
files

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify Common Name value in server certificate against
host name used when connecting to server

--tls-version Protocols permitted for encrypted connections 5.7.10

--triggers Dump triggers for each dumped table

--tz-utc Add SET TIME_ZONE='+00:00' to dump file

--user MySQL user name to use when connecting to server

--users Dump user accounts

--version Display version information and exit 5.7.9

--watch-progress Display progress indicator

mysqlpump Option Descriptions

• --help, -?

Display a help message and exit.

• --add-drop-database

Write a DROP DATABASE statement before each CREATE DATABASE statement.

• --add-drop-table

Write a DROP TABLE statement before each CREATE TABLE statement.

• --add-drop-user

Write a DROP USER statement before each CREATE USER statement.

• --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in
faster inserts when the dump file is reloaded. See Section 8.2.2.1, “Speed of INSERT Statements”.

This option does not work with parallelism because INSERT statements from different tables can be
interleaved and UNLOCK TABLES following the end of the inserts for one table could release locks on
tables for which inserts remain.

--add-locks and --single-transaction are mutually exclusive.

• --all-databases, -A

Dump all databases (with certain exceptions noted in mysqlpump Restrictions). This is the default
behavior if no other is specified explicitly.

--all-databases and --databases are mutually exclusive.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

mysqlpump — A Database Backup Program

402

• --character-sets-dir=path

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --complete-insert

Write complete INSERT statements that include column names.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --compress-output=algorithm

By default, mysqlpump does not compress output. This option specifies output compression using
the specified algorithm. Permitted algorithms are LZ4 and ZLIB.

To uncompress compressed output, you must have an appropriate utility. As of MySQL 5.7.10,
MySQL distributions include lz4_decompress and zlib_decompress utilities that can be used
to decompress mysqlpump output that was compressed using the --compress-output=LZ4 and
--compress-output=ZLIB options. For more information, see Section 4.8.1, “lz4_decompress
— Decompress mysqlpump LZ4-Compressed Output”, and Section 4.8.5, “zlib_decompress —
Decompress mysqlpump ZLIB-Compressed Output”.

Alternatives include the lz4 and openssl commands, if they are installed on your system. For
example, lz4 can uncompress LZ4 output:

shell> lz4 -d input_file output_file

ZLIB output can be uncompresed like this:

shell> openssl zlib -d < input_file > output_file

• --databases, -B

Normally, mysqlpump treats the first name argument on the command line as a database name
and any following names as table names. With this option, it treats all name arguments as database
names. CREATE DATABASE statements are included in the output before each new database.

--all-databases and --databases are mutually exclusive.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:O,/tmp/mysqlpump.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --default-character-set=charset_name

mysqlpump — A Database Backup Program

403

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”. If
no character set is specified, mysqlpump uses utf8.

• --default-parallelism=N

The default number of threads for each parallel processing queue. The default is 2.

The --parallel-schemas option also affects parallelism and can be used to override the default
number of threads. For more information, see mysqlpump Parallel Processing.

With --default-parallelism=0 and no --parallel-schemas options, mysqlpump runs as a
single-threaded process and creates no queues.

With parallelism enabled, it is possible for output from different databases to be interleaved.

Note

Before MySQL 5.7.11, use of the --single-transaction option is
mutually exclusive with parallelism. To use --single-transaction,
disable parallelism by setting --default-parallelism to 0 and not using
any instances of --parallel-schemas:

shell> mysqlpump --single-transaction --default-parallelism=0

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlpump normally reads the [client] and [mysqlpump] groups. If the --
defaults-group-suffix=_other option is given, mysqlpump also reads the [client_other]
and [mysqlpump_other] groups.

• --defer-table-indexes

In the dump output, defer index creation for each table until after its rows have been loaded. This
works for all storage engines, but for InnoDB applies only for secondary indexes.

This option is enabled by default; use --skip-defer-table-indexes to disable it.

• --events

Include Event Scheduler events for the dumped databases in the output. Event dumping requires the
EVENT privileges for those databases.

The output generated by using --events contains CREATE EVENT statements to create the events.
However, these statements do not include attributes such as the event creation and modification
timestamps, so when the events are reloaded, they are created with timestamps equal to the reload
time.

mysqlpump — A Database Backup Program

404

If you require events to be created with their original timestamp attributes, do not use --events.
Instead, dump and reload the contents of the mysql.event table directly, using a MySQL account
that has appropriate privileges for the mysql database.

This option is enabled by default; use --skip-events to disable it.

• --exclude-databases=db_list

Do not dump the databases in db_list, which is a comma-separated list of one or more database
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-events=event_list

Do not dump the databases in event_list, which is a comma-separated list of one or more event
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-routines=routine_list

Do not dump the events in routine_list, which is a comma-separated list of one or more routine
(stored procedure or function) names. Multiple instances of this option are additive. For more
information, see mysqlpump Object Selection.

• --exclude-tables=table_list

Do not dump the tables in table_list, which is a comma-separated list of one or more table
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-triggers=trigger_list

Do not dump the triggers in trigger_list, which is a comma-separated list of one or more trigger
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-users=user_list

Do not dump the user accounts in user_list, which is a comma-separated list of one or more
account names. Multiple instances of this option are additive. For more information, see mysqlpump
Object Selection.

• --extended-insert=N

Write INSERT statements using multiple-row syntax that includes several VALUES lists. This results
in a smaller dump file and speeds up inserts when the file is reloaded.

The option value indicates the number of rows to include in each INSERT statement. The default is
250. A value of 1 produces one INSERT statement per table row.

• --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, the BLOB types, and BIT.

• --host=host_name, -h host_name

Dump data from the MySQL server on the given host.

• --include-databases=db_list

mysqlpump — A Database Backup Program

405

Dump the databases in db_list, which is a comma-separated list of one or more database names.
The dump includes all objects in the named databases. Multiple instances of this option are additive.
For more information, see mysqlpump Object Selection.

• --include-events=event_list

Dump the events in event_list, which is a comma-separated list of one or more event names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

• --include-routines=routine_list

Dump the routines in routine_list, which is a comma-separated list of one or more routine
(stored procedure or function) names. Multiple instances of this option are additive. For more
information, see mysqlpump Object Selection.

• --include-tables=table_list

Dump the tables in table_list, which is a comma-separated list of one or more table names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

• --include-triggers=trigger_list

Dump the triggers in trigger_list, which is a comma-separated list of one or more trigger names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

• --include-users=user_list

Dump the user accounts in user_list, which is a comma-separated list of one or more user
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

• --log-error-file=file_name

Log warnings and errors by appending them to the named file. If this option is not given, mysqlpump
writes warnings and errors to the standard error output.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --max-allowed-packet=N

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum
is 1GB.

• --net-buffer-length=N

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert option), mysqlpump creates rows up to N bytes long.
If you use this option to increase the value, ensure that the MySQL server net_buffer_length
system variable has a value at least this large.

• --no-create-db

Suppress any CREATE DATABASE statements that might otherwise be included in the output.

mysqlpump — A Database Backup Program

406

• --no-create-info, -t

Do not write CREATE TABLE statements that create each dumped table.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --parallel-schemas=[N:]db_list

Create a queue for processing the databases in db_list, which is a comma-separated list of one
or more database names. If N is given, the queue uses N threads. If N is not given, the --default-
parallelism option determines the number of queue threads.

Multiple instances of this option create multiple queues. mysqlpump also creates a default
queue to use for databases not named in any --parallel-schemas option, and for dumping
user definitions if command options select them. For more information, see mysqlpump Parallel
Processing.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlpump prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlpump does not find it. See Section 6.3.8, “Pluggable
Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --replace

Write REPLACE statements rather than INSERT statements.

• --result-file=file_name

Direct output to the named file. The result file is created and its previous contents overwritten, even if
an error occurs while generating the dump.

mysqlpump — A Database Backup Program

407

This option should be used on Windows to prevent newline “\n” characters from being converted to
“\r\n” carriage return/newline sequences.

• --routines

Include stored routines (procedures and functions) for the dumped databases in the output. Use of
this option requires the SELECT privilege for the mysql.proc table.

The output generated by using --routines contains CREATE PROCEDURE and CREATE
FUNCTION statements to create the routines. However, these statements do not include attributes
such as the routine creation and modification timestamps, so when the routines are reloaded, they
are created with timestamps equal to the reload time.

If you require routines to be created with their original timestamp attributes, do not use --routines.
Instead, dump and reload the contents of the mysql.proc table directly, using a MySQL account
that has appropriate privileges for the mysql database.

This option is enabled by default; use --skip-routines to disable it.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

This option is deprecated and will be removed in a future MySQL release. It is always enabled and
attempting to disable it (--skip-secure-auth, --secure-auth=0) produces an error.

• --set-charset

Write SET NAMES default_character_set to the output.

This option is enabled by default. To disable it and suppress the SET NAMES statement, use --
skip-set-charset.

• --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional
tables such as InnoDB, because then it dumps the consistent state of the database at the time when
START TRANSACTION was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements:
ALTER TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent
read is not isolated from those statements, so use of them on a table to be dumped can cause the
SELECT that is performed by mysqlpump to retrieve the table contents to obtain incorrect contents
or fail.

--add-locks and --single-transaction are mutually exclusive.

Note

Before MySQL 5.7.11, use of the --single-transaction option is
mutually exclusive with parallelism. To use --single-transaction,
disable parallelism by setting --default-parallelism to 0 and not using
any instances of --parallel-schemas:

mysqlpump — A Database Backup Program

408

shell> mysqlpump --single-transaction --default-parallelism=0

• --skip-definer

Omit DEFINER and SQL SECURITY clauses from the CREATE statements for views and stored
programs. The dump file, when reloaded, creates objects that use the default DEFINER and SQL
SECURITY values. See Section 19.6, “Access Control for Stored Programs and Views”.

• --skip-dump-rows, -d

Do not dump table rows.

• --socket={file_name|pipe_name}, -S {file_name|pipe_name}

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --triggers

Include triggers for each dumped table in the output.

This option is enabled by default; use --skip-triggers to disable it.

• --tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers
in different time zones. mysqlpump sets its connection time zone to UTC and adds SET
TIME_ZONE='+00:00' to the dump file. Without this option, TIMESTAMP columns are dumped and
reloaded in the time zones local to the source and destination servers, which can cause the values
to change if the servers are in different time zones. --tz-utc also protects against changes due to
daylight saving time.

This option is enabled by default; use --skip-tz-utc to disable it.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --users

Dump user accounts as logical definitions in the form of CREATE USER and GRANT statements.

User definitions are stored in the grant tables in the mysql system database. By default, mysqlpump
does not include the grant tables in mysql database dumps. To dump the contents of the grant
tables as logical definitions, use the --users option and suppress all database dumping:

mysqlpump — A Database Backup Program

409

shell> mysqlpump --exclude-databases=% --users

• --version, -V

Display version information and exit.

This option was added in MySQL 5.7.9.

• --watch-progress

Periodically display a progress indicator that provides information about the completed and total
number of tables, rows, and other objects.

This option is enabled by default; use --skip-watch-progress to disable it.

mysqlpump Object Selection

mysqlpump has a set of inclusion and exclusion options that enable filtering of several object types
and provide flexible control over which objects to dump:

• --include-databases and --exclude-databases apply to databases and all objects within
them.

• --include-tables and --exclude-tables apply to tables. These options also affect triggers
associated with tables unless the trigger-specific options are given.

• --include-triggers and --exclude-triggers apply to triggers.

• --include-routines and --exclude-routines apply to stored procedures and functions. If
a routine option matches a stored procedure name, it also matches a stored function of the same
name.

• --include-events and --exclude-events apply to Event Scheduler events.

• --include-users and --exclude-users apply to user accounts.

Any inclusion or exclusion option may be given multiple times. The effect is additive. Order of these
options does not matter.

The value of each inclusion and exclusion option is a comma-separated list of names of the appropriate
object type. For example:

--exclude-databases=test,world
--include-tables=customer,invoice

Wildcard characters are permitted in the object names:

• % matches any sequence of zero or more characters.

• _ matches any single character.

For example, --include-tables=t%,__tmp matches all table names that begin with t and all five-
character table names that end with tmp.

For users, a name specified without a host part is interpreted with an implied host of %. For example,
u1 and u1@% are equivalent. This is the same equivalence that applies in MySQL generally (see
Section 6.2.3, “Specifying Account Names”).

Inclusion and exclusion options interact as follows:

• By default, with no inclusion or exclusion options, mysqlpump dumps all databases (with certain
exceptions noted in mysqlpump Restrictions).

mysqlpump — A Database Backup Program

410

• If inclusion options are given in the absence of exclusion options, only the objects named as included
are dumped.

• If exclusion options are given in the absence of inclusion options, all objects are dumped except
those named as excluded.

• If inclusion and exclusion options are given, all objects named as excluded and not named as
included are not dumped. All other objects are dumped.

If multiple databases are being dumped, it is possible to name tables, triggers, and routines in a
specific database by qualifying the object names with the database name. The following command
dumps databases db1 and db2, but excludes tables db1.t1 and db2.t2:

shell> mysqlpump --include-databases=db1,db2 --exclude-tables=db1.t1,db2.t2

The following options provide alternative ways to specify which databases to dump:

• The --all-databases option dumps all databases (with certain exceptions noted in mysqlpump
Restrictions). It is equivalent to specifying no object options at all (the default mysqlpump action is to
dump everything).

--include-databases=% is similar to --all-databases, but selects all databases for dumping,
even those that are exceptions for --all-databases.

• The --databases option causes mysqlpump to treat all name arguments as names of databases
to dump. It is equivalent to an --include-databases option that names the same databases.

mysqlpump Parallel Processing

mysqlpump can use parallelism to achieve concurrent processing. You can select concurrency
between databases (to dump multiple databases simultaneously) and within databases (to dump
multiple objects from a given database simultaneously).

By default, mysqlpump sets up one queue with two threads. You can create additional queues and
control the number of threads assigned to each one, including the default queue:

• --default-parallelism=N specifies the default number of threads used for each queue. In the
absence of this option, N is 2.

The default queue always uses the default number of threads. Additional queues use the default
number of threads unless you specify otherwise.

• --parallel-schemas=[N:]db_list sets up a processing queue for dumping the databases
named in db_list and optionally specifies how many threads the queue uses. db_list is a
comma-separated list of database names. If the option argument begins with N:, the queue uses
N threads. Otherwise, the --default-parallelism option determines the number of queue
threads.

Multiple instances of the --parallel-schemas option create multiple queues.

Names in the database list are permitted to contain the same % and _ wildcard characters supported
for filtering options (see mysqlpump Object Selection).

mysqlpump uses the default queue for processing any databases not named explicitly with a --
parallel-schemas option, and for dumping user definitions if command options select them.

In general, with multiple queues, mysqlpump uses parallelism between the sets of databases
processed by the queues, to dump multiple databases simultaneously. For a queue that uses multiple
threads, mysqlpump uses parallelism within databases, to dump multiple objects from a given
database simultaneously. Exceptions can occur; for example, mysqlpump may block queues while it
obtains from the server lists of objects in databases.

mysqlshow — Display Database, Table, and Column Information

411

With parallelism enabled, it is possible for output from different databases to be interleaved. For
example, INSERT statements from multiple tables dumped in parallel can be interleaved; the
statements are not written in any particular order. This does not affect reloading because output
statements qualify object names with database names or are preceded by USE statements as required.

The granularity for parallelism is a single database object. For example, a single table cannot be
dumped in parallel using multiple threads.

Examples:

shell> mysqlpump --parallel-schemas=db1,db2 --parallel-schemas=db3

mysqlpump sets up a queue to process db1 and db2, another queue to process db3, and a default
queue to process all other databases. All queues use two threads.

shell> mysqlpump --parallel-schemas=db1,db2 --parallel-schemas=db3
 --default-parallelism=4

This is the same as the previous example except that all queues use four threads.

shell> mysqlpump --parallel-schemas=5:db1,db2 --parallel-schemas=3:db3

The queue for db1 and db2 uses five threads, the queue for db3 uses three threads, and the default
queue uses the default of two threads.

As a special case, with --default-parallelism=0 and no --parallel-schemas options,
mysqlpump runs as a single-threaded process and creates no queues.

Note

Before MySQL 5.7.11, use of the --single-transaction option is
mutually exclusive with parallelism. To use --single-transaction, disable
parallelism by setting --default-parallelism to 0 and not using any
instances of --parallel-schemas:

shell> mysqlpump --single-transaction --default-parallelism=0

mysqlpump Restrictions

mysqlpump does not dump the INFORMATION_SCHEMA, performance_schema, ndbinfo, or sys
schema by default. To dump any of these, name them explicitly on the command line. You can also
name them with the --databases or --include-databases option.

mysqlpump dumps user accounts in logical form using CREATE USER and GRANT statements (for
example, when you use the --include-users or --users option). For this reason, dumps of the
mysql system database do not by default include the grant tables that contain user definitions: user,
db, tables_priv, columns_priv, procs_priv, or proxies_priv. To dump any of the grant
tables, name the mysql database followed by the table names:

shell> mysqlpump mysql user db ...

4.5.7 mysqlshow — Display Database, Table, and Column Information

The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's
columns or indexes.

mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 13.7.5,
“SHOW Syntax”. The same information can be obtained by using those statements directly. For
example, you can issue them from the mysql client program.

mysqlshow — Display Database, Table, and Column Information

412

Invoke mysqlshow like this:

shell> mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, a list of database names is shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some
privileges.

If the last argument contains shell or SQL wildcard characters (“*”, “?”, “%”, or “_”), only those names
that are matched by the wildcard are shown. If a database name contains any underscores, those
should be escaped with a backslash (some Unix shells require two) to get a list of the proper tables
or columns. “*” and “?” characters are converted into SQL “%” and “_” wildcard characters. This might
cause some confusion when you try to display the columns for a table with a “_” in the name, because
in this case, mysqlshow shows you only the table names that match the pattern. This is easily fixed by
adding an extra “%” last on the command line as a separate argument.

mysqlshow supports the following options, which can be specified on the command line or in the
[mysqlshow] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.14 mysqlshow Options

Format Description IntroducedDeprecated

--bind-address Use specified network interface to connect to
MySQL Server

--compress Compress all information sent between client and
server

--count Show the number of rows per table

--debug Write debugging log

--debug-check Print debugging information when program exits

--debug-info Print debugging information, memory, and CPU
statistics when program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--enable-cleartext-plugin Enable cleartext authentication plugin 5.7.10

--help Display help message and exit

--host Connect to MySQL server on given host

--keys Show table indexes

--login-path Read login path options from .mylogin.cnf

--no-defaults Read no option files

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

mysqlshow — Display Database, Table, and Column Information

413

Format Description IntroducedDeprecated

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--secure-auth Do not send passwords to server in old (pre-4.1)
format

5.7.4 5.7.5

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

--show-table-type Show a column indicating the table type

--socket For connections to localhost, the Unix socket file to
use

--ssl Enable SSL for connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM
format

--ssl-cipher List of permitted ciphers to use for SSL encryption

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate
revocation list files

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify Common Name value in server certificate
against host name used when connecting to server

--status Display extra information about each table

--tls-version Protocols permitted for encrypted connections 5.7.10

--user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count

Show the number of rows per table. This can be slow for non-MyISAM tables.

mysqlshow — Display Database, Table, and Column Information

414

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlshow normally reads the [client] and [mysqlshow] groups. If the --
defaults-group-suffix=_other option is given, mysqlshow also reads the [client_other]
and [mysqlshow_other] groups.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.8, “The
Cleartext Client-Side Authentication Plugin”.)

This option was added in MySQL 5.7.10.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --keys, -k

Show table indexes.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --no-defaults

mysqlshow — Display Database, Table, and Column Information

415

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlshow prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlshow does not find it. See Section 6.3.8, “Pluggable
Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option was added in MySQL 5.7.4.

As of MySQL 5.7.5, this option is deprecated and will be removed in a future MySQL release. It
is always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0)
produces an error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them
is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

mysqlslap — Load Emulation Client

416

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --show-table-type, -t

Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE or
VIEW.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --status, -i

Display extra information about each table.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

• --version, -V

Display version information and exit.

4.5.8 mysqlslap — Load Emulation Client

mysqlslap is a diagnostic program designed to emulate client load for a MySQL server and to report
the timing of each stage. It works as if multiple clients are accessing the server.

Invoke mysqlslap like this:

shell> mysqlslap [options]

Some options such as --create or --query enable you to specify a string containing an SQL
statement or a file containing statements. If you specify a file, by default it must contain one statement
per line. (That is, the implicit statement delimiter is the newline character.) Use the --delimiter
option to specify a different delimiter, which enables you to specify statements that span multiple lines

mysqlslap — Load Emulation Client

417

or place multiple statements on a single line. You cannot include comments in a file; mysqlslap does
not understand them.

mysqlslap runs in three stages:

1. Create schema, table, and optionally any stored programs or data to use for the test. This stage
uses a single client connection.

2. Run the load test. This stage can use many client connections.

3. Clean up (disconnect, drop table if specified). This stage uses a single client connection.

Examples:

Supply your own create and query SQL statements, with 50 clients querying and 200 selects for each
(enter the command on a single line):

mysqlslap --delimiter=";"
 --create="CREATE TABLE a (b int);INSERT INTO a VALUES (23)"
 --query="SELECT * FROM a" --concurrency=50 --iterations=200

Let mysqlslap build the query SQL statement with a table of two INT columns and three VARCHAR
columns. Use five clients querying 20 times each. Do not create the table or insert the data (that is, use
the previous test's schema and data):

mysqlslap --concurrency=5 --iterations=20
 --number-int-cols=2 --number-char-cols=3
 --auto-generate-sql

Tell the program to load the create, insert, and query SQL statements from the specified files, where
the create.sql file has multiple table creation statements delimited by ';' and multiple insert
statements delimited by ';'. The --query file will have multiple queries delimited by ';'. Run all the
load statements, then run all the queries in the query file with five clients (five times each):

mysqlslap --concurrency=5
 --iterations=5 --query=query.sql --create=create.sql
 --delimiter=";"

mysqlslap supports the following options, which can be specified on the command line or in the
[mysqlslap] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.15 mysqlslap Options

Format Description IntroducedDeprecated

--auto-generate-sql Generate SQL statements automatically when they
are not supplied in files or using command options

--auto-generate-sql-add-
autoincrement

Add AUTO_INCREMENT column to automatically
generated tables

--auto-generate-sql-
execute-number

Specify how many queries to generate
automatically

--auto-generate-sql-guid-
primary

Add a GUID-based primary key to automatically
generated tables

--auto-generate-sql-load-
type

Specify how many queries to generate
automatically

--auto-generate-sql-
secondary-indexes

Specify how many secondary indexes to add to
automatically generated tables

--auto-generate-sql-
unique-query-number

How many different queries to generate for
automatic tests.

mysqlslap — Load Emulation Client

418

Format Description IntroducedDeprecated

--auto-generate-sql-
unique-write-number

How many different queries to generate for --auto-
generate-sql-write-number

--auto-generate-sql-write-
number

How many row inserts to perform on each thread

--commit How many statements to execute before
committing.

--compress Compress all information sent between client and
server

--concurrency Number of clients to simulate when issuing the
SELECT statement

--create File or string containing the statement to use for
creating the table

--create-schema Schema in which to run the tests

--csv Generate output in comma-separated values
format

--debug Write debugging log

--debug-check Print debugging information when program exits

--debug-info Print debugging information, memory, and CPU
statistics when program exits

--default-auth Authentication plugin to use

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--delimiter Delimiter to use in SQL statements

--detach Detach (close and reopen) each connection after
each N statements

--enable-cleartext-plugin Enable cleartext authentication plugin

--engine Storage engine to use for creating the table

--help Display help message and exit

--host Connect to MySQL server on given host

--iterations Number of times to run the tests

--login-path Read login path options from .mylogin.cnf

--no-defaults Read no option files

--no-drop Do not drop any schema created during the test
run

--number-char-cols Number of VARCHAR columns to use if --auto-
generate-sql is specified

--number-int-cols Number of INT columns to use if --auto-generate-
sql is specified

--number-of-queries Limit each client to approximately this number of
queries

--only-print Do not connect to databases. mysqlslap only prints
what it would have done

--password Password to use when connecting to server

mysqlslap — Load Emulation Client

419

Format Description IntroducedDeprecated

--pipe On Windows, connect to server using named pipe

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--post-query File or string containing the statement to execute
after the tests have completed

--post-system String to execute using system() after the tests
have completed

--pre-query File or string containing the statement to execute
before running the tests

--pre-system String to execute using system() before running
the tests

--print-defaults Print default options

--protocol Connection protocol to use

--query File or string containing the SELECT statement to
use for retrieving data

--secure-auth Do not send passwords to server in old (pre-4.1)
format

5.7.4 5.7.5

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

--silent Silent mode

--socket For connections to localhost, the Unix socket file to
use

--sql-mode Set SQL mode for client session 5.7.5

--ssl Enable SSL for connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM
format

--ssl-cipher List of permitted ciphers to use for SSL encryption

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate
revocation list files

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify Common Name value in server certificate
against host name used when connecting to server

--tls-version Protocols permitted for encrypted connections 5.7.10

--user MySQL user name to use when connecting to
server

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --auto-generate-sql, -a

mysqlslap — Load Emulation Client

420

Generate SQL statements automatically when they are not supplied in files or using command
options.

• --auto-generate-sql-add-autoincrement

Add an AUTO_INCREMENT column to automatically generated tables.

• --auto-generate-sql-execute-number=N

Specify how many queries to generate automatically.

• --auto-generate-sql-guid-primary

Add a GUID-based primary key to automatically generated tables.

• --auto-generate-sql-load-type=type

Specify the test load type. The permissible values are read (scan tables), write (insert into tables),
key (read primary keys), update (update primary keys), or mixed (half inserts, half scanning
selects). The default is mixed.

• --auto-generate-sql-secondary-indexes=N

Specify how many secondary indexes to add to automatically generated tables. By default, none are
added.

• --auto-generate-sql-unique-query-number=N

How many different queries to generate for automatic tests. For example, if you run a key test that
performs 1000 selects, you can use this option with a value of 1000 to run 1000 unique queries, or
with a value of 50 to perform 50 different selects. The default is 10.

• --auto-generate-sql-unique-write-number=N

How many different queries to generate for --auto-generate-sql-write-number. The default
is 10.

• --auto-generate-sql-write-number=N

How many row inserts to perform on each thread. The default is 100.

• --commit=N

How many statements to execute before committing. The default is 0 (no commits are done).

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --concurrency=N, -c N

The number of clients to simulate when issuing the SELECT statement.

• --create=value

The file or string containing the statement to use for creating the table.

• --create-schema=value

The schema in which to run the tests.

mysqlslap — Load Emulation Client

421

Note

If the --auto-generate-sql option is also given, mysqlslap drops the
schema at the end of the test run. To avoid this, use the --no-drop option
as well.

• --csv[=file_name]

Generate output in comma-separated values format. The output goes to the named file, or to the
standard output if no file is given.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqlslap.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlslap normally reads the [client] and [mysqlslap] groups. If the --
defaults-group-suffix=_other option is given, mysqlslap also reads the [client_other]
and [mysqlslap_other] groups.

• --delimiter=str, -F str

The delimiter to use in SQL statements supplied in files or using command options.

• --detach=N

Detach (close and reopen) each connection after each N statements. The default is 0 (connections
are not detached).

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.8, “The
Cleartext Client-Side Authentication Plugin”.)

• --engine=engine_name, -e engine_name

mysqlslap — Load Emulation Client

422

The storage engine to use for creating tables.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --iterations=N, -i N

The number of times to run the tests.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --no-drop

Prevent mysqlslap from dropping any schema it creates during the test run.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --number-char-cols=N, -x N

The number of VARCHAR columns to use if --auto-generate-sql is specified.

• --number-int-cols=N, -y N

The number of INT columns to use if --auto-generate-sql is specified.

• --number-of-queries=N

Limit each client to approximately this many queries. Query counting takes into account the
statement delimiter. For example, if you invoke mysqlslap as follows, the ; delimiter is recognized
so that each instance of the query string counts as two queries. As a result, 5 rows (not 10) are
inserted.

shell> mysqlslap --delimiter=";" --number-of-queries=10
 --query="use test;insert into t values(null)"

• --only-print

Do not connect to databases. mysqlslap only prints what it would have done.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlslap prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

mysqlslap — Load Emulation Client

423

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlslap does not find it. See Section 6.3.8, “Pluggable
Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --post-query=value

The file or string containing the statement to execute after the tests have completed. This execution
is not counted for timing purposes.

• --post-system=str

The string to execute using system() after the tests have completed. This execution is not counted
for timing purposes.

• --pre-query=value

The file or string containing the statement to execute before running the tests. This execution is not
counted for timing purposes.

• --pre-system=str

The string to execute using system() before running the tests. This execution is not counted for
timing purposes.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --query=value, -q value

The file or string containing the SELECT statement to use for retrieving data.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option was added in MySQL 5.7.4.

As of MySQL 5.7.5, this option is deprecated and will be removed in a future MySQL release. It
is always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0)
produces an error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them

MySQL Administrative and Utility Programs

424

is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. This option applies only if the server supports shared-memory connections.

• --silent, -s

Silent mode. No output.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --sql-mode=mode

Set the SQL mode for the client session. This option was added in MySQL 5.7.5.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

• --version, -V

Display version information and exit.

4.6 MySQL Administrative and Utility Programs

This section describes administrative programs and programs that perform miscellaneous utility
operations.

4.6.1 innochecksum — Offline InnoDB File Checksum Utility

innochecksum prints checksums for InnoDB files. This tool reads an InnoDB tablespace file,
calculates the checksum for each page, compares the calculated checksum to the stored checksum,
and reports mismatches, which indicate damaged pages. It was originally developed to speed up
verifying the integrity of tablespace files after power outages but can also be used after file copies.
Because checksum mismatches will cause InnoDB to deliberately shut down a running server, it

innochecksum — Offline InnoDB File Checksum Utility

425

can be preferable to use this tool rather than waiting for a server in production usage to encounter
the damaged pages. As of MySQL 5.7.2, innochecksum supports files greater than 2GB in size.
Previously, innochecksum only supported files up to 2GB in size.

innochecksum cannot be used on tablespace files that the server already has open. For such
files, you should use CHECK TABLE to check tables within the tablespace. Attempting to run
innochecksum on a tablespace that the server already has open will result in an “Unable to lock
file” error.

If checksum mismatches are found, you would normally restore the tablespace from backup or start the
server and attempt to use mysqldump to make a backup of the tables within the tablespace.

Invoke innochecksum like this:

shell> innochecksum [options] file_name

innochecksum Options

innochecksum supports the following options. For options that refer to page numbers, the numbers
are zero-based.

• --help, -?

Displays command line help. Example usage:

shell> innochecksum --help

• --info, -I

Synonym for --help. Displays command line help. Example usage:

shell> innochecksum --info

• --version, -V

Displays version information. Example usage:

shell> innochecksum --version

• --verbose, -v

Verbose mode; prints a progress indicator to the log file every five seconds. In order for the progress
indicator to be printed, the log file must be specified using the --log option. To turn on verbose
mode, run:

shell> innochecksum --verbose

To turn off verbose mode, run:

shell> innochecksum --verbose=FALSE

The --verbose option and --log option can be specified at the same time. For example:

shell> innochecksum --verbose --log=/var/lib/mysql/test/logtest.txt

To locate the progress indicator information in the log file, you can perform the following search:

innochecksum — Offline InnoDB File Checksum Utility

426

shell> cat ./logtest.txt | grep -i "okay"

The progress indicator information in the log file appears similar to the following:

page 1663 okay: 2.863% done
page 8447 okay: 14.537% done
page 13695 okay: 23.568% done
page 18815 okay: 32.379% done
page 23039 okay: 39.648% done
page 28351 okay: 48.789% done
page 33023 okay: 56.828% done
page 37951 okay: 65.308% done
page 44095 okay: 75.881% done
page 49407 okay: 85.022% done
page 54463 okay: 93.722% done
...

• --count, -c

Print a count of the number of pages in the file and exit. Example usage:

shell> innochecksum --count ../data/test/tab1.ibd

• --start-page=num, -s num

Start at this page number. Example usage:

shell> innochecksum --start-page=600 ../data/test/tab1.ibd

or:

shell> innochecksum -s 600 ../data/test/tab1.ibd

• --end-page=num, -e num

End at this page number. Example usage:

shell> innochecksum --end-page=700 ../data/test/tab1.ibd

or:

shell> innochecksum --p 700 ../data/test/tab1.ibd

• --page=num, -p num

Check only this page number. Example usage:

shell> innochecksum --page=701 ../data/test/tab1.ibd

• --strict-check, -C

Specify a strict checksum algorithm. Options include innodb, crc32, and none.

In this example, the innodb checksum algorithm is specified:

shell> innochecksum --strict-check=innodb ../data/test/tab1.ibd

In this example, the crc32 checksum algorithm is specified:

innochecksum — Offline InnoDB File Checksum Utility

427

shell> innochecksum -C crc32 ../data/test/tab1.ibd

The following conditions apply:

• If you do not specify the --strict-check option, innochecksum validates against innodb,
crc32 and none.

• If you specify the none option, only checksums generated by none are allowed.

• If you specify the innodb option, only checksums generated by innodb are allowed.

• If you specify the crc32 option, only checksums generated by crc32 are allowed.

• --no-check, -n

Ignore the checksum verification when rewriting a checksum. This option may only be used with
the innochecksum --write option. If the --write option is not specified, innochecksum will
terminate.

In this example, an innodb checksum is rewritten to replace an invalid checksum:

shell> innochecksum --no-check --write innodb ../data/test/tab1.ibd

• --allow-mismatches, -a

The maximum number of checksum mismatches allowed before innochecksum terminates. The
default setting is 0. If --allow-mismatches=N, where N>=0, N mismatches are permitted and
innochecksum terminates at N+1. When --allow-mismatches is set to 0, innochecksum
terminates on the first checksum mismatch.

In this example, an existing innodb checksum is rewritten to set --allow-mismatches to 1.

shell> innochecksum --allow-mismatches=1 --write innodb ../data/test/tab1.ibd

With --allow-mismatches set to 1, if there is a mismatch at page 600 and another at page 700
on a file with 1000 pages, the checksum is updated for pages 0-599 and 601-699. Because --
allow-mismatches is set to 1, the checksum tolerates the first mismatch and terminates on the
second mismatch, leaving page 600 and pages 700-999 unchanged.

• --write=name, -w num

Rewrite a checksum. When rewriting an invalid checksum, the --no-check option must be
used together with the --write option. The --no-check option tells innochecksum to ignore
verification of the invalid checksum. You do not have to specify the --no-check option if the current
checksum is valid.

An algorithm must be specified when using the --write option. Possible values for the --write
option are:

• innodb: A checksum calculated in software, using the original algorithm from InnoDB.

• crc32: A checksum calculated using the crc32 algorithm, possibly done with a hardware assist.

• none: A constant number.

The --write option rewrites entire pages to disk. If the new checksum is identical to the existing
checksum, the new checksum is not written to disk in order to minimize I/O.

innochecksum obtains an exclusive lock when the --write option is used.

In this example, a crc32 checksum is written for tab1.ibd:

innochecksum — Offline InnoDB File Checksum Utility

428

shell> innochecksum -w crc32 ../data/test/tab1.ibd

In this example, a crc32 checksum is rewritten to replace an invalid crc32 checksum:

shell> innochecksum --no-check --write crc32 ../data/test/tab1.ibd

• --page-type-summary, -S

Display a count of each page type in a tablespace. Example usage:

shell> innochecksum --page-type-summary ../data/test/tab1.ibd

Sample output for --page-type-summary:

File::../data/test/tab1.ibd
================PAGE TYPE SUMMARY==============
#PAGE_COUNT PAGE_TYPE
===
 2 Index page
 0 Undo log page
 1 Inode page
 0 Insert buffer free list page
 2 Freshly allocated page
 1 Insert buffer bitmap
 0 System page
 0 Transaction system page
 1 File Space Header
 0 Extent descriptor page
 0 BLOB page
 0 Compressed BLOB page
 0 Other type of page
===
Additional information:
Undo page type: 0 insert, 0 update, 0 other
Undo page state: 0 active, 0 cached, 0 to_free, 0 to_purge, 0 prepared, 0 other

• --page-type-dump, -D

Dump the page type information for each page in a tablespace to stderr or stdout. Example
usage:

shell> innochecksum --page-type-dump=/tmp/a.txt ../data/test/tab1.ibd

• --log, -l

Log output for the innochecksum tool. A log file name must be provided. Log output contains
checksum values for each tablespace page. For uncompressed tables, LSN values are also
provided. The --log replaces the --debug option, which was available in earlier releases. Example
usage:

shell> innochecksum --log=/tmp/log.txt ../data/test/tab1.ibd

or:

shell> innochecksum -l /tmp/log.txt ../data/test/tab1.ibd

• “-” option.

innochecksum — Offline InnoDB File Checksum Utility

429

Specify the “-” option to read from standard input. If the “-” option is missing when “read from
standard in” is expected, innochecksum will output innochecksum usage information indicating
that the “-” option was omitted. Example usages:

shell> cat t1.ibd | innochecksum -

In this example, innochecksum writes the crc32 checksum algorithm to a.ibd without changing
the original t1.ibd file.

shell> cat t1.ibd | innochecksum --write=crc32 - > a.ibd

Running innochecksum on Multiple User-defined Tablespace Files

The following examples demonstrate how to run innochecksum on multiple user-defined tablespace
files (.ibd files).

Run innochecksum for all tablespace (.ibd) files in the “test” database:

shell> innochecksum ./data/test/*.ibd

Run innochecksum for all tablespace files (.ibd files) that have a file name starting with “t”:

shell> innochecksum ./data/test/t*.ibd

Run innochecksum for all tablespace files (.ibd files) in the data directory:

shell> innochecksum ./data/*/*.ibd

Note

Running innochecksum on multiple user-defined tablespace files is not
supported on Windows operating systems, as Windows shells such as
cmd.exe do not support glob pattern expansion. On Windows systems,
innochecksum must be run separately for each user-defined tablespace file.
For example:

cmd> innochecksum.exe t1.ibd
cmd> innochecksum.exe t2.ibd
cmd> innochecksum.exe t3.ibd

Running innochecksum on Multiple System Tablespace Files

By default, there is only one InnoDB system tablespace file (ibdata1) but multiple files for the system
tablespace can be defined using the innodb_data_file_path option. In the following example,
three files for the system tablespace are defined using the innodb_data_file_path option:
ibdata1, ibdata2, and ibdata3.

shell> ./bin/mysqld --no-defaults --innodb-data-file-path="ibdata1:10M;ibdata2:10M;ibdata3:10M:autoextend"

The three files (ibdata1, ibdata2, and ibdata3) form one logical system tablespace. To run
innochecksum on multiple files that form one logical system tablespace, innochecksum requires the
“-” option to read tablespace files in from standard input, which is equivalent to concatenating multiple
files to create one single file. For the example provided above, the following innochecksum command
would be used:

 shell> cat ibdata* | innochecksum -

myisam_ftdump — Display Full-Text Index information

430

Refer to the innochecksum options information for more information about the “-” option.

Note

Running innochecksum on multiple files in the same tablespace is not
supported on Windows operating systems, as Windows shells such as
cmd.exe do not support glob pattern expansion. On Windows systems,
innochecksum must be run separately for each system tablespace file. For
example:

cmd> innochecksum.exe ibdata1
cmd> innochecksum.exe ibdata2
cmd> innochecksum.exe ibdata3

4.6.2 myisam_ftdump — Display Full-Text Index information

myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the
MyISAM index file directly, so it must be run on the server host where the table is located. Before using
myisam_ftdump, be sure to issue a FLUSH TABLES statement first if the server is running.

myisam_ftdump scans and dumps the entire index, which is not particularly fast. On the other hand,
the distribution of words changes infrequently, so it need not be run often.

Invoke myisam_ftdump like this:

shell> myisam_ftdump [options] tbl_name index_num

The tbl_name argument should be the name of a MyISAM table. You can also specify a table by
naming its index file (the file with the .MYI suffix). If you do not invoke myisam_ftdump in the
directory where the table files are located, the table or index file name must be preceded by the path
name to the table's database directory. Index numbers begin with 0.

Example: Suppose that the test database contains a table named mytexttable that has the
following definition:

CREATE TABLE mytexttable
(
 id INT NOT NULL,
 txt TEXT NOT NULL,
 PRIMARY KEY (id),
 FULLTEXT (txt)
) ENGINE=MyISAM;

The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is the
test database directory, invoke myisam_ftdump as follows:

shell> myisam_ftdump mytexttable 1

If the path name to the test database directory is /usr/local/mysql/data/test, you can
also specify the table name argument using that path name. This is useful if you do not invoke
myisam_ftdump in the database directory:

shell> myisam_ftdump /usr/local/mysql/data/test/mytexttable 1

You can use myisam_ftdump to generate a list of index entries in order of frequency of occurrence
like this:

shell> myisam_ftdump -c mytexttable 1 | sort -r

myisamchk — MyISAM Table-Maintenance Utility

431

myisam_ftdump supports the following options:

• --help, -h -?

Display a help message and exit.

• --count, -c

Calculate per-word statistics (counts and global weights).

• --dump, -d

Dump the index, including data offsets and word weights.

• --length, -l

Report the length distribution.

• --stats, -s

Report global index statistics. This is the default operation if no other operation is specified.

• --verbose, -v

Verbose mode. Print more output about what the program does.

4.6.3 myisamchk — MyISAM Table-Maintenance Utility

The myisamchk utility gets information about your database tables or checks, repairs, or optimizes
them. myisamchk works with MyISAM tables (tables that have .MYD and .MYI files for storing data
and indexes).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM
tables. See Section 13.7.2.2, “CHECK TABLE Syntax”, and Section 13.7.2.5, “REPAIR TABLE
Syntax”.

The use of myisamchk with partitioned tables is not supported.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible
causes include but are not limited to file system errors.

Invoke myisamchk like this:

shell> myisamchk [options] tbl_name ...

The options specify what you want myisamchk to do. They are described in the following sections.
You can also get a list of options by invoking myisamchk --help.

With no options, myisamchk simply checks your table as the default operation. To get more
information or to tell myisamchk to take corrective action, specify options as described in the following
discussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere
other than in the database directory, you must specify the path to the database directory, because
myisamchk has no idea where the database is located. In fact, myisamchk does not actually care
whether the files you are working on are located in a database directory. You can copy the files that
correspond to a database table into some other location and perform recovery operations on them
there.

myisamchk — MyISAM Table-Maintenance Utility

432

You can name several tables on the myisamchk command line if you wish. You can also specify a
table by naming its index file (the file with the .MYI suffix). This enables you to specify all tables in a
directory by using the pattern *.MYI. For example, if you are in a database directory, you can check all
the MyISAM tables in that directory like this:

shell> myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the
directory:

shell> myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL
data directory:

shell> myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM tables is:

shell> myisamchk --silent --fast /path/to/datadir/*/*.MYI

If you want to check all MyISAM tables and repair any that are corrupted, you can use the following
command:

shell> myisamchk --silent --force --fast --update-state \
 --key_buffer_size=64M --myisam_sort_buffer_size=64M \
 --read_buffer_size=1M --write_buffer_size=1M \
 /path/to/datadir/*/*.MYI

This command assumes that you have more than 64MB free. For more information about memory
allocation with myisamchk, see Section 4.6.3.6, “myisamchk Memory Usage”.

For additional information about using myisamchk, see Section 7.6, “MyISAM Table Maintenance and
Crash Recovery”.

Important

You must ensure that no other program is using the tables while you are
running myisamchk. The most effective means of doing so is to shut down the
MySQL server while running myisamchk, or to lock all tables that myisamchk
is being used on.

Otherwise, when you run myisamchk, it may display the following error
message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by
another program (such as the mysqld server) that hasn't yet closed the file or
that has died without closing the file properly, which can sometimes lead to the
corruption of one or more MyISAM tables.

If mysqld is running, you must force it to flush any table modifications that are
still buffered in memory by using FLUSH TABLES. You should then ensure that
no one is using the tables while you are running myisamchk

However, the easiest way to avoid this problem is to use CHECK TABLE instead
of myisamchk to check tables. See Section 13.7.2.2, “CHECK TABLE Syntax”.

myisamchk — MyISAM Table-Maintenance Utility

433

myisamchk supports the following options, which can be specified on the command line or in the
[myisamchk] group of an option file. For information about option files used by MySQL programs, see
Section 4.2.6, “Using Option Files”.

Table 4.16 myisamchk Options

Format Description

--analyze Analyze the distribution of key values

--backup Make a backup of the .MYD file as file_name-time.BAK

--block-search Find the record that a block at the given offset belongs to

--check Check the table for errors

--check-only-changed Check only tables that have changed since the last check

--correct-checksum Correct the checksum information for the table

--data-file-length Maximum length of the data file (when re-creating data file when
it is full)

--debug Write debugging log

--decode_bits Decode_bits

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--description Print some descriptive information about the table

--extend-check Do very thorough table check or repair that tries to recover every
possible row from the data file

--fast Check only tables that haven't been closed properly

--force Do a repair operation automatically if myisamchk finds any errors
in the table

--force Overwrite old temporary files. For use with the -r or -o option

--ft_max_word_len Maximum word length for FULLTEXT indexes

--ft_min_word_len Minimum word length for FULLTEXT indexes

--ft_stopword_file Use stopwords from this file instead of built-in list

--HELP Display help message and exit

--help Display help message and exit

--information Print informational statistics about the table that is checked

--key_buffer_size Size of buffer used for index blocks for MyISAM tables

--keys-used A bit-value that indicates which indexes to update

--max-record-length Skip rows larger than the given length if myisamchk cannot
allocate memory to hold them

--medium-check Do a check that is faster than an --extend-check operation

--myisam_block_size Block size to be used for MyISAM index pages

--myisam_sort_buffer_size The buffer that is allocated when sorting the index when doing
a REPAIR or when creating indexes with CREATE INDEX or
ALTER TABLE

--no-defaults Read no option files

--parallel-recover Uses the same technique as -r and -n, but creates all the keys in
parallel, using different threads (beta)

--print-defaults Print default options

myisamchk — MyISAM Table-Maintenance Utility

434

Format Description

--quick Achieve a faster repair by not modifying the data file.

--read_buffer_size Each thread that does a sequential scan allocates a buffer of this
size for each table it scans

--read-only Don't mark the table as checked

--recover Do a repair that can fix almost any problem except unique keys
that aren't unique

--safe-recover Do a repair using an old recovery method that reads through
all rows in order and updates all index trees based on the rows
found

--set-auto-increment Force AUTO_INCREMENT numbering for new records to start at
the given value

--set-collation Specify the collation to use for sorting table indexes

--silent Silent mode

--sort_buffer_size The buffer that is allocated when sorting the index when doing
a REPAIR or when creating indexes with CREATE INDEX or
ALTER TABLE

--sort-index Sort the index tree blocks in high-low order

--sort_key_blocks sort_key_blocks

--sort-records Sort records according to a particular index

--sort-recover Force myisamchk to use sorting to resolve the keys even if the
temporary files would be very large

--stats_method Specifies how MyISAM index statistics collection code should
treat NULLs

--tmpdir Path of the directory to be used for storing temporary files

--unpack Unpack a table that was packed with myisampack

--update-state Store information in the .MYI file to indicate when the table was
checked and whether the table crashed

--verbose Verbose mode

--version Display version information and exit

--write_buffer_size Write buffer size

4.6.3.1 myisamchk General Options

The options described in this section can be used for any type of table maintenance operation
performed by myisamchk. The sections following this one describe options that pertain only to specific
operations, such as table checking or repairing.

• --help, -?

Display a help message and exit. Options are grouped by type of operation.

• --HELP, -H

Display a help message and exit. Options are presented in a single list.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/myisamchk.trace.

• --defaults-extra-file=file_name

myisamchk — MyISAM Table-Maintenance Utility

435

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, myisamchk normally reads the [myisamchk] group. If the --defaults-group-
suffix=_other option is given, myisamchk also reads the [myisamchk_other] group.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --print-defaults

Print the program name and all options that it gets from option files.

• --silent, -s

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myisamchk
very silent.

• --verbose, -v

Verbose mode. Print more information about what the program does. This can be used with -d and -
e. Use -v multiple times (-vv, -vvv) for even more output.

• --version, -V

Display version information and exit.

• --wait, -w

Instead of terminating with an error if the table is locked, wait until the table is unlocked before
continuing. If you are running mysqld with external locking disabled, the table can be locked only by
another myisamchk command.

You can also set the following variables by using --var_name=value syntax:

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

myisamchk — MyISAM Table-Maintenance Utility

436

Variable Default Value

myisam_sort_key_blocks 16

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

stats_method nulls_unequal

write_buffer_size 262136

The possible myisamchk variables and their default values can be examined with myisamchk --
help:

myisam_sort_buffer_size is used when the keys are repaired by sorting keys, which is
the normal case when you use --recover. sort_buffer_size is a deprecated synonym for
myisam_sort_buffer_size.

key_buffer_size is used when you are checking the table with --extend-check or when the keys
are repaired by inserting keys row by row into the table (like when doing normal inserts). Repairing
through the key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating the
key file directly. This is often the case when you have large key values for CHAR, VARCHAR, or TEXT
columns, because the sort operation needs to store the complete key values as it proceeds. If you
have lots of temporary space and you can force myisamchk to repair by sorting, you can use the --
sort-recover option.

Repairing through the key buffer takes much less disk space than using sorting, but is also much
slower.

If you want a faster repair, set the key_buffer_size and myisam_sort_buffer_size variables to
about 25% of your available memory. You can set both variables to large values, because only one of
them is used at a time.

myisam_block_size is the size used for index blocks.

stats_method influences how NULL values are treated for index statistics collection when the
--analyze option is given. It acts like the myisam_stats_method system variable. For more
information, see the description of myisam_stats_method in Section 5.1.4, “Server System
Variables”, and Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for
FULLTEXT indexes on MyISAM tables. ft_stopword_file names the stopword file. These need to
be set under the following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze),
the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum and
maximum word length and the stopword file unless you specify otherwise. This can result in queries
failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or the stopword file in the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

myisamchk — MyISAM Table-Maintenance Utility

437

To ensure that myisamchk and the server use the same values for full-text parameters, you can place
each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE
TABLE, or ALTER TABLE. These statements are performed by the server, which knows the proper full-
text parameter values to use.

4.6.3.2 myisamchk Check Options

myisamchk supports the following options for table checking operations:

• --check, -c

Check the table for errors. This is the default operation if you specify no option that selects an
operation type explicitly.

• --check-only-changed, -C

Check only tables that have changed since the last check.

• --extend-check, -e

Check the table very thoroughly. This is quite slow if the table has many indexes. This option should
only be used in extreme cases. Normally, myisamchk or myisamchk --medium-check should be
able to determine whether there are any errors in the table.

If you are using --extend-check and have plenty of memory, setting the key_buffer_size
variable to a large value helps the repair operation run faster.

See also the description of this option under table repair options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --fast, -F

Check only tables that haven't been closed properly.

• --force, -f

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is the
same as that specified with the --recover or -r option.

• --information, -i

Print informational statistics about the table that is checked.

• --medium-check, -m

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all errors,
which should be good enough in most cases.

• --read-only, -T

Do not mark the table as checked. This is useful if you use myisamchk to check a table that is in use
by some other application that does not use locking, such as mysqld when run with external locking
disabled.

myisamchk — MyISAM Table-Maintenance Utility

438

• --update-state, -U

Store information in the .MYI file to indicate when the table was checked and whether the table
crashed. This should be used to get full benefit of the --check-only-changed option, but you
shouldn't use this option if the mysqld server is using the table and you are running it with external
locking disabled.

4.6.3.3 myisamchk Repair Options

myisamchk supports the following options for table repair operations (operations performed when an
option such as --recover or --safe-recover is given):

• --backup, -B

Make a backup of the .MYD file as file_name-time.BAK

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --correct-checksum

Correct the checksum information for the table.

• --data-file-length=len, -D len

The maximum length of the data file (when re-creating data file when it is “full”).

• --extend-check, -e

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of
garbage rows. Do not use this option unless you are desperate.

See also the description of this option under table checking options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --force, -f

Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.

• --keys-used=val, -k val

For myisamchk, the option value is a bit-value that indicates which indexes to update. Each binary
bit of the option value corresponds to a table index, where the first index is bit 0. An option value of 0
disables updates to all indexes, which can be used to get faster inserts. Deactivated indexes can be
reactivated by using myisamchk -r.

• --no-symlinks, -l

Do not follow symbolic links. Normally myisamchk repairs the table that a symlink points to. This
option does not exist as of MySQL 4.0 because versions from 4.0 on do not remove symlinks during
repair operations.

• --max-record-length=len

Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.

• --parallel-recover, -p

Use the same technique as -r and -n, but create all the keys in parallel, using different threads.
This is beta-quality code. Use at your own risk!

myisamchk — MyISAM Table-Maintenance Utility

439

• --quick, -q

Achieve a faster repair by modifying only the index file, not the data file. You can specify this option
twice to force myisamchk to modify the original data file in case of duplicate keys.

• --recover, -r

Do a repair that can fix almost any problem except unique keys that are not unique (which is an
extremely unlikely error with MyISAM tables). If you want to recover a table, this is the option to try
first. You should try --safe-recover only if myisamchk reports that the table cannot be recovered
using --recover. (In the unlikely case that --recover fails, the data file remains intact.)

If you have lots of memory, you should increase the value of myisam_sort_buffer_size.

• --safe-recover, -o

Do a repair using an old recovery method that reads through all rows in order and updates all index
trees based on the rows found. This is an order of magnitude slower than --recover, but can
handle a couple of very unlikely cases that --recover cannot. This recovery method also uses
much less disk space than --recover. Normally, you should repair first using --recover, and
then with --safe-recover only if --recover fails.

If you have lots of memory, you should increase the value of key_buffer_size.

• --set-collation=name

Specify the collation to use for sorting table indexes. The character set name is implied by the first
part of the collation name.

• --sort-recover, -n

Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large.

• --tmpdir=dir_name, -t dir_name

The path of the directory to be used for storing temporary files. If this is not set, myisamchk uses
the value of the TMPDIR environment variable. --tmpdir can be set to a list of directory paths that
are used successively in round-robin fashion for creating temporary files. The separator character
between directory names is the colon (“:”) on Unix and the semicolon (“;”) on Windows.

• --unpack, -u

Unpack a table that was packed with myisampack.

4.6.3.4 Other myisamchk Options

myisamchk supports the following options for actions other than table checks and repairs:

• --analyze, -a

Analyze the distribution of key values. This improves join performance by enabling the join
optimizer to better choose the order in which to join the tables and which indexes it should use. To
obtain information about the key distribution, use a myisamchk --description --verbose
tbl_name command or the SHOW INDEX FROM tbl_name statement.

• --block-search=offset, -b offset

Find the record that a block at the given offset belongs to.

• --description, -d

Print some descriptive information about the table. Specifying the --verbose option once or twice
produces additional information. See Section 4.6.3.5, “Obtaining Table Information with myisamchk”.

myisamchk — MyISAM Table-Maintenance Utility

440

• --set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if
there are existing records with AUTO_INCREMENT values this large). If value is not specified,
AUTO_INCREMENT numbers for new records begin with the largest value currently in the table, plus
one.

• --sort-index, -S

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=N, -R N

Sort records according to a particular index. This makes your data much more localized and may
speed up range-based SELECT and ORDER BY operations that use this index. (The first time you
use this option to sort a table, it may be very slow.) To determine a table's index numbers, use SHOW
INDEX, which displays a table's indexes in the same order that myisamchk sees them. Indexes are
numbered beginning with 1.

If keys are not packed (PACK_KEYS=0), they have the same length, so when myisamchk sorts and
moves records, it just overwrites record offsets in the index. If keys are packed (PACK_KEYS=1),
myisamchk must unpack key blocks first, then re-create indexes and pack the key blocks again. (In
this case, re-creating indexes is faster than updating offsets for each index.)

4.6.3.5 Obtaining Table Information with myisamchk

To obtain a description of a MyISAM table or statistics about it, use the commands shown here. The
output from these commands is explained later in this section.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL
server with external locking disabled, myisamchk may report an error for a table that is updated
while it runs. However, because myisamchk does not change the table in describe mode, there is no
risk of destroying data.

• myisamchk -dv tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about the table.
Adding -v a second time produces even more information.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read
the entire table.

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as
described in Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Multiple tbl_name
arguments can be given.

Suppose that a table named person has the following structure. (The MAX_ROWS table option is
included so that in the example output from myisamchk shown later, some values are smaller and fit
the output format more easily.)

CREATE TABLE person

myisamchk — MyISAM Table-Maintenance Utility

441

(
 id INT NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(20) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 birth DATE,
 death DATE,
 PRIMARY KEY (id),
 INDEX (last_name, first_name),
 INDEX (birth)
) MAX_ROWS = 1000000;

Suppose also that the table has these data and index file sizes:

-rw-rw---- 1 mysql mysql 9347072 Aug 19 11:47 person.MYD
-rw-rw---- 1 mysql mysql 6066176 Aug 19 11:47 person.MYI

Example of myisamchk -dvv output:

MyISAM file: person
Record format: Packed
Character set: latin1_swedish_ci (8)
File-version: 1
Creation time: 2009-08-19 16:47:41
Recover time: 2009-08-19 16:47:56
Status: checked,analyzed,optimized keys
Auto increment key: 1 Last value: 306688
Data records: 306688 Deleted blocks: 0
Datafile parts: 306688 Deleted data: 0
Datafile pointer (bytes): 4 Keyfile pointer (bytes): 3
Datafile length: 9347072 Keyfile length: 6066176
Max datafile length: 4294967294 Max keyfile length: 17179868159
Recordlength: 54

table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 4 unique long 1 99328 1024
2 6 20 multip. varchar prefix 512 3563520 1024
 27 20 varchar 512
3 48 3 multip. uint24 NULL 306688 6065152 1024

Field Start Length Nullpos Nullbit Type
1 1 1
2 2 4 no zeros
3 6 21 varchar
4 27 21 varchar
5 48 3 1 1 no zeros
6 51 3 1 2 no zeros

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the
index file. “Record” and “row” are synonymous, as are “field” and “column.”

The initial part of the table description contains these values:

• MyISAM file

Name of the MyISAM (index) file.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible
values are Compressed and Packed. (Packed corresponds to what SHOW TABLE STATUS reports
as Dynamic.)

• Chararacter set

The table default character set.

myisamchk — MyISAM Table-Maintenance Utility

442

• File-version

Version of MyISAM format. Always 1.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Status

Table status flags. Possible values are crashed, open, changed, analyzed, optimized keys,
and sorted index pages.

• Auto increment key, Last value

The key number associated the table's AUTO_INCREMENT column, and the most recently generated
value for this column. These fields do not appear if there is no such column.

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table
without fragmented rows, this is the same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with
2 bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a row address. For
dynamic tables, this is a byte address.

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2
bytes, but this is calculated automatically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each row takes, in bytes.

myisamchk — MyISAM Table-Maintenance Utility

443

The table description part of the output includes a list of all keys in the table. For each key,
myisamchk displays some low-level information:

• Key

This key's number. This value is shown only for the first column of the key. If this value is missing,
the line corresponds to the second or later column of a multiple-column key. For the table shown in
the example, there are two table description lines for the second index. This indicates that it is
a multiple-part index with two parts.

• Start

Where in the row this portion of the index starts.

• Len

How long this portion of the index is. For packed numbers, this should always be the full length of the
column. For strings, it may be shorter than the full length of the indexed column, because you can
index a prefix of a string column. The total length of a multiple-part key is the sum of the Len values
for all key parts.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or multip.
(multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values
packed, stripped, or empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile time
when MySQL is built from source.

• Rec/key

This is a statistical value used by the optimizer. It tells how many rows there are per value for this
index. A unique index always has a value of 1. This may be updated after a table is loaded (or
greatly changed) with myisamchk -a. If this is not updated at all, a default value of 30 is given.

The last part of the output provides information about each column:

• Field

The column number.

• Start

The byte position of the column within table rows.

• Length

The length of the column in bytes.

• Nullpos, Nullbit

For columns that can be NULL, MyISAM stores NULL values as a flag in a byte. Depending on
how many nullable columns there are, there can be one or more bytes used for this purpose. The

myisamchk — MyISAM Table-Maintenance Utility

444

Nullpos and Nullbit values, if nonempty, indicate which byte and bit contains that flag indicating
whether the column is NULL.

The position and number of bytes used to store NULL flags is shown in the line for field 1. This is why
there are six Field lines for the person table even though it has only five columns.

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

The Huff tree and Bits fields are displayed if the table has been compressed with myisampack.
See Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”, for an
example of this information.

Example of myisamchk -eiv output:

Checking MyISAM file: person
Data records: 306688 Deleted blocks: 0
- check file-size
- check record delete-chain
No recordlinks
- check key delete-chain
block_size 1024:

myisamchk — MyISAM Table-Maintenance Utility

445

- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 98% Packed: 0% Max levels: 3
- check data record references index: 2
Key: 2: Keyblocks used: 99% Packed: 97% Max levels: 3
- check data record references index: 3
Key: 3: Keyblocks used: 98% Packed: -14% Max levels: 3
Total: Keyblocks used: 98% Packed: 89%

- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***

Records: 306688 M.recordlength: 25 Packed: 83%
Recordspace used: 97% Empty space: 2% Blocks/Record: 1.00
Record blocks: 306688 Delete blocks: 0
Record data: 7934464 Deleted data: 0
Lost space: 256512 Linkdata: 1156096

User time 43.08, System time 1.68
Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 0, Physical pagefaults 0, Swaps 0
Blocks in 0 out 7, Messages in 0 out 0, Signals 0
Voluntary context switches 0, Involuntary context switches 0
Maximum memory usage: 1046926 bytes (1023k)

myisamchk -eiv output includes the following information:

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Key

The key number.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with
myisamchk, the values are very high (very near theoretical maximum).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on
CHAR and VARCHAR columns. For long indexed strings that have similar leftmost parts, this can
significantly reduce the space used. In the preceding example, the second key is 40 bytes long and a
97% reduction in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all
rows have the same length.

• Packed

myisamchk — MyISAM Table-Maintenance Utility

446

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings
achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record

Average number of blocks per row (that is, how many links a fragmented row is composed of). This
is always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible. If it gets too
large, you can reorganize the table. See Section 7.6.4, “MyISAM Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in
bytes.

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each).
Linkdata is the sum of the amount of storage used by all such pointers.

4.6.3.6 myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory than
its memory-related variables are set to. If you are going to use myisamchk on very large tables, you
should first decide how much memory you want it to use. The default is to use only about 3MB to
perform repairs. By using larger values, you can get myisamchk to operate faster. For example, if you
have more than 512MB RAM available, you could use options such as these (in addition to any other
options you might specify):

shell> myisamchk --myisam_sort_buffer_size=256M \
 --key_buffer_size=512M \
 --read_buffer_size=64M \
 --write_buffer_size=64M ...

Using --myisam_sort_buffer_size=16M is probably enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory file system,
out of memory errors can easily occur. If this happens, run myisamchk with the --tmpdir=dir_name
option to specify a directory located on a file system that has more space.

myisamlog — Display MyISAM Log File Contents

447

When performing repair operations, myisamchk also needs a lot of disk space:

• Twice the size of the data file (the original file and a copy). This space is not needed if you do a
repair with --quick; in this case, only the index file is re-created. This space must be available on
the same file system as the original data file, as the copy is created in the same directory as the
original.

• Space for the new index file that replaces the old one. The old index file is truncated at the start of
the repair operation, so you usually ignore this space. This space must be available on the same file
system as the original data file.

• When using --recover or --sort-recover (but not when using --safe-recover), you need
space on disk for sorting. This space is allocated in the temporary directory (specified by TMPDIR or
--tmpdir=dir_name). The following formula yields the amount of space required:

(largest_key + row_pointer_length) * number_of_rows * 2

You can check the length of the keys and the row_pointer_length with myisamchk -
dv tbl_name (see Section 4.6.3.5, “Obtaining Table Information with myisamchk”). The
row_pointer_length and number_of_rows values are the Datafile pointer and Data
records values in the table description. To determine the largest_key value, check the Key
lines in the table description. The Len column indicates the number of bytes for each key part. For a
multiple-column index, the key size is the sum of the Len values for all key parts.

If you have a problem with disk space during repair, you can try --safe-recover instead of --
recover.

4.6.4 myisamlog — Display MyISAM Log File Contents

myisamlog processes the contents of a MyISAM log file. To create such a file, start the server with a
--log-isam=log_file option.

Invoke myisamlog like this:

shell> myisamlog [options] [file_name [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates
and deletes are done and errors are only counted. The default log file name is myisam.log if no
log_file argument is given. If tables are named on the command line, only those tables are updated.

myisamlog supports the following options:

• -?, -I

Display a help message and exit.

• -c N

Execute only N commands.

• -f N

Specify the maximum number of open files.

• -i

Display extra information before exiting.

• -o offset

Specify the starting offset.

myisampack — Generate Compressed, Read-Only MyISAM Tables

448

• -p N

Remove N components from path.

• -r

Perform a recovery operation.

• -R record_pos_file record_pos

Specify record position file and record position.

• -u

Perform an update operation.

• -v

Verbose mode. Print more output about what the program does. This option can be given multiple
times to produce more and more output.

• -w write_file

Specify the write file.

• -V

Display version information.

4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables

The myisampack utility compresses MyISAM tables. myisampack works by compressing each column
in the table separately. Usually, myisampack packs the data file 40% to 70%.

When the table is used later, the server reads into memory the information needed to decompress
columns. This results in much better performance when accessing individual rows, because you only
have to uncompress exactly one row.

MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap()
does not work, MySQL falls back to normal read/write file operations.

Please note the following:

• If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke
myisampack if the table might be updated by the server during the packing process. It is safest to
compress tables with the server stopped.

• After packing a table, it becomes read only. This is generally intended (such as when accessing
packed tables on a CD).

• myisampack does not support partitioned tables.

Invoke myisampack like this:

shell> myisampack [options] file_name ...

Each file name argument should be the name of an index (.MYI) file. If you are not in the database
directory, you should specify the path name to the file. It is permissible to omit the .MYI extension.

After you compress a table with myisampack, use myisamchk -rq to rebuild its indexes.
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

myisampack — Generate Compressed, Read-Only MyISAM Tables

449

myisampack supports the following options. It also reads option files and supports the options for
processing them described at Section 4.2.7, “Command-Line Options that Affect Option-File Handling”.

• --help, -?

Display a help message and exit.

• --backup, -b

Make a backup of each table's data file using the name tbl_name.OLD.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

• --force, -f

Produce a packed table even if it becomes larger than the original or if the intermediate file from
an earlier invocation of myisampack exists. (myisampack creates an intermediate file named
tbl_name.TMD in the database directory while it compresses the table. If you kill myisampack,
the .TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that
tbl_name.TMD exists. With --force, myisampack packs the table anyway.

• --join=big_tbl_name, -j big_tbl_name

Join all tables named on the command line into a single packed table big_tbl_name. All tables that
are to be combined must have identical structure (same column names and types, same indexes,
and so forth).

big_tbl_name must not exist prior to the join operation. All source tables named on the command
line to be merged into big_tbl_name must exist. The source tables are read for the join operation
but not modified.

• --silent, -s

Silent mode. Write output only when errors occur.

• --test, -t

Do not actually pack the table, just test packing it.

• --tmpdir=dir_name, -T dir_name

Use the named directory as the location where myisampack creates temporary files.

• --verbose, -v

Verbose mode. Write information about the progress of the packing operation and its result.

• --version, -V

Display version information and exit.

• --wait, -w

Wait and retry if the table is in use. If the mysqld server was invoked with external locking disabled,
it is not a good idea to invoke myisampack if the table might be updated by the server during the
packing process.

myisampack — Generate Compressed, Read-Only MyISAM Tables

450

The following sequence of commands illustrates a typical table compression session:

shell> ls -l station.*
-rw-rw-r-- 1 monty my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834
Record format: Fixed length

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1

Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1
5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20

myisampack — Generate Compressed, Read-Only MyISAM Tables

451

45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4

shell> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics

normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables

shell> myisamchk -rq station
- check record delete-chain
- recovering (with sort) MyISAM-table 'station'
Data records: 1192
- Fixing index 1
- Fixing index 2

shell> mysqladmin -uroot flush-tables

shell> ls -l station.*
-rw-rw-r-- 1 monty my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1

Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9

myisampack — Generate Compressed, Read-Only MyISAM Tables

452

15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces. These occupy one bit.

• empty-zero

The number of columns containing values that are only binary zeros. These occupy one bit.

• empty-fill

The number of integer columns that do not occupy the full byte range of their type. These are
changed to a smaller type. For example, a BIGINT column (eight bytes) can be stored as a
TINYINT column (one byte) if all its values are in the range from -128 to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value
contains a count for the number of leading spaces.

myisampack — Generate Compressed, Read-Only MyISAM Tables

453

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a count
for the number of trailing spaces.

• table-lookup

The column had only a small number of different values, which were converted to an ENUM before
Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, the Field lines displayed by myisamchk -dvv include additional
information about each column:

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

mysql_config_editor — MySQL Configuration Utility

454

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, use myisamchk to re-create any indexes. At this time, you can also sort
the index blocks and create statistics needed for the MySQL optimizer to work more efficiently:

shell> myisamchk -rq --sort-index --analyze tbl_name.MYI

After you have installed the packed table into the MySQL database directory, you should execute
mysqladmin flush-tables to force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk.

4.6.6 mysql_config_editor — MySQL Configuration Utility

The mysql_config_editor utility enables you to store authentication credentials in an encrypted
login path file named .mylogin.cnf. The file location is the %APPDATA%\MySQL directory on
Windows and the current user's home directory on non-Windows systems. The file can be read later by
MySQL client programs to obtain authentication credentials for connecting to MySQL Server.

The unencrypted format of the .mylogin.cnf login path file consists of option groups, similar to other
option files. Each option group in .mylogin.cnf is called a “login path,” which is a group that permits
only certain options: host, user, password, port and socket. Think of a login path option group as
a set of options that specify which MySQL server to connect to and which account to authenticate as.
Here is an unencrypted example:

[client]
user = mydefaultname
password = mydefaultpass
host = 127.0.0.1
[mypath]
user = myothername
password = myotherpass
host = localhost

When you invoke a client program to connect to the server, the client uses .mylogin.cnf in
conjunction with other option files. Its precedence is higher than other option files, but less than options
specified explicitly on the client command line. For information about the order in which option files are
used, see Section 4.2.6, “Using Option Files”.

To specify an alternate login path file name, set the MYSQL_TEST_LOGIN_FILE environment
variable. This variable is recognized by mysql_config_editor, by standard MySQL clients (mysql,
mysqladmin, and so forth), and by the mysql-test-run.pl testing utility.

Programs use groups in the login path file as follows:

• mysql_config_editor operates on the client login path by default if you specify no --login-
path=name option to indicate explicitly which login path to use.

• Without a --login-path option, client programs read the same option groups from the login path
file that they read from other option files. Consider this command:

shell> mysql

By default, the mysql client reads the [client] and [mysql] groups from other option files, so it
reads them from the login path file as well.

• With a --login-path option, client programs additionally read the named login path from the login
path ile. The option groups read from other option files remain the same. Consider this command:

mysql_config_editor — MySQL Configuration Utility

455

shell> mysql --login-path=mypath

The mysql client reads [client] and [mysql] from other option files, and [client], [mysql],
and [mypath] from the login path file.

• Client programs read the login path file even when the --no-defaults option is used. This permits
passwords to be specified in a safer way than on the command line even if --no-defaults is
present.

mysql_config_editor encrypts the .mylogin.cnf file so it cannot be read as cleartext, and its
contents when decrypted by client programs are used only in memory. In this way, passwords can
be stored in a file in non-cleartext format and used later without ever needing to be exposed on the
command line or in an environment variable. mysql_config_editor provides a print command for
displaying the login path file contents, but even in this case, password values are masked so as never
to appear in a way that other users can see them.

The encryption used by mysql_config_editor prevents passwords from appearing in
.mylogin.cnf as cleartext and provides a measure of security by preventing inadvertent password
exposure. For example, if you display a regular unencrypted my.cnf option file on the screen, any
passwords it contains are visible for anyone to see. With .mylogin.cnf, that is not true. But the
encryption used will not deter a determined attacker and you should not consider it unbreakable. A user
who can gain system administration privileges on your machine to access your files could decrypt the
.mylogin.cnf file with some effort.

The login path file must be readable and writable to the current user, and inaccessible to other users.
Otherwise, mysql_config_editor ignores it, and client programs do not use it, either.

Invoke mysql_config_editor like this:

shell> mysql_config_editor [program_options] command [command_options]

If the login path file does not exist, mysql_config_editor creates it.

Command arguments are given as follows:

• program_options consists of general mysql_config_editor options.

• command indicates what action to perform on the .mylogin.cnf login path file. For example, set
writes a login path to the file, remove removes a login path, and print displays login path contents.

• command_options indicates any additional options specific to the command, such as the login path
name and the values to use in the login path.

The position of the command name within the set of program arguments is significant. For example,
these command lines have the same arguments, but produce different results:

shell> mysql_config_editor --help set
shell> mysql_config_editor set --help

The first command line displays a general mysql_config_editor help message, and ignores the
set command. The second command line displays a help message specific to the set command.

Suppose that you want to establish a client login path that defines your default connection
parameters, and an additional login path named remote for connecting to the MySQL server the host
remote.example.com. You want to log in as follows:

• By default, to the local server with a user name and password of localuser and localpass

• To the remote server with a user name and password of remoteuser and remotepass

mysql_config_editor — MySQL Configuration Utility

456

To set up the login paths in the .mylogin.cnf file, use the following set commands. Enter each
command on a single line, and enter the appropriate passwords when prompted:

shell> mysql_config_editor set --login-path=client
 --host=localhost --user=localuser --password
Enter password: enter password "localpass" here
shell> mysql_config_editor set --login-path=remote
 --host=remote.example.com --user=remoteuser --password
Enter password: enter password "remotepass" here

mysql_config_editor uses the client login path by default, so the --login-path=client
option can be omitted from the first command without changing its effect.

To see what mysql_config_editor writes to the .mylogin.cnf file, use the print command:

shell> mysql_config_editor print --all
[client]
user = localuser
password = *****
host = localhost
[remote]
user = remoteuser
password = *****
host = remote.example.com

The print command displays each login path as a set of lines beginning with a group header
indicating the login path name in square brackets, followed by the option values for the login path.
Password values are masked and do not appear as cleartext.

If you do not specify --all to display all login paths or --login-path=name to display a named
login path, the print command displays the client login path by default, if there is one.

As shown by the preceding example, the login path file can contain multiple login paths. In this way,
mysql_config_editor makes it easy to set up multiple “personalities” for connecting to different
MySQL servers, or for connecting to a given server using different accounts. Any of these can be
selected by name later using the --login-path option when you invoke a client program. For
example, to connect to the remote server, use this command:

shell> mysql --login-path=remote

Here, mysql reads the [client] and [mysql] option groups from other option files, and the
[client], [mysql], and [remote] groups from the login path file.

To connect to the local server, use this command:

shell> mysql --login-path=client

Because mysql reads the client and mysql login paths by default, the --login-path option does
not add anything in this case. That command is equivalent to this one:

shell> mysql

Options read from the login path file take precedence over options read from other option files. Options
read from login path groups appearing later in the login path file take precedence over options read
from groups appearing earlier in the file.

mysql_config_editor adds login paths to the login path file in the order you create them, so you
should create more general login paths first and more specific paths later. If you need to move a login
path within the file, you can remove it, then recreate it to add it to the end.

When you use the set command with mysql_config_editor to create a login path, you need
not specify all possible option values (host name, user name, password, port, socket). Only those

mysql_config_editor — MySQL Configuration Utility

457

values given are written to the path. Any missing values required later can be specified when you
invoke a client path to connect to the MySQL server, either in other option files or on the command
line. Any options specified on the command line override those specified in the login path file or
other option files. For example, if the credentials in the remote login path also apply for the host
remote2.example.com, connect to the server on that host like this:

shell> mysql --login-path=remote --host=remote2.example.com

mysql_config_editor General Options

mysql_config_editor supports the following general options, which may be used preceding
any command named on the command line. For descriptions of command-specific options, see
mysql_config_editor Commands and Command-Specific Options.

Table 4.17 mysql_config_editor General Options

Format Description

--debug Write debugging log

--help Display help message and exit

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a general help message and exit.

To see a command-specific help message, invoke mysql_config_editor as follows, where
command is a command other than help:

shell> mysql_config_editor command --help

• --debug[=debug_options], -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysql_config_editor.trace.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option may be helpful in
diagnosing problems if an operation does not have the effect you expect.

• --version, -V

Display version information and exit.

mysql_config_editor Commands and Command-Specific Options

This section describes the permitted mysql_config_editor commands, and, for each one, the
command-specific options permitted following the command name on the command line.

In addition, mysql_config_editor supports general options that can be used preceding any
command. For descriptions of these options, see mysql_config_editor General Options.

mysql_config_editor supports these commands:

• help

Display a general help message and exit. This command takes no following options.

mysql_config_editor — MySQL Configuration Utility

458

To see a command-specific help message, invoke mysql_config_editor as follows, where
command is a command other than help:

shell> mysql_config_editor command --help

• print [options]

Print the contents of the login path file in unencrypted form, with the exception that passwords are
displayed as *****.

The default login path name is client if no login path is named. If both --all and --login-path
are given, --all takes precedence.

The print command permits these options following the command name:

• --help, -?

Display a help message for the print command and exit.

To see a general help message, use mysql_config_editor --help.

• --all

Print the contents of all login paths in the login path file.

• --login-path=name, -G name

Print the contents of the named login path.

• remove [options]

Remove a login path from the login path file, or modify a login path by removing options from it.

This command removes from the login path only such options as are specified with the --host, --
password, --port, --socket, and --user options. If none of those options are given, remove
removes the entire login path. For example, this command removes only the user option from the
mypath login path rather than the entire mypath login path:

shell> mysql_config_editor remove --login-path=mypath --user

This command removes the entire mypath login path:

shell> mysql_config_editor remove --login-path=mypath

The remove command permits these options following the command name:

• --help, -?

Display a help message for the remove command and exit.

To see a general help message, use mysql_config_editor --help.

• --host, -h

Remove the host name from the login path.

• --login-path=name, -G name

The login path to remove or modify. The default login path name is client if this option is not
given.

mysql_config_editor — MySQL Configuration Utility

459

• --password, -p

Remove the password from the login path.

• --port, -P

Remove the TCP/IP port number from the login path. This option was added in MySQL 5.7.1.

• --socket, -S

Remove the Unix socket file name from the login path. This option was added in MySQL 5.7.1.

• --user, -u

Remove the user name from the login path.

• --warn, -w

Warn and prompt the user for confirmation if the command attempts to remove the default login
path (client) and --login-path=client was not specified. This option is enabled by default;
use --skip-warn to disable it.

• reset [options]

Empty the contents of the login path file.

The reset command permits these options following the command name:

• --help, -?

Display a help message for the reset command and exit.

To see a general help message, use mysql_config_editor --help.

• set [options]

Write a login path to the login path file.

This command writes to the login path only such options as are specified with the --host,
--password, --port, --socket, and --user options. If none of those options are given,
mysql_config_editor writes the login path as an empty group.

The set command permits these options following the command name:

• --help, -?

Display a help message for the set command and exit.

To see a general help message, use mysql_config_editor --help.

• --host=host_name, -h host_name

The host name to write to the login path.

• --login-path=name, -G name

The login path to create. The default login path name is client if this option is not given.

• --password, -p

mysqlbinlog — Utility for Processing Binary Log Files

460

Prompt for a password to write to the login path. After mysql_config_editor displays the
prompt, type the password and press Enter. To prevent other users from seeing the password,
mysql_config_editor does not echo it.

To specify an empty password, press Enter at the password prompt. The resulting login path
written to the login path file will include a line like this:

password =

• --port=port_num, -P port_num

The TCP/IP port number to write to the login path. This option was added in MySQL 5.7.1.

• --socket=file_name, -S file_name

The Unix socket file name to write to the login path. This option was added in MySQL 5.7.1.

• --user=user_name, -u user_name

The user name to write to the login path.

• --warn, -w

Warn and prompt the user for confirmation if the command attempts to overwrite an existing login
path. This option is enabled by default; use --skip-warn to disable it.

4.6.7 mysqlbinlog — Utility for Processing Binary Log Files

The server's binary log consists of files containing “events” that describe modifications to database
contents. The server writes these files in binary format. To display their contents in text format, use the
mysqlbinlog utility. You can also use mysqlbinlog to display the contents of relay log files written
by a slave server in a replication setup because relay logs have the same format as binary logs. The
binary log and relay log are discussed further in Section 5.2.4, “The Binary Log”, and Section 17.2.4,
“Replication Relay and Status Logs”.

Invoke mysqlbinlog like this:

shell> mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this command:

shell> mysqlbinlog binlog.0000003

The output includes events contained in binlog.000003. For statement-based logging, event
information includes the SQL statement, the ID of the server on which it was executed, the timestamp
when the statement was executed, how much time it took, and so forth. For row-based logging,
the event indicates a row change rather than an SQL statement. See Section 17.2.1, “Replication
Formats”, for information about logging modes.

Events are preceded by header comments that provide additional information. For example:

at 141
#100309 9:28:36 server id 123 end_log_pos 245
 Query thread_id=3350 exec_time=11 error_code=0

In the first line, the number following at indicates the file offset, or starting position, of the event in the
binary log file.

The second line starts with a date and time indicating when the statement started on the server where
the event originated. For replication, this timestamp is propagated to slave servers. server id is

mysqlbinlog — Utility for Processing Binary Log Files

461

the server_id value of the server where the event originated. end_log_pos indicates where the
next event starts (that is, it is the end position of the current event + 1). thread_id indicates which
thread executed the event. exec_time is the time spent executing the event, on a master server. On
a slave, it is the difference of the end execution time on the slave minus the beginning execution time
on the master. The difference serves as an indicator of how much replication lags behind the master.
error_code indicates the result from executing the event. Zero means that no error occurred.

Note

When using event groups, the file offsets of events may be grouped together
and the comments of events may be grouped together. Do not mistake these
grouped events for blank file offsets.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql) to redo
the statements in the log. This is useful for recovery operations after a server crash. For other usage
examples, see the discussion later in this section and in Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Normally, you use mysqlbinlog to read binary log files directly and apply them to the local MySQL
server. It is also possible to read binary logs from a remote server by using the --read-from-
remote-server option. To read remote binary logs, the connection parameter options can be given
to indicate how to connect to the server. These options are --host, --password, --port, --
protocol, --socket, and --user; they are ignored except when you also use the --read-from-
remote-server option.

When running mysqlbinlog against a large binary log, be careful that the filesystem has enough
space for the resulting files. To configure the directory that mysqlbinlog uses for temporary files, use
the TMPDIR environment variable.

mysqlbinlog supports the following options, which can be specified on the command line or in the
[mysqlbinlog] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.18 mysqlbinlog Options

Format Description IntroducedDeprecated

--base64-output Print binary log entries using base-64 encoding

--bind-address Use specified network interface to connect to
MySQL Server

--binlog-row-event-max-
size

Binary log max event size

--character-sets-dir Directory where character sets are installed

--connection-server-id Used for testing and debugging. See text for
applicable default values and other particulars.

5.7.5

--database List entries for just this database

--debug Write debugging log

--debug-check Print debugging information when program exits

--debug-info Print debugging information, memory, and CPU
statistics when program exits

--default-auth Authentication plugin to use

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--disable-log-bin Disable binary logging

mysqlbinlog — Utility for Processing Binary Log Files

462

Format Description IntroducedDeprecated

--exclude-gtids Do not show any of the groups in the GTID set
provided

--force-if-open Read binary log files even if open or not closed
properly

--force-read If mysqlbinlog reads a binary log event that it does
not recognize, it prints a warning

--help Display help message and exit

--hexdump Display a hex dump of the log in comments

--host Connect to MySQL server on given host

--idempotent Cause the server to use idempotent mode while
processing binary log updates from this session
only

5.7.0

--include-gtids Show only the groups in the GTID set provided

--local-load Prepare local temporary files for LOAD DATA
INFILE in the specified directory

--login-path Read login path options from .mylogin.cnf

--no-defaults Read no option files

--offset Skip the first N entries in the log

--password Password to use when connecting to server

--plugin-dir Directory where plugins are installed

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--raw Write events in raw (binary) format to output files

--read-from-remote-master Read the binary log from a MySQL master rather
than reading a local log file

--read-from-remote-server Read binary log from MySQL server rather than
local log file

--result-file Direct output to named file

--rewrite-db Create rewrite rules for databases when playing
back from logs written in row-based format. Can be
used multiple times.

5.7.1

--secure-auth Do not send passwords to server in old (pre-4.1)
format

5.7.4 5.7.5

--server-id Extract only those events created by the server
having the given server ID

--server-id-bits Tell mysqlbinlog how to interpret server IDs in
binary log when log was written by a mysqld
having its server-id-bits set to less than the
maximum; supported only by MySQL Cluster
version of mysqlbinlog

--set-charset Add a SET NAMES charset_name statement to
the output

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

--short-form Display only the statements contained in the log

mysqlbinlog — Utility for Processing Binary Log Files

463

Format Description IntroducedDeprecated

--skip-gtids Do not print any GTIDs; use this when writing a
dump file from binary logs containing GTIDs.

--socket For connections to localhost, the Unix socket file to
use

--ssl Enable SSL for connection 5.7.3

--ssl-ca Path of file that contains list of trusted SSL CAs 5.7.3

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

5.7.3

--ssl-cert Path of file that contains X509 certificate in PEM
format

5.7.3

--ssl-cipher List of permitted ciphers to use for SSL encryption 5.7.3

--ssl-crl Path of file that contains certificate revocation lists

--ssl-crlpath Path of directory that contains certificate
revocation list files

--ssl-key Path of file that contains X509 key in PEM format 5.7.3

--ssl-verify-server-cert Verify Common Name value in server certificate
against host name used when connecting to server

5.7.3

--start-datetime Read binary log from first event with timestamp
equal to or later than datetime argument

--start-position Read binary log from first event with position equal
to or greater than argument

--stop-datetime Stop reading binary log at first event with
timestamp equal to or greater than datetime
argument

--stop-never Stay connected to server after reading last binary
log file

--stop-never-slave-server-
id

Slave server ID to report when connecting to
server

--stop-position Stop reading binary log at first event with position
equal to or greater than argument

--tls-version Protocols permitted for encrypted connections 5.7.10

--to-last-log Do not stop at the end of requested binary log from
a MySQL server, but rather continue printing to
end of last binary log

--user MySQL user name to use when connecting to
server

--verbose Reconstruct row events as SQL statements

--verify-binlog-checksum Verify checksums in binary log

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --base64-output=value

This option determines when events should be displayed encoded as base-64 strings using BINLOG
statements. The option has these permissible values (not case sensitive):

mysqlbinlog — Utility for Processing Binary Log Files

464

• AUTO ("automatic") or UNSPEC ("unspecified") displays BINLOG statements automatically when
necessary (that is, for format description events and row events). If no --base64-output option
is given, the effect is the same as --base64-output=AUTO.

Note

Automatic BINLOG display is the only safe behavior if you intend to use the
output of mysqlbinlog to re-execute binary log file contents. The other
option values are intended only for debugging or testing purposes because
they may produce output that does not include all events in executable
form.

• NEVER causes BINLOG statements not to be displayed. mysqlbinlog exits with an error if a row
event is found that must be displayed using BINLOG.

• DECODE-ROWS specifies to mysqlbinlog that you intend for row events to be decoded and
displayed as commented SQL statements by also specifying the --verbose option. Like NEVER,
DECODE-ROWS suppresses display of BINLOG statements, but unlike NEVER, it does not exit with
an error if a row event is found.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.7.2, “mysqlbinlog Row Event Display”.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Type numeric

Default 4294967040

Min
Value

256

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 4GB.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --connection-server-id=server_id

This option is used to test a MySQL server for support of the BINLOG_DUMP_NON_BLOCK connection
flag, which was inadvertently removed in MySQL 5.6.5, and restored in MySQL 5.7.5 (Bug
#18000079, Bug #71178). It is not required for normal operations.

The effective default and minimum values for this option depend on whether mysqlbinlog is run in
blocking mode or non-blocking mode. When mysqlbinlog is run in blocking mode, the default (and
minimum) value is 1; when run in non-blocking mode, the default (and minimum) value is 0.

This option was added in MySQL 5.7.5

• --database=db_name, -d db_name

mysqlbinlog — Utility for Processing Binary Log Files

465

This option causes mysqlbinlog to output entries from the binary log (local log only) that occur
while db_name is been selected as the default database by USE.

The --database option for mysqlbinlog is similar to the --binlog-do-db option for mysqld,
but can be used to specify only one database. If --database is given multiple times, only the last
instance is used.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --binlog-do-db depend on whether statement-based or
row-based logging is in use.

Statement-based logging. The --database option works as follows:

• While db_name is the default database, statements are output whether they modify tables in
db_name or a different database.

• Unless db_name is selected as the default database, statements are not output, even if they
modify tables in db_name.

• There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE. The
database being created, altered, or dropped is considered to be the default database when
determining whether to output the statement.

Suppose that the binary log was created by executing these statements using statement-based-
logging:

INSERT INTO test.t1 (i) VALUES(100);
INSERT INTO db2.t2 (j) VALUES(200);
USE test;
INSERT INTO test.t1 (i) VALUES(101);
INSERT INTO t1 (i) VALUES(102);
INSERT INTO db2.t2 (j) VALUES(201);
USE db2;
INSERT INTO test.t1 (i) VALUES(103);
INSERT INTO db2.t2 (j) VALUES(202);
INSERT INTO t2 (j) VALUES(203);

mysqlbinlog --database=test does not output the first two INSERT statements because there
is no default database. It outputs the three INSERT statements following USE test, but not the
three INSERT statements following USE db2.

mysqlbinlog --database=db2 does not output the first two INSERT statements because there
is no default database. It does not output the three INSERT statements following USE test, but
does output the three INSERT statements following USE db2.

Row-based logging. mysqlbinlog outputs only entries that change tables belonging to
db_name. The default database has no effect on this. Suppose that the binary log just described
was created using row-based logging rather than statement-based logging. mysqlbinlog --
database=test outputs only those entries that modify t1 in the test database, regardless of
whether USE was issued or what the default database is.

If a server is running with binlog_format set to MIXED and you want it to be possible to use
mysqlbinlog with the --database option, you must ensure that tables that are modified are in the
database selected by USE. (In particular, no cross-database updates should be used.)

Prior to MySQL 5.7.1, the --database option did not work correctly with a log written by a GTID-
enabled MySQL server. (Bug #15912728)

mysqlbinlog — Utility for Processing Binary Log Files

466

When used together with the --rewrite-db option (available in MySQL 5.7.1 and later), the --
rewrite-db option is applied first; then the --database option is applied, using the rewritten
database name. The order in which the options are provided makes no difference in this regard.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqlbinlog.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.8, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqlbinlog normally reads the [client] and [mysqlbinlog] groups.
If the --defaults-group-suffix=_other option is given, mysqlbinlog also reads the
[client_other] and [mysqlbinlog_other] groups.

• --disable-log-bin, -D

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-
log option and are sending the output to the same MySQL server. This option also is useful when
restoring after a crash to avoid duplication of the statements you have logged.

This option requires that you have the SUPER privilege. It causes mysqlbinlog to include a SET
sql_log_bin = 0 statement in its output to disable binary logging of the remaining output. The
SET statement is ineffective unless you have the SUPER privilege.

• --exclude-gtids=gtid_set

Do not display any of the groups listed in the gtid_set.

• --force-if-open, -F

Read binary log files even if they are open or were not closed properly.

• --force-read, -f

mysqlbinlog — Utility for Processing Binary Log Files

467

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a
warning, ignores the event, and continues. Without this option, mysqlbinlog stops if it reads such
an event.

• --hexdump, -H

Display a hex dump of the log in comments, as described in Section 4.6.7.1, “mysqlbinlog Hex Dump
Format”. The hex output can be helpful for replication debugging.

• --host=host_name, -h host_name

Get the binary log from the MySQL server on the given host.

• --idempotent

Tell the MySQL Server to use idempotent mode while processing updates; this causes suppression
of any duplicate-key or key-not-found errors that the server encounters in the current session while
processing updates. This option may prove useful whenever it is desirable or necessary to replay
one or more binary logs to a MySQL Server which may not contain all of the data to which the logs
refer.

The scope of effect for this option includes the current mysqlbinlog client and session only.

The --idempotent option was introduced in MySQL 5.7.0.

• --include-gtids=gtid_set

Display only the groups listed in the gtid_set.

• --local-load=dir_name, -l dir_name

Prepare local temporary files for LOAD DATA INFILE in the specified directory.

Important

These temporary files are not automatically removed by mysqlbinlog or
any other MySQL program.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --offset=N, -o N

Skip the first N entries in the log.

• --password[=password], -p[password]

mysqlbinlog — Utility for Processing Binary Log Files

468

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlbinlog prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlbinlog does not find it. See Section 6.3.8, “Pluggable
Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for connecting to a remote server.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --raw

By default, mysqlbinlog reads binary log files and writes events in text format. The --raw option
tells mysqlbinlog to write them in their original binary format. Its use requires that --read-from-
remote-server also be used because the files are requested from a server. mysqlbinlog writes
one output file for each file read from the server. The --raw option can be used to make a backup
of a server's binary log. With the --stop-never option, the backup is “live” because mysqlbinlog
stays connected to the server. By default, output files are written in the current directory with the
same names as the original log files. Output file names can be modified using the --result-file
option. For more information, see Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”.

• --read-from-remote-master=type

Read binary logs from a MySQL server with the COM_BINLOG_DUMP or COM_BINLOG_DUMP_GTID
commands by setting the option value to either BINLOG-DUMP-NON-GTIDS or BINLOG-DUMP-
GTIDS, respectively. If --read-from-remote-master=BINLOG-DUMP-GTIDS is combined with
--exclude-gtids, transactions can be filtered out on the master, avoiding unnecessary network
traffic.

See also the description for --read-from-remote-server.

• --read-from-remote-server, -R

Read the binary log from a MySQL server rather than reading a local log file. Any connection
parameter options are ignored unless this option is given as well. These options are --host, --
password, --port, --protocol, --socket, and --user.

This option requires that the remote server be running. It works only for binary log files on the remote
server, not relay log files.

This option is like --read-from-remote-master=BINLOG-DUMP-NON-GTIDS.

• --result-file=name, -r name

mysqlbinlog — Utility for Processing Binary Log Files

469

Without the --raw option, this option indicates the file to which mysqlbinlog writes text output.
With --raw, mysqlbinlog writes one binary output file for each log file transferred from the server,
writing them by default in the current directory using the same names as the original log file. In this
case, the --result-file option value is treated as a prefix that modifies output file names.

• --rewrite-db='dboldname->dbnewname'

In MySQL 5.7.8 and later, when reading from a row-based or statement-based log, rewrite all
occurrences of dboldname to dbnewname. Rewriting is done on the rows, for row-based logs, as
well as on the USE clauses, for statement-based logs. In MySQL versions prior to 5.7.8, for use when
restoring tables logged using the row-based format to a database having a different name from the
original database.

The rewrite rule employed as a value for this option is a string having the form 'dboldname-
>dbnewname', as shown previously, and for this reason must be enclosed by quotation marks.

To employ multiple rewrite rules, specify the option multiple times, as shown here:

shell> mysqlbinlog --rewrite-db='dbcurrent->dbold' --rewrite-db='dbtest->dbcurrent' \
 binlog.00001 > /tmp/statements.sql

When used together with the --database option, the --rewrite-db option is applied first; then
--database option is applied, using the rewritten database name. The order in which the options
are provided makes no difference in this regard.

This means that, for example, if mysqlbinlog is started with --rewrite-db='mydb->yourdb'
--database=yourdb, then all updates to any tables in databases mydb and yourdb are included
in the output. On the other hand, if it is started with --rewrite-db='mydb->yourdb' --
database=mydb, then mysqlbinlog outputs no statements at all: since all updates to mydb are
first rewritten as updates to yourdb before applying the --database option, there remain no
updates that match --database=mydb.

This option was added in MySQL 5.7.1.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option was added in MySQL 5.7.4.

As of MySQL 5.7.5, this option is deprecated and will be removed in a future MySQL release. It
is always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0)
produces an error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them
is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --server-id=id

Display only those events created by the server having the given server ID.

• --set-charset=charset_name

Add a SET NAMES charset_name statement to the output to specify the character set to be used
for processing log files.

mysqlbinlog — Utility for Processing Binary Log Files

470

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

• --short-form, -s

Display only the statements contained in the log, without any extra information or row-based events.
This is for testing only, and should not be used in production systems.

• --skip-gtids[=(true|false)]

Do not display any GTIDs in the output. This is needed when writing to a dump file from one or more
binary logs containing GTIDs, as shown in this example:

shell> mysqlbinlog --skip-gtids binlog.000001 > /tmp/dump.sql
shell> mysqlbinlog --skip-gtids binlog.000002 >> /tmp/dump.sql
shell> mysql -u root -p -e "source /tmp/dump.sql"

The use of this option is otherwise not normally recommended in production.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --start-datetime=datetime

Start reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. The datetime value is relative to the local time zone on the machine where you run
mysqlbinlog. The value should be in a format accepted for the DATETIME or TIMESTAMP data
types. For example:

shell> mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --start-position=N, -j N

Start reading the binary log at the first event having a position equal to or greater than N. This option
applies to the first log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. This option is useful for point-in-time recovery. See the description of the --start-
datetime option for information about the datetime value.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

mysqlbinlog — Utility for Processing Binary Log Files

471

• --stop-never

This option is used with --read-from-remote-server. It tells mysqlbinlog to remain
connected to the server. Otherwise mysqlbinlog exits when the last log file has been transferred
from the server. --stop-never implies --to-last-log, so only the first log file to transfer need
be named on the command line.

--stop-never is commonly used with --raw to make a live binary log backup, but also can be
used without --raw to maintain a continuous text display of log events as the server generates
them.

• --stop-never-slave-server-id=id

With --stop-never, mysqlbinlog reports a server ID of 65535 when it connects to the server.
--stop-never-slave-server-id explicitly specifies the server ID to report. It can be used to
avoid a conflict with the ID of a slave server or another mysqlbinlog process. See Section 4.6.7.4,
“Specifying the mysqlbinlog Server ID”.

• --stop-position=N

Stop reading the binary log at the first event having a position equal to or greater than N. This option
applies to the last log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --tls-version=protocol_list

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• --to-last-log, -t

Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing
until the end of the last binary log. If you send the output to the same MySQL server, this may lead to
an endless loop. This option requires --read-from-remote-server.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to a remote server.

• --verbose, -v

Reconstruct row events and display them as commented SQL statements. If this option is given
twice, the output includes comments to indicate column data types and some metadata.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.7.2, “mysqlbinlog Row Event Display”.

• --verify-binlog-checksum, -c

Verify checksums in binary log files.

• --version, -V

Display version information and exit.

In MySQL 5.7.1 and later, the mysqlbinlog version number shown when using this option is 3.4.
(Bug #15894381, Bug #67643)

mysqlbinlog — Utility for Processing Binary Log Files

472

You can also set the following variable by using --var_name=value syntax:

• open_files_limit

Specify the number of open file descriptors to reserve.

You can pipe the output of mysqlbinlog into the mysql client to execute the events contained in
the binary log. This technique is used to recover from a crash when you have an old backup (see
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”). For example:

shell> mysqlbinlog binlog.000001 | mysql -u root -p

Or:

shell> mysqlbinlog binlog.[0-9]* | mysql -u root -p

If the statements produced by mysqlbinlog may contain BLOB values, these may cause problems
when mysql processes them. In this case, invoke mysql with the --binary-mode option.

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the
statement log first (for example, to remove statements that you do not want to execute for some
reason). After editing the file, execute the statements that it contains by using it as input to the mysql
program:

shell> mysqlbinlog binlog.000001 > tmpfile
shell> ... edit tmpfile ...
shell> mysql -u root -p < tmpfile

When mysqlbinlog is invoked with the --start-position option, it displays only those events
with an offset in the binary log greater than or equal to a given position (the given position must match
the start of one event). It also has options to stop and start when it sees an event with a given date and
time. This enables you to perform point-in-time recovery using the --stop-datetime option (to be
able to say, for example, “roll forward my databases to how they were today at 10:30 a.m.”).

If you have more than one binary log to execute on the MySQL server, the safe method is to process
them all using a single connection to the server. Here is an example that demonstrates what may be
unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using multiple connections to the server causes problems if the first log
file contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that
uses the temporary table. When the first mysql process terminates, the server drops the temporary
table. When the second mysql process attempts to use the table, the server reports “unknown table.”

To avoid problems like this, use a single mysql process to execute the contents of all binary logs that
you want to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"

mysqlbinlog can produce output that reproduces a LOAD DATA INFILE operation without the
original data file. mysqlbinlog copies the data to a temporary file and writes a LOAD DATA LOCAL
INFILE statement that refers to the file. The default location of the directory where these files are
written is system-specific. To specify a directory explicitly, use the --local-load option.

mysqlbinlog — Utility for Processing Binary Log Files

473

Because mysqlbinlog converts LOAD DATA INFILE statements to LOAD DATA LOCAL INFILE
statements (that is, it adds LOCAL), both the client and the server that you use to process the
statements must be configured with the LOCAL capability enabled. See Section 6.1.6, “Security Issues
with LOAD DATA LOCAL”.

Warning

The temporary files created for LOAD DATA LOCAL statements are not
automatically deleted because they are needed until you actually execute those
statements. You should delete the temporary files yourself after you no longer
need the statement log. The files can be found in the temporary file directory
and have names like original_file_name-#-#.

4.6.7.1 mysqlbinlog Hex Dump Format

The --hexdump option causes mysqlbinlog to produce a hex dump of the binary log contents:

shell> mysqlbinlog --hexdump master-bin.000001

The hex output consists of comment lines beginning with #, so the output might look like this for the
preceding command:

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#051024 17:24:13 server id 1 end_log_pos 98
Position Timestamp Type Master ID Size Master Pos Flags
00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|
00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
at startup
ROLLBACK;

Hex dump output currently contains the elements in the following list. This format is subject to change.
(For more information about binary log format, see MySQL Internals: The Binary Log.

• Position: The byte position within the log file.

• Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation of
'051024 17:24:13' in hexadecimal.

• Type: The event type code. In the example shown, '0f' indicates a
FORMAT_DESCRIPTION_EVENT. The following table lists the possible type codes.

TypeName Meaning

00 UNKNOWN_EVENT This event should never be present in the log.

01 START_EVENT_V3 This indicates the start of a log file written by MySQL 4 or
earlier.

02 QUERY_EVENT The most common type of events. These contain
statements executed on the master.

03 STOP_EVENT Indicates that master has stopped.

04 ROTATE_EVENT Written when the master switches to a new log file.

05 INTVAR_EVENT Used for AUTO_INCREMENT values or when the
LAST_INSERT_ID() function is used in the statement.

06 LOAD_EVENT Used for LOAD DATA INFILE in MySQL 3.23.

http://dev.mysql.com/doc/internals/en/binary-log.html

mysqlbinlog — Utility for Processing Binary Log Files

474

TypeName Meaning

07 SLAVE_EVENT Reserved for future use.

08 CREATE_FILE_EVENT Used for LOAD DATA INFILE statements. This indicates
the start of execution of such a statement. A temporary file
is created on the slave. Used in MySQL 4 only.

09 APPEND_BLOCK_EVENT Contains data for use in a LOAD DATA INFILE statement.
The data is stored in the temporary file on the slave.

0a EXEC_LOAD_EVENT Used for LOAD DATA INFILE statements. The contents of
the temporary file is stored in the table on the slave. Used
in MySQL 4 only.

0b DELETE_FILE_EVENT Rollback of a LOAD DATA INFILE statement. The
temporary file should be deleted on the slave.

0c NEW_LOAD_EVENT Used for LOAD DATA INFILE in MySQL 4 and earlier.

0d RAND_EVENT Used to send information about random values if the
RAND() function is used in the statement.

0e USER_VAR_EVENT Used to replicate user variables.

0f FORMAT_DESCRIPTION_EVENT This indicates the start of a log file written by MySQL 5 or
later.

10 XID_EVENT Event indicating commit of an XA transaction.

11 BEGIN_LOAD_QUERY_EVENT Used for LOAD DATA INFILE statements in MySQL 5 and
later.

12 EXECUTE_LOAD_QUERY_EVENT Used for LOAD DATA INFILE statements in MySQL 5 and
later.

13 TABLE_MAP_EVENT Information about a table definition. Used in MySQL 5.1.5
and later.

14 PRE_GA_WRITE_ROWS_EVENT Row data for a single table that should be created. Used in
MySQL 5.1.5 to 5.1.17.

15 PRE_GA_UPDATE_ROWS_EVENT Row data for a single table that needs to be updated. Used
in MySQL 5.1.5 to 5.1.17.

16 PRE_GA_DELETE_ROWS_EVENT Row data for a single table that should be deleted. Used in
MySQL 5.1.5 to 5.1.17.

17 WRITE_ROWS_EVENT Row data for a single table that should be created. Used in
MySQL 5.1.18 and later.

18 UPDATE_ROWS_EVENT Row data for a single table that needs to be updated. Used
in MySQL 5.1.18 and later.

19 DELETE_ROWS_EVENT Row data for a single table that should be deleted. Used in
MySQL 5.1.18 and later.

1a INCIDENT_EVENT Something out of the ordinary happened. Added in MySQL
5.1.18.

• Master ID: The server ID of the master that created the event.

• Size: The size in bytes of the event.

• Master Pos: The position of the next event in the original master log file.

• Flags: 16 flags. The following flags are used. The others are reserved for future use.

Flag Name Meaning

01 LOG_EVENT_BINLOG_IN_USE_F Log file correctly closed. (Used only in
FORMAT_DESCRIPTION_EVENT.) If this flag is

mysqlbinlog — Utility for Processing Binary Log Files

475

Flag Name Meaning
set (if the flags are, for example, '01 00') in a
FORMAT_DESCRIPTION_EVENT, the log file has not been
properly closed. Most probably this is because of a master
crash (for example, due to power failure).

02 Reserved for future use.

04 LOG_EVENT_THREAD_SPECIFIC_FSet if the event is dependent on the connection it was
executed in (for example, '04 00'), for example, if the
event uses temporary tables.

08 LOG_EVENT_SUPPRESS_USE_F Set in some circumstances when the event is not
dependent on the default database.

4.6.7.2 mysqlbinlog Row Event Display

The following examples illustrate how mysqlbinlog displays row events that specify data
modifications. These correspond to events with the WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT, and
DELETE_ROWS_EVENT type codes. The --base64-output=DECODE-ROWS and --verbose options
may be used to affect row event output.

Suppose that the server is using row-based binary logging and that you execute the following
sequence of statements:

CREATE TABLE t
(
 id INT NOT NULL,
 name VARCHAR(20) NOT NULL,
 date DATE NULL
) ENGINE = InnoDB;

START TRANSACTION;
INSERT INTO t VALUES(1, 'apple', NULL);
UPDATE t SET name = 'pear', date = '2009-01-01' WHERE id = 1;
DELETE FROM t WHERE id = 1;
COMMIT;

By default, mysqlbinlog displays row events encoded as base-64 strings using BINLOG statements.
Omitting extraneous lines, the output for the row events produced by the preceding statement
sequence looks like this:

shell> mysqlbinlog log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

mysqlbinlog — Utility for Processing Binary Log Files

476

fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;

To see the row events as comments in the form of “pseudo-SQL” statements, run mysqlbinlog with
the --verbose or -v option. The output will contain lines beginning with ###:

shell> mysqlbinlog -v log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

Specify --verbose or -v twice to also display data types and some metadata for each column. The
output will contain an additional comment following each column change:

shell> mysqlbinlog -vv log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
...

mysqlbinlog — Utility for Processing Binary Log Files

477

at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

You can tell mysqlbinlog to suppress the BINLOG statements for row events by using the --
base64-output=DECODE-ROWS option. This is similar to --base64-output=NEVER but does not
exit with an error if a row event is found. The combination of --base64-output=DECODE-ROWS and
--verbose provides a convenient way to see row events only as SQL statements:

shell> mysqlbinlog -v --base64-output=DECODE-ROWS log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

Note

You should not suppress BINLOG statements if you intend to re-execute
mysqlbinlog output.

mysqlbinlog — Utility for Processing Binary Log Files

478

The SQL statements produced by --verbose for row events are much more readable than the
corresponding BINLOG statements. However, they do not correspond exactly to the original SQL
statements that generated the events. The following limitations apply:

• The original column names are lost and replaced by @N, where N is a column number.

• Character set information is not available in the binary log, which affects string column display:

• There is no distinction made between corresponding binary and nonbinary string types (BINARY
and CHAR, VARBINARY and VARCHAR, BLOB and TEXT). The output uses a data type of STRING
for fixed-length strings and VARSTRING for variable-length strings.

• For multibyte character sets, the maximum number of bytes per character is not present in the
binary log, so the length for string types is displayed in bytes rather than in characters. For
example, STRING(4) will be used as the data type for values from either of these column types:

CHAR(4) CHARACTER SET latin1
CHAR(2) CHARACTER SET ucs2

• Due to the storage format for events of type UPDATE_ROWS_EVENT, UPDATE statements are
displayed with the WHERE clause preceding the SET clause.

Proper interpretation of row events requires the information from the format description event at the
beginning of the binary log. Because mysqlbinlog does not know in advance whether the rest of the
log contains row events, by default it displays the format description event using a BINLOG statement
in the initial part of the output.

If the binary log is known not to contain any events requiring a BINLOG statement (that is, no row
events), the --base64-output=NEVER option can be used to prevent this header from being written.

4.6.7.3 Using mysqlbinlog to Back Up Binary Log Files

By default, mysqlbinlog reads binary log files and displays their contents in text format. This enables
you to examine events within the files more easily and to re-execute them (for example, by using the
output as input to mysql). mysqlbinlog can read log files directly from the local file system, or, with
the --read-from-remote-server option, it can connect to a server and request binary log contents
from that server. mysqlbinlog writes text output to its standard output, or to the file named as the
value of the --result-file=file_name option if that option is given.

mysqlbinlog can read binary log files and write new files containing the same content—that is,
in binary format rather than text format. This capability enables you to easily back up a binary log
in its original format. mysqlbinlog can make a static backup, backing up a set of log files and
stopping when the end of the last file is reached. It can also make a continuous (“live”) backup, staying
connected to the server when it reaches the end of the last log file and continuing to copy new events
as they are generated. In continuous-backup operation, mysqlbinlog runs until the connection ends
(for example, when the server exits) or mysqlbinlog is forcibly terminated. When the connection
ends, mysqlbinlog does not wait and retry the connection, unlike a slave replication server. To
continue a live backup after the server has been restarted, you must also restart mysqlbinlog.

Binary log backup requires that you invoke mysqlbinlog with two options at minimum:

• The --read-from-remote-server (or -R) option tells mysqlbinlog to connect to a server and
request its binary log. (This is similar to a slave replication server connecting to its master server.)

• The --raw option tells mysqlbinlog to write raw (binary) output, not text output.

Along with --read-from-remote-server, it is common to specify other options: --host indicates
where the server is running, and you may also need to specify connection options such as --user and
--password.

Several other options are useful in conjunction with --raw:

mysqlbinlog — Utility for Processing Binary Log Files

479

• --stop-never: Stay connected to the server after reaching the end of the last log file and continue
to read new events.

• --stop-never-slave-server-id=id: The server ID that mysqlbinlog reports to the server
when --stop-never is used. The default is 65535. This can be used to avoid a conflict with
the ID of a slave server or another mysqlbinlog process. See Section 4.6.7.4, “Specifying the
mysqlbinlog Server ID”.

• --result-file: A prefix for output file names, as described later.

To back up a server's binary log files with mysqlbinlog, you must specify file names that actually
exist on the server. If you do not know the names, connect to the server and use the SHOW BINARY
LOGS statement to see the current names. Suppose that the statement produces this output:

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
binlog.000130	27459
binlog.000131	13719
binlog.000132	43268
+---------------+-----------+

With that information, you can use mysqlbinlog to back up the binary log to the current directory as
follows (enter each command on a single line):

• To make a static backup of binlog.000130 through binlog.000132, use either of these
commands:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 binlog.000130 binlog.000131 binlog.000132

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --to-last-log binlog.000130

The first command specifies every file name explicitly. The second names only the first file and uses
--to-last-log to read through the last. A difference between these commands is that if the server
happens to open binlog.000133 before mysqlbinlog reaches the end of binlog.000132, the
first command will not read it, but the second command will.

• To make a live backup in which mysqlbinlog starts with binlog.000130 to copy existing log
files, then stays connected to copy new events as the server generates them:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000130

With --stop-never, it is not necessary to specify --to-last-log to read to the last log file
because that option is implied.

Output File Naming

Without --raw, mysqlbinlog produces text output and the --result-file option, if given,
specifies the name of the single file to which all output is written. With --raw, mysqlbinlog writes
one binary output file for each log file transferred from the server. By default, mysqlbinlog writes
the files in the current directory with the same names as the original log files. To modify the output file
names, use the --result-file option. In conjunction with --raw, the --result-file option value
is treated as a prefix that modifies the output file names.

Suppose that a server currently has binary log files named binlog.000999 and up. If you use
mysqlbinlog --raw to back up the files, the --result-file option produces output file names as
shown in the following table. You can write the files to a specific directory by beginning the --result-

mysqlbinlog — Utility for Processing Binary Log Files

480

file value with the directory path. If the --result-file value consists only of a directory name, the
value must end with the pathname separator character. Output files are overwritten if they exist.

--result-file Option Output File Names

--result-file=x xbinlog.000999 and up

--result-file=/tmp/ /tmp/binlog.000999 and up

--result-file=/tmp/x /tmp/xbinlog.000999 and up

Example: mysqldump + mysqlbinlog for Backup and Restore

The following example describes a simple scenario that shows how to use mysqldump and
mysqlbinlog together to back up a server's data and binary log, and how to use the backup to
restore the server if data loss occurs. The example assumes that the server is running on host
host_name and its first binary log file is named binlog.000999. Enter each command on a single
line.

Use mysqlbinlog to make a continuous backup of the binary log:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000999

Use mysqldump to create a dump file as a snapshot of the server's data. Use --all-databases, --
events, and --routines to back up all data, and --master-data=2 to include the current binary
log coordinates in the dump file.

mysqldump --host=host_name --all-databases --events --routines --master-data=2> dump_file

Execute the mysqldump command periodically to create newer snapshots as desired.

If data loss occurs (for example, if the server crashes), use the most recent dump file to restore the
data:

mysql --host=host_name -u root -p < dump_file

Then use the binary log backup to re-execute events that were written after the coordinates listed in the
dump file. Suppose that the coordinates in the file look like this:

-- CHANGE MASTER TO MASTER_LOG_FILE='binlog.001002', MASTER_LOG_POS=27284;

If the most recent backed-up log file is named binlog.001004, re-execute the log events like this:

mysqlbinlog --start-position=27284 binlog.001002 binlog.001003 binlog.001004
 | mysql --host=host_name -u root -p

You might find it easier to copy the backup files (dump file and binary log files) to the server host to
make it easier to perform the restore operation, or if MySQL does not allow remote root access.

4.6.7.4 Specifying the mysqlbinlog Server ID

When invoked with the --read-from-remote-server option, mysqlbinlog connects to a MySQL
server, specifies a server ID to identify itself, and requests binary log files from the server. You can use
mysqlbinlog to request log files from a server in several ways:

• Specify an explicitly named set of files: For each file, mysqlbinlog connects and issues a Binlog
dump command. The server sends the file and disconnects. There is one connection per file.

• Specify the beginning file and --to-last-log: mysqlbinlog connects and issues a Binlog
dump command for all files. The server sends all files and disconnects.

mysqldumpslow — Summarize Slow Query Log Files

481

• Specify the beginning file and --stop-never (which implies --to-last-log): mysqlbinlog
connects and issues a Binlog dump command for all files. The server sends all files, but does not
disconnect after sending the last one.

With --read-from-remote-server only, mysqlbinlog connects using a server ID of 0, which
tells the server to disconnect after sending the last requested log file.

With --read-from-remote-server and --stop-never, mysqlbinlog connects using a nonzero
server ID, so the server does not disconnect after sending the last log file. The server ID is 65535 by
default, but this can be changed with --stop-never-slave-server-id.

Thus, for the first two ways of requesting files, the server disconnects because mysqlbinlog specifies
a server ID of 0. It does not disconnect if --stop-never is given because mysqlbinlog specifies a
nonzero server ID.

4.6.8 mysqldumpslow — Summarize Slow Query Log Files

The MySQL slow query log contains information about queries that take a long time to execute (see
Section 5.2.5, “The Slow Query Log”). mysqldumpslow parses MySQL slow query log files and prints
a summary of their contents.

Normally, mysqldumpslow groups queries that are similar except for the particular values of number
and string data values. It “abstracts” these values to N and 'S' when displaying summary output. The
-a and -n options can be used to modify value abstracting behavior.

Invoke mysqldumpslow like this:

shell> mysqldumpslow [options] [log_file ...]

mysqldumpslow supports the following options.

Table 4.19 mysqldumpslow Options

Format Description

-a Do not abstract all numbers to N and strings to S

-n Abstract numbers with at least the specified digits

--debug Write debugging information

-g Only consider statements that match the pattern

--help Display help message and exit

-h Host name of the server in the log file name

-i Name of the server instance

-l Do not subtract lock time from total time

-r Reverse the sort order

-s How to sort output

-t Display only first num queries

--verbose Verbose mode

• --help

Display a help message and exit.

• -a

Do not abstract all numbers to N and strings to 'S'.

mysqldumpslow — Summarize Slow Query Log Files

482

• --debug, -d

Run in debug mode.

• -g pattern

Consider only queries that match the (grep-style) pattern.

• -h host_name

Host name of MySQL server for *-slow.log file name. The value can contain a wildcard. The
default is * (match all).

• -i name

Name of server instance (if using mysql.server startup script).

• -l

Do not subtract lock time from total time.

• -n N

Abstract numbers with at least N digits within names.

• -r

Reverse the sort order.

• -s sort_type

How to sort the output. The value of sort_type should be chosen from the following list:

• t, at: Sort by query time or average query time

• l, al: Sort by lock time or average lock time

• r, ar: Sort by rows sent or average rows sent

• c: Sort by count

By default, mysqldumpslow sorts by average query time (equivalent to -s at).

• -t N

Display only the first N queries in the output.

• --verbose, -v

Verbose mode. Print more information about what the program does.

Example of usage:

shell> mysqldumpslow

Reading mysql slow query log from /usr/local/mysql/data/mysqld51-apple-slow.log
Count: 1 Time=4.32s (4s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1

Count: 3 Time=2.53s (7s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1 limit N

Count: 3 Time=2.13s (6s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t1 select * from t1

MySQL Program Development Utilities

483

4.7 MySQL Program Development Utilities

This section describes some utilities that you may find useful when developing MySQL programs.

In shell scripts, you can use the my_print_defaults program to parse option files and see
what options would be used by a given program. The following example shows the output that
my_print_defaults might produce when asked to show the options found in the [client] and
[mysql] groups:

shell> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note for developers: Option file handling is implemented in the C client library simply by processing
all options in the appropriate group or groups before any command-line arguments. This works well
for programs that use the last instance of an option that is specified multiple times. If you have a C or
C++ program that handles multiply specified options this way but that doesn't read option files, you
need add only two lines to give it that capability. Check the source code of any of the standard MySQL
clients to see how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them
provide a way to access option file contents. These include Perl and Python. For details, see the
documentation for your preferred interface.

4.7.1 mysql_config — Display Options for Compiling Clients

mysql_config provides you with useful information for compiling your MySQL client and connecting it
to MySQL. It is a shell script, so it is available only on Unix and Unix-like systems.

Note

As of MySQL 5.7.9, pkg-config can be used as an alternative to
mysql_config for obtaining information such as compiler flags or link
libraries required to compile MySQL applications. For more information, see
Section 23.8.4.2, “Building C API Client Programs Using pkg-config”.

Note

As of MySQL 5.7.4, for binary distributions for Solaris, mysql_config does
not provide arguments for linking with the embedded library. To get linking
arguments for the embedded library, use the mysql_server_config script
instead.

mysql_config supports the following options.

• --cflags

C Compiler flags to find include files and critical compiler flags and defines used when compiling the
libmysqlclient library. The options returned are tied to the specific compiler that was used when
the library was created and might clash with the settings for your own compiler. Use --include for
more portable options that contain only include paths.

• --cxxflags

Like --cflags, but for C++ compiler flags.

• --include

Compiler options to find MySQL include files.

mysql_config — Display Options for Compiling Clients

484

• --libmysqld-libs, --embedded

Libraries and options required to link with the MySQL embedded server.

• --libs

Libraries and options required to link with the MySQL client library.

• --libs_r

Libraries and options required to link with the thread-safe MySQL client library. In MySQL 5.7, all
client libraries are thread-safe, so this option need not be used. The --libs option can be used in
all cases.

• --plugindir

The default plugin directory path name, defined when configuring MySQL.

• --port

The default TCP/IP port number, defined when configuring MySQL.

• --socket

The default Unix socket file, defined when configuring MySQL.

• --variable=var_name

Display the value of the named configuration variable. Permitted var_name values are
pkgincludedir (the header file directory), pkglibdir (the library directory), and plugindir (the
plugin directory).

• --version

Version number for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their
values:

shell> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
 --cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --cxxflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --include [-I/usr/local/mysql/include/mysql]
 --libs [-L/usr/local/mysql/lib/mysql -lmysqlclient
 -lpthread -lm -lrt -lssl -lcrypto -ldl]
 --libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r
 -lpthread -lm -lrt -lssl -lcrypto -ldl]
 --plugindir [/usr/local/mysql/lib/plugin]
 --socket [/tmp/mysql.sock]
 --port [3306]
 --version [5.7.9]
 --libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld
 -lpthread -lm -lrt -lssl -lcrypto -ldl -lcrypt]
 --variable=VAR VAR is one of:
 pkgincludedir [/usr/local/mysql/include]
 pkglibdir [/usr/local/mysql/lib]
 plugindir [/usr/local/mysql/lib/plugin]

You can use mysql_config within a command line using backticks to include the output that it
produces for particular options. For example, to compile and link a MySQL client program, use
mysql_config as follows:

my_print_defaults — Display Options from Option Files

485

gcc -c `mysql_config --cflags` progname.c
gcc -o progname progname.o `mysql_config --libs`

4.7.2 my_print_defaults — Display Options from Option Files

my_print_defaults displays the options that are present in option groups of option files. The output
indicates what options will be used by programs that read the specified option groups. For example, the
mysqlcheck program reads the [mysqlcheck] and [client] option groups. To see what options
are present in those groups in the standard option files, invoke my_print_defaults like this:

shell> my_print_defaults mysqlcheck client
--user=myusername
--password=secret
--host=localhost

The output consists of options, one per line, in the form that they would be specified on the command
line.

my_print_defaults supports the following options.

• --help, -?

Display a help message and exit.

• --config-file=file_name, --defaults-file=file_name, -c file_name

Read only the given option file.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/my_print_defaults.trace.

• --defaults-extra-file=file_name, --extra-file=file_name, -e file_name

Read this option file after the global option file but (on Unix) before the user option file.

• --defaults-group-suffix=suffix, -g suffix

In addition to the groups named on the command line, read groups that have the given suffix.

• --login-path=name, -l name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --no-defaults, -n

Return an empty string.

• --show, -s

As of MySQL 5.7.8, my_print_defaults masks passwords by default. Use this option to display
passwords in cleartext.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

486

Display version information and exit.

4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to
Symbols

resolve_stack_dump resolves a numeric stack dump to symbols.

Invoke resolve_stack_dump like this:

shell> resolve_stack_dump [options] symbols_file [numeric_dump_file]

The symbols file should include the output from the nm --numeric-sort mysqld command. The
numeric dump file should contain a numeric stack track from mysqld. If no numeric dump file is named
on the command line, the stack trace is read from the standard input.

resolve_stack_dump supports the following options.

• --help, -h

Display a help message and exit.

• --numeric-dump-file=file_name, -n file_name

Read the stack trace from the given file.

• --symbols-file=file_name, -s file_name

Use the given symbols file.

• --version, -V

Display version information and exit.

For more information, see Section 24.5.1.5, “Using a Stack Trace”.

4.8 Miscellaneous Programs

4.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed
Output

The lz4_decompress utility decompresses mysqlpump output that was created using LZ4
compression. lz4_decompress was added in MySQL 5.7.10.

Invoke lz4_decompress like this:

shell> lz4_decompress input_file output_file

Example:

shell> mysqlpump --compress-output=LZ4 > dump.lz4
shell> lz4_decompress dump.lz4 dump.txt

To see a help message, invoke lz4_decompress with no arguments.

To decompress mysqlpump ZLIB-compressed output, use zlib_decompress. See Section 4.8.5,
“zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”.

4.8.2 perror — Explain Error Codes

replace — A String-Replacement Utility

487

For most system errors, MySQL displays, in addition to an internal text message, the system error code
in one of the following styles:

message ... (errno: #)
message ... (Errcode: #)

You can find out what the error code means by examining the documentation for your system or by
using the perror utility.

perror prints a description for a system error code or for a storage engine (table handler) error code.

Invoke perror like this:

shell> perror [options] errorcode ...

Example:

shell> perror 13 64
OS error code 13: Permission denied
OS error code 64: Machine is not on the network

To obtain the error message for a MySQL Cluster error code, invoke perror with the --ndb option:

shell> perror --ndb errorcode

The meaning of system error messages may be dependent on your operating system. A given error
code may mean different things on different operating systems.

perror supports the following options.

• --help, --info, -I, -?

Display a help message and exit.

• --ndb

Print the error message for a MySQL Cluster error code.

• --silent, -s

Silent mode. Print only the error message.

• --verbose, -v

Verbose mode. Print error code and message. This is the default behavior.

• --version, -V

Display version information and exit.

4.8.3 replace — A String-Replacement Utility

The replace utility program changes strings in place in files or on the standard input.

Invoke replace in one of the following ways:

shell> replace from to [from to] ... -- file_name [file_name] ...
shell> replace from to [from to] ... < file_name

from represents a string to look for and to represents its replacement. There can be one or more pairs
of strings.

resolveip — Resolve Host name to IP Address or Vice Versa

488

Use the -- option to indicate where the string-replacement list ends and the file names begin. In this
case, any file named on the command line is modified in place, so you may want to make a copy of
the original before converting it. replace prints a message indicating which of the input files it actually
modifies.

If the -- option is not given, replace reads the standard input and writes to the standard output.

replace uses a finite state machine to match longer strings first. It can be used to swap strings. For
example, the following command swaps a and b in the given files, file1 and file2:

shell> replace a b b a -- file1 file2 ...

replace supports the following options.

• -?, -I

Display a help message and exit.

• -#debug_options

Enable debugging.

• -s

Silent mode. Print less information what the program does.

• -v

Verbose mode. Print more information about what the program does.

• -V

Display version information and exit.

4.8.4 resolveip — Resolve Host name to IP Address or Vice Versa

The resolveip utility resolves host names to IP addresses and vice versa.

Invoke resolveip like this:

shell> resolveip [options] {host_name|ip-addr} ...

resolveip supports the following options.

• --help, --info, -?, -I

Display a help message and exit.

• --silent, -s

Silent mode. Produce less output.

• --version, -V

Display version information and exit.

4.8.5 zlib_decompress — Decompress mysqlpump ZLIB-Compressed
Output

The zlib_decompress utility decompresses mysqlpump output that was created using ZLIB
compression. zlib_decompress was added in MySQL 5.7.10.

zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output

489

Invoke zlib_decompress like this:

shell> zlib_decompress input_file output_file

Example:

shell> mysqlpump --compress-output=ZLIB > dump.zlib
shell> zlib_decompress dump.zlib dump.txt

To see a help message, invoke zlib_decompress with no arguments.

To decompress mysqlpump LZ4-compressed output, use lz4_decompress. See Section 4.8.1,
“lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”.

490

491

Chapter 5 MySQL Server Administration

Table of Contents
5.1 The MySQL Server ... 491

5.1.1 Server Option and Variable Reference .. 492
5.1.2 Server Configuration Defaults ... 529
5.1.3 Server Command Options .. 530
5.1.4 Server System Variables .. 564
5.1.5 Using System Variables ... 706
5.1.6 Server Status Variables .. 721
5.1.7 Server SQL Modes .. 751
5.1.8 Server Plugins ... 768
5.1.9 IPv6 Support ... 792
5.1.10 Server-Side Help .. 797
5.1.11 Server Response to Signals ... 797
5.1.12 The Server Shutdown Process .. 798

5.2 MySQL Server Logs ... 799
5.2.1 Selecting General Query and Slow Query Log Output Destinations 800
5.2.2 The Error Log .. 802
5.2.3 The General Query Log ... 804
5.2.4 The Binary Log .. 806
5.2.5 The Slow Query Log .. 817
5.2.6 The DDL Log ... 818
5.2.7 Server Log Maintenance .. 819

5.3 Running Multiple MySQL Instances on One Machine .. 820
5.3.1 Setting Up Multiple Data Directories .. 821
5.3.2 Running Multiple MySQL Instances on Windows .. 822
5.3.3 Running Multiple MySQL Instances on Unix .. 825
5.3.4 Using Client Programs in a Multiple-Server Environment .. 826

5.4 Tracing mysqld Using DTrace ... 827
5.4.1 mysqld DTrace Probe Reference .. 828

MySQL Server (mysqld) is the main program that does most of the work in a MySQL installation. This
chapter provides an overview of MySQL Server and covers general server administration:

• Server configuration.

• The server log files.

• Management of multiple servers on a single machine.

For additional information on administrative topics, see also:

• Chapter 6, Security

• Chapter 7, Backup and Recovery

• Chapter 17, Replication

5.1 The MySQL Server

mysqld is the MySQL server. The following discussion covers these MySQL server configuration
topics:

• Startup options that the server supports. You can specify these options on the command line,
through configuration files, or both.

Server Option and Variable Reference

492

• Server system variables. These variables reflect the current state and values of the startup options,
some of which can be modified while the server is running.

• Server status variables. These variables contain counters and statistics about runtime operation.

• How to set the server SQL mode. This setting modifies certain aspects of SQL syntax and
semantics, for example for compatibility with code from other database systems, or to control the
error handling for particular situations.

• The server shutdown process. There are performance and reliability considerations depending on
the type of table (transactional or nontransactional) and whether you use replication.

For listings of MySQL server variables and options that have been added, deprecated, or removed
in MySQL 5.7, see Section 1.5, “Server and Status Variables and Options Added, Deprecated, or
Removed in MySQL 5.7”.

Note

Not all storage engines are supported by all MySQL server binaries and
configurations. To find out how to determine which storage engines your
MySQL server installation supports, see Section 13.7.5.16, “SHOW ENGINES
Syntax”.

5.1.1 Server Option and Variable Reference

The following table provides a list of all the command line options, server and status variables
applicable within mysqld.

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with notification
of where each option/variable is valid. If a server option set on the command line or in an option file
differs from the name of the corresponding server system or status variable, the variable name is noted
immediately below the corresponding option. For status variables, the scope of the variable is shown
(Scope) as either global, session, or both. Please see the corresponding sections for details on setting
and using the options and variables. Where appropriate, a direct link to further information on the item
as available.

Table 5.1 Option/Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

abort-slave-
event-count

Yes Yes

Aborted_clients Yes Global No

Aborted_connects Yes Global No

allow-suspicious-
udfs

Yes Yes

ansi Yes Yes

audit-log Yes Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

Audit_log_current_size Yes Global No

Audit_log_event_max_drop_size Yes Global No

Audit_log_events Yes Global No

Audit_log_events_filtered Yes Global No

Audit_log_events_lost Yes Global No

Server Option and Variable Reference

493

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Audit_log_events_written Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_flush Yes Global Yes

audit_log_format Yes Yes Yes Global No

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_policy Yes Yes Yes Global No

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategy Yes Yes Yes Global No

Audit_log_total_size Yes Global No

Audit_log_write_waits Yes Global No

auto_generate_certsYes Yes Yes Global No

auto_increment_increment Yes Both Yes

auto_increment_offset Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privileges Yes Global Yes

avoid_temporal_upgradeYes Yes Yes Global Yes

back_log Yes Global No

basedir Yes Yes Yes Global No

big-tables Yes Yes Both Yes

- Variable:
big_tables

 Yes Both Yes

bind-address Yes Yes Global No

- Variable:
bind_address

 Yes Global No

Binlog_cache_disk_use Yes Global No

binlog_cache_sizeYes Yes Yes Global Yes

Binlog_cache_use Yes Global No

binlog-checksum Yes Yes

binlog_checksum Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog-do-db Yes Yes

binlog_error_actionYes Yes Yes Both Yes

binlog-format Yes Yes Both Yes

- Variable:
binlog_format

 Yes Both Yes

binlog_group_commit_sync_delayYes Yes Yes Global Yes

binlog_group_commit_sync_no_delay_countYes Yes Yes Global Yes

binlog_gtid_simple_recoveryYes Yes Yes Global No

binlog-ignore-db Yes Yes

binlog_max_flush_queue_time Yes Global Yes

Server Option and Variable Reference

494

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

binlog_order_commits Yes Global Yes

binlog-row-event-
max-size

Yes Yes

binlog_row_image Yes Yes Yes Both Yes

binlog-rows-
query-log-events

Yes Yes

- Variable:
binlog_rows_query_log_events

binlog_rows_query_log_events Yes Both Yes

Binlog_stmt_cache_disk_use Yes Global No

binlog_stmt_cache_sizeYes Yes Yes Global Yes

Binlog_stmt_cache_use Yes Global No

binlogging_impossible_modeYes Yes Yes Both Yes

block_encryption_modeYes Yes Yes Both Yes

bootstrap Yes Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

Bytes_received Yes Both No

Bytes_sent Yes Both No

character_set_client Yes Both Yes

character-set-
client-handshake

Yes Yes

character_set_connection Yes Both Yes

character_set_databasea Yes Both Yes

character-set-
filesystem

Yes Yes Both Yes

- Variable:
character_set_filesystem

 Yes Both Yes

character_set_results Yes Both Yes

character-set-
server

Yes Yes Both Yes

- Variable:
character_set_server

 Yes Both Yes

character_set_system Yes Global No

character-sets-dir Yes Yes Global No

- Variable:
character_sets_dir

 Yes Global No

check_proxy_usersYes Yes Yes Global Yes

chroot Yes Yes

collation_connection Yes Both Yes

collation_databaseb Yes Both Yes

collation-server Yes Yes Both Yes

- Variable:
collation_server

 Yes Both Yes

Com_admin_commands Yes Both No

Server Option and Variable Reference

495

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_alter_db Yes Both No

Com_alter_db_upgrade Yes Both No

Com_alter_event Yes Both No

Com_alter_function Yes Both No

Com_alter_procedure Yes Both No

Com_alter_server Yes Both No

Com_alter_table Yes Both No

Com_alter_tablespace Yes Both No

Com_alter_user Yes Both No

Com_analyze Yes Both No

Com_assign_to_keycache Yes Both No

Com_begin Yes Both No

Com_binlog Yes Both No

Com_call_procedure Yes Both No

Com_change_db Yes Both No

Com_change_master Yes Both No

Com_change_repl_filter Yes Both No

Com_check Yes Both No

Com_checksum Yes Both No

Com_commit Yes Both No

Com_create_db Yes Both No

Com_create_event Yes Both No

Com_create_function Yes Both No

Com_create_index Yes Both No

Com_create_procedure Yes Both No

Com_create_server Yes Both No

Com_create_table Yes Both No

Com_create_trigger Yes Both No

Com_create_udf Yes Both No

Com_create_user Yes Both No

Com_create_view Yes Both No

Com_dealloc_sql Yes Both No

Com_delete Yes Both No

Com_delete_multi Yes Both No

Com_do Yes Both No

Com_drop_db Yes Both No

Com_drop_event Yes Both No

Com_drop_function Yes Both No

Com_drop_index Yes Both No

Com_drop_procedure Yes Both No

Com_drop_server Yes Both No

Server Option and Variable Reference

496

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_drop_table Yes Both No

Com_drop_trigger Yes Both No

Com_drop_user Yes Both No

Com_drop_view Yes Both No

Com_empty_query Yes Both No

Com_execute_sql Yes Both No

Com_explain_other Yes Both No

Com_flush Yes Both No

Com_get_diagnostics Yes Both No

Com_grant Yes Both No

Com_ha_close Yes Both No

Com_ha_open Yes Both No

Com_ha_read Yes Both No

Com_help Yes Both No

Com_insert Yes Both No

Com_insert_select Yes Both No

Com_install_plugin Yes Both No

Com_kill Yes Both No

Com_load Yes Both No

Com_lock_tables Yes Both No

Com_optimize Yes Both No

Com_preload_keys Yes Both No

Com_prepare_sql Yes Both No

Com_purge Yes Both No

Com_purge_before_date Yes Both No

Com_release_savepoint Yes Both No

Com_rename_table Yes Both No

Com_rename_user Yes Both No

Com_repair Yes Both No

Com_replace Yes Both No

Com_replace_select Yes Both No

Com_reset Yes Both No

Com_resignal Yes Both No

Com_revoke Yes Both No

Com_revoke_all Yes Both No

Com_rollback Yes Both No

Com_rollback_to_savepoint Yes Both No

Com_savepoint Yes Both No

Com_select Yes Both No

Com_set_option Yes Both No

Com_show_authors Yes Both No

Server Option and Variable Reference

497

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_show_binlog_events Yes Both No

Com_show_binlogs Yes Both No

Com_show_charsets Yes Both No

Com_show_collations Yes Both No

Com_show_contributors Yes Both No

Com_show_create_db Yes Both No

Com_show_create_event Yes Both No

Com_show_create_func Yes Both No

Com_show_create_proc Yes Both No

Com_show_create_table Yes Both No

Com_show_create_trigger Yes Both No

Com_show_create_user Yes Both No

Com_show_databases Yes Both No

Com_show_engine_logs Yes Both No

Com_show_engine_mutex Yes Both No

Com_show_engine_status Yes Both No

Com_show_errors Yes Both No

Com_show_events Yes Both No

Com_show_fields Yes Both No

Com_show_function_code Yes Both No

Com_show_function_status Yes Both No

Com_show_grants Yes Both No

Com_show_keys Yes Both No

Com_show_master_status Yes Both No

Com_show_ndb_status Yes Both No

Com_show_new_master Yes Both No

Com_show_open_tables Yes Both No

Com_show_plugins Yes Both No

Com_show_privileges Yes Both No

Com_show_procedure_code Yes Both No

Com_show_procedure_status Yes Both No

Com_show_processlist Yes Both No

Com_show_profile Yes Both No

Com_show_profiles Yes Both No

Com_show_relaylog_events Yes Both No

Com_show_slave_hosts Yes Both No

Com_show_slave_status Yes Both No

Com_show_slave_status_nonblocking Yes Both No

Com_show_status Yes Both No

Com_show_storage_engines Yes Both No

Com_show_table_status Yes Both No

Server Option and Variable Reference

498

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_show_tables Yes Both No

Com_show_triggers Yes Both No

Com_show_variables Yes Both No

Com_show_warnings Yes Both No

Com_shutdown Yes Both No

Com_signal Yes Both No

Com_slave_start Yes Both No

Com_slave_stop Yes Both No

Com_stmt_close Yes Both No

Com_stmt_execute Yes Both No

Com_stmt_fetch Yes Both No

Com_stmt_prepare Yes Both No

Com_stmt_reprepare Yes Both No

Com_stmt_reset Yes Both No

Com_stmt_send_long_data Yes Both No

Com_truncate Yes Both No

Com_uninstall_plugin Yes Both No

Com_unlock_tables Yes Both No

Com_update Yes Both No

Com_update_multi Yes Both No

Com_xa_commit Yes Both No

Com_xa_end Yes Both No

Com_xa_prepare Yes Both No

Com_xa_recover Yes Both No

Com_xa_rollback Yes Both No

Com_xa_start Yes Both No

completion_type Yes Yes Yes Both Yes

Compression Yes Session No

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

Connection_errors_accept Yes Global No

Connection_errors_internal Yes Global No

Connection_errors_max_connections Yes Global No

Connection_errors_peer_addr Yes Global No

Connection_errors_select Yes Global No

Connection_errors_tcpwrap Yes Global No

Connections Yes Global No

console Yes Yes

core-file Yes Yes

core_file Yes Global No

Created_tmp_disk_tables Yes Both No

Server Option and Variable Reference

499

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Created_tmp_files Yes Global No

Created_tmp_tables Yes Both No

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

daemonize Yes Yes

datadir Yes Yes Yes Global No

date_format Yes Global No

datetime_format Yes Global No

debug Yes Yes Yes Both Yes

debug_sync Yes Session Yes

debug-sync-
timeout

Yes Yes

default-
authentication-
plugin

Yes Yes

default_authentication_pluginYes Yes Yes Global No

default_password_lifetimeYes Yes Yes Global Yes

default-storage-
engine

Yes Yes Both Yes

- Variable:
default_storage_engine

 Yes Both Yes

default-time-zone Yes Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_formatYes Yes Yes Both Yes

defaults-extra-file Yes

defaults-file Yes

defaults-group-
suffix

Yes

delay-key-write Yes Yes Global Yes

- Variable:
delay_key_write

 Yes Global Yes

Delayed_errors Yes Global No

delayed_insert_limitYes Yes Yes Global Yes

Delayed_insert_threads Yes Global No

delayed_insert_timeoutYes Yes Yes Global Yes

delayed_queue_sizeYes Yes Yes Global Yes

Delayed_writes Yes Global No

des-key-file Yes Yes

disabled_storage_enginesYes Yes Yes Global No

Server Option and Variable Reference

500

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

disconnect_on_expired_passwordYes Yes Yes Session No

disconnect-slave-
event-count

Yes Yes

div_precision_incrementYes Yes Yes Both Yes

enable-named-
pipe

Yes Yes

- Variable:
named_pipe

end_markers_in_json Yes Both Yes

enforce-gtid-
consistency

Yes Yes Yes Global Varies

enforce_gtid_consistencyYes Yes Yes Global Varies

eq_range_index_dive_limit Yes Both Yes

error_count Yes Session No

event-scheduler Yes Yes Global Yes

- Variable:
event_scheduler

 Yes Global Yes

executed-gtids-
compression-
period

Yes Yes

- Variable:
executed_gtids_compression_period

executed_gtids_compression_period Yes Global Yes

exit-info Yes Yes

expire_logs_days Yes Yes Yes Global Yes

explicit_defaults_for_timestampYes Yes Yes Both No

external-locking Yes Yes

- Variable:
skip_external_locking

external_user Yes Session No

federated Yes Yes

Firewall_access_denied Yes Global No

Firewall_access_granted Yes Global No

Firewall_cached_entries Yes Global No

flush Yes Yes Yes Global Yes

Flush_commands Yes Global No

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntax Yes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

Server Option and Variable Reference

501

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

gdb Yes Yes

general-log Yes Yes Global Yes

- Variable:
general_log

 Yes Global Yes

general_log_file Yes Yes Yes Global Yes

group_concat_max_lenYes Yes Yes Both Yes

gtid_executed Yes Varies No

gtid-executed-
compression-
period

Yes Yes

- Variable:
gtid_executed_compression_period

gtid_executed_compression_period Yes Global Yes

gtid-mode Yes Yes Global Varies

- Variable:
gtid_mode

 Yes Global Varies

gtid_mode Yes Global Varies

gtid_next Yes Session Yes

gtid_owned Yes Both No

gtid_purged Yes Global Yes

Handler_commit Yes Both No

Handler_delete Yes Both No

Handler_discover Yes Both No

Handler_external_lock Yes Both No

Handler_mrr_init Yes Both No

Handler_prepare Yes Both No

Handler_read_first Yes Both No

Handler_read_key Yes Both No

Handler_read_last Yes Both No

Handler_read_next Yes Both No

Handler_read_prev Yes Both No

Handler_read_rnd Yes Both No

Handler_read_rnd_next Yes Both No

Handler_rollback Yes Both No

Handler_savepoint Yes Both No

Handler_savepoint_rollback Yes Both No

Handler_update Yes Both No

Handler_write Yes Both No

have_compress Yes Global No

have_crypt Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

Server Option and Variable Reference

502

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_statement_timeout Yes Global No

have_symlink Yes Global No

help Yes Yes

host_cache_size Yes Global Yes

hostname Yes Global No

identity Yes Session Yes

ignore-builtin-
innodb

Yes Yes Global No

- Variable:
ignore_builtin_innodb

 Yes Global No

ignore-db-dir Yes Yes

ignore_db_dirs Yes Global No

init_connect Yes Yes Yes Global Yes

init-file Yes Yes Global No

- Variable:
init_file

 Yes Global No

init_slave Yes Yes Yes Global Yes

initialize Yes Yes

initialize-insecure Yes Yes

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_hash_index_partsYes Yes Yes Global No

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

Innodb_available_undo_logs Yes Global No

innodb_background_drop_list_emptyYes Yes Yes Global Yes

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

Server Option and Variable Reference

503

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_buffer_pool_chunk_sizeYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

Innodb_buffer_pool_resize_status Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global Varies

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compress_debugYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_create_intrinsicYes Yes Yes Session Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

Server Option and Variable Reference

504

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_default_row_formatYes Yes Yes Global Yes

innodb_disable_resize_buffer_pool_debugYes Yes Yes Global Yes

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_fill_factor Yes Yes Yes Global Yes

innodb_flush_log_at_timeout Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flush_syncYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_tableYes Yes Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Global Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

Server Option and Variable Reference

505

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_have_atomic_builtins Yes Global No

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefixYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_checksum_algorithmYes Yes Yes Global Yes

innodb_log_checksumsYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_max_undo_log_sizeYes Yes Yes Global Yes

innodb_merge_threshold_set_all_debugYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_files Yes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

innodb_optimize_point_storageYes Yes Yes Session Yes

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

Server Option and Variable Reference

506

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_page_cleanersYes Yes Yes Global No

Innodb_page_size Yes Global No

innodb_page_size Yes Yes Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_rseg_truncate_frequencyYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_only Yes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb-status-file Yes Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

Server Option and Variable Reference

507

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_debugYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Session Yes

Innodb_truncated_status_writes Yes Global No

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_log_truncateYes Yes Yes Global Yes

innodb_undo_logs Yes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

insert_id Yes Session Yes

install Yes

install-manual Yes

interactive_timeoutYes Yes Yes Both Yes

internal_tmp_disk_storage_engineYes Yes Yes Global Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

Key_blocks_not_flushed Yes Global No

Key_blocks_unused Yes Global No

Key_blocks_used Yes Global No

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

Key_read_requests Yes Global No

Key_reads Yes Global No

Key_write_requests Yes Global No

Key_writes Yes Global No

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

large-pages Yes Yes Global No

Server Option and Variable Reference

508

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
large_pages

 Yes Global No

last_insert_id Yes Session Yes

Last_query_cost Yes Session No

Last_query_partial_plans Yes Session No

lc-messages Yes Yes Both Yes

- Variable:
lc_messages

 Yes Both Yes

lc-messages-dir Yes Yes Global No

- Variable:
lc_messages_dir

 Yes Global No

lc_time_names Yes Both Yes

license Yes Global No

local_infile Yes Global Yes

local-service Yes

lock_wait_timeout Yes Yes Yes Both Yes

Locked_connects Yes Global No

locked_in_memory Yes Global No

log_backward_compatible_user_definitionsYes Yes Yes Global Yes

log-bin Yes Yes Yes Global No

log_bin Yes Global No

log_bin_basename Yes Global No

log-bin-index Yes Yes

log_bin_index Yes Global No

log-bin-trust-
function-creators

Yes Yes Global Yes

- Variable:
log_bin_trust_function_creators

 Yes Global Yes

log-bin-use-v1-
row-events

Yes Yes Global No

- Variable:
log_bin_use_v1_row_events

 Yes Global No

log_bin_use_v1_row_eventsYes Yes Yes Global No

log_builtin_as_identified_by_passwordYes Yes Yes Global Yes

log-error Yes Yes Global No

- Variable:
log_error

 Yes Global No

log_error_verbosityYes Yes Yes Global Yes

log-isam Yes Yes

log-output Yes Yes Global Yes

- Variable:
log_output

 Yes Global Yes

log-queries-not-
using-indexes

Yes Yes Global Yes

Server Option and Variable Reference

509

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
log_queries_not_using_indexes

 Yes Global Yes

log-raw Yes Yes

log-short-format Yes Yes

log-slave-
updates

Yes Yes Global No

- Variable:
log_slave_updates

 Yes Global No

log_slave_updatesYes Yes Yes Global No

log-slow-admin-
statements

Yes Yes

log_slow_admin_statements Yes Global Yes

log-slow-slave-
statements

Yes Yes

log_slow_slave_statements Yes Global Yes

log_syslog Yes Yes Yes Global Yes

log_syslog_facility Yes Yes Yes Global Yes

log_syslog_include_pidYes Yes Yes Global Yes

log_syslog_tag Yes Yes Yes Global Yes

log-tc Yes Yes

log-tc-size Yes Yes

log_throttle_queries_not_using_indexes Yes Global Yes

log_timestamps Yes Yes Yes Global Yes

log-warnings Yes Yes Global Yes

- Variable:
log_warnings

 Yes Global Yes

long_query_time Yes Yes Yes Both Yes

low-priority-
updates

Yes Yes Both Yes

- Variable:
low_priority_updates

 Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

master-info-file Yes Yes

master-info-
repository

Yes Yes

- Variable:
master_info_repository

master_info_repositoryYes Yes Yes Global Yes

master-retry-
count

Yes Yes

master-verify-
checksum

Yes Yes

Server Option and Variable Reference

510

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
master_verify_checksum

master_verify_checksum Yes Global Yes

max_allowed_packetYes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max-binlog-
dump-events

Yes Yes

max_binlog_size Yes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errorsYes Yes Yes Global Yes

max_connections Yes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_digest_lengthYes Yes Yes Global No

max_error_count Yes Yes Yes Both Yes

max_execution_timeYes Yes Yes Both Yes

Max_execution_time_exceeded Yes Both No

Max_execution_time_set Yes Both No

Max_execution_time_set_failed Yes Both No

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_points_in_geometryYes Yes Yes Global Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_sizeYes Yes Yes Global Yes

max_seeks_for_keyYes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_statement_time Yes Both Yes

Max_statement_time_exceeded Yes Both No

Max_statement_time_set Yes Both No

Max_statement_time_set_failed Yes Both No

max_tmp_tables Yes Both Yes

Max_used_connections Yes Global No

Max_used_connections_time Yes Global No

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

mecab_charset Yes Global No

mecab_rc_file Yes Yes Yes Global No

memlock Yes Yes

- Variable:
locked_in_memory

Server Option and Variable Reference

511

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

metadata_locks_cache_size Yes Global No

metadata_locks_hash_instances Yes Global No

min-examined-
row-limit

Yes Yes Yes Both Yes

multi_range_countYes Yes Yes Both Yes

myisam-block-
size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam-recover-
options

Yes Yes

- Variable:
myisam_recover_options

myisam_recover_options Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

mysql_firewall_max_query_sizeYes Yes Yes Global No

mysql_firewall_modeYes Yes Yes Global Yes

mysql_firewall_traceYes Yes Yes Global Yes

mysql_native_password_proxy_usersYes Yes Yes Global Yes

named_pipe Yes Global No

ndb-allow-
copying-alter-
table

Yes Yes Yes Both Yes

Ndb_api_bytes_received_count Yes Global No

Ndb_api_bytes_received_count_session Yes Session No

Ndb_api_bytes_received_count_slave Yes Global No

Ndb_api_bytes_sent_count Yes Global No

Ndb_api_bytes_sent_count_slave Yes Global No

Ndb_api_event_bytes_count_injector Yes Global No

Ndb_api_event_data_count_injector Yes Global No

Ndb_api_event_nondata_count_injector Yes Global No

Ndb_api_pk_op_count Yes Global No

Ndb_api_pk_op_count_session Yes Session No

Ndb_api_pk_op_count_slave Yes Global No

Ndb_api_pruned_scan_count Yes Global No

Ndb_api_pruned_scan_count_session Yes Session No

Ndb_api_range_scan_count_slave Yes Global No

Ndb_api_read_row_count Yes Global No

Server Option and Variable Reference

512

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_api_read_row_count_session Yes Session No

Ndb_api_scan_batch_count_slave Yes Global No

Ndb_api_table_scan_count Yes Global No

Ndb_api_table_scan_count_session Yes Session No

Ndb_api_trans_abort_count Yes Global No

Ndb_api_trans_abort_count_session Yes Session No

Ndb_api_trans_abort_count_slave Yes Global No

Ndb_api_trans_close_count Yes Global No

Ndb_api_trans_close_count_session Yes Session No

Ndb_api_trans_close_count_slave Yes Global No

Ndb_api_trans_commit_count Yes Global No

Ndb_api_trans_commit_count_session Yes Session No

Ndb_api_trans_commit_count_slave Yes Global No

Ndb_api_trans_local_read_row_count_slave Yes Global No

Ndb_api_trans_start_count Yes Global No

Ndb_api_trans_start_count_session Yes Session No

Ndb_api_trans_start_count_slave Yes Global No

Ndb_api_uk_op_count Yes Global No

Ndb_api_uk_op_count_slave Yes Global No

Ndb_api_wait_exec_complete_count Yes Global No

Ndb_api_wait_exec_complete_count_session Yes Session No

Ndb_api_wait_exec_complete_count_slave Yes Global No

Ndb_api_wait_meta_request_count Yes Global No

Ndb_api_wait_meta_request_count_session Yes Session No

Ndb_api_wait_nanos_count Yes Global No

Ndb_api_wait_nanos_count_session Yes Session No

Ndb_api_wait_nanos_count_slave Yes Global No

Ndb_api_wait_scan_result_count Yes Global No

Ndb_api_wait_scan_result_count_session Yes Session No

Ndb_api_wait_scan_result_count_slave Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb-batch-size Yes Yes Yes Global No

ndb-blob-read-
batch-bytes

Yes Yes Yes Both Yes

ndb-blob-write-
batch-bytes

Yes Yes Yes Both Yes

ndb_cache_check_timeYes Yes Yes Global Yes

ndb_clear_apply_statusYes Yes Global Yes

ndb-cluster-
connection-pool

Yes Yes Yes Global No

Server Option and Variable Reference

513

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ndb-cluster-
connection-pool-
nodeids

Yes Yes Yes Global No

Ndb_cluster_node_id Yes Both No

Ndb_config_from_host Yes Both No

Ndb_config_from_port Yes Both No

Ndb_conflict_fn_epoch_trans Yes Global No

Ndb_conflict_fn_max Yes Global No

Ndb_conflict_fn_old Yes Global No

Ndb_conflict_trans_detect_iter_count Yes Global No

Ndb_conflict_trans_row_reject_count Yes Global No

ndb-
connectstring

Yes Yes

ndb-deferred-
constraints

Yes Yes Both Yes

- Variable:
ndb_deferred_constraints

 Yes Both Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb-distribution Yes Yes Global Yes

- Variable:
ndb_distribution

 Yes Global Yes

ndb_distribution Yes Yes Yes Global Yes

ndb_eventbuffer_free_percentYes Yes Yes Global Yes

ndb_eventbuffer_max_allocYes Yes Yes Global Yes

ndb_extra_loggingYes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_optionYes Yes Yes Both Yes

ndb_join_pushdown Yes Both Yes

Ndb_last_commit_epoch_server Yes Global No

Ndb_last_commit_epoch_session Yes Session No

ndb-log-apply-
status

Yes Yes Global No

- Variable:
ndb_log_apply_status

 Yes Global No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_bin Yes Yes Both Yes

ndb_log_binlog_indexYes Yes Global Yes

ndb-log-empty-
epochs

Yes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb-log-
exclusive-reads

Yes Yes Both Yes

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_deferred_constraints
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_distribution
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_apply_status

Server Option and Variable Reference

514

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
ndb_log_exclusive_reads

 Yes Both Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb-log-orig Yes Yes Global No

- Variable:
ndb_log_orig

 Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb-log-
transaction-id

Yes Yes Global No

- Variable:
ndb_log_transaction_id

 Yes Global No

ndb_log_transaction_id Yes Global No

ndb_log_updated_onlyYes Yes Yes Global Yes

ndb-mgmd-host Yes Yes

ndb-nodeid Yes Yes Yes Global No

Ndb_number_of_data_nodes Yes Global No

ndb_optimization_delay Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global No

Ndb_pushed_queries_defined Yes Global No

Ndb_pushed_queries_executed Yes Global No

ndb-recv-thread-
activation-
threshold

Yes Yes

- Variable:
ndb_recv_thread_activation_threshold

ndb_recv_thread_activation_threshold

ndb-recv-thread-
cpu-mask

Yes Yes

- Variable:
ndb_recv_thread_cpu_mask

ndb_recv_thread_cpu_mask Yes Global Yes

ndb_report_thresh_binlog_epoch_slipYes Yes

ndb_report_thresh_binlog_mem_usageYes Yes

Ndb_scan_count Yes Global No

ndb_show_foreign_key_mock_tablesYes Yes Yes Global Yes

ndb_slave_conflict_roleYes Yes Yes Global Yes

Ndb_slave_max_replicated_epoch Yes Global No

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

ndb-transid-
mysql-
connection-map

Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_exclusive_reads
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_orig
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_id
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_recv_thread_activation_threshold
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_recv_thread_cpu_mask

Server Option and Variable Reference

515

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ndb_use_transactionsYes Yes Yes Both Yes

ndb_version Yes Global No

ndb_version_string Yes Global No

ndb-wait-
connected

Yes Yes Yes Global No

ndb-wait-setup Yes Yes Yes Global No

ndbcluster Yes Yes

- Variable:
have_ndbcluster

ndbinfo_database Yes Global No

ndbinfo_max_bytesYes Yes Both Yes

ndbinfo_max_rowsYes Yes Both Yes

ndbinfo_offline Yes Global Yes

ndbinfo_show_hiddenYes Yes Both Yes

ndbinfo_table_prefixYes Yes Both Yes

ndbinfo_version Yes Global No

net_buffer_length Yes Yes Yes Both Yes

net_read_timeout Yes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeout Yes Yes Yes Both Yes

new Yes Yes Yes Both Yes

ngram_token_size Yes Yes Yes Global No

no-defaults Yes

Not_flushed_delayed_rows Yes Global No

offline_mode Yes Yes Yes Global Yes

old Yes Yes Yes Global No

old-alter-table Yes Yes Both Yes

- Variable:
old_alter_table

 Yes Both Yes

old_passwords Yes Both Yes

old-style-user-
limits

Yes Yes

Ongoing_anonymous_gtid_violating_transaction_count Yes Global No

Ongoing_anonymous_transaction_count Yes Global No

Ongoing_automatic_gtid_violating_transaction_count Yes Global No

Open_files Yes Global No

open-files-limit Yes Yes Global No

- Variable:
open_files_limit

 Yes Global No

Open_streams Yes Global No

Open_table_definitions Yes Global No

Open_tables Yes Both No

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_have_ndbcluster

Server Option and Variable Reference

516

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Opened_files Yes Global No

Opened_table_definitions Yes Both No

Opened_tables Yes Both No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switch Yes Yes Yes Both Yes

optimizer_trace Yes Both Yes

optimizer_trace_features Yes Both Yes

optimizer_trace_limit Yes Both Yes

optimizer_trace_max_mem_size Yes Both Yes

optimizer_trace_offset Yes Both Yes

partition Yes Yes

- Variable:
have_partitioning

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-stages-
current

Yes Yes

performance-
schema-
consumer-
events-stages-
history

Yes Yes

performance-
schema-
consumer-
events-stages-
history-long

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_have_partitioning

Server Option and Variable Reference

517

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance-
schema-
consumer-
events-
statements-
history-long

Yes Yes

performance-
schema-
consumer-
events-
transactions-
current

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history-long

Yes Yes

performance-
schema-
consumer-
events-waits-
current

Yes Yes

performance-
schema-
consumer-
events-waits-
history

Yes Yes

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-global-
instrumentation

Yes Yes

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Server Option and Variable Reference

518

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

Performance_schema_index_stat_lost Yes Global No

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_index_statYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_sql_text_lengthYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

Server Option and Variable Reference

519

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_table_lock_statYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_memory_classes_lost Yes Global No

Performance_schema_metadata_lock_lost Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_nested_statement_lost Yes Global No

Performance_schema_prepared_statements_lost Yes Global No

Performance_schema_program_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Performance_schema_stage_classes_lost Yes Global No

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_table_lock_stat_lost Yes Global No

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

pid-file Yes Yes Global No

- Variable:
pid_file

 Yes Global No

plugin Yes Yes

plugin_dir Yes Yes Yes Global No

plugin-load Yes Yes

plugin-load-add Yes Yes

port Yes Yes Yes Global No

port-open-
timeout

Yes Yes

preload_buffer_sizeYes Yes Yes Both Yes

Prepared_stmt_count Yes Global No

Server Option and Variable Reference

520

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

print-defaults Yes

profiling Yes Both Yes

profiling_history_sizeYes Yes Yes Both Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

Qcache_free_blocks Yes Global No

Qcache_free_memory Yes Global No

Qcache_hits Yes Global No

Qcache_inserts Yes Global No

Qcache_lowmem_prunes Yes Global No

Qcache_not_cached Yes Global No

Qcache_queries_in_cache Yes Global No

Qcache_total_blocks Yes Global No

Queries Yes Both No

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limit Yes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_size Yes Yes Yes Global Yes

query_cache_type Yes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_sizeYes Yes Yes Both Yes

Questions Yes Both No

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

range_optimizer_max_mem_sizeYes Yes Yes Both Yes

rbr_exec_mode Yes Session Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_sizeYes Yes Yes Both Yes

relay-log Yes Yes Global No

- Variable:
relay_log

 Yes Global No

relay_log_basename Yes Global No

relay-log-index Yes Yes Global No

- Variable:
relay_log_index

 Yes Global No

relay_log_index Yes Yes Yes Global No

relay-log-info-file Yes Yes

Server Option and Variable Reference

521

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
relay_log_info_file

relay_log_info_file Yes Yes Yes Global No

relay-log-info-
repository

Yes Yes

- Variable:
relay_log_info_repository

relay_log_info_repository Yes Global Yes

relay_log_purge Yes Yes Yes Global Yes

relay-log-
recovery

Yes Yes

- Variable:
relay_log_recovery

relay_log_recoveryYes Yes Yes Global No

relay_log_space_limitYes Yes Yes Global No

remove Yes

replicate-do-db Yes Yes

replicate-do-table Yes Yes

replicate-ignore-
db

Yes Yes

replicate-ignore-
table

Yes Yes

replicate-rewrite-
db

Yes Yes

replicate-same-
server-id

Yes Yes

replicate-wild-do-
table

Yes Yes

replicate-wild-
ignore-table

Yes Yes

report-host Yes Yes Global No

- Variable:
report_host

 Yes Global No

report-password Yes Yes Global No

- Variable:
report_password

 Yes Global No

report-port Yes Yes Global No

- Variable:
report_port

 Yes Global No

report-user Yes Yes Global No

- Variable:
report_user

 Yes Global No

require_secure_transportYes Yes Yes Global Yes

rewriter_enabled Yes Global Yes

Rewriter_number_loaded_rules Yes Global No

Server Option and Variable Reference

522

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Rewriter_number_reloads Yes Global No

Rewriter_number_rewritten_queries Yes Global No

Rewriter_reload_error Yes Global No

rewriter_verbose Yes Global Yes

Rpl_semi_sync_master_clients Yes Global No

rpl_semi_sync_master_enabled Yes Global Yes

Rpl_semi_sync_master_net_avg_wait_time Yes Global No

Rpl_semi_sync_master_net_wait_time Yes Global No

Rpl_semi_sync_master_net_waits Yes Global No

Rpl_semi_sync_master_no_times Yes Global No

Rpl_semi_sync_master_no_tx Yes Global No

Rpl_semi_sync_master_status Yes Global No

Rpl_semi_sync_master_timefunc_failures Yes Global No

rpl_semi_sync_master_timeout Yes Global Yes

rpl_semi_sync_master_trace_level Yes Global Yes

Rpl_semi_sync_master_tx_avg_wait_time Yes Global No

Rpl_semi_sync_master_tx_wait_time Yes Global No

Rpl_semi_sync_master_tx_waits Yes Global No

rpl_semi_sync_master_wait_for_slave_count Yes Global Yes

rpl_semi_sync_master_wait_no_slave Yes Global Yes

rpl_semi_sync_master_wait_point Yes Global Yes

Rpl_semi_sync_master_wait_pos_backtraverse Yes Global No

Rpl_semi_sync_master_wait_sessions Yes Global No

Rpl_semi_sync_master_yes_tx Yes Global No

rpl_semi_sync_slave_enabled Yes Global Yes

Rpl_semi_sync_slave_status Yes Global No

rpl_semi_sync_slave_trace_level Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

Rsa_public_key Yes Global No

safe-user-create Yes Yes

secure-auth Yes Yes Global Yes

- Variable:
secure_auth

 Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable:
secure_file_priv

 Yes Global No

Select_full_join Yes Both No

Select_full_range_join Yes Both No

Select_range Yes Both No

Select_range_check Yes Both No

Select_scan Yes Both No

Server Option and Variable Reference

523

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

server-id [2426] Yes Yes Global Yes

- Variable:
server_id

 Yes Global Yes

server-id-bits Yes Yes Global No

- Variable:
server_id_bits

 Yes Global No

server_id_bits Yes Yes Yes Global No

server_uuid [2426] Yes Global No

session_track_gtidsYes Yes Yes Both Yes

session_track_schemaYes Yes Yes Both Yes

session_track_state_changeYes Yes Yes Both Yes

session_track_system_variablesYes Yes Yes Both Yes

sha256_password_auto_generate_rsa_keysYes Yes Yes Global No

sha256_password_private_key_path Yes Global No

sha256_password_proxy_usersYes Yes Yes Global Yes

sha256_password_public_key_path Yes Global No

shared_memory Yes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

show_compatibility_56Yes Yes Yes Global Yes

show_old_temporalsYes Yes Yes Both Yes

show-slave-auth-
info

Yes Yes

simplified_binlog_gtid_recoveryYes Yes Yes Global No

skip-character-
set-client-
handshake

Yes Yes

skip-concurrent-
insert

Yes Yes

- Variable:
concurrent_insert

skip-event-
scheduler

Yes Yes

skip_external_lockingYes Yes Yes Global No

skip-grant-tables Yes Yes

skip-host-cache Yes Yes

skip-name-
resolve

Yes Yes Global No

- Variable:
skip_name_resolve

 Yes Global No

skip-ndbcluster Yes Yes

skip-networking Yes Yes Global No

- Variable:
skip_networking

 Yes Global No

skip-new Yes Yes

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_server_id_bits

Server Option and Variable Reference

524

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

skip-partition Yes Yes

skip-show-
database

Yes Yes Global No

- Variable:
skip_show_database

 Yes Global No

skip-slave-start Yes Yes

skip-ssl Yes Yes

skip-stack-trace Yes Yes

skip-symbolic-
links

Yes

slave_allow_batchingYes Yes Yes Global Yes

slave-checkpoint-
group

Yes Yes

- Variable:
slave_checkpoint_group

slave_checkpoint_groupYes Yes Yes Global Yes

slave-checkpoint-
period

Yes Yes

- Variable:
slave_checkpoint_period

slave_checkpoint_periodYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_mode Yes Yes Yes Global Yes

Slave_heartbeat_period Yes Global No

Slave_last_heartbeat Yes Global No

slave-load-tmpdir Yes Yes Global No

- Variable:
slave_load_tmpdir

 Yes Global No

slave-max-
allowed-packet

Yes Yes

- Variable:
slave_max_allowed_packet

slave_max_allowed_packet Yes Global Yes

slave-net-timeout Yes Yes Global Yes

- Variable:
slave_net_timeout

 Yes Global Yes

Slave_open_temp_tables Yes Global No

slave-parallel-
type

Yes Yes

- Variable:
slave_parallel_type

slave_parallel_type Yes Global Yes

slave-parallel-
workers

Yes Yes

Server Option and Variable Reference

525

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
slave_parallel_workers

slave_parallel_workersYes Yes Global Yes

slave-pending-
jobs-size-max

Yes

- Variable:
slave_pending_jobs_size_max

slave_pending_jobs_size_max Yes Global Yes

slave_preserve_commit_orderYes Yes Global Yes

Slave_received_heartbeats Yes Global No

Slave_retried_transactions Yes Global No

slave-rows-
search-
algorithms

Yes Yes

- Variable:
slave_rows_search_algorithms

slave_rows_search_algorithms Yes Global Yes

Slave_running Yes Global No

slave-skip-errors Yes Yes Global No

- Variable:
slave_skip_errors

 Yes Global No

slave-sql-verify-
checksum

Yes Yes

slave_sql_verify_checksum Yes Global Yes

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global No

Slow_launch_threads Yes Both No

slow_launch_time Yes Yes Yes Global Yes

Slow_queries Yes Both No

slow-query-log Yes Yes Global Yes

- Variable:
slow_query_log

 Yes Global Yes

slow_query_log_fileYes Yes Yes Global Yes

slow-start-
timeout

Yes Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

Sort_merge_passes Yes Both No

Sort_range Yes Both No

Sort_rows Yes Both No

Sort_scan Yes Both No

sporadic-binlog-
dump-fail

Yes Yes

sql_auto_is_null Yes Both Yes

Server Option and Variable Reference

526

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Both Yes

sql-mode Yes Yes Both Yes

- Variable:
sql_mode

 Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl Yes Yes

Ssl_accept_renegotiates Yes Global No

Ssl_accepts Yes Global No

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

Ssl_callback_cache_hits Yes Global No

ssl-capath Yes Yes Global No

- Variable:
ssl_capath

 Yes Global No

ssl-cert Yes Yes Global No

- Variable:
ssl_cert

 Yes Global No

Ssl_cipher Yes Both No

ssl-cipher Yes Yes Global No

- Variable:
ssl_cipher

 Yes Global No

Ssl_cipher_list Yes Both No

Ssl_client_connects Yes Global No

Ssl_connect_renegotiates Yes Global No

ssl-crl Yes Yes Global No

- Variable: ssl_crl Yes Global No

ssl-crlpath Yes Yes Global No

- Variable:
ssl_crlpath

 Yes Global No

Ssl_ctx_verify_depth Yes Global No

Ssl_ctx_verify_mode Yes Global No

Ssl_default_timeout Yes Both No

Ssl_finished_accepts Yes Global No

Ssl_finished_connects Yes Global No

Server Option and Variable Reference

527

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ssl-key Yes Yes Global No

- Variable:
ssl_key

 Yes Global No

Ssl_server_not_after Yes Both No

Ssl_server_not_before Yes Both No

Ssl_session_cache_hits Yes Global No

Ssl_session_cache_misses Yes Global No

Ssl_session_cache_mode Yes Global No

Ssl_session_cache_overflows Yes Global No

Ssl_session_cache_size Yes Global No

Ssl_session_cache_timeouts Yes Global No

Ssl_sessions_reused Yes Both No

Ssl_used_session_cache_entries Yes Global No

Ssl_verify_depth Yes Both No

Ssl_verify_mode Yes Both No

Ssl_version Yes Both No

standalone Yes Yes

storage_engine Yes Both Yes

stored_program_cacheYes Yes Yes Global Yes

super-large-
pages

Yes Yes

super_read_only Yes Yes Yes Global Yes

symbolic-links Yes Yes

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

sync_master_info Yes Yes Yes Global Yes

sync_relay_log Yes Yes Yes Global Yes

sync_relay_log_infoYes Yes Yes Global Yes

sysdate-is-now Yes Yes

system_time_zone Yes Global No

table_definition_cache Yes Global Yes

Table_locks_immediate Yes Global No

Table_locks_waited Yes Global No

table_open_cache Yes Global Yes

Table_open_cache_hits Yes Both No

table_open_cache_instances Yes Global No

Table_open_cache_misses Yes Both No

Table_open_cache_overflows Yes Both No

tc-heuristic-
recover

Yes Yes

Tc_log_max_pages_used Yes Global No

Tc_log_page_size Yes Global No

Server Option and Variable Reference

528

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Tc_log_page_waits Yes Global No

temp-pool Yes Yes

thread_cache_sizeYes Yes Yes Global Yes

thread_concurrencyYes Yes Yes Global No

thread_handling Yes Yes Yes Global No

thread_stack Yes Yes Yes Global No

Threads_cached Yes Global No

Threads_connected Yes Global No

Threads_created Yes Global No

Threads_running Yes Global No

time_format Yes Global No

time_zone Yes Both Yes

timed_mutexes Yes Yes Yes Global Yes

timestamp Yes Session Yes

tls_version Yes Yes Yes Global No

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction-
isolation

Yes Yes

- Variable:
tx_isolation

transaction_prealloc_sizeYes Yes Yes Both Yes

transaction-read-
only

Yes Yes

- Variable:
tx_read_only

transaction_write_set_extractionYes Yes Both Yes

tx_isolation Yes Both Yes

tx_read_only Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

Uptime Yes Global No

Uptime_since_flush_status Yes Global No

user Yes Yes

validate-
password

Yes Yes

validate_password_dictionary_file Yes Global Varies

validate_password_dictionary_file_last_parsed Yes Global No

validate_password_dictionary_file_words_count Yes Global No

validate_password_length Yes Global Yes

Server Configuration Defaults

529

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

validate_password_mixed_case_count Yes Global Yes

validate_password_number_count Yes Global Yes

validate_password_policy Yes Global Yes

validate_password_special_char_count Yes Global Yes

validate_user_plugins Yes Global No

verbose Yes Yes

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

version_tokens_sessionYes Yes Yes Both Yes

version_tokens_session_numberYes Yes Yes Both No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No
aThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.
bThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.

5.1.2 Server Configuration Defaults

The MySQL server has many operating parameters, which you can change at server startup using
command-line options or configuration files (option files). It is also possible to change many parameters
at runtime. For general instructions on setting parameters at startup or runtime, see Section 5.1.3,
“Server Command Options”, and Section 5.1.4, “Server System Variables”.

Before MySQL 5.7.5, on Unix platforms, mysql_install_db creates a default option file named
my.cnf in the base installation directory. This file is created from a template included in the distribution
package named my-default.cnf. You can find the template in or under the base installation
directory. When started using mysqld_safe, the server uses my.cnf file by default. If my.cnf
already exists, mysql_install_db assumes it to be in use and writes a new file named my-new.cnf
instead.

With one exception, the settings in the default option file are commented and have
no effect. The exception is that the file sets the sql_mode system variable to
NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES. This setting produces a server configuration
that results in errors rather than warnings for bad data in operations that modify transactional tables.
See Section 5.1.7, “Server SQL Modes”.

On Windows, MySQL Installer interacts with the user and creates a file named my.ini in the base
installation directory as the default option file. If you install on Windows from a Zip archive, you can
copy the my-default.ini template file in the base installation directory to my.ini and use the latter
as the default option file.

Note

On Windows, the .ini or .cnf option file extension might not be displayed.

On any platform, after completing the installation process, you can edit the default option file at any
time to modify the parameters used by the server. For example, to use a parameter setting in the
file that is commented with a # character at the beginning of the line, remove the #, and modify the
parameter value if necessary. To disable a setting, either add a # to the beginning of the line or remove
it.

For additional information about option file format and syntax, see Section 4.2.6, “Using Option Files”.

Server Command Options

530

5.1.3 Server Command Options

When you start the mysqld server, you can specify program options using any of the methods
described in Section 4.2.3, “Specifying Program Options”. The most common methods are to provide
options in an option file or on the command line. However, in most cases it is desirable to make sure
that the server uses the same options each time it runs. The best way to ensure this is to list them in an
option file. See Section 4.2.6, “Using Option Files”. That section also describes option file format and
syntax.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options from
the [mysqld], [server], [mysqld_safe], and [safe_mysqld] groups. mysql.server reads
options from the [mysqld] and [mysql.server] groups.

An embedded MySQL server usually reads options from the [server], [embedded], and
[xxxxx_SERVER] groups, where xxxxx is the name of the application into which the server is
embedded.

mysqld accepts many command options. For a brief summary, execute mysqld --help. To see the
full list, use mysqld --verbose --help.

The following list shows some of the most common server options. Additional options are described in
other sections:

• Options that affect security: See Section 6.1.4, “Security-Related mysqld Options and Variables”.

• SSL-related options: See Section 6.3.12.5, “SSL Command Options”.

• Binary log control options: See Section 5.2.4, “The Binary Log”.

• Replication-related options: See Section 17.1.6, “Replication and Binary Logging Options and
Variables”.

• Options for loading plugins such as pluggable storage engines: See Section 5.1.8.1, “Installing and
Uninstalling Plugins”.

• Options specific to particular storage engines: See Section 14.11, “InnoDB Startup Options and
System Variables” and Section 15.2.1, “MyISAM Startup Options”.

Some options control the size of buffers or caches. For a given buffer, the server might need to allocate
internal data structures. These structures typically are allocated from the total memory allocated to
the buffer, and the amount of space required might be platform dependent. This means that when you
assign a value to an option that controls a buffer size, the amount of space actually available might
differ from the value assigned. In some cases, the amount might be less than the value assigned. It is
also possible that the server will adjust a value upward. For example, if you assign a value of 0 to an
option for which the minimal value is 1024, the server will set the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some options take file name values. Unless otherwise specified, the default file location is the data
directory if the value is a relative path name. To specify the location explicitly, use an absolute path
name. Suppose that the data directory is /var/mysql/data. If a file-valued option is given as a
relative path name, it will be located under /var/mysql/data. If the value is an absolute path name,
its location is as given by the path name.

You can also set the values of server system variables at server startup by using variable names as
options. To assign a value to a server system variable, use an option of the form --var_name=value.
For example, --key_buffer_size=32M sets the key_buffer_size variable to a value of 32MB.

When you assign a value to a variable, MySQL might automatically correct the value to stay within a
given range, or adjust the value to the closest permissible value if only certain values are permitted.

If you want to restrict the maximum value to which a variable can be set at runtime with SET, you can
define this by using the --maximum-var_name=value command-line option.

Server Command Options

531

You can change the values of most system variables for a running server with the SET statement. See
Section 13.7.4, “SET Syntax”.

Section 5.1.4, “Server System Variables”, provides a full description for all variables, and additional
information for setting them at server startup and runtime. Section 8.12.2, “Tuning Server Parameters”,
includes information on optimizing the server by tuning system variables.

• --help, -?

Command-Line Format --help

Display a short help message and exit. Use both the --verbose and --help options to see the full
message.

• --allow-suspicious-udfs

Command-Line Format --allow-suspicious-udfs

Type booleanPermitted Values

Default FALSE

This option controls whether user-defined functions that have only an xxx symbol for the main
function can be loaded. By default, the option is off and only UDFs that have at least one auxiliary
symbol can be loaded; this prevents attempts at loading functions from shared object files other than
those containing legitimate UDFs. See Section 24.4.2.6, “UDF Security Precautions”.

• --ansi

Command-Line Format --ansi

Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the server
SQL mode, use the --sql-mode option instead. See Section 1.8, “MySQL Standards Compliance”,
and Section 5.1.7, “Server SQL Modes”.

• --basedir=dir_name, -b dir_name

Command-Line Format --basedir=dir_name

Name basedir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to the MySQL installation directory. All paths are usually resolved relative to this directory.

• --big-tables

Command-Line Format --big-tables

Name big_tables

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Server Command Options

532

Enable large result sets by saving all temporary sets in files. This option prevents most “table full”
errors, but also slows down queries for which in-memory tables would suffice. Since MySQL 3.23.2,
the server is able to handle large result sets automatically by using memory for small temporary
tables and switching to disk tables where necessary.

• --bind-address=addr

Command-Line Format --bind-address=addr

Name bind_address

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default *

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound
to a single address, but it is possible for an address to map onto multiple network interfaces. To
specify an address, use the --bind-address=addr option at server startup, where addr is an
IPv4 or IPv6 address or a host name. If addr is a host name, the server resolves the name to an IP
address and binds to that address.

The server treats different types of addresses as follows:

• If the address is *, the server accepts TCP/IP connections on all server host IPv6 and IPv4
interfaces if the server host supports IPv6, or accepts TCP/IP connections on all IPv4 addresses
otherwise. Use this address to permit both IPv4 and IPv6 connections on all server interfaces. This
value is the default.

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4
interfaces.

• If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces.

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that
address, in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1,
clients can connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

If you intend to bind the server to a specific address, be sure that the mysql.user grant table
contains an account with administrative privileges that you can use to connect to that address.
Otherwise, you will not be able to shut down the server. For example, if you bind the server to *, you
can connect to it using all existing accounts. But if you bind the server to ::1, it accepts connections
only on that address. In that case, first make sure that the 'root'@'::1' account is present in the
mysql.user table so you can still connect to the server to shut it down.

• --binlog-format={ROW|STATEMENT|MIXED}

Command-Line Format --binlog-format=format

Name binlog_formatSystem Variable

Variable
Scope

Global, Session

Server Command Options

533

Dynamic
Variable

Yes

Type enumeration

Default STATEMENT

ROW

STATEMENT

Permitted Values (<=
5.7.6)

Valid
Values

MIXED

Type enumeration

Default ROW

ROW

STATEMENT

Permitted Values (>=
5.7.7)

Valid
Values

MIXED

Specify whether to use row-based, statement-based, or mixed replication. Statement-based is the
default in MySQL 5.7. See Section 17.2.1, “Replication Formats”.

Under some conditions, changing this variable at runtime is not possible, or causes replication to fail.
See Section 5.2.4.2, “Setting The Binary Log Format”, for more information.

Setting the binary logging format without enabling binary logging sets the binlog_format global
system variable and logs a warning.

• --bootstrap

Deprecated 5.7.6

Command-Line Format --bootstrap

This option is used by the mysql_install_db program to create the MySQL privilege tables
without having to start a full MySQL server.

Note

mysql_install_db is deprecated as of MySQL 5.7.6 because its
functionality has been integrated into mysqld, the MySQL server.
Consequently, the --bootstrap server option that mysql_install_db
passes to mysqld is also deprecated. To initialize a MySQL installation as of
MySQL 5.7.6, invoke mysqld with the --initialize or --initialize-
insecure option. For more information, see Section 2.10.1.1, “Initializing
the Data Directory Manually Using mysqld”. mysql_install_db and the --
bootstrap server option will be removed in a future MySQL release.

--bootstrap is mutually exclusive with --daemonize, --initialize, and --initialize-
insecure.

Global transaction identifiers (GTIDs) are automatically disabled whenever --bootstrap is used
(Bug #13992602). See Section 17.1.3, “Replication with Global Transaction Identifiers”.

When the server operates in bootstap mode, some functionality is unavailable that limits the
statements permitted in any file named by the --init-file option. For more information, see the
description of that option. In addition, the disabled_storage_engines system variable has no
effect.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Server Command Options

534

Name character_sets_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --character-set-client-handshake

Command-Line Format --character-set-client-handshake

Type booleanPermitted Values

Default TRUE

Do not ignore character set information sent by the client. To ignore client information and use the
default server character set, use --skip-character-set-client-handshake; this makes
MySQL behave like MySQL 4.0.

• --character-set-filesystem=charset_name

Command-Line Format --character-set-filesystem=name

Name character_set_filesystem

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default binary

The file system character set. This option sets the character_set_filesystem system variable.

• --character-set-server=charset_name, -C charset_name

Command-Line Format --character-set-server

Name character_set_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1

Use charset_name as the default server character set. See Section 10.5, “Character Set
Configuration”. If you use this option to specify a nondefault character set, you should also use --
collation-server to specify the collation.

• --chroot=dir_name, -r dir_name

Command-Line Format --chroot=dir_name

Permitted Values Type directory name

Server Command Options

535

Put the mysqld server in a closed environment during startup by using the chroot() system call.
This is a recommended security measure. Use of this option somewhat limits LOAD DATA INFILE
and SELECT ... INTO OUTFILE.

• --collation-server=collation_name

Command-Line Format --collation-server

Name collation_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1_swedish_ci

Use collation_name as the default server collation. See Section 10.5, “Character Set
Configuration”.

• --console

Command-Line Format --console

Platform Specific Windows

(Windows only.) Write error log messages to stderr and stdout even if --log-error is
specified. mysqld does not close the console window if this option is used.

If both --log-error and --console are specified, --console takes precedence. The server
writes to the console, but not to the log file. (In MySQL 5.5 and 5.6, the precedence is reversed: --
log-error causes --console to be ignored.)

• --core-file

Command-Line Format --core-file

Type booleanPermitted Values

Default OFF

Write a core file if mysqld dies. The name and location of the core file is system dependent. On
Linux, a core file named core.pid is written to the current working directory of the process, which
for mysqld is the data directory. pid represents the process ID of the server process. On OS
X, a core file named core.pid is written to the /cores directory. On Solaris, use the coreadm
command to specify where to write the core file and how to name it.

For some systems, to get a core file you must also specify the --core-file-size option to
mysqld_safe. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”. On some
systems, such as Solaris, you do not get a core file if you are also using the --user option. There
might be additional restrictions or limitations. For example, it might be necessary to execute ulimit
-c unlimited before starting the server. Consult your system documentation.

• --daemonize

Introduced 5.7.6

Command-Line Format --daemonize[={OFF|ON}]

Type booleanPermitted Values

Default OFF

Server Command Options

536

This option causes the server to run as a traditional, forking daemon, permitting it to work with
operating systems that use systemd for process control. For more information, see Section 2.5.10,
“Managing MySQL Server with systemd”.

--daemonize is mutually exclusive with --bootstrap, --initialize, and --initialize-
insecure.

• --datadir=dir_name, -h dir_name

Command-Line Format --datadir=dir_name

Name datadir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to the data directory.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Name debug

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values (Unix)

Default d:t:i:o,/tmp/mysqld.trace

Type stringPermitted Values
(Windows) Default d:t:i:O,\mysqld.trace

If MySQL is configured with the -DWITH_DEBUG=1 CMake option, you can use this option to get a
trace file of what mysqld is doing. A typical debug_options string is d:t:o,file_name. The
default is d:t:i:o,/tmp/mysqld.trace on Unix and d:t:i:O,\mysqld.trace on Windows.

Using -DWITH_DEBUG=1 to configure MySQL with debugging support enables you to use the --
debug="d,parser_debug" option when you start the server. This causes the Bison parser that
is used to process SQL statements to dump a parser trace to the server's standard error output.
Typically, this output is written to the error log.

This option may be given multiple times. Values that begin with + or - are added to or subtracted
from the previous value. For example, --debug=T --debug=+P sets the value to P:T.

For more information, see Section 24.5.3, “The DBUG Package”.

• --debug-sync-timeout[=N]

Command-Line Format --debug-sync-timeout[=#]

Permitted Values Type integer

Controls whether the Debug Sync facility for testing and debugging is enabled. Use of Debug
Sync requires that MySQL be configured with the -DENABLE_DEBUG_SYNC=1 CMake option (see
Section 2.9.4, “MySQL Source-Configuration Options”). If Debug Sync is not compiled in, this option

Server Command Options

537

is not available. The option value is a timeout in seconds. The default value is 0, which disables
Debug Sync. To enable it, specify a value greater than 0; this value also becomes the default timeout
for individual synchronization points. If the option is given without a value, the timeout is set to 300
seconds.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• --default-authentication-plugin=plugin_name

Removed 5.7.2

Command-Line Format --default-authentication-plugin=plugin_name

Type enumeration

Default mysql_native_password

mysql_native_password

Permitted Values

Valid
Values sha256_password

This option sets the default authentication plugin. It was removed in MySQL 5.7.2 and replaced by
the default_authentication_plugin system variable. The variable is used the same way as
the option at server startup, but also enables the default plugin value to be inspected as runtime. For
usage details, see the description of default_authentication_plugin.

• --default-storage-engine=type

Command-Line Format --default-storage-engine=name

Name default_storage_engine

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values

Default InnoDB

Set the default storage engine for tables. See Chapter 15, Alternative Storage Engines. This option
sets the storage engine for permanent tables only. To set the storage engine for TEMPORARY tables,
set the default_tmp_storage_engine system variable.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server will not start.

• --default-time-zone=timezone

Command-Line Format --default-time-zone=name

Permitted Values Type string

Set the default server time zone. This option sets the global time_zone system variable. If this
option is not given, the default time zone is the same as the system time zone (given by the value of
the system_time_zone system variable.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html

Server Command Options

538

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqld normally reads the [mysqld] group. If the --defaults-group-
suffix=_other option is given, mysqld also reads the [mysqld_other] group.

• --delay-key-write[={OFF|ON|ALL}]

Command-Line Format --delay-key-write[=name]

Name delay_key_write

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default ON

ON

OFF

Permitted Values

Valid
Values

ALL

Specify how to use delayed key writes. Delayed key writing causes key buffers not to be flushed
between writes for MyISAM tables. OFF disables delayed key writes. ON enables delayed key writes
for those tables that were created with the DELAY_KEY_WRITE option. ALL delays key writes for
all MyISAM tables. See Section 8.12.2, “Tuning Server Parameters”, and Section 15.2.1, “MyISAM
Startup Options”.

Note

If you set this variable to ALL, you should not use MyISAM tables from within
another program (such as another MySQL server or myisamchk) when the
tables are in use. Doing so leads to index corruption.

• --des-key-file=file_name

Command-Line Format --des-key-file=file_name

Read the default DES keys from this file. These keys are used by the DES_ENCRYPT() and
DES_DECRYPT() functions.

• --enable-named-pipe

Command-Line Format --enable-named-pipe

Platform Specific Windows

Enable support for named pipes. This option applies only on Windows.

• --event-scheduler[=value]

Command-Line Format --event-scheduler[=value]

System Variable Name event_scheduler

Server Command Options

539

Variable
Scope

Global

Dynamic
Variable

Yes

Type enumeration

Default OFF

ON

OFF

Permitted Values

Valid
Values

DISABLED

Enable or disable, and start or stop, the event scheduler.

For detailed information, see The --event-scheduler Option [2671].

• --exit-info[=flags], -T [flags]

Command-Line Format --exit-info[=flags]

Permitted Values Type integer

This is a bit mask of different flags that you can use for debugging the mysqld server. Do not use
this option unless you know exactly what it does!

• --external-locking

Command-Line Format --external-locking

Type booleanPermitted Values

Default FALSE

Enable external locking (system locking), which is disabled by default. If you use this option on a
system on which lockd does not fully work (such as Linux), it is easy for mysqld to deadlock.

To disable external locking explicitly, use --skip-external-locking.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.5, “External Locking”.

• --flush

Command-Line Format --flush

Name flush

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write
of all changes to disk only after each SQL statement and lets the operating system handle the
synchronizing to disk. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

• --gdb

Command-Line Format --gdb

Server Command Options

540

Type booleanPermitted Values

Default FALSE

Install an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and
disable stack tracing and core file handling. See Section 24.5, “Debugging and Porting MySQL”.

• --general-log[={0|1}]

Command-Line Format --general-log

Name general_log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Specify the initial general query log state. With no argument or an argument of 1, the --general-
log option enables the log. If omitted or given with an argument of 0, the option disables the log.

• --ignore-db-dir=dir_name

Command-Line Format --ignore-db-dir

Permitted Values Type directory name

This option tells the server to ignore the given directory name for purposes of the SHOW DATABASES
statement or INFORMATION_SCHEMA tables. For example, if a MySQL configuration locates the data
directory at the root of a file system on Unix, the system might create a lost+found directory there
that the server should ignore. Starting the server with --ignore-db-dir=lost+found causes that
name not to be listed as a database.

To specify more than one name, use this option multiple times, once for each name. Specifying the
option with an empty value (that is, as --ignore-db-dir=) resets the directory list to the empty
list.

Instances of this option given at server startup are used to set the ignore_db_dirs system
variable.

• --initialize

Introduced 5.7.6

Command-Line Format --initialize

Type booleanPermitted Values

Default OFF

This option is used to initialize a MySQL installation by creating the data directory and populating the
tables in the mysql system database. For more information, see Section 2.10.1.1, “Initializing the
Data Directory Manually Using mysqld”.

When the server is started with --initialize, some functionality is unavailable that limits the
statements permitted in any file named by the --init-file option. For more information, see the
description of that option. In addition, the disabled_storage_engines system variable has no
effect.

Server Command Options

541

In MySQL 5.7.7 and earlier, global transaction identifiers (GTIDs) were automatically disabled
whenever --initialize was enabled. In MySQL 5.7.8 and later GTIDs are not disabled when --
initialize is enabled.

--initialize is mutually exclusive with --bootstrap and --daemonize.

• --initialize-insecure

Introduced 5.7.6

Command-Line Format --initialize-insecure

Type booleanPermitted Values

Default OFF

This option is used to initialize a MySQL installation by creating the data directory and populating the
tables in the mysql system database. This option implies --initialize. For more information,
see the description of that option, and Section 2.10.1.1, “Initializing the Data Directory Manually
Using mysqld”.

--initialize-insecure is mutually exclusive with --bootstrap and --daemonize.

• --init-file=file_name

Command-Line Format --init-file=file_name

Name init_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Read SQL statements from this file at startup. Each statement must be on a single line and should
not include comments.

If the server is started with any of the --bootstrap, --initialize, or --initialize-
insecure options, it operates in bootstap mode and some functionality is unavailable that limits the
statements permitted in the file. These include statements that relate to account management (such
as CREATE USER or GRANT), replication, and global transaction identifiers. See Section 17.1.3,
“Replication with Global Transaction Identifiers”.

• --innodb-xxx

Set an option for the InnoDB storage engine. The InnoDB options are listed in Section 14.11,
“InnoDB Startup Options and System Variables”.

• --install [service_name]

Command-Line Format --install [service_name]

Platform Specific Windows

(Windows only) Install the server as a Windows service that starts automatically during Windows
startup. The default service name is MySQL if no service_name value is given. For more
information, see Section 2.3.5.8, “Starting MySQL as a Windows Service”.

Server Command Options

542

Note

If the server is started with the --defaults-file and --install options,
--install must be first.

• --install-manual [service_name]

Command-Line Format --install-manual [service_name]

Platform Specific Windows

(Windows only) Install the server as a Windows service that must be started manually. It does not
start automatically during Windows startup. The default service name is MySQL if no service_name
value is given. For more information, see Section 2.3.5.8, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install-manual
options, --install-manual must be first.

• --language=lang_name, -L lang_name

Deprecated 5.6.1, by lc-messages-dir

Command-Line Format --language=name

Name language

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /usr/local/mysql/share/mysql/english/

The language to use for error messages. lang_name can be given as the language name or as the
full path name to the directory where the language files are installed. See Section 10.2, “Setting the
Error Message Language”.

--lc-messages-dir and --lc-messages should be used rather than --language, which is
deprecated (and handled as an alias for --lc-messages-dir). The --language option will be
removed in a future MySQL release.

• --large-pages

Command-Line Format --large-pages

Name large_pages

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Linux

Type booleanPermitted Values (Linux)

Default FALSE

Some hardware/operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and

Server Command Options

543

operating system. Applications that perform a lot of memory accesses may obtain performance
improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

MySQL supports the Linux implementation of large page support (which is called HugeTLB in Linux).
See Section 8.12.5.2, “Enabling Large Page Support”. For Solaris support of large pages, see the
description of the --super-large-pages option.

--large-pages is disabled by default.

• --lc-messages=locale_name

Command-Line Format --lc-messages=name

Name lc_messages

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of --lc-messages-dir to produce the location for
the error message file. See Section 10.2, “Setting the Error Message Language”.

• --lc-messages-dir=dir_name

Command-Line Format --lc-messages-dir=dir_name

Name lc_messages_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where error messages are located. The server uses the value together with the value
of --lc-messages to produce the location for the error message file. See Section 10.2, “Setting the
Error Message Language”.

• --local-service

Command-Line Format --local-service

(Windows only) A --local-service option following the service name causes the server to run
using the LocalService Windows account that has limited system privileges. This account is
available only for Windows XP or newer. If both --defaults-file and --local-service are
given following the service name, they can be in any order. See Section 2.3.5.8, “Starting MySQL as
a Windows Service”.

• --log-error[=file_name]

Command-Line Format --log-error[=file_name]

Name log_errorSystem Variable

Variable
Scope

Global

Server Command Options

544

Dynamic
Variable

No

Permitted Values Type file name

Log errors and startup messages to this file. See Section 5.2.2, “The Error Log”. If you omit the
file name, MySQL uses host_name.err. If the file name has no extension, the server adds an
extension of .err.

• --log-isam[=file_name]

Command-Line Format --log-isam[=file_name]

Permitted Values Type file name

Log all MyISAM changes to this file (used only when debugging MyISAM).

• --log-output=value,...

Command-Line Format --log-output=name

Name log_output

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type set

Default FILE

TABLE

FILE

Permitted Values

Valid
Values

NONE

This option determines the destination for general query log and slow query log output. The option
value can be given as one or more of the words TABLE, FILE, or NONE. TABLE select logging to the
general_log and slow_log tables in the mysql database as a destination. FILE selects logging
to log files as a destination. NONE disables logging. If NONE is present in the option value, it takes
precedence over any other words that are present. TABLE and FILE can both be given to select to
both log output destinations.

This option selects log output destinations, but does not enable log output. To do that, use the --
general_log and --slow_query_log options. For FILE logging, the --general_log_file
and -slow_query_log_file options determine the log file location. For more information, see
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”.

• --log-queries-not-using-indexes

Command-Line Format --log-queries-not-using-indexes

Name log_queries_not_using_indexes

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Server Command Options

545

If you are using this option with the slow query log enabled, queries that are expected to retrieve all
rows are logged. See Section 5.2.5, “The Slow Query Log”. This option does not necessarily mean
that no index is used. For example, a query that uses a full index scan uses an index but would be
logged because the index would not limit the number of rows.

• --log-raw

Command-Line Format --log-raw[=value]

Type booleanPermitted Values

Default OFF

Passwords in certain statements written to the general query log, slow query log, and binary log are
rewritten by the server not to occur literally in plain text. Password rewriting can be suppressed for
the general query log by starting the server with the --log-raw option. This option may be useful
for diagnostic purposes, to see the exact text of statements as received by the server, but for security
reasons is not recommended for production use.

If a query rewrite plugin is installed, the --log-raw option affects statement logging as follows:

• Without --log-raw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

• With --log-raw, the server logs the original statement as received.

For more information, see Section 6.1.2.3, “Passwords and Logging”.

• --log-short-format

Command-Line Format --log-short-format

Type booleanPermitted Values

Default FALSE

Log less information to the slow query log, if it has been activated.

• --log-slow-admin-statements

Removed 5.7.1

Command-Line Format --log-slow-admin-statements (5.7.0)

Type booleanPermitted Values

Default OFF

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP
INDEX, OPTIMIZE TABLE, and REPAIR TABLE.

This command-line option was removed in MySQL 5.7.1 and replaced by the
log_slow_admin_statements system variable. The system variable can be set on the command
line or in option files the same way as the option, so there is no need for any changes at server
startup, but the system variable also makes it possible to examine or set the value at runtime.

• --log-tc=file_name

Command-Line Format --log-tc=file_name

Type file namePermitted Values

Default tc.log

Server Command Options

546

The name of the memory-mapped transaction coordinator log file (for XA transactions that affect
multiple storage engines when the binary log is disabled). The default name is tc.log. The file is
created under the data directory if not given as a full path name. This option is unused.

• --log-tc-size=size

Command-Line Format --log-tc-size=#

Type integer

Default 24576

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 24576

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The size in bytes of the memory-mapped transaction coordinator log. The default size is 24KB.

• --log-warnings[=level], -W [level]

Deprecated 5.7.2

Command-Line Format --log-warnings[=#]

Name log_warnings

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (32-bit
platforms, <= 5.7.1)

Max
Value

4294967295

Type integer

Default 2

Min
Value

0

Permitted Values (32-bit
platforms, >= 5.7.2)

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.7.1)

Max
Value

18446744073709551615

Type integerPermitted Values (64-bit
platforms, >= 5.7.2) Default 2

Server Command Options

547

Min
Value

0

Max
Value

18446744073709551615

Note

As of MySQL 5.7.2, the log_error_verbosity system variable is
preferred over, and should be used instead of, the --log-warnings
option or log_warnings system variable. For more information, see the
descriptions of log_error_verbosity and log_warnings. The --log-
warnings command-line option and log_warnings system variable are
deprecated and will be removed in a future MySQL release.

Print out warnings such as Aborted connection... to the error log. This option is enabled by
default (the default is 1 before MySQL 5.7.2, 2 as of 5.7.2). To disable it, use --log-warnings=0.
Specifying the option without a level value increments the current value by 1. Enabling this option
by setting it greater than 0 is recommended, for example, if you use replication (you get more
information about what is happening, such as messages about network failures and reconnections).
If the value is greater than 1, aborted connections are written to the error log, and access-denied
errors for new connection attempts are written. See Section B.5.2.11, “Communication Errors and
Aborted Connections”.

If a slave server was started with --log-warnings enabled, the slave prints messages to the error
log to provide information about its status, such as the binary log and relay log coordinates where it
starts its job, when it is switching to another relay log, when it reconnects after a disconnect, and so
forth. The server logs messages about statements that are unsafe for statement-based logging if --
log-warnings is greater than 0.

• --low-priority-updates

Command-Line Format --low-priority-updates

Name low_priority_updates

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

Give table-modifying operations (INSERT, REPLACE, DELETE, UPDATE) lower priority than selects.
This can also be done using {INSERT | REPLACE | DELETE | UPDATE} LOW_PRIORITY ...
to lower the priority of only one query, or by SET LOW_PRIORITY_UPDATES=1 to change the priority
in one thread. This affects only storage engines that use only table-level locking (MyISAM, MEMORY,
MERGE). See Section 8.11.2, “Table Locking Issues”.

• --min-examined-row-limit=number

Command-Line Format --min-examined-row-limit=#

Name min_examined_row_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Server Command Options

548

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

When this option is set, queries which examine fewer than number rows are not written to the slow
query log. The default is 0.

• --memlock

Command-Line Format --memlock

Type booleanPermitted Values

Default FALSE

Lock the mysqld process in memory. This option might help if you have a problem where the
operating system is causing mysqld to swap to disk.

--memlock works on systems that support the mlockall() system call; this includes Solaris,
most Linux distributions that use a 2.4 or newer kernel, and perhaps other Unix systems. On Linux
systems, you can tell whether or not mlockall() (and thus this option) is supported by checking to
see whether or not it is defined in the system mman.h file, like this:

shell> grep mlockall /usr/include/sys/mman.h

If mlockall() is supported, you should see in the output of the previous command something like
the following:

extern int mlockall (int __flags) __THROW;

Important

Use of this option may require you to run the server as root, which, for
reasons of security, is normally not a good idea. See Section 6.1.5, “How to
Run MySQL as a Normal User”.

On Linux and perhaps other systems, you can avoid the need to run the
server as root by changing the limits.conf file. See the notes regarding
the memlock limit in Section 8.12.5.2, “Enabling Large Page Support”.

You must not try to use this option on a system that does not support the
mlockall() system call; if you do so, mysqld will very likely crash as soon
as you try to start it.

• --myisam-block-size=N

Command-Line Format --myisam-block-size=#

Server Command Options

549

Type integer

Default 1024

Min
Value

1024

Permitted Values

Max
Value

16384

The block size to be used for MyISAM index pages.

• --myisam-recover-options[=option[,option]...]]

Command-Line Format --myisam-recover-options[=name]

Type enumeration

Default OFF

OFF

DEFAULT

BACKUP

FORCE

Permitted Values

Valid
Values

QUICK

Set the MyISAM storage engine recovery mode. The option value is any combination of the values
of OFF, DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by
commas. Specifying the option with no argument is the same as specifying DEFAULT, and specifying
with an explicit value of "" disables recovery (same as a value of OFF). If recovery is enabled, each
time mysqld opens a MyISAM table, it checks whether the table is marked as crashed or was not
closed properly. (The last option works only if you are running with external locking disabled.) If this
is the case, mysqld runs a check on the table. If the table was corrupted, mysqld attempts to repair
it.

The following options affect how the repair works.

Option Description

OFF No recovery.

DEFAULT Recovery without backup, forcing, or quick checking.

BACKUP If the data file was changed during recovery, save a backup of the
tbl_name.MYD file as tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than one row from the .MYD file.

QUICK Do not check the rows in the table if there are not any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If you
want to be able to recover from most problems without user intervention, you should use the options
BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it keeps the
old data file as a backup so that you can later examine what happened.

See Section 15.2.1, “MyISAM Startup Options”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults

Server Command Options

550

is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.)

• --old-alter-table

Command-Line Format --old-alter-table

Name old_alter_table

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When this option is given, the server does not use the optimized method of processing an ALTER
TABLE operation. It reverts to using a temporary table, copying over the data, and then renaming
the temporary table to the original, as used by MySQL 5.0 and earlier. For more information on the
operation of ALTER TABLE, see Section 13.1.6, “ALTER TABLE Syntax”.

• --old-style-user-limits

Command-Line Format --old-style-user-limits

Type booleanPermitted Values

Default FALSE

Enable old-style user limits. (Before MySQL 5.0.3, account resource limits were counted separately
for each host from which a user connected rather than per account row in the user table.) See
Section 6.3.4, “Setting Account Resource Limits”.

• --open-files-limit=count

Command-Line Format --open-files-limit=#

Name open_files_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 5000, with possible adjustment

Min
Value

0

Permitted Values

Max
Value

platform dependent

Changes the number of file descriptors available to mysqld. You should try increasing the value
of this option if mysqld gives you the error Too many open files. mysqld uses the option
value to reserve descriptors with setrlimit(). Internally, the maximum value for this option is the
maximum unsigned integer value, but the actual maximum is platform dependent. If the requested
number of file descriptors cannot be allocated, mysqld writes a warning to the error log.

mysqld may attempt to allocate more than the requested number of descriptors (if they are
available), using the values of max_connections and table_open_cache to estimate whether
more descriptors will be needed.

Server Command Options

551

On Unix, the value cannot be set less than ulimit -n.

• --partition[=value]

Command-Line Format --partition

Disabled by skip-partition

Type booleanPermitted Values

Default ON

Enables or disables user-defined partitioning support in the MySQL Server.

• --performance-schema-xxx

Configure a Performance Schema option. For details, see Section 21.11, “Performance Schema
Command Options”.

• --pid-file=file_name

Command-Line Format --pid-file=file_name

Name pid_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The path name of the process ID file. The server creates the file in the data directory unless an
absolute path name is given to specify a different directory. This file is used by other programs such
as mysqld_safe to determine the server's process ID.

• --plugin-xxx

Specifies an option that pertains to a server plugin. For example, many storage engines can be
built as plugins, and for such engines, options for them can be specified with a --plugin prefix.
Thus, the --innodb_file_per_table option for InnoDB can be specified as --plugin-
innodb_file_per_table.

For boolean options that can be enabled or disabled, the --skip prefix and other alternative formats
are supported as well (see Section 4.2.5, “Program Option Modifiers”). For example, --skip-
plugin-innodb_file_per_table disables innodb_file_per_table.

The rationale for the --plugin prefix is that it enables plugin options to be specified unambiguously
if there is a name conflict with a built-in server option. For example, were a plugin writer to name a
plugin “sql” and implement a “mode” option, the option name might be --sql-mode, which would
conflict with the built-in option of the same name. In such cases, references to the conflicting name
are resolved in favor of the built-in option. To avoid the ambiguity, users can specify the plugin option
as --plugin-sql-mode. Use of the --plugin prefix for plugin options is recommended to avoid
any question of ambiguity.

• --plugin-load=plugin_list

Command-Line Format --plugin-load=plugin_list

Permitted Values Type string

This option tells the server to load the named plugins at startup. The option value is a semicolon-
separated list of name=plugin_library pairs. Each name is the name of the plugin, and

Server Command Options

552

plugin_library is the name of the shared library that contains the plugin code. Each library file
must be located in the directory named by the plugin_dir system variable. For example, if plugins
named myplug1 and myplug2 have library files myplug1.so and myplug2.so, use this option to
load them at startup:

shell> mysqld --plugin-load="myplug1=myplug1.so;myplug2=myplug2.so"

Quotes are used around the argument value here because semicolon (;) is interpreted as a
special character by some command interpreters. (Unix shells treat it as a command terminator, for
example.)

If multiple --plugin-load options are given, only the last one is used. Additional plugins to load
may be specified using --plugin-load-add options.

If a plugin library is named without any preceding plugin name, the server loads all plugins in the
library.

Each plugin is loaded for a single invocation of mysqld only. After a restart, the plugin is not loaded
unless --plugin-load is used again. This is in contrast to INSTALL PLUGIN, which adds an entry
to the mysql.plugins table to cause the plugin to be loaded for every normal server startup.

Under normal startup, the server determines which plugins to load by reading the mysql.plugins
system table. If the server is started with the --skip-grant-tables option, it does not consult the
mysql.plugins table and does not load plugins listed there. --plugin-load enables plugins to
be loaded even when --skip-grant-tables is given. --plugin-load also enables plugins to
be loaded at startup under configurations when plugins cannot be loaded at runtime.

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

• --plugin-load-add=plugin_list

Command-Line Format --plugin-load-add=plugin_list

Permitted Values Type string

This option complements the --plugin-load option. --plugin-load-add adds a plugin or
plugins to the set of plugins to be loaded at startup. The argument format is the same as for --
plugin-load. --plugin-load-add can be used to avoid specifying a large set of plugins as a
single long unwieldy --plugin-load argument.

--plugin-load-add can be given in the absence of --plugin-load, but any instance of --
plugin-load-add that appears before --plugin-load. has no effect because --plugin-load
resets the set of plugins to load. In other words, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to this option:

--plugin-load="x;y"

But these options:

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

Server Command Options

553

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

• --port=port_num, -P port_num

Command-Line Format --port=#

Name port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3306

Min
Value

0

Permitted Values

Max
Value

65535

The port number to use when listening for TCP/IP connections. On Unix and Unix-like systems, the
port number must be 1024 or higher unless the server is started by the root system user.

• --port-open-timeout=num

Command-Line Format --port-open-timeout=#

Type integerPermitted Values

Default 0

On some systems, when the server is stopped, the TCP/IP port might not become available
immediately. If the server is restarted quickly afterward, its attempt to reopen the port can fail. This
option indicates how many seconds the server should wait for the TCP/IP port to become free if it
cannot be opened. The default is not to wait.

• --print-defaults

Print the program name and all options that it gets from option files.

• --remove [service_name]

Command-Line Format --remove [service_name]

Platform Specific Windows

(Windows only) Remove a MySQL Windows service. The default service name is MySQL if no
service_name value is given. For more information, see Section 2.3.5.8, “Starting MySQL as a
Windows Service”.

• --safe-user-create

Command-Line Format --safe-user-create

Type booleanPermitted Values

Default FALSE

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement
unless the user has the INSERT privilege for the mysql.user table or any column in the table. If

Server Command Options

554

you want a user to have the ability to create new users that have those privileges that the user has
the right to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT
statement to give privileges to other users.

• --secure-auth

Deprecated 5.7.5

Command-Line Format --secure-auth

Name secure_auth

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type boolean

Default ON

OFF

Permitted Values (<=
5.7.4)

Valid
Values ON

Type boolean

Default ON

Permitted Values (>=
5.7.5)

Valid
Values

ON

This option causes the server to block connections by clients that attempt to use accounts that have
passwords stored in the old (pre-4.1) format. Use it to prevent all use of passwords employing the old
format (and hence insecure communication over the network).

As of MySQL 5.7.5, this option is deprecated and will be removed in a future MySQL release. It
is always enabled and attempting to disable it (--skip-secure-auth, --secure-auth=0)
produces an error. Before MySQL 5.7.5, this option is enabled by default but can be disabled.

Server startup fails with an error if this option is enabled and the privilege tables are in pre-4.1
format. See Section B.5.2.4, “Client does not support authentication protocol”.

The mysql client also has a --secure-auth option, which prevents connections to a server if the
server requires a password in old format for the client account.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them
is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• --secure-file-priv=dir_name

Command-Line Format --secure-file-priv=dir_name

System Variable Name secure_file_priv

Server Command Options

555

Variable
Scope

Global

Dynamic
Variable

No

Type string

Default empty

empty

Permitted Values (<=
5.7.5)

Valid
Values dirname

Type string

Default platform-specific

empty

dirname

Permitted Values (>=
5.7.6)

Valid
Values

NULL

This option sets the secure_file_priv system variable, which is used to limit the effect of data
import and export operations, such as those performed by the LOAD DATA and SELECT ... INTO
OUTFILE statements and the LOAD_FILE() function. For more information, see the description of
secure_file_priv.

• --shared-memory

Command-Line Format --shared_memory[={0,1}]

Name shared_memory

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type booleanPermitted Values

Default FALSE

Enable shared-memory connections by local clients. This option is available only on Windows.

• --shared-memory-base-name=name

Command-Line Format --shared_memory_base_name=name

Name shared_memory_base_name

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type stringPermitted Values

Default MYSQL

The name of shared memory to use for shared-memory connections. This option is available only on
Windows. The default name is MYSQL. The name is case sensitive.

• --skip-concurrent-insert

Server Command Options

556

Turn off the ability to select and insert at the same time on MyISAM tables. (This is to be used only if
you think you have found a bug in this feature.) See Section 8.11.3, “Concurrent Inserts”.

• --skip-event-scheduler

Command-Line Format --skip-event-scheduler

 --disable-event-scheduler

Turns the Event Scheduler OFF. This is not the same as disabling the Event Scheduler, which
requires setting --event-scheduler=DISABLED; see The --event-scheduler Option [2671],
for more information.

• --skip-grant-tables

This option causes the server to start without using the privilege system at all, which gives anyone
with access to the server unrestricted access to all databases. You can cause a running server to
start using the grant tables again by executing mysqladmin flush-privileges or mysqladmin
reload command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES statement
after connecting to the server. This option also suppresses loading of user-defined functions (UDFs),
scheduled events, and plugins that were installed with the INSTALL PLUGIN statement. To cause
plugins to be loaded anyway, use the --plugin-load option. --skip-grant-tables also
causes the disabled_storage_engines system variable to have no effect.

FLUSH PRIVILEGES might be executed implicitly by other actions performed after startup. For
example, mysql_upgrade flushes the privileges during the upgrade procedure.

• --skip-host-cache

Disable use of the internal host cache for faster name-to-IP resolution. In this case, the server
performs a DNS lookup every time a client connects. See Section 8.12.6.2, “DNS Lookup
Optimization and the Host Cache”.

Use of --skip-host-cache is similar to setting the host_cache_size system variable to 0, but
host_cache_size is more flexible because it can also be used to resize, enable, or disable the
host cache at runtime, not just at server startup.

If you start the server with --skip-host-cache, that does not prevent changes to the value of
host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

• --skip-innodb

Disable the InnoDB storage engine. In this case, because the default storage engine is InnoDB,
the server will not start unless you also use --default-storage-engine and --default-tmp-
storage-engine to set the default to some other engine for both permanent and TEMPORARY
tables.

As of MySQL 5.7.5, the InnoDB storage engine can no longer be disabled, and the --skip-
innodb option is deprecated and has no effect. Its use results in a warning. This option will be
removed in a future MySQL release.

• --skip-name-resolve

Do not resolve host names when checking client connections. Use only IP addresses. If you use this
option, all Host column values in the grant tables must be IP addresses. See Section 8.12.6.2, “DNS
Lookup Optimization and the Host Cache”.

Depending on the network configuration of your system and the Host values for your accounts,
clients may need to connect using an explicit --host option, such as --host=127.0.0.1 or --
host=::1.

Server Command Options

557

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account.
However, this fails if the server is run with the --skip-name-resolve option, so make sure that an
account exists that can accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

• --skip-networking

Do not listen for TCP/IP connections at all. All interaction with mysqld must be made using
named pipes or shared memory (on Windows) or Unix socket files (on Unix). This option is highly
recommended for systems where only local clients are permitted. See Section 8.12.6.2, “DNS
Lookup Optimization and the Host Cache”.

• --skip-partition

Command-Line Format --skip-partition

 --disable-partition

Disables user-defined partitioning. Partitioned tables can be seen using SHOW TABLES
or by querying the INFORMATION_SCHEMA.TABLES table, but cannot be created or
modified, nor can data in such tables be accessed. All partition-specific columns in the
INFORMATION_SCHEMA.PARTITIONS table display NULL.

Since DROP TABLE removes table definition (.frm) files, this statement works on partitioned tables
even when partitioning is disabled using the option. The statement, however, does not remove
partition definitions associated with partitioned tables in such cases. For this reason, you should
avoid dropping partitioned tables with partitioning disabled, or take action to remove orphaned .par
files manually (if present).

Note

As of MySQL 5.7.6, partition definition (.par) files are no longer created.
Instead, partition definitions are stored in the internal data dictionary.

• --ssl*

Options that begin with --ssl specify whether to permit clients to connect using SSL and indicate
where to find SSL keys and certificates. See Section 6.3.12.5, “SSL Command Options”.

• --standalone

Command-Line Format --standalone

Platform Specific Windows

Available on Windows only; instructs the MySQL server not to run as a service.

• --super-large-pages

Command-Line Format --super-large-pages

Platform Specific Solaris

Type booleanPermitted Values
(Solaris) Default FALSE

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available

Server Command Options

558

for recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or
--skip-super-large-pages option.

• --symbolic-links, --skip-symbolic-links

Command-Line Format --symbolic-links

Enable or disable symbolic link support. On Unix, enabling symbolic links means that you can link a
MyISAM index file or data file to another directory with the INDEX DIRECTORY or DATA DIRECTORY
options of the CREATE TABLE statement. If you delete or rename the table, the files that its symbolic
links point to also are deleted or renamed. See Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”.

This option has no meaning on Windows.

• --skip-show-database

Command-Line Format --skip-show-database

Name skip_show_database

Variable
Scope

Global

System Variable

Dynamic
Variable

No

This option sets the skip_show_database system variable that controls who is permitted to use
the SHOW DATABASES statement. See Section 5.1.4, “Server System Variables”.

• --skip-stack-trace

Command-Line Format --skip-stack-trace

Do not write stack traces. This option is useful when you are running mysqld under a debugger. On
some systems, you also must use this option to get a core file. See Section 24.5, “Debugging and
Porting MySQL”.

• --slow-query-log[={0|1}]

Command-Line Format --slow-query-log

Name slow_query_log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Specify the initial slow query log state. With no argument or an argument of 1, the --slow-query-
log option enables the log. If omitted or given with an argument of 0, the option disables the log.

• --slow-start-timeout=timeout

Command-Line Format --slow-start-timeout=#

Type integerPermitted Values
(Windows) Default 15000

Server Command Options

559

This option controls the Windows service control manager's service start timeout. The value is the
maximum number of milliseconds that the service control manager waits before trying to kill the
windows service during startup. The default value is 15000 (15 seconds). If the MySQL service takes
too long to start, you may need to increase this value. A value of 0 means there is no timeout.

• --socket=path

Command-Line Format --socket={file_name|pipe_name}

Name socket

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default /tmp/mysql.sock

On Unix, this option specifies the Unix socket file to use when listening for local connections. The
default value is /tmp/mysql.sock. If this option is given, the server creates the file in the data
directory unless an absolute path name is given to specify a different directory. On Windows, the
option specifies the pipe name to use when listening for local connections that use a named pipe.
The default value is MySQL (not case sensitive).

• --sql-mode=value[,value[,value...]]

Command-Line Format --sql-mode=name

Name sql_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type set

Default NO_ENGINE_SUBSTITUTION

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

Permitted Values (<=
5.7.4)

Valid
Values

NO_ZERO_DATE

Server Command Options

560

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

Type set

Default ONLY_FULL_GROUP_BY STRICT_TRANS_TABLES
NO_ENGINE_SUBSTITUTION

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

Permitted Values (>=
5.7.5, <= 5.7.6)

Valid
Values

STRICT_TRANS_TABLES

Type set

Default ONLY_FULL_GROUP_BY STRICT_TRANS_TABLES
NO_AUTO_CREATE_USER NO_ENGINE_SUBSTITUTION

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

Permitted Values (5.7.7)

Valid
Values

NO_AUTO_VALUE_ON_ZERO

Server Command Options

561

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

Type set

Default ONLY_FULL_GROUP_BY STRICT_TRANS_TABLES
NO_ZERO_IN_DATE NO_ZERO_DATE
ERROR_FOR_DIVISION_BY_ZERO NO_AUTO_CREATE_USER
NO_ENGINE_SUBSTITUTION

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

Permitted Values (>=
5.7.8)

Valid
Values

STRICT_TRANS_TABLES

Server Command Options

562

Set the SQL mode. See Section 5.1.7, “Server SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the
installation process. For example, mysql_install_db creates a default
option file named my.cnf in the base installation directory. This file contains
a line that sets the SQL mode; see Section 4.4.2, “mysql_install_db —
Initialize MySQL Data Directory”.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

• --sysdate-is-now

Command-Line Format --sysdate-is-now

Type booleanPermitted Values

Default FALSE

SYSDATE() by default returns the time at which it executes, not the time at which the statement
in which it occurs begins executing. This differs from the behavior of NOW(). This option causes
SYSDATE() to be an alias for NOW(). For information about the implications for binary logging and
replication, see the description for SYSDATE() in Section 12.7, “Date and Time Functions” and for
SET TIMESTAMP in Section 5.1.4, “Server System Variables”.

• --tc-heuristic-recover={COMMIT|ROLLBACK}

Command-Line Format --tc-heuristic-recover=name

Type enumeration

Default COMMIT

COMMIT

Permitted Values

Valid
Values ROLLBACK

The type of decision to use in the heuristic recovery process. This option is unused.

• --temp-pool

Command-Line Format --temp-pool

Type booleanPermitted Values

Default TRUE

This option causes most temporary files created by the server to use a small set of names, rather
than a unique name for each new file. This works around a problem in the Linux kernel dealing with
creating many new files with different names. With the old behavior, Linux seems to “leak” memory,
because it is being allocated to the directory entry cache rather than to the disk cache. This option is
ignored except on Linux.

• --transaction-isolation=level

Command-Line Format --transaction-isolation=name

Type enumeration

Default REPEATABLE-READ

READ-UNCOMMITTED

Permitted Values

Valid
Values READ-COMMITTED

Server Command Options

563

REPEATABLE-READ

SERIALIZABLE

Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 13.3.6, “SET TRANSACTION
Syntax”.

The default transaction isolation level can also be set at runtime using the SET TRANSACTION
statement or by setting the tx_isolation system variable.

• --transaction-read-only

Command-Line Format --transaction-read-only

Type booleanPermitted Values

Default OFF

Sets the default transaction access mode. By default, read-only mode is disabled, so the mode is
read/write.

To set the default transaction access mode at runtime, use the SET TRANSACTION statement or set
the tx_read_only system variable. See Section 13.3.6, “SET TRANSACTION Syntax”.

• --tmpdir=dir_name, -t dir_name

Command-Line Format --tmpdir=dir_name

Name tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path of the directory to use for creating temporary files. It might be useful if your default /
tmp directory resides on a partition that is too small to hold temporary tables. This option accepts
several paths that are used in round-robin fashion. Paths should be separated by colon characters
(“:”) on Unix and semicolon characters (“;”) on Windows. If the MySQL server is acting as a
replication slave, you should not set --tmpdir to point to a directory on a memory-based file
system or to a directory that is cleared when the server host restarts. For more information about the
storage location of temporary files, see Section B.5.3.5, “Where MySQL Stores Temporary Files”. A
replication slave needs some of its temporary files to survive a machine restart so that it can replicate
temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost
when the server restarts, replication fails.

• --user={user_name|user_id}, -u {user_name|user_id}

Command-Line Format --user=name

Permitted Values Type string

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

This option is mandatory when starting mysqld as root. The server changes its user ID during its
startup sequence, causing it to run as that particular user rather than as root. See Section 6.1.1,
“Security Guidelines”.

Server System Variables

564

To avoid a possible security hole where a user adds a --user=root option to a my.cnf file
(thus causing the server to run as root), mysqld uses only the first --user option specified
and produces a warning if there are multiple --user options. Options in /etc/my.cnf and
$MYSQL_HOME/my.cnf are processed before command-line options, so it is recommended that you
put a --user option in /etc/my.cnf and specify a value other than root. The option in /etc/
my.cnf is found before any other --user options, which ensures that the server runs as a user
other than root, and that a warning results if any other --user option is found.

• --verbose, -v

Use this option with the --help option for detailed help.

• --version, -V

Display version information and exit.

5.1.4 Server System Variables

The MySQL server maintains many system variables that indicate how it is configured. Each system
variable has a default value. System variables can be set at server startup using options on the
command line or in an option file. Most of them can be changed dynamically while the server is running
by means of the SET statement, which enables you to modify operation of the server without having to
stop and restart it. You can refer to system variable values in expressions.

There are several ways to see the names and values of system variables:

• To see the values that a server will use based on its compiled-in defaults and any option files that it
reads, use this command:

mysqld --verbose --help

• To see the values that a server will use based on its compiled-in defaults, ignoring the settings in any
option files, use this command:

mysqld --no-defaults --verbose --help

• To see the current values used by a running server, use the SHOW VARIABLES statement.

This section provides a description of each system variable. Variables with no version indicated are
present in all MySQL 5.7 releases.

The following table lists all available system variables.

Table 5.2 System Variable Summary

Name Cmd-Line Option File System Var Var Scope Dynamic

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_flush Yes Global Yes

audit_log_format Yes Yes Yes Global No

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_policy Yes Yes Yes Global No

audit_log_rotate_on_sizeYes Yes Yes Global Yes

Server System Variables

565

Name Cmd-Line Option File System Var Var Scope Dynamic

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategy Yes Yes Yes Global No

auto_generate_certs Yes Yes Yes Global No

auto_increment_increment Yes Both Yes

auto_increment_offset Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privileges Yes Global Yes

avoid_temporal_upgradeYes Yes Yes Global Yes

back_log Yes Global No

basedir Yes Yes Yes Global No

big-tables Yes Yes Yes

- Variable:
big_tables

 Yes Both Yes

bind-address Yes Yes No

- Variable:
bind_address

 Yes Global No

binlog_cache_size Yes Yes Yes Global Yes

binlog_checksum Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog_error_action Yes Yes Yes Both Yes

binlog-format Yes Yes Yes

- Variable:
binlog_format

 Yes Both Yes

binlog_group_commit_sync_delayYes Yes Yes Global Yes

binlog_group_commit_sync_no_delay_countYes Yes Yes Global Yes

binlog_gtid_simple_recoveryYes Yes Yes Global No

binlog_max_flush_queue_time Yes Global Yes

binlog_order_commits Yes Global Yes

binlog_row_image Yes Yes Yes Both Yes

binlog_rows_query_log_events Yes Both Yes

binlog_stmt_cache_sizeYes Yes Yes Global Yes

binlogging_impossible_modeYes Yes Yes Both Yes

block_encryption_modeYes Yes Yes Both Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

character_set_client Yes Both Yes

character_set_connection Yes Both Yes

character_set_databasea Yes Both Yes

character-set-
filesystem

Yes Yes Yes

- Variable:
character_set_filesystem

 Yes Both Yes

character_set_results Yes Both Yes

Server System Variables

566

Name Cmd-Line Option File System Var Var Scope Dynamic

character-set-server Yes Yes Yes

- Variable:
character_set_server

 Yes Both Yes

character_set_system Yes Global No

character-sets-dir Yes Yes No

- Variable:
character_sets_dir

 Yes Global No

check_proxy_users Yes Yes Yes Global Yes

collation_connection Yes Both Yes

collation_databaseb Yes Both Yes

collation-server Yes Yes Yes

- Variable:
collation_server

 Yes Both Yes

completion_type Yes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

core_file Yes Global No

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

datadir Yes Yes Yes Global No

date_format Yes Global No

datetime_format Yes Global No

debug Yes Yes Yes Both Yes

debug_sync Yes Session Yes

default_authentication_pluginYes Yes Yes Global No

default_password_lifetimeYes Yes Yes Global Yes

default-storage-
engine

Yes Yes Yes

- Variable:
default_storage_engine

 Yes Both Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_format Yes Yes Yes Both Yes

delay-key-write Yes Yes Yes

- Variable:
delay_key_write

 Yes Global Yes

delayed_insert_limit Yes Yes Yes Global Yes

delayed_insert_timeoutYes Yes Yes Global Yes

delayed_queue_size Yes Yes Yes Global Yes

disabled_storage_enginesYes Yes Yes Global No

Server System Variables

567

Name Cmd-Line Option File System Var Var Scope Dynamic

disconnect_on_expired_passwordYes Yes Yes Session No

div_precision_incrementYes Yes Yes Both Yes

end_markers_in_json Yes Both Yes

enforce-gtid-
consistency

Yes Yes Yes Global Varies

enforce_gtid_consistencyYes Yes Yes Global Varies

eq_range_index_dive_limit Yes Both Yes

error_count Yes Session No

event-scheduler Yes Yes Yes

- Variable:
event_scheduler

 Yes Global Yes

executed_gtids_compression_period Yes Global Yes

expire_logs_days Yes Yes Yes Global Yes

explicit_defaults_for_timestampYes Yes Yes Both No

external_user Yes Session No

flush Yes Yes Yes Global Yes

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntax Yes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

general-log Yes Yes Yes

- Variable:
general_log

 Yes Global Yes

general_log_file Yes Yes Yes Global Yes

group_concat_max_lenYes Yes Yes Both Yes

gtid_executed Yes Varies No

gtid_executed_compression_period Yes Global Yes

gtid-mode Yes Yes Varies

- Variable:
gtid_mode

 Yes Global Varies

gtid_mode Yes Global Varies

gtid_next Yes Session Yes

gtid_owned Yes Both No

gtid_purged Yes Global Yes

have_compress Yes Global No

have_crypt Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

have_openssl Yes Global No

Server System Variables

568

Name Cmd-Line Option File System Var Var Scope Dynamic

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_statement_timeout Yes Global No

have_symlink Yes Global No

host_cache_size Yes Global Yes

hostname Yes Global No

identity Yes Session Yes

ignore-builtin-innodb Yes Yes No

- Variable:
ignore_builtin_innodb

 Yes Global No

ignore_db_dirs Yes Global No

init_connect Yes Yes Yes Global Yes

init-file Yes Yes No

- Variable: init_file Yes Global No

init_slave Yes Yes Yes Global Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_hash_index_partsYes Yes Yes Global No

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_level Yes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

innodb_background_drop_list_emptyYes Yes Yes Global Yes

innodb_buffer_pool_chunk_sizeYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

innodb_buffer_pool_sizeYes Yes Yes Global Varies

Server System Variables

569

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksums Yes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compress_debugYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_create_intrinsicYes Yes Yes Session Yes

innodb_data_file_pathYes Yes Yes Global No

innodb_data_home_dirYes Yes Yes Global No

innodb_default_row_formatYes Yes Yes Global Yes

innodb_disable_resize_buffer_pool_debugYes Yes Yes Global Yes

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewrite Yes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_format Yes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_fill_factor Yes Yes Yes Global Yes

innodb_flush_log_at_timeout Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flush_sync Yes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_table Yes Yes Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Global Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

Server System Variables

570

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

innodb_io_capacity Yes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefix Yes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_checksum_algorithmYes Yes Yes Global Yes

innodb_log_checksumsYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_size Yes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_max_undo_log_sizeYes Yes Yes Global Yes

innodb_merge_threshold_set_all_debugYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_files Yes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

innodb_optimize_point_storageYes Yes Yes Session Yes

innodb_page_cleanersYes Yes Yes Global No

innodb_page_size Yes Yes Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

Server System Variables

571

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_purge_rseg_truncate_frequencyYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_only Yes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_mode Yes Yes Yes Both Yes

innodb_support_xa Yes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_debug Yes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locks Yes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Session Yes

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_log_truncateYes Yes Yes Global Yes

innodb_undo_logs Yes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

Server System Variables

572

Name Cmd-Line Option File System Var Var Scope Dynamic

insert_id Yes Session Yes

interactive_timeout Yes Yes Yes Both Yes

internal_tmp_disk_storage_engineYes Yes Yes Global Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

large-pages Yes Yes No

- Variable:
large_pages

 Yes Global No

last_insert_id Yes Session Yes

lc-messages Yes Yes Yes

- Variable:
lc_messages

 Yes Both Yes

lc-messages-dir Yes Yes No

- Variable:
lc_messages_dir

 Yes Global No

lc_time_names Yes Both Yes

license Yes Global No

local_infile Yes Global Yes

lock_wait_timeout Yes Yes Yes Both Yes

locked_in_memory Yes Global No

log_backward_compatible_user_definitionsYes Yes Yes Global Yes

log-bin Yes Yes Yes Global No

log_bin Yes Global No

log_bin_basename Yes Global No

log_bin_index Yes Global No

log-bin-trust-
function-creators

Yes Yes Yes

- Variable:
log_bin_trust_function_creators

 Yes Global Yes

log-bin-use-v1-row-
events

Yes Yes No

- Variable:
log_bin_use_v1_row_events

 Yes Global No

log_bin_use_v1_row_eventsYes Yes Yes Global No

log_builtin_as_identified_by_passwordYes Yes Yes Global Yes

log-error Yes Yes No

Server System Variables

573

Name Cmd-Line Option File System Var Var Scope Dynamic

- Variable: log_error Yes Global No

log_error_verbosity Yes Yes Yes Global Yes

log-output Yes Yes Yes

- Variable:
log_output

 Yes Global Yes

log-queries-not-
using-indexes

Yes Yes Yes

- Variable:
log_queries_not_using_indexes

 Yes Global Yes

log-slave-updates Yes Yes No

- Variable:
log_slave_updates

 Yes Global No

log_slave_updates Yes Yes Yes Global No

log_slow_admin_statements Yes Global Yes

log_slow_slave_statements Yes Global Yes

log_syslog Yes Yes Yes Global Yes

log_syslog_facility Yes Yes Yes Global Yes

log_syslog_include_pidYes Yes Yes Global Yes

log_syslog_tag Yes Yes Yes Global Yes

log_throttle_queries_not_using_indexes Yes Global Yes

log_timestamps Yes Yes Yes Global Yes

log-warnings Yes Yes Yes

- Variable:
log_warnings

 Yes Global Yes

long_query_time Yes Yes Yes Both Yes

low-priority-updates Yes Yes Yes

- Variable:
low_priority_updates

 Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

master_info_repositoryYes Yes Yes Global Yes

master_verify_checksum Yes Global Yes

max_allowed_packet Yes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max_binlog_size Yes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errors Yes Yes Yes Global Yes

max_connections Yes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_digest_length Yes Yes Yes Global No

max_error_count Yes Yes Yes Both Yes

max_execution_time Yes Yes Yes Both Yes

max_heap_table_sizeYes Yes Yes Both Yes

Server System Variables

574

Name Cmd-Line Option File System Var Var Scope Dynamic

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_points_in_geometryYes Yes Yes Global Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_size Yes Yes Yes Global Yes

max_seeks_for_key Yes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_statement_time Yes Both Yes

max_tmp_tables Yes Both Yes

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

mecab_rc_file Yes Yes Yes Global No

metadata_locks_cache_size Yes Global No

metadata_locks_hash_instances Yes Global No

min-examined-row-
limit

Yes Yes Yes Both Yes

multi_range_count Yes Yes Yes Both Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_size Yes Yes Yes Global No

myisam_recover_options Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmap Yes Yes Yes Global Yes

mysql_firewall_max_query_sizeYes Yes Yes Global No

mysql_firewall_mode Yes Yes Yes Global Yes

mysql_firewall_trace Yes Yes Yes Global Yes

mysql_native_password_proxy_usersYes Yes Yes Global Yes

named_pipe Yes Global No

ndb-allow-copying-
alter-table

Yes Yes Yes Both Yes

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb-batch-size Yes Yes Yes Global No

ndb-blob-read-
batch-bytes

Yes Yes Yes Both Yes

ndb-blob-write-
batch-bytes

Yes Yes Yes Both Yes

ndb_cache_check_timeYes Yes Yes Global Yes

ndb_clear_apply_statusYes Yes Global Yes

Server System Variables

575

Name Cmd-Line Option File System Var Var Scope Dynamic

ndb-cluster-
connection-pool

Yes Yes Yes Global No

ndb-cluster-
connection-pool-
nodeids

Yes Yes Yes Global No

ndb-deferred-
constraints

Yes Yes Yes

- Variable:
ndb_deferred_constraints

 Yes Both Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb-distribution Yes Yes Yes

- Variable:
ndb_distribution

 Yes Global Yes

ndb_distribution Yes Yes Yes Global Yes

ndb_eventbuffer_free_percentYes Yes Yes Global Yes

ndb_eventbuffer_max_allocYes Yes Yes Global Yes

ndb_extra_logging Yes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_optionYes Yes Yes Both Yes

ndb_join_pushdown Yes Both Yes

ndb-log-apply-status Yes Yes No

- Variable:
ndb_log_apply_status

 Yes Global No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_bin Yes Yes Both Yes

ndb_log_binlog_indexYes Yes Global Yes

ndb-log-empty-
epochs

Yes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb-log-exclusive-
reads

Yes Yes Yes

- Variable:
ndb_log_exclusive_reads

 Yes Both Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb-log-orig Yes Yes No

- Variable:
ndb_log_orig

 Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb-log-transaction-
id

Yes Yes No

- Variable:
ndb_log_transaction_id

 Yes Global No

ndb_log_transaction_id Yes Global No

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_deferred_constraints
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_distribution
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_apply_status
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_exclusive_reads
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_orig
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_id

Server System Variables

576

Name Cmd-Line Option File System Var Var Scope Dynamic

ndb_log_updated_onlyYes Yes Yes Global Yes

ndb_optimization_delay Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global No

ndb_recv_thread_cpu_mask Yes Global Yes

ndb_show_foreign_key_mock_tablesYes Yes Yes Global Yes

ndb_slave_conflict_roleYes Yes Yes Global Yes

Ndb_slave_max_replicated_epoch Yes Global No

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_use_transactionsYes Yes Yes Both Yes

ndb_version Yes Global No

ndb_version_string Yes Global No

ndb-wait-connected Yes Yes Yes Global No

ndb-wait-setup Yes Yes Yes Global No

ndbinfo_database Yes Global No

ndbinfo_max_bytes Yes Yes Both Yes

ndbinfo_max_rows Yes Yes Both Yes

ndbinfo_offline Yes Global Yes

ndbinfo_show_hiddenYes Yes Both Yes

ndbinfo_table_prefix Yes Yes Both Yes

ndbinfo_version Yes Global No

net_buffer_length Yes Yes Yes Both Yes

net_read_timeout Yes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeout Yes Yes Yes Both Yes

new Yes Yes Yes Both Yes

ngram_token_size Yes Yes Yes Global No

offline_mode Yes Yes Yes Global Yes

old Yes Yes Yes Global No

old-alter-table Yes Yes Yes

- Variable:
old_alter_table

 Yes Both Yes

old_passwords Yes Both Yes

open-files-limit Yes Yes No

- Variable:
open_files_limit

 Yes Global No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switch Yes Yes Yes Both Yes

Server System Variables

577

Name Cmd-Line Option File System Var Var Scope Dynamic

optimizer_trace Yes Both Yes

optimizer_trace_features Yes Both Yes

optimizer_trace_limit Yes Both Yes

optimizer_trace_max_mem_size Yes Both Yes

optimizer_trace_offset Yes Both Yes

performance_schemaYes Yes Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_index_statYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_sql_text_lengthYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_table_lock_statYes Yes Yes Global No

Server System Variables

578

Name Cmd-Line Option File System Var Var Scope Dynamic

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

pid-file Yes Yes No

- Variable: pid_file Yes Global No

plugin_dir Yes Yes Yes Global No

port Yes Yes Yes Global No

preload_buffer_size Yes Yes Yes Both Yes

profiling Yes Both Yes

profiling_history_size Yes Yes Yes Both Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limit Yes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_size Yes Yes Yes Global Yes

query_cache_type Yes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_size Yes Yes Yes Both Yes

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

range_optimizer_max_mem_sizeYes Yes Yes Both Yes

rbr_exec_mode Yes Session Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_size Yes Yes Yes Both Yes

relay-log Yes Yes No

- Variable: relay_log Yes Global No

relay_log_basename Yes Global No

relay-log-index Yes Yes No

- Variable:
relay_log_index

 Yes Global No

relay_log_index Yes Yes Yes Global No

relay_log_info_file Yes Yes Yes Global No

relay_log_info_repository Yes Global Yes

Server System Variables

579

Name Cmd-Line Option File System Var Var Scope Dynamic

relay_log_purge Yes Yes Yes Global Yes

relay_log_recovery Yes Yes Yes Global No

relay_log_space_limitYes Yes Yes Global No

report-host Yes Yes No

- Variable:
report_host

 Yes Global No

report-password Yes Yes No

- Variable:
report_password

 Yes Global No

report-port Yes Yes No

- Variable:
report_port

 Yes Global No

report-user Yes Yes No

- Variable:
report_user

 Yes Global No

require_secure_transportYes Yes Yes Global Yes

rewriter_enabled Yes Global Yes

rewriter_verbose Yes Global Yes

rpl_semi_sync_master_enabled Yes Global Yes

rpl_semi_sync_master_timeout Yes Global Yes

rpl_semi_sync_master_trace_level Yes Global Yes

rpl_semi_sync_master_wait_for_slave_count Yes Global Yes

rpl_semi_sync_master_wait_no_slave Yes Global Yes

rpl_semi_sync_master_wait_point Yes Global Yes

rpl_semi_sync_slave_enabled Yes Global Yes

rpl_semi_sync_slave_trace_level Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

secure-auth Yes Yes Yes

- Variable:
secure_auth

 Yes Global Yes

secure-file-priv Yes Yes No

- Variable:
secure_file_priv

 Yes Global No

server-id [2426] Yes Yes Yes

- Variable: server_id Yes Global Yes

server-id-bits Yes Yes No

- Variable:
server_id_bits

 Yes Global No

server_id_bits Yes Yes Yes Global No

server_uuid [2426] Yes Global No

session_track_gtids Yes Yes Yes Both Yes

session_track_schemaYes Yes Yes Both Yes

session_track_state_changeYes Yes Yes Both Yes

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_server_id_bits

Server System Variables

580

Name Cmd-Line Option File System Var Var Scope Dynamic

session_track_system_variablesYes Yes Yes Both Yes

sha256_password_auto_generate_rsa_keysYes Yes Yes Global No

sha256_password_private_key_path Yes Global No

sha256_password_proxy_usersYes Yes Yes Global Yes

sha256_password_public_key_path Yes Global No

shared_memory Yes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

show_compatibility_56Yes Yes Yes Global Yes

show_old_temporals Yes Yes Yes Both Yes

simplified_binlog_gtid_recoveryYes Yes Yes Global No

skip_external_lockingYes Yes Yes Global No

skip-name-resolve Yes Yes No

- Variable:
skip_name_resolve

 Yes Global No

skip-networking Yes Yes No

- Variable:
skip_networking

 Yes Global No

skip-show-database Yes Yes No

- Variable:
skip_show_database

 Yes Global No

slave_allow_batchingYes Yes Yes Global Yes

slave_checkpoint_groupYes Yes Yes Global Yes

slave_checkpoint_periodYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_mode Yes Yes Yes Global Yes

slave-load-tmpdir Yes Yes No

- Variable:
slave_load_tmpdir

 Yes Global No

slave_max_allowed_packet Yes Global Yes

slave-net-timeout Yes Yes Yes

- Variable:
slave_net_timeout

 Yes Global Yes

slave_parallel_type Yes Global Yes

slave_parallel_workersYes Yes Global Yes

slave_pending_jobs_size_max Yes Global Yes

slave_preserve_commit_orderYes Yes Global Yes

slave_rows_search_algorithms Yes Global Yes

slave-skip-errors Yes Yes No

- Variable:
slave_skip_errors

 Yes Global No

slave_sql_verify_checksum Yes Global Yes

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global No

Server System Variables

581

Name Cmd-Line Option File System Var Var Scope Dynamic

slow_launch_time Yes Yes Yes Global Yes

slow-query-log Yes Yes Yes

- Variable:
slow_query_log

 Yes Global Yes

slow_query_log_file Yes Yes Yes Global Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

sql_auto_is_null Yes Both Yes

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Both Yes

sql-mode Yes Yes Yes

- Variable: sql_mode Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl-ca Yes Yes No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes No

- Variable:
ssl_capath

 Yes Global No

ssl-cert Yes Yes No

- Variable: ssl_cert Yes Global No

ssl-cipher Yes Yes No

- Variable:
ssl_cipher

 Yes Global No

ssl-crl Yes Yes No

- Variable: ssl_crl Yes Global No

ssl-crlpath Yes Yes No

- Variable:
ssl_crlpath

 Yes Global No

ssl-key Yes Yes No

- Variable: ssl_key Yes Global No

storage_engine Yes Both Yes

stored_program_cacheYes Yes Yes Global Yes

super_read_only Yes Yes Yes Global Yes

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

Server System Variables

582

Name Cmd-Line Option File System Var Var Scope Dynamic

sync_master_info Yes Yes Yes Global Yes

sync_relay_log Yes Yes Yes Global Yes

sync_relay_log_info Yes Yes Yes Global Yes

system_time_zone Yes Global No

table_definition_cache Yes Global Yes

table_open_cache Yes Global Yes

table_open_cache_instances Yes Global No

thread_cache_size Yes Yes Yes Global Yes

thread_concurrency Yes Yes Yes Global No

thread_handling Yes Yes Yes Global No

thread_stack Yes Yes Yes Global No

time_format Yes Global No

time_zone Yes Both Yes

timed_mutexes Yes Yes Yes Global Yes

timestamp Yes Session Yes

tls_version Yes Yes Yes Global No

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction_prealloc_sizeYes Yes Yes Both Yes

transaction_write_set_extractionYes Yes Both Yes

tx_isolation Yes Both Yes

tx_read_only Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

validate_password_dictionary_file Yes Global Varies

validate_password_length Yes Global Yes

validate_password_mixed_case_count Yes Global Yes

validate_password_number_count Yes Global Yes

validate_password_policy Yes Global Yes

validate_password_special_char_count Yes Global Yes

validate_user_plugins Yes Global No

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

version_tokens_sessionYes Yes Yes Both Yes

version_tokens_session_numberYes Yes Yes Both No

wait_timeout Yes Yes Yes Both Yes

Server System Variables

583

Name Cmd-Line Option File System Var Var Scope Dynamic

warning_count Yes Session No
aThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.
bThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.

For additional system variable information, see these sections:

• Section 5.1.5, “Using System Variables”, discusses the syntax for setting and displaying system
variable values.

• Section 5.1.5.2, “Dynamic System Variables”, lists the variables that can be set at runtime.

• Information on tuning system variables can be found in Section 8.12.2, “Tuning Server Parameters”.

• Section 14.11, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.

• For information on server system variables specific to replication, see Section 17.1.6, “Replication
and Binary Logging Options and Variables”.

Note

Some of the following variable descriptions refer to “enabling” or “disabling” a
variable. These variables can be enabled with the SET statement by setting
them to ON or 1, or disabled by setting them to OFF or 0. Boolean variables can
be set at startup to the values ON, TRUE, OFF, and FALSE (not case sensitive),
as well as 1 and 0. See Section 4.2.5, “Program Option Modifiers”.

Some system variables control the size of buffers or caches. For a given buffer, the server might need
to allocate internal data structures. These structures typically are allocated from the total memory
allocated to the buffer, and the amount of space required might be platform dependent. This means
that when you assign a value to a system variable that controls a buffer size, the amount of space
actually available might differ from the value assigned. In some cases, the amount might be less than
the value assigned. It is also possible that the server will adjust a value upward. For example, if you
assign a value of 0 to a variable for which the minimal value is 1024, the server will set the value to
1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some system variables take file name values. Unless otherwise specified, the default file location is
the data directory if the value is a relative path name. To specify the location explicitly, use an absolute
path name. Suppose that the data directory is /var/mysql/data. If a file-valued variable is given
as a relative path name, it will be located under /var/mysql/data. If the value is an absolute path
name, its location is as given by the path name.

• autocommit

Command-Line Format --autocommit[=#]

Name autocommit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

The autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0, you
must use COMMIT to accept a transaction or ROLLBACK to cancel it. If autocommit is 0 and you
change it to 1, MySQL performs an automatic COMMIT of any open transaction. Another way to begin

Server System Variables

584

a transaction is to use a START TRANSACTION or BEGIN statement. See Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Syntax”.

By default, client connections begin with autocommit set to 1. To cause clients to begin with a
default of 0, set the global autocommit value by starting the server with the --autocommit=0
option. To set the variable using an option file, include these lines:

[mysqld]
autocommit=0

• automatic_sp_privileges

Name automatic_sp_privileges

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

When this variable has a value of 1 (the default), the server automatically grants the EXECUTE and
ALTER ROUTINE privileges to the creator of a stored routine, if the user cannot already execute
and alter or drop the routine. (The ALTER ROUTINE privilege is required to drop the routine.) The
server also automatically drops those privileges from the creator when the routine is dropped. If
automatic_sp_privileges is 0, the server does not automatically add or drop these privileges.

The creator of a routine is the account used to execute the CREATE statement for it. This might not
be the same as the account named as the DEFINER in the routine definition.

See also Section 19.2.2, “Stored Routines and MySQL Privileges”.

• auto_generate_certs

Introduced 5.7.5

Command-Line Format --auto_generate_certs[={OFF|ON}]

Name auto_generate_certs

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

This variable is available if the server was compiled using OpenSSL (see Section 6.3.12.1,
“OpenSSL Versus yaSSL”). It controls whether the server autogenerates SSL key and certificate files
in the data directory, if they do not already exist.

At startup, the server automatically generates server-side and client-side SSL certificate and key
files in the data directory if the auto_generate_certs system variable is enabled, no SSL options
other than --ssl are specified, and the server-side SSL files are missing from the data directory.
These files enable secure client connections using SSL; see Section 6.3.12.4, “Configuring MySQL
to Use Secure Connections”.

For more information about SSL file autogeneration, including file names and characteristics, see
Section 6.3.13.1, “Creating SSL and RSA Certificates and Keys using MySQL”

Server System Variables

585

The sha256_password_auto_generate_rsa_keys system variable is related but controls
autogeneration of RSA key-pair files needed for secure password exchange using RSA over
unencypted connections.

• avoid_temporal_upgrade

Introduced 5.7.6

Deprecated 5.7.6

Command-Line Format --avoid_temporal_upgrade={OFF|ON}

Name avoid_temporal_upgrade

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This variable controls whether ALTER TABLE implicitly upgrades temporal columns found to be
in pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional
seconds precision). Upgrading such columns requires a table rebuild, which prevents any use of fast
alterations that might otherwise apply to the operation to be performed.

This variable is disabled by default. Enabling it causes ALTER TABLE not to rebuild temporal
columns and thereby be able to take advantage of possible fast alterations.

This variable is deprecated and will be removed in a future MySQL release.

• back_log

Name back_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default -1 (autosized)

Min
Value

1

Permitted Values

Max
Value

65535

The number of outstanding connection requests MySQL can have. This comes into play when the
main MySQL thread gets very many connection requests in a very short time. It then takes some
time (although very little) for the main thread to check the connection and start a new thread. The
back_log value indicates how many requests can be stacked during this short time before MySQL
momentarily stops answering new requests. You need to increase this only if you expect a large
number of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your
operating system has its own limit on the size of this queue. The manual page for the Unix
listen() system call should have more details. Check your OS documentation for the maximum
value for this variable. back_log cannot be set higher than your operating system limit.

Server System Variables

586

The default value is based on the following formula, capped to a limit of 900:

50 + (max_connections / 5)

• basedir

Command-Line Format --basedir=dir_name

Name basedir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The MySQL installation base directory. This variable can be set with the --basedir option. Relative
path names for other variables usually are resolved relative to the base directory.

• big_tables

Command-Line Format --big-tables

Name big_tables

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

 If set to 1, all temporary tables are stored on disk rather than in memory. This is a little slower, but
the error The table tbl_name is full does not occur for SELECT operations that require a
large temporary table. The default value for a new connection is 0 (use in-memory temporary tables).
Normally, you should never need to set this variable, because in-memory tables are automatically
converted to disk-based tables as required.

• bind_address

Command-Line Format --bind-address=addr

Name bind_address

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default *

The value of the --bind-address option.

This variable has no effect for the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• block_encryption_mode

Server System Variables

587

Introduced 5.7.4

Command-Line Format --block_encryption_mode=#

Name block_encryption_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default aes-128-ecb

This variable controls the block encryption mode for block-based algorithms such as AES. It affects
encryption for AES_ENCRYPT() and AES_DECRYPT().

block_encryption_mode takes a value in aes-keylen-mode format, where keylen is the
key length in bits and mode is the encryption mode. The value is not case sensitive. Permitted
keylen values are 128, 192, and 256. Permitted encryption modes depend on whether MySQL was
compiled using OpenSSL or yaSSL:

• For OpenSSL, permitted mode values are: ECB, CBC, CFB1, CFB8, CFB128, OFB

• For yaSSL, permitted mode values are: ECB, CBC

For example, this statement causes the AES encryption functions to use a key length of 256 bits and
the CBC mode:

SET block_encryption_mode = 'aes-256-cbc';

An error occurs for attempts to set block_encryption_mode to a value containing an unsupported
key length or a mode that the SSL library does not support.

• bulk_insert_buffer_size

Command-Line Format --bulk_insert_buffer_size=#

Name bulk_insert_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8388608

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 8388608

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

Server System Variables

588

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT,
INSERT ... VALUES (...), (...), ..., and LOAD DATA INFILE when adding data to
nonempty tables. This variable limits the size of the cache tree in bytes per thread. Setting it to 0
disables this optimization. The default value is 8MB.

• character_set_client

Name character_set_client

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The character set for statements that arrive from the client. The session value of this variable is
set using the character set requested by the client when the client connects to the server. (Many
clients support a --default-character-set option to enable this character set to be specified
explicitly. See also Section 10.1.4, “Connection Character Sets and Collations”.) The global value of
the variable is used to set the session value in cases when the client-requested value is unknown or
not available, or the server is configured to ignore client requests:

• The client is from a version of MySQL older than MySQL 4.1, and thus does not request a
character set.

• The client requests a character set not known to the server. For example, a Japanese-enabled
client requests sjis when connecting to a server not configured with sjis support.

• mysqld was started with the --skip-character-set-client-handshake option, which
causes it to ignore client character set configuration. This reproduces MySQL 4.0 behavior and is
useful should you wish to upgrade the server without upgrading all the clients.

ucs2, utf16, utf16le, and utf32 cannot be used as a client character set, which means that they
also do not work for SET NAMES or SET CHARACTER SET.

• character_set_connection

Name character_set_connection

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The character set used for literals that do not have a character set introducer and for number-to-
string conversion.

• character_set_database

Name character_set_database

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Footnote This option is dynamic, but only the server should set this information.
You should not set the value of this variable manually.

Server System Variables

589

Permitted Values Type string

The character set used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
character_set_server.

The global character_set_database and collation_database system variables are
deprecated as of MySQL 5.7.6 and will be removed in a future version of MySQL.

Assigning a value to the session character_set_database and collation_database system
variables is deprecated as of MySQL 5.7.6 and assignments produce a warning. The session
variables will become read only in a future version of MySQL and assignments will produce an error.
It will remain possible to access the session variables to determine the database character set and
collation for the default database.

• character_set_filesystem

Command-Line Format --character-set-filesystem=name

Name character_set_filesystem

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default binary

The file system character set. This variable is used to interpret string literals that refer to file
names, such as in the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements
and the LOAD_FILE() function. Such file names are converted from character_set_client
to character_set_filesystem before the file opening attempt occurs. The default value is
binary, which means that no conversion occurs. For systems on which multibyte file names are
permitted, a different value may be more appropriate. For example, if the system represents file
names using UTF-8, set character_set_filesystem to 'utf8'.

• character_set_results

Name character_set_results

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The character set used for returning query results such as result sets or error messages to the client.

• character_set_server

Command-Line Format --character-set-server

Name character_set_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

Server System Variables

590

Default latin1

The server's default character set.

• character_set_system

Name character_set_system

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default utf8

The character set used by the server for storing identifiers. The value is always utf8.

• character_sets_dir

Command-Line Format --character-sets-dir=dir_name

Name character_sets_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where character sets are installed.

• check_proxy_users

Introduced 5.7.7

Command-Line Format --check_proxy_users=[={OFF|ON}]

Name check_proxy_users

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This variable controls whether the server performs proxy user mapping for authentication plugins that
request it. With check_proxy_users enabled, it may also be necessary to enable plugin-specific
system variables to take advantage of server proxy user mapping support:

• For the mysql_native_password plugin, enable mysql_native_password_proxy_users.

• For the sha256_password plugin, enable sha256_password_proxy_users.

For information about user proxying, see Section 6.3.10, “Proxy Users”.

This variable was added in MySQL 5.7.7. Before 5.7.7, proxy user mapping is available only for
plugins that implement it for themselves.

• collation_connection

Server System Variables

591

Name collation_connection

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The collation of the connection character set.

• collation_database

Name collation_database

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Footnote This option is dynamic, but only the server should set this information.
You should not set the value of this variable manually.

Permitted Values Type string

The collation used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
collation_server.

The global character_set_database and collation_database system variables are
deprecated as of MySQL 5.7.6 and will be removed in a future version of MySQL.

Assigning a value to the session character_set_database and collation_database system
variables is deprecated as of MySQL 5.7.6 and assignments produce a warning. The session
variables will become read only in a future version of MySQL and assignments will produce an error.
It will remain possible to access the session variables to determine the database character set and
collation for the default database.

• collation_server

Command-Line Format --collation-server

Name collation_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1_swedish_ci

The server's default collation.

• completion_type

Command-Line Format --completion_type=#

Name completion_typeSystem Variable

Variable
Scope

Global, Session

Server System Variables

592

Dynamic
Variable

Yes

Type enumeration

Default NO_CHAIN

NO_CHAIN

CHAIN

RELEASE

0

1

Permitted Values

Valid
Values

2

The transaction completion type. This variable can take the values shown in the following table. The
variable can be assigned using either the name values or corresponding integer values.

Value Description

NO_CHAIN
(or 0)

COMMIT and ROLLBACK are unaffected. This is the default value.

CHAIN (or
1)

COMMIT and ROLLBACK are equivalent to COMMIT AND CHAIN and ROLLBACK AND
CHAIN, respectively. (A new transaction starts immediately with the same isolation level
as the just-terminated transaction.)

RELEASE
(or 2)

COMMIT and ROLLBACK are equivalent to COMMIT RELEASE and ROLLBACK
RELEASE, respectively. (The server disconnects after terminating the transaction.)

completion_type affects transactions that begin with START TRANSACTION or BEGIN and end
with COMMIT or ROLLBACK. It does not apply to implicit commits resulting from execution of the
statements listed in Section 13.3.3, “Statements That Cause an Implicit Commit”. It also does not
apply for XA COMMIT, XA ROLLBACK, or when autocommit=1.

• concurrent_insert

Command-Line Format --concurrent_insert[=#]

Name concurrent_insert

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default AUTO

NEVER

AUTO

ALWAYS

0

1

Permitted Values

Valid
Values

2

If AUTO (the default), MySQL permits INSERT and SELECT statements to run concurrently for
MyISAM tables that have no free blocks in the middle of the data file. If you start mysqld with --
skip-new, this variable is set to NEVER.

Server System Variables

593

This variable can take the values shown in the following table. The variable can be assigned using
either the name values or corresponding integer values.

Value Description

NEVER (or
0)

Disables concurrent inserts

AUTO (or
1)

(Default) Enables concurrent insert for MyISAM tables that do not have holes

ALWAYS
(or 2)

Enables concurrent inserts for all MyISAM tables, even those that have holes. For a
table with a hole, new rows are inserted at the end of the table if it is in use by another
thread. Otherwise, MySQL acquires a normal write lock and inserts the row into the
hole.

See also Section 8.11.3, “Concurrent Inserts”.

• connect_timeout

Command-Line Format --connect_timeout=#

Name connect_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

2

Permitted Values

Max
Value

31536000

The number of seconds that the mysqld server waits for a connect packet before responding with
Bad handshake. The default value is 10 seconds.

Increasing the connect_timeout value might help if clients frequently encounter errors of the form
Lost connection to MySQL server at 'XXX', system error: errno.

• core_file

Name core_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Whether to write a core file if the server crashes. This variable is set by the --core-file option.

• datadir

Command-Line Format --datadir=dir_name

System Variable Name datadir

Server System Variables

594

Variable
Scope

Global

Dynamic
Variable

No

Permitted Values Type directory name

The MySQL data directory. This variable can be set with the --datadir option.

• date_format

This variable is unused. It is deprecated and will be removed in a future MySQL release.

• datetime_format

This variable is unused. It is deprecated and will be removed in a future MySQL release.

• debug

Command-Line Format --debug[=debug_options]

Name debug

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values (Unix)

Default d:t:i:o,/tmp/mysqld.trace

Type stringPermitted Values
(Windows) Default d:t:i:O,\mysqld.trace

This variable indicates the current debugging settings. It is available only for servers built with
debugging support. The initial value comes from the value of instances of the --debug option
given at server startup. The global and session values may be set at runtime; the SUPER privilege is
required, even for the session value.

Assigning a value that begins with + or - cause the value to added to or subtracted from the current
value:

mysql> SET debug = 'T';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+

mysql> SET debug = '+P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| P:T |
+---------+

mysql> SET debug = '-P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |

Server System Variables

595

+---------+

For more information, see Section 24.5.3, “The DBUG Package”.

• debug_sync

Name debug_sync

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

This variable is the user interface to the Debug Sync facility. Use of Debug Sync requires that
MySQL be configured with the -DENABLE_DEBUG_SYNC=1 CMake option (see Section 2.9.4,
“MySQL Source-Configuration Options”). If Debug Sync is not compiled in, this system variable is not
available.

The global variable value is read only and indicates whether the facility is enabled. By default, Debug
Sync is disabled and the value of debug_sync is OFF. If the server is started with --debug-sync-
timeout=N, where N is a timeout value greater than 0, Debug Sync is enabled and the value of
debug_sync is ON - current signal followed by the signal name. Also, N becomes the default
timeout for individual synchronization points.

The session value can be read by any user and will have the same value as the global variable. The
session value can be set by users that have the SUPER privilege to control synchronization points.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• default_authentication_plugin

Introduced 5.7.2

Command-Line Format --default-authentication-plugin=plugin_name

Name default_authentication_plugin

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type enumeration

Default mysql_native_password

mysql_native_password

Permitted Values

Valid
Values sha256_password

The default authentication plugin. Permitted values are mysql_native_password (use MySQL
native passwords; this is the default) and sha256_password (use SHA-256 passwords). For
more information about these plugins, see Section 6.3.9.1, “The Native Authentication Plugin”, and
Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

Note

If you use this variable to change the default authentication plugin to a value
other than mysql_native_password, clients older than MySQL 5.5.6 will
no longer be able to connect because they will not understand the resulting
change to the authentication protocol.

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html

Server System Variables

596

The value of default_authentication_plugin affects these aspects of server operation:

• It determines which authentication plugin the server assigns to new accounts created by CREATE
USER and GRANT statements that do not name a plugin explicitly with an IDENTIFIED WITH
clause.

• It sets the old_passwords system variable at startup to the value that is consistent with the
password hashing method required by the default plugin. The old_passwords value affects
hashing of passwords specified in the IDENTIFIED BY clause of CREATE USER and GRANT, and
passwords specified as the argument to the PASSWORD() function.

• For an account created with either of the following statements, the server associates the account
with the default authentication plugin and assigns the account the given password, hashed
according to the value of old_passwords.

CREATE USER ... IDENTIFIED BY 'cleartext password';
GRANT ... IDENTIFIED BY 'cleartext password';

• For an account created with either of the following statements, the statement fails if the password
hash is not encrypted using the hash format required by the default authentication plugin.
Otherwise, the server associates the account with the default authentication plugin and assigns the
account the given password hash.

CREATE USER ... IDENTIFIED BY PASSWORD 'encrypted password';
GRANT ... IDENTIFIED BY PASSWORD 'encrypted password';

This variable was added in MySQL 5.7.2. Earlier in MySQL 5.7, use the --default-
authentication-plugin command-line option instead, which is used the same way at server
startup, but cannot be accessed at runtime.

• default_password_lifetime

Introduced 5.7.4

Command-Line Format --default_password_lifetime=#

Name default_password_lifetime

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 360

Min
Value

0

Permitted Values

Max
Value

65535

This variable defines the global automatic password expiration policy. It applies to accounts
that use MySQL built-in authentication methods (accounts that use an authentication plugin of
mysql_native_password, mysql_old_password, or sha256_password).

Note

Be aware that, if you make no changes to the
default_password_lifetime variable nor to the individual user
accounts, all user passwords will expire after 360 days, and all user accounts

Server System Variables

597

will start running in restricted mode when this happens. Clients (which are
effectively users) connecting to the server will then get an error indicating
that the password must be changed: ERROR 1820 (HY000): You must
reset your password using ALTER USER statement before
executing this statement.. However, this is easy to miss for clients
that automatically connect to the server, like scripts. To avoid that such
clients suddenly stop working as they should, make sure to change the
password expiration settings for those clients (users). Alternatively, set the
default_password_lifetime variable to 0, thus disabling automatic
password expiration for all users, although this is not recommended for
security reasons.

If the value of default_password_lifetime is a positive integer N, it indicates the permitted
password lifetime; passwords must be changed every N days. A value of 0 disables automatic
password expiration. The default is 360; passwords must be changed approximately once per year.

The global password expiration policy can be overridden as desired for individual accounts using the
ALTER USER statement. See Section 6.3.6, “Password Expiration Policy”.

• default_storage_engine

Command-Line Format --default-storage-engine=name

Name default_storage_engine

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values

Default InnoDB

The default storage engine. This variable sets the storage engine for permanent tables only. To
set the storage engine for TEMPORARY tables, set the default_tmp_storage_engine system
variable.

To see which storage engines are available and enabled, use the SHOW ENGINES statement or
query the INFORMATION_SCHEMA ENGINES table.

default_storage_engine should be used in preference to storage_engine, which is
deprecated and was removed in MySQL 5.7.5.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server will not start.

• default_tmp_storage_engine

Command-Line Format --default_tmp_storage_engine=name

Name default_tmp_storage_engine

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values

Default InnoDB

Server System Variables

598

The default storage engine for TEMPORARY tables (created with CREATE TEMPORARY TABLE). To
set the storage engine for permanent tables, set the default_storage_engine system variable.
Also see the discussion of that variable regarding possible values.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server will not start.

• default_week_format

Command-Line Format --default_week_format=#

Name default_week_format

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

7

The default mode value to use for the WEEK() function. See Section 12.7, “Date and Time
Functions”.

• delay_key_write

Command-Line Format --delay-key-write[=name]

Name delay_key_write

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default ON

ON

OFF

Permitted Values

Valid
Values

ALL

This option applies only to MyISAM tables. It can have one of the following values to affect handling
of the DELAY_KEY_WRITE table option that can be used in CREATE TABLE statements.

Option Description

OFF DELAY_KEY_WRITE is ignored.

ON MySQL honors any DELAY_KEY_WRITE option specified in CREATE TABLE
statements. This is the default value.

ALL All new opened tables are treated as if they were created with the DELAY_KEY_WRITE
option enabled.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on every
index update, but only when the table is closed. This speeds up writes on keys a lot, but if

Server System Variables

599

you use this feature, you should add automatic checking of all MyISAM tables by starting the
server with the --myisam-recover-options option (for example, --myisam-recover-
options=BACKUP,FORCE). See Section 5.1.3, “Server Command Options”, and Section 15.2.1,
“MyISAM Startup Options”.

Warning

If you enable external locking with --external-locking, there is no
protection against index corruption for tables that use delayed key writes.

• delayed_insert_limit

Deprecated 5.6.7

Command-Line Format --delayed_insert_limit=#

Name delayed_insert_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 100

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 100

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

This system variable is deprecated (because DELAYED inserts are not supported), and will be
removed in a future release.

• delayed_insert_timeout

Deprecated 5.6.7

Command-Line Format --delayed_insert_timeout=#

Name delayed_insert_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 300

This system variable is deprecated (because DELAYED inserts are not supported), and will be
removed in a future release.

• delayed_queue_size

Server System Variables

600

Deprecated 5.6.7

Command-Line Format --delayed_queue_size=#

Name delayed_queue_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1000

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1000

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

This system variable is deprecated (because DELAYED inserts are not supported), and will be
removed in a future release.

• disabled_storage_engines

Introduced 5.7.8

Command-Line Format --disabled_storage_engines=engine[,engine]...

Name disabled_storage_engines

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default empty string

This variable indicates which storage engines cannot be used to create tables or tablespaces. For
example, to prevent new MyISAM or FEDERATED tables from being created, start the server with
these lines in the server option file:

[mysqld]
disabled_storage_engines="MyISAM,FEDERATED"

By default, disabled_storage_engines is empty (no engines disabled), but it can be set to a
comma-separated list of one or more engines (not case sensitive). Any engine named in the value
cannot be used to create tables or tablespaces with CREATE TABLE or CREATE TABLESPACE,
and cannot be used with ALTER TABLE ... ENGINE or ALTER TABLESPACE ... ENGINE
to change the storage engine of existing tables or tablespaces. Attempts to do so result in an
ER_DISABLED_STORAGE_ENGINE error.

http://dev.mysql.com/doc/refman/5.6/en/alter-tablespace.html

Server System Variables

601

disabled_storage_engines does not restrict other DDL statements for existing tables, such
as CREATE INDEX, TRUNCATE TABLE, ANALYZE TABLE, DROP TABLE, or DROP TABLESPACE.
This permits a smooth transition so that existing tables or tablespaces that use a disabled
engine can be migrated to a permitted engine by means such as ALTER TABLE ... ENGINE
permitted_engine.

It is permitted to set the default_storage_engine or default_tmp_storage_engine system
variable to a storage engine that is disabled. This could cause applications to behave erratically
or fail, although that might be a useful technique in a development environment for identifying
applications that use disabled engines, so that they can be modified.

disabled_storage_engines is disabled and has no effect if the server is started with any of
these options: --bootstrap, --initialize, --initialize-insecure, --skip-grant-
tables.

• disconnect_on_expired_password

Introduced 5.7.1

Command-Line Format --disconnect_on_expired_password=#

Name disconnect_on_expired_password

Variable
Scope

Session

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

This variable controls how the server handles clients with expired passwords:

• If the client indicates that it can handle expires passwords, the value of
disconnect_on_expired_password is irrelevant. The server permits the client to connect but
puts it in sandbox mode.

• If the client does not indicate that it can handle expires passwords, the server handles the client
according to the value of disconnect_on_expired_password:

• If disconnect_on_expired_password: is enabled, the server disconnects the client.

• If disconnect_on_expired_password: is disabled, the server permits the client to connect
but puts it in sandbox mode.

For more information about the interaction of client and server settings relating to expired-password
handling, see Section 6.3.7, “Password Expiration and Sandbox Mode”.

• div_precision_increment

Command-Line Format --div_precision_increment=#

Name div_precision_increment

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 4

Server System Variables

602

Min
Value

0

Max
Value

30

This variable indicates the number of digits by which to increase the scale of the result of division
operations performed with the / operator. The default value is 4. The minimum and maximum values
are 0 and 30, respectively. The following example illustrates the effect of increasing the default value.

mysql> SELECT 1/7;
+--------+
| 1/7 |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7 |
+----------------+
| 0.142857142857 |
+----------------+

• end_markers_in_json

Name end_markers_in_json

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether optimizer JSON output should add end markers.

• eq_range_index_dive_limit

Name eq_range_index_dive_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

0

Permitted Values (<=
5.7.3)

Max
Value

4294967295

Type integer

Default 200

Min
Value

0

Permitted Values (>=
5.7.4)

Max
Value

4294967295

Server System Variables

603

This variable indicates the number of equality ranges in an equality comparison condition when
the optimizer should switch from using index dives to index statistics in estimating the number of
qualifying rows. It applies to evaluation of expressions that have either of these equivalent forms,
where the optimizer uses a nonunique index to look up col_name values:

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

In both cases, the expression contains N equality ranges. The optimizer can make row
estimates using index dives or index statistics. If eq_range_index_dive_limit is
greater than 0, the optimizer uses existing index statistics instead of index dives if there
are eq_range_index_dive_limit or more equality ranges. Thus, to permit use of
index dives for up to N equality ranges, set eq_range_index_dive_limit to N + 1. Set
eq_range_index_dive_limit to 0 to disable use of index statistics and always use index dives
regardless of N.

For more information, see Equality Range Optimization of Many-Valued Comparisons.

To update table index statistics for best estimates, use ANALYZE TABLE.

• error_count

The number of errors that resulted from the last statement that generated messages. This variable is
read only. See Section 13.7.5.17, “SHOW ERRORS Syntax”.

• event_scheduler

Command-Line Format --event-scheduler[=value]

Name event_scheduler

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default OFF

ON

OFF

Permitted Values

Valid
Values

DISABLED

This variable indicates the status of the Event Scheduler; possible values are ON, OFF, and
DISABLED, with the default being OFF. This variable and its effects on the Event Scheduler's
operation are discussed in greater detail in the Overview section of the Events chapter [2671].

• expire_logs_days

Command-Line Format --expire_logs_days=#

Name expire_logs_days

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

Server System Variables

604

Min
Value

0

Max
Value

99

The number of days for automatic binary log file removal. The default is 0, which means “no
automatic removal.” Possible removals happen at startup and when the binary log is flushed. Log
flushing occurs as indicated in Section 5.2, “MySQL Server Logs”.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

• explicit_defaults_for_timestamp

Deprecated 5.6.6

Command-Line Format --explicit_defaults_for_timestamp=#

Name explicit_defaults_for_timestamp

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default FALSE

In MySQL, the TIMESTAMP data type differs in nonstandard ways from other data types:

• TIMESTAMP columns not explicitly declared with the NULL attribute are assigned the NOT NULL
attribute. (Columns of other data types, if not explicitly declared as NOT NULL, permit NULL
values.) Setting such a column to NULL sets it to the current timestamp.

• The first TIMESTAMP column in a table, if not declared with the NULL attribute or an explicit
DEFAULT or ON UPDATE clause, is automatically assigned the DEFAULT CURRENT_TIMESTAMP
and ON UPDATE CURRENT_TIMESTAMP attributes.

• TIMESTAMP columns following the first one, if not declared with the NULL attribute or an explicit
DEFAULT clause, are automatically assigned DEFAULT '0000-00-00 00:00:00' (the “zero”
timestamp). For inserted rows that specify no explicit value for such a column, the column is
assigned '0000-00-00 00:00:00' and no warning occurs.

Those nonstandard behaviors remain the default for TIMESTAMP but as of MySQL 5.6.6 are
deprecated and this warning appears at startup:

[Warning] TIMESTAMP with implicit DEFAULT value is deprecated.
Please use --explicit_defaults_for_timestamp server option (see
documentation for more details).

As indicated by the warning, to turn off the nonstandard behaviors, enable the
explicit_defaults_for_timestamp system variable at server startup. With this variable
enabled, the server handles TIMESTAMP as follows instead:

• TIMESTAMP columns not explicitly declared as NOT NULL permit NULL values. Setting such a
column to NULL sets it to NULL, not the current timestamp.

• No TIMESTAMP column is assigned the DEFAULT CURRENT_TIMESTAMP or ON UPDATE
CURRENT_TIMESTAMP attributes automatically. Those attributes must be explicitly specified.

Server System Variables

605

• TIMESTAMP columns declared as NOT NULL and without an explicit DEFAULT clause are
treated as having no default value. For inserted rows that specify no explicit value for such a
column, the result depends on the SQL mode. If strict SQL mode is enabled, an error occurs.
If strict SQL mode is not enabled, the column is assigned the implicit default of '0000-00-00
00:00:00' and a warning occurs. This is similar to how MySQL treats other temporal types such
as DATETIME.

Note

explicit_defaults_for_timestamp is itself deprecated because its
only purpose is to permit control over now-deprecated TIMESTAMP behaviors
that will be removed in a future MySQL release. When that removal occurs,
explicit_defaults_for_timestamp will have no purpose and will be
removed as well.

• external_user

Name external_user

Variable
Scope

Session

System Variable

Dynamic
Variable

No

Permitted Values Type string

The external user name used during the authentication process, as set by the plugin used to
authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set the
value, this variable is NULL. See Section 6.3.10, “Proxy Users”.

• flush

Command-Line Format --flush

Name flush

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally,
MySQL does a write of all changes to disk only after each SQL statement and lets the operating
system handle the synchronizing to disk. See Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”. This variable is set to ON if you start mysqld with the --flush option.

• flush_time

Command-Line Format --flush_time=#

Name flush_time

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

Server System Variables

606

Default 0

Min
Value

0

Type integer

Default 0

Permitted Values
(Windows)

Min
Value

0

If this is set to a nonzero value, all tables are closed every flush_time seconds to free up
resources and synchronize unflushed data to disk. This option is best used only on systems with
minimal resources.

• foreign_key_checks

If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0, foreign key
constraints are ignored, with a couple of exceptions. When re-creating a table that was dropped, an
error is returned if the table definition does not conform to the foreign key constraints referencing the
table. Likewise, an ALTER TABLE operation returns an error if a foreign key definition is incorrectly
formed. For more information, see Section 13.1.14.3, “Using FOREIGN KEY Constraints”.

Typically you leave this setting enabled during normal operation, to enforce referential integrity.
Disabling foreign key checking can be useful for reloading InnoDB tables in an order different from
that required by their parent/child relationships. See Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”.

Setting foreign_key_checks to 0 also affects data definition statements: DROP SCHEMA drops
a schema even if it contains tables that have foreign keys that are referred to by tables outside the
schema, and DROP TABLE drops tables that have foreign keys that are referred to by other tables.

Note

Setting foreign_key_checks to 1 does not trigger a scan of the existing
table data. Therefore, rows added to the table while foreign_key_checks
= 0 will not be verified for consistency.

• ft_boolean_syntax

Command-Line Format --ft_boolean_syntax=name

Name ft_boolean_syntax

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default + -><()~*:""&|

The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE.
See Section 12.9.2, “Boolean Full-Text Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as follows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII nonalphanumeric character.

Server System Variables

607

• Either the first or second character must be a space.

• No duplicates are permitted except the phrase quoting operators in positions 11 and 12. These two
characters are not required to be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to “:”, “&”, and “|”) are reserved for future
extensions.

• ft_max_word_len

Command-Line Format --ft_max_word_len=#

Name ft_max_word_len

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Min
Value

10

The maximum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this
variable. Use REPAIR TABLE tbl_name QUICK.

• ft_min_word_len

Command-Line Format --ft_min_word_len=#

Name ft_min_word_len

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4

Permitted Values

Min
Value

1

The minimum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this
variable. Use REPAIR TABLE tbl_name QUICK.

• ft_query_expansion_limit

Command-Line Format --ft_query_expansion_limit=#

Name ft_query_expansion_limitSystem Variable

Variable
Scope

Global

Server System Variables

608

Dynamic
Variable

No

Type integer

Default 20

Min
Value

0

Permitted Values

Max
Value

1000

The number of top matches to use for full-text searches performed using WITH QUERY EXPANSION.

• ft_stopword_file

Command-Line Format --ft_stopword_file=file_name

Name ft_stopword_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The file from which to read the list of stopwords for full-text searches on MyISAM tables. The server
looks for the file in the data directory unless an absolute path name is given to specify a different
directory. All the words from the file are used; comments are not honored. By default, a built-in list of
stopwords is used (as defined in the storage/myisam/ft_static.c file). Setting this variable to
the empty string ('') disables stopword filtering. See also Section 12.9.4, “Full-Text Stopwords”.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this
variable or the contents of the stopword file. Use REPAIR TABLE tbl_name
QUICK.

• general_log

Command-Line Format --general-log

Name general_log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether the general query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON)
to enable the log. The default value depends on whether the --general_log option is given. The
destination for log output is controlled by the log_output system variable; if that value is NONE, no
log entries are written even if the log is enabled.

• general_log_file

Command-Line Format --general-log-file=file_name

System Variable Name general_log_file

Server System Variables

609

Variable
Scope

Global

Dynamic
Variable

Yes

Type file namePermitted Values

Default host_name.log

The name of the general query log file. The default value is host_name.log, but the initial value
can be changed with the --general_log_file option.

• group_concat_max_len

Command-Line Format --group_concat_max_len=#

Name group_concat_max_len

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

4

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1024

Min
Value

4

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The maximum permitted result length in bytes for the GROUP_CONCAT() function. The default is
1024.

• have_compress

YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS() and
UNCOMPRESS() functions cannot be used.

• have_crypt

YES if the crypt() system call is available to the server, NO if not. If not, the ENCRYPT() function
cannot be used.

• have_dynamic_loading

YES if mysqld supports dynamic loading of plugins, NO if not.

• have_geometry

YES if the server supports spatial data types, NO if not.

• have_openssl

This variable is an alias for have_ssl.

Server System Variables

610

• have_profiling

YES if statement profiling capability is present, NO if not. If present, the profiling system variable
controls whether this capability is enabled or disabled. See Section 13.7.5.31, “SHOW PROFILES
Syntax”.

This variable is deprecated and will be removed in a future MySQL release.

• have_query_cache

YES if mysqld supports the query cache, NO if not.

• have_rtree_keys

YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM tables.)

• have_ssl

YES if mysqld supports SSL connections, NO if not. DISABLED indicates that the server was
compiled with SSL support, but was not started with the appropriate --ssl-xxx options. For more
information, see Section 6.3.12.3, “Building MySQL with SSL Support”.

• have_statement_timeout

Introduced 5.7.4

Name have_statement_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

Whether the statement execution timeout feature is available (see Statement Execution Time
Optimizer Hints). The value can be NO if the background thread used by this feature could not be
initialized.

• have_symlink

YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA
DIRECTORY and INDEX DIRECTORY table options. If the server is started with the --skip-
symbolic-links option, the value is DISABLED.

This variable has no meaning on Windows.

• host_cache_size

Name host_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default -1 (autosized)

Min
Value

0

Permitted Values

Max
Value

65536

Server System Variables

611

The size of the internal host cache (see Section 8.12.6.2, “DNS Lookup Optimization and the Host
Cache”). Setting the size to 0 disables the host cache. Changing the cache size at runtime implicitly
causes a FLUSH HOSTS operation to clear the host cache and truncate the host_cache table.

The default value is 128, plus 1 for a value of max_connections up to 500, plus 1 for every
increment of 20 over 500 in the max_connections value, capped to a limit of 2000.

Use of --skip-host-cache is similar to setting the host_cache_size system variable to 0, but
host_cache_size is more flexible because it can also be used to resize, enable, or disable the
host cache at runtime, not just at server startup.

If you start the server with --skip-host-cache, that does not prevent changes to the value of
host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

• hostname

Name hostname

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The server sets this variable to the server host name at startup.

• identity

This variable is a synonym for the last_insert_id variable. It exists for compatibility with
other database systems. You can read its value with SELECT @@identity, and set it using SET
identity.

• ignore_db_dirs

Name ignore_db_dirs

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

A comma-separated list of names that are not considered as database directories in the data
directory. The value is set from any instances of --ignore-db-dir given at server startup.

As of MySQL 5.7.11, --ignore-db-dir can be used at data directory initialization time with
mysqld --initialize to specify directories that the server should ignore for purposes of
assessing whether an existing data directory is considered empty. See Section 2.10.1.1, “Initializing
the Data Directory Manually Using mysqld”.

• init_connect

Command-Line Format --init-connect=name

Name init_connectSystem Variable

Variable
Scope

Global

Server System Variables

612

Dynamic
Variable

Yes

Permitted Values Type string

A string to be executed by the server for each client that connects. The string consists of one or more
SQL statements, separated by semicolon characters. For example, each client session begins by
default with autocommit mode enabled. For older servers (before MySQL 5.5.8), there is no global
autocommit system variable to specify that autocommit should be disabled by default, but as a
workaround init_connect can be used to achieve the same effect:

SET GLOBAL init_connect='SET autocommit=0';

The init_connect variable can also be set on the command line or in an option file. To set the
variable as just shown using an option file, include these lines:

[mysqld]
init_connect='SET autocommit=0'

The content of init_connect is not executed for users that have the SUPER privilege. This is
done so that an erroneous value for init_connect does not prevent all clients from connecting.
For example, the value might contain a statement that has a syntax error, thus causing client
connections to fail. Not executing init_connect for users that have the SUPER privilege enables
them to open a connection and fix the init_connect value.

The server discards any result sets produced by statements in the value of of init_connect.

• init_file

Command-Line Format --init-file=file_name

Name init_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the file specified with the --init-file option when you start the server. This should
be a file containing SQL statements that you want the server to execute when it starts. Each
statement must be on a single line and should not include comments. No statement terminator such
as ;, \g, or \G should be given at the end of each statement.

• innodb_xxx

InnoDB system variables are listed in Section 14.11, “InnoDB Startup Options and System
Variables”. These variables control many aspects of storage, memory use, and I/O patterns for
InnoDB tables, and are especially important now that InnoDB is the default storage engine.

• insert_id

The value to be used by the following INSERT or ALTER TABLE statement when inserting an
AUTO_INCREMENT value. This is mainly used with the binary log.

• interactive_timeout

Command-Line Format --interactive_timeout=#

System Variable Name interactive_timeout

Server System Variables

613

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type integer

Default 28800

Permitted Values

Min
Value

1

The number of seconds the server waits for activity on an interactive connection before closing
it. An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to
mysql_real_connect(). See also wait_timeout.

• internal_tmp_disk_storage_engine

Introduced 5.7.5

Command-Line Format --internal_tmp_disk_storage_engine=#

Name internal_tmp_disk_storage_engine

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default MYISAM

MYISAM

Permitted Values (5.7.5)

Valid
Values INNODB

Type enumeration

Default INNODB

MYISAM

Permitted Values (>=
5.7.6)

Valid
Values INNODB

The storage engine for on-disk internal temporary tables (see Section 8.4.4, “Internal Temporary
Table Use in MySQL”). Permitted values are MYISAM and INNODB.

This variable was added in MySQL 5.7.5 with a default of MYISAM. In MySQL 5.7.6, the default value
was changed to INNODB. With this change, the optimizer uses the InnoDB storage engine by default
for on-disk internal temporary tables.

• join_buffer_size

Command-Line Format --join_buffer_size=#

Name join_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 262144

Permitted Values
(Windows)

Min
Value

128

Server System Variables

614

Max
Value

4294967295

Type integer

Default 262144

Min
Value

128

Permitted Values (Other,
32-bit platforms)

Max
Value

4294967295

Type integer

Default 262144

Min
Value

128

Permitted Values (Other,
64-bit platforms)

Max
Value

18446744073709547520

The minimum size of the buffer that is used for plain index scans, range index scans, and joins that
do not use indexes and thus perform full table scans. Normally, the best way to get fast joins is to
add indexes. Increase the value of join_buffer_size to get a faster full join when adding indexes
is not possible. One join buffer is allocated for each full join between two tables. For a complex join
between several tables for which indexes are not used, multiple join buffers might be necessary.

Unless Batched Key Access (BKA) is used, there is no gain from setting the buffer larger than
required to hold each matching row, and all joins allocate at least the minimum size, so use caution
in setting this variable to a large value globally. It is better to keep the global setting small and
change to a larger setting only in sessions that are doing large joins. Memory allocation time can
cause substantial performance drops if the global size is larger than needed by most queries that use
it.

When BKA is used, the value of join_buffer_size defines how large the batch of keys is in each
request to the storage engine. The larger the buffer, the more sequential access will be to the right
hand table of a join operation, which can significantly improve performance.

The default is 256KB. The maximum permissible setting for join_buffer_size is 4GB−1.
Larger values are permitted for 64-bit platforms (except 64-bit Windows, for which large values are
truncated to 4GB−1 with a warning).

For additional information about join buffering, see Section 8.2.1.10, “Nested-Loop Join Algorithms”.
For information about Batched Key Access, see Section 8.2.1.14, “Block Nested-Loop and Batched
Key Access Joins”.

• keep_files_on_create

Command-Line Format --keep_files_on_create=#

Name keep_files_on_create

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the
database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it.
The same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress

Server System Variables

615

this behavior, set the keep_files_on_create variable to ON (1), in which case MyISAM will not
overwrite existing files and returns an error instead. The default value is OFF (0).

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified
directory.

• key_buffer_size

Command-Line Format --key_buffer_size=#

Name key_buffer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 8388608

Min
Value

8

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 8388608

Min
Value

8

Permitted Values (64-bit
platforms)

Max
Value

OS_PER_PROCESS_LIMIT

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is
the size of the buffer used for index blocks. The key buffer is also known as the key cache.

The maximum permissible setting for key_buffer_size is 4GB−1 on 32-bit platforms. Larger
values are permitted for 64-bit platforms. The effective maximum size might be less, depending
on your available physical RAM and per-process RAM limits imposed by your operating system or
hardware platform. The value of this variable indicates the amount of memory requested. Internally,
the server allocates as much memory as possible up to this amount, but the actual allocation might
be less.

You can increase the value to get better index handling for all reads and multiple writes; on a system
whose primary function is to run MySQL using the MyISAM storage engine, 25% of the machine's
total memory is an acceptable value for this variable. However, you should be aware that, if you
make the value too large (for example, more than 50% of the machine's total memory), your system
might start to page and become extremely slow. This is because MySQL relies on the operating
system to perform file system caching for data reads, so you must leave some room for the file
system cache. You should also consider the memory requirements of any other storage engines that
you may be using in addition to MyISAM.

For even more speed when writing many rows at the same time, use LOCK TABLES. See
Section 8.2.2.1, “Speed of INSERT Statements”.

You can check the performance of the key buffer by issuing a SHOW STATUS statement and
examining the Key_read_requests, Key_reads, Key_write_requests, and Key_writes
status variables. (See Section 13.7.5, “SHOW Syntax”.) The Key_reads/Key_read_requests
ratio should normally be less than 0.01. The Key_writes/Key_write_requests ratio is usually
near 1 if you are using mostly updates and deletes, but might be much smaller if you tend to do

Server System Variables

616

updates that affect many rows at the same time or if you are using the DELAY_KEY_WRITE table
option.

The fraction of the key buffer in use can be determined using key_buffer_size in conjunction
with the Key_blocks_unused status variable and the buffer block size, which is available from the
key_cache_block_size system variable:

1 - ((Key_blocks_unused * key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer is allocated internally for
administrative structures. Factors that influence the amount of overhead for these structures
include block size and pointer size. As block size increases, the percentage of the key buffer lost to
overhead tends to decrease. Larger blocks results in a smaller number of read operations (because
more keys are obtained per read), but conversely an increase in reads of keys that are not examined
(if not all keys in a block are relevant to a query).

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache
individually, not as a group. See Section 8.10.2, “The MyISAM Key Cache”.

• key_cache_age_threshold

Command-Line Format --key_cache_age_threshold=#

Name key_cache_age_threshold

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 300

Min
Value

100

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 300

Min
Value

100

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

This value controls the demotion of buffers from the hot sublist of a key cache to the warm sublist.
Lower values cause demotion to happen more quickly. The minimum value is 100. The default value
is 300. See Section 8.10.2, “The MyISAM Key Cache”.

• key_cache_block_size

Command-Line Format --key_cache_block_size=#

Name key_cache_block_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

Server System Variables

617

Default 1024

Min
Value

512

Max
Value

16384

The size in bytes of blocks in the key cache. The default value is 1024. See Section 8.10.2, “The
MyISAM Key Cache”.

• key_cache_division_limit

Command-Line Format --key_cache_division_limit=#

Name key_cache_division_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 100

Min
Value

1

Permitted Values

Max
Value

100

The division point between the hot and warm sublists of the key cache buffer list. The value is the
percentage of the buffer list to use for the warm sublist. Permissible values range from 1 to 100. The
default value is 100. See Section 8.10.2, “The MyISAM Key Cache”.

• large_files_support

Name large_files_support

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether mysqld was compiled with options for large file support.

• large_pages

Command-Line Format --large-pages

Name large_pages

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Linux

Type booleanPermitted Values (Linux)

Default FALSE

Whether large page support is enabled (via the --large-pages option). See Section 8.12.5.2,
“Enabling Large Page Support”.

Server System Variables

618

• large_page_size

Name large_page_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (Linux)

Default 0

If large page support is enabled, this shows the size of memory pages. Large memory pages
are supported only on Linux; on other platforms, the value of this variable is always 0. See
Section 8.12.5.2, “Enabling Large Page Support”.

• last_insert_id

The value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you use
LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not update the
value returned by the mysql_insert_id() C API function.

• lc_messages

Command-Line Format --lc-messages=name

Name lc_messages

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of lc_messages_dir to produce the location for the
error message file. See Section 10.2, “Setting the Error Message Language”.

• lc_messages_dir

Command-Line Format --lc-messages-dir=dir_name

Name lc_messages_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where error messages are located. The server uses the value together with the value
of lc_messages to produce the location for the error message file. See Section 10.2, “Setting the
Error Message Language”.

• lc_time_names

Name lc_time_namesSystem Variable

Variable
Scope

Global, Session

Server System Variables

619

Dynamic
Variable

Yes

Permitted Values Type string

This variable specifies the locale that controls the language used to display day and month names
and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and
MONTHNAME() functions. Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'.
The default value is 'en_US' regardless of your system's locale setting. For further information, see
Section 10.7, “MySQL Server Locale Support”.

• license

Name license

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default GPL

The type of license the server has.

• local_infile

Name local_infile

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

Whether LOCAL is supported for LOAD DATA INFILE statements. If this variable is disabled, clients
cannot use LOCAL in LOAD DATA statements. See Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”.

• lock_wait_timeout

Command-Line Format --lock_wait_timeout=#

Name lock_wait_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 31536000

Min
Value

1

Permitted Values

Max
Value

31536000

This variable specifies the timeout in seconds for attempts to acquire metadata locks. The
permissible values range from 1 to 31536000 (1 year). The default is 31536000.

Server System Variables

620

This timeout applies to all statements that use metadata locks. These include DML and DDL
operations on tables, views, stored procedures, and stored functions, as well as LOCK TABLES,
FLUSH TABLES WITH READ LOCK, and HANDLER statements.

This timeout does not apply to implicit accesses to system tables in the mysql database, such as
grant tables modified by GRANT or REVOKE statements or table logging statements. The timeout does
apply to system tables accessed directly, such as with SELECT or UPDATE.

The timeout value applies separately for each metadata lock attempt. A given statement can
require more than one lock, so it is possible for the statement to block for longer than the
lock_wait_timeout value before reporting a timeout error. When lock timeout occurs,
ER_LOCK_WAIT_TIMEOUT is reported.

lock_wait_timeout does not apply to delayed inserts, which always execute with a timeout of
1 year. This is done to avoid unnecessary timeouts because a session that issues a delayed insert
receives no notification of delayed insert timeouts.

• locked_in_memory

Name locked_in_memory

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether mysqld was locked in memory with --memlock.

• log_backward_compatible_user_definitions

Introduced 5.7.6

Removed 5.7.9

Command-Line Format --log_backward_compatible_user_definitions[={OFF|ON}]

Name log_backward_compatible_user_definitions

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether to log the user_specification part of CREATE USER, ALTER USER, and GRANT
statements in backward-compatible (pre-5.7.6) fashion:

• By default, this variable is disabled. The server writes user specifications as user IDENTIFIED
WITH auth_plugin AS 'hash_string'.

• When enabled, the server writes user specifications as user IDENTIFIED BY PASSWORD
'hash_string'. Enabling this variable ensures better compatibility for cross-version replication.

This variable was removed in MySQL 5.7.9 and replaced by
log_builtin_as_identified_by_password.

• log_bin_trust_function_creators

Command-Line Format --log-bin-trust-function-creators

Server System Variables

621

Name log_bin_trust_function_creators

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

This variable applies when binary logging is enabled. It controls whether stored function creators
can be trusted not to create stored functions that will cause unsafe events to be written to the binary
log. If set to 0 (the default), users are not permitted to create or alter stored functions unless they
have the SUPER privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A
setting of 0 also enforces the restriction that a function must be declared with the DETERMINISTIC
characteristic, or with the READS SQL DATA or NO SQL characteristic. If the variable is set to 1,
MySQL does not enforce these restrictions on stored function creation. This variable also applies to
trigger creation. See Section 19.7, “Binary Logging of Stored Programs”.

• log_builtin_as_identified_by_password

Introduced 5.7.9

Command-Line Format --log_builtin_as_identified_by_password[={OFF|ON}]

Name log_builtin_as_identified_by_password

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This variable affects binary logging of user-management statements. If enabled, binary logging
for CREATE USER statements involving built-in authentication plugins rewrites the statements to
include an IDENTIFIED BY PASSWORD clause, and SET PASSWORD statements are logged as SET
PASSWORD statements, rather than being rewritten to ALTER USER statements.

This variable was added in MySQL 5.7.9. It replaces the
log_backward_compatible_user_definitions variable.

• log_error

Command-Line Format --log-error[=file_name]

Name log_error

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The location of the error log, or stderr if the server is writing error message to the standard error
output. See Section 5.2.2, “The Error Log”.

• log_error_verbosity

Introduced 5.7.2

Server System Variables

622

Command-Line Format --log_error_verbosity=#

Name log_error_verbosity

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 3

Min
Value

1

Permitted Values

Max
Value

3

This variable controls verbosity of the server in writing error, warning, and note messages to the error
log. The following table shows the permitted values. The default is 3.

Verbosity Value Message Types Logged

1 Errors only

2 Errors and warnings

3 Errors, warnings, and notes

log_error_verbosity was added in MySQL 5.7.2. It is preferred over, and should be used
instead of, the older log_warnings system variable. See the description of log_warnings for
information about how that variable relates to log_error_verbosity. In particular, assigning a
value to log_warnings assigns a value to log_error_verbosity and vice versa.

• log_output

Command-Line Format --log-output=name

Name log_output

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type set

Default FILE

TABLE

FILE

Permitted Values

Valid
Values

NONE

The destination for general query log and slow query log output. The value can be a comma-
separated list of one or more of the words TABLE (log to tables), FILE (log to files), or NONE (do not
log to tables or files). The default value is FILE. NONE, if present, takes precedence over any other
specifiers. If the value is NONE log entries are not written even if the logs are enabled. If the logs are
not enabled, no logging occurs even if the value of log_output is not NONE. For more information,
see Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”.

• log_queries_not_using_indexes

Command-Line Format --log-queries-not-using-indexes

System Variable Name log_queries_not_using_indexes

Server System Variables

623

Variable
Scope

Global

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether queries that do not use indexes are logged to the slow query log. See Section 5.2.5, “The
Slow Query Log”.

• log_syslog

Introduced 5.7.5

Command-Line Format --log_syslog[={0|1}]

Name log_syslog

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values (Unix)

Default OFF

Type booleanPermitted Values
(Windows) Default ON

Whether to write error log output to syslog (on Unix and Unix-like systems) or Event Log (on
Windows). The default value is platform specific:

• On Unix and Unix-like systems, syslog output is disabled by default.

• On Windows, Event Log output is enabled by default, which is consistent with older MySQL
versions.

Regardless of the default, log_syslog can be set explicitly to control output on any supported
platform.

syslog output control is orthogonal to sending error output to a file or (on Windows) to the console.
Error output can be directed to the latter destination in addition to or instead of syslog as desired.

• log_syslog_facility

Introduced 5.7.5

Command-Line Format --log_syslog_facility=value

Name log_syslog_facility

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default daemon

The facility for error log output written to syslog (what type of program is sending the message).
This variable has no effect unless the log_syslog system variable is enabled.

Server System Variables

624

The permitted values can vary per operating system; consult your system syslog documentation.

This variable does not exist on Windows.

• log_syslog_include_pid

Introduced 5.7.5

Command-Line Format --log_syslog_include_pid[={0|1}]

Name log_syslog_include_pid

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Whether to include the server process ID in each line of error log output written to syslog. This
variable has no effect unless the log_syslog system variable is enabled.

This variable does not exist on Windows.

• log_syslog_tag

Introduced 5.7.5

Command-Line Format --log_syslog_tag=value

Name log_syslog_tag

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default empty string

The tag to be added to the server identifier in error log output written to syslog. This variable has no
effect unless the log_syslog system variable is enabled.

By default, the server identifier is mysqld with no tag. If a tag of tag_val is specified, it is appended
to the server identifier with a leading hyphen, resulting in an identifier of mysqld-tag_val.

On Windows, to use a tag that does not already exist, the server must be run from an account with
Administrator privileges, to permit creation of a registry entry for the tag. Elevated privileges are not
required if the tag already exists.

• log_timestamps

Introduced 5.7.2

Command-Line Format --log_timestamps=#

Name log_timestamps

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Server System Variables

625

Type enumeration

Default UTC

UTC

Permitted Values

Valid
Values SYSTEM

This variable controls the timestamp time zone of error log messages, and of general query log
and slow query log messages written to files. It does not affect the time zone of general query log
and slow query log messages written to tables (mysql.general_log, mysql.slow_log). Rows
retrieved from those tables can be converted from the local system time zone to any desired time
zone with CONVERT_TZ() or by setting the session time_zone system variable.

Permitted log_timestamps values are UTC (the default) and SYSTEM (local system time zone).

Timestamps are written using ISO 8601 / RFC 3339 format: YYYY-MM-DDThh:mm:ss.uuuuuu plus
a tail value of Z signifying Zulu time (UTC) or ±hh:mm (an offset from UTC).

This variable was added in MySQL 5.7.2. Before 5.7.2, timestamps in log messages were written
using the local system time zone by default, not UTC. If you want the previous log message time
zone default, set log_timestamps=SYSTEM.

• log_throttle_queries_not_using_indexes

Name log_throttle_queries_not_using_indexes

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

If log_queries_not_using_indexes is enabled, the
log_throttle_queries_not_using_indexes variable limits the number of such queries per
minute that can be written to the slow query log. A value of 0 (the default) means “no limit”. For more
information, see Section 5.2.5, “The Slow Query Log”.

• log_slow_admin_statements

Introduced 5.7.1

Name log_slow_admin_statements

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP
INDEX, OPTIMIZE TABLE, and REPAIR TABLE.

• log_warnings

Deprecated 5.7.2

Command-Line Format --log-warnings[=#]

Server System Variables

626

Name log_warnings

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (32-bit
platforms, <= 5.7.1)

Max
Value

4294967295

Type integer

Default 2

Min
Value

0

Permitted Values (32-bit
platforms, >= 5.7.2)

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.7.1)

Max
Value

18446744073709551615

Type integer

Default 2

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.7.2)

Max
Value

18446744073709551615

Whether to produce additional warning messages to the error log. Before MySQL 5.7.2, this variable
is enabled (1) by default and can be disabled by setting it to 0. The server logs messages about
statements that are unsafe for statement-based logging if the value is greater than 0. Aborted
connections and access-denied errors for new connection attempts are logged if the value is greater
than 1.

As of MySQL 5.7.2, information items previously governed by log_warnings are governed
by log_error_verbosity, which is preferred over, and should be used instead of, the older
log_warnings system variable. (The log_warnings system variable and --log-warnings
command-line option are deprecated and will be removed in a future MySQL release.) The
log_warnings and log_error_verbosity variables are related as follows:

• Suppression of all log_warnings items, previously achieved with log_warnings=0, is now
achieved with log_error_verbosity=1 (errors only).

• Items previously printed for log_warnings=1 or higher now count as warnings and are printed
for log_error_verbosity=2 or higher.

• Items previously printed for log_warnings=2 now count as notes and are printed for
log_error_verbosity=3.

Server System Variables

627

As of MySQL 5.7.2, the default log level is controlled by log_error_verbosity, which has a
default of 3. In addition, the default for log_warnings changes from 1 to 2, which corresponds
to log_error_verbosity=3. To achieve a logging level similar to the previous default, set
log_error_verbosity=2.

In MySQL 5.7.2 and up, use of log_warnings is still permitted but maps onto use of
log_error_verbosity as follows:

• Setting log_warnings=0 is equivalent to log_error_verbosity=1 (errors only).

• Setting log_warnings=1 is equivalent to log_error_verbosity=2 (errors, warnings).

• Setting log_warnings=2 (or higher) is equivalent to log_error_verbosity=3 (errors,
warnings, notes), and the server sets log_warnings to 2 if a larger value is specified.

Note

One implication of the behavior just described is that assigning a value to
log_warnings assigns a value to log_error_verbosity and vice versa.

• long_query_time

Command-Line Format --long_query_time=#

Name long_query_time

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type numeric

Default 10

Permitted Values

Min
Value

0

If a query takes longer than this many seconds, the server increments the Slow_queries status
variable. If the slow query log is enabled, the query is logged to the slow query log file. This value
is measured in real time, not CPU time, so a query that is under the threshold on a lightly loaded
system might be above the threshold on a heavily loaded one. The minimum and default values
of long_query_time are 0 and 10, respectively. The value can be specified to a resolution of
microseconds. For logging to a file, times are written including the microseconds part. For logging to
tables, only integer times are written; the microseconds part is ignored. See Section 5.2.5, “The Slow
Query Log”.

• low_priority_updates

Command-Line Format --low-priority-updates

Name low_priority_updates

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

Server System Variables

628

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there is no
pending SELECT or LOCK TABLE READ on the affected table. This affects only storage engines that
use only table-level locking (such as MyISAM, MEMORY, and MERGE).

• lower_case_file_system

Name lower_case_file_system

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

This variable describes the case sensitivity of file names on the file system where the data directory
is located. OFF means file names are case sensitive, ON means they are not case sensitive. This
variable is read only because it reflects a file system attribute and setting it would have no effect on
the file system.

• lower_case_table_names

Command-Line Format --lower_case_table_names[=#]

Name lower_case_table_names

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

2

If set to 0, table names are stored as specified and comparisons are case sensitive. If set to 1, table
names are stored in lowercase on disk and comparisons are not case sensitive. If set to 2, table
names are stored as given but compared in lowercase. This option also applies to database names
and table aliases. For additional information, see Section 9.2.2, “Identifier Case Sensitivity”.

On Windows the default value is 1. On OS X, the default value is 2.

You should not set lower_case_table_names to 0 if you are running MySQL on a system where
the data directory resides on a case-insensitive file system (such as on Windows or OS X). It is an
unsupported combination that could result in a hang condition when running an INSERT INTO ...
SELECT ... FROM tbl_name operation with the wrong tbl_name letter case. With MyISAM,
accessing table names using different letter cases could cause index corruption.

As of MySQL 5.7.9, an error message is printed and the server exits if you attempt to start the server
with --lower_case_table_names=0 on a case-insensitive file system.

If you are using InnoDB tables, you should set this variable to 1 on all platforms to force names to be
converted to lowercase.

Server System Variables

629

The setting of this variable in MySQL 5.7 affects the behavior of replication filtering options with
regard to case sensitivity. (Bug #51639) See Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”, for more information.

• max_allowed_packet

Command-Line Format --max_allowed_packet=#

Name max_allowed_packet

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4194304

Min
Value

1024

Permitted Values

Max
Value

1073741824

The maximum size of one packet or any generated/intermediate string, or any parameter sent by the
mysql_stmt_send_long_data() C API function. The default is 4MB.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to
max_allowed_packet bytes when needed. This value by default is small, to catch large (possibly
incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as
big as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB. The
value should be a multiple of 1024; nonmultiples are rounded down to the nearest multiple.

When you change the message buffer size by changing the value of the max_allowed_packet
variable, you should also change the buffer size on the client side if your client program permits
it. The default max_allowed_packet value built in to the client library is 1GB, but individual
client programs might override this. For example, mysql and mysqldump have defaults of
16MB and 24MB, respectively. They also enable you to change the client-side value by setting
max_allowed_packet on the command line or in an option file.

The session value of this variable is read only. The client can receive up to as many bytes as the
session value. However, the server will not send to the client more bytes than the current global
max_allowed_packet value. (The global value could be less than the session value if the global
value is changed after the client connects.)

• max_connect_errors

Command-Line Format --max_connect_errors=#

Name max_connect_errors

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (32-bit
platforms) Default 100

Server System Variables

630

Min
Value

1

Max
Value

4294967295

Type integer

Default 100

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

If more than this many successive connection requests from a host are interrupted without a
successful connection, the server blocks that host from further connections. You can unblock
blocked hosts by flushing the host cache. To do so, issue a FLUSH HOSTS statement or execute a
mysqladmin flush-hosts command. If a connection is established successfully within fewer than
max_connect_errors attempts after a previous connection was interrupted, the error count for the
host is cleared to zero. However, once a host is blocked, flushing the host cache is the only way to
unblock it. The default is 100.

• max_connections

Command-Line Format --max_connections=#

Name max_connections

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 151

Min
Value

1

Permitted Values

Max
Value

100000

The maximum permitted number of simultaneous client connections. By default, this is 151. See
Section B.5.2.7, “Too many connections”, for more information.

Increasing this value increases the number of file descriptors that mysqld requires. If the required
number of descriptors are not available, the server reduces the value of max_connections. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”, for comments on file descriptor limits.

Connections refused because the max_connections limit is reached increment the
Connection_errors_max_connections status variable.

• max_delayed_threads

Deprecated 5.6.7

Command-Line Format --max_delayed_threads=#

Name max_delayed_threadsSystem Variable

Variable
Scope

Global, Session

Server System Variables

631

Dynamic
Variable

Yes

Type integer

Default 20

Min
Value

0

Permitted Values

Max
Value

16384

This system variable is deprecated (because DELAYED inserts are not supported), and will be
removed in a future release.

• max_digest_length

Introduced 5.7.6

Command-Line Format --max_digest_length=#

Name max_digest_length

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1024

Min
Value

0

Permitted Values

Max
Value

1048576

The maximum number of bytes available for computing statement digests (see Section 21.7,
“Performance Schema Statement Digests”). When this amount of space is used for computing the
digest for a statement, no further tokens from the parsed statement are collected or figure into the
digest value. Statements differing only after that many bytes of parsed statement tokens produce the
same digest and are aggregated for digest statistics.

Decreasing the max_digest_length value reduces memory use but causes the digest value
of more statements to become indistinguishable if they differ only at the end. Increasing the value
permits longer statements to be distinguished but increases memory use, particularly for workloads
that involve large numbers of simultaneous sessions (max_digest_length bytes are allocated per
session).

This variable was added in MySQL 5.7.6. Until 5.7.8, this variable applies to Performance Schema
and to other server functions that use digests, such as query rewrite plugins. As of 5.7.8, it no longer
applies to Performance Schema; instead, use performance_schema_max_digest_length.

• max_error_count

Command-Line Format --max_error_count=#

Name max_error_count

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Server System Variables

632

Type integer

Default 64

Min
Value

0

Permitted Values

Max
Value

65535

The maximum number of error, warning, and note messages to be stored for display by the SHOW
ERRORS and SHOW WARNINGS statements. This is the same as the number of condition areas in the
diagnostics area, and thus the number of conditions that can be inspected by GET DIAGNOSTICS.

• max_execution_time

Introduced 5.7.8

Command-Line Format --max_execution_time=#

Name max_execution_time

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

The execution timeout for SELECT statements, in milliseconds. If the value is 0, timeouts are not
enabled.

max_execution_time applies as follows:

• The global max_execution_time value provides the default for the session value for new
connections. The session value applies to SELECT executions executed within the session that
include no MAX_EXECUTION_TIME(N) optimizer hint or for which N is 0.

• max_execution_time applies to read-only SELECT statements. Statements that are not read
only are those that invoke a stored function that modifies data as a side effect.

• max_execution_time is ignored for SELECT statements in stored programs.

This variable was added in MySQL 5.7.8. Previously, it was named max_statement_time.

• max_heap_table_size

Command-Line Format --max_heap_table_size=#

Name max_heap_table_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 16777216

Min
Value

16384

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Server System Variables

633

Type integer

Default 16777216

Min
Value

16384

Permitted Values (64-bit
platforms)

Max
Value

1844674407370954752

This variable sets the maximum size to which user-created MEMORY tables are permitted to grow.
The value of the variable is used to calculate MEMORY table MAX_ROWS values. Setting this variable
has no effect on any existing MEMORY table, unless the table is re-created with a statement such as
CREATE TABLE or altered with ALTER TABLE or TRUNCATE TABLE. A server restart also sets the
maximum size of existing MEMORY tables to the global max_heap_table_size value.

This variable is also used in conjunction with tmp_table_size to limit the size of internal in-
memory tables. See Section 8.4.4, “Internal Temporary Table Use in MySQL”.

max_heap_table_size is not replicated. See Section 17.4.1.23, “Replication and MEMORY
Tables”, and Section 17.4.1.38, “Replication and Variables”, for more information.

• max_insert_delayed_threads

Deprecated 5.6.7

Name max_insert_delayed_threads

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

This variable is a synonym for max_delayed_threads.

This system variable is deprecated (because DELAYED inserts are not supported), and will be
removed in a future release.

• max_join_size

Command-Line Format --max_join_size=#

Name max_join_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 18446744073709551615

Min
Value

1

Permitted Values

Max
Value

18446744073709551615

Do not permit statements that probably need to examine more than max_join_size rows (for
single-table statements) or row combinations (for multiple-table statements) or that are likely to do
more than max_join_size disk seeks. By setting this value, you can catch statements where keys

Server System Variables

634

are not used properly and that would probably take a long time. Set it if your users tend to perform
joins that lack a WHERE clause, that take a long time, or that return millions of rows.

Setting this variable to a value other than DEFAULT resets the value of sql_big_selects to 0. If
you set the sql_big_selects value again, the max_join_size variable is ignored.

If a query result is in the query cache, no result size check is performed, because the result has
previously been computed and it does not burden the server to send it to the client.

• max_length_for_sort_data

Command-Line Format --max_length_for_sort_data=#

Name max_length_for_sort_data

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

4

Permitted Values

Max
Value

8388608

The cutoff on the size of index values that determines which filesort algorithm to use. See
Section 8.2.1.15, “ORDER BY Optimization”.

• max_points_in_geometry

Introduced 5.7.8

Command-Line Format --max_points_in_geometry=integer

Name max_points_in_geometry

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 65536

Min
Value

3

Permitted Values

Max
Value

1048576

The maximum value of the points_per_circle argument to the ST_Buffer_Strategy()
function.

• max_prepared_stmt_count

Command-Line Format --max_prepared_stmt_count=#

Name max_prepared_stmt_countSystem Variable

Variable
Scope

Global

Server System Variables

635

Dynamic
Variable

Yes

Type integer

Default 16382

Min
Value

0

Permitted Values

Max
Value

1048576

This variable limits the total number of prepared statements in the server. It can be used in
environments where there is the potential for denial-of-service attacks based on running the server
out of memory by preparing huge numbers of statements. If the value is set lower than the current
number of prepared statements, existing statements are not affected and can be used, but no
new statements can be prepared until the current number drops below the limit. The default value
is 16,382. The permissible range of values is from 0 to 1 million. Setting the value to 0 disables
prepared statements.

• max_relay_log_size

Command-Line Format --max_relay_log_size=#

Name max_relay_log_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1073741824

If a write by a replication slave to its relay log causes the current log file size to exceed the value
of this variable, the slave rotates the relay logs (closes the current file and opens the next one).
If max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and
the relay log. If max_relay_log_size is greater than 0, it constrains the size of the relay log,
which enables you to have different sizes for the two logs. You must set max_relay_log_size
to between 4096 bytes and 1GB (inclusive), or to 0. The default value is 0. See Section 17.2.2,
“Replication Implementation Details”.

• max_seeks_for_key

Command-Line Format --max_seeks_for_key=#

Name max_seeks_for_key

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (32-bit
platforms) Default 4294967295

Server System Variables

636

Min
Value

1

Max
Value

4294967295

Type integer

Default 18446744073709551615

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL
optimizer assumes that no more than this number of key seeks are required when searching for
matching rows in a table by scanning an index, regardless of the actual cardinality of the index (see
Section 13.7.5.22, “SHOW INDEX Syntax”). By setting this to a low value (say, 100), you can force
MySQL to prefer indexes instead of table scans.

• max_sort_length

Command-Line Format --max_sort_length=#

Name max_sort_length

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

4

Permitted Values

Max
Value

8388608

The number of bytes to use when sorting data values. The server uses only the first
max_sort_length bytes of each value and ignores the rest. Consequently, values that differ
only after the first max_sort_length bytes compare as equal for GROUP BY, ORDER BY, and
DISTINCT operations.

Increasing the value of max_sort_length may require increasing the value of
sort_buffer_size as well. For details, see Section 8.2.1.15, “ORDER BY Optimization”

• max_sp_recursion_depth

Command-Line Format --max_sp_recursion_depth[=#]

Name max_sp_recursion_depth

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

Server System Variables

637

Max
Value

255

The number of times that any given stored procedure may be called recursively. The default value
for this option is 0, which completely disables recursion in stored procedures. The maximum value is
255.

Stored procedure recursion increases the demand on thread stack space. If you increase the value
of max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the
value of thread_stack at server startup.

• max_statement_time

Introduced 5.7.4

Removed 5.7.8

Name max_statement_time

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

The execution timeout for SELECT statements, in milliseconds. If the value is 0, timeouts are not
enabled.

max_statement_time applies as follows:

• The global max_statement_time value provides the default for the session value for new
connections. The session value applies to SELECT statements executed within the session that
include no MAX_STATEMENT_TIME = N option or for which N is 0.

• max_statement_time applies to read-only SELECT statements. Statements that are not read
only are those that invoke a stored function that modifies data as a side effect.

• max_statement_time is ignored for SELECT statements in stored programs.

This variable was added in MySQL 5.7.4 and renamed to max_execution_time in MySQL 5.7.8.

• max_tmp_tables

This variable is unused. It is deprecated and will be removed in a future MySQL release.

• max_user_connections

Command-Line Format --max_user_connections=#

Name max_user_connections

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Min
Value

0

Server System Variables

638

Max
Value

4294967295

The maximum number of simultaneous connections permitted to any given MySQL user account. A
value of 0 (the default) means “no limit.”

This variable has a global value that can be set at server startup or runtime. It also has a read-only
session value that indicates the effective simultaneous-connection limit that applies to the account
associated with the current session. The session value is initialized as follows:

• If the user account has a nonzero MAX_USER_CONNECTIONS resource limit, the session
max_user_connections value is set to that limit.

• Otherwise, the session max_user_connections value is set to the global value.

Account resource limits are specified using the CREATE USER or ALTER USER statement. See
Section 6.3.4, “Setting Account Resource Limits”.

• max_write_lock_count

Command-Line Format --max_write_lock_count=#

Name max_write_lock_count

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 4294967295

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 18446744073709551615

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

After this many write locks, permit some pending read lock requests to be processed in between.

• mecab_rc_file

Introduced 5.7.6

Command-Line Format --mecab_rc_file

Name mecab_rc_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The mecab_rc_file option is used when setting up the MeCab full-text parser.

Server System Variables

639

The mecab_rc_file option defines the path to the mecabrc configuration file, which is the
configuration file for MeCab. The option is read-only and can only be set at startup. The mecabrc
configuration file is required to initialize MeCab.

For information about the MeCab full-text parser, see Section 12.9.9, “MeCab Full-Text Parser
Plugin”.

For information about options that can be specified in the MeCab mecabrc configuration file, refer to
the MeCab Documentation on the Google Developers site.

• metadata_locks_cache_size

Deprecated 5.7.4

Name metadata_locks_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1024

Min
Value

1

Permitted Values

Max
Value

1048576

The size of the metadata locks cache. The server uses this cache to avoid creation and destruction
of synchronization objects. This is particularly helpful on systems where such operations are
expensive, such as Windows XP.

In MySQL 5.7.4, metadata locking implementation changes make this variable unnecessary, so it is
deprecated and will be removed in a future MySQL release.

• metadata_locks_hash_instances

Deprecated 5.7.4

Name metadata_locks_hash_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 8

Min
Value

1

Permitted Values

Max
Value

1024

The set of metadata locks can be partitioned into separate hashes to permit connections
accessing different objects to use different locking hashes and reduce contention. The
metadata_locks_hash_instances system variable specifies the number of hashes (default 8).

In MySQL 5.7.4, metadata locking implementation changes make this variable unnecessary, so it is
deprecated and will be removed in a future MySQL release.

http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html
https://code.google.com/

Server System Variables

640

• min_examined_row_limit

Command-Line Format --min-examined-row-limit=#

Name min_examined_row_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

Queries that examine fewer than this number of rows are not logged to the slow query log.

• multi_range_count

Deprecated 5.6.7

Command-Line Format --multi_range_count=#

Name multi_range_count

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 256

Min
Value

1

Permitted Values

Max
Value

4294967295

This variable has no effect. It is deprecated and will be removed in a future MySQL release.

• myisam_data_pointer_size

Command-Line Format --myisam_data_pointer_size=#

Name myisam_data_pointer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Server System Variables

641

Type integer

Default 6

Min
Value

2

Permitted Values

Max
Value

7

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no
MAX_ROWS option is specified. This variable cannot be less than 2 or larger than 7. The default value
is 6. See Section B.5.2.12, “The table is full”.

• myisam_max_sort_file_size

Command-Line Format --myisam_max_sort_file_size=#

Name myisam_max_sort_file_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (32-bit
platforms) Default 2147483648

Type integerPermitted Values (64-bit
platforms) Default 9223372036854775807

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be
larger than this value, the index is created using the key cache instead, which is slower. The value is
given in bytes.

If MyISAM index files exceed this size and disk space is available, increasing the value may help
performance. The space must be available in the file system containing the directory where the
original index file is located.

• myisam_mmap_size

Command-Line Format --myisam_mmap_size=#

Name myisam_mmap_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4294967295

Min
Value

7

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 18446744073709551615

Permitted Values (64-bit
platforms)

Min
Value

7

Server System Variables

642

Max
Value

18446744073709551615

The maximum amount of memory to use for memory mapping compressed MyISAM files. If many
compressed MyISAM tables are used, the value can be decreased to reduce the likelihood of
memory-swapping problems.

• myisam_recover_options

Name myisam_recover_options

Variable
Scope

Global

System Variable

Dynamic
Variable

No

The value of the --myisam-recover-options option. See Section 5.1.3, “Server Command
Options”.

• myisam_repair_threads

Command-Line Format --myisam_repair_threads=#

Name myisam_repair_threads

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own
thread) during the Repair by sorting process. The default value is 1.

Note

Multi-threaded repair is still beta-quality code.

• myisam_sort_buffer_size

Command-Line Format --myisam_sort_buffer_size=#

Name myisam_sort_buffer_sizeSystem Variable

Variable
Scope

Global, Session

Server System Variables

643

Dynamic
Variable

Yes

Type integer

Default 8388608

Min
Value

4096

Permitted Values
(Windows, 32-bit
platforms)

Max
Value

4294967295

Type integer

Default 8388608

Min
Value

4096

Permitted Values
(Windows, 64-bit
platforms)

Max
Value

18446744073709551615

Type integer

Default 8388608

Min
Value

4096

Permitted Values (Other,
32-bit platforms)

Max
Value

4294967295

Type integer

Default 8388608

Min
Value

4096

Permitted Values (Other,
64-bit platforms)

Max
Value

18446744073709551615

The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or
when creating indexes with CREATE INDEX or ALTER TABLE.

The maximum permissible setting for myisam_sort_buffer_size is 4GB−1. Larger values are
permitted for 64-bit platforms.

• myisam_stats_method

Command-Line Format --myisam_stats_method=name

Name myisam_stats_method

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default nulls_unequal

nulls_equal

nulls_unequal

Permitted Values

Valid
Values

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for MyISAM tables. This variable has three possible values, nulls_equal, nulls_unequal, and

Server System Variables

644

nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single
value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values
are considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored,
NULL values are ignored.

The method that is used for generating table statistics influences how the optimizer chooses indexes
for query execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

• myisam_use_mmap

Command-Line Format --myisam_use_mmap

Name myisam_use_mmap

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Use memory mapping for reading and writing MyISAM tables.

• mysql_native_password_proxy_users

Introduced 5.7.7

Command-Line Format --mysql_native_password_proxy_users=[={OFF|ON}]

Name mysql_native_password_proxy_users

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This variable controls whether the mysql_native_password built-in authentication plugin supports
proxy users. It has no effect unless the check_proxy_users system variable is enabled. For
information about user proxying, see Section 6.3.10, “Proxy Users”.

This variable was added in MySQL 5.7.7. Before 5.7.7, mysql_native_password does not
support proxy users.

• named_pipe

Name named_pipe

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type booleanPermitted Values
(Windows) Default OFF

(Windows only.) Indicates whether the server supports connections over named pipes.

Server System Variables

645

• net_buffer_length

Command-Line Format --net_buffer_length=#

Name net_buffer_length

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 16384

Min
Value

1024

Permitted Values

Max
Value

1048576

Each client thread is associated with a connection buffer and result buffer. Both begin with a size
given by net_buffer_length but are dynamically enlarged up to max_allowed_packet bytes
as needed. The result buffer shrinks to net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to the
expected length of statements sent by clients. If statements exceed this length, the connection buffer
is automatically enlarged. The maximum value to which net_buffer_length can be set is 1MB.

The session value of this variable is read only.

• net_read_timeout

Command-Line Format --net_read_timeout=#

Name net_read_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 30

Permitted Values

Min
Value

1

The number of seconds to wait for more data from a connection before aborting the read. When the
server is reading from the client, net_read_timeout is the timeout value controlling when to abort.
When the server is writing to the client, net_write_timeout is the timeout value controlling when
to abort. See also slave_net_timeout.

• net_retry_count

Command-Line Format --net_retry_count=#

Name net_retry_count

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Server System Variables

646

Type integer

Default 10

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

If a read or write on a communication port is interrupted, retry this many times before giving up. This
value should be set quite high on FreeBSD because internal interrupts are sent to all threads.

• net_write_timeout

Command-Line Format --net_write_timeout=#

Name net_write_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 60

Permitted Values

Min
Value

1

The number of seconds to wait for a block to be written to a connection before aborting the write.
See also net_read_timeout.

• new

Command-Line Format --new

Name new

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Disabled by skip-new

Type booleanPermitted Values

Default FALSE

This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward
compatibility. Its value is always OFF.

• ngram_token_size

Introduced 5.7.6

Command-Line Format --ngram_token_size

Server System Variables

647

Name ngram_token_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 2

Min
Value

1

Permitted Values

Max
Value

10

Defines the n-gram token size for the n-gram full-text parser. The ngram_token_size option is
read-only and can only be modified at startup. The default value is 2 (bigram). The maximum value is
10.

For more information about how to configure this variable, see Section 12.9.8, “ngram Full-Text
Parser”.

• offline_mode

Introduced 5.7.5

Command-Line Format --offline_mode=val

Name offline_mode

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether the server is in “offline mode”, which has these characteristics:

• Connected client users who do not have the SUPER privilege are disconnected on the next
request, with an appropriate error. Disconnection includes terminating running statements and
releasing locks. Such clients also cannot initiate new connections, and receive an appropriate
error.

• Connected client users who have the SUPER privilege are not disconnected, and can initiate new
connections to manage the server.

• Replication slave threads are permitted to keep applying data to the server.

Only users who have the SUPER privilege can control offline mode. To put a server in offline mode,
change the value of the offline_mode system variable from OFF to ON. To resume normal
operations, change offline_mode from ON to OFF. In offline mode, clients that are refused access
receive an ER_SERVER_OFFLINE_MODE error.

• old

Command-Line Format --old

System Variable Name old

Server System Variables

648

Variable
Scope

Global

Dynamic
Variable

No

old is a compatibility variable. It is disabled by default, but can be enabled at startup to revert the
server to behaviors present in older versions.

When old is enabled, it changes the default scope of index hints to that used prior to MySQL 5.1.17.
That is, index hints with no FOR clause apply only to how indexes are used for row retrieval and not
to resolution of ORDER BY or GROUP BY clauses. (See Section 8.9.4, “Index Hints”.) Take care about
enabling this in a replication setup. With statement-based binary logging, having different modes for
the master and slaves might lead to replication errors.

• old_alter_table

Command-Line Format --old-alter-table

Name old_alter_table

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When this variable is enabled, the server does not use the optimized method of processing
an ALTER TABLE operation. It reverts to using a temporary table, copying over the data, and
then renaming the temporary table to the original, as used by MySQL 5.0 and earlier. For more
information on the operation of ALTER TABLE, see Section 13.1.6, “ALTER TABLE Syntax”.

• old_passwords

Deprecated 5.7.6

Name old_passwords

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default 0

0

1

Permitted Values (<=
5.7.4)

Valid
Values

2

Type enumeration

Default 0

0

Permitted Values (>=
5.7.5)

Valid
Values 2

Note

This system variable is deprecated as of MySQL 5.7.6 and will be removed in
a future MySQL release.

Server System Variables

649

This variable controls the password hashing method used by the PASSWORD() function. It also
influences password hashing performed by CREATE USER and GRANT statements that specify a
password using an IDENTIFIED BY clause.

The following table shows the permitted values of old_passwords, the password hashing method
for each value, and which authentication plugins use passwords hashed with each method.

Value Password Hashing Method Associated Authentication Plugin

0 MySQL 4.1 native hashing mysql_native_password

1 Pre-4.1 (“old”) hashing mysql_old_password

2 SHA-256 hashing sha256_password

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them is
removed in MySQL 5.7.5. Consequently, old_passwords=1, which causes
PASSWORD() to generate pre-4.1 password hashes, is not permitted as of
5.7.5. For account upgrade instructions, see Section 6.3.9.3, “Migrating Away
from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The
latter function is not affected by the value of old_passwords.

If you set old_passwords=2, follow the instructions for using the sha256_password plugin at
Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

The server sets the global old_passwords value during startup to be consistent with the
password hashing method required by the default authentication plugin. The default plugin is
mysql_native_password unless the default_authentication_plugin system variable is
set otherwise.

As of MySQL 5.7.1, when a client successfully connects to the server, the server sets the session
old_passwords value appropriately for the account authentication method. For example, if the
account uses the sha256_password authentication plugin, the server sets old_passwords=2.

For additional information about authentication plugins and hashing formats, see Section 6.3.8,
“Pluggable Authentication”, and Section 6.1.2.4, “Password Hashing in MySQL”.

• open_files_limit

Command-Line Format --open-files-limit=#

Name open_files_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 5000, with possible adjustment

Min
Value

0

Permitted Values

Max
Value

platform dependent

Server System Variables

650

The number of files that the operating system permits mysqld to open. The value of this variable at
runtime is the real value permitted by the system and might be different from the value you specify at
server startup. The value is 0 on systems where MySQL cannot change the number of open files.

The effective open_files_limit value is based on the value specified at system startup (if any)
and the values of max_connections and table_open_cache, using these formulas:

1) 10 + max_connections + (table_open_cache * 2)
2) max_connections * 5
3) open_files_limit value specified at startup, 5000 if none

The server attempts to obtain the number of file descriptors using the maximum of those three
values. If that many descriptors cannot be obtained, the server attempts to obtain as many as the
system will permit.

• optimizer_prune_level

Command-Line Format --optimizer_prune_level[=#]

Name optimizer_prune_level

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

Controls the heuristics applied during query optimization to prune less-promising partial plans
from the optimizer search space. A value of 0 disables heuristics so that the optimizer performs an
exhaustive search. A value of 1 causes the optimizer to prune plans based on the number of rows
retrieved by intermediate plans.

• optimizer_search_depth

Command-Line Format --optimizer_search_depth[=#]

Name optimizer_search_depth

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 62

Min
Value

0

Permitted Values

Max
Value

62

The maximum depth of search performed by the query optimizer. Values larger than the number of
relations in a query result in better query plans, but take longer to generate an execution plan for
a query. Values smaller than the number of relations in a query return an execution plan quicker,
but the resulting plan may be far from being optimal. If set to 0, the system automatically picks a
reasonable value.

• optimizer_switch

Server System Variables

651

Command-Line Format --optimizer_switch=value

Name optimizer_switch

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type set

batched_key_access={on|off}

block_nested_loop={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

subquery_materialization_cost_based={on|off}

Permitted Values (<=
5.7.4) Valid

Values

use_index_extensions={on|off}

Type set

batched_key_access={on|off}

block_nested_loop={on|off}

condition_fanout_filter={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

subquery_materialization_cost_based={on|off}

Permitted Values (5.7.5)

Valid
Values

use_index_extensions={on|off}

Server System Variables

652

Type set

batched_key_access={on|off}

block_nested_loop={on|off}

condition_fanout_filter={on|off}

derived_merge={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

subquery_materialization_cost_based={on|off}

Permitted Values (>=
5.7.6, <= 5.7.7) Valid

Values

use_index_extensions={on|off}

Type set

batched_key_access={on|off}

block_nested_loop={on|off}

condition_fanout_filter={on|off}

derived_merge={on|off}

duplicateweedout={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

subquery_materialization_cost_based={on|off}

Permitted Values (>=
5.7.8) Valid

Values

use_index_extensions={on|off}

The optimizer_switch system variable enables control over optimizer behavior. The value
of this variable is a set of flags, each of which has a value of on or off to indicate whether the

Server System Variables

653

corresponding optimizer behavior is enabled or disabled. This variable has global and session values
and can be changed at runtime. The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,duplicateweedout=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,
 condition_fanout_filter=on,derived_merge=on

For more information about the syntax of this variable and the optimizer behaviors that it controls,
see Section 8.9.2, “Controlling Switchable Optimizations”.

• optimizer_trace

Name optimizer_trace

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

This variable controls optimizer tracing. For details, see MySQL Internals: Tracing the Optimizer.

• optimizer_trace_features

Name optimizer_trace_features

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

This variable enables or disables selected optimizer tracing features. For details, see MySQL
Internals: Tracing the Optimizer.

• optimizer_trace_limit

Name optimizer_trace_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 1

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

Server System Variables

654

The maximum number of optimizer traces to display. For details, see MySQL Internals: Tracing the
Optimizer.

• optimizer_trace_max_mem_size

Name optimizer_trace_max_mem_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 16384

The maximum cumulative size of stored optimizer traces. For details, see MySQL Internals: Tracing
the Optimizer.

• optimizer_trace_offset

Name optimizer_trace_offset

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default -1

The offset of optimizer traces to display. For details, see MySQL Internals: Tracing the Optimizer.

• performance_schema_xxx

Performance Schema system variables are listed in Section 21.12, “Performance Schema System
Variables”. These variables may be used to configure Performance Schema operation.

• pid_file

Command-Line Format --pid-file=file_name

Name pid_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The path name of the process ID (PID) file. This variable can be set with the --pid-file option.

• plugin_dir

Command-Line Format --plugin_dir=dir_name

Name plugin_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

Server System Variables

655

Type directory namePermitted Values

Default BASEDIR/lib/plugin

The path name of the plugin directory.

If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting --secure-file-priv to a directory where
SELECT writes can be made safely.

• port

Command-Line Format --port=#

Name port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3306

Min
Value

0

Permitted Values

Max
Value

65535

The number of the port on which the server listens for TCP/IP connections. This variable can be set
with the --port option.

• preload_buffer_size

Command-Line Format --preload_buffer_size=#

Name preload_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 32768

Min
Value

1024

Permitted Values

Max
Value

1073741824

The size of the buffer that is allocated when preloading indexes.

• profiling

If set to 0 or OFF (the default), statement profiling is disabled. If set to 1 or ON, statement profiling
is enabled and the SHOW PROFILE and SHOW PROFILES statements provide access to profiling
information. See Section 13.7.5.31, “SHOW PROFILES Syntax”.

This variable is deprecated and will be removed in a future MySQL release.

• profiling_history_size

Server System Variables

656

The number of statements for which to maintain profiling information if profiling is enabled. The
default value is 15. The maximum value is 100. Setting the value to 0 effectively disables profiling.
See Section 13.7.5.31, “SHOW PROFILES Syntax”.

This variable is deprecated and will be removed in a future MySQL release.

• protocol_version

Name protocol_version

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type integer

The version of the client/server protocol used by the MySQL server.

• proxy_user

Name proxy_user

Variable
Scope

Session

System Variable

Dynamic
Variable

No

Permitted Values Type string

If the current client is a proxy for another user, this variable is the proxy user account name.
Otherwise, this variable is NULL. See Section 6.3.10, “Proxy Users”.

• pseudo_slave_mode

Name pseudo_slave_mode

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

This variable is for internal server use.

• pseudo_thread_id

Name pseudo_thread_id

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

This variable is for internal server use.

• query_alloc_block_size

Command-Line Format --query_alloc_block_size=#

Server System Variables

657

Name query_alloc_block_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8192

Min
Value

1024

Max
Value

4294967295

Permitted Values (>=
5.7.9)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

4294967295

Permitted Values (32-bit
platforms, <= 5.7.8)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

18446744073709551615

Permitted Values (64-bit
platforms, <= 5.7.8)

Block
Size

1024

The allocation size of memory blocks that are allocated for objects created during statement parsing
and execution. If you have problems with memory fragmentation, it might help to increase this
parameter.

• query_cache_limit

Command-Line Format --query_cache_limit=#

Name query_cache_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1048576

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Server System Variables

658

Type integer

Default 1048576

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

Do not cache results that are larger than this number of bytes. The default value is 1MB.

• query_cache_min_res_unit

Command-Line Format --query_cache_min_res_unit=#

Name query_cache_min_res_unit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 4096

Min
Value

512

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 4096

Min
Value

512

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The minimum size (in bytes) for blocks allocated by the query cache. The default value is 4096
(4KB). Tuning information for this variable is given in Section 8.10.3.3, “Query Cache Configuration”.

• query_cache_size

Command-Line Format --query_cache_size=#

Name query_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1048576

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integerPermitted Values (64-bit
platforms) Default 1048576

Server System Variables

659

Min
Value

0

Max
Value

18446744073709551615

The amount of memory allocated for caching query results. By default, the query cache is
disabled. This is achieved using a default value of 1M, with a default for query_cache_type of
0. (To reduce overhead significantly if you set the size to 0, you should also start the server with
query_cache_type=0.

The permissible values are multiples of 1024; other values are rounded down to the nearest multiple.
query_cache_size bytes of memory are allocated even if query_cache_type is set to 0. See
Section 8.10.3.3, “Query Cache Configuration”, for more information.

The query cache needs a minimum size of about 40KB to allocate its structures. (The exact size
depends on system architecture.) If you set the value of query_cache_size too small, a warning
will occur, as described in Section 8.10.3.3, “Query Cache Configuration”.

• query_cache_type

Command-Line Format --query_cache_type=#

Name query_cache_type

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default 0

0

1

Permitted Values

Valid
Values

2

Set the query cache type. Setting the GLOBAL value sets the type for all clients that connect
thereafter. Individual clients can set the SESSION value to affect their own use of the query cache.
Possible values are shown in the following table.

Option Description

0 or OFF Do not cache results in or retrieve results from the query cache. Note that
this does not deallocate the query cache buffer. To do that, you should set
query_cache_size to 0.

1 or ON Cache all cacheable query results except for those that begin with SELECT
SQL_NO_CACHE.

2 or DEMAND Cache results only for cacheable queries that begin with SELECT SQL_CACHE.

This variable defaults to OFF.

If the server is started with query_cache_type set to 0, it does not acquire the query cache
mutex at all, which means that the query cache cannot be enabled at runtime and there is reduced
overhead in query execution.

• query_cache_wlock_invalidate

Command-Line Format --query_cache_wlock_invalidate

Server System Variables

660

Name query_cache_wlock_invalidate

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

Normally, when one client acquires a WRITE lock on a MyISAM table, other clients are not blocked
from issuing statements that read from the table if the query results are present in the query cache.
Setting this variable to 1 causes acquisition of a WRITE lock for a table to invalidate any queries in
the query cache that refer to the table. This forces other clients that attempt to access the table to
wait while the lock is in effect.

• query_prealloc_size

Command-Line Format --query_prealloc_size=#

Name query_prealloc_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8192

Min
Value

8192

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 8192

Min
Value

8192

Max
Value

18446744073709551615

Permitted Values (64-bit
platforms)

Block
Size

1024

The size of the persistent buffer used for statement parsing and execution. This buffer is not freed
between statements. If you are running complex queries, a larger query_prealloc_size value
might be helpful in improving performance, because it can reduce the need for the server to perform
memory allocation during query execution operations.

• rand_seed1

The rand_seed1 and rand_seed2 variables exist as session variables only, and can be set but not
read. The variables—but not their values—are shown in the output of SHOW VARIABLES.

The purpose of these variables is to support replication of the RAND() function. For statements
that invoke RAND(), the master passes two values to the slave, where they are used to seed the

Server System Variables

661

random number generator. The slave uses these values to set the session variables rand_seed1
and rand_seed2 so that RAND() on the slave generates the same value as on the master.

• rand_seed2

See the description for rand_seed1.

• range_alloc_block_size

Command-Line Format --range_alloc_block_size=#

Name range_alloc_block_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4096

Min
Value

4096

Max
Value

4294967295

Permitted Values (>=
5.7.9)

Block
Size

1024

Type integer

Default 4096

Min
Value

4096

Max
Value

4294967295

Permitted Values (32-bit
platforms, <= 5.7.8)

Block
Size

1024

Type integer

Default 4096

Min
Value

4096

Max
Value

18446744073709551615

Permitted Values (64-bit
platforms, <= 5.7.8)

Block
Size

1024

Type integer

Default 4096

Min
Value

4096

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms, >= 5.7.8)

Block
Size

1024

The size of blocks that are allocated when doing range optimization.

Server System Variables

662

• range_optimizer_max_mem_size

Introduced 5.7.9

Command-Line Format --range_optimizer_max_mem_size=N

Name range_optimizer_max_mem_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 1536000

The limit on memory consumption for the range optimizer. A value of 0 means “no limit.” If an
execution plan considered by the optimizer uses the range access method but the optimizer
estimates that the amount of memory needed for this method would exceed the limit, it abandons the
plan and considers other plans.

• rbr_exec_mode

Introduced 5.7.1

Name rbr_exec_mode

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default STRICT

IDEMPOTENT

Permitted Values

Valid
Values STRICT

This variable switches the server between IDEMPOTENT mode and STRICT mode. IDEMPOTENT
mode causes suppression of duplicate-key and no-key-found errors. This mode is useful when
replaying a row-based binary log on a server that causes conflicts with existing data. mysqlbinlog
uses this mode when you set the --idempotent option by writing the following to the output:

SET SESSION RBR_EXEC_MODE=IDEMPOTENT;

• read_buffer_size

Command-Line Format --read_buffer_size=#

Name read_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 131072

Min
Value

8200

Permitted Values

Max
Value

2147479552

Server System Variables

663

Each thread that does a sequential scan for a MyISAM table allocates a buffer of this size (in bytes)
for each table it scans. If you do many sequential scans, you might want to increase this value, which
defaults to 131072. The value of this variable should be a multiple of 4KB. If it is set to a value that is
not a multiple of 4KB, its value will be rounded down to the nearest multiple of 4KB.

This option is also used in the following context for all storage engines:

• For caching the indexes in a temporary file (not a temporary table), when sorting rows for ORDER
BY.

• For bulk insert into partitions.

• For caching results of nested queries.

and in one other storage engine-specific way: to determine the memory block size for MEMORY
tables.

The maximum permissible setting for read_buffer_size is 2GB.

For more information about memory use during different operations, see Section 8.12.5.1, “How
MySQL Uses Memory”.

• read_only

Command-Line Format --read_only

Name read_only

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When the read_only system variable is enabled, the server permits no client updates except from
users who have the SUPER privilege. This variable is disabled by default.

As of MySQL 5.7.8, the server also supports a super_read_only system variable (disabled by
default), which has these effects:

• If super_read_only is enabled, the server prohibits client updates, even from users who have
the SUPER privilege.

• Setting super_read_only to ON implicitly forces read_only to ON.

• Setting read_only to OFF implicitly forces super_read_only to OFF.

Even with read_only enabled, the server permits these operations:

• Updates performed by slave threads, if the server is a replication slave. In replication setups, it can
be useful to enable read_only on slave servers to ensure that slaves accept updates only from
the master server and not from clients.

• Use of ANALYZE TABLE or OPTIMIZE TABLE statements. The purpose of read-only mode is to
prevent changes to table structure or contents. Analysis and optimization do not qualify as such
changes. This means, for example, that consistency checks on read-only replication slaves can be
performed with mysqlcheck --all-databases --analyze.

• Operations on TEMPORARY tables.

Server System Variables

664

• Inserts into the log tables (mysql.general_log and mysql.slow_log); see Section 5.2.1,
“Selecting General Query and Slow Query Log Output Destinations”.

Changes to read_only on a master server are not replicated to slave servers. The value can be set
on a slave server independent of the setting on the master.

The following conditions apply to attempts to enable read_only (including implicit attempts resulting
from enabling super_read_only):

• The attempt fails and an error occurs if you have any explicit locks (acquired with LOCK TABLES)
or have a pending transaction.

• The attempt blocks while other clients hold explicit table locks or have pending transactions,
until the locks are released and the transactions end. While the attempt to enable read_only
is pending, requests by other clients for table locks or to begin transactions also block until
read_only has been set.

• The attempt blocks if there are active transactions that hold metadata locks, until those
transactions end.

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES
WITH READ LOCK) because that does not involve table locks.

• read_rnd_buffer_size

Command-Line Format --read_rnd_buffer_size=#

Name read_rnd_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 262144

Min
Value

1

Permitted Values

Max
Value

2147483647

This variable is used for reads from MyISAM tables, and, for any storage engine, for Multi-Range
Read optimization.

When reading rows from a MyISAM table in sorted order following a key-sorting operation, the rows
are read through this buffer to avoid disk seeks. See Section 8.2.1.15, “ORDER BY Optimization”.
Setting the variable to a large value can improve ORDER BY performance by a lot. However, this is
a buffer allocated for each client, so you should not set the global variable to a large value. Instead,
change the session variable only from within those clients that need to run large queries.

The maximum permissible setting for read_rnd_buffer_size is 2GB.

For more information about memory use during different operations, see Section 8.12.5.1, “How
MySQL Uses Memory”. For information about Multi-Range Read optimization, see Section 8.2.1.13,
“Multi-Range Read Optimization”.

• relay_log_purge

Command-Line Format --relay_log_purge

Server System Variables

665

Name relay_log_purge

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Disables or enables automatic purging of relay log files as soon as they are not needed any more.
The default value is 1 (ON).

• relay_log_space_limit

Command-Line Format --relay_log_space_limit=#

Name relay_log_space_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The maximum amount of space to use for all relay logs.

• report_host

Command-Line Format --report-host=host_name

Name report_host

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The value of the --report-host option.

• report_password

Command-Line Format --report-password=name

System Variable Name report_password

Server System Variables

666

Variable
Scope

Global

Dynamic
Variable

No

Permitted Values Type string

The value of the --report-password option. Not the same as the password used for the MySQL
replication user account.

• report_port

Command-Line Format --report-port=#

Name report_port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default [slave_port]

Min
Value

0

Permitted Values

Max
Value

65535

The value of the --report-port option.

• report_user

Command-Line Format --report-user=name

Name report_user

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The value of the --report-user option. Not the same as the name for the MySQL replication user
account.

• require_secure_transport

Introduced 5.7.8

Command-Line Format --require_secure_transport[={OFF|ON}]

Name require_secure_transport

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Server System Variables

667

Whether client connections to the server are required to use some form of secure transport. When
this variable is enabled, the server permits only TCP/IP connections that use SSL, or connections
that use a socket file (on Unix) or shared memory (on Windows). The server rejects nonsecure
connection attempts, which fail with an ER_SECURE_TRANSPORT_REQUIRED error.

This capability supplements per-account SSL requirements, which take precedence. For exmaple, if
an account is defined with REQUIRE SSL, enabling require_secure_transport does not make
it possible to use the account to connect using a Unix socket file.

It is possible for a server to have no secure transports available. For example, a server on
Windows supports no secure transports if started without specifying any SSL certificate or
key files and with the shared_memory system variable disabled. Under these conditions,
attempts to enable require_secure_transport at startup cause the server to write a
message to the error log and exit. Attempts to enable the variable at runtime fail with an
ER_NO_SECURE_TRANSPORTS_CONFIGURED error.

• rpl_semi_sync_master_enabled

Name rpl_semi_sync_master_enabled

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Controls whether semisynchronous replication is enabled on the master. To enable or disable the
plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_timeout

Name rpl_semi_sync_master_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 10000

A value in milliseconds that controls how long the master waits on a commit for acknowledgment
from a slave before timing out and reverting to asynchronous replication. The default value is 10000
(10 seconds).

This variable is available only if the master-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_trace_level

Name rpl_semi_sync_master_trace_level

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Server System Variables

668

Type integerPermitted Values

Default 32

The semisynchronous replication debug trace level on the master. Four levels are defined:

• 1 = general level (for example, time function failures)

• 16 = detail level (more verbose information)

• 32 = net wait level (more information about network waits)

• 64 = function level (information about function entry and exit)

This variable is available only if the master-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_for_slave_count

Introduced 5.7.3

Name rpl_semi_sync_master_wait_for_slave_count

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

65535

The number of slave acknowledgments the master must receive per transaction before
proceeding. By default rpl_semi_sync_master_wait_for_slave_count is 1, meaning that
semisynchronous replication proceeds after receiving a single slave acknowledgment. Performance
is best for small values of this variable.

For example, if rpl_semi_sync_master_wait_for_slave_count is 2, then 2 slaves
must acknowledge receipt of the transaction before the timeout period configured by
rpl_semi_sync_master_timeout for semisynchronous replication to proceed. If less slaves
acknowledge receipt of the transaction during the timeout period, the master reverts to normal
replication.

Note

This behavior also depends on rpl_semi_sync_master_wait_no_slave

This variable is available only if the master-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_no_slave

Name rpl_semi_sync_master_wait_no_slave

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

Server System Variables

669

Default ON

Controls whether the master waits for the timeout period configured by
rpl_semi_sync_master_timeout to expire, even if the slave count drops to less than the
number of slaves configured by rpl_semi_sync_master_wait_for_slave_count during the
timeout period.

When the value of rpl_semi_sync_master_wait_no_slave is ON (the default), it is permissible
for the slave count to drop to less than rpl_semi_sync_master_wait_for_slave_count
during the timeout period. As long as enough slaves acknowledge the transaction before the timeout
period expires, semisynchronous replication continues.

When the value of rpl_semi_sync_master_wait_no_slave is OFF, if the slave count drops
to less than the number configured in rpl_semi_sync_master_wait_for_slave_count at
any time during the timeout period configured by rpl_semi_sync_master_timeout, the master
reverts to normal replication.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_point

Introduced 5.7.2

Name rpl_semi_sync_master_wait_point

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default AFTER_SYNC

AFTER_SYNC

Permitted Values

Valid
Values AFTER_COMMIT

This variable controls the point at which a semisynchronous replication master waits for slave
acknowledgment of transaction receipt before returning a status to the client that committed the
transaction. These values are permitted:

• AFTER_SYNC (the default): The master writes each transaction to its binary log and the slave, and
syncs the binary log to disk. The master waits for slave acknowledgment of transaction receipt
after the sync. Upon receiving acknowledgment, the master commits the transaction to the storage
engine and returns a result to the client, which then can proceed.

• AFTER_COMMIT: The master writes each transaction to its binary log and the slave, syncs
the binary log, and commits the transaction to the storage engine. The master waits for slave
acknowledgment of transaction receipt after the commit. Upon receiving acknowledgment, the
master returns a result to the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the slave and committed to the storage engine on the master. Thus, all clients
see the same data on the master.

In the event of master failure, all transactions committed on the master have been replicated to the
slave (saved to its relay log). A crash of the master and failover to the slave is lossless because
the slave is up to date.

Server System Variables

670

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives slave acknowledgment. After the commit and before
slave acknowledgment, other clients can see the committed transaction before the committing
client.

If something goes wrong such that the slave does not process the transaction, then in the event
of a master crash and failover to the slave, it is possible that such clients will see a loss of data
relative to what they saw on the master.

This variable is available only if the master-side semisynchronous replication plugin is installed.

rpl_semi_sync_master_wait_point was added in MySQL 5.7.2. For older versions,
semisynchronous master behavior is equivalent to a setting of AFTER_COMMIT.

This change introduces a version compatibility constraint because it increments the
semisynchronous interface version: Servers for MySQL 5.7.2 and up do not work with
semisynchronous replication plugins from older versions, nor do servers from older versions work
with semisynchronous replication plugins for MySQL 5.7.2 and up.

• rpl_semi_sync_slave_enabled

Name rpl_semi_sync_slave_enabled

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Controls whether semisynchronous replication is enabled on the slave. To enable or disable the
plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the slave-side semisynchronous replication plugin is installed.

• rpl_semi_sync_slave_trace_level

Name rpl_semi_sync_slave_trace_level

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 32

The semisynchronous replication debug trace level on the slave. See
rpl_semi_sync_master_trace_level for the permissible values.

This variable is available only if the slave-side semisynchronous replication plugin is installed.

• secure_auth

Deprecated 5.7.5

Command-Line Format --secure-auth

System Variable Name secure_auth

Server System Variables

671

Variable
Scope

Global

Dynamic
Variable

Yes

Type boolean

Default ON

OFF

Permitted Values (<=
5.7.4)

Valid
Values ON

Type boolean

Default ON

Permitted Values (>=
5.7.5)

Valid
Values

ON

If this variable is enabled, the server blocks connections by clients that attempt to use accounts that
have passwords stored in the old (pre-4.1) format.

Enable this variable to prevent all use of passwords employing the old format (and hence insecure
communication over the network).

As of MySQL 5.7.5, this variable is deprecated and will be removed in a future MySQL release. It is
always enabled and attempting to disable it produces an error. Before MySQL 5.7.5, this variable is
enabled by default but can be disabled.

Server startup fails with an error if this variable is enabled and the privilege tables are in pre-4.1
format. See Section B.5.2.4, “Client does not support authentication protocol”.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them
is removed in MySQL 5.7.5. For account upgrade instructions, see
Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

• secure_file_priv

Command-Line Format --secure-file-priv=dir_name

Name secure_file_priv

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default empty

empty

Permitted Values (<=
5.7.5)

Valid
Values dirname

Type string

Default platform-specific

empty

Permitted Values (>=
5.7.6)

Valid
Values dirname

Server System Variables

672

NULL

This variable is used to limit the effect of data import and export operations, such as those performed
by the LOAD DATA and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function.
These operations are permitted only to users who have the FILE privilege.

secure_file_priv may be set as follows:

• If empty, the variable has no effect.

• If set to the name of a directory, the server limits import and export operations to work only with
files in that directory. The directory must exist; the server will not create it.

• If set to NULL, the server disables import and export operations. This value is permitted as of
MySQL 5.7.6.

Before MySQL 5.7.6, this variable is empty by default. As of 5.7.6, the default value is platform
specific and depends on the value of the INSTALL_LAYOUT CMake option, as shown in the following
table. To specify the default secure_file_priv value explicitly if you are building from source, use
the INSTALL_SECURE_FILE_PRIVDIR CMake option.

INSTALL_LAYOUT Value Default secure_file_priv Value

STANDALONE, WIN empty

DEB, RPM, SLES, SVR4 /var/lib/mysql-files

Otherwise mysql-files under the CMAKE_INSTALL_PREFIX value

As of MySQL 5.7.8, to set the default secure_file_priv value for the libmysqld embedded
server, use the INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR CMake option. The default value for
this option is NULL.

As of MySQL 5.7.6, the server checks the value of secure_file_priv at startup and
writes a warning to the error log if the value is insecure. The setting is considered insecure if
secure_file_priv has an empty value, or the value is the data directory or a subdirectory of it,
or a directory that is accessible by all users. If secure_file_priv is set to a nonexistent path, the
server writes an error message to the error log and exits.

• server_id

Command-Line Format --server-id=#

Name server_id

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

The server ID, used in replication to give each master and slave a unique identity. This variable is set
by the --server-id [2426] option. For each server participating in replication, you should pick a
positive integer in the range from 1 to 232 − 1 to act as that server's ID.

Server System Variables

673

• session_track_gtids

Introduced 5.7.6

Command-Line Format --session_track_gtids=[value]

Name session_track_gtids

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default OFF

OFF

OWN_GTID

Permitted Values

Valid
Values

ALL_GTIDS

Controls a tracker for capturing GTIDs and returning them in the OK packet. Depending on the value
of this option, at the end of executing a transaction, the GTIDs specified are captured by the tracker
and appended to the OK packet. The possible sets of GTIDs to track are:

• OFF means that no GTIDs are included in the OK packet. This is the same behavior as versions of
MySQL prior to 5.7.6.

• OWN_GTID configures the tracker to collect GTIDs generated by successfully committed read/write
transactions.

• ALL_GTIDS configures the tracker to collect all of the GTIDs in gtid_executed at the time the
current transaction commits, regardless of whether the transaction is read/write or read-only.

For information about obtaining session state-change information within client programs, see
Section 23.8.7.65, “mysql_session_track_get_first()”.

• session_track_schema

Introduced 5.7.4

Command-Line Format --session_track_schema=#

Name session_track_schema

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Controls whether the server tracks changes to the default schema (database) name within the
current session and makes this information available to the client when changes occur.

If notification is enabled, any setting of the default schema is reported, even if the new schema name
is the same as the old.

For information about obtaining session state-change information within client programs, see
Section 23.8.7.65, “mysql_session_track_get_first()”.

• session_track_state_change

Server System Variables

674

Introduced 5.7.4

Command-Line Format --session_track_state_change=#

Name session_track_state_change

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Controls whether the server tracks changes to the state of the current session and notifies the client
when state changes occur. Session state consists of these values:

• The default schema (database)

• Session-specific values for system variables

• User-defined variables

• Temporary tables

• Prepared statements

If the session-state tracker is enabled, any assignments to session state values are reported, even if
the new values are the same as the old.

The session_track_state_change variable controls only notification of when changes
occur, not what the changes are. To receive notification for changes to the default schema
name and session system variable values, use the session_track_schema and
session_track_system_variables system variables.

For information about obtaining session state-change information within client programs, see
Section 23.8.7.65, “mysql_session_track_get_first()”.

• session_track_system_variables

Introduced 5.7.4

Command-Line Format --session_track_system_variables=#

Name session_track_system_variables

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default time_zone, autocommit,
character_set_client, character_set_results,
character_set_connection

Controls whether the server tracks changes to the session system variables and makes
this information available to the client when changes occur. The variable value is a comma-
separated list of variables for which to track changes. By default, notification is enabled for
time_zone, autocommit, character_set_client, character_set_results, and
character_set_connection. (The latter three variables are those affected by SET NAMES.)

Server System Variables

675

The special value * causes the server to track changes to all session variables. If given, this value
must be specified by itself without specific system variable names.

Notification occurs for all assignments to tracked session system variables, even if the new values
are the same as the old.

For information about obtaining session state-change information within client programs, see
Section 23.8.7.65, “mysql_session_track_get_first()”.

• sha256_password_auto_generate_rsa_keys

Introduced 5.7.5

Command-Line Format --sha256_password_auto_generate_rsa_keys[={OFF|ON}]

Name sha256_password_auto_generate_rsa_keys

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

This variable is available if the server was compiled using OpenSSL (see Section 6.3.12.1,
“OpenSSL Versus yaSSL”). It controls whether the server autogenerates RSA private/public key-pair
files in the data directory, if they do not already exist.

At startup, the server automatically generates RSA private/public key-pair files in the data directory if
the sha256_password_auto_generate_rsa_keys system variable is enabled, no RSA options
are specified, and the RSA files are missing from the data directory. These files enable secure
password exchange using RSA over unencrypted connections for accounts authenticated by the
sha256_password plugin; see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

For more information about RSA file autogeneration, including file names and characteristics, see
Section 6.3.13.1, “Creating SSL and RSA Certificates and Keys using MySQL”

The auto_generate_certs system variable is related but controls autogeneration of SSL
certificate and key files needed for secure connections using SSL.

• sha256_password_private_key_path

Name sha256_password_private_key_path

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default private_key.pem

This variable is available if MySQL was compiled using OpenSSL (see Section 6.3.12.1, “OpenSSL
Versus yaSSL”). Its value is the path name of the RSA private key file for the sha256_password
authentication plugin. If the file is named as a relative path, it is interpreted relative to the server data
directory. The file must be in PEM format. Because this file stores a private key, its access mode
should be restricted so that only the MySQL server can read it.

For information about sha256_password, including instructions for creating the RSA key files, see
Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

Server System Variables

676

• sha256_password_proxy_users

Introduced 5.7.7

Command-Line Format --sha256_password_proxy_users=[={OFF|ON}]

Name sha256_password_proxy_users

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This variable controls whether the sha256_password built-in authentication plugin supports proxy
users. It has no effect unless the check_proxy_users system variable is enabled. For information
about user proxying, see Section 6.3.10, “Proxy Users”.

This variable was added in MySQL 5.7.7. Before 5.7.7, sha256_password does not support proxy
users.

• sha256_password_public_key_path

Name sha256_password_public_key_path

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default public_key.pem

This variable is available if MySQL was compiled using OpenSSL (see Section 6.3.12.1, “OpenSSL
Versus yaSSL”). Its value is the path name of the RSA public key file for the sha256_password
authentication plugin. If the file is named as a relative path, it is interpreted relative to the server data
directory. The file must be in PEM format. Because this file stores a public key, copies can be freely
distributed to client users. (Clients that explicitly specify a public key when connecting to the server
using RSA password encryption must use the same public key as that used by the server.)

For information about sha256_password, including instructions for creating the RSA key files and
how clients specify the RSA public key, see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

• shared_memory

Command-Line Format --shared_memory[={0,1}]

Name shared_memory

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type booleanPermitted Values

Default FALSE

(Windows only.) Whether the server permits shared-memory connections.

Server System Variables

677

• shared_memory_base_name

Command-Line Format --shared_memory_base_name=name

Name shared_memory_base_name

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type stringPermitted Values

Default MYSQL

(Windows only.) The name of shared memory to use for shared-memory connections. This is useful
when running multiple MySQL instances on a single physical machine. The default name is MYSQL.
The name is case sensitive.

• show_compatibility_56

Introduced 5.7.6

Deprecated 5.7.6

Command-Line Format --show_compatibility_56[={OFF|ON}]

Name show_compatibility_56

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values (<=
5.7.7) Default ON

Type booleanPermitted Values (>=
5.7.8) Default OFF

The INFORMATION_SCHEMA has tables that contain system and status variable information (see
Section 20.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”, and Section 20.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables”). As of MySQL 5.7.6, the Performance Schema also contains system
and status variable tables (see Section 21.9.12, “Performance Schema System Variable Tables”,
and Section 21.9.13, “Performance Schema Status Variable Tables”). The Performance Schema
tables are intended to replace the INFORMATION_SCHEMA tables, which are deprecated as of
MySQL 5.7.6 and will be removed in a future MySQL release.

For advice on migrating away from the INFORMATION_SCHEMA tables to the Performance Schema
tables, see Section 21.17, “Migrating to Performance Schema System and Status Variable Tables”.
To assist in the migration, you can use the show_compatibility_56 system variable, which
affects whether MySQL 5.6 compatibility is enabled with respect to how system and status variable
information is provided by the INFORMATION_SCHEMA and Performance Schema tables, and also by
the SHOW VARIABLES and SHOW STATUS statements.

Note

show_compatibility_56 is deprecated because its only purpose is
to permit control over deprecated system and status variable information
sources that will be removed in a future MySQL release. When those sources

Server System Variables

678

are removed, show_compatibility_56 will have no purpose and will be
removed as well.

The following discussion describes the effects of show_compatibility_56:

• Overview of show_compatibility_56 Effects

• Effect of show_compatibility_56 on SHOW Statements

• Effect of show_compatibility_56 on INFORMATION_SCHEMA Tables

• Effect of show_compatibility_56 on Performance Schema Tables

• Effect of show_compatibility_56 on Slave Status Variables

• Effect of show_compatibility_56 on FLUSH STATUS

For better understanding, it is strongly recommended that you also read these sections:

• Section 21.9.12, “Performance Schema System Variable Tables”

• Section 21.9.13, “Performance Schema Status Variable Tables”

• Section 21.9.14.11, “Performance Schema Status Variable Summary Tables”

Overview of show_compatibility_56 Effects

The show_compatibility_56 system variable affects these aspects of server operation regarding
system and status variables:

• Information available from the SHOW VARIABLES and SHOW STATUS statements

• Information available from the INFORMATION_SCHEMA tables that provide system and status
variable information

• Information available from the Performance Schema tables that provide system and status variable
information

• The effect of the FLUSH STATUS statement on status variables

This list summarizes the effects of show_compatibility_56, with additional details given later:

• When show_compatibility_56 is ON, compatibility with MySQL 5.6 is enabled. Older variable
information sources (SHOW statements, INFORMATION_SCHEMA tables) produce the same output
as in MySQL 5.6.

• When show_compatibility_56 is OFF, compatibility with MySQL 5.6 is disabled. Selecting
from the INFORMATION_SCHEMA tables produces an error because the Performance Schema
tables are intended to replace them. The INFORMATION_SCHEMA tables are deprecated as of
MySQL 5.7.6 and will be removed in a future MySQL release.

To obtain system and status variable information When show_compatibility_56=OFF, use the
Performance Schema tables or the SHOW statements.

Note

When show_compatibility_56=OFF, the SHOW VARIABLES and
SHOW STATUS statements display rows from the Performance Schema
global_variables, session_variables, global_status, and
session_status tables.

Server System Variables

679

As of MySQL 5.7.9, those tables are world readable and accessible without
the SELECT privilege, which means that SELECT is not needed to use the
SHOW statements, either. Before MySQL 5.7.9, the SELECT privilege is
required to access those Performance Schema tables, either directly, or
indirectly through the SHOW statements.

• Several Slave_xxx status variables are available from SHOW STATUS when
show_compatibility_56 is ON. When show_compatibility_56 is OFF, some of those
variables are not exposed to SHOW STATUS. The information they provide is available in
replication-related Performance Schema tables, as described later.

• show_compatibility_56 has no effect on system variable access using @@ notation:
@@GLOBAL.var_name, @@SESSION.var_name, @@var_name.

• show_compatibility_56 has no effect for the embedded server, which produces 5.6-
compatible output in all cases.

The following descriptions detail the effect of setting show_compatibility_56 to ON or OFF in the
contexts in which this variable applies.

Effect of show_compatibility_56 on SHOW Statements

SHOW GLOBAL VARIABLES statement:

• ON: MySQL 5.6 output.

• OFF: Output displays rows from the Performance Schema global_variables table.

SHOW [SESSION | LOCAL] VARIABLES statement:

• ON: MySQL 5.6 output.

• OFF: Output displays rows from the Performance Schema session_variables table. (In
MySQL 5.7.6 and 5.7.7, OFF output does not fully reflect all system variable values in effect for the
current session; it includes no rows for global variables that have no session counterpart. This is
corrected in MySQL 5.7.8.)

SHOW GLOBAL STATUS statement:

• ON: MySQL 5.6 output.

• OFF: Output displays rows from the Performance Schema global_status table, plus the
Com_xxx statement execution counters.

OFF output includes no rows for session variables that have no global counterpart, unlike ON
output.

SHOW [SESSION | LOCAL] STATUS statement:

• ON: MySQL 5.6 output.

• OFF: Output displays rows from the Performance Schema session_status table, plus the
Com_xxx statement execution counters. (In MySQL 5.7.6 and 5.7.7, OFF output does not fully
reflect all status variable values in effect for the current session; it includes no rows for global
variables that have no session counterpart. This is corrected in MySQL 5.7.8.)

In MySQL 5.7.6 and 5.7.7, for each of the SHOW statements just described, use of a WHERE
clause produces a warning when show_compatibility_56=ON and an error when
show_compatibility_56=OFF. (This applies to WHERE clauses that are not optimized away. For

Server System Variables

680

example, WHERE 1 is trivially true, is optimized away, and thus produces no warning or error.) This
behavior does not occur as of MySQL 5.7.8; WHERE is supported as before 5.7.6.

Effect of show_compatibility_56 on INFORMATION_SCHEMA Tables

INFORMATION_SCHEMA tables (GLOBAL_VARIABLES, SESSION_VARIABLES, GLOBAL_STATUS,
and SESSION_STATUS):

• ON: MySQL 5.6 output, with a deprecation warning.

• OFF: Selecting from these tables produces an error. (Before 5.7.9, selecting from these tables
produces no output, with a deprecation warning.)

Effect of show_compatibility_56 on Performance Schema Tables

Performance Schema system variable tables:

• OFF:

• global_variables: Global system variables only.

• session_variables: System variables in effect for the current session: A row for each
session variable, and a row for each global variable that has no session counterpart. (In MySQL
5.7.6 and 5.7.7, the table does not fully reflect all system variable values in effect for the current
session; it includes no rows for global variables that have no session counterpart. This is
corrected in MySQL 5.7.8.)

• variables_by_thread: Session system variables only, for each active session.

• ON: Same output as for OFF. (Before 5.7.8, these tables produce no output.)

Performance Schema status variable tables:

• OFF:

• global_status: Global status variables only.

• session_status: Status variables in effect the current session: A row for each session
variable, and a row for each global variable that has no session counterpart. (In MySQL 5.7.6
and 5.7.7, the table does not fully reflect all status variable values in effect for the current
session; it includes no rows for global variables that have no session counterpart. This is
corrected in MySQL 5.7.8.)

• status_by_account Session status variables only, aggregated per account.

• status_by_host: Session status variables only, aggregated per host name.

• status_by_thread: Session status variables only, for each active session.

• status_by_user: Session status variables only, aggregated per user name.

• ON: Same output as for OFF. (Before 5.7.9, these tables produce no output.)

Effect of show_compatibility_56 on Slave Status Variables

Slave status variables:

• ON: Several Slave_xxx status variables are available from SHOW STATUS.

• OFF: Some of those slave variables are not exposed to SHOW STATUS or the Performance
Schema status variable tables. The information they provide is available in replication-related

Server System Variables

681

Performance Schema tables. The following table shows which Slave_xxx status variables
become unavailable in SHOW STATUS and their locations in Performance Schema replication
tables.

Status Variable Performance Schema Location

Slave_heartbeat_period replication_connection_configuration table,
HEARTBEAT_INTERVAL column

Slave_last_heartbeat replication_connection_status table,
LAST_HEARTBEAT_TIMESTAMP column

Slave_received_heartbeats replication_connection_status table,
COUNT_RECEIVED_HEARTBEATS column

Slave_retried_transactions replication_applier_status table,
COUNT_TRANSACTIONS_RETRIES column

Slave_running replication_connection_status and
replication_applier_status tables,
SERVICE_STATE column

Effect of show_compatibility_56 on FLUSH STATUS

FLUSH STATUS statement:

• ON: This statement produces MySQL 5.6 behavior. It adds the current thread's session status
variable values to the global values and resets the session values to zero. Some global variables
may be reset to zero as well. It also resets the counters for key caches (default and named) to
zero and sets Max_used_connections to the current number of open connections.

• OFF: This statement adds the session status from all active sessions to the global status
variables, resets the status of all active sessions, and resets account, host, and user status values
aggregated from disconnected sessions.

• show_old_temporals

Introduced 5.7.6

Deprecated 5.7.6

Command-Line Format --show_old_temporals={OFF|ON}

Name show_old_temporals

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether SHOW CREATE TABLE output includes comments to flag temporal columns found to be in
pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional seconds
precision). This variable is disabled by default. If enabled, SHOW CREATE TABLE output looks like
this:

CREATE TABLE `mytbl` (
 `ts` timestamp /* 5.5 binary format */ NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `dt` datetime /* 5.5 binary format */ DEFAULT NULL,
 `t` time /* 5.5 binary format */ DEFAULT NULL
) DEFAULT CHARSET=latin1

Server System Variables

682

Output for the COLUMN_TYPE column of the INFORMATION_SCHEMA.COLUMNS table is affected
similarly.

This variable is deprecated and will be removed in a future MySQL release.

• skip_external_locking

Command-Line Format --skip-external-locking

Name skip_external_locking

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

This is OFF if mysqld uses external locking (system locking), ON if external locking is disabled. This
affects only MyISAM table access.

This variable is set by the --external-locking or --skip-external-locking option.
External locking is disabled by default.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.5, “External Locking”.

• skip_name_resolve

Command-Line Format --skip-name-resolve

Name skip_name_resolve

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

This variable is set from the value of the --skip-name-resolve option. If it is OFF, mysqld
resolves host names when checking client connections. If it is ON, mysqld uses only IP numbers;
in this case, all Host column values in the grant tables must be IP addresses or localhost. See
Section 8.12.6.2, “DNS Lookup Optimization and the Host Cache”.

• skip_networking

Command-Line Format --skip-networking

Name skip_networking

Variable
Scope

Global

System Variable

Dynamic
Variable

No

This is ON if the server permits only local (non-TCP/IP) connections. On Unix, local connections
use a Unix socket file. On Windows, local connections use a named pipe or shared memory. This
variable can be set to ON with the --skip-networking option.

Server System Variables

683

• skip_show_database

Command-Line Format --skip-show-database

Name skip_show_database

Variable
Scope

Global

System Variable

Dynamic
Variable

No

This prevents people from using the SHOW DATABASES statement if they do not have the SHOW
DATABASES privilege. This can improve security if you have concerns about users being able to see
databases belonging to other users. Its effect depends on the SHOW DATABASES privilege: If the
variable value is ON, the SHOW DATABASES statement is permitted only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW
DATABASES is permitted to all users, but displays the names of only those databases for which the
user has the SHOW DATABASES or other privilege. (Note that any global privilege is considered a
privilege for the database.)

• slow_launch_time

Command-Line Format --slow_launch_time=#

Name slow_launch_time

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 2

If creating a thread takes longer than this many seconds, the server increments the
Slow_launch_threads status variable.

• slow_query_log

Command-Line Format --slow-query-log

Name slow_query_log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether the slow query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to
enable the log. The default value depends on whether the --slow_query_log option is given. The
destination for log output is controlled by the log_output system variable; if that value is NONE, no
log entries are written even if the log is enabled.

“Slow” is determined by the value of the long_query_time variable. See Section 5.2.5, “The Slow
Query Log”.

• slow_query_log_file

Command-Line Format --slow-query-log-file=file_name

Server System Variables

684

Name slow_query_log_file

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type file namePermitted Values

Default host_name-slow.log

The name of the slow query log file. The default value is host_name-slow.log, but the initial value
can be changed with the --slow_query_log_file option.

• socket

Command-Line Format --socket={file_name|pipe_name}

Name socket

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default /tmp/mysql.sock

On Unix platforms, this variable is the name of the socket file that is used for local client connections.
The default is /tmp/mysql.sock. (For some distribution formats, the directory might be different,
such as /var/lib/mysql for RPMs.)

On Windows, this variable is the name of the named pipe that is used for local client connections.
The default value is MySQL (not case sensitive).

• sort_buffer_size

Command-Line Format --sort_buffer_size=#

Name sort_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 262144

Min
Value

32768

Permitted Values
(Windows)

Max
Value

4294967295

Type integer

Default 262144

Min
Value

32768

Permitted Values (Other,
32-bit platforms)

Max
Value

4294967295

Server System Variables

685

Type integer

Default 262144

Min
Value

32768

Permitted Values (Other,
64-bit platforms)

Max
Value

18446744073709551615

Each session that must perform a sort allocates a buffer of this size. sort_buffer_size is
not specific to any storage engine and applies in a general manner for optimization. At minimum
the sort_buffer_size value must be large enough to accommodate fifteen tuples in the sort
buffer. Also, increasing the value of max_sort_length may require increasing the value of
sort_buffer_size. For more information, see Section 8.2.1.15, “ORDER BY Optimization”

If you see many Sort_merge_passes per second in SHOW GLOBAL STATUS output, you can
consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations
that cannot be improved with query optimization or improved indexing.

The optimizer tries to work out how much space is needed but can allocate more, up to the limit.
Setting it larger than required globally will slow down most queries that sort. It is best to increase it as
a session setting, and only for the sessions that need a larger size. On Linux, there are thresholds of
256KB and 2MB where larger values may significantly slow down memory allocation, so you should
consider staying below one of those values. Experiment to find the best value for your workload. See
Section B.5.3.5, “Where MySQL Stores Temporary Files”.

The maximum permissible setting for sort_buffer_size is 4GB−1. Larger values are permitted
for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB−1 with a
warning).

• sql_auto_is_null

Name sql_auto_is_null

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 0

If this variable is set to 1, then after a statement that successfully inserts an automatically generated
AUTO_INCREMENT value, you can find that value by issuing a statement of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert, see
Section 12.14, “Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the
SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison is used by
some ODBC programs, such as Access. See Obtaining Auto-Increment Values. This behavior can
be disabled by setting sql_auto_is_null to 0.

The default value of sql_auto_is_null is 0.

• sql_big_selects

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

Server System Variables

686

Name sql_big_selects

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

If set to 0, MySQL aborts SELECT statements that are likely to take a very long time to execute (that
is, statements for which the optimizer estimates that the number of examined rows exceeds the
value of max_join_size). This is useful when an inadvisable WHERE statement has been issued.
The default value for a new connection is 1, which permits all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT, sql_big_selects
is set to 0.

• sql_buffer_result

Name sql_buffer_result

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 0

If set to 1, sql_buffer_result forces results from SELECT statements to be put into temporary
tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes a
long time to send results to the client. The default value is 0.

• sql_log_bin

Name sql_log_bin

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

This variable controls whether logging to the binary log is done. The default value is 1 (do logging).
To change logging for the current session, change the session value of this variable. The session
user must have the SUPER privilege to set this variable.

Setting this variable to 0 prevents GTIDs from being assigned to transactions in the binary log. If
you are using GTIDs for replication, this means that, even when binary logging is later enabled once
again, the GTIDs written into the log from this point do not account for any transactions that occurred
in the meantime—in effect, those transactions are lost.

In MySQL 5.7, it is not possible to set @@session.sql_log_bin within a transaction or subquery.
(Bug #53437)

• sql_log_off

System Variable Name sql_log_off

Server System Variables

687

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 0

This variable controls whether logging to the general query log is done. The default value is 0 (do
logging). To change logging for the current session, change the session value of this variable. The
session user must have the SUPER privilege to set this option. The default value is 0.

• sql_mode

Command-Line Format --sql-mode=name

Name sql_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type set

Default NO_ENGINE_SUBSTITUTION

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

Permitted Values (<=
5.7.4)

Valid
Values

STRICT_TRANS_TABLES

Type setPermitted Values (>=
5.7.5, <= 5.7.6) Default ONLY_FULL_GROUP_BY STRICT_TRANS_TABLES

NO_ENGINE_SUBSTITUTION

Server System Variables

688

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

Valid
Values

STRICT_TRANS_TABLES

Type set

Default ONLY_FULL_GROUP_BY STRICT_TRANS_TABLES
NO_AUTO_CREATE_USER NO_ENGINE_SUBSTITUTION

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

Permitted Values (5.7.7)

Valid
Values

ONLY_FULL_GROUP_BY

Server System Variables

689

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

Type set

Default ONLY_FULL_GROUP_BY STRICT_TRANS_TABLES
NO_ZERO_IN_DATE NO_ZERO_DATE
ERROR_FOR_DIVISION_BY_ZERO NO_AUTO_CREATE_USER
NO_ENGINE_SUBSTITUTION

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

Permitted Values (>=
5.7.8)

Valid
Values

STRICT_TRANS_TABLES

The current server SQL mode, which can be set dynamically. For details, see Section 5.1.7, “Server
SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the
installation process. For example, mysql_install_db creates a default
option file named my.cnf in the base installation directory. This file contains
a line that sets the SQL mode; see Section 4.4.2, “mysql_install_db —
Initialize MySQL Data Directory”.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

• sql_notes

Server System Variables

690

If set to 1 (the default), warnings of Note level increment warning_count and the server records
them. If set to 0, Note warnings do not increment warning_count and the server does not record
them. mysqldump includes output to set this variable to 0 so that reloading the dump file does not
produce warnings for events that do not affect the integrity of the reload operation.

• sql_quote_show_create

If set to 1 (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CREATE
DATABASE statements. If set to 0, quoting is disabled. This option is enabled by default so that
replication works for identifiers that require quoting. See Section 13.7.5.10, “SHOW CREATE TABLE
Syntax”, and Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”.

• sql_safe_updates

If set to 1, MySQL aborts UPDATE or DELETE statements that do not use a key in the WHERE clause
or a LIMIT clause. (Specifically, UPDATE statements must have a WHERE clause that uses a key or a
LIMIT clause, or both. DELETE statements must have both.) This makes it possible to catch UPDATE
or DELETE statements where keys are not used properly and that would probably change or delete a
large number of rows. The default value is 0.

• sql_select_limit

Name sql_select_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

The maximum number of rows to return from SELECT statements. The default value for a new
connection is the maximum number of rows that the server permits per table. Typical default values
are (232)−1 or (264)−1. If you have changed the limit, the default value can be restored by assigning a
value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of
sql_select_limit.

• sql_warnings

This variable controls whether single-row INSERT statements produce an information string if
warnings occur. The default is 0. Set the value to 1 to produce an information string.

• ssl_ca

Command-Line Format --ssl-ca=file_name

Name ssl_ca

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The path to a file with a list of trusted SSL CAs.

• ssl_capath

Command-Line Format --ssl-capath=dir_name

Server System Variables

691

Name ssl_capath

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to a directory that contains trusted SSL CA certificates in PEM format.

• ssl_cert

Command-Line Format --ssl-cert=file_name

Name ssl_cert

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the SSL certificate file to use for establishing a secure connection.

• ssl_cipher

Command-Line Format --ssl-cipher=name

Name ssl_cipher

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

A list of permissible ciphers to use for SSL encryption.

• ssl_crl

Command-Line Format --ssl-crl=file_name

Name ssl_crl

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The path to a file containing certificate revocation lists in PEM format. Revocation lists work for
MySQL distributions compiled using OpenSSL (but not yaSSL). See Section 6.3.12.1, “OpenSSL
Versus yaSSL”.

• ssl_crlpath

Command-Line Format --ssl-crlpath=dir_name

System Variable Name ssl_crlpath

Server System Variables

692

Variable
Scope

Global

Dynamic
Variable

No

Permitted Values Type directory name

The path to a directory that contains files containing certificate revocation lists in PEM format.
Revocation lists work for MySQL distributions compiled using OpenSSL (but not yaSSL). See
Section 6.3.12.1, “OpenSSL Versus yaSSL”.

• ssl_key

Command-Line Format --ssl-key=file_name

Name ssl_key

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the SSL key file to use for establishing a secure connection.

• storage_engine

Removed 5.7.5

Name storage_engine

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values

Default InnoDB

This variable is deprecated and was removed in MySQL 5.7.5. Use default_storage_engine
instead.

• stored_program_cache

Command-Line Format --stored-program-cache=#

Name stored_program_cache

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 256

Min
Value

256

Permitted Values (<=
5.7.5)

Max
Value

524288

Server System Variables

693

Type integer

Default 256

Min
Value

16

Permitted Values (>=
5.7.6)

Max
Value

524288

Sets a soft upper limit for the number of cached stored routines per connection. The value of
this variable is specified in terms of the number of stored routines held in each of the two caches
maintained by the MySQL Server for, respectively, stored procedures and stored functions.

Whenever a stored routine is executed this cache size is checked before the first or top-level
statement in the routine is parsed; if the number of routines of the same type (stored procedures or
stored functions according to which is being executed) exceeds the limit specified by this variable,
the corresponding cache is flushed and memory previously allocated for cached objects is freed.
This allows the cache to be flushed safely, even when there are dependencies between stored
routines.

• super_read_only

Introduced 5.7.8

Command-Line Format --super_read_only[={OFF|ON}]

Name super_read_only

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If the read_only system variable is enabled, the server permits client updates only from users who
have the SUPER privilege. If the super_read_only system variable is also enabled, the server
prohibits client updates even from users who have SUPER. See the description of the read_only
system variable for a description of read-only mode and information about how read_only and
super_read_only interact.

Changes to super_read_only on a master server are not replicated to slave servers. The value
can be set on a slave server independent of the setting on the master.

• sync_frm

Deprecated 5.7.6

Command-Line Format --sync-frm

Name sync_frm

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

If this variable is set to 1, when any nontemporary table is created its .frm file is synchronized to
disk (using fdatasync()). This is slower but safer in case of a crash. The default is 1.

Server System Variables

694

This variable is deprecated in MySQL 5.7.6 and will be removed in a future version of MySQL (when
.frm files become obsolete).

• system_time_zone

Name system_time_zone

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The server system time zone. When the server begins executing, it inherits a time zone setting from
the machine defaults, possibly modified by the environment of the account used for running the
server or the startup script. The value is used to set system_time_zone. Typically the time zone is
specified by the TZ environment variable. It also can be specified using the --timezone option of
the mysqld_safe script.

The system_time_zone variable differs from time_zone. Although they might have the same
value, the latter variable is used to initialize the time zone for each client that connects. See
Section 10.6, “MySQL Server Time Zone Support”.

• table_definition_cache

Name table_definition_cache

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default -1 (autosized)

Min
Value

400

Permitted Values

Max
Value

524288

The number of table definitions (from .frm files) that can be stored in the definition cache. If you use
a large number of tables, you can create a large table definition cache to speed up opening of tables.
The table definition cache takes less space and does not use file descriptors, unlike the normal table
cache. The minimum value is 400. The default value is based on the following formula, capped to a
limit of 2000:

400 + (table_open_cache / 2)

For InnoDB, table_definition_cache acts as a soft limit for the number of open table
instances in the InnoDB data dictionary cache. If the number of open table instances exceeds
the table_definition_cache setting, the LRU mechanism begins to mark table instances
for eviction and eventually removes them from the data dictionary cache. The limit helps address
situations in which significant amounts of memory would be used to cache rarely used table
instances until the next server restart. The number of table instances with cached metadata could
be higher than the limit defined by table_definition_cache, because InnoDB system table
instances and parent and child table instances with foreign key relationships are not placed on the
LRU list and are not subject to eviction from memory.

Server System Variables

695

Additionally, table_definition_cache defines a soft limit for the number of InnoDB file-per-
table tablespaces that can be open at one time, which is also controlled by innodb_open_files. If
both table_definition_cache and innodb_open_files are set, the highest setting is used. If
neither variable is set, table_definition_cache, which has a higher default value, is used. If the
number of open tablespace file handles exceeds the limit defined by table_definition_cache
or innodb_open_files, the LRU mechanism searches the tablespace file LRU list for files that
are fully flushed and are not currently being extended. This process is performed each time a new
tablespace is opened. If there are no “inactive” tablespaces, no tablespace files are closed.

• table_open_cache

Name table_open_cache

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 2000

Min
Value

1

Permitted Values

Max
Value

524288

The number of open tables for all threads. Increasing this value increases the number of file
descriptors that mysqld requires. You can check whether you need to increase the table cache by
checking the Opened_tables status variable. See Section 5.1.6, “Server Status Variables”. If the
value of Opened_tables is large and you do not use FLUSH TABLES often (which just forces all
tables to be closed and reopened), then you should increase the value of the table_open_cache
variable. For more information about the table cache, see Section 8.4.3.1, “How MySQL Opens and
Closes Tables”.

• table_open_cache_instances

Name table_open_cache_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1

Min
Value

1

Permitted Values (<=
5.7.7)

Max
Value

64

Type integer

Default 16

Min
Value

1

Permitted Values (>=
5.7.8)

Max
Value

64

Server System Variables

696

The number of open tables cache instances. To improve scalability by reducing contention among
sessions, the open tables cache can be partitioned into several smaller cache instances of size
table_open_cache / table_open_cache_instances . A session needs to lock only one
instance to access it for DML statements. This segments cache access among instances, permitting
higher performance for operations that use the cache when there are many sessions accessing
tables. (DDL statements still require a lock on the entire cache, but such statements are much less
frequent than DML statements.)

A value of 8 or 16 is recommended on systems that routinely use 16 or more cores.

• thread_cache_size

Command-Line Format --thread_cache_size=#

Name thread_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default -1 (autosized)

Min
Value

0

Permitted Values

Max
Value

16384

How many threads the server should cache for reuse. When a client disconnects, the client's
threads are put in the cache if there are fewer than thread_cache_size threads there. Requests
for threads are satisfied by reusing threads taken from the cache if possible, and only when the
cache is empty is a new thread created. This variable can be increased to improve performance
if you have a lot of new connections. Normally, this does not provide a notable performance
improvement if you have a good thread implementation. However, if your server sees hundreds of
connections per second you should normally set thread_cache_size high enough so that most
new connections use cached threads. By examining the difference between the Connections and
Threads_created status variables, you can see how efficient the thread cache is. For details, see
Section 5.1.6, “Server Status Variables”.

The default value is based on the following formula, capped to a limit of 100:

8 + (max_connections / 100)

This variable has no effect for the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• thread_concurrency

Deprecated 5.6.1

Removed 5.7.2

Command-Line Format --thread_concurrency=#

Name thread_concurrency

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Server System Variables

697

Type integer

Default 10

Min
Value

1

Permitted Values

Max
Value

512

This variable is specific to Solaris 8 and earlier systems, for which mysqld invokes the
thr_setconcurrency() function with the variable value. This function enables applications to
give the threads system a hint about the desired number of threads that should be run at the same
time. Current Solaris versions document this as having no effect.

This variable was removed in MySQL 5.7.2.

• thread_handling

Command-Line Format --thread_handling=name

Name thread_handling

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type enumeration

Default one-thread-per-connection

no-threads

Permitted Values (<=
5.7.8)

Valid
Values one-thread-per-connection

Type enumeration

Default one-thread-per-connection

no-threads

one-thread-per-connection

Permitted Values (>=
5.7.9)

Valid
Values

dynamically-loaded

The thread-handling model used by the server for connection threads. The permissible values are
no-threads (the server uses a single thread to handle one connection) and one-thread-per-
connection (the server uses one thread to handle each client connection). no-threads is useful
for debugging under Linux; see Section 24.5, “Debugging and Porting MySQL”.

This variable has no effect for the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• thread_stack

Command-Line Format --thread_stack=#

Name thread_stack

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (32-bit
platforms) Default 196608

Server System Variables

698

Min
Value

131072

Max
Value

4294967295

Block
Size

1024

Type integer

Default 262144

Min
Value

131072

Max
Value

18446744073709551615

Permitted Values (64-bit
platforms)

Block
Size

1024

The stack size for each thread. The default of 192KB (256KB for 64-bit systems) is large enough for
normal operation. If the thread stack size is too small, it limits the complexity of the SQL statements
that the server can handle, the recursion depth of stored procedures, and other memory-consuming
actions.

• time_format

This variable is unused. It is deprecated and will be removed in a future MySQL release.

• time_zone

Name time_zone

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The current time zone. This variable is used to initialize the time zone for each client that
connects. By default, the initial value of this is 'SYSTEM' (which means, “use the value of
system_time_zone”). The value can be specified explicitly at server startup with the --default-
time-zone option. See Section 10.6, “MySQL Server Time Zone Support”.

• timed_mutexes

Deprecated 5.6.20

Removed 5.7.5

Command-Line Format --timed_mutexes

Name timed_mutexes

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This deprecated variable has no use and was removed in MySQL 5.7.5.

Server System Variables

699

• timestamp

Name timestamp

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type numeric

Set the time for this client. This is used to get the original timestamp if you use the binary log to
restore rows. timestamp_value should be a Unix epoch timestamp (a value like that returned by
UNIX_TIMESTAMP(), not a value in 'YYYY-MM-DD hh:mm:ss' format) or DEFAULT.

Setting timestamp to a constant value causes it to retain that value until it is changed again.
Setting timestamp to DEFAULT causes its value to be the current date and time as of the time it is
accessed.

In MySQL 5.7, timestamp is a DOUBLE rather than BIGINT because its value includes a
microseconds part.

SET timestamp affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE(). The server can be
started with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW(), in which
case SET timestamp affects both functions.

• tls_version

Introduced 5.7.10

Command-Line Format --tls_version=protocol_list

Name tls_version

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values
(OpenSSL) Default TLSv1,TLSv1.1,TLSv1.2

Type stringPermitted Values
(yaSSL) Default TLSv1,TLSv1.1

The protocols permitted by the server for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this variable depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

• tmp_table_size

Command-Line Format --tmp_table_size=#

Name tmp_table_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

Server System Variables

700

Default 16777216

Min
Value

1024

Max
Value

18446744073709551615

The maximum size of internal in-memory temporary tables. This variable does not apply to user-
created MEMORY tables.

The actual limit is determined as the minimum of tmp_table_size and max_heap_table_size.
If an in-memory temporary table exceeds the limit, MySQL automatically converts it to an on-disk
temporary table. As of MySQL 5.7.5, the internal_tmp_disk_storage_engine option defines
the storage engine used for on-disk temporary tables. Prior to MySQL 5.7.5, the MyISAM storage
engine is used.

Increase the value of tmp_table_size (and max_heap_table_size if necessary) if you do many
advanced GROUP BY queries and you have lots of memory.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• tmpdir

Command-Line Format --tmpdir=dir_name

Name tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory used for temporary files and temporary tables. This variable can be set to a list of
several paths that are used in round-robin fashion. Paths should be separated by colon characters
(“:”) on Unix and semicolon characters (“;”) on Windows.

The multiple-directory feature can be used to spread the load between several physical disks. If
the MySQL server is acting as a replication slave, you should not set tmpdir to point to a directory
on a memory-based file system or to a directory that is cleared when the server host restarts. A
replication slave needs some of its temporary files to survive a machine restart so that it can replicate
temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost
when the server restarts, replication fails. You can set the slave's temporary directory using the
slave_load_tmpdir variable. In that case, the slave will not use the general tmpdir value and
you can set tmpdir to a nonpermanent location.

• transaction_alloc_block_size

Command-Line Format --transaction_alloc_block_size=#

Name transaction_alloc_block_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Server System Variables

701

Type integer

Default 8192

Min
Value

1024

Max
Value

131072

Permitted Values (>=
5.7.6)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

4294967295

Permitted Values (32-bit
platforms, <= 5.7.5)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

18446744073709551615

Permitted Values (64-bit
platforms, <= 5.7.5)

Block
Size

1024

The amount in bytes by which to increase a per-transaction memory pool which needs memory. See
the description of transaction_prealloc_size.

• transaction_prealloc_size

Command-Line Format --transaction_prealloc_size=#

Name transaction_prealloc_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4096

Min
Value

1024

Max
Value

131072

Permitted Values (>=
5.7.6)

Block
Size

1024

Type integer

Default 4096

Permitted Values (32-bit
platforms, <= 5.7.5)

Min
Value

1024

Server System Variables

702

Max
Value

4294967295

Block
Size

1024

Type integer

Default 4096

Min
Value

1024

Max
Value

18446744073709551615

Permitted Values (64-bit
platforms, <= 5.7.5)

Block
Size

1024

There is a per-transaction memory pool from which various transaction-related allocations take
memory. The initial size of the pool in bytes is transaction_prealloc_size. For every
allocation that cannot be satisfied from the pool because it has insufficient memory available, the
pool is increased by transaction_alloc_block_size bytes. When the transaction ends, the
pool is truncated to transaction_prealloc_size bytes.

By making transaction_prealloc_size sufficiently large to contain all statements within a
single transaction, you can avoid many malloc() calls.

• transaction_write_set_extraction

Introduced 5.7.6

Command-Line Format --transaction_write_set_extraction=[value]

Name transaction_write_set_extraction

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default OFF

OFF

Permitted Values

Valid
Values MURMUR32

Reserved for future use.

• tx_isolation

Name tx_isolation

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default REPEATABLE-READ

READ-UNCOMMITTED

READ-COMMITTED

Permitted Values

Valid
Values

REPEATABLE-READ

Server System Variables

703

SERIALIZABLE

The default transaction isolation level. Defaults to REPEATABLE-READ.

This variable can be set directly, or indirectly using the SET TRANSACTION statement. See
Section 13.3.6, “SET TRANSACTION Syntax”. If you set tx_isolation directly to an isolation level
name that contains a space, the name should be enclosed within quotation marks, with the space
replaced by a dash. For example:

SET tx_isolation = 'READ-COMMITTED';

Any unique prefix of a valid value may be used to set the value of this variable.

The default transaction isolation level can also be set at startup using the --transaction-
isolation server option.

• tx_read_only

Name tx_read_only

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

The default transaction access mode. The value can be OFF (read/write, the default) or ON (read
only).

This variable can be set directly, or indirectly using the SET TRANSACTION statement. See
Section 13.3.6, “SET TRANSACTION Syntax”.

To set the default transaction access mode at startup, use the --transaction-read-only server
option.

• unique_checks

Name unique_checks

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If
set to 0, storage engines are permitted to assume that duplicate keys are not present in input data.
If you know for certain that your data does not contain uniqueness violations, you can set this to 0 to
speed up large table imports to InnoDB.

Setting this variable to 0 does not require storage engines to ignore duplicate keys. An engine is still
permitted to check for them and issue duplicate-key errors if it detects them.

• updatable_views_with_limit

Command-Line Format --updatable_views_with_limit=#

Server System Variables

704

Name updatable_views_with_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

This variable controls whether updates to a view can be made when the view does not contain
all columns of the primary key defined in the underlying table, if the update statement contains a
LIMIT clause. (Such updates often are generated by GUI tools.) An update is an UPDATE or DELETE
statement. Primary key here means a PRIMARY KEY, or a UNIQUE index in which no column can
contain NULL.

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

• validate_password_xxx

The validate_password plugin implements a set of system variables having names of the form
validate_password_xxx. These variables affect password testing by that plugin; see Password
Validation Plugin Options and Variables.

• validate_user_plugins

Name validate_user_plugins

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

If this variable is enabled (the default), the server checks each user account and produces a warning
if conditions are found that would make the account unusable:

• The account requires an authentication plugin that is not loaded.

• The account requires the sha256_password authentication plugin but the server was started with
neither SSL nor RSA enabled as required by this plugin.

Enabling validate_user_plugins slows down server initialization and FLUSH PRIVILEGES.
If you do not require the additional checking, you can disable this variable at startup to avoid the
performance decrement.

• version

The version number for the server. The value might also include a suffix indicating server build or
configuration information. -log indicates that one or more of the general log, slow query log, or
binary log are enabled. -debug indicates that the server was built with debugging support enabled.

• version_comment

System Variable Name version_comment

Server System Variables

705

Variable
Scope

Global

Dynamic
Variable

No

Permitted Values Type string

The CMake configuration program has a COMPILATION_COMMENT option that permits a comment
to be specified when building MySQL. This variable contains the value of that comment. See
Section 2.9.4, “MySQL Source-Configuration Options”.

• version_compile_machine

Name version_compile_machine

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The type of the server binary.

• version_compile_os

Name version_compile_os

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The type of operating system on which MySQL was built.

• wait_timeout

Command-Line Format --wait_timeout=#

Name wait_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 28800

Min
Value

1

Permitted Values
(Windows)

Max
Value

2147483

Type integer

Default 28800

Permitted Values (Other)

Min
Value

1

Using System Variables

706

Max
Value

31536000

The number of seconds the server waits for activity on a noninteractive connection before closing it.

On thread startup, the session wait_timeout value is initialized from the global wait_timeout
value or from the global interactive_timeout value, depending on the type of client (as
defined by the CLIENT_INTERACTIVE connect option to mysql_real_connect()). See also
interactive_timeout.

• warning_count

The number of errors, warnings, and notes that resulted from the last statement that generated
messages. This variable is read only. See Section 13.7.5.40, “SHOW WARNINGS Syntax”.

5.1.5 Using System Variables

The MySQL server maintains many system variables that indicate how it is configured. Section 5.1.4,
“Server System Variables”, describes the meaning of these variables. Each system variable has a
default value. System variables can be set at server startup using options on the command line or in
an option file. Most of them can be changed dynamically while the server is running by means of the
SET statement, which enables you to modify operation of the server without having to stop and restart
it. You can refer to system variable values in expressions.

The server maintains two kinds of system variables. Global variables affect the overall operation of
the server. Session variables affect its operation for individual client connections. A given system
variable can have both a global and a session value. Global and session system variables are related
as follows:

• When the server starts, it initializes all global variables to their default values. These defaults can
be changed by options specified on the command line or in an option file. (See Section 4.2.3,
“Specifying Program Options”.)

• The server also maintains a set of session variables for each client that connects. The client's
session variables are initialized at connect time using the current values of the corresponding global
variables. For example, the client's SQL mode is controlled by the session sql_mode value, which is
initialized when the client connects to the value of the global sql_mode value.

System variable values can be set globally at server startup by using options on the command line or
in an option file. When you use a startup option to set a variable that takes a numeric value, the value
can be given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024,
10242 or 10243; that is, units of kilobytes, megabytes, or gigabytes, respectively. Thus, the following
command starts the server with a query cache size of 16 megabytes and a maximum packet size of
one gigabyte:

mysqld --query_cache_size=16M --max_allowed_packet=1G

Within an option file, those variables are set like this:

[mysqld]
query_cache_size=16M
max_allowed_packet=1G

The lettercase of suffix letters does not matter; 16M and 16m are equivalent, as are 1G and 1g.

If you want to restrict the maximum value to which a system variable can be set at runtime
with the SET statement, you can specify this maximum by using an option of the form
--maximum-var_name=value at server startup. For example, to prevent the value of
query_cache_size from being increased to more than 32MB at runtime, use the option --
maximum-query_cache_size=32M.

Using System Variables

707

Many system variables are dynamic and can be changed while the server runs by using the SET
statement. For a list, see Section 5.1.5.2, “Dynamic System Variables”. To change a system variable
with SET, refer to it as var_name, optionally preceded by a modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global..
The SUPER privilege is required to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION,
@@session., or @@. Setting a session variable requires no special privilege, but a client can change
only its own session variables, not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

A SET statement can contain multiple variable assignments, separated by commas. If you set several
system variables, the most recent GLOBAL or SESSION modifier in the statement is used for following
variables that have no modifier specified.

Examples:

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

The @@var_name syntax for system variables is supported for compatibility with some other database
systems.

If you change a session system variable, the value remains in effect until your session ends or until you
change the variable to a different value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until
the server restarts. (To make a global system variable setting permanent, you should set it in an option
file.) The change is visible to any client that accesses that global variable. However, the change affects
the corresponding session variable only for clients that connect after the change. The global variable
change does not affect the session variable for any client that is currently connected (not even that of
the client that issues the SET GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that
can only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a
global variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default
value (or autosized default, for those variables that are autosized), use the DEFAULT keyword. For
example, the following two statements are identical in setting the session value of max_join_size to
the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

You can refer to the values of specific global or session system variables in expressions by using one
of the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not
specify @@global. or @@session.), MySQL returns the session value if it exists and the global value
otherwise. (This differs from SET @@var_name = value, which always refers to the session value.)

Using System Variables

708

Note

Some variables displayed by SHOW VARIABLES may not be available using
SELECT @@var_name syntax; an Unknown system variable occurs.
As a workaround in such cases, you can use SHOW VARIABLES LIKE
'var_name'.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

Note

Some system variables can be enabled with the SET statement by setting
them to ON or 1, or disabled by setting them to OFF or 0. However, to set such
a variable on the command line or in an option file, you must set it to 1 or 0;
setting it to ON or OFF will not work. For example, on the command line, --
delay_key_write=1 works but --delay_key_write=ON does not.

To display system variable names and values, use the SHOW VARIABLES statement:

mysql> SHOW VARIABLES;
+---------------------------------+-----------------------------------+
| Variable_name | Value |
+---------------------------------+-----------------------------------+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	/home/mysql/
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/home/mysql/share/mysql/charsets/
collation_connection	latin1_swedish_ci
collation_database	latin1_swedish_ci
collation_server	latin1_swedish_ci
...	
innodb_autoextend_increment	8
innodb_buffer_pool_size	8388608
innodb_checksums	ON
innodb_commit_concurrency	0
innodb_concurrency_tickets	500
innodb_data_file_path	ibdata1:10M:autoextend
innodb_data_home_dir	
...	
version	5.1.6-alpha-log
version_comment	Source distribution
version_compile_machine	i686
version_compile_os	suse-linux
wait_timeout	28800
+---------------------------------+-----------------------------------+

Using System Variables

709

With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a
specific variable name, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because “_” is a wildcard that matches any single character, you should escape it as “_” to match it
literally. In practice, this is rarely necessary.

For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION values.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when
retrieving them is to prevent problems in the future. If we were to remove a SESSION variable that has
the same name as a GLOBAL variable, a client with the SUPER privilege might accidentally change the
GLOBAL variable rather than just the SESSION variable for its own connection. If we add a SESSION
variable with the same name as a GLOBAL variable, a client that intends to change the GLOBAL variable
might find only its own SESSION variable changed.

5.1.5.1 Structured System Variables

A structured variable differs from a regular system variable in two respects:

• Its value is a structure with components that specify server parameters considered to be closely
related.

• There might be several instances of a given type of structured variable. Each one has a different
name and refers to a different resource maintained by the server.

MySQL supports one structured variable type, which specifies parameters governing the operation of
key caches. A key cache structured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

This section describes the syntax for referring to structured variables. Key cache variables are used
for syntax examples, but specific details about how key caches operate are found elsewhere, in
Section 8.10.2, “The MyISAM Key Cache”.

To refer to a component of a structured variable instance, you can use a compound name in
instance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If
you refer to a component of a structured variable without any instance name, the default instance
is used. Thus, default.key_buffer_size and key_buffer_size both refer to the same system
variable.

Structured variable instances and components follow these naming rules:

Using System Variables

710

• For a given type of structured variable, each instance must have a name that is unique within
variables of that type. However, instance names need not be unique across structured variable
types. For example, each structured variable has an instance named default, so default is not
unique across variable types.

• The names of the components of each structured variable type must be unique across all system
variable names. If this were not true (that is, if two different types of structured variables could
share component member names), it would not be clear which default structured variable to use for
references to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted
identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.

• global, session, and local are not legal instance names. This avoids a conflict with notation
such as @@global.var_name for referring to nonstructured system variables.

Currently, the first two rules have no possibility of being violated because the only structured variable
type is the one for key caches. These rules will assume greater significance if some other type of
structured variable is created in the future.

With one exception, you can refer to structured variable components using compound names in any
context where simple variable names can occur. For example, you can assign a value to a structured
variable using a command-line option:

shell> mysqld --hot_cache.key_buffer_size=64K

In an option file, use this syntax:

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in
addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

shell> mysqld --key_buffer_size=256K \
 --extra_cache.key_buffer_size=128K \
 --extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written
--default.key_buffer_size=256K.) In addition, the server creates a second key cache named
extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks
set to 2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

shell> mysqld --key_buffer_size=6M \
 --hot_cache.key_buffer_size=2M \
 --cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache
named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@global.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@global.hot_cache.key_buffer_size;

Using System Variables

711

However, the following statement does not work. The variable is not interpreted as a compound name,
but as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable name
may occur.

5.1.5.2 Dynamic System Variables

Many server system variables are dynamic and can be set at runtime using SET GLOBAL or SET
SESSION. You can also obtain their values using SELECT. See Section 5.1.5, “Using System
Variables”.

The following table shows the full list of all dynamic system variables. The last column indicates for
each variable whether GLOBAL or SESSION (or both) apply. The table also lists session options that
can be set with the SET statement. Section 5.1.4, “Server System Variables”, discusses these options.

Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take
a numeric value. Variables that have a type of “boolean” can be set to 0, 1, ON or OFF. (If you set
them on the command line or in an option file, use the numeric values.) Variables that are marked
as “enumeration” normally should be set to one of the available values for the variable, but can also
be set to the number that corresponds to the desired enumeration value. For enumerated system
variables, the first enumeration value corresponds to 0. This differs from ENUM columns, for which the
first enumeration value corresponds to 1.

Table 5.3 Dynamic Variable Summary

Variable Name Variable Type Variable Scope

audit_log_connection_policy enumeration GLOBAL

audit_log_exclude_accounts string GLOBAL

audit_log_flush boolean GLOBAL

audit_log_include_accounts string GLOBAL

audit_log_rotate_on_size integer GLOBAL

audit_log_statement_policy enumeration GLOBAL

auto_increment_increment integer GLOBAL | SESSION

auto_increment_offset integer GLOBAL | SESSION

autocommit boolean GLOBAL | SESSION

automatic_sp_privileges boolean GLOBAL

avoid_temporal_upgrade boolean GLOBAL

big_tables boolean GLOBAL | SESSION

binlog_cache_size integer GLOBAL

binlog_checksum string GLOBAL

binlog_direct_non_transactional_updatesboolean GLOBAL | SESSION

binlog_error_action enumeration GLOBAL | SESSION

binlog_format enumeration GLOBAL | SESSION

binlog_group_commit_sync_delay integer GLOBAL

binlog_group_commit_sync_no_delay_countinteger GLOBAL

binlog_max_flush_queue_time integer GLOBAL

binlog_order_commits boolean GLOBAL

binlog_row_image=image_type enumeration GLOBAL | SESSION

Using System Variables

712

Variable Name Variable Type Variable Scope

binlog_rows_query_log_events boolean GLOBAL | SESSION

binlog_stmt_cache_size integer GLOBAL

binlogging_impossible_mode enumeration GLOBAL | SESSION

block_encryption_mode string GLOBAL | SESSION

bulk_insert_buffer_size integer GLOBAL | SESSION

character_set_client string GLOBAL | SESSION

character_set_connection string GLOBAL | SESSION

character_set_database string GLOBAL | SESSION

character_set_filesystem string GLOBAL | SESSION

character_set_results string GLOBAL | SESSION

character_set_server string GLOBAL | SESSION

check_proxy_users boolean GLOBAL

collation_connection string GLOBAL | SESSION

collation_database string GLOBAL | SESSION

collation_server string GLOBAL | SESSION

completion_type enumeration GLOBAL | SESSION

concurrent_insert enumeration GLOBAL

connect_timeout integer GLOBAL

debug string GLOBAL | SESSION

debug_sync string SESSION

default_password_lifetime integer GLOBAL

default_storage_engine enumeration GLOBAL | SESSION

default_tmp_storage_engine enumeration GLOBAL | SESSION

default_week_format integer GLOBAL | SESSION

delay_key_write enumeration GLOBAL

delayed_insert_limit integer GLOBAL

delayed_insert_timeout integer GLOBAL

delayed_queue_size integer GLOBAL

div_precision_increment integer GLOBAL | SESSION

end_markers_in_json boolean GLOBAL | SESSION

enforce_gtid_consistency enumeration GLOBAL

enforce_gtid_consistency enumeration GLOBAL

eq_range_index_dive_limit integer GLOBAL | SESSION

event_scheduler enumeration GLOBAL

executed_gtids_compression_period integer GLOBAL

expire_logs_days integer GLOBAL

flush boolean GLOBAL

flush_time integer GLOBAL

foreign_key_checks boolean GLOBAL | SESSION

ft_boolean_syntax string GLOBAL

general_log boolean GLOBAL

Using System Variables

713

Variable Name Variable Type Variable Scope

general_log_file filename GLOBAL

group_concat_max_len integer GLOBAL | SESSION

gtid_executed_compression_period integer GLOBAL

gtid_mode enumeration GLOBAL

gtid_mode enumeration GLOBAL

gtid_next enumeration SESSION

gtid_purged string GLOBAL

host_cache_size integer GLOBAL

identity integer SESSION

init_connect string GLOBAL

init_slave string GLOBAL

innodb_adaptive_flushing boolean GLOBAL

innodb_adaptive_flushing_lwm integer GLOBAL

innodb_adaptive_hash_index boolean GLOBAL

innodb_adaptive_max_sleep_delay integer GLOBAL

innodb_api_bk_commit_interval integer GLOBAL

innodb_api_trx_level integer GLOBAL

innodb_autoextend_increment integer GLOBAL

innodb_background_drop_list_empty boolean GLOBAL

innodb_buffer_pool_dump_at_shutdown boolean GLOBAL

innodb_buffer_pool_dump_now boolean GLOBAL

innodb_buffer_pool_dump_pct integer GLOBAL

innodb_buffer_pool_filename filename GLOBAL

innodb_buffer_pool_load_abort boolean GLOBAL

innodb_buffer_pool_load_now boolean GLOBAL

innodb_buffer_pool_size integer GLOBAL

innodb_change_buffer_max_size integer GLOBAL

innodb_change_buffering enumeration GLOBAL

innodb_change_buffering_debug integer GLOBAL

innodb_checksum_algorithm enumeration GLOBAL

innodb_cmp_per_index_enabled boolean GLOBAL

innodb_commit_concurrency integer GLOBAL

innodb_compress_debug enumeration GLOBAL

innodb_compression_failure_threshold_pctinteger GLOBAL

innodb_compression_level integer GLOBAL

innodb_compression_pad_pct_max integer GLOBAL

innodb_concurrency_tickets integer GLOBAL

innodb_create_intrinsic boolean SESSION

innodb_default_row_format enumeration GLOBAL

innodb_disable_resize_buffer_pool_debugboolean GLOBAL

innodb_disable_sort_file_cache boolean GLOBAL

Using System Variables

714

Variable Name Variable Type Variable Scope

innodb_fast_shutdown integer GLOBAL

innodb_fil_make_page_dirty_debug integer GLOBAL

innodb_file_format string GLOBAL

innodb_file_format_max string GLOBAL

innodb_file_per_table boolean GLOBAL

innodb_fill_factor integer GLOBAL

innodb_flush_log_at_timeout integer GLOBAL

innodb_flush_log_at_trx_commit enumeration GLOBAL

innodb_flush_neighbors enumeration GLOBAL

innodb_flush_sync boolean GLOBAL

innodb_flushing_avg_loops integer GLOBAL

innodb_ft_aux_table string GLOBAL

innodb_ft_enable_diag_print boolean GLOBAL

innodb_ft_enable_stopword boolean GLOBAL

innodb_ft_num_word_optimize integer GLOBAL

innodb_ft_result_cache_limit integer GLOBAL

innodb_ft_server_stopword_table string GLOBAL

innodb_ft_user_stopword_table string GLOBAL | SESSION

innodb_io_capacity integer GLOBAL

innodb_io_capacity_max integer GLOBAL

innodb_large_prefix boolean GLOBAL

innodb_limit_optimistic_insert_debug integer GLOBAL

innodb_lock_wait_timeout integer GLOBAL | SESSION

innodb_log_checksum_algorithm enumeration GLOBAL

innodb_log_checksums boolean GLOBAL

innodb_log_compressed_pages boolean GLOBAL

innodb_log_write_ahead_size integer GLOBAL

innodb_lru_scan_depth integer GLOBAL

innodb_max_dirty_pages_pct numeric GLOBAL

innodb_max_dirty_pages_pct_lwm numeric GLOBAL

innodb_max_purge_lag integer GLOBAL

innodb_max_purge_lag_delay integer GLOBAL

innodb_max_undo_log_size integer GLOBAL

innodb_merge_threshold_set_all_debug integer GLOBAL

innodb_monitor_disable string GLOBAL

innodb_monitor_enable string GLOBAL

innodb_monitor_reset string GLOBAL

innodb_monitor_reset_all string GLOBAL

innodb_old_blocks_pct integer GLOBAL

innodb_old_blocks_time integer GLOBAL

innodb_online_alter_log_max_size integer GLOBAL

Using System Variables

715

Variable Name Variable Type Variable Scope

innodb_optimize_fulltext_only boolean GLOBAL

innodb_optimize_point_storage boolean SESSION

innodb_print_all_deadlocks boolean GLOBAL

innodb_purge_batch_size integer GLOBAL

innodb_purge_rseg_truncate_frequency integer GLOBAL

innodb_random_read_ahead boolean GLOBAL

innodb_read_ahead_threshold integer GLOBAL

innodb_replication_delay integer GLOBAL

innodb_rollback_segments integer GLOBAL

innodb_saved_page_number_debug integer GLOBAL

innodb_spin_wait_delay integer GLOBAL

innodb_stats_auto_recalc boolean GLOBAL

innodb_stats_method enumeration GLOBAL

innodb_stats_on_metadata boolean GLOBAL

innodb_stats_persistent boolean GLOBAL

innodb_stats_persistent_sample_pages integer GLOBAL

innodb_stats_sample_pages integer GLOBAL

innodb_stats_transient_sample_pages integer GLOBAL

innodb_status_output boolean GLOBAL

innodb_status_output_locks boolean GLOBAL

innodb_strict_mode boolean GLOBAL | SESSION

innodb_support_xa boolean GLOBAL | SESSION

innodb_sync_spin_loops integer GLOBAL

innodb_table_locks boolean GLOBAL | SESSION

innodb_thread_concurrency integer GLOBAL

innodb_thread_sleep_delay integer GLOBAL

innodb_tmpdir dirname SESSION

innodb_trx_purge_view_update_only_debugboolean GLOBAL

innodb_trx_rseg_n_slots_debug integer GLOBAL

innodb_undo_log_truncate boolean GLOBAL

innodb_undo_logs integer GLOBAL

insert_id integer SESSION

interactive_timeout integer GLOBAL | SESSION

internal_tmp_disk_storage_engine enumeration GLOBAL

join_buffer_size integer GLOBAL | SESSION

keep_files_on_create boolean GLOBAL | SESSION

key_buffer_size integer GLOBAL

key_cache_age_threshold integer GLOBAL

key_cache_block_size integer GLOBAL

key_cache_division_limit integer GLOBAL

last_insert_id integer SESSION

Using System Variables

716

Variable Name Variable Type Variable Scope

lc_messages string GLOBAL | SESSION

lc_time_names string GLOBAL | SESSION

local_infile boolean GLOBAL

lock_wait_timeout integer GLOBAL | SESSION

log_backward_compatible_user_definitionsboolean GLOBAL

log_bin_trust_function_creators boolean GLOBAL

log_builtin_as_identified_by_password boolean GLOBAL

log_error_verbosity integer GLOBAL

log_output set GLOBAL

log_queries_not_using_indexes boolean GLOBAL

log_slow_admin_statements boolean GLOBAL

log_slow_slave_statements boolean GLOBAL

log_syslog boolean GLOBAL

log_syslog_facility string GLOBAL

log_syslog_include_pid boolean GLOBAL

log_syslog_tag string GLOBAL

log_throttle_queries_not_using_indexesinteger GLOBAL

log_timestamps enumeration GLOBAL

log_warnings integer GLOBAL

long_query_time numeric GLOBAL | SESSION

low_priority_updates boolean GLOBAL | SESSION

master_info_repository string GLOBAL

master_verify_checksum boolean GLOBAL

max_allowed_packet integer GLOBAL | SESSION

max_binlog_cache_size integer GLOBAL

max_binlog_size integer GLOBAL

max_binlog_stmt_cache_size integer GLOBAL

max_connect_errors integer GLOBAL

max_connections integer GLOBAL

max_delayed_threads integer GLOBAL | SESSION

max_error_count integer GLOBAL | SESSION

max_execution_time integer GLOBAL | SESSION

max_heap_table_size integer GLOBAL | SESSION

max_insert_delayed_threads integer GLOBAL | SESSION

max_join_size integer GLOBAL | SESSION

max_length_for_sort_data integer GLOBAL | SESSION

max_points_in_geometry integer GLOBAL

max_prepared_stmt_count integer GLOBAL

max_relay_log_size integer GLOBAL

max_seeks_for_key integer GLOBAL | SESSION

max_sort_length integer GLOBAL | SESSION

Using System Variables

717

Variable Name Variable Type Variable Scope

max_sp_recursion_depth integer GLOBAL | SESSION

max_statement_time integer GLOBAL | SESSION

max_tmp_tables integer GLOBAL | SESSION

max_user_connections integer GLOBAL | SESSION

max_write_lock_count integer GLOBAL

min_examined_row_limit integer GLOBAL | SESSION

multi_range_count integer GLOBAL | SESSION

myisam_data_pointer_size integer GLOBAL

myisam_max_sort_file_size integer GLOBAL

myisam_repair_threads integer GLOBAL | SESSION

myisam_sort_buffer_size integer GLOBAL | SESSION

myisam_stats_method enumeration GLOBAL | SESSION

myisam_use_mmap boolean GLOBAL

mysql_firewall_mode boolean GLOBAL

mysql_firewall_trace boolean GLOBAL

mysql_native_password_proxy_users boolean GLOBAL

ndb-allow-copying-alter-table boolean GLOBAL | SESSION

ndb_autoincrement_prefetch_sz integer GLOBAL | SESSION

ndb_blob_read_batch_bytes integer GLOBAL | SESSION

ndb_blob_write_batch_bytes integer GLOBAL | SESSION

ndb_cache_check_time integer GLOBAL

ndb_clear_apply_status boolean GLOBAL

ndb_deferred_constraints integer GLOBAL | SESSION

ndb_deferred_constraints integer GLOBAL | SESSION

ndb_distribution enumeration GLOBAL

ndb_distribution={KEYHASH|LINHASH} enumeration GLOBAL

ndb_eventbuffer_free_percent integer GLOBAL

ndb_eventbuffer_max_alloc integer GLOBAL

ndb_extra_logging integer GLOBAL

ndb_force_send boolean GLOBAL | SESSION

ndb_index_stat_enable boolean GLOBAL | SESSION

ndb_index_stat_option string GLOBAL | SESSION

ndb_join_pushdown boolean GLOBAL | SESSION

ndb_log_bin boolean GLOBAL | SESSION

ndb_log_binlog_index boolean GLOBAL

ndb_log_empty_epochs boolean GLOBAL

ndb_log_empty_epochs boolean GLOBAL

ndb_log_exclusive_reads boolean GLOBAL | SESSION

ndb_log_exclusive_reads boolean GLOBAL | SESSION

ndb_log_updated_only boolean GLOBAL

ndb_optimization_delay integer GLOBAL

Using System Variables

718

Variable Name Variable Type Variable Scope

ndb_recv_thread_cpu_mask bitmap GLOBAL

ndb_show_foreign_key_mock_tables boolean GLOBAL

ndb_slave_last_conflict_epoch enumeration GLOBAL

ndb_table_no_logging boolean SESSION

ndb_table_temporary boolean SESSION

ndb_use_exact_count boolean GLOBAL | SESSION

ndb_use_transactions boolean GLOBAL | SESSION

ndbinfo_max_bytes integer GLOBAL | SESSION

ndbinfo_max_rows integer GLOBAL | SESSION

ndbinfo_offline boolean GLOBAL

ndbinfo_show_hidden boolean GLOBAL | SESSION

ndbinfo_table_prefix string GLOBAL | SESSION

net_buffer_length integer GLOBAL | SESSION

net_read_timeout integer GLOBAL | SESSION

net_retry_count integer GLOBAL | SESSION

net_write_timeout integer GLOBAL | SESSION

new boolean GLOBAL | SESSION

offline_mode boolean GLOBAL

old_alter_table boolean GLOBAL | SESSION

old_passwords enumeration GLOBAL | SESSION

optimizer_prune_level boolean GLOBAL | SESSION

optimizer_search_depth integer GLOBAL | SESSION

optimizer_switch set GLOBAL | SESSION

optimizer_trace string GLOBAL | SESSION

optimizer_trace_features string GLOBAL | SESSION

optimizer_trace_limit integer GLOBAL | SESSION

optimizer_trace_max_mem_size integer GLOBAL | SESSION

optimizer_trace_offset integer GLOBAL | SESSION

preload_buffer_size integer GLOBAL | SESSION

profiling boolean GLOBAL | SESSION

profiling_history_size integer GLOBAL | SESSION

pseudo_slave_mode integer SESSION

pseudo_thread_id integer SESSION

query_alloc_block_size integer GLOBAL | SESSION

query_cache_limit integer GLOBAL

query_cache_min_res_unit integer GLOBAL

query_cache_size integer GLOBAL

query_cache_type enumeration GLOBAL | SESSION

query_cache_wlock_invalidate boolean GLOBAL | SESSION

query_prealloc_size integer GLOBAL | SESSION

rand_seed1 integer SESSION

Using System Variables

719

Variable Name Variable Type Variable Scope

rand_seed2 integer SESSION

range_alloc_block_size integer GLOBAL | SESSION

range_optimizer_max_mem_size integer GLOBAL | SESSION

rbr_exec_mode enumeration SESSION

read_buffer_size integer GLOBAL | SESSION

read_only boolean GLOBAL

read_rnd_buffer_size integer GLOBAL | SESSION

relay_log_info_repository string GLOBAL

relay_log_purge boolean GLOBAL

require_secure_transport boolean GLOBAL

rewriter_enabled boolean GLOBAL

rewriter_verbose integer GLOBAL

rpl_semi_sync_master_enabled boolean GLOBAL

rpl_semi_sync_master_timeout integer GLOBAL

rpl_semi_sync_master_trace_level integer GLOBAL

rpl_semi_sync_master_wait_for_slave_countinteger GLOBAL

rpl_semi_sync_master_wait_no_slave boolean GLOBAL

rpl_semi_sync_master_wait_point enumeration GLOBAL

rpl_semi_sync_slave_enabled boolean GLOBAL

rpl_semi_sync_slave_trace_level integer GLOBAL

rpl_stop_slave_timeout integer GLOBAL

secure_auth boolean GLOBAL

server_id [2426] integer GLOBAL

session_track_gtids enumeration GLOBAL | SESSION

session_track_schema boolean GLOBAL | SESSION

session_track_state_change boolean GLOBAL | SESSION

session_track_system_variables string GLOBAL | SESSION

sha256_password_proxy_users boolean GLOBAL

show_compatibility_56 boolean GLOBAL

show_old_temporals boolean GLOBAL | SESSION

slave_allow_batching boolean GLOBAL

slave_checkpoint_group=# integer GLOBAL

slave_checkpoint_period=# integer GLOBAL

slave_compressed_protocol boolean GLOBAL

slave_exec_mode enumeration GLOBAL

slave_max_allowed_packet integer GLOBAL

slave_net_timeout integer GLOBAL

slave_parallel_type enumeration GLOBAL

slave_parallel_workers integer GLOBAL

slave_pending_jobs_size_max integer GLOBAL

slave_preserve_commit_order boolean GLOBAL

Using System Variables

720

Variable Name Variable Type Variable Scope

slave_rows_search_algorithms=list set GLOBAL

slave_sql_verify_checksum boolean GLOBAL

slave_transaction_retries integer GLOBAL

slow_launch_time integer GLOBAL

slow_query_log boolean GLOBAL

slow_query_log_file filename GLOBAL

sort_buffer_size integer GLOBAL | SESSION

sql_auto_is_null boolean GLOBAL | SESSION

sql_big_selects boolean GLOBAL | SESSION

sql_buffer_result boolean GLOBAL | SESSION

sql_log_bin boolean SESSION

sql_log_off boolean GLOBAL | SESSION

sql_mode set GLOBAL | SESSION

sql_notes boolean GLOBAL | SESSION

sql_quote_show_create boolean GLOBAL | SESSION

sql_safe_updates boolean GLOBAL | SESSION

sql_select_limit integer GLOBAL | SESSION

sql_slave_skip_counter integer GLOBAL

sql_warnings boolean GLOBAL | SESSION

storage_engine enumeration GLOBAL | SESSION

stored_program_cache integer GLOBAL

super_read_only boolean GLOBAL

sync_binlog integer GLOBAL

sync_frm boolean GLOBAL

sync_master_info integer GLOBAL

sync_relay_log integer GLOBAL

sync_relay_log_info integer GLOBAL

table_definition_cache integer GLOBAL

table_open_cache integer GLOBAL

thread_cache_size integer GLOBAL

time_zone string GLOBAL | SESSION

timed_mutexes boolean GLOBAL

timestamp numeric SESSION

tmp_table_size integer GLOBAL | SESSION

transaction_alloc_block_size integer GLOBAL | SESSION

transaction_allow_batching boolean SESSION

transaction_prealloc_size integer GLOBAL | SESSION

transaction_write_set_extraction enumeration GLOBAL | SESSION

tx_isolation enumeration GLOBAL | SESSION

tx_read_only boolean GLOBAL | SESSION

unique_checks boolean GLOBAL | SESSION

Server Status Variables

721

Variable Name Variable Type Variable Scope

updatable_views_with_limit boolean GLOBAL | SESSION

validate_password_dictionary_file filename GLOBAL

validate_password_length integer GLOBAL

validate_password_mixed_case_count integer GLOBAL

validate_password_number_count integer GLOBAL

validate_password_policy enumeration GLOBAL

validate_password_special_char_count integer GLOBAL

version_tokens_session string GLOBAL | SESSION

wait_timeout integer GLOBAL | SESSION

5.1.6 Server Status Variables

The MySQL server maintains many status variables that provide information about its operation.
You can view these variables and their values by using the SHOW [GLOBAL | SESSION] STATUS
statement (see Section 13.7.5.35, “SHOW STATUS Syntax”). The optional GLOBAL keyword
aggregates the values over all connections, and SESSION shows the values for the current connection.

mysql> SHOW GLOBAL STATUS;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
...	
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_files	3
Created_tmp_tables	2
...	
Threads_created	217
Threads_running	88
Uptime	1389872
+-----------------------------------+------------+

Many status variables are reset to 0 by the FLUSH STATUS statement.

The following table lists all available server status variables:

Table 5.4 Status Variable Summary

Variable Name Variable Type Variable Scope

Aborted_clients integer GLOBAL

Aborted_connects integer GLOBAL

Audit_log_current_size integer GLOBAL

Audit_log_event_max_drop_size integer GLOBAL

Audit_log_events integer GLOBAL

Audit_log_events_filtered integer GLOBAL

Audit_log_events_lost integer GLOBAL

Audit_log_events_written integer GLOBAL

Audit_log_total_size integer GLOBAL

Audit_log_write_waits integer GLOBAL

Server Status Variables

722

Variable Name Variable Type Variable Scope

Binlog_cache_disk_use integer GLOBAL

Binlog_cache_use integer GLOBAL

Binlog_stmt_cache_disk_use integer GLOBAL

Binlog_stmt_cache_use integer GLOBAL

Bytes_received integer GLOBAL | SESSION

Bytes_sent integer GLOBAL | SESSION

Com_admin_commands integer GLOBAL | SESSION

Com_alter_db integer GLOBAL | SESSION

Com_alter_db_upgrade integer GLOBAL | SESSION

Com_alter_event integer GLOBAL | SESSION

Com_alter_function integer GLOBAL | SESSION

Com_alter_procedure integer GLOBAL | SESSION

Com_alter_server integer GLOBAL | SESSION

Com_alter_table integer GLOBAL | SESSION

Com_alter_tablespace integer GLOBAL | SESSION

Com_alter_user integer GLOBAL | SESSION

Com_analyze integer GLOBAL | SESSION

Com_assign_to_keycache integer GLOBAL | SESSION

Com_begin integer GLOBAL | SESSION

Com_binlog integer GLOBAL | SESSION

Com_call_procedure integer GLOBAL | SESSION

Com_change_db integer GLOBAL | SESSION

Com_change_master integer GLOBAL | SESSION

Com_change_repl_filter integer GLOBAL | SESSION

Com_check integer GLOBAL | SESSION

Com_checksum integer GLOBAL | SESSION

Com_commit integer GLOBAL | SESSION

Com_create_db integer GLOBAL | SESSION

Com_create_event integer GLOBAL | SESSION

Com_create_function integer GLOBAL | SESSION

Com_create_index integer GLOBAL | SESSION

Com_create_procedure integer GLOBAL | SESSION

Com_create_server integer GLOBAL | SESSION

Com_create_table integer GLOBAL | SESSION

Com_create_trigger integer GLOBAL | SESSION

Com_create_udf integer GLOBAL | SESSION

Com_create_user integer GLOBAL | SESSION

Com_create_view integer GLOBAL | SESSION

Com_dealloc_sql integer GLOBAL | SESSION

Com_delete integer GLOBAL | SESSION

Com_delete_multi integer GLOBAL | SESSION

Server Status Variables

723

Variable Name Variable Type Variable Scope

Com_do integer GLOBAL | SESSION

Com_drop_db integer GLOBAL | SESSION

Com_drop_event integer GLOBAL | SESSION

Com_drop_function integer GLOBAL | SESSION

Com_drop_index integer GLOBAL | SESSION

Com_drop_procedure integer GLOBAL | SESSION

Com_drop_server integer GLOBAL | SESSION

Com_drop_table integer GLOBAL | SESSION

Com_drop_trigger integer GLOBAL | SESSION

Com_drop_user integer GLOBAL | SESSION

Com_drop_view integer GLOBAL | SESSION

Com_empty_query integer GLOBAL | SESSION

Com_execute_sql integer GLOBAL | SESSION

Com_explain_other integer GLOBAL | SESSION

Com_flush integer GLOBAL | SESSION

Com_get_diagnostics integer GLOBAL | SESSION

Com_grant integer GLOBAL | SESSION

Com_ha_close integer GLOBAL | SESSION

Com_ha_open integer GLOBAL | SESSION

Com_ha_read integer GLOBAL | SESSION

Com_help integer GLOBAL | SESSION

Com_insert integer GLOBAL | SESSION

Com_insert_select integer GLOBAL | SESSION

Com_install_plugin integer GLOBAL | SESSION

Com_kill integer GLOBAL | SESSION

Com_load integer GLOBAL | SESSION

Com_lock_tables integer GLOBAL | SESSION

Com_optimize integer GLOBAL | SESSION

Com_preload_keys integer GLOBAL | SESSION

Com_prepare_sql integer GLOBAL | SESSION

Com_purge integer GLOBAL | SESSION

Com_purge_before_date integer GLOBAL | SESSION

Com_release_savepoint integer GLOBAL | SESSION

Com_rename_table integer GLOBAL | SESSION

Com_rename_user integer GLOBAL | SESSION

Com_repair integer GLOBAL | SESSION

Com_replace integer GLOBAL | SESSION

Com_replace_select integer GLOBAL | SESSION

Com_reset integer GLOBAL | SESSION

Com_resignal integer GLOBAL | SESSION

Com_revoke integer GLOBAL | SESSION

Server Status Variables

724

Variable Name Variable Type Variable Scope

Com_revoke_all integer GLOBAL | SESSION

Com_rollback integer GLOBAL | SESSION

Com_rollback_to_savepoint integer GLOBAL | SESSION

Com_savepoint integer GLOBAL | SESSION

Com_select integer GLOBAL | SESSION

Com_set_option integer GLOBAL | SESSION

Com_show_authors integer GLOBAL | SESSION

Com_show_binlog_events integer GLOBAL | SESSION

Com_show_binlogs integer GLOBAL | SESSION

Com_show_charsets integer GLOBAL | SESSION

Com_show_collations integer GLOBAL | SESSION

Com_show_contributors integer GLOBAL | SESSION

Com_show_create_db integer GLOBAL | SESSION

Com_show_create_event integer GLOBAL | SESSION

Com_show_create_func integer GLOBAL | SESSION

Com_show_create_proc integer GLOBAL | SESSION

Com_show_create_table integer GLOBAL | SESSION

Com_show_create_trigger integer GLOBAL | SESSION

Com_show_create_user integer GLOBAL | SESSION

Com_show_databases integer GLOBAL | SESSION

Com_show_engine_logs integer GLOBAL | SESSION

Com_show_engine_mutex integer GLOBAL | SESSION

Com_show_engine_status integer GLOBAL | SESSION

Com_show_errors integer GLOBAL | SESSION

Com_show_events integer GLOBAL | SESSION

Com_show_fields integer GLOBAL | SESSION

Com_show_function_code integer GLOBAL | SESSION

Com_show_function_status integer GLOBAL | SESSION

Com_show_grants integer GLOBAL | SESSION

Com_show_keys integer GLOBAL | SESSION

Com_show_master_status integer GLOBAL | SESSION

Com_show_ndb_status integer GLOBAL | SESSION

Com_show_new_master integer GLOBAL | SESSION

Com_show_open_tables integer GLOBAL | SESSION

Com_show_plugins integer GLOBAL | SESSION

Com_show_privileges integer GLOBAL | SESSION

Com_show_procedure_code integer GLOBAL | SESSION

Com_show_procedure_status integer GLOBAL | SESSION

Com_show_processlist integer GLOBAL | SESSION

Com_show_profile integer GLOBAL | SESSION

Com_show_profiles integer GLOBAL | SESSION

Server Status Variables

725

Variable Name Variable Type Variable Scope

Com_show_relaylog_events integer GLOBAL | SESSION

Com_show_slave_hosts integer GLOBAL | SESSION

Com_show_slave_status integer GLOBAL | SESSION

Com_show_slave_status_nonblocking integer GLOBAL | SESSION

Com_show_status integer GLOBAL | SESSION

Com_show_storage_engines integer GLOBAL | SESSION

Com_show_table_status integer GLOBAL | SESSION

Com_show_tables integer GLOBAL | SESSION

Com_show_triggers integer GLOBAL | SESSION

Com_show_variables integer GLOBAL | SESSION

Com_show_warnings integer GLOBAL | SESSION

Com_shutdown integer GLOBAL | SESSION

Com_signal integer GLOBAL | SESSION

Com_slave_start integer GLOBAL | SESSION

Com_slave_stop integer GLOBAL | SESSION

Com_stmt_close integer GLOBAL | SESSION

Com_stmt_execute integer GLOBAL | SESSION

Com_stmt_fetch integer GLOBAL | SESSION

Com_stmt_prepare integer GLOBAL | SESSION

Com_stmt_reprepare integer GLOBAL | SESSION

Com_stmt_reset integer GLOBAL | SESSION

Com_stmt_send_long_data integer GLOBAL | SESSION

Com_truncate integer GLOBAL | SESSION

Com_uninstall_plugin integer GLOBAL | SESSION

Com_unlock_tables integer GLOBAL | SESSION

Com_update integer GLOBAL | SESSION

Com_update_multi integer GLOBAL | SESSION

Com_xa_commit integer GLOBAL | SESSION

Com_xa_end integer GLOBAL | SESSION

Com_xa_prepare integer GLOBAL | SESSION

Com_xa_recover integer GLOBAL | SESSION

Com_xa_rollback integer GLOBAL | SESSION

Com_xa_start integer GLOBAL | SESSION

Compression integer SESSION

Connection_errors_accept integer GLOBAL

Connection_errors_internal integer GLOBAL

Connection_errors_max_connections integer GLOBAL

Connection_errors_peer_addr integer GLOBAL

Connection_errors_select integer GLOBAL

Connection_errors_tcpwrap integer GLOBAL

Connections integer GLOBAL

Server Status Variables

726

Variable Name Variable Type Variable Scope

Created_tmp_disk_tables integer GLOBAL | SESSION

Created_tmp_files integer GLOBAL

Created_tmp_tables integer GLOBAL | SESSION

Delayed_errors integer GLOBAL

Delayed_insert_threads integer GLOBAL

Delayed_writes integer GLOBAL

Firewall_access_denied integer GLOBAL

Firewall_access_granted integer GLOBAL

Firewall_cached_entries integer GLOBAL

Flush_commands integer GLOBAL

Handler_commit integer GLOBAL | SESSION

Handler_delete integer GLOBAL | SESSION

Handler_discover integer GLOBAL | SESSION

Handler_external_lock integer GLOBAL | SESSION

Handler_mrr_init integer GLOBAL | SESSION

Handler_prepare integer GLOBAL | SESSION

Handler_read_first integer GLOBAL | SESSION

Handler_read_key integer GLOBAL | SESSION

Handler_read_last integer GLOBAL | SESSION

Handler_read_next integer GLOBAL | SESSION

Handler_read_prev integer GLOBAL | SESSION

Handler_read_rnd integer GLOBAL | SESSION

Handler_read_rnd_next integer GLOBAL | SESSION

Handler_rollback integer GLOBAL | SESSION

Handler_savepoint integer GLOBAL | SESSION

Handler_savepoint_rollback integer GLOBAL | SESSION

Handler_update integer GLOBAL | SESSION

Handler_write integer GLOBAL | SESSION

Innodb_available_undo_logs integer GLOBAL

Innodb_buffer_pool_bytes_data integer GLOBAL

Innodb_buffer_pool_bytes_dirty integer GLOBAL

Innodb_buffer_pool_dump_status string GLOBAL

Innodb_buffer_pool_load_status string GLOBAL

Innodb_buffer_pool_pages_data integer GLOBAL

Innodb_buffer_pool_pages_dirty integer GLOBAL

Innodb_buffer_pool_pages_flushed integer GLOBAL

Innodb_buffer_pool_pages_free integer GLOBAL

Innodb_buffer_pool_pages_latched integer GLOBAL

Innodb_buffer_pool_pages_misc integer GLOBAL

Innodb_buffer_pool_pages_total integer GLOBAL

Innodb_buffer_pool_read_ahead integer GLOBAL

Server Status Variables

727

Variable Name Variable Type Variable Scope

Innodb_buffer_pool_read_ahead_evicted integer GLOBAL

Innodb_buffer_pool_read_requests integer GLOBAL

Innodb_buffer_pool_reads integer GLOBAL

Innodb_buffer_pool_resize_status string GLOBAL

Innodb_buffer_pool_wait_free integer GLOBAL

Innodb_buffer_pool_write_requests integer GLOBAL

Innodb_data_fsyncs integer GLOBAL

Innodb_data_pending_fsyncs integer GLOBAL

Innodb_data_pending_reads integer GLOBAL

Innodb_data_pending_writes integer GLOBAL

Innodb_data_read integer GLOBAL

Innodb_data_reads integer GLOBAL

Innodb_data_writes integer GLOBAL

Innodb_data_written integer GLOBAL

Innodb_dblwr_pages_written integer GLOBAL

Innodb_dblwr_writes integer GLOBAL

Innodb_have_atomic_builtins integer GLOBAL

Innodb_log_waits integer GLOBAL

Innodb_log_write_requests integer GLOBAL

Innodb_log_writes integer GLOBAL

Innodb_num_open_files integer GLOBAL

Innodb_os_log_fsyncs integer GLOBAL

Innodb_os_log_pending_fsyncs integer GLOBAL

Innodb_os_log_pending_writes integer GLOBAL

Innodb_os_log_written integer GLOBAL

Innodb_page_size integer GLOBAL

Innodb_pages_created integer GLOBAL

Innodb_pages_read integer GLOBAL

Innodb_pages_written integer GLOBAL

Innodb_row_lock_current_waits integer GLOBAL

Innodb_row_lock_time integer GLOBAL

Innodb_row_lock_time_avg integer GLOBAL

Innodb_row_lock_time_max integer GLOBAL

Innodb_row_lock_waits integer GLOBAL

Innodb_rows_deleted integer GLOBAL

Innodb_rows_inserted integer GLOBAL

Innodb_rows_read integer GLOBAL

Innodb_rows_updated integer GLOBAL

Innodb_truncated_status_writes integer GLOBAL

Key_blocks_not_flushed integer GLOBAL

Key_blocks_unused integer GLOBAL

Server Status Variables

728

Variable Name Variable Type Variable Scope

Key_blocks_used integer GLOBAL

Key_read_requests integer GLOBAL

Key_reads integer GLOBAL

Key_write_requests integer GLOBAL

Key_writes integer GLOBAL

Last_query_cost numeric SESSION

Last_query_partial_plans integer SESSION

Locked_connects integer GLOBAL

Max_execution_time_exceeded integer GLOBAL | SESSION

Max_execution_time_set integer GLOBAL | SESSION

Max_execution_time_set_failed integer GLOBAL | SESSION

Max_statement_time_exceeded integer GLOBAL | SESSION

Max_statement_time_set integer GLOBAL | SESSION

Max_statement_time_set_failed integer GLOBAL | SESSION

Max_used_connections integer GLOBAL

Max_used_connections_time datetime GLOBAL

mecab_charset string GLOBAL

Ndb_api_bytes_received_count integer GLOBAL

Ndb_api_bytes_received_count_session integer SESSION

Ndb_api_bytes_received_count_slave integer GLOBAL

Ndb_api_bytes_sent_count integer GLOBAL

Ndb_api_bytes_sent_count_slave integer GLOBAL

Ndb_api_event_bytes_count_injector integer GLOBAL

Ndb_api_event_data_count_injector integer GLOBAL

Ndb_api_event_nondata_count_injector integer GLOBAL

Ndb_api_pk_op_count integer GLOBAL

Ndb_api_pk_op_count_session integer SESSION

Ndb_api_pk_op_count_slave integer GLOBAL

Ndb_api_pruned_scan_count integer GLOBAL

Ndb_api_pruned_scan_count_session integer SESSION

Ndb_api_range_scan_count_slave integer GLOBAL

Ndb_api_read_row_count integer GLOBAL

Ndb_api_read_row_count_session integer SESSION

Ndb_api_scan_batch_count_slave integer GLOBAL

Ndb_api_table_scan_count integer GLOBAL

Ndb_api_table_scan_count_session integer SESSION

Ndb_api_trans_abort_count integer GLOBAL

Ndb_api_trans_abort_count_session integer SESSION

Ndb_api_trans_abort_count_slave integer GLOBAL

Ndb_api_trans_close_count integer GLOBAL

Ndb_api_trans_close_count_session integer SESSION

Server Status Variables

729

Variable Name Variable Type Variable Scope

Ndb_api_trans_close_count_slave integer GLOBAL

Ndb_api_trans_commit_count integer GLOBAL

Ndb_api_trans_commit_count_session integer SESSION

Ndb_api_trans_commit_count_slave integer GLOBAL

Ndb_api_trans_local_read_row_count_slaveinteger GLOBAL

Ndb_api_trans_start_count integer GLOBAL

Ndb_api_trans_start_count_session integer SESSION

Ndb_api_trans_start_count_slave integer GLOBAL

Ndb_api_uk_op_count integer GLOBAL

Ndb_api_uk_op_count_slave integer GLOBAL

Ndb_api_wait_exec_complete_count integer GLOBAL

Ndb_api_wait_exec_complete_count_sessioninteger SESSION

Ndb_api_wait_exec_complete_count_slaveinteger GLOBAL

Ndb_api_wait_meta_request_count integer GLOBAL

Ndb_api_wait_meta_request_count_sessioninteger SESSION

Ndb_api_wait_nanos_count integer GLOBAL

Ndb_api_wait_nanos_count_session integer SESSION

Ndb_api_wait_nanos_count_slave integer GLOBAL

Ndb_api_wait_scan_result_count integer GLOBAL

Ndb_api_wait_scan_result_count_sessioninteger SESSION

Ndb_api_wait_scan_result_count_slave integer GLOBAL

Ndb_cluster_node_id integer GLOBAL | SESSION

Ndb_config_from_host integer GLOBAL | SESSION

Ndb_config_from_port integer GLOBAL | SESSION

Ndb_conflict_fn_epoch_trans integer GLOBAL

Ndb_conflict_fn_max integer GLOBAL

Ndb_conflict_fn_old integer GLOBAL

Ndb_conflict_trans_detect_iter_count integer GLOBAL

Ndb_conflict_trans_row_reject_count integer GLOBAL

Ndb_last_commit_epoch_server integer GLOBAL

Ndb_last_commit_epoch_session integer SESSION

Ndb_cluster_node_id integer GLOBAL

Ndb_number_of_data_nodes integer GLOBAL

Ndb_pushed_queries_defined integer GLOBAL

Ndb_pushed_queries_executed integer GLOBAL

Ndb_scan_count integer GLOBAL

Not_flushed_delayed_rows integer GLOBAL

Ongoing_anonymous_gtid_violating_transaction_countinteger GLOBAL

Ongoing_anonymous_transaction_count integer GLOBAL

Ongoing_automatic_gtid_violating_transaction_countinteger GLOBAL

Open_files integer GLOBAL

Server Status Variables

730

Variable Name Variable Type Variable Scope

Open_streams integer GLOBAL

Open_table_definitions integer GLOBAL

Open_tables integer GLOBAL | SESSION

Opened_files integer GLOBAL

Opened_table_definitions integer GLOBAL | SESSION

Opened_tables integer GLOBAL | SESSION

Performance_schema_accounts_lost integer GLOBAL

Performance_schema_cond_classes_lost integer GLOBAL

Performance_schema_cond_instances_lostinteger GLOBAL

Performance_schema_digest_lost integer GLOBAL

Performance_schema_file_classes_lost integer GLOBAL

Performance_schema_file_handles_lost integer GLOBAL

Performance_schema_file_instances_lostinteger GLOBAL

Performance_schema_hosts_lost integer GLOBAL

Performance_schema_index_stat_lost integer GLOBAL

Performance_schema_locker_lost integer GLOBAL

Performance_schema_memory_classes_lostinteger GLOBAL

Performance_schema_metadata_lock_lost integer GLOBAL

Performance_schema_mutex_classes_lost integer GLOBAL

Performance_schema_mutex_instances_lostinteger GLOBAL

Performance_schema_nested_statement_lostinteger GLOBAL

Performance_schema_prepared_statements_lostinteger GLOBAL

Performance_schema_program_lost integer GLOBAL

Performance_schema_rwlock_classes_lostinteger GLOBAL

Performance_schema_rwlock_instances_lostinteger GLOBAL

Performance_schema_session_connect_attrs_lostinteger GLOBAL

Performance_schema_socket_classes_lostinteger GLOBAL

Performance_schema_socket_instances_lostinteger GLOBAL

Performance_schema_stage_classes_lost integer GLOBAL

Performance_schema_statement_classes_lostinteger GLOBAL

Performance_schema_table_handles_lost integer GLOBAL

Performance_schema_table_instances_lostinteger GLOBAL

Performance_schema_table_lock_stat_lostinteger GLOBAL

Performance_schema_thread_classes_lostinteger GLOBAL

Performance_schema_thread_instances_lostinteger GLOBAL

Performance_schema_users_lost integer GLOBAL

Prepared_stmt_count integer GLOBAL

Qcache_free_blocks integer GLOBAL

Qcache_free_memory integer GLOBAL

Qcache_hits integer GLOBAL

Qcache_inserts integer GLOBAL

Server Status Variables

731

Variable Name Variable Type Variable Scope

Qcache_lowmem_prunes integer GLOBAL

Qcache_not_cached integer GLOBAL

Qcache_queries_in_cache integer GLOBAL

Qcache_total_blocks integer GLOBAL

Queries integer GLOBAL | SESSION

Questions integer GLOBAL | SESSION

Rewriter_number_loaded_rules integer GLOBAL

Rewriter_number_reloads integer GLOBAL

Rewriter_number_rewritten_queries integer GLOBAL

Rewriter_reload_error boolean GLOBAL

Rpl_semi_sync_master_clients integer GLOBAL

Rpl_semi_sync_master_net_avg_wait_timeinteger GLOBAL

Rpl_semi_sync_master_net_wait_time integer GLOBAL

Rpl_semi_sync_master_net_waits integer GLOBAL

Rpl_semi_sync_master_no_times integer GLOBAL

Rpl_semi_sync_master_no_tx integer GLOBAL

Rpl_semi_sync_master_status boolean GLOBAL

Rpl_semi_sync_master_timefunc_failuresinteger GLOBAL

Rpl_semi_sync_master_tx_avg_wait_time integer GLOBAL

Rpl_semi_sync_master_tx_wait_time integer GLOBAL

Rpl_semi_sync_master_tx_waits integer GLOBAL

Rpl_semi_sync_master_wait_pos_backtraverseinteger GLOBAL

Rpl_semi_sync_master_wait_sessions integer GLOBAL

Rpl_semi_sync_master_yes_tx integer GLOBAL

Rpl_semi_sync_slave_status boolean GLOBAL

Rsa_public_key string GLOBAL

Select_full_join integer GLOBAL | SESSION

Select_full_range_join integer GLOBAL | SESSION

Select_range integer GLOBAL | SESSION

Select_range_check integer GLOBAL | SESSION

Select_scan integer GLOBAL | SESSION

Slave_heartbeat_period numeric GLOBAL

Slave_last_heartbeat GLOBAL

Slave_open_temp_tables integer GLOBAL

Slave_received_heartbeats GLOBAL

Slave_retried_transactions integer GLOBAL

Slave_running boolean GLOBAL

Slow_launch_threads integer GLOBAL | SESSION

Slow_queries integer GLOBAL | SESSION

Sort_merge_passes integer GLOBAL | SESSION

Sort_range integer GLOBAL | SESSION

Server Status Variables

732

Variable Name Variable Type Variable Scope

Sort_rows integer GLOBAL | SESSION

Sort_scan integer GLOBAL | SESSION

Ssl_accept_renegotiates integer GLOBAL

Ssl_accepts integer GLOBAL

Ssl_callback_cache_hits integer GLOBAL

Ssl_cipher string GLOBAL | SESSION

Ssl_cipher_list string GLOBAL | SESSION

Ssl_client_connects integer GLOBAL

Ssl_connect_renegotiates integer GLOBAL

Ssl_ctx_verify_depth integer GLOBAL

Ssl_ctx_verify_mode integer GLOBAL

Ssl_default_timeout integer GLOBAL | SESSION

Ssl_finished_accepts integer GLOBAL

Ssl_finished_connects integer GLOBAL

Ssl_server_not_after integer GLOBAL | SESSION

Ssl_server_not_before integer GLOBAL | SESSION

Ssl_session_cache_hits integer GLOBAL

Ssl_session_cache_misses integer GLOBAL

Ssl_session_cache_mode string GLOBAL

Ssl_session_cache_overflows integer GLOBAL

Ssl_session_cache_size integer GLOBAL

Ssl_session_cache_timeouts integer GLOBAL

Ssl_sessions_reused integer GLOBAL | SESSION

Ssl_used_session_cache_entries integer GLOBAL

Ssl_verify_depth integer GLOBAL | SESSION

Ssl_verify_mode integer GLOBAL | SESSION

Ssl_version string GLOBAL | SESSION

Table_locks_immediate integer GLOBAL

Table_locks_waited integer GLOBAL

Table_open_cache_hits integer GLOBAL | SESSION

Table_open_cache_misses integer GLOBAL | SESSION

Table_open_cache_overflows integer GLOBAL | SESSION

Tc_log_max_pages_used integer GLOBAL

Tc_log_page_size integer GLOBAL

Tc_log_page_waits integer GLOBAL

Threads_cached integer GLOBAL

Threads_connected integer GLOBAL

Threads_created integer GLOBAL

Threads_running integer GLOBAL

Uptime integer GLOBAL

Uptime_since_flush_status integer GLOBAL

Server Status Variables

733

Variable Name Variable Type Variable Scope

validate_password_dictionary_file_last_parseddatetime GLOBAL

validate_password_dictionary_file_words_countinteger GLOBAL

The status variables have the following meanings.

• Aborted_clients

The number of connections that were aborted because the client died without closing the connection
properly. See Section B.5.2.11, “Communication Errors and Aborted Connections”.

• Aborted_connects

The number of failed attempts to connect to the MySQL server. See Section B.5.2.11,
“Communication Errors and Aborted Connections”.

For additional connection-related information, check the Connection_errors_xxx status variables
and the host_cache table.

As of MySQL 5.7.3, Aborted_connects is not visible in the embedded server because for that
server it is not updated and is not meaningful.

• Binlog_cache_disk_use

The number of transactions that used the temporary binary log cache but that exceeded the value of
binlog_cache_size and used a temporary file to store statements from the transaction.

The number of nontransactional statements that caused the binary log transaction cache to be
written to disk is tracked separately in the Binlog_stmt_cache_disk_use status variable.

• Binlog_cache_use

The number of transactions that used the binary log cache.

• Binlog_stmt_cache_disk_use

The number of nontransaction statements that used the binary log statement cache but that
exceeded the value of binlog_stmt_cache_size and used a temporary file to store those
statements.

• Binlog_stmt_cache_use

The number of nontransactional statements that used the binary log statement cache.

• Bytes_received

The number of bytes received from all clients.

• Bytes_sent

The number of bytes sent to all clients.

• Com_xxx

The Com_xxx statement counter variables indicate the number of times each xxx statement has
been executed. There is one status variable for each type of statement. For example, Com_delete
and Com_update count DELETE and UPDATE statements, respectively. Com_delete_multi and
Com_update_multi are similar but apply to DELETE and UPDATE statements that use multiple-
table syntax.

If a query result is returned from query cache, the server increments the Qcache_hits status
variable, not Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

Server Status Variables

734

All of the Com_stmt_xxx variables are increased even if a prepared statement argument is
unknown or an error occurred during execution. In other words, their values correspond to the
number of requests issued, not to the number of requests successfully completed.

The Com_stmt_xxx status variables are as follows:

• Com_stmt_prepare

• Com_stmt_execute

• Com_stmt_fetch

• Com_stmt_send_long_data

• Com_stmt_reset

• Com_stmt_close

Those variables stand for prepared statement commands. Their names refer to the COM_xxx
command set used in the network layer. In other words, their values increase whenever prepared
statement API calls such as mysql_stmt_prepare(), mysql_stmt_execute(), and so forth
are executed. However, Com_stmt_prepare, Com_stmt_execute and Com_stmt_close
also increase for PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally, the
values of the older statement counter variables Com_prepare_sql, Com_execute_sql, and
Com_dealloc_sql increase for the PREPARE, EXECUTE, and DEALLOCATE PREPARE statements.
Com_stmt_fetch stands for the total number of network round-trips issued when fetching from
cursors.

Com_stmt_reprepare indicates the number of times statements were automatically reprepared
by the server after metadata changes to tables or views referred to by the statement. A reprepare
operation increments Com_stmt_reprepare, and also Com_stmt_prepare.

Com_explain_other indicates the number of EXPLAIN FOR CONNECTION statements executed.
See Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”. It was
introduced in MySQL 5.7.2.

Com_change_repl_filter indicates the number of CHANGE REPLICATION FILTER statements
executed. It was introduced in MySQL 5.7.3.

• Compression

Whether the client connection uses compression in the client/server protocol.

• Connection_errors_xxx

These variables provide information about errors that occur during the client connection process.
They are global only and represent error counts aggregated across connections from all hosts.
These variables track errors not accounted for by the host cache (see Section 8.12.6.2, “DNS
Lookup Optimization and the Host Cache”), such as errors that are not associated with TCP
connections, occur very early in the connection process (even before an IP address is known), or are
not specific to any particular IP address (such as out-of-memory conditions).

As of MySQL 5.7.3, the Connection_errors_xxx status variables are not visible in the embedded
server because for that server they are not updated and are not meaningful.

• Connection_errors_accept

The number of errors that occurred during calls to accept() on the listening port.

• Connection_errors_internal

Server Status Variables

735

The number of connections refused due to internal errors in the server, such as failure to start a
new thread or an out-of-memory condition.

• Connection_errors_max_connections

The number of connections refused because the server max_connections limit was reached.

• Connection_errors_peer_addr

The number of errors that occurred while searching for connecting client IP addresses.

• Connection_errors_select

The number of errors that occurred during calls to select() or poll() on the listening port.
(Failure of this operation does not necessarily means a client connection was rejected.)

• Connection_errors_tcpwrap

The number of connections refused by the libwrap library.

• Connections

The number of connection attempts (successful or not) to the MySQL server.

• Created_tmp_disk_tables

The number of internal on-disk temporary tables created by the server while executing statements.

If an internal temporary table is created initially as an in-memory table but becomes too large,
MySQL automatically converts it to an on-disk table. The maximum size for in-memory temporary
tables is the minimum of the tmp_table_size and max_heap_table_size values. If
Created_tmp_disk_tables is large, you may want to increase the tmp_table_size or
max_heap_table_size value to lessen the likelihood that internal temporary tables in memory will
be converted to on-disk tables.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• Created_tmp_files

How many temporary files mysqld has created.

• Created_tmp_tables

The number of internal temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments
the global Created_tmp_tables value.

• Delayed_errors

This status variable is deprecated (because DELAYED inserts are not supported), and will be
removed in a future release.

Server Status Variables

736

• Delayed_insert_threads

This status variable is deprecated (because DELAYED inserts are not supported), and will be
removed in a future release.

• Delayed_writes

This status variable is deprecated (because DELAYED inserts are not supported), and will be
removed in a future release.

• Flush_commands

The number of times the server flushes tables, whether because a user executed a FLUSH TABLES
statement or due to internal server operation. It is also incremented by receipt of a COM_REFRESH
packet. This is in contrast to Com_flush, which indicates how many FLUSH statements have been
executed, whether FLUSH TABLES, FLUSH LOGS, and so forth.

• Handler_commit

The number of internal COMMIT statements.

• Handler_delete

The number of times that rows have been deleted from tables.

• Handler_external_lock

The server increments this variable for each call to its external_lock() function, which generally
occurs at the beginning and end of access to a table instance. There might be differences among
storage engines. This variable can be used, for example, to discover for a statement that accesses
a partitioned table how many partitions were pruned before locking occurred: Check how much the
counter increased for the statement, subtract 2 (2 calls for the table itself), then divide by 2 to get the
number of partitions locked.

• Handler_mrr_init

The number of times the server uses a storage engine's own Multi-Range Read implementation for
table access.

• Handler_prepare

A counter for the prepare phase of two-phase commit operations.

• Handler_read_first

The number of times the first entry in an index was read. If this value is high, it suggests that the
server is doing a lot of full index scans; for example, SELECT col1 FROM foo, assuming that col1
is indexed.

• Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that
your tables are properly indexed for your queries.

• Handler_read_last

The number of requests to read the last key in an index. With ORDER BY, the server will issue a first-
key request followed by several next-key requests, whereas with ORDER BY DESC, the server will
issue a last-key request followed by several previous-key requests.

• Handler_read_next

Server Status Variables

737

The number of requests to read the next row in key order. This value is incremented if you are
querying an index column with a range constraint or if you are doing an index scan.

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used to
optimize ORDER BY ... DESC.

• Handler_read_rnd

The number of requests to read a row based on a fixed position. This value is high if you are doing a
lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL
to scan entire tables or you have joins that do not use keys properly.

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This value is high if you are doing a lot
of table scans. Generally this suggests that your tables are not properly indexed or that your queries
are not written to take advantage of the indexes you have.

• Handler_rollback

The number of requests for a storage engine to perform a rollback operation.

• Handler_savepoint

The number of requests for a storage engine to place a savepoint.

• Handler_savepoint_rollback

The number of requests for a storage engine to roll back to a savepoint.

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_available_undo_logs

The total number of available InnoDB undo logs. Supplements the innodb_undo_logs system
variable, which reports the number of active undo logs.

• Innodb_buffer_pool_dump_status

The progress of an operation to record the pages held in the InnoDB buffer pool, triggered by the
setting of innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now.

For related information and examples, see Section 14.3.3.5, “Preloading the InnoDB Buffer Pool for
Faster Restart”.

• Innodb_buffer_pool_load_status

The progress of an operation to warm up the InnoDB buffer pool by reading in a
set of pages corresponding to an earlier point in time, triggered by the setting of
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now.
If the operation introduces too much overhead, you can cancel it by setting
innodb_buffer_pool_load_abort.

For related information and examples, see Section 14.3.3.5, “Preloading the InnoDB Buffer Pool for
Faster Restart”.

Server Status Variables

738

• Innodb_buffer_pool_bytes_data

The total number of bytes in the InnoDB buffer pool containing data. The number includes
both dirty and clean pages. For more accurate memory usage calculations than with
Innodb_buffer_pool_pages_data, when compressed tables cause the buffer pool to hold
pages of different sizes.

• Innodb_buffer_pool_pages_data

The number of pages in the InnoDB buffer pool containing data. The number includes both dirty and
clean pages. When using compressed tables, the reported Innodb_buffer_pool_pages_data
value may be larger than Innodb_buffer_pool_pages_total (Bug #59550).

• Innodb_buffer_pool_bytes_dirty

The total current number of bytes held in dirty pages in the InnoDB buffer pool. For more accurate
memory usage calculations than with Innodb_buffer_pool_pages_dirty, when compressed
tables cause the buffer pool to hold pages of different sizes.

• Innodb_buffer_pool_pages_dirty

The current number of dirty pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_flushed

The number of requests to flush pages from the InnoDB buffer pool.

• Innodb_buffer_pool_pages_free

The number of free pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_latched

The number of latched pages in the InnoDB buffer pool. These are pages currently being read or
written, or that cannot be flushed or removed for some other reason. Calculation of this variable is
expensive, so it is available only when the UNIV_DEBUG system is defined at server build time.

• Innodb_buffer_pool_pages_misc

The number of pages in the InnoDB buffer pool that are busy because they have
been allocated for administrative overhead, such as row locks or the adaptive hash
index. This value can also be calculated as Innodb_buffer_pool_pages_total −
Innodb_buffer_pool_pages_free − Innodb_buffer_pool_pages_data. When using
compressed tables, Innodb_buffer_pool_pages_misc may report an out-of-bounds value (Bug
#59550).

• Innodb_buffer_pool_pages_total

The total size of the InnoDB buffer pool, in pages. When using compressed tables,
the reported Innodb_buffer_pool_pages_data value may be larger than
Innodb_buffer_pool_pages_total (Bug #59550)

• Innodb_buffer_pool_read_ahead

The number of pages read into the InnoDB buffer pool by the read-ahead background thread.

• Innodb_buffer_pool_read_ahead_evicted

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that
were subsequently evicted without having been accessed by queries.

• Innodb_buffer_pool_read_requests

Server Status Variables

739

The number of logical read requests.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from the buffer pool, and had to read
directly from disk.

• Innodb_buffer_pool_resize_status

The status of an operation to resize the InnoDB buffer pool dynamically, triggered by
setting the innodb_buffer_pool_size parameter dynamically. As of MySQL 5.7.5, the
innodb_buffer_pool_size parameter is dynamic, which allows you to resize the buffer pool
without restarting the server. See Section 14.3.3.7, “Resizing the InnoDB Buffer Pool Online” for
related information.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. When InnoDB needs
to read or create a page and no clean pages are available, InnoDB flushes some dirty pages
first and waits for that operation to finish. This counter counts instances of these waits. If
innodb_buffer_pool_size has been set properly, this value should be small.

• Innodb_buffer_pool_write_requests

The number of writes done to the InnoDB buffer pool.

• Innodb_data_fsyncs

The number of fsync() operations so far. The frequency of fsync() calls is influenced by the
setting of the innodb_flush_method configuration option.

• Innodb_data_pending_fsyncs

The current number of pending fsync() operations. The frequency of fsync() calls is influenced
by the setting of the innodb_flush_method configuration option.

• Innodb_data_pending_reads

The current number of pending reads.

• Innodb_data_pending_writes

The current number of pending writes.

• Innodb_data_read

The amount of data read since the server was started.

• Innodb_data_reads

The total number of data reads.

• Innodb_data_writes

The total number of data writes.

• Innodb_data_written

The amount of data written so far, in bytes.

• Innodb_dblwr_pages_written

Server Status Variables

740

The number of pages that have been written to the doublewrite buffer. See Section 14.9.1, “InnoDB
Disk I/O”.

• Innodb_dblwr_writes

The number of doublewrite operations that have been performed. See Section 14.9.1, “InnoDB Disk
I/O”.

• Innodb_have_atomic_builtins

Indicates whether the server was built with atomic instructions.

• Innodb_log_waits

The number of times that the log buffer was too small and a wait was required for it to be flushed
before continuing.

• Innodb_log_write_requests

The number of write requests for the InnoDB redo log.

• Innodb_log_writes

The number of physical writes to the InnoDB redo log file.

• Innodb_num_open_files

The number of files InnoDB currently holds open.

• Innodb_os_log_fsyncs

The number of fsync() writes done to the InnoDB redo log files.

• Innodb_os_log_pending_fsyncs

The number of pending fsync() operations for the InnoDB redo log files.

• Innodb_os_log_pending_writes

The number of pending writes to the InnoDB redo log files.

• Innodb_os_log_written

The number of bytes written to the InnoDB redo log files.

• Innodb_page_size

InnoDB page size (default 16KB). Many values are counted in pages; the page size enables them to
be easily converted to bytes.

• Innodb_pages_created

The number of pages created by operations on InnoDB tables.

• Innodb_pages_read

The number of pages read by operations on InnoDB tables.

• Innodb_pages_written

The number of pages written by operations on InnoDB tables.

• Innodb_row_lock_current_waits

Server Status Variables

741

The number of row locks currently being waited for by operations on InnoDB tables.

• Innodb_row_lock_time

The total time spent in acquiring row locks for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_avg

The average time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_waits

The number of times operations on InnoDB tables had to wait for a row lock.

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables.

• Innodb_rows_inserted

The number of rows inserted into InnoDB tables.

• Innodb_rows_read

The number of rows read from InnoDB tables.

• Innodb_rows_updated

The number of rows updated in InnoDB tables.

• Innodb_truncated_status_writes

The number of times output from the SHOW ENGINE INNODB STATUS statement has been
truncated.

• Key_blocks_not_flushed

The number of key blocks in the MyISAM key cache that have changed but have not yet been
flushed to disk.

• Key_blocks_unused

The number of unused blocks in the MyISAM key cache. You can use this value to determine how
much of the key cache is in use; see the discussion of key_buffer_size in Section 5.1.4, “Server
System Variables”.

• Key_blocks_used

The number of used blocks in the MyISAM key cache. This value is a high-water mark that indicates
the maximum number of blocks that have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the MyISAM key cache.

• Key_reads

The number of physical reads of a key block from disk into the MyISAM key cache. If Key_reads
is large, then your key_buffer_size value is probably too small. The cache miss rate can be
calculated as Key_reads/Key_read_requests.

Server Status Variables

742

• Key_write_requests

The number of requests to write a key block to the MyISAM key cache.

• Key_writes

The number of physical writes of a key block from the MyISAM key cache to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. This is useful for
comparing the cost of different query plans for the same query. The default value of 0 means that no
query has been compiled yet. The default value is 0. Last_query_cost has session scope.

The Last_query_cost value can be computed accurately only for simple “flat” queries, not
complex queries such as those with subqueries or UNION. For the latter, the value is set to 0.

• Last_query_partial_plans

The number of iterations the query optimizer made in execution plan construction for the previous
query. Last_query_cost has session scope.

• Locked_connects

The number of attempts to connect to locked user accounts. For information about account locking
and unlocking, see Section 6.3.11, “User Account Locking”.

This variable was added in MySQL 5.7.6.

• Max_execution_time_exceeded

The number of SELECT statements for which the execution timeout was exceeded. This variable was
added in MySQL 5.7.8. Previously, it was named Max_statement_time_exceeded.

• Max_execution_time_set

The number of SELECT statements for which a nonzero execution timeout was set. This includes
statements that include a nonzero MAX_EXECUTION_TIME optimizer hint, and statements that
include no such hint but execute while the timeout indicated by the max_execution_time
system variable is nonzero. This variable was added in MySQL 5.7.8. Previously, it was named
Max_statement_time_set.

• Max_execution_time_set_failed

The number of SELECT statements for which the attempt to set an execution
timeout failed. This variable was added in MySQL 5.7.8. Previously, it was named
Max_statement_time_set_failed.

• Max_statement_time_exceeded

The number of SELECT statements for which the execution timeout was exceeded. This variable was
added in MySQL 5.7.4 and renamed to Max_execution_time_exceeded in MySQL 5.7.8.

• Max_statement_time_set

The number of SELECT statements for which a nonzero execution timeout was set. This includes
statements that include a nonzero MAX_STATEMENT_TIME option, and statements that include no
such option but execute while the timeout indicated by the max_statement_time system variable
is nonzero. This variable was added in MySQL 5.7.4 and renamed to Max_execution_time_set
in MySQL 5.7.8.

• Max_statement_time_set_failed

Server Status Variables

743

The number of SELECT statements for which the attempt to set an execution timeout failed. This
variable was added in MySQL 5.7.4 and renamed to Max_execution_time_set_failed in
MySQL 5.7.8.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

• Max_used_connections_time

The time at which Max_used_connections reached its current value. This variable was added in
MySQL 5.7.5.

• Not_flushed_delayed_rows

This status variable is deprecated (because DELAYED inserts are not supported), and will be
removed in a future release.

• mecab_charset

The character set currently used by the MeCab full-text parser plugin. For related information, see
Section 12.9.9, “MeCab Full-Text Parser Plugin”.

• Ongoing_anonymous_transaction_count

Shows the number of ongoing transactions which have been marked as anonymous. This can be
used to ensure that no further transactions are waiting to be processed. This variable was added in
MySQL 5.7.6.

• Ongoing_anonymous_gtid_violating_transaction_count

This status variable is only available in debug builds. Shows the number of ongoing transactions
which use gtid_next=ANONYMOUS and that violate GTID consistency. This variable was added in
MySQL 5.7.6.

• Ongoing_automatic_gtid_violating_transaction_count

This status variable is only available in debug builds. Shows the number of ongoing transactions
which use gtid_next=AUTOMATIC and that violate GTID consistency. This variable was added in
MySQL 5.7.6.

• Open_files

The number of files that are open. This count includes regular files opened by the server. It does
not include other types of files such as sockets or pipes. Also, the count does not include files that
storage engines open using their own internal functions rather than asking the server level to do so.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_table_definitions

The number of cached .frm files.

• Open_tables

The number of tables that are open.

• Opened_files

The number of files that have been opened with my_open() (a mysys library function). Parts of the
server that open files without using this function do not increment the count.

Server Status Variables

744

• Opened_table_definitions

The number of .frm files that have been cached.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_open_cache
value is probably too small.

• Performance_schema_xxx

Performance Schema status variables are listed in Section 21.13, “Performance Schema Status
Variables”. These variables provide information about instrumentation that could not be loaded or
created due to memory constraints.

• Prepared_stmt_count

The current number of prepared statements. (The maximum number of statements is given by the
max_prepared_stmt_count system variable.)

• Qcache_free_blocks

The number of free memory blocks in the query cache.

• Qcache_free_memory

The amount of free memory for the query cache.

• Qcache_hits

The number of query cache hits.

• Qcache_inserts

The number of queries added to the query cache.

• Qcache_lowmem_prunes

The number of queries that were deleted from the query cache because of low memory.

• Qcache_not_cached

The number of noncached queries (not cacheable, or not cached due to the query_cache_type
setting).

• Qcache_queries_in_cache

The number of queries registered in the query cache.

• Qcache_total_blocks

The total number of blocks in the query cache.

• Queries

The number of statements executed by the server. This variable includes statements executed within
stored programs, unlike the Questions variable. It does not count COM_PING or COM_STATISTICS
commands.

• Questions

The number of statements executed by the server. This includes only statements sent to the server
by clients and not statements executed within stored programs, unlike the Queries variable. This

Server Status Variables

745

variable does not count COM_PING, COM_STATISTICS, COM_STMT_PREPARE, COM_STMT_CLOSE,
or COM_STMT_RESET commands.

• Rpl_semi_sync_master_clients

The number of semisynchronous slaves.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_avg_wait_time

The average time in microseconds the master waited for a slave reply. In MySQL 5.7.4 and later
this variable is always 0. In MySQL 5.7.8 and later it is deprecated and it will be removed in a future
version.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_wait_time

The total time in microseconds the master waited for slave replies. In MySQL 5.7.4 and later this
variable is always 0. In MySQL 5.7.8 and later it is deprecated and it will be removed in a future
version.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_waits

The total number of times the master waited for slave replies.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_no_times

The number of times the master turned off semisynchronous replication.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a slave.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the master. The value is ON if the
plugin has been enabled and a commit acknowledgment has occurred. It is OFF if the plugin is not
enabled or the master has fallen back to asynchronous replication due to commit acknowledgment
timeout.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_timefunc_failures

The number of times the master failed when calling time functions such as gettimeofday().

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_avg_wait_time

The average time in microseconds the master waited for each transaction.

This variable is available only if the master-side semisynchronous replication plugin is installed.

Server Status Variables

746

• Rpl_semi_sync_master_tx_wait_time

The total time in microseconds the master waited for transactions.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_waits

The total number of times the master waited for transactions.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_wait_pos_backtraverse

The total number of times the master waited for an event with binary coordinates lower than events
waited for previously. This can occur when the order in which transactions start waiting for a reply is
different from the order in which their binary log events are written.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_wait_sessions

The number of sessions currently waiting for slave replies.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a slave.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the slave. This is ON if the plugin
has been enabled and the slave I/O thread is running, OFF otherwise.

This variable is available only if the slave-side semisynchronous replication plugin is installed.

• Rsa_public_key

This variable is available if MySQL was using OpenSSL (see Section 6.3.12.1, “OpenSSL
Versus yaSSL”). Its value is the RSA public key value used by the sha256_password
authentication plugin. The value is nonempty only if the server successfully initializes the private
and public keys in the files named by the sha256_password_private_key_path and
sha256_password_public_key_path system variables. The value of Rsa_public_key comes
from the latter file.

For information about sha256_password, see Section 6.3.9.4, “The SHA-256 Authentication
Plugin”.

• Select_full_join

The number of joins that perform table scans because they do not use indexes. If this value is not 0,
you should carefully check the indexes of your tables.

• Select_full_range_join

The number of joins that used a range search on a reference table.

• Select_range

Server Status Variables

747

The number of joins that used ranges on the first table. This is normally not a critical issue even if the
value is quite large.

• Select_range_check

The number of joins without keys that check for key usage after each row. If this is not 0, you should
carefully check the indexes of your tables.

• Select_scan

The number of joins that did a full scan of the first table.

• Slave_heartbeat_period

Shows the replication heartbeat interval (in seconds) on a replication slave.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication channel. To
monitor multiple replication channels use the HEARTBEAT_INTERVAL
column in the replication_connection_status table for the replication
channel.

• Slave_last_heartbeat

Shows when the most recent heartbeat signal was received by a replication slave, as a TIMESTAMP
value.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication channel. To
monitor multiple replication channels use the LAST_HEARTBEAT_TIMESTAMP
column in the replication_connection_status table for the replication
channel.

• Slave_open_temp_tables

The number of temporary tables that the slave SQL thread currently has open. If the value is greater
than zero, it is not safe to shut down the slave; see Section 17.4.1.24, “Replication and Temporary
Tables”. This variable reports the total count of open temporary tables for all replication channels.

• Slave_received_heartbeats

This counter increments with each replication heartbeat received by a replication slave since the last
time that the slave was restarted or reset, or a CHANGE MASTER TO statement was issued.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication
channel. To monitor multiple replication channels use
the COUNT_RECEIVED_HEARTBEATS column in the
replication_connection_status table for the replication channel.

Server Status Variables

748

• Slave_retried_transactions

The total number of times since startup that the replication slave SQL thread has retried transactions.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication
channel. To monitor multiple replication channels use
the COUNT_TRANSACTIONS_RETRIES column in the
replication_applier_status table for the replication channel.

• Slave_running

This is ON if this server is a replication slave that is connected to a replication master, and both the I/
O and SQL threads are running; otherwise, it is OFF.

This variable is affected by the value of the show_compatibility_56 system variable. For details,
see Effect of show_compatibility_56 on Slave Status Variables.

Note

This variable only shows the status of the default replication channel. To
monitor multiple replication channels use the SERVICE_STATE column in the
replication_applier_status or replication_connection_status
tables of the replication channel.

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.

This variable is not meaningful in the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. This counter
increments regardless of whether the slow query log is enabled. For information about that log, see
Section 5.2.5, “The Slow Query Log”.

• Sort_merge_passes

The number of merge passes that the sort algorithm has had to do. If this value is large, you should
consider increasing the value of the sort_buffer_size system variable.

• Sort_range

The number of sorts that were done using ranges.

• Sort_rows

The number of sorted rows.

• Sort_scan

The number of sorts that were done by scanning the table.

• Ssl_accept_renegotiates

The number of negotiates needed to establish the connection.

Server Status Variables

749

• Ssl_accepts

The number of accepted SSL connections.

• Ssl_callback_cache_hits

The number of callback cache hits.

• Ssl_cipher

The current SSL cipher (empty for non-SSL connections).

• Ssl_cipher_list

The list of possible SSL ciphers (empty for non-SSL connections).

• Ssl_client_connects

The number of SSL connection attempts to an SSL-enabled master.

• Ssl_connect_renegotiates

The number of negotiates needed to establish the connection to an SSL-enabled master.

• Ssl_ctx_verify_depth

The SSL context verification depth (how many certificates in the chain are tested).

• Ssl_ctx_verify_mode

The SSL context verification mode.

• Ssl_default_timeout

The default SSL timeout.

• Ssl_finished_accepts

The number of successful SSL connections to the server.

• Ssl_finished_connects

The number of successful slave connections to an SSL-enabled master.

• Ssl_server_not_after

The last date for which the SSL certificate is valid. To check SSL certificate expiration information,
use this statement:

mysql> SHOW STATUS LIKE 'Ssl_server_not%';
+-----------------------+--------------------------+
| Variable_name | Value |
+-----------------------+--------------------------+
| Ssl_server_not_after | Apr 28 14:16:39 2025 GMT |
| Ssl_server_not_before | May 1 14:16:39 2015 GMT |
+-----------------------+--------------------------+

• Ssl_server_not_before

The first date for which the SSL certificate is valid.

• Ssl_session_cache_hits

The number of SSL session cache hits.

Server Status Variables

750

• Ssl_session_cache_misses

The number of SSL session cache misses.

• Ssl_session_cache_mode

The SSL session cache mode.

• Ssl_session_cache_overflows

The number of SSL session cache overflows.

• Ssl_session_cache_size

The SSL session cache size.

• Ssl_session_cache_timeouts

The number of SSL session cache timeouts.

• Ssl_sessions_reused

How many SSL connections were reused from the cache.

• Ssl_used_session_cache_entries

How many SSL session cache entries were used.

• Ssl_verify_depth

The verification depth for replication SSL connections.

• Ssl_verify_mode

The verification mode for replication SSL connections.

• Ssl_version

The SSL protocol version of the connection; for example, TLSv1. If the connection is not encrypted,
the value is empty.

• Table_locks_immediate

The number of times that a request for a table lock could be granted immediately.

• Table_locks_waited

The number of times that a request for a table lock could not be granted immediately and a wait was
needed. If this is high and you have performance problems, you should first optimize your queries,
and then either split your table or tables or use replication.

• Table_open_cache_hits

The number of hits for open tables cache lookups.

• Table_open_cache_misses

The number of misses for open tables cache lookups.

• Table_open_cache_overflows

The number of overflows for the open tables cache. This is the number of times, after a table is
opened or closed, a cache instance has an unused entry and the size of the instance is larger than
table_open_cache / table_open_cache_instances.

Server SQL Modes

751

• Tc_log_max_pages_used

For the memory-mapped implementation of the log that is used by mysqld when it acts as
the transaction coordinator for recovery of internal XA transactions, this variable indicates
the largest number of pages used for the log since the server started. If the product of
Tc_log_max_pages_used and Tc_log_page_size is always significantly less than the log
size, the size is larger than necessary and can be reduced. (The size is set by the --log-tc-
size option. This variable is unused: It is unneeded for binary log-based recovery, and the memory-
mapped recovery log method is not used unless the number of storage engines that are capable
of two-phase commit and that support XA transactions is greater than one. (InnoDB is the only
applicable engine.)

• Tc_log_page_size

The page size used for the memory-mapped implementation of the XA recovery log. The default
value is determined using getpagesize(). This variable is unused for the same reasons as
described for Tc_log_max_pages_used.

• Tc_log_page_waits

For the memory-mapped implementation of the recovery log, this variable increments each time
the server was not able to commit a transaction and had to wait for a free page in the log. If this
value is large, you might want to increase the log size (with the --log-tc-size option). For binary
log-based recovery, this variable increments each time the binary log cannot be closed because
there are two-phase commits in progress. (The close operation waits until all such transactions are
finished.)

• Threads_cached

The number of threads in the thread cache.

This variable is not meaningful in the embedded server (libmysqld) and as of MySQL 5.7.2 is no
longer visible within the embedded server.

• Threads_connected

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may
want to increase the thread_cache_size value. The cache miss rate can be calculated as
Threads_created/Connections.

• Threads_running

The number of threads that are not sleeping.

• Uptime

The number of seconds that the server has been up.

• Uptime_since_flush_status

The number of seconds since the most recent FLUSH STATUS statement.

5.1.7 Server SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. DBAs can set the global
SQL mode to match site server operating requirements, and each application can set its session SQL
mode to its own requirements.

Server SQL Modes

752

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes
it easier to use MySQL in different environments and to use MySQL together with other database
servers.

• Setting the SQL Mode

• The Most Important SQL Modes

• Full List of SQL Modes

• Combination SQL Modes

• Strict SQL Mode

• Comparison of the IGNORE Keyword and Strict SQL Mode

• SQL Mode Changes in MySQL 5.7

For answers to questions often asked about server SQL modes in MySQL, see Section A.3, “MySQL
5.7 FAQ: Server SQL Mode”.

When working with InnoDB tables, consider also the innodb_strict_mode system variable. It
enables additional error checks for InnoDB tables.

Setting the SQL Mode

The default SQL mode in MySQL 5.7 includes these modes: ONLY_FULL_GROUP_BY,
STRICT_TRANS_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO,
NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION.

The ONLY_FULL_GROUP_BY and STRICT_TRANS_TABLES modes were added in MySQL 5.7.5. The
NO_AUTO_CREATE_USER mode was added in MySQL 5.7.7. The ERROR_FOR_DIVISION_BY_ZERO,
NO_ZERO_DATE, and NO_ZERO_IN_DATE modes were added in MySQL 5.7.8. For additional
discussion regarding these changes to the default SQL mode value, see SQL Mode Changes in
MySQL 5.7.

To set the SQL mode at server startup, use the --sql-mode="modes" option on the command
line, or sql-mode="modes" in an option file such as my.cnf (Unix operating systems) or my.ini
(Windows). modes is a list of different modes separated by commas. To clear the SQL mode explicitly,
set it to an empty string using --sql-mode="" on the command line, or sql-mode="" in an option
file.

Note

MySQL installation programs may configure the SQL mode during the
installation process. For example, mysql_install_db creates a default option
file named my.cnf in the base installation directory. This file contains a line
that sets the SQL mode; see Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

To change the SQL mode at runtime, set the global or session sql_mode system variable using a SET
statement:

SET GLOBAL sql_mode = 'modes';
SET SESSION sql_mode = 'modes';

Setting the GLOBAL variable requires the SUPER privilege and affects the operation of all clients that
connect from that time on. Setting the SESSION variable affects only the current client. Each client can
change its session sql_mode value at any time.

Server SQL Modes

753

To determine the current global or session sql_mode value, use the following statements:

SELECT @@GLOBAL.sql_mode;
SELECT @@SESSION.sql_mode;

Important

SQL mode and user-defined partitioning. Changing the server SQL
mode after creating and inserting data into partitioned tables can cause major
changes in the behavior of such tables, and could lead to loss or corruption of
data. It is strongly recommended that you never change the SQL mode once
you have created tables employing user-defined partitioning.

When replicating partitioned tables, differing SQL modes on master and slave
can also lead to problems. For best results, you should always use the same
server SQL mode on the master and on the slave.

See Section 18.6, “Restrictions and Limitations on Partitioning”, for more
information.

The Most Important SQL Modes

The most important sql_mode values are probably these:

• ANSI

This mode changes syntax and behavior to conform more closely to standard SQL. It is one of the
special combination modes listed at the end of this section.

• STRICT_TRANS_TABLES

If a value could not be inserted as given into a transactional table, abort the statement. For a
nontransactional table, abort the statement if the value occurs in a single-row statement or the first
row of a multiple-row statement. More details are given later in this section.

As of MySQL 5.7.5, the default SQL mode includes STRICT_TRANS_TABLES.

• TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is
“give an error instead of a warning” when inserting an incorrect value into a column. It is one of the
special combination modes listed at the end of this section.

Note

The INSERT or UPDATE aborts as soon as the error is noticed. This may
not be what you want if you are using a nontransactional storage engine,
because data changes made prior to the error may not be rolled back,
resulting in a “partially done” update.

When this manual refers to “strict mode,” it means a mode with either or both STRICT_TRANS_TABLES
or STRICT_ALL_TABLES enabled.

Full List of SQL Modes

The following list describes all supported SQL modes:

• ALLOW_INVALID_DATES

Do not perform full checking of dates. Check only that the month is in the range from 1 to 12 and the
day is in the range from 1 to 31. This is very convenient for Web applications where you obtain year,

Server SQL Modes

754

month, and day in three different fields and you want to store exactly what the user inserted (without
date validation). This mode applies to DATE and DATETIME columns. It does not apply TIMESTAMP
columns, which always require a valid date.

The server requires that month and day values be legal, and not merely in the range 1 to 12 and 1
to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted
to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate an
error. To permit such dates, enable ALLOW_INVALID_DATES.

• ANSI_QUOTES

Treat “"” as an identifier quote character (like the “`” quote character) and not as a string quote
character. You can still use “`” to quote identifiers with this mode enabled. With ANSI_QUOTES
enabled, you cannot use double quotation marks to quote literal strings, because it is interpreted as
an identifier.

• ERROR_FOR_DIVISION_BY_ZERO

The ERROR_FOR_DIVISION_BY_ZERO mode affects handling of division by zero, which includes
MOD(N,0). For data-change operations (INSERT, UPDATE), its effect also depends on whether strict
SQL mode is enabled.

• If this mode is not enabled, division by zero inserts NULL and produces no warning.

• If this mode is enabled, division by zero inserts NULL and produces a warning.

• If this mode and strict mode are enabled, division by zero produces an error, unless IGNORE is
given as well. For INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and
produces a warning.

For SELECT, division by zero returns NULL. Enabling ERROR_FOR_DIVISION_BY_ZERO causes a
warning to be produced as well, regardless of whether strict mode is enabled.

As of MySQL 5.7.4, ERROR_FOR_DIVISION_BY_ZERO is deprecated. In MySQL 5.7.4
through 5.7.7, ERROR_FOR_DIVISION_BY_ZERO does nothing when named explicitly.
Instead, its effect is included in the effects of strict SQL mode. In MySQL 5.7.8 and later,
ERROR_FOR_DIVISION_BY_ZERO does have an effect when named explicitly and is not part of
strict mode, as before MySQL 5.7.4. However, it should be used in conjunction with strict mode and
is enabled by default. A warning occurs if ERROR_FOR_DIVISION_BY_ZERO is enabled without also
enabling strict mode or vice versa. For additional discussion, see SQL Mode Changes in MySQL 5.7.

Because ERROR_FOR_DIVISION_BY_ZERO is deprecated, it will be removed in a future MySQL
release as a separate mode name and its effect included in the effects of strict SQL mode.

• HIGH_NOT_PRECEDENCE

The precedence of the NOT operator is such that expressions such as NOT a BETWEEN b AND c
are parsed as NOT (a BETWEEN b AND c). In some older versions of MySQL, the expression was
parsed as (NOT a) BETWEEN b AND c. The old higher-precedence behavior can be obtained by
enabling the HIGH_NOT_PRECEDENCE SQL mode.

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 1

• IGNORE_SPACE

Server SQL Modes

755

Permit spaces between a function name and the “(” character. This causes built-in function names
to be treated as reserved words. As a result, identifiers that are the same as function names must
be quoted as described in Section 9.2, “Schema Object Names”. For example, because there is a
COUNT() function, the use of count as a table name in the following statement causes an error:

mysql> CREATE TABLE count (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax

The table name should be quoted:

mysql> CREATE TABLE `count` (i INT);
Query OK, 0 rows affected (0.00 sec)

The IGNORE_SPACE SQL mode applies to built-in functions, not to user-defined functions or stored
functions. It is always permissible to have spaces after a UDF or stored function name, regardless of
whether IGNORE_SPACE is enabled.

For further discussion of IGNORE_SPACE, see Section 9.2.4, “Function Name Parsing and
Resolution”.

• NO_AUTO_CREATE_USER

Prevent the GRANT statement from automatically creating new user accounts if it would otherwise do
so, unless authentication information is specified. The statement must specify a nonempty password
using IDENTIFIED BY or an authentication plugin using IDENTIFIED WITH.

It is preferable to create MySQL accounts with CREATE USER rather than GRANT. As of MySQL
5.7.6, NO_AUTO_CREATE_USER is deprecated. As of 5.7.7 the default SQL mode includes
NO_AUTO_CREATE_USER and assignments to sql_mode that change the NO_AUTO_CREATE_USER
mode state produce a warning, except assignments that set sql_mode to DEFAULT.
NO_AUTO_CREATE_USER will be removed in a future MySQL release, at which point its effect will be
enabled at all times (GRANT will not create accounts).

• NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you
generate the next sequence number for the column by inserting either NULL or 0 into it.
NO_AUTO_VALUE_ON_ZERO suppresses this behavior for 0 so that only NULL generates the next
sequence number.

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing 0
is not a recommended practice, by the way.) For example, if you dump the table with mysqldump
and then reload it, MySQL normally generates new sequence numbers when it encounters the
0 values, resulting in a table with contents different from the one that was dumped. Enabling
NO_AUTO_VALUE_ON_ZERO before reloading the dump file solves this problem. mysqldump now
automatically includes in its output a statement that enables NO_AUTO_VALUE_ON_ZERO, to avoid
this problem.

• NO_BACKSLASH_ESCAPES

Disable the use of the backslash character (“\”) as an escape character within strings. With this
mode enabled, backslash becomes an ordinary character like any other.

• NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option
is useful on slave replication servers.

• NO_ENGINE_SUBSTITUTION

Server SQL Modes

756

Control automatic substitution of the default storage engine when a statement such as CREATE
TABLE or ALTER TABLE specifies a storage engine that is disabled or not compiled in.

The default SQL mode includes NO_ENGINE_SUBSTITUTION.

Because storage engines can be pluggable at runtime, unavailable engines are treated the same
way:

With NO_ENGINE_SUBSTITUTION disabled, for CREATE TABLE the default engine is used and a
warning occurs if the desired engine is unavailable. For ALTER TABLE, a warning occurs and the
table is not altered.

With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if
the desired engine is unavailable.

• NO_FIELD_OPTIONS

Do not print MySQL-specific column options in the output of SHOW CREATE TABLE. This mode is
used by mysqldump in portability mode.

• NO_KEY_OPTIONS

Do not print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode is used
by mysqldump in portability mode.

• NO_TABLE_OPTIONS

Do not print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE TABLE.
This mode is used by mysqldump in portability mode.

• NO_UNSIGNED_SUBTRACTION

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, an error results:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped
to the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is
enabled. If strict SQL mode is enabled, an error occurs and the column remains unchanged.

When NO_UNSIGNED_SUBTRACTION is enabled, the subtraction result is signed, even if any
operand is unsigned. For example, compare the type of column c2 in table t1 with that of column c2
in table t2:

mysql> SET sql_mode='';

Server SQL Modes

757

mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c2 | bigint(21) unsigned | NO | | 0 | |
+-------+---------------------+------+-----+---------+-------+

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2 | bigint(21) | NO | | 0 | |
+-------+------------+------+-----+---------+-------+

This means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 12.10, “Cast
Functions and Operators”.

• NO_ZERO_DATE

The NO_ZERO_DATE mode affects whether the server permits '0000-00-00' as a valid date. Its
effect also depends on whether strict SQL mode is enabled.

• If this mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If this mode is enabled, '0000-00-00' is permitted and inserts produce a warning.

• If this mode and strict mode are enabled, '0000-00-00' is not permitted and inserts produce
an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE,
'0000-00-00' is permitted and inserts produce a warning.

As of MySQL 5.7.4, NO_ZERO_DATE is deprecated. In MySQL 5.7.4 through 5.7.7, NO_ZERO_DATE
does nothing when named explicitly. Instead, its effect is included in the effects of strict SQL mode.
In MySQL 5.7.8 and later, NO_ZERO_DATE does have an effect when named explicitly and is not part
of strict mode, as before MySQL 5.7.4. However, it should be used in conjunction with strict mode
and is enabled by default. A warning occurs if NO_ZERO_DATE is enabled without also enabling strict
mode or vice versa. For additional discussion, see SQL Mode Changes in MySQL 5.7.

Because NO_ZERO_DATE is deprecated, it will be removed in a future MySQL release as a separate
mode name and its effect included in the effects of strict SQL mode.

• NO_ZERO_IN_DATE

The NO_ZERO_IN_DATE mode affects whether the server permits dates in which the year part
is nonzero but the month or day part is 0. (This mode affects dates such as '2010-00-01' or
'2010-01-00', but not '0000-00-00'. To control whether the server permits '0000-00-00',
use the NO_ZERO_DATE mode.) The effect of NO_ZERO_IN_DATE also depends on whether strict
SQL mode is enabled.

• If this mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If this mode is enabled, dates with zero parts are inserted as '0000-00-00' and produce a
warning.

• If this mode and strict mode are enabled, dates with zero parts are not permitted and inserts
produce an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE,
dates with zero parts are inserted as '0000-00-00' and produce a warning.

As of MySQL 5.7.4, NO_ZERO_IN_DATE is deprecated. In MySQL 5.7.4 through 5.7.7,
NO_ZERO_IN_DATE does nothing when named explicitly. Instead, its effect is included in the effects
of strict SQL mode. In MySQL 5.7.8 and later, NO_ZERO_IN_DATE does have an effect when

Server SQL Modes

758

named explicitly and is not part of strict mode, as before MySQL 5.7.4. However, it should be used
in conjunction with strict mode and is enabled by default. A warning occurs if NO_ZERO_IN_DATE is
enabled without also enabling strict mode or vice versa. For additional discussion, see SQL Mode
Changes in MySQL 5.7.

Because NO_ZERO_IN_DATE is deprecated, it will be removed in a future MySQL release as a
separate mode name and its effect included in the effects of strict SQL mode.

• ONLY_FULL_GROUP_BY

Reject queries for which the select list, HAVING condition, or ORDER BY list refer to nonaggregated
columns that are neither named in the GROUP BY clause nor are functionally dependent on (uniquely
determined by) GROUP BY columns.

As of MySQL 5.7.5, the default SQL mode includes ONLY_FULL_GROUP_BY. (Before 5.7.5, MySQL
does not detect functional dependency and ONLY_FULL_GROUP_BY is not enabled by default. For a
description of pre-5.7.5 behavior, see the MySQL 5.6 Reference Manual.)

A MySQL extension to standard SQL permits references in the HAVING clause to aliased
expressions in the select list. Before MySQL 5.7.5, enabling ONLY_FULL_GROUP_BY disables this
extension, thus requiring the HAVING clause to be written using unaliased expressions. As of MySQL
5.7.5, this restriction is lifted so that the HAVING clause can refer to aliases regardless of whether
ONLY_FULL_GROUP_BY is enabled.

For additional discussion and examples, see Section 12.20.3, “MySQL Handling of GROUP BY”.

• PAD_CHAR_TO_FULL_LENGTH

By default, trailing spaces are trimmed from CHAR column values on retrieval. If
PAD_CHAR_TO_FULL_LENGTH is enabled, trimming does not occur and retrieved CHAR values are
padded to their full length. This mode does not apply to VARCHAR columns, for which trailing spaces
are retained on retrieval.

mysql> CREATE TABLE t1 (c1 CHAR(10));
Query OK, 0 rows affected (0.37 sec)

mysql> INSERT INTO t1 (c1) VALUES('xy');
Query OK, 1 row affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------+-----------------+
| xy | 2 |
+------+-----------------+
1 row in set (0.00 sec)

mysql> SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------------+-----------------+
| xy | 10 |
+------------+-----------------+
1 row in set (0.00 sec)

• PIPES_AS_CONCAT

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.

http://dev.mysql.com/doc/refman/5.6/en/sql-mode.html

Server SQL Modes

759

• REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.

• STRICT_ALL_TABLES

Enable strict SQL mode for all storage engines. Invalid data values are rejected. For details, see
Strict SQL Mode.

From MySQL 5.7.4 through 5.7.7, STRICT_ALL_TABLES includes the effect of the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. For
additional discussion, see SQL Mode Changes in MySQL 5.7.

• STRICT_TRANS_TABLES

Enable strict SQL mode for transactional storage engines, and when possible for nontransactional
storage engines. For details, see Strict SQL Mode.

From MySQL 5.7.4 through 5.7.7, STRICT_TRANS_TABLES includes the effect of the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. For
additional discussion, see SQL Mode Changes in MySQL 5.7.

Combination SQL Modes

The following special modes are provided as shorthand for combinations of mode values from the
preceding list.

• ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, and (as of
MySQL 5.7.5) ONLY_FULL_GROUP_BY.

ANSI mode also causes the server to return an error for queries where a set function S with an
outer reference S(outer_ref) cannot be aggregated in the outer query against which the outer
reference has been resolved. This is such a query:

SELECT * FROM t1 WHERE t1.a IN (SELECT MAX(t1.b) FROM t2 WHERE ...);

Here, MAX(t1.b) cannot aggregated in the outer query because it appears in the WHERE clause of
that query. Standard SQL requires an error in this situation. If ANSI mode is not enabled, the server
treats S(outer_ref) in such queries the same way that it would interpret S(const).

See Section 1.8, “MySQL Standards Compliance”.

• DB2

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MAXDB

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• MSSQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MYSQL323

Server SQL Modes

760

Equivalent to MYSQL323, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus
some SHOW CREATE TABLE behaviors specific to MYSQL323:

• TIMESTAMP column display does not include DEFAULT or ON UPDATE attributes that were
introduced in MySQL 4.1.

• String column display does not include character set and collation attributes that were introduced
in MySQL 4.1. For CHAR and VARCHAR columns, if the collation is binary, BINARY is appended to
the column type.

• The ENGINE=engine_name table option displays as TYPE=engine+name.

• For MEMORY tables, the storage engine is displayed as HEAP.

• MYSQL40

Equivalent to MYSQL40, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus some
behaviors specific to MYSQL40. These are the same as for MYSQL323, except that SHOW CREATE
TABLE does not display HEAP as the storage engine for MEMORY tables.

• ORACLE

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• POSTGRESQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• TRADITIONAL

Before MySQL 5.7.4, and in MySQL 5.7.8 and later, TRADITIONAL is equivalent to
STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE,
ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION.

From MySQL 5.7.4 though 5.7.7, TRADITIONAL is equivalent to STRICT_TRANS_TABLES,
STRICT_ALL_TABLES, NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION. The
NO_ZERO_IN_DATE, NO_ZERO_DATE, and ERROR_FOR_DIVISION_BY_ZERO modes are not
named because in those versions their effects are included in the effects of strict SQL mode
(STRICT_ALL_TABLES or STRICT_TRANS_TABLES). Thus, the effects of TRADITIONAL are the
same in all MySQL 5.7 versions (and the same as in MySQL 5.6). For additional discussion, see
SQL Mode Changes in MySQL 5.7.

Strict SQL Mode

Strict mode controls how MySQL handles invalid or missing values in data-change statements such as
INSERT or UPDATE. A value can be invalid for several reasons. For example, it might have the wrong
data type for the column, or it might be out of range. A value is missing when a new row to be inserted
does not contain a value for a non-NULL column that has no explicit DEFAULT clause in its definition.
(For a NULL column, NULL is inserted if the value is missing.) Strict mode also affects DDL statements
such as CREATE TABLE.

If strict mode is not in effect, MySQL inserts adjusted values for invalid or missing values and produces
warnings (see Section 13.7.5.40, “SHOW WARNINGS Syntax”). In strict mode, you can produce this
behavior by using INSERT IGNORE or UPDATE IGNORE.

For statements such as SELECT that do not change data, invalid values generate a warning in strict
mode, not an error.

Server SQL Modes

761

Strict mode does not affect whether foreign key constraints are checked. foreign_key_checks can
be used for that. (See Section 5.1.4, “Server System Variables”.)

Strict SQL mode is in effect if either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled,
although the effects of these modes differ somewhat:

• For transactional tables, an error occurs for invalid or missing values in a data-change statement
when either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled. The statement is
aborted and rolled back.

• For nontransactional tables, the behavior is the same for either mode if the bad value occurs in the
first row to be inserted or updated: The statement is aborted and the table remains unchanged. If the
statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the
result depends on which strict mode is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However,
because the earlier rows have been inserted or updated, the result is a partial update. To avoid
this, use single-row statements, which can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the
column and inserts the adjusted value. If a value is missing, MySQL inserts the implicit default
value for the column data type. In either case, MySQL generates a warning rather than an error
and continues processing the statement. Implicit defaults are described in Section 11.7, “Data
Type Default Values”.

Strict mode affects handling of division by zero, zero dates, and zeros in dates as follows:

• Strict mode affects handling of division by zero, which includes MOD(N,0):

For data-change operations (INSERT, UPDATE):

• If strict mode is not enabled, division by zero inserts NULL and produces no warning.

• If strict mode is enabled, division by zero produces an error, unless IGNORE is given as well. For
INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and produces a warning.

For SELECT, division by zero returns NULL. Enabling strict mode causes a warning to be produced
as well.

• Strict mode affects whether the server permits '0000-00-00' as a valid date:

• If strict mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If strict mode is enabled, '0000-00-00' is not permitted and inserts produce an error, unless
IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, '0000-00-00' is
permitted and inserts produce a warning.

• Strict mode affects whether the server permits dates in which the year part is nonzero but the month
or day part is 0 (dates such as '2010-00-01' or '2010-01-00'):

• If strict mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If strict mode is enabled, dates with zero parts are not permitted and inserts produce an error,
unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, dates with zero parts
are inserted as '0000-00-00' (which is considered valid with IGNORE) and produce a warning.

For more information about strict mode with respect to IGNORE, see Comparison of the IGNORE
Keyword and Strict SQL Mode.

Before MySQL 5.7.4, and in MySQL 5.7.8 and later, strict mode affects handling of division by
zero, zero dates, and zeros in dates in conjunction with the ERROR_FOR_DIVISION_BY_ZERO,
NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. From MySQL 5.7.4 though 5.7.7, the

Server SQL Modes

762

ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes do nothing
when named explicitly and their effects are included in the effects of strict mode. For additional
discussion, see SQL Mode Changes in MySQL 5.7.

Comparison of the IGNORE Keyword and Strict SQL Mode

This section compares the effect on statement execution of the IGNORE keyword (which downgrades
errors to warnings) and strict SQL mode (which upgrades warnings to errors). It describes which
statements they affect, and which errors they apply to.

The following table presents a summary comparison of statement behavior when the default is to
produce an error versus a warning. An example of when the default is to produce an error is inserting a
NULL into a NOT NULL column. An example of when the default is to produce a warning is inserting a
value of the wrong data type into a column (such as inserting the string 'abc' into an integer column).

Operational Mode When Statement Default is
Error

When Statement Default is
Warning

Without IGNORE or strict SQL
mode

Error Warning

With IGNORE Warning Warning (same as without
IGNORE or strict SQL mode)

With strict SQL mode Error (same as without IGNORE
or strict SQL mode)

Error

With IGNORE and strict SQL
mode

Warning Warning

One conclusion to draw from the table is that when the IGNORE keyword and strict SQL mode are both
in effect, IGNORE takes precedence. This means that, although IGNORE and strict SQL mode can be
considered to have opposite effects on error handling, they do not cancel when used together.

The Effect of IGNORE on Statement Execution

Several statements in MySQL support an optional IGNORE keyword. This keyword causes the server
to downgrade certain types of errors and generate warnings instead. For a multiple-row statement,
IGNORE causes the statement to skip to the next row instead of aborting.

For example, if the table t has a primary key column i, attempting to insert the same value of i into
multiple rows normally produces a duplicate-key error:

mysql> INSERT INTO t (i) VALUES(1),(1);
ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

With IGNORE, the row containing the duplicate key still is not inserted, but a warning occurs instead of
an error:

mysql> INSERT IGNORE INTO t (i) VALUES(1),(1);
Query OK, 1 row affected, 1 warning (0.01 sec)
Records: 2 Duplicates: 1 Warnings: 1

mysql> SHOW WARNINGS;
+---------+------+---------------------------------------+
| Level | Code | Message |
+---------+------+---------------------------------------+
| Warning | 1062 | Duplicate entry '1' for key 'PRIMARY' |
+---------+------+---------------------------------------+
1 row in set (0.00 sec)

These statements support the IGNORE keyword:

Server SQL Modes

763

• CREATE TABLE ... SELECT: IGNORE does not apply to the CREATE TABLE or SELECT parts of
the statement but to inserts into the table of rows produced by the SELECT. Rows that duplicate an
existing row on a unique key value are discarded.

• DELETE: IGNORE causes MySQL to ignore errors during the process of deleting rows.

• INSERT: With IGNORE, rows that duplicate an existing row on a unique key value are discarded.
Rows set to values that would cause data conversion errors are set to the closest valid values
instead.

 For partitioned tables where no partition matching a given value is found, IGNORE causes the insert
operation to fail silently for rows containing the unmatched value.

• LOAD DATA, LOAD XML: With IGNORE, rows that duplicate an existing row on a unique key value
are discarded.

• UPDATE: With IGNORE, rows for which duplicate-key conflicts occur on a unique key value are not
updated. Rows updated to values that would cause data conversion errors are updated to the closest
valid values instead.

The IGNORE keyword applies to the following errors:

ER_BAD_NULL_ERROR
ER_DUP_ENTRY
ER_DUP_ENTRY_WITH_KEY_NAME
ER_DUP_KEY
ER_NO_PARTITION_FOR_GIVEN_VALUE
ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT
ER_NO_REFERENCED_ROW_2
ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET
ER_ROW_IS_REFERENCED_2
ER_SUBQUERY_NO_1_ROW
ER_VIEW_CHECK_FAILED

The Effect of Strict SQL Mode on Statement Execution

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. In “strict” SQL mode, the
server upgrades certain warnings to errors.

For example, in non-strict SQL mode, inserting the string 'abc' into an integer column results in
conversion of the value to 0 and a warning:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t (i) VALUES('abc');
Query OK, 1 row affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1366 | Incorrect integer value: 'abc' for column 'i' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

In strict SQL mode, the invalid value is rejected with an error:

mysql> SET sql_mode = 'STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t (i) VALUES('abc');
ERROR 1366 (HY000): Incorrect integer value: 'abc' for column 'i' at row 1

Server SQL Modes

764

For more information about possible settings of the sql_mode system variable, see Section 5.1.7,
“Server SQL Modes”.

Strict SQL mode applies to the following statements under conditions for which some value might be
out of range or an invalid row is inserted into or deleted from a table:

• ALTER TABLE

• CREATE TABLE

• CREATE TABLE ... SELECT

• DELETE (both single table and multiple table)

• INSERT

• LOAD DATA

• LOAD XML

• SELECT SLEEP()

• UPDATE (both single table and multiple table)

Within stored programs, individual statements of the types just listed execute in strict SQL mode if the
program was defined while strict mode was in effect.

Strict SQL mode applies to the following errors, represent a class of errors in which an input value is
either invalid or missing. A value is invalid if it has the wrong data type for the column or might be out of
range. A value is missing if a new row to be inserted does not contain a value for a NOT NULL column
that has no explicit DEFAULT clause in its definition.

ER_BAD_NULL_ERROR
ER_CUT_VALUE_GROUP_CONCAT
ER_DATA_TOO_LONG
ER_DATETIME_FUNCTION_OVERFLOW
ER_DIVISION_BY_ZERO
ER_INVALID_ARGUMENT_FOR_LOGARITHM
ER_NO_DEFAULT_FOR_FIELD
ER_NO_DEFAULT_FOR_VIEW_FIELD
ER_TOO_LONG_KEY
ER_TRUNCATED_WRONG_VALUE
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD
ER_WARN_DATA_OUT_OF_RANGE
ER_WARN_NULL_TO_NOTNULL
ER_WARN_TOO_FEW_RECORDS
ER_WRONG_ARGUMENTS
ER_WRONG_VALUE_FOR_TYPE
WARN_DATA_TRUNCATED

SQL Mode Changes in MySQL 5.7

In MySQL 5.7.5, the ONLY_FULL_GROUP_BY SQL mode is enabled by default because GROUP BY
processing has become more sophisticated to include detection of functional dependencies. However,
if you find that having ONLY_FULL_GROUP_BY enabled causes queries for existing applications to be
rejected, either of these actions should restore operation:

• If it is possible to modify an offending query, do so, either so that nonaggregated columns are
functionally dependent on GROUP BY columns, or by referring to nonaggregated columns using
ANY_VALUE().

• If it is not possible to modify an offending query (for example, if it is generated by a third-
party application), set the sql_mode system variable at server startup to not enable
ONLY_FULL_GROUP_BY.

Server SQL Modes

765

As of MySQL 5.7.4, the ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE
SQL modes are deprecated. From MySQL 5.7.4 though 5.7.7, these modes do nothing when named
explicitly. Instead, their effects are included in the effects of strict SQL mode (STRICT_ALL_TABLES
or STRICT_TRANS_TABLES). In other words, strict mode means the same thing in those versions as
the pre-5.7.4 meaning of strict mode plus ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and
NO_ZERO_IN_DATE.

The MySQL 5.7.4 change to make strict mode more strict by including
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE caused some
problems. For example, in MySQL 5.6 with strict mode but not NO_ZERO_DATE enabled, TIMESTAMP
columns can be defined with DEFAULT '0000-00-00 00:00:00'. In MySQL 5.7.4 with the same
mode settings, strict mode includes the effect of NO_ZERO_DATE and TIMESTAMP columns cannot
be defined with DEFAULT '0000-00-00 00:00:00'. This causes replication of CREATE TABLE
statements from 5.6 to 5.7.4 to fail if they contain such TIMESTAMP columns.

The long term plan is still to have the three affected modes be included in strict SQL mode and to
remove them as explicit modes in a future MySQL release. But to restore compatibility in MySQL 5.7
with MySQL 5.6 strict mode and to provide additional time for affected applications to be modified, the
following changes were made in MySQL 5.7.8:

• ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE have an effect when
named explicitly. This reverts a change made in MySQL 5.7.4.

• ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE are not part of strict
SQL mode. This reverts a change made in MySQL 5.7.4.

• ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE are
included in the default sql_mode value, which as a result includes these modes:
ONLY_FULL_GROUP_BY, STRICT_TRANS_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE,
ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION.

With the preceding changes, stricter data checking is still enabled by default, but the individual modes
can be disabled in environments where it is currently desirable or necessary to do so.

Although in MySQL 5.7.8 and later ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and
NO_ZERO_IN_DATE can be used separately from strict mode, it is intended that they be used together.
As a reminder, a warning occurs if they are enabled without also enabling strict mode or vice versa.

Important

The following discussion applies only for MySQL versions 5.7.4 through
5.7.7. For upgrades from a version older than MySQL 5.7.4, we recommend
upgrading to MySQL 5.7.8 or later, which renders this discussion unnecessary.

The remainder of this section describes the SQL mode settings to use in MySQL 5.7.4 through 5.7.7
to achieve the same statement execution as before 5.7.4, including the cases for INSERT and UPDATE
in which IGNORE is given. It also provides guidelines for determining whether applications need
modification to behave the same before and after the SQL mode changes.

The following table shows how to control handling of division by zero for versions other than MySQL
5.7.4 through 5.7.7 and for MySQL 5.7.4 through 5.7.7.

Desired Behavior MySQL 5.7.x Versions Except 5.7.4
Through 5.7.7

MySQL 5.7.4 Through 5.7.7

insert NULL, produce no
warning

ERROR_FOR_DIVISION_BY_ZERO not
enabled

strict mode not enabled

insert NULL, produce
warning

ERROR_FOR_DIVISION_BY_ZERO, or
ERROR_FOR_DIVISION_BY_ZERO + strict
mode + IGNORE

strict mode + IGNORE

Server SQL Modes

766

Desired Behavior MySQL 5.7.x Versions Except 5.7.4
Through 5.7.7

MySQL 5.7.4 Through 5.7.7

error ERROR_FOR_DIVISION_BY_ZERO + strict
mode

strict mode

The following table shows how to control whether the server permits '0000-00-00' as a valid date for
versions other than MySQL 5.7.4 through 5.7.7 and for MySQL 5.7.4 through 5.7.7.

Desired Behavior MySQL 5.7.x Versions Except 5.7.4
Through 5.7.7

MySQL 5.7.4 Through 5.7.7

insert '0000-00-00',
produce no warning

NO_ZERO_DATE not enabled strict mode not enabled

insert '0000-00-00',
produce warning

NO_ZERO_DATE, or NO_ZERO_DATE + strict
mode + IGNORE

strict mode + IGNORE

error NO_ZERO_DATE + strict mode strict mode

The following table shows how to control whether the server permits dates with zero parts for versions
other than MySQL 5.7.4 through 5.7.7 and for MySQL 5.7.4 through 5.7.7.

Desired Behavior MySQL 5.7.x Versions Except 5.7.4
Through 5.7.7

MySQL 5.7.4 Through 5.7.7

insert date, produce no
warning

NO_ZERO_IN_DATE not enabled strict mode not enabled

insert '0000-00-00',
produce warning

NO_ZERO_IN_DATE, or NO_ZERO_IN_DATE
+ strict mode + IGNORE

strict mode + IGNORE

error NO_ZERO_IN_DATE + strict mode strict mode

The following discussion describes the conditions under which a given statement produces the same
or different result under the SQL mode changes in MySQL 5.7.4 through 5.7.7. It considers only
strict mode (STRICT_ALL_TABLES or STRICT_TRANS_TABLES) and the three deprecated modes
(ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE). Other SQL modes
such as ANSI_QUOTES or ONLY_FULL_GROUP_BY are assumed to be held constant before and after
an upgrade.

This discussion also describes how to prepare for an upgrade to 5.7.4 through 5.7.7 from a version
older than 5.7.4. Any modifications should be made before upgrading.

There is no change in behavior between MySQL 5.6 and 5.7 for the following SQL mode settings. A
statement that executes under one of these settings needs no modification to produce the same result
in 5.6 and 5.7:

• Strict mode and the three deprecated modes are all not enabled.

• Strict mode and the three deprecated modes are all enabled.

A change from warnings in MySQL 5.6 to no warnings in MySQL 5.7 occurs for the following SQL
mode settings. The result of statement execution is the same in 5.6 and 5.7, so statements need no
modification unless warnings are considered significant:

• Strict mode is not enabled, but either of the deprecated ERROR_FOR_DIVISION_BY_ZERO and
NO_ZERO_DATE modes are enabled.

A behavior change occurs under the following SQL mode settings. A statement that executes under
one of these settings must be modified to produce the same result in 5.6 and 5.7:

• Strict mode is not enabled, NO_ZERO_IN_DATE is enabled. For this mode setting, expect these
differences in statement execution:

Server SQL Modes

767

• In 5.6, the server inserts dates with zero parts as '0000-00-00' and produces a warning.

• In 5.7, the server inserts dates with zero parts as is and produces no warning.

• Strict mode is enabled, with some but not all of the three deprecated modes enabled. For this mode
setting, expect these differences in statement execution:

Statements that would be affected by enabling the not-enabled deprecated modes produce errors in
5.7 but not in 5.6. Suppose that strict mode, NO_ZERO_DATE, and NO_ZERO_IN_DATE are enabled,
and a data-change statement performs division by zero:

• In 5.6, the statement inserts NULL and produces no warning. Enabling
ERROR_FOR_DIVISION_BY_ZERO would cause an error instead.

• In 5.7, an error occurs because strict mode implicitly includes the effect of
ERROR_FOR_DIVISION_BY_ZERO. Enabling ERROR_FOR_DIVISION_BY_ZERO explicitly would
not change that.

To prepare for an upgrade to MySQL 5.7.4 through 5.7.7, the main principle is to make sure that your
applications will operate the same way in MySQL 5.6 and 5.7. For example, you can adopt either of
these approaches to application compatibility:

• Modify the application to set the SQL mode on a version-specific basis. If we assume that an
application will not be used with development versions of MySQL 5.7 prior to 5.7.4, it is possible to
set the sql_mode value for the application based on the current server version as follows:

SET sql_mode = IF(LEFT(VERSION(),3)<'5.7',5.6 mode,5.7 mode);

The tables shown earlier in this section serve as a guide to the appropriate equivalent modes for
MySQL 5.6 and 5.7.

• Modify the application to execute under a SQL mode for which statements produce the same result
in MySQL 5.6 and 5.7.

Tip

TRADITIONAL SQL mode in MySQL 5.6 includes strict mode and the three
deprecated modes. If you write applications to operate in TRADITIONAL
mode in MySQL 5.6, there is no change to make for MySQL 5.7.

When assessing SQL mode compatibility between MySQL 5.6 and 5.7, consider particularly these
statement execution contexts:

• Replication. You will encounter replication incompatibility related to the SQL mode changes under
the following conditions:

• MySQL 5.6 master and 5.7 slave

• Statement-based replication

• A SQL mode setting for which statements produce different results in MySQL 5.6 and 5.7, as
described earlier

To handle this incompatibility, use one of these workarounds:

• Use row-based replication

• Use IGNORE

• Use a SQL mode for which statements do not produce different results in MySQL 5.6 and 5.7

Server Plugins

768

• Stored programs (stored procedures and functions, triggers, and events). Each stored program
executes using the SQL mode in effect at the time it was created. To identify stored programs that
may be affected by differences between MySQL 5.6 and 5.7 in SQL mode handling, use these
queries:

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, ROUTINE_TYPE, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES
WHERE SQL_MODE LIKE '%STRICT%'
OR SQL_MODE LIKE '%DIVISION%'
OR SQL_MODE LIKE '%NO_ZERO%';

SELECT TRIGGER_SCHEMA, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS
WHERE SQL_MODE LIKE '%STRICT%'
OR SQL_MODE LIKE '%DIVISION%'
OR SQL_MODE LIKE '%NO_ZERO%';

SELECT EVENT_SCHEMA, EVENT_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.EVENTS
WHERE SQL_MODE LIKE '%STRICT%'
OR SQL_MODE LIKE '%DIVISION%'
OR SQL_MODE LIKE '%NO_ZERO%';

5.1.8 Server Plugins

MySQL supports a plugin API that enables creation of server components. Plugins can be loaded
at server startup, or loaded and unloaded at runtime without restarting the server. The components
supported by this interface include, but are not limited to, storage engines, INFORMATION_SCHEMA
tables, full-text parser plugins, partitioning support, and server extensions.

MySQL distributions include several plugins that implement server extensions:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available for
several authentication protocols. See Section 6.3.8, “Pluggable Authentication”.

• A password-validation plugin for implementing password strength policies and assessing the strength
of potential passwords. See Section 6.1.2.5, “The Password Validation Plugin”.

• Semisynchronous replication plugins implement an interface to replication capabilities that permit
the master to proceed as long as at least one slave has responded to each transaction. See
Section 17.3.8, “Semisynchronous Replication”.

• A query rewrite plugin that examines statements received by MySQL Server and possibly rewrites
them before the server executes them. See Section 5.1.8.3, “The Rewriter Query Rewrite Plugin”

• Version Tokens is a feature that enables creation of and synchronization around server tokens that
applications can use to prevent accessing incorrect or out-of-date data. Version Tokens is based on
a plugin library that implements a version_tokens plugin and a set of user-defined functions. See
Section 5.1.8.4, “Version Tokens”.

• Plugins for testing server services. For information about these plugins, see Plugins for Testing
Plugin Services, in The MySQL Test Framework, Version 2.0.

The following sections describe how to install and uninstall plugins, and how to determine at runtime
which plugins are installed and obtain information about them. For information about writing plugins,
see Section 24.2, “The MySQL Plugin API”.

5.1.8.1 Installing and Uninstalling Plugins

Server plugins must be loaded in to the server before they can be used. MySQL enables you to load
a plugin at server startup or at runtime. It is also possible to control the activation of loaded plugins at
startup, and to unload them at runtime.

http://dev.mysql.com/doc/mysqltest/2.0/en/service-testing-plugins.html
http://dev.mysql.com/doc/mysqltest/2.0/en/service-testing-plugins.html
http://dev.mysql.com/doc/mysqltest/2.0/en/index.html

Server Plugins

769

• Installing plugins

• Controlling plugin activation

• Uninstalling plugins

Installing Plugins

Server plugins must be known to the server before they can be used. A plugin can be made known
several ways, as described here. In the following descriptions, plugin_name stands for a plugin name
such as innodb, csv, or validate_password.

Built-in plugins:

A built-in plugin is known by the server automatically. Normally, the server enables the plugin at
startup; some built-in plugins permit this to be changed with the --plugin_name option.

Plugins registered in the mysql.plugin table:

The mysql.plugin table serves as a registry of plugins (other than built-in plugins, which need not be
registered). The server normally enables each plugin listed in the table at startup, although whether a
given plugin is enabled can be changed with the --plugin_name option.

If the server is started with the --skip-grant-tables option, it does not consult the
mysql.plugin table and does not load the plugins listed there.

Plugins named with command-line options:

A plugin located in a plugin library file can be loaded at server startup with the --plugin-load or --
plugin-load-add option. Normally, the server enables the plugin at startup, although this can be
changed with the --plugin_name option.

The option value is a semicolon-separated list of name=plugin_library and plugin_library
values. Each name is the name of a plugin to load, and plugin_library is the name of the shared
library that contains the plugin code. If a plugin library is named without any preceding plugin name, the
server loads all plugins in the library. The server looks for plugin library files in the directory named by
the plugin_dir system variable.

Plugin-loading options do not register any plugin in the mysql.plugin table. For subsequent restarts,
the server loads the plugin again only if --plugin-load or --plugin-load-add option is given
again. That is, the option effects a one-time installation that persists for a single server invocation.

--plugin-load and --plugin-load-add enable plugins to be loaded even when --skip-
grant-tables is given (which causes the server to ignore the mysql.plugin table). --plugin-
load and --plugin-load-add also enable plugins to be loaded at startup under configurations
when plugins cannot be loaded at runtime.

The --plugin-load-add option complements the --plugin-load option. --plugin-load-
add adds a plugin or plugins to the set of plugins to be loaded at startup. The argument format is the
same as for --plugin-load. --plugin-load-add can be used to avoid specifying a large set of
plugins as a single long unwieldy --plugin-load argument. --plugin-load-add can be given
in the absence of --plugin-load, but any instance of --plugin-load-add that appears before
--plugin-load has no effect because --plugin-load resets the set of plugins to load. In other
words, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to this option:

--plugin-load="x;y"

But these options:

Server Plugins

770

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

Plugins installed with the INSTALL PLUGIN statement:

A plugin located in a plugin library file can be loaded at runtime with the INSTALL PLUGIN statement.
The statement also registers the plugin in the mysql.plugin table to cause the server to load it
on subsequent restarts. For this reason, INSTALL PLUGIN requires the INSERT privilege for the
mysql.plugin table.

The plugin library file base name depends on your platform. Common suffixes are .so for Unix and
Unix-like systems, .dll for Windows.

Example: The --plugin-load option installs a plugin at server startup. To install a plugin named
myplugin from a plugin library file named somepluglib.so, use these lines in a my.cnf file:

[mysqld]
plugin-load=myplugin=somepluglib.so

In this case, the plugin is not registered in mysql.plugin. Restarting the server without the --
plugin-load option causes the plugin not to be loaded at startup.

Alternatively, the INSTALL PLUGIN statement causes the server to load the plugin code from the
library file at runtime:

mysql> INSTALL PLUGIN myplugin SONAME 'somepluglib.so';

INSTALL PLUGIN also causes “permanent” plugin registration: The server lists the plugin in the
mysql.plugin table to ensure that it is loaded on subsequent server restarts.

Many plugins can be loaded either at server startup or at runtime. However, if a plugin is designed such
that it must be loaded and initialized during server startup, use --plugin-load or --plugin-load-
add rather than INSTALL PLUGIN.

If a plugin is named both using a --plugin-load or --plugin-load-add option and (as a result of
an earlier INSTALL PLUGIN statement) in the mysql.plugin table, the server starts but writes these
messages to the error log:

2013-09-24T12:35:29.584584Z 0 [ERROR] Function 'plugin_name'
already exists
2013-09-24T12:35:29.584616Z 0 [Warning] Couldn't load plugin named
'plugin_name' with soname 'plugin_object_file'.

While a plugin is loaded, information about it is available at runtime from several sources, such as the
INFORMATION_SCHEMA.PLUGINS table and the SHOW PLUGINS statement. For more information,
see Section 5.1.8.2, “Obtaining Server Plugin Information”.

Controlling Plugin Activation

If the server knows about a plugin when it starts (for example, because the plugin is named using
a --plugin-load option or is registered in the mysql.plugin table), the server loads and
enables the plugin by default. It is possible to control activation state for such a plugin using a
--plugin_name[=value] startup option named after the plugin. In the following descriptions,
plugin_name stands for a plugin name such as innodb, csv, or validate_password. As with
other options, dashes and underscores are interchangeable in option names. Also, activation state
values are not case sensitive. For example, --my_plugin=ON and --my-plugin=on are equivalent.

Server Plugins

771

• --plugin_name=OFF

Tells the server to disable the plugin. This may not be possible for certain built-in plugins, such as
mysql_native_password.

• --plugin_name[=ON]

Tells the server to enable the plugin. (Specifying the option as --plugin_name without a value has
the same effect.) If the plugin fails to initialize, the server runs with the plugin disabled.

• --plugin_name=FORCE

Tells the server to enable the plugin, but if plugin initialization fails, the server does not start. In other
words, this option forces the server to run with the plugin enabled or not at all.

• --plugin_name=FORCE_PLUS_PERMANENT

Like FORCE, but in addition prevents the plugin from being unloaded at runtime. If a user attempts to
do so with UNINSTALL PLUGIN, an error occurs.

Plugin activation states are visible in the LOAD_OPTION column of the
INFORMATION_SCHEMA.PLUGINS table.

Suppose that CSV, BLACKHOLE, and ARCHIVE are built-in pluggable storage engines and that you
want the server to load them at startup, subject to these conditions: The server is permitted to run if
CSV initialization fails, but must require that BLACKHOLE initialization succeeds, and ARCHIVE should
be disabled. To accomplish that, use these lines in an option file:

[mysqld]
csv=ON
blackhole=FORCE
archive=OFF

The --enable-plugin_name option format is a synonym for --plugin_name=ON. The
--disable-plugin_name and --skip-plugin_name option formats are synonyms for
--plugin_name=OFF.

If a plugin is disabled, either explicitly with OFF or implicitly because it was enabled with ON but failed
to initialize, aspects of server operation that require the plugin will change. For example, if the plugin
implements a storage engine, existing tables for the storage engine become inaccessible, and attempts
to create new tables for the storage engine result in tables that use the default storage engine unless
the NO_ENGINE_SUBSTITUTION SQL mode is enabled to cause an error to occur instead.

Disabling a plugin may require adjustment to other options. For example, if you start the server
using --skip-innodb to disable InnoDB, other innodb_xxx options likely will need to be omitted
at startup. In addition, because InnoDB is the default storage engine, it will not start unless you
specify another available storage engine with --default_storage_engine. You must also set --
default_tmp_storage_engine.

Uninstalling Plugins

At runtime, the UNINSTALL PLUGIN statement disables and uninstalls a plugin known to the server.
The statement unloads the plugin and removes it from the mysql.plugin table, if it is registered
there. For this reason, UNINSTALL PLUGIN statement requires the DELETE privilege for the
mysql.plugin table. With the plugin no longer registered in the table, the server will not load the
plugin automatically for subsequent restarts.

UNINSTALL PLUGIN can unload a plugin regardless of whether it was loaded at runtime with
INSTALL PLUGIN or at startup with a plugin-loading option, subject to these conditions:

• It cannot unload plugins that are built in to the server. These can be identified as those that have a
library name of NULL in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.

Server Plugins

772

• It cannot unload plugins for which the server was started with
--plugin_name=FORCE_PLUS_PERMANENT, which prevents plugin unloading at runtime. These
can be identified from the LOAD_OPTION column of the INFORMATION_SCHEMA.PLUGINS table.

To uninstall a plugin that currently is loaded at server startup with a plugin-loading option, use this
procedure.

1. Remove any options related to the plugin from the my.cnf file.

2. Restart the server.

3. Plugins normally are installed using either a plugin-loading option at startup or with INSTALL
PLUGIN at runtime, but not both. However, removing options for a plugin from the my.cnf file
may not be sufficient to uninstall it if at some point INSTALL PLUGIN has also been used. If the
plugin still appears in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS, use
UNINSTALL PLUGIN to remove it from the mysql.plugin table. Then restart the server again.

5.1.8.2 Obtaining Server Plugin Information

There are several ways to determine which plugins are installed in the server:

• The INFORMATION_SCHEMA.PLUGINS table contains a row for each loaded plugin. Any that have a
PLUGIN_LIBRARY value of NULL are built in and cannot be unloaded.

mysql> SELECT * FROM information_schema.PLUGINS\G
*************************** 1. row ***************************
 PLUGIN_NAME: binlog
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: MySQL AB
 PLUGIN_DESCRIPTION: This is a pseudo storage engine to represent the binlog in a transaction
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: FORCE
...
*************************** 10. row ***************************
 PLUGIN_NAME: InnoDB
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: ha_innodb_plugin.so
PLUGIN_LIBRARY_VERSION: 1.0
 PLUGIN_AUTHOR: Innobase Oy
 PLUGIN_DESCRIPTION: Supports transactions, row-level locking,
 and foreign keys
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
...

• The SHOW PLUGINS statement displays a row for each loaded plugin. Any that have a Library
value of NULL are built in and cannot be unloaded.

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...
*************************** 10. row ***************************
 Name: InnoDB

Server Plugins

773

 Status: ACTIVE
 Type: STORAGE ENGINE
Library: ha_innodb_plugin.so
License: GPL
...

• The mysql.plugin table shows which plugins have been registered with INSTALL PLUGIN. The
table contains only plugin names and library file names, so it does not provide as much information
as the PLUGINS table or the SHOW PLUGINS statement.

5.1.8.3 The Rewriter Query Rewrite Plugin

As of MySQL 5.7.6, MySQL Server supports query rewrite plugins that can examine and possibly
modify statements received by the server before the server executes them. See Section 24.2.3.10,
“Query Rewrite Plugins”.

MySQL distributions include a postparse query rewrite plugin named Rewriter and scripts for
installing the plugin and its associated components. These components work together to provide
SELECT rewriting capability:

• A server-side plugin named Rewriter examines SELECT statements and may rewrite them, based
on its in-memory cache of rewrite rules. Standalone SELECT statements and SELECT statements in
prepared statements are subject to rewriting. SELECT statements occurring within view definitions or
stored programs are not subject to rewriting.

• The Rewriter plugin uses a database named query_rewrite containing a table named
rewrite_rules. The table provides persistent storage for the rules that the plugin uses to decide
whether to rewrite statements. Users communicate with the plugin by modifying the set of rules
stored in this table. The plugin communicates with users by setting the message column of table
rows.

• The query_rewrite database contains a stored procedure named flush_rewrite_rules()
that loads the contents of the rules table into the plugin.

• A user-defined function named load_rewrite_rules() is used by the
flush_rewrite_rules() stored procedure.

• The Rewriter plugin exposes system variables that enable plugin configuration and status
variables that provide runtime operational information.

The following sections describe how to install and use the Rewriter plugin, and provide reference
information for its associated components.

Installing the Rewriter Query Rewrite Plugin

Note

If installed, the Rewriter plugin involves some overhead even when disabled.
To avoid this overhead, do not install the plugin unless you plan to use it.

To install or uninstall the Rewriter query rewrite plugin, choose the approropriate script located in the
share directory of your MySQL installation:

• install_rewriter.sql: Choose this script to install the Rewriter plugin and its associated
components.

Note

Before MySQL 5.7.8, there are two installation
scripts, install_rewriter.sql and
install_rewriter_with_optional_columns.sql, which differ in
whether they create the pattern_digest and normalized_columns
columns of the rewrite_rules table. As of 5.7.8, the installation script

Server Plugins

774

always creates these columns. (For details about the table columns, see
Rewriter Query Rewrite Plugin Rules Table.)

• uninstall_rewriter.sql: Choose this script to uninstall the Rewriter plugin and its
associated components.

Run the chosen script as follows:

shell> mysql -u root -p < install_rewriter.sql
Enter password: (enter root password here)

The example here uses the install_rewriter.sql installation script. Make the appropriate
substitution if you choose a different script.

Running an installation script should install and enable the plugin. To verify that, connect to the server
and execute this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'rewriter_enabled';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| rewriter_enabled | ON |
+------------------+-------+

For usage instructions, see Using the Rewriter Query Rewrite Plugin. For reference information, see
Rewriter Query Rewrite Plugin Reference.

Using the Rewriter Query Rewrite Plugin

To enable or disable the plugin, enable or disable the rewriter_enabled system variable. By
default, the Rewriter plugin is enabled when you install it (see Installing the Rewriter Query Rewrite
Plugin). To set the initial plugin state explicitly, you can set the variable at server startup. For example,
to enable the plugin in an option file, use these lines:

[mysqld]
rewriter_enabled=ON

It is also possible to enable or disable the plugin at runtime:

mosql> SET GLOBAL rewriter_enabled = ON;
mysql> SET GLOBAL rewriter_enabled = OFF;

Asumming that the Rewriter plugin is enabled, it examines and possibly modifies each SELECT
statement received by the server. The plugin determines whether to rewrite statements based on
its in-memory cache of rewriting rules, which are loaded from the rewrite_rules table in the
query_rewrite database.

Adding Rewrite Rules

To add rules for the Rewriter plugin, add rows to the rewrite_rules table, then invoke the
flush_rewrite_rules() stored procedure to load the rules from the table into the plugin. The
following example creates a simple rule to match statements that select a single literal value:

mysql> INSERT INTO query_rewrite.rewrite_rules (pattern, replacement)
 -> VALUES('SELECT ?', 'SELECT ? + 1');

The resulting table contents look like this:

mysql> SELECT * FROM query_rewrite.rewrite_rules\G
*************************** 1. row ***************************
 id: 1

Server Plugins

775

 pattern: SELECT ?
 pattern_database: NULL
 replacement: SELECT ? + 1
 enabled: YES
 message: NULL
 pattern_digest: NULL
normalized_pattern: NULL

The rule specifies a pattern template indicating which SELECT statements to match, and a
replacement template indicating how to rewrite matching statements. However, adding the rule to the
rewrite_rules table is not sufficient to cause the Rewriter plugin to use the rule. You must invoke
flush_rewrite_rules() to load the table contents into the plugin in-memory cache:

mysql> CALL query_rewrite.flush_rewrite_rules();

Tip

If your rewrite rules seem not to be working properly, make sure that you have
reloaded the rules table by calling flush_rewrite_rules().

When the plugin reads each rule from the rules table, it computes a normalized form (digest) from the
pattern and a digest hash value, and updates the normalized_pattern and pattern_digest
columns:

mysql> SELECT * FROM query_rewrite.rewrite_rules\G
*************************** 1. row ***************************
 id: 1
 pattern: SELECT ?
 pattern_database: NULL
 replacement: SELECT ? + 1
 enabled: YES
 message: NULL
 pattern_digest: 46b876e64cd5c41009d91c754921f1d4
normalized_pattern: select ?

For information about statement digesting and normalized statements, see Section 21.7, “Performance
Schema Statement Digests”.

Patterns use the same syntax as prepared statements (see Section 13.5.1, “PREPARE Syntax”).
Within a pattern template, ? characters act as parameter markers that match data values. Parameter
markers can be used only where data values should appear, not for SQL keywords, identifiers, and so
forth. The ? characters should not be enclosed within quotation marks.

Like the pattern, the replacement can contain ? characters. For a statement that matches a pattern
template, the plugin rewrites it, replacing ? parameter markers in the replacement using data values
matched by the corresponding markers in the pattern. The result is a complete statement string. The
plugin asks the server to parse it, and returns the result to the server as the representation of the
rewritten statement.

After adding and loading the rule, check whether rewriting occurs according to whether statements
match the rule pattern:

mysql> SELECT PI();
+----------+
| PI() |
+----------+
| 3.141593 |
+----------+
1 row in set (0.01 sec)

mysql> SELECT 10;
+--------+
| 10 + 1 |
+--------+

Server Plugins

776

| 11 |
+--------+
1 row in set, 1 warning (0.00 sec)

No rewriting occurs for the first SELECT statment, but does for the second. The second statement
illustrates that when the Rewriter plugin rewrites a statement, it produces a warning message. To
view the message, use SHOW WARNINGS:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1105
Message: Query 'SELECT 10' rewritten to 'SELECT 10 + 1' by a query rewrite plugin

To enable or disable an existing rule, modify its enabled column and reload the table into the plugin.
To disable rule 1:

mysql> UPDATE query_rewrite.rewrite_rules SET enabled = 'NO' WHERE id = 1;
mysql> CALL query_rewrite.flush_rewrite_rules();

This enables you to deactivate a rule without removing it from the table.

To re-enable rule 1:

mysql> UPDATE query_rewrite.rewrite_rules SET enabled = 'YES' WHERE id = 1;
mysql> CALL query_rewrite.flush_rewrite_rules();

The rewrite_rules table contains a pattern_database column that Rewriter uses for matching
table names that are not qualified with a database name:

• Qualified table names in statements match qualified names in the pattern if corresponding database
and table names are identical.

• Unqualified table names in statements match unqualified names in the pattern only if the default
database is the same as pattern_database and the table names are identical.

Suppose that a table named appdb.users has a column named id and that applications are
expected to select rows from the table using a query of one of these forms, where the second can be
used only if appdb is the default database:

SELECT * FROM users WHERE appdb.id = id_value;
SELECT * FROM users WHERE id = id_value;

Suppose also that the id column is renamed to user_id (perhaps the table must be modified to
add another type of ID and it is necessary to indicate more specifically what type of ID the id column
represents).

The change means that applications must refer to user_id rather than id in the WHERE clause. But
if there are old applications that cannot be written to change the SELECT queries they generate, they
will no longer work properly. The Rewriter plugin can solve this problem. To match and rewrite
statements whether or not they qualify the table name, add the following two rules and reload the rules
table:

mysql> INSERT INTO query_rewrite.rewrite_rules
 -> (pattern, replacement) VALUES(
 -> 'SELECT * FROM appdb.users WHERE id = ?',
 -> 'SELECT * FROM appdb.users WHERE user_id = ?'
 ->);
mysql> INSERT INTO query_rewrite.rewrite_rules
 -> (pattern, replacement, pattern_database) VALUES(
 -> 'SELECT * FROM users WHERE id = ?',
 -> 'SELECT * FROM users WHERE user_id = ?',

Server Plugins

777

 -> 'appdb'
 ->);
mysql> CALL query_rewrite.flush_rewrite_rules();

Rewriter uses the first rule to match statements that use the qualified table name. It uses the second
to match statements that used the unqualified name, but only if the default database is appdb (the
value in pattern_database).

How Statement Matching Works

The Rewriter plugin uses statement digests to match incoming statements against rewrite rules
in stages. The max_digest_length system variable determines the size of the buffer used for
computing statement digests. Larger values enable computation of digests that distinguish longer
statements. Smaller values use less memory but increase the likelihood of longer statements colliding
with the same digest value.

The plugin matches each statement to the rewrite rules as follows:

1. Compute the statement digest hash value and compare it to the rule digest hash values. This is
subject to false positives, but serves as a quick rejection test.

2. If the statement digest hash value matches any pattern digest hash values, match the normalized
form of the statement to the normalized form of the matching rule patterns.

3. If the normalized statement matches a rule, compare the literal values in the statement and the
pattern. A ? in the pattern matches any literal value in the statement. If the statement prepares a
SELECT statement, ? in the pattern also matches ? in the statement. Otherwise, corresponding
literals must be the same.

If multiple rules match a statement, it is indeterminate which one the plugin uses to rewrite the
statement.

If a pattern contains more markers than the replacement, the plugin discards excess data values. If a
pattern contains fewer markers than the replacement, it is an error. The plugin notices this when the
rules table is loaded, writes an error message to the message column of the rule row to communicate
the problem, and sets the Rewriter_reload_error status variable to ON.

Rewriting Prepared Statements

Prepared statements are rewritten at parse time (that is, when they are prepared), not when they are
executed later.

Prepared statements differ from nonprepared statements in that they may contain ? characters as
parameter markers. To match a ? in a prepared statement, a Rewriter pattern must contain ? in the
same location. Suppose that a rewrite rule has this pattern:

SELECT ?, 3

The following table shows several prepared SELECT statements and whether the rule pattern matches
them.

Prepared Statement Whether Pattern Matches Statement

PREPARE s AS 'SELECT 3, 3' Yes

PREPARE s AS 'SELECT ?, 3' Yes

PREPARE s AS 'SELECT 3, ?' No

PREPARE s AS 'SELECT ?, ?' No

Rewriter Plugin Operational Information

The Rewriter plugin makes information available about its operation by means of several status
variables:

Server Plugins

778

mysql> SHOW GLOBAL STATUS LIKE 'Rewriter%';
+-----------------------------------+-------+
| Variable_name | Value |
+-----------------------------------+-------+
Rewriter_number_loaded_rules	1
Rewriter_number_reloads	5
Rewriter_number_rewritten_queries	1
Rewriter_reload_error	ON
+-----------------------------------+-------+

For descriptions of these variables, see Rewriter Query Rewrite Plugin Status Variables.

When you load the rules table by calling the flush_rewrite_rules() stored procedure, if
an error occurs for some rule, the CALL statement produces an error, and the plugin sets the
Rewriter_reload_error status variable to ON:

mysql> CALL query_rewrite.flush_rewrite_rules();
ERROR 1644 (45000): Loading of some rule(s) failed.

mysql> SHOW GLOBAL STATUS LIKE 'Rewriter_reload_error';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Rewriter_reload_error | ON |
+-----------------------+-------+

In this case, check the message column of rewrite_rules table rows for non-NULL values to see
what the problem was.

Rewriter Plugin Use of Character Sets

When the rewrite_rules table is loaded into the Rewriter plugin, the plugin interprets statements
using the current global value of the character_set_client system variable. If the global
character_set_client value is changed subsequently, the rules table must be reloaded.

A client must have a session character_set_client value identical to what the global value was
when the rules table was loaded or rule matching will not work for that client.

Rewriter Query Rewrite Plugin Reference

The following discussion serves as a reference to these components associated with the Rewriter
query rewrite plugin:

• The Rewriter rules table in the query_rewrite database

• Rewriter procedures and functions

• Rewriter system and status variables

Rewriter Query Rewrite Plugin Rules Table

The rewrite_rules table in the query_rewrite database provides persistent storage for the rules
that the Rewriter plugin uses to decide whether to rewrite statements.

Users communicate with the plugin by modifying the set of rules stored in this table. The plugin
communicates with users by setting the table's message column.

Note

The rules table is loaded into the plugin by the flush_rewrite_rules stored
procedure. Unless that procedure has been called following the most recent
table modification, the table contents do not necessarily correspond to the set of
rules the plugin is using.

The rewrite_rules table has these columns:

Server Plugins

779

• id

The rule ID. This column is the table primary key. You can use the ID to uniquely identify any rule.

• pattern

The template that indicates the pattern for statements that the rule matches. Use ? to represent
parameter markers that match data values.

• pattern_database

The database used to match unqualified table names in statements. Qualified table names in
statements match qualified names in the pattern if corresponding database and table names are
identical. Unqualified table names in statements match unqualified names in the pattern only if the
default database is the same as pattern_database and the table names are identical.

• replacement

The template that indicates how to rewrite statements matching the pattern column value. Use ?
to represent parameter markers that match data values. In rewritten statements, the plugin replaces
? parameter markers in replacement using data values matched by the corresponding markers in
pattern.

• enabled

Whether the rule is enabled. Load operations (performed by invoking the
flush_rewrite_rules() stored procedure) load the rule from the table into the Rewriter in-
memory cache only if this column is YES (Y before MySQL 5.7.8).

This column makes it possible to deactivate a rule without removing it: Set the column to a value
other than YES and reload the table into the plugin.

• message

The plugin uses this column for communicating with users. If no error occurs when the rules table is
loaded into memory, the plugin sets the message column to NULL. A non-NULL value indicates an
error and the column contents are the error message. Errors can occur under these circumstances:

• Either the pattern or the replacement is an incorrect SQL statement that produces syntax errors.

• The replacement contains more ? parameter markers than the pattern.

If a load error occurs, the plugin also sets the Rewriter_reload_error status variable to ON.

• pattern_digest

This column is used for debugging and diagnostics. If the column exists when the rules table is
loaded into memory, the plugin updates it with the pattern digest. This column may be useful if you
are trying to determine why some statement fails to be rewritten.

• normalized_pattern

This column is used for debugging and diagnostics. If the column exists when the rules table is
loaded into memory, the plugin updates it with the normalized form of the pattern. This column may
be useful if you are trying to determine why some statement fails to be rewritten.

Note

Before MySQL 5.7.8, the pattern_digest and normalized_pattern
columns are optional: They are created if you install the Rewriter plugin using
the install_rewriter_with_optional_columns.sql, but not if you use
install_rewriter.sql.

Server Plugins

780

Rewriter Query Rewrite Plugin Procedures and Functions

Rewriter plugin operation uses a stored procedure that loads the rules table into its in-memory
cache, and a helper user-defined function (UDF). Under normal operation, users invoke only the stored
procedure. The UDF is intended to be invoked by the stored procedure, not directly by users.

• flush_rewrite_rules()

This stored procedure uses the load_rewrite_rules() UDF to load the contents of the
rewrite_rules table into the Rewriter in-memory cache. After loading the table, it also clears
the query cache.

Calling flush_rewrite_rules() implies COMMIT.

Invoke this procedure after you modify the rules table to cause the plugin to update its cache from
the new table contents. If any errors occur, the plugin sets the message column for the appropriate
rule rows in the table and sets the Rewriter_reload_error status variable to ON.

• load_rewrite_rules()

This UDF is a helper routine used by the flush_rewrite_rules() stored procedure.

Rewriter Query Rewrite Plugin System Variables

The Rewriter query rewrite plugin supports the following system variables. These variables are
available only if the plugin is installed (see Installing the Rewriter Query Rewrite Plugin).

• rewriter_enabled

Introduced 5.7.6

Name rewriter_enabled

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Whether the Rewriter query rewrite plugin is enabled.

• rewriter_verbose

Introduced 5.7.6

Name rewriter_verbose

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

For internal use.

Rewriter Query Rewrite Plugin Status Variables

The Rewriter query rewrite plugin supports the following status variables. These variables are
available only if the plugin is installed (see Installing the Rewriter Query Rewrite Plugin).

• Rewriter_number_loaded_rules

Server Plugins

781

The number of rewrite plugin rewrite rules successfully loaded from the rewrite_rules table into
memory for use by the Rewriter plugin.

• Rewriter_number_reloads

The number of times the rewrite_rules table has been loaded into the in-memory cache used by
the Rewriter plugin.

• Rewriter_number_rewritten_queries

The number of queries rewritten by the Rewriter query rewrite plugin since it was loaded.

• Rewriter_reload_error

Whether an error occurred the most recent time that the rewrite_rules table was loaded into
the in-memory cache used by the Rewriter plugin. If the value is OFF, no error occurred. If the
value is ON, an error occurred; check the message column of the rewriter_rules table for error
messages.

5.1.8.4 Version Tokens

Distributions of MySQL 5.7.8 or higher include Version Tokens, a feature that enables creation of and
synchronization around server tokens that applications can use to prevent accessing incorrect or out-
of-date data.

The Version Tokens interface has these characteristics:

• Version tokens are pairs consisting of a name that serves as a key or identifier, plus a value.

• Version tokens can be locked. An application can use token locks to indicate to other cooperating
applications that tokens are in use and should not be modified.

• Version token lists are established per server; for example, to specify the server assignment or
operational state. In addition, an application that communicates with a server can register its own
list of tokens that indicate the state it requires the server to be in. An SQL statement sent by the
application to a server not in the required state produces an error. This is a signal to the application
that it should seek a different server in the required state to receive the SQL statement.

The following sections describe the components of Version Tokens, discuss how to install and use it,
and provide reference information for its components.

Version Tokens Components

Version Tokens is based on a plugin library that implements these components:

• A server-side plugin named version_tokens holds the list of version tokens associated with the
server and subscribes to notifications for statement execution events. The version_tokens plugin
uses the audit plugin API to monitor incoming statements from clients and matches each client's
session-specific version token list against the server version token list. If there is a match, the plugin
lets the statement through and the server continues to process it. Otherwise, the plugin returns an
error to the client and the statement fails.

• A set of user-defined functions (UDFs) provides an SQL-level API for manipulating and inspecting
the list of server version tokens maintained by the plugin.

• A system variable enables clients to specify the list of version tokens that register the required server
state. If the server has a different state when a client sends a statement, the client receives an error.

Installing or Uninstalling Version Tokens

Server Plugins

782

Note

If installed, Version Tokens involves some overhead. To avoid this overhead, do
not install it unless you plan to use it.

This section describes how to install or uninstall Version Tokens, which is implemented in a plugin
library file containing a plugin and user-defined functions. For general information about installing
or uninstalling plugins and UDFs, see Section 5.1.8.1, “Installing and Uninstalling Plugins”, and
Section 24.4.2.5, “UDF Compiling and Installing”.

The Version Tokens plugin library file is located in the directory named by the plugin_dir system
variable. The file base name is version_token. The file name suffix differs per platform (for example,
.so for Unix and Unix-like systems, .dll for Windows).

To install the Version Tokens plugin and UDFs, use the INSTALL PLUGIN and CREATE FUNCTION
statements (the .so suffix might differ on your platform; adjust it as necessary):

INSTALL PLUGIN version_tokens SONAME 'version_token.so';
CREATE FUNCTION version_tokens_set RETURNS STRING SONAME 'version_token.so';
CREATE FUNCTION version_tokens_show RETURNS STRING SONAME 'version_token.so';
CREATE FUNCTION version_tokens_edit RETURNS STRING SONAME 'version_token.so';
CREATE FUNCTION version_tokens_delete RETURNS STRING SONAME 'version_token.so';
CREATE FUNCTION version_tokens_lock_shared RETURNS INT SONAME 'version_token.so';
CREATE FUNCTION version_tokens_lock_exclusive RETURNS INT SONAME 'version_token.so';
CREATE FUNCTION version_tokens_unlock RETURNS INT SONAME 'version_token.so';

You must install the UDFs to manage the server's version token list, but you must also install the plugin
because the UDFs will not work correctly without it.

If the plugin and UDFs are used on a master replication server, install them on all slave servers as well
to avoid replication problems.

Once installed as just shown, the Version Tokens plugin and UDFs remain installed until uninstalled.
To remove them, use the UNINSTALL PLUGIN and DROP FUNCTION statements:

UNINSTALL PLUGIN version_tokens;
DROP FUNCTION version_tokens_set;
DROP FUNCTION version_tokens_show;
DROP FUNCTION version_tokens_edit;
DROP FUNCTION version_tokens_delete;
DROP FUNCTION version_tokens_lock_shared;
DROP FUNCTION version_tokens_lock_exclusive;
DROP FUNCTION version_tokens_unlock;

Using Version Tokens

Before using Version Tokens, install it according to the instructions at Installing or Uninstalling Version
Tokens.

A scenario in which Version Tokens can be useful is a system that accesses a collection of MySQL
servers but needs to manage them for load balancing purposes by monitoring them and adjusting
server assignments according to load changes. Such a system comprises these components:

• The collection of MySQL servers to be managed.

• An administrative or management application that communicates with the servers and organizes
them into high-availability groups. Groups serve different purposes, and servers within each group
may have different assignments. Assignment of a server within a certain group can change at any
time.

• Client applications that access the servers to retrieve and update data, choosing servers according
to the purposes assigned them. For example, a client should not send an update to a read-only
server.

Server Plugins

783

Version Tokens permit server access to be managed according to assignment without requiring clients
to repeatedly query the servers about their assignments:

• The management application performs server assignments and establishes version tokens on each
server to reflect its assignment. The application caches this information to provide a central access
point to it.

If at some point the management application needs to change a server assignment (for example, to
change it from permitting writes to read only), it changes the server's version token list and updates
its cache.

• To improve performance, client applications obtain cache information from the management
application, enabling them to avoid having to retrieve information about server assignments for each
statement. Based on the type of statements it will issue (for example, reads versus writes), a client
selects an appropriate server and connects to it.

• In addition, the client sends to the server its own client-specific version tokens to register the
assignment it requires of the server. For each statement sent by the client to the server, the server
compares its own token list with the client token list. If the server token list contains all tokens
present in the client token list with the same values, there is a match and the server executes the
statement.

On the other hand, perhaps the management application has changed the server assignment and its
version token list. In this case, the new server assignment may now be incompatible with the client
requirements. A token mismatch between the server and client token lists occurs and the server
returns an error in reply to the statement. This is an indication to the client to refresh its version token
information from the management application cache, and to select a new server to communicate
with.

The client-side logic for detecting version token errors and selecting a new server can be implemented
different ways:

• The client can handle all version token registration, mismatch detection, and connection switching
itself.

• The logic for those actions can be implemented in a connector that manages connections between
clients and MySQL servers. Such a connector might handle mismatch error detection and statement
resending itself, or it might pass the error to the application and leave it to the application to resend
the statement.

The following example illustrates the preceding discussion in more concrete form.

When Version Tokens initializes on a given server, the server's version token list is empty. Token
list maintenance is performed by calling user-defined functions (UDFs). The SUPER privilege is
required to call any of the Version Token UDFs, so token list modification is expected to be done by a
management or administrative application that has that privilege.

Suppose that a management application communicates with a set of servers that are queried by clients
to access employee and product databases (named emp and prod, respectively). All servers are
permitted to process data retrieval statements, but only some of them are permitted to make database
updates. To handle this on a database-specific basis, the management application establishes a list
of version tokens on each server. In the token list for a given server, token names represent database
names and token values are read or write depending on whether the database must be used in
read-only fashion or whether it can take reads and writes.

Client applications register a list of version tokens they require the server to match by setting a system
variable. Variable setting occurs on a client-specific basis, so different clients can register different
requirements. By default, the client token list is empty, which matches any server token list. When a
client sets its token list to a nonempty value, matching may succeed or fail, depending on the server
version token list.

Server Plugins

784

To define the version token list for a server, the management application calls the
version_token_set() UDF. (There are also UDFs for modifying and displaying the token list,
described later.) For example, the application might send these statements to a group of three servers:

Server 1:

mysql> SELECT version_tokens_set('emp=read;prod=read');
+--+
| version_tokens_set('emp=read;prod=read') |
+--+
| 2 version tokens set. |
+--+

Server 2:

mysql> SELECT version_tokens_set('emp=write;prod=read');
+---+
| version_tokens_set('emp=write;prod=read') |
+---+
| 2 version tokens set. |
+---+

Server 3:

mysql> SELECT version_tokens_set('emp=read;prod=write');
+---+
| version_tokens_set('emp=read;prod=write') |
+---+
| 2 version tokens set. |
+---+

The token list in each case is specified as a semicolon-separated list of name=value pairs. The
resulting token list values result in these server assingments:

• Any server accepts reads for either database.

• Only server 2 accepts updates for the emp database.

• Only server 3 accepts updates for the prod database.

In addition to assigning each server a version token list, the management application also maintains a
cache that reflects the server assignments.

Before communicating with the servers, a client application contacts the management application
and retrieves information about server assignments. Then the client selects a server based on those
assignments. Suppose that a client wants to perform both reads and writes on the emp database.
Based on the preceding assignments, only server 2 qualifies. The client connects to server 2 and
registers its server requirements there by setting its version_tokens_session system variable:

mysql> SET @@session.version_tokens_session = 'emp=write';

For subsequent statements sent by the client to server 2, the server compares its own version token list
to the client list to check whether they match. If so, statements execute normally:

mysql> UPDATE emp.employee SET salary = salary * 1.1 WHERE id = 4981;
Query OK, 1 row affected (0.07 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT last_name, first_name FROM emp.employee WHERE id = 4981;
+-----------+------------+
| last_name | first_name |
+-----------+------------+
| Smith | Abe |

Server Plugins

785

+-----------+------------+
1 row in set (0.01 sec)

Discrepancies between the server and client version token lists can occur two ways:

• A token name in the version_tokens_session value is not present in the server token list. In this
case, an ER_VTOKEN_PLUGIN_TOKEN_NOT_FOUND error occurs.

• A token value in the version_tokens_session value differs from the value of the corresponding
token in the server token list. In this case, an ER_VTOKEN_PLUGIN_TOKEN_MISMATCH error occurs.

As long as the assignment of server 2 does not change, the client continues to use it for reads
and writes. But suppose that the management application wants to change server assignments so
that writes for the emp database must be sent to server 1 instead of server 2. To do this, it uses
version_tokens_edit() to modify the emp token value on the two servers (and updates its cache
of server assignments):

Server 1:

mysql> SELECT version_tokens_edit('emp=write');
+----------------------------------+
| version_tokens_edit('emp=write') |
+----------------------------------+
| 1 version tokens updated. |
+----------------------------------+

Server 2:

mysql> SELECT version_tokens_edit('emp=read');
+---------------------------------+
| version_tokens_edit('emp=read') |
+---------------------------------+
| 1 version tokens updated. |
+---------------------------------+

version_tokens_edit() modifies the named tokens in the server token list and leaves other tokens
unchanged.

The next time the client sends a statement to server 2, its own token list no longer matches the server
token list and an error occurs:

mysql> UPDATE emp.employee SET salary = salary * 1.1 WHERE id = 4982;
ERROR 3136 (42000): Version token mismatch for emp. Correct value read

In this case, the client should contact the management application to obtain updated information about
server assignments, select a new server, and send the failed statement to the new server.

Note

Each client must cooperate with Version Tokens by sending only statements in
accordance with the token list that it registers with a given server. For example,
if a client registers a token list of 'emp=read', there is nothing in Version
Tokens to prevent the client from sending updates for the emp database. The
client itself must refrain from doing so.

For each statement received from a client, the server implicitly uses locking, as follows:

• Take a shared lock for each token named in the client token list (that is, in the
version_tokens_session value)

• Perform the comparison between the server and client token lists

• Execute the statement or produce an error depending on the comparison result

Server Plugins

786

• Release the locks

The server uses shared locks so that comparisons for multiple sessions can occur without blocking,
while preventing changes to the tokens for any session that attempts to acquire an exclusive lock
before it manipulates tokens of the same names in the server token list.

The preceding example uses only a few of the user-defined included in the Version Tokens plugin
library, but there are others. One set of UDFs permits the server's list of version tokens to be
manipulated and inspected. Another set of UDFs permits version tokens to be locked and unlocked.

These UDFs permit the server's list of version tokens to be created, changed, removed, and inspected:

• version_tokens_set() completely replaces the current list and assigns a new list. The argument
is a semicolon-separated list of name=value pairs.

• version_tokens_edit() enables partial modifications to the current list. It can add new tokens
or change the values of existing tokens. The argument is a semicolon-separated list of name=value
pairs.

• version_tokens_delete() deletes tokens from the current list. The argument is a semicolon-
separated list of token names.

• version_tokens_show() displays the current token list. It takes no argument.

Each of those functions, if successful, returns a binary string indicating what action occurred. The
following example establishes the server token list, modifies it by adding a new token, deletes some
tokens, and displays the resulting token list:

mysql> SELECT version_tokens_set('tok1=a;tok2=b');
+-------------------------------------+
| version_tokens_set('tok1=a;tok2=b') |
+-------------------------------------+
| 2 version tokens set. |
+-------------------------------------+
mysql> SELECT version_tokens_edit('tok3=c');
+-------------------------------+
| version_tokens_edit('tok3=c') |
+-------------------------------+
| 1 version tokens updated. |
+-------------------------------+
mysql> SELECT version_tokens_delete('tok2;tok1');
+------------------------------------+
| version_tokens_delete('tok2;tok1') |
+------------------------------------+
| 2 version tokens deleted. |
+------------------------------------+
mysql> SELECT version_tokens_show();
+-----------------------+
| version_tokens_show() |
+-----------------------+
| tok3=c; |
+-----------------------+

Warnings occur if a token list is malformed:

mysql> SELECT version_tokens_set('tok1=a; =c');
+----------------------------------+
| version_tokens_set('tok1=a; =c') |
+----------------------------------+
| 1 version tokens set. |
+----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning

Server Plugins

787

 Code: 42000
Message: Invalid version token pair encountered. The list provided
 is only partially updated.
1 row in set (0.00 sec)

As mentioned previously, version tokens are defined using a semicolon-separated list of name=value
pairs. Consider this invocation of version_tokens_set():

mysql> SELECT version_tokens_set('tok1=b;;; tok2= a = b ; tok1 = 1\'2 3"4')
+---+
| version_tokens_set('tok1=b;;; tok2= a = b ; tok1 = 1\'2 3"4') |
+---+
| 3 version tokens set. |
+---+

Version Tokens interprets the argument as follows:

• Whitespace around names and values is ignored. Whitespace within names and values is permitted.
(For version_tokens_delete(), which takes a list of names without values, whitespace around
names is ignored.)

• There is no quoting mechanism.

• Order of tokens is not significant except that if a token list contains multiple instances of a given
token name, the last value takes precedence over earlier values.

Given those rules, the preceding version_tokens_set() call results in a token list with
two tokens: tok1 has the value 1'2 3"4, and tok2 has the value a = b. To verify this, call
version_tokens_show():

mysql> SELECT version_tokens_show();
+--------------------------+
| version_tokens_show() |
+--------------------------+
| tok2=a = b;tok1=1'2 3"4; |
+--------------------------+

If the token list contains two tokens, why did version_tokens_set() return the value 3 version
tokens set? That occurred because the original token list contained two definitions for tok1, and the
second definition replaced the first.

The Version Tokens token-manipulation UDFs place these constraints on token names and values:

• Token names cannot contain = or ; characters and have a maximum length of 64 characters.

• Token values cannot contain ; characters. Length of values is constrained by the value of the
max_allowed_packet system variable.

• Version Tokens treats token names and values as binary strings, so comparisons are case sensitive.

Version Tokens also includes a set of UDFs enabling tokens to be locked and unlocked:

• version_tokens_lock_exclusive() acquires exclusive version token locks. It takes a list of
one or more lock names and a timeout value.

• version_tokens_lock_shared() acquires shared version token locks. It takes a list of one or
more lock names and a timeout value.

• version_tokens_unlock() release version token locks (exclusive and shared). It takes no
argument.

Each locking function returns nonzero for success. Otherwise, an error occurs:

Server Plugins

788

mysql> SELECT version_tokens_lock_shared('lock1', 'lock2', 0);
+---+
| version_tokens_lock_shared('lock1', 'lock2', 0) |
+---+
| 1 |
+---+

mysql> SELECT version_tokens_lock_shared(NULL, 0);
ERROR 3131 (42000): Incorrect locking service lock name '(null)'.

Locking using Version Tokens locking functions is advisory; applications must agree to cooperate.

It is possible to lock nonexisting token names. This does not create the tokens.

Note

Version Tokens locking functions are based on the locking service described at
Section 24.3.1, “The Locking Service”, and thus have the same semantics for
shared and exclusive locks. (Version Tokens uses the locking service routines
built into the server, not the locking service UDF interface, so those UDFs need
not be installed to use Version Tokens.) Locks acquired by Version Tokens
use a locking service namespace of version_token_locks. Locking service
locks can be monitored using the Performance Schema, so this is also true for
Version Tokens locks. For details, see Locking Service Monitoring.

For the Version Tokens locking functions, token name arguments are used exactly as specified.
Surrounding whitespace is not ignored and = and ; characters are permitted. This is because Version
Tokens simply passes the token names to be locked as is to the locking service.

Version Tokens Reference

The following discussion serves as a reference to these Version Tokens components:

• Version Tokens user-defined functions

• Version Tokens system variables

Version Tokens Functions

The Version Tokens plugin library includes several user-defined functions. One set of UDFs permits the
server's list of version tokens to be manipulated and inspected. Another set of UDFs permits version
tokens to be locked and unlocked. The SUPER privilege is required to invoke any Version Tokens UDF.

The following UDFs permit the server's list of version tokens to be created, changed, removed, and
inspected. Interpretation of name_list and token_list arguments (including whitespace handling)
occurs as described in Using Version Tokens, which provides details about the syntax for specifying
tokens, as well as additional examples.

• version_tokens_delete(name_list)

Deletes tokens from the server's list of version tokens using the name_list argument and returns a
binary string that indicates the outcome of the operation. name_list is a semicolon-separated list of
version token names to delete.

mysql> SELECT version_tokens_delete('tok1;tok3');
+------------------------------------+
| version_tokens_delete('tok1;tok3') |
+------------------------------------+
| 2 version tokens deleted. |
+------------------------------------+

As of MySQL 5.7.9, an argument of NULL is treated as an empty string, which has no effect on the
token list.

Server Plugins

789

version_tokens_delete() deletes the tokens named in its argument, if they exist. (It is not an
error to delete nonexisting tokens.) To clear the token list entirely without knowing which tokens are
in the list, pass NULL or a string containing no tokens to version_tokens_set():

mysql> SELECT version_tokens_set(NULL);
+------------------------------+
| version_tokens_set(NULL) |
+------------------------------+
| Version tokens list cleared. |
+------------------------------+
mysql> SELECT version_tokens_set('');
+------------------------------+
| version_tokens_set('') |
+------------------------------+
| Version tokens list cleared. |
+------------------------------+

• version_tokens_edit(token_list)

Modifies the server's list of version tokens using the token_list argument and returns a binary
string that indicates the outcome of the operation. token_list is a semicolon-separated list of
name=value pairs specifying the name of each token to be defined and its value. If a token exists,
its value is updated with the given value. If a token does not exist, it is created with the given value. If
the argument is NULL or a string containing no tokens, the token list remains unchanged.

mysql> SELECT version_tokens_set('tok1=value1;tok2=value2');
+---+
| version_tokens_set('tok1=value1;tok2=value2') |
+---+
| 2 version tokens set. |
+---+
mysql> SELECT version_tokens_edit('tok2=new_value2;tok3=new_value3');
+--+
| version_tokens_edit('tok2=new_value2;tok3=new_value3') |
+--+
| 2 version tokens updated. |
+--+

• version_tokens_set(token_list)

Replaces the server's list of version tokens with the tokens defined in the token_list argument
and returns a binary string that indicates the outcome of the operation. token_list is a semicolon-
separated list of name=value pairs specifying the name of each token to be defined and its value. If
the argument is NULL or a string containing no tokens, the token list is cleared.

mysql> SELECT version_tokens_set('tok1=value1;tok2=value2');
+---+
| version_tokens_set('tok1=value1;tok2=value2') |
+---+
| 2 version tokens set. |
+---+

• version_tokens_show()

Returns the server's list of version tokens as a binary string containing a semicolon-separated list of
name=value pairs.

mysql> SELECT version_tokens_show();
+--------------------------+
| version_tokens_show() |
+--------------------------+
| tok2=value2;tok1=value1; |
+--------------------------+

Server Plugins

790

The following UDFs permit version tokens to be locked and unlocked:

• version_tokens_lock_exclusive(token_name[, token_name] ..., timeout)

Acquires exclusive locks on one or more version tokens, specified by name as strings, timing out
with an error if the locks are not acquired within the given timeout value.

mysql> SELECT version_tokens_lock_exclusive('lock1', 'lock2', 10);
+---+
| version_tokens_lock_exclusive('lock1', 'lock2', 10) |
+---+
| 1 |
+---+

This function was added in MySQL 5.7.8 with the name vtoken_get_write_locks() and
renamed to version_tokens_lock_exclusive() in 5.7.9.

• version_tokens_lock_shared(token_name[, token_name] ..., timeout)

Acquires shared locks on one or more version tokens, specified by name as strings, timing out with
an error if the locks are not acquired within the given timeout value.

mysql> SELECT version_tokens_lock_shared('lock1', 'lock2', 10);
+--+
| version_tokens_lock_shared('lock1', 'lock2', 10) |
+--+
| 1 |
+--+

This function was added in MySQL 5.7.8 with the name vtoken_get_read_locks() and renamed
to version_tokens_lock_shared() in 5.7.9.

• version_tokens_unlock()

Releases all locks that were acquired within the current session using
version_tokens_lock_exclusive() and version_tokens_lock_shared().

mysql> SELECT version_tokens_unlock();
+-------------------------+
| version_tokens_unlock() |
+-------------------------+
| 1 |
+-------------------------+

This function was added in MySQL 5.7.8 with the name vtoken_release_locks() and renamed
to version_tokens_unlock() in 5.7.9.

The locking functions share these characteristics:

• The return value is nonzero for success. Otherwise, an error occurs.

• Token names are strings.

• In contrast to argument handling for the UDFs that manipulate the server token list, whitespace
surrounding token name arguments is not ignored and = and ; characters are permitted.

• It is possible to lock nonexisting token names. This does not create the tokens.

• Timeout values are nonnegative integers representing the time in seconds to wait to acquire locks
before timing out with an error. If the timeout is 0, there is no waiting and the function produces an
error if locks cannot be acquired immediately.

• Version Tokens locking functions are based on the locking service described at Section 24.3.1, “The
Locking Service”.

Server Plugins

791

Version Tokens System Variables

Version Tokens supports the following system variables. These variables are unavailable unless the
Version Tokens plugin is installed (see Installing or Uninstalling Version Tokens).

System variables:

• version_tokens_session

Introduced 5.7.8

Command-Line Format --version_tokens_session=value

Name version_tokens_session

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default NULL

The session value of this variable specifies the client version token list and indicates the tokens that
the client session requires the server version token list to have.

If the version_tokens_session variable is NULL (the default) or has an empty value, any server
version token list matches. (In effect, an empty value disables matching requirements.)

If the version_tokens_session variable has a nonempty value, any mismatch between its value
and the server version token list results in an error for any statement the session sends to the server.
A mismatch occurs under these conditions:

• A token name in the version_tokens_session value is not present in the server token list. In
this case, an ER_VTOKEN_PLUGIN_TOKEN_NOT_FOUND error occurs.

• A token value in the version_tokens_session value differs from the
value of the corresponding token in the server token list. In this case, an
ER_VTOKEN_PLUGIN_TOKEN_MISMATCH error occurs.

It is not a mismatch for the server version token list to include a token not named in the
version_tokens_session value.

Suppose that a management application has set the server token list as follows:

mysql> SELECT version_tokens_set('tok1=a;tok2=b;tok3=c');
+--+
| version_tokens_set('tok1=a;tok2=b;tok3=c') |
+--+
| 3 version tokens set. |
+--+

A client registers the tokens it requires the server to match by setting its
version_tokens_session value. Then, for each subsequent statement sent by the client, the
server checks its token list against the client version_tokens_session value and produces an
error if there is a mismatch:

mysql> SET @@session.version_tokens_session = 'tok1=a;tok2=b';
mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |

IPv6 Support

792

+---+

mysql> SET @@session.version_tokens_session = 'tok1=b';
mysql> SELECT 1;
ERROR 3136 (42000): Version token mismatch for tok1. Correct value a

The first SELECT succeeds because the client tokens tok1 and tok2 are present in the server
token list and each token has the same value in the server list. The second SELECT fails because,
although tok1 is present in the server token list, it has a different value than specified by the client.

At this point, any statement sent by the client fails, unless the server token list changes such that it
matches again. Suppose that the management application changes the server token list as follows:

mysql> SELECT version_tokens_edit('tok1=b');
+-------------------------------+
| version_tokens_edit('tok1=b') |
+-------------------------------+
| 1 version tokens updated. |
+-------------------------------+
mysql> SELECT version_tokens_show();
+-----------------------+
| version_tokens_show() |
+-----------------------+
| tok3=c;tok1=b;tok2=b; |
+-----------------------+

Now the client version_tokens_session value matches the server token list and the client can
once again successfully execute statements:

mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+

This variable was added in MySQL 5.7.8.

• version_tokens_session_number

Introduced 5.7.8

Command-Line Format --version_tokens_session_number=N

Name version_tokens_session_number

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 0

This variable is for internal use.

This variable was added in MySQL 5.7.8.

5.1.9 IPv6 Support

Support for IPv6 in MySQL includes these capabilities:

• MySQL Server can accept TCP/IP connections from clients connecting over IPv6. For example, this
command connects over IPv6 to the MySQL server on the local host:

IPv6 Support

793

shell> mysql -h ::1

To use this capability, two things must be true:

• Your system must be configured to support IPv6. See Section 5.1.9.1, “Verifying System Support
for IPv6”.

• The default MySQL server configuration permits IPv6 connections in addition to IPv4 connections.
To change the default configuration, start the server with an appropriate --bind-address option.
See Section 5.1.4, “Server System Variables”.

• MySQL account names permit IPv6 addresses to enable DBAs to specify privileges for clients that
connect to the server over IPv6. See Section 6.2.3, “Specifying Account Names”. IPv6 addresses
can be specified in account names in statements such as CREATE USER, GRANT, and REVOKE. For
example:

mysql> CREATE USER 'bill'@'::1' IDENTIFIED BY 'secret';
mysql> GRANT SELECT ON mydb.* TO 'bill'@'::1';

• IPv6 functions enable conversion between string and internal format IPv6 address formats, and
checking whether values represent valid IPv6 addresses. For example, INET6_ATON() and
INET6_NTOA() are similar to INET_ATON() and INET_NTOA(), but handle IPv6 addresses in
addition to IPv4 addresses. See Section 12.19, “Miscellaneous Functions”.

The following sections describe how to set up MySQL so that clients can connect to the server over
IPv6.

5.1.9.1 Verifying System Support for IPv6

Before MySQL Server can accept IPv6 connections, the operating system on your server host must
support IPv6. As a simple test to determine whether that is true, try this command:

shell> ping6 ::1
16 bytes from ::1, icmp_seq=0 hlim=64 time=0.171 ms
16 bytes from ::1, icmp_seq=1 hlim=64 time=0.077 ms
...

To produce a description of your system's network interfaces, invoke ifconfig -a and look for IPv6
addresses in the output.

If your host does not support IPv6, consult your system documentation for instructions on enabling it.
It might be that you need only reconfigure an existing network interface to add an IPv6 address. Or a
more extensive change might be needed, such as rebuilding the kernel with IPv6 options enabled.

These links may be helpful in setting up IPv6 on various platforms:

• Windows XP

• Gentoo Linux

• Ubuntu Linux

• Linux (Generic)

• OS X

5.1.9.2 Configuring the MySQL Server to Permit IPv6 Connections

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound to
a single address, but it is possible for an address to map onto multiple network interfaces. To specify

http://support.microsoft.com/kb/2478747
http://www.gentoo.org/doc/en/ipv6.xml
https://wiki.ubuntu.com/IPv6
http://www.redhat.com/mirrors/LDP/HOWTO/html_single/Linux+IPv6-HOWTO/
http://support.apple.com/kb/HT4667?viewlocale=en_US

IPv6 Support

794

an address, use the --bind-address=addr option at server startup, where addr is an IPv4 or IPv6
address or a host name. (IPv6 addresses are not supported before MySQL 5.5.3.) If addr is a host
name, the server resolves the name to an IP address and binds to that address.

The server treats different types of addresses as follows:

• If the address is *, the server accepts TCP/IP connections on all server host IPv6 and IPv4
interfaces if the server host supports IPv6, or accepts TCP/IP connections on all IPv4 addresses
otherwise. Use this address to permit both IPv4 and IPv6 connections on all server interfaces. This
value is the default.

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4 interfaces.

• If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces. Use this address to permit both IPv4 and IPv6 connections on all server interfaces.

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that address,
in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1, clients can
connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

If you intend to bind the server to a specific address, be sure that the mysql.user grant table contains
an account with administrative privileges that you can use to connect to that address. Otherwise, you
will not be able to shut down the server. For example, if you bind the server to *, you can connect
to it using all existing accounts. But if you bind the server to ::1, it accepts connections only on that
address. In that case, first make sure that the 'root'@'::1' account is present in the mysql.user
table so you can still connect to the server to shut it down.

5.1.9.3 Connecting Using the IPv6 Local Host Address

The following procedure shows how to configure MySQL to permit IPv6 connections by clients that
connect to the local server using the ::1 local host address. The instructions given here assume that
your system supports IPv6.

1. Start the MySQL server with an appropriate --bind-address option to permit it to accept IPv6
connections. For example, put the following lines in your server option file and restart the server:

[mysqld]
bind-address = *

Alternatively, you can bind the server to ::1, but that makes the server more restrictive for
TCP/IP connections. It accepts only IPv6 connections for that single address and rejects IPv4
connections. For more information, see Section 5.1.9.2, “Configuring the MySQL Server to Permit
IPv6 Connections”.

2. As an administrator, connect to the server and create an account for a local user who will connect
from the ::1 local IPv6 host address:

mysql> CREATE USER 'ipv6user'@'::1' IDENTIFIED BY 'ipv6pass';

For the permitted syntax of IPv6 addresses in account names, see Section 6.2.3, “Specifying
Account Names”. In addition to the CREATE USER statement, you can issue GRANT statements that
give specific privileges to the account, although that is not necessary for the remaining steps in this
procedure.

3. Invoke the mysql client to connect to the server using the new account:

shell> mysql -h ::1 -u ipv6user -pipv6pass

IPv6 Support

795

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: ::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+----------------+----------------+
| CURRENT_USER() | @@bind_address |
+----------------+----------------+
| ipv6user@::1 | :: |
+----------------+----------------+

5.1.9.4 Connecting Using IPv6 Nonlocal Host Addresses

The following procedure shows how to configure MySQL to permit IPv6 connections by remote clients.
It is similar to the preceding procedure for local clients, but the server and client hosts are distinct and
each has its own nonlocal IPv6 address. The example uses these addresses:

Server host: 2001:db8:0:f101::1
Client host: 2001:db8:0:f101::2

These addresses are chosen from the nonroutable address range recommended by IANA for
documentation purposes and suffice for testing on your local network. To accept IPv6 connections from
clients outside the local network, the server host must have a public address. If your network provider
assigns you an IPv6 address, you can use that. Otherwise, another way to obtain an address is to use
an IPv6 broker; see Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”.

1. Start the MySQL server with an appropriate --bind-address option to permit it to accept IPv6
connections. For example, put the following lines in your server option file and restart the server:

[mysqld]
bind-address = *

Alternatively, you can bind the server to 2001:db8:0:f101::1, but that makes the server more
restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address and
rejects IPv4 connections. For more information, see Section 5.1.9.2, “Configuring the MySQL
Server to Permit IPv6 Connections”.

2. On the server host (2001:db8:0:f101::1), create an account for a user who will connect from
the client host (2001:db8:0:f101::2):

mysql> CREATE USER 'remoteipv6user'@'2001:db8:0:f101::2' IDENTIFIED BY 'remoteipv6pass';

3. On the client host (2001:db8:0:f101::2), invoke the mysql client to connect to the server using
the new account:

shell> mysql -h 2001:db8:0:f101::1 -u remoteipv6user -premoteipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: 2001:db8:0:f101::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+-----------------------------------+----------------+
| CURRENT_USER() | @@bind_address |
+-----------------------------------+----------------+

http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xml

IPv6 Support

796

| remoteipv6user@2001:db8:0:f101::2 | :: |
+-----------------------------------+----------------+

5.1.9.5 Obtaining an IPv6 Address from a Broker

If you do not have a public IPv6 address that enables your system to communicate over IPv6 outside
your local network, you can obtain one from an IPv6 broker. The Wikipedia IPv6 Tunnel Broker
page lists several brokers and their features, such as whether they provide static addresses and the
supported routing protocols.

After configuring your server host to use a broker-supplied IPv6 address, start the MySQL server with
an appropriate --bind-address option to permit the server to accept IPv6 connections. For example,
put the following lines in the server option file and restart the server:

[mysqld]
bind-address = *

Alternatively, you can bind the server to the specific IPv6 address provided by the broker, but that
makes the server more restrictive for TCP/IP connections. It accepts only IPv6 connections for that
single address and rejects IPv4 connections. For more information, see Section 5.1.9.2, “Configuring
the MySQL Server to Permit IPv6 Connections”. In addition, if the broker allocates dynamic addresses,
the address provided for your system might change the next time you connect to the broker. If so, any
accounts you create that name the original address become invalid. To bind to a specific address but
avoid this change-of-address problem, you may be able to arrange with the broker for a static IPv6
address.

The following example shows how to use Freenet6 as the broker and the gogoc IPv6 client package
on Gentoo Linux.

1. Create an account at Freenet6 by visiting this URL and signing up:

http://gogonet.gogo6.com

2. After creating the account, go to this URL, sign in, and create a user ID and password for the IPv6
broker:

http://gogonet.gogo6.com/page/freenet6-registration

3. As root, install gogoc:

shell> emerge gogoc

4. Edit /etc/gogoc/gogoc.conf to set the userid and password values. For example:

userid=gogouser
passwd=gogopass

5. Start gogoc:

shell> /etc/init.d/gogoc start

To start gogoc each time your system boots, execute this command:

shell> rc-update add gogoc default

6. Use ping6 to try to ping a host:

http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers
http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers
http://gogonet.gogo6.com
http://gogonet.gogo6.com/page/freenet6-registration

Server-Side Help

797

shell> ping6 ipv6.google.com

7. To see your IPv6 address:

shell> ifconfig tun

5.1.10 Server-Side Help

MySQL Server supports a HELP statement that returns online information from the MySQL Reference
manual (see Section 13.8.3, “HELP Syntax”). The proper operation of this statement requires that
the help tables in the mysql database be initialized with help topic information, which is done by
processing the contents of the fill_help_tables.sql script.

If you install MySQL using a binary or source distribution on Unix, help table content initialization
occurs when you run mysql_install_db. For an RPM distribution on Linux or binary distribution on
Windows, content initialization occurs as part of the MySQL installation process.

If you upgrade MySQL using a binary distribution, help table content is not upgraded automatically, but
you can upgrade it manually. Locate the fill_help_tables.sql file in the share or share/mysql
directory. Change location into that directory and process the file with the mysql client as follows:

shell> mysql -u root mysql < fill_help_tables.sql

You can also obtain the latest fill_help_tables.sql at any time to upgrade your help tables.
Download the proper file for your version of MySQL from http://dev.mysql.com/doc/index-other.html.
After downloading and uncompressing the file, process it with mysql as described previously.

If you are working with Git and a MySQL development source tree, you must use a downloaded copy of
the fill_help_tables.sql file because the source tree contains only a “stub” version.

Note

For a server that participates in replication, the help table content upgrade
process involves multiple servers. For details, see Section 17.4.1.29,
“Replication of Server-Side Help Tables”.

5.1.11 Server Response to Signals

On Unix, signals can be sent to processes. mysqld responds to signals sent to it as follows:

• SIGTERM causes the server to shut down.

• SIGHUP causes the server to reload the grant tables and to flush tables, logs, the thread cache, and
the host cache. These actions are like various forms of the FLUSH statement. The server also writes
a status report to the error log that has this format:

Status information:

Current dir: /var/mysql/data/
Running threads: 0 Stack size: 196608
Current locks:

Key caches:
default
Buffer_size: 8388600
Block_size: 1024
Division_limit: 100
Age_limit: 300
blocks used: 0
not flushed: 0
w_requests: 0
writes: 0

http://dev.mysql.com/doc/index-other.html

The Server Shutdown Process

798

r_requests: 0
reads: 0

handler status:
read_key: 0
read_next: 0
read_rnd 0
read_first: 1
write: 0
delete 0
update: 0

Table status:
Opened tables: 5
Open tables: 0
Open files: 7
Open streams: 0

Alarm status:
Active alarms: 1
Max used alarms: 2
Next alarm time: 67

5.1.12 The Server Shutdown Process

The server shutdown process takes place as follows:

1. The shutdown process is initiated.

This can occur initiated several ways. For example, a user with the SHUTDOWN privilege can
execute a mysqladmin shutdown command. mysqladmin can be used on any platform
supported by MySQL. Other operating system-specific shutdown initiation methods are possible
as well: The server shuts down on Unix when it receives a SIGTERM signal. A server running as a
service on Windows shuts down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

Depending on how shutdown was initiated, the server might create a thread to handle the shutdown
process. If shutdown was requested by a client, a shutdown thread is created. If shutdown is the
result of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or it might
create a separate thread to do so. If the server tries to create a shutdown thread and cannot (for
example, if memory is exhausted), it issues a diagnostic message that appears in the error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new
client connections by closing the handlers for the network interfaces to which it normally listens for
connections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared memory
on Windows.

4. The server terminates current activity.

For each thread associated with a client connection, the server breaks the connection to the client
and marks the thread as killed. Threads die when they notice that they are so marked. Threads
for idle connections die quickly. Threads that currently are processing statements check their
state periodically and take longer to die. For additional information about thread termination, see
Section 13.7.6.4, “KILL Syntax”, in particular for the instructions about killed REPAIR TABLE or
OPTIMIZE TABLE operations on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back. If a thread is updating a
nontransactional table, an operation such as a multiple-row UPDATE or INSERT may leave the table
partially updated because the operation can terminate before completion.

MySQL Server Logs

799

If the server is a master replication server, it treats threads associated with currently connected
slaves like other client threads. That is, each one is marked as killed and exits when it next checks
its state.

If the server is a slave replication server, it stops the I/O and SQL threads, if they are active, before
marking client threads as killed. The SQL thread is permitted to finish its current statement (to avoid
causing replication problems), and then stops. If the SQL thread is in the middle of a transaction at
this point, the server waits until the current replication event group (if any) has finished executing, or
until the user issues a KILL QUERY or KILL CONNECTION statement. See also Section 13.4.2.7,
“STOP SLAVE Syntax”. Since nontransactional statements cannot be rolled back, in order to
guarantee crash-safe replication, only transactional tables should be used.

Note

To guarantee crash safety on the slave, you must run the slave with --
relay-log-recovery enabled.

See also Section 17.2.4, “Replication Relay and Status Logs”).

5. The server shuts down or closes storage engines.

At this stage, the server flushes the table cache and closes all open tables.

Each storage engine performs any actions necessary for tables that it manages. InnoDB flushes
its buffer pool to disk (unless innodb_fast_shutdown is 2), writes the current LSN to the
tablespace, and terminates its own internal threads. MyISAM flushes any pending index writes for a
table.

6. The server exits.

To provide information to management processes, the server returns one of the exit codes described in
the following list. The phrase in parentheses indicates the action taken by systemd in response to the
code, for platforms on which systemd is used to manage the server.

• 0 = successful termination (no restart done)

• 1 = unsuccessful termination (no restart done)

• 2 = unsuccessful termination (restart done)

Note

The server returns the codes just described as of MySQL 5.7.6. Any
management script written for older servers should be revised to handle three
exit values if it checks only for 1 as a failure exit value.

5.2 MySQL Server Logs
MySQL Server has several logs that can help you find out what activity is taking place.

Log Type Information Written to Log

Error log Problems encountered starting, running, or stopping mysqld

General query log Established client connections and statements received from clients

Binary log Statements that change data (also used for replication)

Relay log Data changes received from a replication master server

Slow query log Queries that took more than long_query_time seconds to execute

DDL log (metadata log) Metadata operations performed by DDL statements

Selecting General Query and Slow Query Log Output Destinations

800

By default, no logs are enabled, except the error log on Windows. (The DDL log is always created
when required, and has no user-configurable options; see Section 5.2.6, “The DDL Log”.) The following
log-specific sections provide information about the server options that enable logging.

By default, the server writes files for all enabled logs in the data directory. You can force the server
to close and reopen the log files (or in some cases switch to a new log file) by flushing the logs. Log
flushing occurs when you issue a FLUSH LOGS statement; execute mysqladmin with a flush-logs
or refresh argument; or execute mysqldump with a --flush-logs or --master-data option. See
Section 13.7.6.3, “FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL
Server”, and Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is
flushed when its size reaches the value of the max_binlog_size system variable.

You can control the general query and slow query logs during runtime. You can enable or disable
logging, or change the log file name. You can tell the server to write general query and slow query
entries to log tables, log files, or both. For details, see Section 5.2.1, “Selecting General Query and
Slow Query Log Output Destinations”, Section 5.2.3, “The General Query Log”, and Section 5.2.5, “The
Slow Query Log”.

The relay log is used only on slave replication servers, to hold data changes from the master server
that must also be made on the slave. For discussion of relay log contents and configuration, see
Section 17.2.4.1, “The Slave Relay Log”.

For information about log maintenance operations such as expiration of old log files, see Section 5.2.7,
“Server Log Maintenance”.

For information about keeping logs secure, see Section 6.1.2.3, “Passwords and Logging”.

5.2.1 Selecting General Query and Slow Query Log Output Destinations

MySQL Server provides flexible control over the destination of output to the general query log and
the slow query log, if those logs are enabled. Possible destinations for log entries are log files or the
general_log and slow_log tables in the mysql database. Either or both destinations can be
selected.

Log control at server startup. The --log-output option specifies the destination for log output.
This option does not in itself enable the logs. Its syntax is --log-output[=value,...]:

• If --log-output is given with a value, the value should be a comma-separated list of one or more
of the words TABLE (log to tables), FILE (log to files), or NONE (do not log to tables or files). NONE, if
present, takes precedence over any other specifiers.

• If --log-output is omitted, the default logging destination is FILE.

The general_log system variable controls logging to the general query log for the selected log
destinations. If specified at server startup, general_log takes an optional argument of 1 or 0
to enable or disable the log. To specify a file name other than the default for file logging, set the
general_log_file variable. Similarly, the slow_query_log variable controls logging to the slow
query log for the selected destinations and setting slow_query_log_file specifies a file name
for file logging. If either log is enabled, the server opens the corresponding log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected.

Examples:

• To write general query log entries to the log table and the log file, use --log-output=TABLE,FILE
to select both log destinations and --general_log to enable the general query log.

• To write general and slow query log entries only to the log tables, use --log-output=TABLE to
select tables as the log destination and --general_log and --slow_query_log to enable both
logs.

Selecting General Query and Slow Query Log Output Destinations

801

• To write slow query log entries only to the log file, use --log-output=FILE to select files as the
log destination and --slow_query_log to enable the slow query log. (In this case, because the
default log destination is FILE, you could omit the --log-output option.)

Log control at runtime. The system variables associated with log tables and files enable runtime
control over logging:

• The global log_output system variable indicates the current logging destination. It can be modified
at runtime to change the destination.

• The global general_log and slow_query_log variables indicate whether the general query log
and slow query log are enabled (ON) or disabled (OFF). You can set these variables at runtime to
control whether the logs are enabled.

• The global general_log_file and slow_query_log_file variables indicate the names of the
general query log and slow query log files. You can set these variables at server startup or at runtime
to change the names of the log files.

• To disable or enable general query logging for the current connection, set the session sql_log_off
variable to ON or OFF.

The use of tables for log output offers the following benefits:

• Log entries have a standard format. To display the current structure of the log tables, use these
statements:

SHOW CREATE TABLE mysql.general_log;
SHOW CREATE TABLE mysql.slow_log;

• Log contents are accessible through SQL statements. This enables the use of queries that select
only those log entries that satisfy specific criteria. For example, to select log contents associated with
a particular client (which can be useful for identifying problematic queries from that client), it is easier
to do this using a log table than a log file.

• Logs are accessible remotely through any client that can connect to the server and issue queries (if
the client has the appropriate log table privileges). It is not necessary to log in to the server host and
directly access the file system.

The log table implementation has the following characteristics:

• In general, the primary purpose of log tables is to provide an interface for users to observe the
runtime execution of the server, not to interfere with its runtime execution.

• CREATE TABLE, ALTER TABLE, and DROP TABLE are valid operations on a log table. For ALTER
TABLE and DROP TABLE, the log table cannot be in use and must be disabled, as described later.

• By default, the log tables use the CSV storage engine that writes data in comma-separated values
format. For users who have access to the .CSV files that contain log table data, the files are easy to
import into other programs such as spreadsheets that can process CSV input.

The log tables can be altered to use the MyISAM storage engine. You cannot use ALTER TABLE to
alter a log table that is in use. The log must be disabled first. No engines other than CSV or MyISAM
are legal for the log tables.

• To disable logging so that you can alter (or drop) a log table, you can use the following strategy.
The example uses the general query log; the procedure for the slow query log is similar but uses the
slow_log table and slow_query_log system variable.

SET @old_log_state = @@global.general_log;
SET GLOBAL general_log = 'OFF';
ALTER TABLE mysql.general_log ENGINE = MyISAM;

The Error Log

802

SET GLOBAL general_log = @old_log_state;

• TRUNCATE TABLE is a valid operation on a log table. It can be used to expire log entries.

• RENAME TABLE is a valid operation on a log table. You can atomically rename a log table (to
perform log rotation, for example) using the following strategy:

USE mysql;
DROP TABLE IF EXISTS general_log2;
CREATE TABLE general_log2 LIKE general_log;
RENAME TABLE general_log TO general_log_backup, general_log2 TO general_log;

• CHECK TABLE is a valid operation on a log table.

• LOCK TABLES cannot be used on a log table.

• INSERT, DELETE, and UPDATE cannot be used on a log table. These operations are permitted only
internally to the server itself.

• FLUSH TABLES WITH READ LOCK and the state of the read_only system variable have no effect
on log tables. The server can always write to the log tables.

• Entries written to the log tables are not written to the binary log and thus are not replicated to slave
servers.

• To flush the log tables or log files, use FLUSH TABLES or FLUSH LOGS, respectively.

• Partitioning of log tables is not permitted.

• A mysqldump dump includes statements to recreate those tables so that they are not missing after
reloading the dump file. Log table contents are not dumped.

5.2.2 The Error Log

The error log contains information indicating when mysqld was started and stopped and also any
critical errors that occur while the server is running. If mysqld notices a table that needs to be
automatically checked or repaired, it writes a message to the error log.

On some operating systems, the error log contains a stack trace if mysqld dies. The trace can be used
to determine where mysqld died. See Section 24.5, “Debugging and Porting MySQL”.

If mysqld_safe is used to start mysqld and mysqld dies unexpectedly, mysqld_safe notices this,
restarts mysqld, and writes a restarted mysqld message to the error log.

In the following discussion, “console” means stderr, the standard error output; this is your terminal or
console window unless the standard error output has been redirected.

On Windows, the --log-error and --console options both affect error logging:

• Without --log-error, mysqld writes error messages to host_name.err in the data directory.

• With --log-error[=file_name], mysqld writes error messages to an error log file. The server
uses the named file if present, creating it in the data directory unless an absolute path name is given
to specify a different directory. If no file is named, the default name is host_name.err in the data
directory.

• With --console, mysqld writes error messages to the console. --log-error, if given, is ignored
and has no effect. If both options are present, their order does not matter: --console takes
precedence and error messages go to the console. (In MySQL 5.5 and 5.6, the precedence is
reversed: --log-error causes --console to be ignored.)

In addition, on Windows, the server by default writes events and error messages to the Windows Event
Log within the Application log. Entries marked as Error, Warning, and Note are written to the Event

The Error Log

803

Log, but not informational messages such as information statements from individual storage engines.
These log entries have a source of MySQL. As of MySQL 5.7.5, writing information to the Windows
Event Log can be controlled using the log_syslog system variable, as described later.

On Unix and Unix-like systems, mysqld writes error log messages as follows:

• Without --log-error, mysqld writes error messages to the console.

• With --log-error[=file_name], mysqld writes error messages to an error log file. The server
uses the named file if present, creating it in the data directory unless an absolute path name is given
to specify a different directory. If no file is named, the default name is host_name.err in the data
directory.

Note

It is common for Yum or APT package installations to configure the error log
location to be under /var/log with an entry like log-error=/var/log/
mysqld.log in a server configuration file; removing the filename from the
entry reverts the error log location back to its default setting, which is the data
directory.

At runtime, if the server writes error messages to the console, it sets the log_error system variable
to stderr. Otherwise, log_error indicates the error log file name. In particular, on Windows, --
console overrides use of an error log file and sends error messages to the console, so the server sets
log_error to stderr. This occurs even if --log-error is also given.

If you specify --log-error in an option file in a [mysqld], [server], or [mysqld_safe] section,
mysqld_safe will find and use the option.

Using Syslog for the Error Log

On Unix and Unix-like systems, it is possible to write the error log to syslog. To control logging to
syslog in MySQL 5.7.5 or later, use these system variables:

• log_syslog: Enable this variable to send the error log to syslog. In this case, the following system
variables can also be used for finer control.

• log_syslog_facility: The default facility for syslog messages is daemon. Set this variable to
specify a different facility.

• log_syslog_include_pid: Whether to include the server process ID in each line of syslog
output.

• log_syslog_tag: This variable defines a tag to add to the server identifier (mysqld) in syslog
messages. If defined, the tag is appended to the identifier with a leading hyphen.

Before MySQL 5.7.5, control of output to syslog is available only on Unix and Unix-like systems
and is handled by mysqld_safe, which captures server error output and passes it to syslog. (On
Windows, logging to the Event Log is enabled by default and cannot be disabled.) mysqld_safe has
three error-logging options, --syslog, --skip-syslog, and --log-error. The default with no
logging options or with --skip-syslog is to use the default log file. To explicitly specify use of an
error log file, specify --log-error=file_name to mysqld_safe, and mysqld_safe will arrange
for mysqld to write messages to a log file. To use syslog instead, specify the --syslog option.
For syslog output, a tag can be specified with --syslog-tag=tag_val; this is appended to the
mysqld server identifier with a leading hyphen.

Note

As of MySQL 5.7.5, using mysqld_safe for syslog error logging is
deprecated; you should use the server system variables instead.

The General Query Log

804

Error Log Verbosity

As of MySQL 5.7.2, the log_error_verbosity system variable controls verbosity of the server
in writing error, warning, and note messages to the error log. Permitted values are 1 (errors only), 2
(errors and warnings), 3 (errors, warnings, and notes), with a default of 3. If the value is greater than 2,
aborted connections are written to the error log, and access-denied errors for new connection attempts
are written. See Section B.5.2.11, “Communication Errors and Aborted Connections”.

Before MySQL 5.7.2, the log_warnings system variable can be used to control warning logging to
the error log. The default value is enabled (1). Warning logging can be disabled using a value of 0.

Error Log Message Format

As of MySQL 5.7.2, the log_timestamps system variable controls the timestamp time zone of
messages written to the error log (as well as to general query log and slow query log files). Permitted
values are UTC (the default) and SYSTEM (local system time zone). Before MySQL 5.7.2, messages
use the local system time zone.

As of MySQL 5.7.2, the ID included in error log messages is that of the thread within mysqld
responsible for writing the message. This indicates which part of the server produced the message,
and is consistent with general query log and slow query log messages, which include the connection
thread ID. Before MySQL 5.7.2, the ID in error log messages is that of the mysqld process ID.

Flushing the Error Log File

If you flush the logs using FLUSH LOGS or mysqladmin flush-logs and mysqld is writing the
error log to a file (for example, if it was started with the --log-error option), the server closes and
reopens the log file. To rename the file, do so manually before flushing. Then flushing the logs reopens
a new file with the original file name. For example, you can rename the file and create a new one using
the following commands:

shell> mv host_name.err host_name.err-old
shell> mysqladmin flush-logs
shell> mv host_name.err-old backup-directory

On Windows, use rename rather than mv.

No error log renaming occurs when the logs are flushed if the server is not writing to a named file.

5.2.3 The General Query Log

The general query log is a general record of what mysqld is doing. The server writes information to
this log when clients connect or disconnect, and it logs each SQL statement received from clients. The
general query log can be very useful when you suspect an error in a client and want to know exactly
what the client sent to mysqld.

As of MySQL 5.7.8, each line that shows when a client connects also includes using
connection_type to indicate the protocol used to establish the connection. connection_type
is one of TCP/IP (TCP/IP connection established without SSL), SSL/TLS (TCP/IP connection
established with SSL), Socket (Unix socket file connection), Named Pipe (Windows named pipe
connection), or Shared Memory (Windows shared memory connection).

mysqld writes statements to the query log in the order that it receives them, which might differ from the
order in which they are executed. This logging order is in contrast with that of the binary log, for which
statements are written after they are executed but before any locks are released. In addition, the query
log may contain statements that only select data while such statements are never written to the binary
log.

When using statement-based binary logging on a replication master server, statements received by its
slaves are written to the query log of each slave. Statements are written to the query log of the master
server if a client reads events with the mysqlbinlog utility and passes them to the server.

The General Query Log

805

However, when using row-based binary logging, updates are sent as row changes rather than SQL
statements, and thus these statements are never written to the query log when binlog_format is
ROW. A given update also might not be written to the query log when this variable is set to MIXED,
depending on the statement used. See Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”, for more information.

By default, the general query log is disabled. To specify the initial general query log state explicitly,
use --general_log[={0|1}]. With no argument or an argument of 1, --general_log enables
the log. With an argument of 0, this option disables the log. To specify a log file name, use --
general_log_file=file_name. To specify the log destination, use --log-output (as described
in Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).

If you specify no name for the general query log file, the default name is host_name.log. The server
creates the file in the data directory unless an absolute path name is given to specify a different
directory.

To disable or enable the general query log or change the log file name at runtime, use the global
general_log and general_log_file system variables. Set general_log to 0 (or OFF) to disable
the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the log file. If a log
file already is open, it is closed and the new file is opened.

When the general query log is enabled, the server writes output to any destinations specified by the
--log-output option or log_output system variable. If you enable the log, the server opens
the log file and writes startup messages to it. However, further logging of queries to the file does not
occur unless the FILE log destination is selected. If the destination is NONE, the server writes no
queries even if the general log is enabled. Setting the log file name has no effect on logging if the log
destination value does not contain FILE.

Server restarts and log flushing do not cause a new general query log file to be generated (although
flushing closes and reopens it). To rename the file and create a new one, use the following commands:

shell> mv host_name.log host_name-old.log
shell> mysqladmin flush-logs
shell> mv host_name-old.log backup-directory

On Windows, use rename rather than mv.

You can also rename the general query log file at runtime by disabling the log:

SET GLOBAL general_log = 'OFF';

With the log disabled, rename the log file externally; for example, from the command line. Then enable
the log again:

SET GLOBAL general_log = 'ON';

This method works on any platform and does not require a server restart.

The session sql_log_off variable can be set to ON or OFF to disable or enable general query logging
for the current connection.

Passwords in statements written to the general query log are rewritten by the server not to occur
literally in plain text. Password rewriting can be suppressed for the general query log by starting the
server with the --log-raw option. This option may be useful for diagnostic purposes, to see the
exact text of statements as received by the server, but for security reasons is not recommended for
production use. See also Section 6.1.2.3, “Passwords and Logging”.

An implication of password rewriting is that statements that cannot be parsed (due, for example, to
syntax errors) are not written to the general query log because they cannot be known to be password
free. Use cases that require logging of all statements including those with errors should use the --
log-raw option, bearing in mind that this also bypasses password writing.

The Binary Log

806

As of MySQL 5.7.2, the log_timestamps system variable controls the timestamp time zone of
messages written to the general query log file (as well as to the slow query log file and the error log). It
does not affect the time zone of general query log and slow query log messages written to log tables,
but rows retrieved from those tables can be converted from the local system time zone to any desired
time zone with CONVERT_TZ() or by setting the session time_zone system variable. Before MySQL
5.7.2, messages use the local system time zone.

5.2.4 The Binary Log

The binary log contains “events” that describe database changes such as table creation operations or
changes to table data. It also contains events for statements that potentially could have made changes
(for example, a DELETE which matched no rows), unless row-based logging is used. The binary log
also contains information about how long each statement took that updated data. The binary log has
two important purposes:

• For replication, the binary log on a master replication server provides a record of the data changes to
be sent to slave servers. The master server sends the events contained in its binary log to its slaves,
which execute those events to make the same data changes that were made on the master. See
Section 17.2, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 7.5, “Point-in-Time
(Incremental) Recovery Using the Binary Log”.

The binary log is not used for statements such as SELECT or SHOW that do not modify data. To log all
statements (for example, to identify a problem query), use the general query log. See Section 5.2.3,
“The General Query Log”.

Running a server with binary logging enabled makes performance slightly slower. However, the
benefits of the binary log in enabling you to set up replication and for restore operations generally
outweigh this minor performance decrement.

The binary log is crash-safe. Only complete events or transactions are logged or read back.

Passwords in statements written to the binary log are rewritten by the server not to occur literally in
plain text. See also Section 6.1.2.3, “Passwords and Logging”.

The following discussion describes some of the server options and variables that affect the operation of
binary logging. For a complete list, see Section 17.1.6.4, “Binary Logging Options and Variables”.

To enable the binary log, start the server with the --log-bin[=base_name] option. If no
base_name value is given, the default name is the value of the pid-file option (which by default is
the name of host machine) followed by -bin. If the base name is given, the server writes the file in the
data directory unless the base name is given with a leading absolute path name to specify a different
directory. It is recommended that you specify a base name explicitly rather than using the default of the
host name; see Section B.5.7, “Known Issues in MySQL”, for the reason.

If you supply an extension in the log name (for example, --log-bin=base_name.extension), the
extension is silently removed and ignored.

mysqld appends a numeric extension to the binary log base name to generate binary log file names.
The number increases each time the server creates a new log file, thus creating an ordered series of
files. The server creates a new file in the series each time it starts or flushes the logs. The server also
creates a new binary log file automatically after the current log's size reaches max_binlog_size. A
binary log file may become larger than max_binlog_size if you are using large transactions because
a transaction is written to the file in one piece, never split between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file
that contains the names of all used binary log files. By default, this has the same base name as the

The Binary Log

807

binary log file, with the extension '.index'. You can change the name of the binary log index file with
the --log-bin-index[=file_name] option. You should not manually edit this file while mysqld is
running; doing so would confuse mysqld.

The term “binary log file” generally denotes an individual numbered file containing database events.
The term “binary log” collectively denotes the set of numbered binary log files plus the index file.

A client that has the SUPER privilege can disable binary logging of its own statements by using a SET
sql_log_bin=0 statement. See Section 5.1.4, “Server System Variables”.

By default, the server logs the length of the event as well as the event itself and uses this to verify that
the event was written correctly. You can also cause the server to write checksums for the events by
setting the binlog_checksum system variable. When reading back from the binary log, the master
uses the event length by default, but can be made to use checksums if available by enabling the
master_verify_checksum system variable. The slave I/O thread also verifies events received from
the master. You can cause the slave SQL thread to use checksums if available when reading from the
relay log by enabling the slave_sql_verify_checksum system variable.

The format of the events recorded in the binary log is dependent on the binary logging format. Three
format types are supported, row-based logging, statement-based logging and mixed-base logging. The
binary logging format used depends on the MySQL version. For general descriptions of the logging
formats, see Section 5.2.4.1, “Binary Logging Formats”. For detailed information about the format of the
binary log, see MySQL Internals: The Binary Log.

The server evaluates the --binlog-do-db and --binlog-ignore-db options in the same way
as it does the --replicate-do-db and --replicate-ignore-db options. For information about
how this is done, see Section 17.2.5.1, “Evaluation of Database-Level Replication and Binary Logging
Options”.

A replication slave server by default does not write to its own binary log any data modifications that
are received from the replication master. To log these modifications, start the slave with the --log-
slave-updates option in addition to the --log-bin option (see Section 17.1.6.3, “Replication Slave
Options and Variables”). This is done when a slave is also to act as a master to other slaves in chained
replication.

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE
BINARY LOGS. See Section 13.7.6.6, “RESET Syntax”, and Section 13.4.1.1, “PURGE BINARY LOGS
Syntax”.

If you are using replication, you should not delete old binary log files on the master until you are sure
that no slave still needs to use them. For example, if your slaves never run more than three days
behind, once a day you can execute mysqladmin flush-logs on the master and then remove any
logs that are more than three days old. You can remove the files manually, but it is preferable to use
PURGE BINARY LOGS, which also safely updates the binary log index file for you (and which can take
a date argument). See Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when
you want to reprocess statements in the log for a recovery operation. For example, you can update a
MySQL server from the binary log as follows:

shell> mysqlbinlog log_file | mysql -h server_name

mysqlbinlog also can be used to display replication slave relay log file contents because they are
written using the same format as binary log files. For more information on the mysqlbinlog utility and
how to use it, see Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”. For more
information about the binary log and recovery operations, see Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Binary logging is done immediately after a statement or transaction completes but before any locks are
released or any commit is done. This ensures that the log is logged in commit order.

http://dev.mysql.com/doc/internals/en/binary-log.html

The Binary Log

808

Updates to nontransactional tables are stored in the binary log immediately after execution.

Within an uncommitted transaction, all updates (UPDATE, DELETE, or INSERT) that change
transactional tables such as InnoDB tables are cached until a COMMIT statement is received by the
server. At that point, mysqld writes the entire transaction to the binary log before the COMMIT is
executed.

Modifications to nontransactional tables cannot be rolled back. If a transaction that is rolled back
includes modifications to nontransactional tables, the entire transaction is logged with a ROLLBACK
statement at the end to ensure that the modifications to those tables are replicated.

When a thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to
buffer statements. If a statement is bigger than this, the thread opens a temporary file to store the
transaction. The temporary file is deleted when the thread ends.

The Binlog_cache_use status variable shows the number of transactions that used this buffer (and
possibly a temporary file) for storing statements. The Binlog_cache_disk_use status variable
shows how many of those transactions actually had to use a temporary file. These two variables can be
used for tuning binlog_cache_size to a large enough value that avoids the use of temporary files.

The max_binlog_cache_size system variable (default 4GB, which is also the maximum) can be
used to restrict the total size used to cache a multiple-statement transaction. If a transaction is larger
than this many bytes, it fails and rolls back. The minimum value is 4096.

If you are using the binary log and row based logging, concurrent inserts are converted to normal
inserts for CREATE ... SELECT or INSERT ... SELECT statements. This is done to ensure that
you can re-create an exact copy of your tables by applying the log during a backup operation. If you are
using statement-based logging, the original statement is written to the log.

The binary log format has some known limitations that can affect recovery from backups. See
Section 17.4.1, “Replication Features and Issues”.

Binary logging for stored programs is done as described in Section 19.7, “Binary Logging of Stored
Programs”.

Note that the binary log format differs in MySQL 5.7 from previous versions of MySQL, due to
enhancements in replication. See Section 17.4.2, “Replication Compatibility Between MySQL
Versions”.

Writes to the binary log file and binary log index file are handled in the same way as writes to MyISAM
tables. See Section B.5.3.4, “How MySQL Handles a Full Disk”.

As of MySQL 5.7.7, the binary log is synchronized to disk at each write by default (sync_binlog=1).
Prior to MySQL 5.7.7, it is not (sync_binlog=0). So, prior to MySQL 5.7.7, if the operating system or
machine (not only the MySQL server) crashes, there is a chance that the last statements of the binary
log are lost. To prevent this, use the sync_binlog system variable to synchronize the binary log to
disk after every N commit groups. See Section 5.1.4, “Server System Variables”. The safest value for
sync_binlog is 1, but this is also the slowest. Even with sync_binlog set to 1, there is still the
chance of inconsistency between the table content and binary log content in case of a crash.

For example, if you are using InnoDB tables and the MySQL server processes a COMMIT statement,
it writes many prepared transactions to the binary log in sequence, synchronizes the binary log, and
then commits this transaction into InnoDB. If the server crashes between those two operations,
the transaction is rolled back by InnoDB at restart but still exists in the binary log. Such an issue is
resolved assuming --innodb_support_xa is set to 1, the default. Although this option is related
to the support of XA transactions in InnoDB, it also ensures that the binary log and InnoDB data files
are synchronized. For this option to provide a greater degree of safety, the MySQL server should
also be configured to synchronize the binary log and the InnoDB logs to disk before committing the
transaction. The InnoDB logs are synchronized by default, and sync_binlog=1 can be used to
synchronize the binary log. The effect of this option is that at restart after a crash, after doing a rollback
of transactions, the MySQL server removes rolled back InnoDB transactions from the binary log. This

The Binary Log

809

ensures that the binary log reflects the exact data of InnoDB tables, and therefore the slave remains in
synchrony with the master because it does not receive a statement which has been rolled back.

Note

innodb_support_xa is deprecated and will be removed in a future release.
InnoDB support for two-phase commit in XA transactions is always enabled as
of MySQL 5.7.10.

If the MySQL server discovers at crash recovery that the binary log is shorter than it should have
been, it lacks at least one successfully committed InnoDB transaction. This should not happen if
sync_binlog=1 and the disk/file system do an actual sync when they are requested to (some do
not), so the server prints an error message The binary log file_name is shorter than its
expected size. In this case, this binary log is not correct and replication should be restarted from a
fresh snapshot of the master's data.

The session values of the following system variables are written to the binary log and honored by the
replication slave when parsing the binary log:

• sql_mode (except that the NO_DIR_IN_CREATE mode is not replicated; see Section 17.4.1.38,
“Replication and Variables”)

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

5.2.4.1 Binary Logging Formats

The server uses several logging formats to record information in the binary log. The exact format
employed depends on the version of MySQL being used. There are three logging formats:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from
master to slave. This is called statement-based logging. You can cause this format to be used by
starting the server with --binlog-format=STATEMENT.

• In row-based logging, the master writes events to the binary log that indicate how individual table
rows are affected. You can cause the server to use row-based logging by starting it with --binlog-
format=ROW.

• A third option is also available: mixed logging. With mixed logging, statement-based logging is used
by default, but the logging mode switches automatically to row-based in certain cases as described
below. You can cause MySQL to use mixed logging explicitly by starting mysqld with the option --
binlog-format=MIXED.

Prior to MySQL 5.7.7, statement-based logging format was the default. In MySQL 5.7.7 and later, row-
based logging format is the default.

The logging format can also be set or limited by the storage engine being used. This helps to eliminate
issues when replicating certain statements between a master and slave which are using different
storage engines.

With statement-based replication, there may be issues with replicating nondeterministic statements. In
deciding whether or not a given statement is safe for statement-based replication, MySQL determines

The Binary Log

810

whether it can guarantee that the statement can be replicated using statement-based logging. If
MySQL cannot make this guarantee, it marks the statement as potentially unreliable and issues the
warning, Statement may not be safe to log in statement format.

You can avoid these issues by using MySQL's row-based replication instead.

5.2.4.2 Setting The Binary Log Format

You can select the binary logging format explicitly by starting the MySQL server with --binlog-
format=type. The supported values for type are:

• STATEMENT causes logging to be statement based.

• ROW causes logging to be row based.

• MIXED causes logging to use mixed format.

Prior to MySQL 5.7.7, statement-based logging format was the default. In MySQL 5.7.7 and later, row-
based logging format is the default.

The logging format also can be switched at runtime. To specify the format globally for all clients, set the
global value of the binlog_format system variable:

mysql> SET GLOBAL binlog_format = 'STATEMENT';
mysql> SET GLOBAL binlog_format = 'ROW';
mysql> SET GLOBAL binlog_format = 'MIXED';

An individual client can control the logging format for its own statements by setting the session value of
binlog_format:

mysql> SET SESSION binlog_format = 'STATEMENT';
mysql> SET SESSION binlog_format = 'ROW';
mysql> SET SESSION binlog_format = 'MIXED';

Note

Each MySQL Server can set its own and only its own binary logging format (true
whether binlog_format is set with global or session scope). This means
that changing the logging format on a replication master does not cause a
slave to change its logging format to match. (When using STATEMENT mode,
the binlog_format system variable is not replicated; when using MIXED or
ROW logging mode, it is replicated but is ignored by the slave.) Changing the
binary logging format on the master while replication is ongoing, or without also
changing it on the slave can cause replication to fail with errors such as Error
executing row event: 'Cannot execute statement: impossible
to write to binary log since statement is in row format and
BINLOG_FORMAT = STATEMENT.'

To change the global or session binlog_format value, you must have the SUPER privilege.

There are several reasons why a client might want to set binary logging on a per-session basis:

• A session that makes many small changes to the database might want to use row-based logging.

• A session that performs updates that match many rows in the WHERE clause might want to use
statement-based logging because it will be more efficient to log a few statements than many rows.

• Some statements require a lot of execution time on the master, but result in just a few rows being
modified. It might therefore be beneficial to replicate them using row-based logging.

There are exceptions when you cannot switch the replication format at runtime:

The Binary Log

811

• From within a stored function or a trigger

• If the session is currently in row-based replication mode and has open temporary tables

Trying to switch the format in any of these cases results in an error.

If you are using InnoDB tables and the transaction isolation level is READ COMMITTED or READ
UNCOMMITTED, only row-based logging can be used. It is possible to change the logging format to
STATEMENT, but doing so at runtime leads very rapidly to errors because InnoDB can no longer
perform inserts.

Switching the replication format at runtime is not recommended when any temporary tables exist,
because temporary tables are logged only when using statement-based replication, whereas with row-
based replication they are not logged. With mixed replication, temporary tables are usually logged;
exceptions happen with user-defined functions (UDFs) and with the UUID() function.

With the binary log format set to ROW, many changes are written to the binary log using the row-based
format. Some changes, however, still use the statement-based format. Examples include all DDL (data
definition language) statements such as CREATE TABLE, ALTER TABLE, or DROP TABLE.

The --binlog-row-event-max-size option is available for servers that are capable of row-based
replication. Rows are stored into the binary log in chunks having a size in bytes not exceeding the
value of this option. The value must be a multiple of 256. The default value is 8192.

Warning

When using statement-based logging for replication, it is possible for the data
on the master and slave to become different if a statement is designed in such
a way that the data modification is nondeterministic; that is, it is left to the will
of the query optimizer. In general, this is not a good practice even outside of
replication. For a detailed explanation of this issue, see Section B.5.7, “Known
Issues in MySQL”.

For information about logs kept by replication slaves, see Section 17.2.4, “Replication Relay and Status
Logs”.

5.2.4.3 Mixed Binary Logging Format

When running in MIXED logging format, the server automatically switches from statement-based to
row-based logging under the following conditions:

• When a function contains UUID().

• When one or more tables with AUTO_INCREMENT columns are updated and a trigger or stored
function is invoked. Like all other unsafe statements, this generates a warning if binlog_format =
STATEMENT.

For more information, see Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• When the body of a view requires row-based replication, the statement creating the view also uses it.
For example, this occurs when the statement creating a view uses the UUID() function.

• When a call to a UDF is involved.

• If a statement is logged by row and the session that executed the statement has any temporary
tables, logging by row is used for all subsequent statements (except for those accessing temporary
tables) until all temporary tables in use by that session are dropped.

This is true whether or not any temporary tables are actually logged.

Temporary tables cannot be logged using row-based format; thus, once row-based logging is used,
all subsequent statements using that table are unsafe. The server approximates this condition by

The Binary Log

812

treating all statements executed during the session as unsafe until the session no longer holds any
temporary tables.

• When FOUND_ROWS() or ROW_COUNT() is used. (Bug #12092, Bug #30244)

• When USER(), CURRENT_USER(), or CURRENT_USER is used. (Bug #28086)

• When a statement refers to one or more system variables. (Bug #31168)

Exception. The following system variables, when used with session scope (only), do not cause
the logging format to switch:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

For information about determining system variable scope, see Section 5.1.5, “Using System
Variables”.

For information about how replication treats sql_mode, see Section 17.4.1.38, “Replication and
Variables”.

• When one of the tables involved is a log table in the mysql database.

• When the LOAD_FILE() function is used. (Bug #39701)

Note

A warning is generated if you try to execute a statement using statement-based
logging that should be written using row-based logging. The warning is shown
both in the client (in the output of SHOW WARNINGS) and through the mysqld

The Binary Log

813

error log. A warning is added to the SHOW WARNINGS table each time such a
statement is executed. However, only the first statement that generated the
warning for each client session is written to the error log to prevent flooding the
log.

In addition to the decisions above, individual engines can also determine the logging format used when
information in a table is updated. The logging capabilities of an individual engine can be defined as
follows:

• If an engine supports row-based logging, the engine is said to be row-logging capable.

• If an engine supports statement-based logging, the engine is said to be statement-logging capable.

A given storage engine can support either or both logging formats. The following table lists the formats
supported by each engine.

Storage Engine Row Logging
Supported

Statement Logging
Supported

ARCHIVE Yes Yes

BLACKHOLE Yes Yes

CSV Yes Yes

EXAMPLE Yes No

FEDERATED Yes Yes

HEAP Yes Yes

InnoDB Yes Yes when the
transaction
isolation level is
REPEATABLE READ or
SERIALIZABLE; No
otherwise.

MyISAM Yes Yes

MERGE Yes Yes

NDB Yes No

Whether a statement is to be logged and the logging mode to be used is determined according to the
type of statement (safe, unsafe, or binary injected), the binary logging format (STATEMENT, ROW, or
MIXED), and the logging capabilities of the storage engine (statement capable, row capable, both, or
neither). (Binary injection refers to logging a change that must be logged using ROW format.)

Statements may be logged with or without a warning; failed statements are not logged, but generate
errors in the log. This is shown in the following decision table, where SLC stands for “statement-logging
capable” and RLC stands for “row-logging capable”.

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as

* * No No Error: Cannot
execute
statement:
Binary logging is
impossible since at
least one engine
is involved that is
both row-incapable
and statement-
incapable.

-

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

The Binary Log

814

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as

Safe STATEMENT Yes No - STATEMENT

Safe MIXED Yes No - STATEMENT

Safe ROW Yes No Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at least
one table uses a
storage engine that
is not capable of
row-based logging.

-

Unsafe STATEMENT Yes No Warning:
Unsafe
statement
binlogged
in statement
format, since
BINLOG_FORMAT
= STATEMENT

STATEMENT

Unsafe MIXED Yes No Error: Cannot
execute
statement:
Binary logging
of an unsafe
statement is
impossible when
the storage
engine is limited to
statement-based
logging, even if
BINLOG_FORMAT
= MIXED.

-

Unsafe ROW Yes No Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at least
one table uses a
storage engine that
is not capable of
row-based logging.

-

Row
Injection

STATEMENT Yes No Error: Cannot
execute row
injection:
Binary logging is
not possible since
at least one table
uses a storage

-

The Binary Log

815

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as
engine that is not
capable of row-
based logging.

Row
Injection

MIXED Yes No Error: Cannot
execute row
injection:
Binary logging is
not possible since
at least one table
uses a storage
engine that is not
capable of row-
based logging.

-

Row
Injection

ROW Yes No Error: Cannot
execute row
injection:
Binary logging is
not possible since
at least one table
uses a storage
engine that is not
capable of row-
based logging.

-

Safe STATEMENT No Yes Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT and
at least one table
uses a storage
engine that is
not capable of
statement-based
logging.

-

Safe MIXED No Yes - ROW

Safe ROW No Yes - ROW

Unsafe STATEMENT No Yes Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT and
at least one table
uses a storage
engine that is
not capable of
statement-based
logging.

-

Unsafe MIXED No Yes - ROW

The Binary Log

816

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as

Unsafe ROW No Yes - ROW

Row
Injection

STATEMENT No Yes Error: Cannot
execute row
injection:
Binary logging is
not possible since
BINLOG_FORMAT
= STATEMENT.

-

Row
Injection

MIXED No Yes - ROW

Row
Injection

ROW No Yes - ROW

Safe STATEMENT Yes Yes - STATEMENT

Safe MIXED Yes Yes - STATEMENT

Safe ROW Yes Yes - ROW

Unsafe STATEMENT Yes Yes Warning:
Unsafe
statement
binlogged
in statement
format since
BINLOG_FORMAT
= STATEMENT.

STATEMENT

Unsafe MIXED Yes Yes - ROW

Unsafe ROW Yes Yes - ROW

Row
Injection

STATEMENT Yes Yes Error: Cannot
execute row
injection:
Binary logging
is not possible
because
BINLOG_FORMAT
= STATEMENT.

-

Row
Injection

MIXED Yes Yes - ROW

Row
Injection

ROW Yes Yes - ROW

When a warning is produced by the determination, a standard MySQL warning is produced (and
is available using SHOW WARNINGS). The information is also written to the mysqld error log. Only
one error for each error instance per client connection is logged to prevent flooding the log. The log
message includes the SQL statement that was attempted.

If a slave server was started with log_error_verbosity set to display warnings, the slave prints
messages to the error log to provide information about its status, such as the binary log and relay log
coordinates where it starts its job, when it is switching to another relay log, when it reconnects after a
disconnect, statements that are unsafe for statement-based logging, and so forth.

The Slow Query Log

817

5.2.4.4 Logging Format for Changes to mysql Database Tables

The contents of the grant tables in the mysql database can be modified directly (for example, with
INSERT or DELETE) or indirectly (for example, with GRANT or CREATE USER). Statements that affect
mysql database tables are written to the binary log using the following rules:

• Data manipulation statements that change data in mysql database tables directly are logged
according to the setting of the binlog_format system variable. This pertains to statements such as
INSERT, UPDATE, DELETE, REPLACE, DO, LOAD DATA INFILE, SELECT, and TRUNCATE TABLE.

• Statements that change the mysql database indirectly are logged as statements regardless of the
value of binlog_format. This pertains to statements such as GRANT, REVOKE, SET PASSWORD,
RENAME USER, CREATE (all forms except CREATE TABLE ... SELECT), ALTER (all forms), and
DROP (all forms).

CREATE TABLE ... SELECT is a combination of data definition and data manipulation. The CREATE
TABLE part is logged using statement format and the SELECT part is logged according to the value of
binlog_format.

5.2.5 The Slow Query Log

The slow query log consists of SQL statements that took more than long_query_time seconds
to execute and required at least min_examined_row_limit rows to be examined. The minimum
and default values of long_query_time are 0 and 10, respectively. The value can be specified to a
resolution of microseconds. For logging to a file, times are written including the microseconds part. For
logging to tables, only integer times are written; the microseconds part is ignored.

By default, administrative statements are not logged, nor are queries that do not use indexes
for lookups. This behavior can be changed using log_slow_admin_statements and
log_queries_not_using_indexes, as described later.

The time to acquire the initial locks is not counted as execution time. mysqld writes a statement to the
slow query log after it has been executed and after all locks have been released, so log order might
differ from execution order.

By default, the slow query log is disabled. To specify the initial slow query log state explicitly, use
--slow_query_log[={0|1}]. With no argument or an argument of 1, --slow_query_log
enables the log. With an argument of 0, this option disables the log. To specify a log file name, use
--slow_query_log_file=file_name. To specify the log destination, use --log-output (as
described in Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).

If you specify no name for the slow query log file, the default name is host_name-slow.log. The
server creates the file in the data directory unless an absolute path name is given to specify a different
directory.

To disable or enable the slow query log or change the log file name at runtime, use the global
slow_query_log and slow_query_log_file system variables. Set slow_query_log to 0 (or
OFF) to disable the log or to 1 (or ON) to enable it. Set slow_query_log_file to specify the name of
the log file. If a log file already is open, it is closed and the new file is opened.

When the slow query log is enabled, the server writes output to any destinations specified by the --
log-output option or log_output system variable. If you enable the log, the server opens the log
file and writes startup messages to it. However, further logging of queries to the file does not occur
unless the FILE log destination is selected. If the destination is NONE, the server writes no queries
even if the slow query log is enabled. Setting the log file name has no effect on logging if the log
destination value does not contain FILE.

The server writes less information to the slow query log if you use the --log-short-format option.

To include slow administrative statements in the statements written to the slow query log, use the
log_slow_admin_statements system variable. Administrative statements include ALTER TABLE,

The DDL Log

818

ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR
TABLE.

To include queries that do not use indexes for row lookups in the statements written to the slow query
log, enable the log_queries_not_using_indexes system variable. When such queries are
logged, the slow query log may grow quickly. It is possible to put a rate limit on these queries by setting
the log_throttle_queries_not_using_indexes system variable. By default, this variable is 0,
which means there is no limit. Positive values impose a per-minute limit on logging of queries that do
not use indexes. The first such query opens a 60-second window within which the server logs queries
up to the given limit, then suppresses additional queries. If there are suppressed queries when the
window ends, the server logs a summary that indicates how many there were and the aggregate time
spent in them. The next 60-second window begins when the server logs the next query that does not
use indexes.

The server uses the controlling parameters in the following order to determine whether to write a query
to the slow query log:

1. The query must either not be an administrative statement, or log_slow_admin_statements
must be enabled.

2. The query must have taken at least long_query_time seconds, or
log_queries_not_using_indexes must be enabled and the query used no indexes for row
lookups.

3. The query must have examined at least min_examined_row_limit rows.

4. The query must not be suppressed according to the
log_throttle_queries_not_using_indexes setting.

As of MySQL 5.7.2, the log_timestamps system variable controls the timestamp time zone of
messages written to the slow query log file (as well as to the general query log file and the error log). It
does not affect the time zone of general query log and slow query log messages written to log tables,
but rows retrieved from those tables can be converted from the local system time zone to any desired
time zone with CONVERT_TZ() or by setting the session time_zone system variable. Before MySQL
5.7.2, messages use the local system time zone.

As of MySQL 5.7.2, all log lines contain a timestamp. Previously, for lines falling in the same second,
only the first contained a timestamp.

The server does not write queries handled by the query cache to the slow query log, nor queries that
would not benefit from the presence of an index because the table has zero rows or one row.

By default, a replication slave does not write replicated queries to the slow query log. To change this,
use the log_slow_slave_statements system variable.

Passwords in statements written to the slow query log are rewritten by the server not to occur literally in
plain text. See also Section 6.1.2.3, “Passwords and Logging”.

The slow query log can be used to find queries that take a long time to execute and are therefore
candidates for optimization. However, examining a long slow query log can become a difficult task.
To make this easier, you can process a slow query log file using the mysqldumpslow command to
summarize the queries that appear in the log. See Section 4.6.8, “mysqldumpslow — Summarize
Slow Query Log Files”.

5.2.6 The DDL Log

The DDL log, or metadata log, records metadata operations generated by data definition statements
such as DROP TABLE and ALTER TABLE. MySQL uses this log to recover from crashes occurring in
the middle of a metadata operation. When executing the statement DROP TABLE t1, t2, we need to
ensure that both t1 and t2 are dropped, and that each table drop is complete. Another example of this

Server Log Maintenance

819

type of SQL statement is ALTER TABLE t3 DROP PARTITION p2, where we must make certain that
the partition is completely dropped and that its definition is removed from the list of partitions for table
t3.

A record of metadata operations such as those just described are written to the file ddl_log.log, in
the MySQL data directory. This is a binary file; it is not intended to be human-readable, and you should
not attempt to modify it in any way.

ddl_log.log is not created until it is actually needed for recording metadata statements, so it is
possible for this file not to be present on a MySQL server that is functioning in a completely normal
manner.

There are no user-configurable server options or variables associated with this file.

5.2.7 Server Log Maintenance

As described in Section 5.2, “MySQL Server Logs”, MySQL Server can create several different log files
to help you see what activity is taking place. However, you must clean up these files regularly to ensure
that the logs do not take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from time
to time and tell MySQL to start logging to new files. See Section 7.2, “Database Backup Methods”.

On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for this. If you installed
MySQL from an RPM distribution, this script should have been installed automatically. Be careful with
this script if you are using the binary log for replication. You should not remove binary logs until you are
certain that their contents have been processed by all slaves.

On other systems, you must install a short script yourself that you start from cron (or its equivalent) for
handling log files.

For the binary log, you can set the expire_logs_days system variable to expire binary log files
automatically after a given number of days (see Section 5.1.4, “Server System Variables”). If you
are using replication, you should set the variable no lower than the maximum number of days your
slaves might lag behind the master. To remove binary logs on demand, use the PURGE BINARY LOGS
statement (see Section 13.4.1.1, “PURGE BINARY LOGS Syntax”).

You can force MySQL to start using new log files by flushing the logs. Log flushing occurs when you
issue a FLUSH LOGS statement or execute a mysqladmin flush-logs, mysqladmin refresh,
mysqldump --flush-logs, or mysqldump --master-data command. See Section 13.7.6.3,
“FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”, and
Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is flushed
when its size reaches the value of the max_binlog_size system variable.

FLUSH LOGS supports optional modifiers to enable selective flushing of individual logs (for example,
FLUSH BINARY LOGS).

A log-flushing operation does the following:

• If general query logging or slow query logging to a log file is enabled, the server closes and reopens
the general query log file or slow query log file.

• If binary logging is enabled, the server closes the current binary log file and opens a new log file with
the next sequence number.

• If the server was started with the --log-error option to cause the error log to be written to a file,
the server closes and reopens the log file.

The server creates a new binary log file when you flush the logs. However, it just closes and reopens
the general and slow query log files. To cause new files to be created on Unix, rename the current log
files before flushing them. At flush time, the server opens new log files with the original names. For

Running Multiple MySQL Instances on One Machine

820

example, if the general and slow query log files are named mysql.log and mysql-slow.log, you
can use a series of commands like this:

shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mv mysql-slow.log mysql-slow.old
shell> mysqladmin flush-logs

On Windows, use rename rather than mv.

At this point, you can make a backup of mysql.old and mysql-slow.old and then remove them
from disk.

A similar strategy can be used to back up the error log file, if there is one.

You can rename the general query log or slow query log at runtime by disabling the log:

SET GLOBAL general_log = 'OFF';
SET GLOBAL slow_query_log = 'OFF';

With the logs disabled, rename the log files externally; for example, from the command line. Then
enable the logs again:

SET GLOBAL general_log = 'ON';
SET GLOBAL slow_query_log = 'ON';

This method works on any platform and does not require a server restart.

5.3 Running Multiple MySQL Instances on One Machine
In some cases, you might want to run multiple instances of MySQL on a single machine. You might
want to test a new MySQL release while leaving an existing production setup undisturbed. Or you
might want to give different users access to different mysqld servers that they manage themselves.
(For example, you might be an Internet Service Provider that wants to provide independent MySQL
installations for different customers.)

It is possible to use a different MySQL server binary per instance, or use the same binary for multiple
instances, or any combination of the two approaches. For example, you might run a server from
MySQL 5.6 and one from MySQL 5.7, to see how different versions handle a given workload. Or
you might run multiple instances of the current production version, each managing a different set of
databases.

Whether or not you use distinct server binaries, each instance that you run must be configured with
unique values for several operating parameters. This eliminates the potential for conflict between
instances. Parameters can be set on the command line, in option files, or by setting environment
variables. See Section 4.2.3, “Specifying Program Options”. To see the values used by a given
instance, connect to it and execute a SHOW VARIABLES statement.

The primary resource managed by a MySQL instance is the data directory. Each instance should use a
different data directory, the location of which is specified using the --datadir=dir_name option. For
methods of configuring each instance with its own data directory, and warnings about the dangers of
failing to do so, see Section 5.3.1, “Setting Up Multiple Data Directories”.

In addition to using different data directories, several other options must have different values for each
server instance:

• --port=port_num

--port controls the port number for TCP/IP connections. Alternatively, if the host has multiple
network addresses, you can use --bind-address to cause each server to listen to a different
address.

Setting Up Multiple Data Directories

821

• --socket={file_name|pipe_name}

--socket controls the Unix socket file path on Unix or the named pipe name on Windows. On
Windows, it is necessary to specify distinct pipe names only for those servers configured to permit
named-pipe connections.

• --shared-memory-base-name=name

This option is used only on Windows. It designates the shared-memory name used by a Windows
server to permit clients to connect using shared memory. It is necessary to specify distinct shared-
memory names only for those servers configured to permit shared-memory connections.

• --pid-file=file_name

This option indicates the path name of the file in which the server writes its process ID.

If you use the following log file options, their values must differ for each server:

• --general_log_file=file_name

• --log-bin[=file_name]

• --slow_query_log_file=file_name

• --log-error[=file_name]

For further discussion of log file options, see Section 5.2, “MySQL Server Logs”.

To achieve better performance, you can specify the following option differently for each server, to
spread the load between several physical disks:

• --tmpdir=dir_name

Having different temporary directories also makes it easier to determine which MySQL server created
any given temporary file.

If you have multiple MySQL installations in different locations, you can specify the base directory for
each installation with the --basedir=dir_name option. This causes each instance to automatically
use a different data directory, log files, and PID file because the default for each of those parameters
is relative to the base directory. In that case, the only other options you need to specify are the --
socket and --port options. Suppose that you install different versions of MySQL using tar file
binary distributions. These install in different locations, so you can start the server for each installation
using the command bin/mysqld_safe under its corresponding base directory. mysqld_safe
determines the proper --basedir option to pass to mysqld, and you need specify only the --
socket and --port options to mysqld_safe.

As discussed in the following sections, it is possible to start additional servers by specifying appropriate
command options or by setting environment variables. However, if you need to run multiple servers
on a more permanent basis, it is more convenient to use option files to specify for each server those
option values that must be unique to it. The --defaults-file option is useful for this purpose.

5.3.1 Setting Up Multiple Data Directories

Each MySQL Instance on a machine should have its own data directory. The location is specified using
the --datadir=dir_name option.

There are different methods of setting up a data directory for a new instance:

• Create a new data directory.

• Copy an existing data directory.

The following discussion provides more detail about each method.

Running Multiple MySQL Instances on Windows

822

Warning

Normally, you should never have two servers that update data in the same
databases. This may lead to unpleasant surprises if your operating system does
not support fault-free system locking. If (despite this warning) you run multiple
servers using the same data directory and they have logging enabled, you must
use the appropriate options to specify log file names that are unique to each
server. Otherwise, the servers try to log to the same files.

Even when the preceding precautions are observed, this kind of setup works
only with MyISAM and MERGE tables, and not with any of the other storage
engines. Also, this warning against sharing a data directory among servers
always applies in an NFS environment. Permitting multiple MySQL servers
to access a common data directory over NFS is a very bad idea. The primary
problem is that NFS is the speed bottleneck. It is not meant for such use.
Another risk with NFS is that you must devise a way to ensure that two or more
servers do not interfere with each other. Usually NFS file locking is handled
by the lockd daemon, but at the moment there is no platform that performs
locking 100% reliably in every situation.

Create a New Data Directory

With this method, the data directory will be in the same state as when you first install MySQL. It will
have the default set of MySQL accounts and no user data.

On Unix, initialize the data directory. See Section 2.10, “Postinstallation Setup and Testing”.

On Windows, the data directory is included in the MySQL distribution:

• MySQL Zip archive distributions for Windows contain an unmodified data directory. You can unpack
such a distribution into a temporary location, then copy it data directory to where you are setting up
the new instance.

• Windows MSI package installers create and set up the data directory that the installed server will
use, but also create a pristine “template” data directory named data under the installation directory.
After an installation has been performed using an MSI package, the template data directory can be
copied to set up additional MySQL instances.

Copy an Existing Data Directory

With this method, any MySQL accounts or user data present in the data directory are carried over to
the new data directory.

1. Stop the existing MySQL instance using the data directory. This must be a clean shutdown so that
the instance flushes any pending changes to disk.

2. Copy the data directory to the location where the new data directory should be.

3. Copy the my.cnf or my.ini option file used by the existing instance. This serves as a basis for
the new instance.

4. Modify the new option file so that any pathnames referring to the original data directory refer to the
new data directory. Also, modify any other options that must be unique per instance, such as the
TCP/IP port number and the log files. For a list of parameters that must be unique per instance, see
Section 5.3, “Running Multiple MySQL Instances on One Machine”.

5. Start the new instance, telling it to use the new option file.

5.3.2 Running Multiple MySQL Instances on Windows

You can run multiple servers on Windows by starting them manually from the command line, each with
appropriate operating parameters, or by installing several servers as Windows services and running

Running Multiple MySQL Instances on Windows

823

them that way. General instructions for running MySQL from the command line or as a service are
given in Section 2.3, “Installing MySQL on Microsoft Windows”. The following sections describe how
to start each server with different values for those options that must be unique per server, such as the
data directory. These options are listed in Section 5.3, “Running Multiple MySQL Instances on One
Machine”.

5.3.2.1 Starting Multiple MySQL Instances at the Windows Command Line

The procedure for starting a single MySQL server manually from the command line is described in
Section 2.3.5.6, “Starting MySQL from the Windows Command Line”. To start multiple servers this way,
you can specify the appropriate options on the command line or in an option file. It is more convenient
to place the options in an option file, but it is necessary to make sure that each server gets its own set
of options. To do this, create an option file for each server and tell the server the file name with a --
defaults-file option when you run it.

Suppose that you want to run one instance of mysqld on port 3307 with a data directory of C:
\mydata1, and another instance on port 3308 with a data directory of C:\mydata2. Use this
procedure:

1. Make sure that each data directory exists, including its own copy of the mysql database that
contains the grant tables.

2. Create two option files. For example, create one file named C:\my-opts1.cnf that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

3. Use the --defaults-file option to start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts2.cnf

Each server starts in the foreground (no new prompt appears until the server exits later), so you will
need to issue those two commands in separate console windows.

To shut down the servers, connect to each using the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 --host=127.0.0.1 --user=root --password shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 --host=127.0.0.1 --user=root --password shutdown

Servers configured as just described permit clients to connect over TCP/IP. If your version of Windows
supports named pipes and you also want to permit named-pipe connections, specify options that
enable the named pipe and specify its name. Each server that supports named-pipe connections must
use a unique pipe name. For example, the C:\my-opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1

Modify C:\my-opts2.cnf similarly for use by the second server. Then start the servers as described
previously.

Running Multiple MySQL Instances on Windows

824

A similar procedure applies for servers that you want to permit shared-memory connections. Enable
such connections with the --shared-memory option and specify a unique shared-memory name for
each server with the --shared-memory-base-name option.

5.3.2.2 Starting Multiple MySQL Instances as Windows Services

On Windows, a MySQL server can run as a Windows service. The procedures for installing, controlling,
and removing a single MySQL service are described in Section 2.3.5.8, “Starting MySQL as a Windows
Service”.

To set up multiple MySQL services, you must make sure that each instance uses a different service
name in addition to the other parameters that must be unique per instance.

For the following instructions, suppose that you want to run the mysqld server from two different
versions of MySQL that are installed at C:\mysql-5.5.9 and C:\mysql-5.7.11, respectively. (This
might be the case if you are running 5.5.9 as your production server, but also want to conduct tests
using 5.7.11.)

To install MySQL as a Windows service, use the --install or --install-manual option. For
information about these options, see Section 2.3.5.8, “Starting MySQL as a Windows Service”.

Based on the preceding information, you have several ways to set up multiple services. The following
instructions describe some examples. Before trying any of them, shut down and remove any existing
MySQL services.

• Approach 1: Specify the options for all services in one of the standard option files. To do this, use
a different service name for each server. Suppose that you want to run the 5.5.9 mysqld using the
service name of mysqld1 and the 5.7.11 mysqld using the service name mysqld2. In this case,
you can use the [mysqld1] group for 5.5.9 and the [mysqld2] group for 5.7.11. For example, you
can set up C:\my.cnf like this:

options for mysqld1 service
[mysqld1]
basedir = C:/mysql-5.5.9
port = 3307
enable-named-pipe
socket = mypipe1

options for mysqld2 service
[mysqld2]
basedir = C:/mysql-5.7.11
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server path names to ensure that Windows registers the
correct executable program for each service:

C:\> C:\mysql-5.5.9\bin\mysqld --install mysqld1
C:\> C:\mysql-5.7.11\bin\mysqld --install mysqld2

To start the services, use the services manager, or use NET START with the appropriate service
names:

C:\> NET START mysqld1
C:\> NET START mysqld2

To stop the services, use the services manager, or use NET STOP with the appropriate service
names:

C:\> NET STOP mysqld1

Running Multiple MySQL Instances on Unix

825

C:\> NET STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file when
you install the services to tell each server what file to use. In this case, each file should list options
using a [mysqld] group.

With this approach, to specify options for the 5.5.9 mysqld, create a file C:\my-opts1.cnf that
looks like this:

[mysqld]
basedir = C:/mysql-5.5.9
port = 3307
enable-named-pipe
socket = mypipe1

For the 5.7.11 mysqld, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-5.7.11
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-5.5.9\bin\mysqld --install mysqld1
 --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql-5.7.11\bin\mysqld --install mysqld2
 --defaults-file=C:\my-opts2.cnf

When you install a MySQL server as a service and use a --defaults-file option, the service
name must precede the option.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use mysqld --remove for each one, specifying a service name
following the --remove option. If the service name is the default (MySQL), you can omit it.

5.3.3 Running Multiple MySQL Instances on Unix

One way is to run multiple MySQL instances on Unix is to compile different servers with different
default TCP/IP ports and Unix socket files so that each one listens on different network interfaces.
Compiling in different base directories for each installation also results automatically in a separate,
compiled-in data directory, log file, and PID file location for each server.

Assume that an existing 5.6 server is configured for the default TCP/IP port number (3306) and
Unix socket file (/tmp/mysql.sock). To configure a new 5.7.11 server to have different operating
parameters, use a CMake command something like this:

shell> cmake . -DMYSQL_TCP_PORT=port_number \
 -DMYSQL_UNIX_ADDR=file_name \
 -DCMAKE_INSTALL_PREFIX=/usr/local/mysql-5.7.11

Here, port_number and file_name must be different from the default TCP/IP port number and Unix
socket file path name, and the CMAKE_INSTALL_PREFIX value should specify an installation directory
different from the one under which the existing MySQL installation is located.

If you have a MySQL server listening on a given port number, you can use the following command to
find out what operating parameters it is using for several important configurable variables, including the
base directory and Unix socket file name:

Using Client Programs in a Multiple-Server Environment

826

shell> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when
configuring an additional server.

If you specify localhost as the host name, mysqladmin defaults to using a Unix socket
file connection rather than TCP/IP. To explicitly specify the connection protocol, use the --
protocol={TCP|SOCKET|PIPE|MEMORY} option.

You need not compile a new MySQL server just to start with a different Unix socket file and TCP/IP port
number. It is also possible to use the same server binary and start each invocation of it with different
parameter values at runtime. One way to do so is by using command-line options:

shell> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a --
datadir=dir_name option to mysqld_safe so that the server uses a different data directory.

Alternatively, put the options for each server in a different option file, then start each server using a --
defaults-file option that specifies the path to the appropriate option file. For example, if the option
files for two server instances are named /usr/local/mysql/my.cnf and /usr/local/mysql/
my.cnf2, start the servers like this: command:

shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf
shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf2

Another way to achieve a similar effect is to use environment variables to set the Unix socket file name
and TCP/IP port number:

shell> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
shell> MYSQL_TCP_PORT=3307
shell> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
shell> mysql_install_db --user=mysql
shell> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is
that the environment variable settings apply to any client programs that you invoke from the same shell.
Thus, connections for those clients are automatically directed to the second server.

Section 2.12, “Environment Variables”, includes a list of other environment variables you can use to
affect MySQL programs.

On Unix, the mysqld_multi script provides another way to start multiple servers. See Section 4.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”.

5.3.4 Using Client Programs in a Multiple-Server Environment

To connect with a client program to a MySQL server that is listening to different network interfaces from
those compiled into your client, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect using TCP/IP to a
remote server, with --host=127.0.0.1 --port=port_number to connect using TCP/IP to a
local server, or with --host=localhost --socket=file_name to connect to a local server using
a Unix socket file or a Windows named pipe.

• Start the client with --protocol=TCP to connect using TCP/IP, --protocol=SOCKET to
connect using a Unix socket file, --protocol=PIPE to connect using a named pipe, or --
protocol=MEMORY to connect using shared memory. For TCP/IP connections, you may also need
to specify --host and --port options. For the other types of connections, you may need to specify
a --socket option to specify a Unix socket file or Windows named-pipe name, or a --shared-

Tracing mysqld Using DTrace

827

memory-base-name option to specify the shared-memory name. Shared-memory connections are
supported only on Windows.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to the
Unix socket file and TCP/IP port number before you start your clients. If you normally use a specific
socket file or port number, you can place commands to set these environment variables in your
.login file so that they apply each time you log in. See Section 2.12, “Environment Variables”.

• Specify the default Unix socket file and TCP/IP port number in the [client] group of an option
file. For example, you can use C:\my.cnf on Windows, or the .my.cnf file in your home directory
on Unix. See Section 4.2.6, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the
mysql_real_connect() call. You can also have the program read option files by calling
mysql_options(). See Section 23.8.7, “C API Function Descriptions”.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For
example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
 . "mysql_read_default_file=/usr/local/mysql/data/my.cnf";
$dbh = DBI->connect($dsn, $user, $password);

See Section 23.10, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

5.4 Tracing mysqld Using DTrace
The DTrace probes in the MySQL server are designed to provide information about the execution of
queries within MySQL and the different areas of the system being utilized during that process. The
organization and triggering of the probes means that the execution of an entire query can be monitored
with one level of probes (query-start and query-done) but by monitoring other probes you can get
successively more detailed information about the execution of the query in terms of the locks used, sort
methods and even row-by-row and storage-engine level execution information.

The DTrace probes are organized so that you can follow the entire query process, from the point
of connection from a client, through the query execution, row-level operations, and back out again.
You can think of the probes as being fired within a specific sequence during a typical client connect/
execute/disconnect sequence, as shown in the following figure.

Figure 5.1 The MySQL Architecture Using Pluggable Storage Engines

Global information is provided in the arguments to the DTrace probes at various levels. Global
information, that is, the connection ID and user/host and where relevant the query string, is provided at
key levels (connection-start, command-start, query-start, and query-exec-start). As

Additional Resources

828

you go deeper into the probes, it is assumed either you are only interested in the individual executions
(row-level probes provide information on the database and table name only), or that you will combine
the row-level probes with the notional parent probes to provide the information about a specific query.
Examples of this will be given as the format and arguments of each probe are provided.

MySQL includes support for DTrace probes on these platforms:

• Solaris 10 Update 5 (Solaris 5/08) on SPARC, x86 and x86_64 platforms

• OS X 10.4 and higher

• Oracle Linux 6 and higher with UEK kernel (as of MySQL 5.7.5)

Enabling the probes should be automatic on these platforms. To explicitly enable or disable the probes
during building, use the -DENABLE_DTRACE=1 or -DENABLE_DTRACE=0 option to CMake.

If a non-Solaris platform includes DTrace support, building mysqld on that platform will include DTrace
support.

Additional Resources

• For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

• For an introduction to DTrace, see the MySQL Dev Zone article Getting started with DTracing
MySQL.

5.4.1 mysqld DTrace Probe Reference

MySQL supports the following static probes, organized into groups of functionality.

Table 5.5 MySQL DTrace Probes

Group Probes

Connection connection-start, connection-done

Command command-start, command-done

Query query-start, query-done

Query Parsing query-parse-start, query-parse-done

Query Cache query-cache-hit, query-cache-miss

Query Execution query-exec-start, query-exec-done

Row Level insert-row-start, insert-row-done

 update-row-start, update-row-done

 delete-row-start, delete-row-done

Row Reads read-row-start, read-row-done

Index Reads index-read-row-start, index-read-row-done

Lock handler-rdlock-start, handler-rdlock-done

 handler-wrlock-start, handler-wrlock-done

 handler-unlock-start, handler-unlock-done

Filesort filesort-start, filesort-done

Statement select-start, select-done

 insert-start, insert-done

 insert-select-start, insert-select-done

 update-start, update-done

 multi-update-start, multi-update-done

http://docs.oracle.com/cd/E19253-01/819-5488/
http://dev.mysql.com/tech-resources/articles/mysql-cluster-7.2.html
http://dev.mysql.com/tech-resources/articles/mysql-cluster-7.2.html

mysqld DTrace Probe Reference

829

Group Probes

 delete-start, delete-done

 multi-delete-start, multi-delete-done

Network net-read-start, net-read-done, net-write-start, net-write-done

Keycache keycache-read-start, keycache-read-block, keycache-read-done,
keycache-read-hit, keycache-read-miss, keycache-write-start,
keycache-write-block, keycache-write-done

Note

When extracting the argument data from the probes, each argument is available
as argN, starting with arg0. To identify each argument within the definitions
they are provided with a descriptive name, but you must access the information
using the corresponding argN parameter.

5.4.1.1 Connection Probes

The connection-start and connection-done probes enclose a connection from a client,
regardless of whether the connection is through a socket or network connection.

connection-start(connectionid, user, host)
connection-done(status, connectionid)

• connection-start: Triggered after a connection and successful login/authentication have been
completed by a client. The arguments contain the connection information:

• connectionid: An unsigned long containing the connection ID. This is the same as the
process ID shown as the Id value in the output from SHOW PROCESSLIST.

• user: The username used when authenticating. The value will be blank for the anonymous user.

• host: The host of the client connection. For a connection made using UNIX sockets, the value will
be blank.

• connection-done: Triggered just as the connection to the client has been closed. The arguments
are:

• status: The status of the connection when it was closed. A logout operation will have a value of
0; any other termination of the connection has a nonzero value.

• connectionid: The connection ID of the connection that was closed.

The following D script will quantify and summarize the average duration of individual connections, and
provide a count, dumping the information every 60 seconds:

#!/usr/sbin/dtrace -s

mysql*:::connection-start
{
 self->start = timestamp;
}

mysql*:::connection-done
/self->start/
{
 @ = quantize(((timestamp - self->start)/1000000));
 self->start = 0;
}

tick-60s
{

mysqld DTrace Probe Reference

830

 printa(@);
}

When executed on a server with a large number of clients you might see output similar to this:

 1 57413 :tick-60s

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 30011
 1 | 59
 2 | 5
 4 | 20
 8 | 29
 16 | 18
 32 | 27
 64 | 30
 128 | 11
 256 | 10
 512 | 1
 1024 | 6
 2048 | 8
 4096 | 9
 8192 | 8
 16384 | 2
 32768 | 1
 65536 | 1
 131072 | 0
 262144 | 1
 524288 | 0

5.4.1.2 Command Probes

The command probes are executed before and after a client command is executed, including any
SQL statement that might be executed during that period. Commands include operations such as the
initialization of the DB, use of the COM_CHANGE_USER operation (supported by the MySQL protocol),
and manipulation of prepared statements. Many of these commands are used only by the MySQL client
API from various connectors such as PHP and Java.

command-start(connectionid, command, user, host)
command-done(status)

• command-start: Triggered when a command is submitted to the server.

• connectionid: The connection ID of the client executing the command.

• command: An integer representing the command that was executed. Possible values are shown in
the following table.

Value Name Description

00 COM_SLEEP Internal thread state

01 COM_QUIT Close connection

02 COM_INIT_DB Select database (USE ...)

03 COM_QUERY Execute a query

04 COM_FIELD_LIST Get a list of fields

05 COM_CREATE_DBCreate a database (deprecated)

06 COM_DROP_DB Drop a database (deprecated)

07 COM_REFRESH Refresh connection

08 COM_SHUTDOWNShutdown server

09 COM_STATISTICSGet statistics

10 COM_PROCESS_INFOGet processes (SHOW PROCESSLIST)

mysqld DTrace Probe Reference

831

Value Name Description

11 COM_CONNECT Initialize connection

12 COM_PROCESS_KILLKill process

13 COM_DEBUG Get debug information

14 COM_PING Ping

15 COM_TIME Internal thread state

16 COM_DELAYED_INSERTInternal thread state

17 COM_CHANGE_USERChange user

18 COM_BINLOG_DUMPUsed by a replication slave or mysqlbinlog to initiate a binary log
read

19 COM_TABLE_DUMPUsed by a replication slave to get the master table information

20 COM_CONNECT_OUTUsed by a replication slave to log a connection to the server

21 COM_REGISTER_SLAVEUsed by a replication slave during registration

22 COM_STMT_PREPAREPrepare a statement

23 COM_STMT_EXECUTEExecute a statement

24 COM_STMT_SEND_LONG_DATAUsed by a client when requesting extended data

25 COM_STMT_CLOSEClose a prepared statement

26 COM_STMT_RESETReset a prepared statement

27 COM_SET_OPTIONSet a server option

28 COM_STMT_FETCHFetch a prepared statement

• user: The user executing the command.

• host: The client host.

• command-done: Triggered when the command execution completes. The status argument
contains 0 if the command executed successfully, or 1 if the statement was terminated before normal
completion.

The command-start and command-done probes are best used when combined with the statement
probes to get an idea of overall execution time.

5.4.1.3 Query Probes

The query-start and query-done probes are triggered when a specific query is received by the
server and when the query has been completed and the information has been successfully sent to the
client.

query-start(query, connectionid, database, user, host)
query-done(status)

• query-start: Triggered after the query string has been received from the client. The arguments
are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID
equals the connection ID returned when the client first connects and the Id value in the output
from SHOW PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

mysqld DTrace Probe Reference

832

• host: The hostname of the client.

• query-done: Triggered once the query has been executed and the information has been returned
to the client. The probe includes a single argument, status, which returns 0 when the query is
successfully executed and 1 if there was an error.

You can get a simple report of the execution time for each query using the following D script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-20s %-20s %-40s %-9s\n", "Who", "Database", "Query", "Time(ms)");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
}

mysql*:::query-done
{
 printf("%-20s %-20s %-40s %-9d\n",self->who,self->db,self->query,
 (timestamp - self->querystart) / 1000000);
}

When executing the above script you should get a basic idea of the execution time of your queries:

shell> ./query.d
Who Database Query Time(ms)
root@localhost test select * from t1 order by i limit 10 0
root@localhost test set global query_cache_size=0 0
root@localhost test select * from t1 order by i limit 10 776
root@localhost test select * from t1 order by i limit 10 773
root@localhost test select * from t1 order by i desc limit 10 795

5.4.1.4 Query Parsing Probes

The query parsing probes are triggered before the original SQL statement is parsed and when the
parsing of the statement and determination of the execution model required to process the statement
has been completed:

query-parse-start(query)
query-parse-done(status)

• query-parse-start: Triggered just before the statement is parsed by the MySQL query parser.
The single argument, query, is a string containing the full text of the original query.

• query-parse-done: Triggered when the parsing of the original statement has been completed.
The status is an integer describing the status of the operation. A 0 indicates that the query was
successfully parsed. A 1 indicates that the parsing of the query failed.

For example, you could monitor the execution time for parsing a given query using the following D
script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::query-parse-start
{
 self->parsestart = timestamp;

mysqld DTrace Probe Reference

833

 self->parsequery = copyinstr(arg0);
}

mysql*:::query-parse-done
/arg0 == 0/
{
 printf("Parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));
}

mysql*:::query-parse-done
/arg0 != 0/
{
 printf("Error parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));
}

In the above script a predicate is used on query-parse-done so that different output is generated
based on the status value of the probe.

When running the script and monitoring the execution:

shell> ./query-parsing.d
Error parsing select from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 36 ms
Parsing select * from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 176 ms

5.4.1.5 Query Cache Probes

The query cache probes are fired when executing any query. The query-cache-hit query
is triggered when a query exists in the query cache and can be used to return the query cache
information. The arguments contain the original query text and the number of rows returned from the
query cache for the query. If the query is not within the query cache, or the query cache is not enabled,
then the query-cache-miss probe is triggered instead.

query-cache-hit(query, rows)
query-cache-miss(query)

• query-cache-hit: Triggered when the query has been found within the query cache. The first
argument, query, contains the original text of the query. The second argument, rows, is an integer
containing the number of rows in the cached query.

• query-cache-miss: Triggered when the query is not found within the query cache. The first
argument, query, contains the original text of the query.

The query cache probes are best combined with a probe on the main query so that you can determine
the differences in times between using or not using the query cache for specified queries. For example,
in the following D script, the query and query cache information are combined into the information
output during monitoring:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-20s %-20s %-40s %2s %-9s\n", "Who", "Database", "Query", "QC", "Time(ms)");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
 self->qc = 0;
}

mysql*:::query-cache-hit
{

mysqld DTrace Probe Reference

834

 self->qc = 1;
}

mysql*:::query-cache-miss
{
 self->qc = 0;
}

mysql*:::query-done
{
 printf("%-20s %-20s %-40s %-2s %-9d\n",self->who,self->db,self->query,(self->qc ? "Y" : "N"),
 (timestamp - self->querystart) / 1000000);
}

When executing the script you can see the effects of the query cache. Initially the query cache is
disabled. If you set the query cache size and then execute the query multiple times you should see that
the query cache is being used to return the query data:

shell> ./query-cache.d
root@localhost test select * from t1 order by i limit 10 N 1072
root@localhost set global query_cache_size=262144 N 0
root@localhost test select * from t1 order by i limit 10 N 781
root@localhost test select * from t1 order by i limit 10 Y 0

5.4.1.6 Query Execution Probes

The query execution probe is triggered when the actual execution of the query starts, after the parsing
and checking the query cache but before any privilege checks or optimization. By comparing the
difference between the start and done probes you can monitor the time actually spent servicing the
query (instead of just handling the parsing and other elements of the query).

query-exec-start(query, connectionid, database, user, host, exec_type)
query-exec-done(status)

Note

The information provided in the arguments for query-start and query-
exec-start are almost identical and designed so that you can choose to
monitor either the entire query process (using query-start) or only the
execution (using query-exec-start) while exposing the core information
about the user, client, and query being executed.

• query-exec-start: Triggered when the execution of a individual query is started. The arguments
are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID
equals the connection ID returned when the client first connects and the Id value in the output
from SHOW PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

• host: The hostname of the client.

• exec_type: The type of execution. Execution types are determined based on the contents of the
query and where it was submitted. The values for each type are shown in the following table.

Value Description

0 Executed query from sql_parse, top-level query.

1 Executed prepared statement

mysqld DTrace Probe Reference

835

Value Description

2 Executed cursor statement

3 Executed query in stored procedure

• query-exec-done: Triggered when the execution of the query has completed. The probe includes
a single argument, status, which returns 0 when the query is successfully executed and 1 if there
was an error.

5.4.1.7 Row-Level Probes

The *row-{start,done} probes are triggered each time a row operation is pushed down to a
storage engine. For example, if you execute an INSERT statement with 100 rows of data, then the
insert-row-start and insert-row-done probes will be triggered 100 times each, for each row
insert.

insert-row-start(database, table)
insert-row-done(status)

update-row-start(database, table)
update-row-done(status)

delete-row-start(database, table)
delete-row-done(status)

• insert-row-start: Triggered before a row is inserted into a table.

• insert-row-done: Triggered after a row is inserted into a table.

• update-row-start: Triggered before a row is updated in a table.

• update-row-done: Triggered before a row is updated in a table.

• delete-row-start: Triggered before a row is deleted from a table.

• delete-row-done: Triggered before a row is deleted from a table.

The arguments supported by the probes are consistent for the corresponding start and done probes
in each case:

• database: The database name.

• table: The table name.

• status: The status; 0 for success or 1 for failure.

Because the row-level probes are triggered for each individual row access, these probes can be
triggered many thousands of times each second, which may have a detrimental effect on both the
monitoring script and MySQL. The DTrace environment should limit the triggering on these probes
to prevent the performance being adversely affected. Either use the probes sparingly, or use counter
or aggregation functions to report on these probes and then provide a summary when the script
terminates or as part of a query-done or query-exec-done probes.

The following example script summarizes the duration of each row operation within a larger query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-2s %-10s %-10s %9s %9s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur ms", "Query");
}

mysql*:::query-start

mysqld DTrace Probe Reference

836

{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->rowdur = 0;
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000000;
 printf("%2d %-10s %-10s %9d %9d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
}

mysql*:::query-done
/ self->rowdur /
{
 printf("%34s %9d %s\n", "", (self->rowdur/1000000), "-> Row ops");
}

mysql*:::insert-row-start
{
 self->rowstart = timestamp;
}

mysql*:::delete-row-start
{
 self->rowstart = timestamp;
}

mysql*:::update-row-start
{
 self->rowstart = timestamp;
}

mysql*:::insert-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

mysql*:::delete-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

mysql*:::update-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

Running the above script with a query that inserts data into a table, you can monitor the exact time
spent performing the raw row insertion:

St Who DB ConnID Dur ms Query
 0 @localhost test 13 20767 insert into t1(select * from t2)
 4827 -> Row ops

5.4.1.8 Read Row Probes

The read row probes are triggered at a storage engine level each time a row read operation occurs.
These probes are specified within each storage engine (as opposed to the *row-start probes which
are in the storage engine interface). These probes can therefore be used to monitor individual storage
engine row-level operations and performance. Because these probes are triggered around the storage
engine row read interface, they may be hit a significant number of times during a basic query.

read-row-start(database, table, scan_flag)
read-row-done(status)

mysqld DTrace Probe Reference

837

• read-row-start: Triggered when a row is read by the storage engine from the specified
database and table. The scan_flag is set to 1 (true) when the read is part of a table scan (that
is, a sequential read), or 0 (false) when the read is of a specific record.

• read-row-done: Triggered when a row read operation within a storage engine completes. The
status returns 0 on success, or a positive value on failure.

5.4.1.9 Index Probes

The index probes are triggered each time a row is read using one of the indexes for the specified table.
The probe is triggered within the corresponding storage engine for the table.

index-read-row-start(database, table)
index-read-row-done(status)

• index-read-row-start: Triggered when a row is read by the storage engine from the specified
database and table.

• index-read-row-done: Triggered when an indexed row read operation within a storage engine
completes. The status returns 0 on success, or a positive value on failure.

5.4.1.10 Lock Probes

The lock probes are called whenever an external lock is requested by MySQL for a table using the
corresponding lock mechanism on the table as defined by the table's engine type. There are three
different types of lock, the read lock, write lock, and unlock operations. Using the probes you can
determine the duration of the external locking routine (that is, the time taken by the storage engine to
implement the lock, including any time waiting for another lock to become free) and the total duration of
the lock/unlock process.

handler-rdlock-start(database, table)
handler-rdlock-done(status)

handler-wrlock-start(database, table)
handler-wrlock-done(status)

handler-unlock-start(database, table)
handler-unlock-done(status)

• handler-rdlock-start: Triggered when a read lock is requested on the specified database and
table.

• handler-wrlock-start: Triggered when a write lock is requested on the specified database
and table.

• handler-unlock-start: Triggered when an unlock request is made on the specified database
and table.

• handler-rdlock-done: Triggered when a read lock request completes. The status is 0 if the
lock operation succeeded, or >0 on failure.

• handler-wrlock-done: Triggered when a write lock request completes. The status is 0 if the
lock operation succeeded, or >0 on failure.

• handler-unlock-done: Triggered when an unlock request completes. The status is 0 if the
unlock operation succeeded, or >0 on failure.

You can use arrays to monitor the locking and unlocking of individual tables and then calculate the
duration of the entire table lock using the following script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::handler-rdlock-start
{

mysqld DTrace Probe Reference

838

 self->rdlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 self->lockmap[this->lockref] = self->rdlockstart;
 printf("Start: Lock->Read %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}

mysql*:::handler-wrlock-start
{
 self->wrlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 self->lockmap[this->lockref] = self->rdlockstart;
 printf("Start: Lock->Write %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}

mysql*:::handler-unlock-start
{
 self->unlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 printf("Start: Lock->Unlock %s.%s (%d ms lock duration)\n",
 copyinstr(arg0),copyinstr(arg1),
 (timestamp - self->lockmap[this->lockref])/1000000);
}

mysql*:::handler-rdlock-done
{
 printf("End: Lock->Read %d ms\n",
 (timestamp - self->rdlockstart)/1000000);
}

mysql*:::handler-wrlock-done
{
 printf("End: Lock->Write %d ms\n",
 (timestamp - self->wrlockstart)/1000000);
}

mysql*:::handler-unlock-done
{
 printf("End: Lock->Unlock %d ms\n",
 (timestamp - self->unlockstart)/1000000);
}

When executed, you should get information both about the duration of the locking process itself, and of
the locks on a specific table:

Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (25743 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms

5.4.1.11 Filesort Probes

The filesort probes are triggered whenever a filesort operation is applied to a table. For more
information on filesort and the conditions under which it occurs, see Section 8.2.1.15, “ORDER BY
Optimization”.

filesort-start(database, table)
filesort-done(status, rows)

• filesort-start: Triggered when the filesort operation starts on a table. The two arguments to the
probe, database and table, will identify the table being sorted.

mysqld DTrace Probe Reference

839

• filesort-done: Triggered when the filesort operation completes. Two arguments are supplied, the
status (0 for success, 1 for failure), and the number of rows sorted during the filesort process.

An example of this is in the following script, which tracks the duration of the filesort process in addition
to the duration of the main query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-2s %-10s %-10s %9s %18s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->filesort = 0;
 self->fsdb = "";
 self->fstable = "";
}

mysql*:::filesort-start
{
 self->filesort = timestamp;
 self->fsdb = copyinstr(arg0);
 self->fstable = copyinstr(arg1);
}

mysql*:::filesort-done
{
 this->elapsed = (timestamp - self->filesort) /1000;
 printf("%2d %-10s %-10s %9d %18d Filesort on %s\n",
 arg0, self->who, self->fsdb,
 self->connid, this->elapsed, self->fstable);
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000;
 printf("%2d %-10s %-10s %9d %18d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
}

Executing a query on a large table with an ORDER BY clause that triggers a filesort, and then creating
an index on the table and then repeating the same query, you can see the difference in execution
speed:

St Who DB ConnID Dur microsec Query
 0 @localhost test 14 11335469 Filesort on t1
 0 @localhost test 14 11335787 select * from t1 order by i limit 100
 0 @localhost test 14 466734378 create index t1a on t1 (i)
 0 @localhost test 14 26472 select * from t1 order by i limit 100

5.4.1.12 Statement Probes

The individual statement probes are provided to give specific information about different statement
types. For the start probes the string of the query is provided as the only argument. Depending on
the statement type, the information provided by the corresponding done probe will differ. For all done
probes the status of the operation (0 for success, >0 for failure) is provided. For SELECT, INSERT,
INSERT ... (SELECT FROM ...), DELETE, and DELETE FROM t1,t2 operations the number of
rows affected is returned.

mysqld DTrace Probe Reference

840

For UPDATE and UPDATE t1,t2 ... statements the number of rows matched and the number
of rows actually changed is provided. This is because the number of rows actually matched by the
corresponding WHERE clause, and the number of rows changed can differ. MySQL does not update the
value of a row if the value already matches the new setting.

select-start(query)
select-done(status,rows)

insert-start(query)
insert-done(status,rows)

insert-select-start(query)
insert-select-done(status,rows)

update-start(query)
update-done(status,rowsmatched,rowschanged)

multi-update-start(query)
multi-update-done(status,rowsmatched,rowschanged)

delete-start(query)
delete-done(status,rows)

multi-delete-start(query)
multi-delete-done(status,rows)

• select-start: Triggered before a SELECT statement.

• select-done: Triggered at the end of a SELECT statement.

• insert-start: Triggered before a INSERT statement.

• insert-done: Triggered at the end of an INSERT statement.

• insert-select-start: Triggered before an INSERT ... SELECT statement.

• insert-select-done: Triggered at the end of an INSERT ... SELECT statement.

• update-start: Triggered before an UPDATE statement.

• update-done: Triggered at the end of an UPDATE statement.

• multi-update-start: Triggered before an UPDATE statement involving multiple tables.

• multi-update-done: Triggered at the end of an UPDATE statement involving multiple tables.

• delete-start: Triggered before a DELETE statement.

• delete-done: Triggered at the end of a DELETE statement.

• multi-delete-start: Triggered before a DELETE statement involving multiple tables.

• multi-delete-done: Triggered at the end of a DELETE statement involving multiple tables.

The arguments for the statement probes are:

• query: The query string.

• status: The status of the query. 0 for success, and >0 for failure.

• rows: The number of rows affected by the statement. This returns the number rows found for
SELECT, the number of rows deleted for DELETE, and the number of rows successfully inserted for
INSERT.

• rowsmatched: The number of rows matched by the WHERE clause of an UPDATE operation.

• rowschanged: The number of rows actually changed during an UPDATE operation.

mysqld DTrace Probe Reference

841

You use these probes to monitor the execution of these statement types without having to monitor the
user or client executing the statements. A simple example of this is to track the execution times:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-60s %-8s %-8s %-8s\n", "Query", "RowsU", "RowsM", "Dur (ms)");
}

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
 self->query = copyinstr(arg0);
 self->querystart = timestamp;
}

mysql*:::insert-done, mysql*:::select-done,
mysql*:::delete-done, mysql*:::multi-delete-done, mysql*:::insert-select-done
/ self->querystart /
{
 this->elapsed = ((timestamp - self->querystart)/1000000);
 printf("%-60s %-8d %-8d %d\n",
 self->query,
 0,
 arg1,
 this->elapsed);
 self->querystart = 0;
}

mysql*:::update-done, mysql*:::multi-update-done
/ self->querystart /
{
 this->elapsed = ((timestamp - self->querystart)/1000000);
 printf("%-60s %-8d %-8d %d\n",
 self->query,
 arg1,
 arg2,
 this->elapsed);
 self->querystart = 0;
}

When executed you can see the basic execution times and rows matches:

Query RowsU RowsM Dur (ms)
select * from t2 0 275 0
insert into t2 (select * from t2) 0 275 9
update t2 set i=5 where i > 75 110 110 8
update t2 set i=5 where i < 25 254 134 12
delete from t2 where i < 5 0 0 0

Another alternative is to use the aggregation functions in DTrace to aggregate the execution time of
individual statements together:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
 self->querystart = timestamp;
}

mysql*:::select-done

mysqld DTrace Probe Reference

842

{
 @statements["select"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::insert-done, mysql*:::insert-select-done
{
 @statements["insert"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::update-done, mysql*:::multi-update-done
{
 @statements["update"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::delete-done, mysql*:::multi-delete-done
{
 @statements["delete"] = sum(((timestamp - self->querystart)/1000000));
}

tick-30s
{
 printa(@statements);
}

The script just shown aggregates the times spent doing each operation, which could be used to help
benchmark a standard suite of tests.

 delete 0
 update 0
 insert 23
 select 2484

 delete 0
 update 0
 insert 39
 select 10744

 delete 0
 update 26
 insert 56
 select 10944

 delete 0
 update 26
 insert 2287
 select 15985

5.4.1.13 Network Probes

The network probes monitor the transfer of information from the MySQL server and clients of all types
over the network. The probes are defined as follows:

net-read-start()
net-read-done(status, bytes)
net-write-start(bytes)
net-write-done(status)

• net-read-start: Triggered when a network read operation is started.

• net-read-done: Triggered when the network read operation completes. The status is an
integer representing the return status for the operation, 0 for success and 1 for failure. The bytes
argument is an integer specifying the number of bytes read during the process.

• net-start-bytes: Triggered when data is written to a network socket. The single argument,
bytes, specifies the number of bytes written to the network socket.

• net-write-done: Triggered when the network write operation has completed. The single
argument, status, is an integer representing the return status for the operation, 0 for success and 1
for failure.

mysqld DTrace Probe Reference

843

You can use the network probes to monitor the time spent reading from and writing to network clients
during execution. The following D script provides an example of this. Both the cumulative time for the
read or write is calculated, and the number of bytes. Note that the dynamic variable size has been
increased (using the dynvarsize option) to cope with the rapid firing of the individual probes for the
network reads/writes.

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option dynvarsize=4m

dtrace:::BEGIN
{
 printf("%-2s %-30s %-10s %9s %18s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->netwrite = 0;
 self->netwritecum = 0;
 self->netwritebase = 0;
 self->netread = 0;
 self->netreadcum = 0;
 self->netreadbase = 0;
}

mysql*:::net-write-start
{
 self->netwrite += arg0;
 self->netwritebase = timestamp;
}

mysql*:::net-write-done
{
 self->netwritecum += (timestamp - self->netwritebase);
 self->netwritebase = 0;
}

mysql*:::net-read-start
{
 self->netreadbase = timestamp;
}

mysql*:::net-read-done
{
 self->netread += arg1;
 self->netreadcum += (timestamp - self->netreadbase);
 self->netreadbase = 0;
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000000;
 printf("%2d %-30s %-10s %9d %18d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
 printf("Net read: %d bytes (%d ms) write: %d bytes (%d ms)\n",
 self->netread, (self->netreadcum/1000000),
 self->netwrite, (self->netwritecum/1000000));
}

When executing the above script on a machine with a remote client, you can see that approximately a
third of the time spent executing the query is related to writing the query results back to the client.

St Who DB ConnID Dur microsec Query

mysqld DTrace Probe Reference

844

 0 root@::ffff:192.168.0.108 test 31 3495 select * from t1 limit 1000000
Net read: 0 bytes (0 ms) write: 10000075 bytes (1220 ms)

5.4.1.14 Keycache Probes

The keycache probes are triggered when using the index key cache used with the MyISAM storage
engine. Probes exist to monitor when data is read into the keycache, cached key data is written from
the cache into a cached file, or when accessing the keycache.

Keycache usage indicates when data is read or written from the index files into the cache, and can be
used to monitor how efficient the memory allocated to the keycache is being used. A high number of
keycache reads across a range of queries may indicate that the keycache is too small for size of data
being accessed.

keycache-read-start(filepath, bytes, mem_used, mem_free)
keycache-read-block(bytes)
keycache-read-hit()
keycache-read-miss()
keycache-read-done(mem_used, mem_free)
keycache-write-start(filepath, bytes, mem_used, mem_free)
keycache-write-block(bytes)
keycache-write-done(mem_used, mem_free)

When reading data from the index files into the keycache, the process first initializes the read operation
(indicated by keycache-read-start), then loads blocks of data (keycache-read-block), and
then the read block is either matches the data being identified (keycache-read-hit) or more data
needs to be read (keycache-read-miss). Once the read operation has completed, reading stops
with the keycache-read-done.

Data will be read from the index file into the keycache only when the specified key is not already within
the keycache.

• keycache-read-start: Triggered when the keycache read operation is started. Data is read from
the specified filepath, reading the specified number of bytes. The mem_used and mem_avail
indicate memory currently used by the keycache and the amount of memory available within the
keycache.

• keycache-read-block: Triggered when the keycache reads a block of data, of the specified
number of bytes, from the index file into the keycache.

• keycache-read-hit: Triggered when the block of data read from the index file matches the key
data requested.

• keycache-read-miss: Triggered when the block of data read from the index file does not match
the key data needed.

• keycache-read-done: Triggered when the keycache read operation has completed. The
mem_used and mem_avail indicate memory currently used by the keycache and the amount of
memory available within the keycache.

Keycache writes occur when the index information is updated during an INSERT, UPDATE, or DELETE
operation, and the cached key information is flushed back to the index file.

• keycache-write-start: Triggered when the keycache write operation is started. Data is written
to the specified filepath, reading the specified number of bytes. The mem_used and mem_avail
indicate memory currently used by the keycache and the amount of memory available within the
keycache.

• keycache-write-block: Triggered when the keycache writes a block of data, of the specified
number of bytes, to the index file from the keycache.

• keycache-write-done: Triggered when the keycache write operation has completed. The
mem_used and mem_avail indicate memory currently used by the keycache and the amount of
memory available within the keycache.

845

Chapter 6 Security

Table of Contents
6.1 General Security Issues .. 846

6.1.1 Security Guidelines .. 846
6.1.2 Keeping Passwords Secure .. 847
6.1.3 Making MySQL Secure Against Attackers .. 860
6.1.4 Security-Related mysqld Options and Variables ... 862
6.1.5 How to Run MySQL as a Normal User .. 863
6.1.6 Security Issues with LOAD DATA LOCAL ... 864
6.1.7 Client Programming Security Guidelines .. 864

6.2 The MySQL Access Privilege System .. 866
6.2.1 Privileges Provided by MySQL .. 867
6.2.2 Privilege System Grant Tables .. 871
6.2.3 Specifying Account Names ... 877
6.2.4 Access Control, Stage 1: Connection Verification ... 879
6.2.5 Access Control, Stage 2: Request Verification ... 882
6.2.6 When Privilege Changes Take Effect .. 883
6.2.7 Troubleshooting Problems Connecting to MySQL .. 884

6.3 MySQL User Account Management ... 889
6.3.1 User Names and Passwords .. 889
6.3.2 Adding User Accounts .. 890
6.3.3 Removing User Accounts ... 892
6.3.4 Setting Account Resource Limits .. 892
6.3.5 Assigning Account Passwords .. 894
6.3.6 Password Expiration Policy ... 896
6.3.7 Password Expiration and Sandbox Mode .. 898
6.3.8 Pluggable Authentication .. 900
6.3.9 Authentication Plugins Available in MySQL .. 903
6.3.10 Proxy Users ... 925
6.3.11 User Account Locking .. 929
6.3.12 Using Secure Connections ... 929
6.3.13 Creating SSL and RSA Certificates and Keys .. 942
6.3.14 Connecting to MySQL Remotely from Windows with SSH ... 950
6.3.15 MySQL Enterprise Audit Log Plugin .. 951
6.3.16 SQL-Based MySQL Account Activity Auditing .. 973
6.3.17 MySQL Enterprise Firewall ... 975

When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

• General factors that affect security. These include choosing good passwords, not granting
unnecessary privileges to users, ensuring application security by preventing SQL injections and data
corruption, and others. See Section 6.1, “General Security Issues”.

• Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized
parties. For more information, see Section 2.10, “Postinstallation Setup and Testing”.

• Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For
more information, see Section 6.2, “The MySQL Access Privilege System”, and Section 6.3, “MySQL
User Account Management”.

• Network security of MySQL and your system. The security is related to the grants for individual
users, but you may also wish to restrict MySQL so that it is available only locally on the MySQL
server host, or to a limited set of other hosts.

General Security Issues

846

• Ensure that you have adequate and appropriate backups of your database files, configuration
and log files. Also be sure that you have a recovery solution in place and test that you are able to
successfully recover the information from your backups. See Chapter 7, Backup and Recovery.

6.1 General Security Issues

This section describes general security issues to be aware of and what you can do to make your
MySQL installation more secure against attack or misuse. For information specifically about the access
control system that MySQL uses for setting up user accounts and checking database access, see
Section 2.10, “Postinstallation Setup and Testing”.

For answers to some questions that are often asked about MySQL Server security issues, see
Section A.9, “MySQL 5.7 FAQ: Security”.

6.1.1 Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to avoid the
most common security mistakes.

In discussing security, it is necessary to consider fully protecting the entire server host (not just the
MySQL server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of
service. We do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL
at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the
mysql database! This is critical.

• Learn how the MySQL access privilege system works (see Section 6.2, “The MySQL Access
Privilege System”). Use the GRANT and REVOKE statements to control access to MySQL. Do not
grant more privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked
for a password, anyone can connect to your MySQL server as the MySQL root user with full
privileges! Review the MySQL installation instructions, paying particular attention to the information
about setting a root password. See Section 2.10.4, “Securing the Initial MySQL Accounts”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store cleartext passwords in your database. If your computer becomes compromised, the
intruder can take the full list of passwords and use them. Instead, use SHA2(), SHA1(), MD5(), or
some other one-way hashing function and store the hash value.

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.

• Do not choose passwords from dictionaries. Special programs exist to break passwords. Even
passwords like “xfish98” are very bad. Much better is “duag98” which contains the same word
“fish” but typed one key to the left on a standard QWERTY keyboard. Another method is to use
a password that is taken from the first characters of each word in a sentence (for example, “Four
score and seven years ago” results in a password of “Fsasya”). The password is easy to remember

Keeping Passwords Secure

847

and type, but difficult to guess for someone who does not know the sentence. In this case, you can
additionally substitute digits for the number words to obtain the phrase “4 score and 7 years ago”,
yielding the password “4sa7ya” which is even more difficult to guess.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306
by default. This port should not be accessible from untrusted hosts. As a simple way to check
whether your MySQL port is open, try the following command from some remote machine, where
server_host is the host name or IP address of the host on which your MySQL server runs:

shell> telnet server_host 3306

If telnet hangs or the connection is refused, the port is blocked, which is how you want it to be.
If you get a connection and some garbage characters, the port is open, and should be closed on
your firewall or router, unless you really have a good reason to keep it open.

• Applications that access MySQL should not trust any data entered by users, and should be written
using proper defensive programming techniques. See Section 6.1.7, “Client Programming Security
Guidelines”.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an
encrypted protocol such as SSL or SSH. MySQL supports internal SSL connections. Another
technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for the
communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL
data streams are unencrypted by issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see cleartext data, this does not always mean that the
information actually is encrypted. If you need high security, consult with a
security expert.

6.1.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that
enable end users and administrators to keep these passwords secure and avoid exposing them. There
is also a discussion of how MySQL uses password hashing internally and of a plugin that you can use
to enforce stricter passwords.

6.1.2.1 End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your
password in a way that exposes it to discovery by other users. The methods you can use to specify
your password when you run client programs are listed here, along with an assessment of the risks of
each method. In short, the safest methods are to have the client program prompt for the password or to
specify the password in a properly protected option file.

Keeping Passwords Secure

848

• Use the mysql_config_editor utility, which enables you to store authentication credentials in
an encrypted login path file named .mylogin.cnf. The file can be read later by MySQL client
programs to obtain authentication credentials for connecting to MySQL Server. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• Use a -pyour_pass or --password=your_pass option on the command line. For example:

shell> mysql -u francis -pfrank db_name

This is convenient but insecure. On some systems, your password becomes visible to system
status programs such as ps that may be invoked by other users to display command lines. MySQL
clients typically overwrite the command-line password argument with zeros during their initialization
sequence. However, there is still a brief interval during which the value is visible. Also, on some
systems this overwriting strategy is ineffective and the password remains visible to ps. (SystemV
Unix systems and perhaps others are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your
terminal window, the password remains visible as long as the command is running, even if the
command has scrolled out of view in the window content area.

• Use the -p or --password option on the command line with no password value specified. In this
case, the client program solicits the password interactively:

shell> mysql -u francis -p db_name
Enter password: ********

The “*” characters indicate where you enter your password. The password is not displayed as you
enter it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs
that you run interactively. If you want to invoke a client from a script that runs noninteractively, there
is no opportunity to enter the password from the keyboard. On some systems, you may even find
that the first line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix, you can list your password in the
[client] section of the .my.cnf file in your home directory:

[client]
password=your_pass

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this,
set the file access mode to 400 or 600. For example:

shell> chmod 600 .my.cnf

To name from the command line a specific option file containing the password, use the --
defaults-file=file_name option, where file_name is the full path name to the file. For
example:

shell> mysql --defaults-file=/home/francis/mysql-opts

Section 4.2.6, “Using Option Files”, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. See Section 2.12, “Environment
Variables”.

This method of specifying your MySQL password must be considered extremely insecure and should
not be used. Some versions of ps include an option to display the environment of running processes.

Keeping Passwords Secure

849

On some systems, if you set MYSQL_PWD, your password is exposed to any other user who runs
ps. Even on systems without such a version of ps, it is unwise to assume that there are no other
methods by which users can examine process environments.

On Unix, the mysql client writes a record of executed statements to a history file (see Section 4.5.1.3,
“mysql Logging”). By default, this file is named .mysql_history and is created in your home
directory. Passwords can be written as plain text in SQL statements such as CREATE USER and ALTER
USER, so if you use these statements, they are logged in the history file. To keep this file safe, use a
restrictive access mode, the same way as described earlier for the .my.cnf file.

If your command interpreter is configured to maintain a history, any file in which the commands
are saved will contain MySQL passwords entered on the command line. For example, bash uses
~/.bash_history. Any such file should have a restrictive access mode.

6.1.2.2 Administrator Guidelines for Password Security

Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user table. Access to this table should
never be granted to any nonadministrative accounts.

Account passwords can be expired so that users must reset them. See Section 6.3.6, “Password
Expiration Policy”, and Section 6.3.7, “Password Expiration and Sandbox Mode”.

The validate_password plugin can be used to enforce a policy on acceptable password. See
Section 6.1.2.5, “The Password Validation Plugin”.

A user who has access to modify the plugin directory (the value of the plugin_dir system variable)
or the my.cnf file that specifies the location of the plugin directory can replace plugins and modify the
capabilities provided by plugins, including authentication plugins.

Files such as log files to which passwords might be written should be protected. See Section 6.1.2.3,
“Passwords and Logging”.

6.1.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, SET
PASSWORD, and statements that invoke the PASSWORD() function. If such statements are logged by the
MySQL server as written, passwords in them become visible to anyone with access to the logs.

In MySQL 5.7, statement logging avoids writing passwords in cleartext for the following statements:

CREATE USER ... IDENTIFIED BY ...
ALTER USER ... IDENTIFIED BY ...
GRANT ... IDENTIFIED BY ...
SET PASSWORD ...
SLAVE START ... PASSWORD = ...
CREATE SERVER ... OPTIONS(... PASSWORD ...)
ALTER SERVER ... OPTIONS(... PASSWORD ...)

Passwords in those statements are rewritten to not appear literally in statement text written to the
general query log, slow query log, and binary log. Rewriting does not apply to other statements. In
particular, INSERT or UPDATE statements for the mysql.user table that refer to literal passwords are
logged as is, so you should avoid such statements. (Direct manipulation of grant tables is discouraged,
anyway.)

For the general query log, password rewriting can be suppressed by starting the server with the
--log-raw option. For security reasons, this option is not recommended for production use. For
diagnostic purposes, it may be useful to see the exact text of statements as received by the server.

Keeping Passwords Secure

850

Contents of the audit log file produced by the audit log plugin are not encrypted. For security reasons,
this file should be written to a directory accessible only to the MySQL server and users with a legitimate
reason to view the log. See Section 6.3.15.2, “Audit Log Plugin Security Considerations”.

Statements received by the server may be rewritten if a query rewrite plugin is installed (see
Section 24.2.3.10, “Query Rewrite Plugins”). In this case, the --log-raw option affects statement
logging as follows:

• Without --log-raw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

• With --log-raw, the server logs the original statement as received.

To guard log files against unwarranted exposure, locate them in a directory that restricts access to the
server and the database administrator. If the server logs to tables in the mysql database, grant access
to those tables only to the database administrator.

Replication slaves store the password for the replication master in the master info repository, which can
be either a file or a table (see Section 17.2.4, “Replication Relay and Status Logs”). Ensure that the
repository can be accessed only by the database administrator. An alternative to storing the password
in a file is to use the START SLAVE statement to specify credentials for connecting to the master.

Use a restricted access mode to protect database backups that include log tables or log files containing
passwords.

6.1.2.4 Password Hashing in MySQL

Note

The information in this section applies fully only before MySQL 5.7.5,
and only for accounts that use the mysql_native_password or
mysql_old_password authentication plugins. Support for pre-4.1
password hashes is removed in MySQL 5.7.5. This includes removal of the
mysql_old_password authentication plugin and the OLD_PASSWORD()
function. Also, secure_auth cannot be disabled, and old_passwords cannot
be set to 1.

As of MySQL 5.7.5, only the information about 4.1 password hashes and the
mysql_native_password authentication plugin remains relevant.

MySQL lists user accounts in the user table of the mysql database. Each MySQL account can be
assigned a password, although the user table does not store the cleartext version of the password, but
a hash value computed from it.

MySQL uses passwords in two phases of client/server communication:

• When a client attempts to connect to the server, there is an initial authentication step in which the
client must present a password that has a hash value matching the hash value stored in the user
table for the account the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hash
for accounts listed in the user table. The client can do this by using the PASSWORD() function to
generate a password hash, or by using a password-generating statement (CREATE USER, GRANT, or
SET PASSWORD).

In other words, the server checks hash values during authentication when a client first attempts to
connect. The server generates hash values if a connected client invokes the PASSWORD() function or
uses a password-generating statement to set or change a password.

Password hashing methods in MySQL have the history described following. These changes are
illustrated by changes in the result from the PASSWORD() function that computes password hash
values and in the structure of the user table where passwords are stored.

Keeping Passwords Secure

851

The Original (Pre-4.1) Hashing Method

The original hashing method produced a 16-byte string. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

To store account passwords, the Password column of the user table was at this point 16 bytes long.

The 4.1 Hashing Method

MySQL 4.1 introduced password hashing that provided better security and reduced the risk of
passwords being intercepted. There were several aspects to this change:

• Different format of password values produced by the PASSWORD() function

• Widening of the Password column

• Control over the default hashing method

• Control over the permitted hashing methods for clients attempting to connect to the server

The changes in MySQL 4.1 took place in two stages:

• MySQL 4.1.0 used a preliminary version of the 4.1 hashing method. This method was short lived and
the following discussion says nothing more about it.

• In MySQL 4.1.1, the hashing method was modified to produce a longer 41-byte hash value:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+

The longer password hash format has better cryptographic properties, and client authentication
based on long hashes is more secure than that based on the older short hashes.

To accommodate longer password hashes, the Password column in the user table was changed at
this point to be 41 bytes, its current length.

A widened Password column can store password hashes in both the pre-4.1 and 4.1 formats. The
format of any given hash value can be determined two ways:

• The length: 4.1 and pre-4.1 hashes are 41 and 16 bytes, respectively.

• Password hashes in the 4.1 format always begin with a “*” character, whereas passwords in the
pre-4.1 format never do.

To permit explicit generation of pre-4.1 password hashes, two additional changes were made:

• The OLD_PASSWORD() function was added, which returns hash values in the 16-byte format.

• For compatibility purposes, the old_passwords system variable was added, to enable DBAs and
applications control over the hashing method. The default old_passwords value of 0 causes
hashing to use the 4.1 method (41-byte hash values), but setting old_passwords=1 causes
hashing to use the pre-4.1 method. In this case, PASSWORD() produces 16-byte values and is
equivalent to OLD_PASSWORD()

Keeping Passwords Secure

852

To permit DBAs control over how clients are permitted to connect, the secure_auth system
variable was added. Starting the server with this variable disabled or enabled permits or prohibits
clients to connect using the older pre-4.1 password hashing method. Before MySQL 5.6.5,
secure_auth is disabled by default. As of 5.6.5, secure_auth is enabled by default to
promote a more secure default configuration DBAs can disable it at their discretion, but this is not
recommended, and pre-4.1 password hashes are deprecated and should be avoided. (For account
upgrade instructions, see Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.)

In addition, the mysql client supports a --secure-auth option that is analogous to secure_auth,
but from the client side. It can be used to prevent connections to less secure accounts that
use pre-4.1 password hashing. This option is disabled by default before MySQL 5.6.7, enabled
thereafter.

Compatibility Issues Related to Hashing Methods

The widening of the Password column in MySQL 4.1 from 16 bytes to 41 bytes affects installation or
upgrade operations as follows:

• If you perform a new installation of MySQL, the Password column is made 41 bytes long
automatically.

• Upgrades from MySQL 4.1 or later to current versions of MySQL should not give rise to any issues in
regard to the Password column because both versions use the same column length and password
hashing method.

• For upgrades from a pre-4.1 release to 4.1 or later, you must upgrade the system tables after
upgrading. (See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.)

The 4.1 hashing method is understood only by MySQL 4.1 (and newer) servers and clients, which can
result in some compatibility problems. A 4.1 or newer client can connect to a pre-4.1 server, because
the client understands both the pre-4.1 and 4.1 password hashing methods. However, a pre-4.1 client
that attempts to connect to a 4.1 or newer server may run into difficulties. For example, a 4.0 mysql
client may fail with the following error message:

shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

This phenomenon also occurs for attempts to use the older PHP mysql extension after upgrading to
MySQL 4.1 or newer. (See Common Problems with MySQL and PHP.)

The following discussion describes the differences between the pre-4.1 and 4.1 hashing methods,
and what you should do if you upgrade your server but need to maintain backward compatibility with
pre-4.1 clients. (However, permitting connections by old clients is not recommended and should be
avoided if possible.) Additional information can be found in Section B.5.2.4, “Client does not support
authentication protocol”. This information is of particular importance to PHP programmers migrating
MySQL databases from versions older than 4.1 to 4.1 or higher.

The differences between short and long password hashes are relevant both for how the server uses
passwords during authentication and for how it generates password hashes for connected clients that
perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the
Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

http://dev.mysql.com/doc/apis-php/en/apis-php-problems.html

Keeping Passwords Secure

853

• Pre-4.1 clients can connect, but because they know only about the pre-4.1 hashing method, they
can authenticate only using accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later
clients than for older clients. In terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width
of the Password column and by the old_passwords system variable. A 4.1 or later server generates
long hashes only if certain conditions are met: The Password column must be wide enough to hold
long values and old_passwords must not be set to 1.

Those conditions apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not
been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes cannot
fit into it and generates only short hashes when a client performs password-changing operations
using the PASSWORD() function or a password-generating statement. This is the behavior that
occurs if you have upgraded from a version of MySQL older than 4.1 to 4.1 or later but have not yet
run the mysql_upgrade program to widen the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case, the
PASSWORD() function and password-generating statements generate long hashes unless the server
was started with the old_passwords system variable set to 1 to force the server to generate short
password hashes instead.

The purpose of the old_passwords system variable is to permit backward compatibility with pre-4.1
clients under circumstances where the server would otherwise generate long password hashes.
The option does not affect authentication (4.1 and later clients can still use accounts that have long
password hashes), but it does prevent creation of a long password hash in the user table as the result
of a password-changing operation. Were that permitted to occur, the account could no longer be used
by pre-4.1 clients. With old_passwords disabled, the following undesirable scenario is possible:

• An old pre-4.1 client connects to an account that has a short password hash.

• The client changes its own password. With old_passwords disabled, this results in the account
having a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has
a long password hash that requires the 4.1 hashing method during authentication. (Once an account
has a long password hash in the user table, only 4.1 and later clients can authenticate for it because
pre-4.1 clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is problematic to run a 4.1
or newer server without old_passwords set to 1. By running the server with old_passwords=1,
password-changing operations do not generate long password hashes and thus do not cause accounts
to become inaccessible to older clients. (Those clients cannot inadvertently lock themselves out by
changing their password and ending up with a long password hash.)

The downside of old_passwords=1 is that any passwords created or changed use short hashes,
even for 4.1 or later clients. Thus, you lose the additional security provided by long password hashes.
To create an account that has a long hash (for example, for use by 4.1 clients) or to change an existing
account to use a long password hash, an administrator can set the session value of old_passwords
set to 0 while leaving the global value set to 1:

Keeping Passwords Secure

854

mysql> SET @@session.old_passwords = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@session.old_passwords, @@global.old_passwords;
+-------------------------+------------------------+
| @@session.old_passwords | @@global.old_passwords |
+-------------------------+------------------------+
| 0 | 1 |
+-------------------------+------------------------+
1 row in set (0.00 sec)

mysql> CREATE USER 'newuser'@'localhost' IDENTIFIED BY 'newpass';
Query OK, 0 rows affected (0.03 sec)

mysql> SET PASSWORD FOR 'existinguser'@'localhost' = PASSWORD('existingpass');
Query OK, 0 rows affected (0.00 sec)

The following scenarios are possible in MySQL 4.1 or later. The factors are whether the Password
column is short or long, and, if long, whether the server is started with old_passwords enabled or
disabled.

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving the PASSWORD() function
or password-generating statements use short hashes exclusively. Any change to an account's
password results in that account having a short password hash.

• The value of old_passwords is irrelevant because with a short Password column, the server
generates only short password hashes anyway.

This scenario occurs when a pre-4.1 MySQL installation has been upgraded to 4.1 or later but
mysql_upgrade has not been run to upgrade the system tables in the mysql database. (This is not a
recommended configuration because it does not permit use of more secure 4.1 password hashing.)

Scenario 2: Long Password column; server started with old_passwords=1:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function
or password-generating statements use short hashes exclusively. Any change to an account's
password results in that account having a short password hash.

In this scenario, newly created accounts have short password hashes because old_passwords=1
prevents generation of long hashes. Also, if you create an account with a long hash before setting
old_passwords to 1, changing the account's password while old_passwords=1 results in the
account being given a short password, causing it to lose the security benefits of a longer hash.

To create a new account that has a long password hash, or to change the password of any existing
account to use a long hash, first set the session value of old_passwords set to 0 while leaving the
global value set to 1, as described previously.

In this scenario, the server has an up to date Password column, but is running with the default
password hashing method set to generate pre-4.1 hash values. This is not a recommended
configuration but may be useful during a transitional period in which pre-4.1 clients and passwords
are upgraded to 4.1 or later. When that has been done, it is preferable to run the server with
old_passwords=0 and secure_auth=1.

Keeping Passwords Secure

855

Scenario 3: Long Password column; server started with old_passwords=0:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use long hashes exclusively. A change to an account's password
results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short
password hash to become inaccessible to pre-4.1 clients. A change to such an account's password
made using the PASSWORD() function or a password-generating statement results in the account being
given a long password hash. From that point on, no pre-4.1 client can connect to the server using that
account. The client must upgrade to 4.1 or later.

If this is a problem, you can change a password in a special way. For example, normally you use SET
PASSWORD as follows to change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

The disadvantages for each of the preceding scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, old_passwords=1 prevents accounts with short hashes from becoming inaccessible,
but password-changing operations cause accounts with long hashes to revert to short hashes unless
you take care to change the session value of old_passwords to 0 first.

In scenario 3, accounts with short hashes become inaccessible to pre-4.1 clients if you change their
passwords without explicitly using OLD_PASSWORD().

The best way to avoid compatibility problems related to short password hashes is to not use them:

• Upgrade all client programs to MySQL 4.1 or later.

• Run the server with old_passwords=0.

• Reset the password for any account with a short password hash to use a long password hash.

• For additional security, run the server with secure_auth=1.

6.1.2.5 The Password Validation Plugin

The validate_password plugin can be used to test passwords and improve security. This plugin
implements two capabilities:

• In statements that assign a password supplied as a cleartext value, the value is checked
against the current password policy and rejected if it is weak (the statement returns an
ER_NOT_VALID_PASSWORD error). This affects the ALTER USER, CREATE USER, GRANT, and SET
PASSWORD statements. Passwords given as arguments to the PASSWORD() and OLD_PASSWORD()
functions are checked as well.

• The strength of potential passwords can be assessed using the
VALIDATE_PASSWORD_STRENGTH() SQL function, which takes a password argument and returns
an integer from 0 (weak) to 100 (strong).

Keeping Passwords Secure

856

For example, the cleartext password in the following statement is checked. Under the default password
policy, which requires passwords to be at least 8 characters long, the password is weak and the
statement produces an error:

mysql> ALTER USER USER() IDENTIFIED BY 'abc';
ERROR 1819 (HY000): Your password does not satisfy the current policy
requirements

Passwords specified as already hashed values are not checked because the original password value is
not available:

mysql> ALTER USER 'jeffrey'@'localhost'
 -> IDENTIFIED WITH mysql_native_password
 -> AS '*0D3CED9BEC10A777AEC23CCC353A8C08A633045E';
Query OK, 0 rows affected (0.01 sec)

The parameters that control password checking are available as the values of the system variables
having names of the form validate_password_xxx. These variables can be modified to configure
password checking; see Password Validation Plugin Options and Variables.

The three levels of password checking are LOW, MEDIUM, and STRONG. The default is MEDIUM; to
change this, modify the value of validate_password_policy. The policies implement increasingly
strict password tests. The following descriptions refer to default parameter values; these can be
modified by changing the appropriate system variables.

• LOW policy tests password length only. Passwords must be at least 8 characters long.

• MEDIUM policy adds the conditions that passwords must contain at least 1 numeric character, 1
lowercase and uppercase character, and 1 special (nonalphanumeric) character.

• STRONG policy adds the condition that password substrings of length 4 or longer must not match
words in the dictionary file, if one has been specified.

If the validate_password plugin is not installed, the validate_password_xxx system variables
are not available, passwords in statements are not checked, and VALIDATE_PASSWORD_STRENGTH()
always returns 0. For example, accounts can be assigned passwords shorter than 8 characters.

Password Validation Plugin Installation

The password-validation plugin is named validate_password. To be usable by the server, the
plugin library object file must be located in the MySQL plugin directory (the directory named by the
plugin_dir system variable). If necessary, set the value of plugin_dir at server startup to tell the
server the location of the plugin directory.

To load the plugin at server startup, use the --plugin-load option to name the object file that
contains the plugin. With this plugin-loading method, the option must be given each time the server
starts. For example, put these lines in your my.cnf file:

[mysqld]
plugin-load=validate_password.so

If object files have a suffix different from .so on your system, substitute the correct suffix (for example,
.dll on Windows).

Alternatively, to register the plugin at runtime, use this statement (changing the extension as
necessary):

mysql> INSTALL PLUGIN validate_password SONAME 'validate_password.so';

INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins table to cause the
plugin to be loaded for each subsequent normal server startup.

Keeping Passwords Secure

857

If the plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load,
you can use the --validate-password option at server startup to control plugin activation. For
example, to load the plugin at startup and prevent it from being removed at runtime, use these options:

[mysqld]
plugin-load=validate_password.so
validate-password=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without the password-validation plugin, use --
validate-password with a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to
fail if the plugin does not initialize successfully.

For general information about installing or uninstalling plugins, see Section 5.1.8.1, “Installing and
Uninstalling Plugins”. To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table
or use the SHOW PLUGINS statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.

Password Validation Plugin Options and Variables

To control the activation of the validate_password plugin, use this option:

• --validate-password[=value]

Command-Line Format --validate-password[=value]

Type enumeration

Default ON

ON

OFF

FORCE

Permitted Values

Valid
Values

FORCE_PLUS_PERMANENT

This option controls how the server loads the validate_password plugin at startup.
The value should be one of those available for plugin-loading options, as described
in Section 5.1.8.1, “Installing and Uninstalling Plugins”. For example, --validate-
password=FORCE_PLUS_PERMANENT tells the server to load the plugin at startup and prevents it
from being removed while the server is running.

This option is available only if the validate_password plugin has been previously registered with
INSTALL PLUGIN or is loaded with --plugin-load. See Password Validation Plugin Installation.

If the validate_password plugin is installed, it exposes several system variables that indicate the
parameters that control password checking:

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	8
validate_password_mixed_case_count	1
validate_password_number_count	1
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+

To change how passwords are checked, you can set any of these variables at server startup, and most
of them at runtime. The following list describes the meaning of each variable.

• validate_password_dictionary_file

Keeping Passwords Secure

858

Name validate_password_dictionary_file

Variable
Scope

Global

System Variable (<=
5.7.7)

Dynamic
Variable

No

Name validate_password_dictionary_file

Variable
Scope

Global

System Variable (>=
5.7.8)

Dynamic
Variable

Yes

Permitted Values Type file name

The path name of the dictionary file used by the validate_password plugin for checking
passwords. This variable is unavailable unless that plugin is installed.

By default, this variable has an empty value and dictionary checks are not performed. To enable
dictionary checks, you must set this variable to a nonempty value. If the file is named as a relative
path, it is interpreted relative to the server data directory. Its contents should be lowercase, one word
per line. Contents are treated as having a character set of utf8. The maximum permitted file size is
1MB.

For the dictionary file to be used during password checking, the password policy must be set to 2
(STRONG); see the description of the validate_password_policy system variable. Assuming
that is true, each substring of the password of length 4 up to 100 is compared to the words in the
dictionary file. Any match causes the password to be rejected. Comparisons are not case sensitive.

For VALIDATE_PASSWORD_STRENGTH() the password is checked against all policies,
including STRONG, so the strength assessment includes the dictionary check regardless of the
validate_password_policy value.

Changes to the dictionary file while the server is running require a restart for the server to recognize
the changes.

Before MySQL 5.7.8, changes to the dictionary file while the server is running require a restart for the
server to recognize the changes. As of MySQL 5.7.8, validate_password_dictionary_file
can be set at runtime and assigning a value causes the named file to be read without a restart.

• validate_password_length

Name validate_password_length

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 8

Permitted Values

Min
Value

0

The minimum number of characters that passwords checked by the validate_password plugin
must have. This variable is unavailable unless that plugin is installed.

The validate_password_length minimum value is a function of several other related system
variables. The server will not set the value less than the value of this expression:

Keeping Passwords Secure

859

validate_password_number_count
+ validate_password_special_char_count
+ (2 * validate_password_mixed_case_count)

If the validate_password plugin adjusts the value of validate_password_length due to the
preceding constraint, it writes a message to the error log.

• validate_password_mixed_case_count

Name validate_password_mixed_case_count

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Permitted Values

Min
Value

0

The minimum number of lowercase and uppercase characters that passwords checked by the
validate_password plugin must have if the password policy is MEDIUM or stronger. This variable
is unavailable unless that plugin is installed.

• validate_password_number_count

Name validate_password_number_count

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Permitted Values

Min
Value

0

The minimum number of numeric (digit) characters that passwords checked by the
validate_password plugin must have if the password policy is MEDIUM or stronger. This variable
is unavailable unless that plugin is installed.

• validate_password_policy

Name validate_password_policy

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default 1

0

1

Permitted Values

Valid
Values

2

Making MySQL Secure Against Attackers

860

The password policy enforced by the validate_password plugin. This variable is unavailable
unless that plugin is installed.

The validate_password_policy value can be specified using numeric values 0, 1, 2,
or the corresponding symbolic values LOW, MEDIUM, STRONG. The following table describes
the tests performed for each policy. For the length test, the required length is the value of the
validate_password_length system variable. Similarly, the required values for the other tests
are given by other validate_password_xxx variables.

Policy Tests Performed

0 or LOW Length

1 or MEDIUM Length; numeric, lowercase/uppercase, and special characters

2 or STRONG Length; numeric, lowercase/uppercase, and special characters; dictionary file

• validate_password_special_char_count

Name validate_password_special_char_count

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Permitted Values

Min
Value

0

The minimum number of nonalphanumeric characters that passwords checked by the
validate_password plugin must have if the password policy is MEDIUM or stronger. This variable
is unavailable unless that plugin is installed.

If the validate_password plugin is installed, it exposes several status variables that provide
operational information:

mysql> SHOW STATUS LIKE 'validate_password%';
+---+---------------------+
| Variable_name | Value |
+---+---------------------+
| validate_password_dictionary_file_last_parsed | 2015-06-29 11:08:51 |
| validate_password_dictionary_file_words_count | 1902 |
+---+---------------------+

The following list describes the meaning of each variable.

• validate_password_dictionary_file_last_parsed

When the dictionary file was last parsed.

This variable was added in MySQL 5.7.8.

• validate_password_dictionary_file_words_count

The number of words read from the dictionary file.

This variable was added in MySQL 5.7.8.

6.1.3 Making MySQL Secure Against Attackers

Making MySQL Secure Against Attackers

861

When you connect to a MySQL server, you should use a password. The password is not transmitted in
clear text over the connection. Password handling during the client connection sequence was upgraded
in MySQL 4.1.1 to be very secure. If you are still using pre-4.1.1-style passwords, the encryption
algorithm is not as strong as the newer algorithm. With some effort, a clever attacker who can sniff
the traffic between the client and the server can crack the password. (See Section 6.1.2.4, “Password
Hashing in MySQL”, for a discussion of the different password handling methods.)

All other information is transferred as text, and can be read by anyone who is able to watch the
connection. If the connection between the client and the server goes through an untrusted network, and
you are concerned about this, you can use the compressed protocol to make traffic much more difficult
to decipher. You can also use MySQL's internal SSL support to make the connection even more
secure. See Section 6.3.12, “Using Secure Connections”. Alternatively, use SSH to get an encrypted
TCP/IP connection between a MySQL server and a MySQL client. You can find an Open Source SSH
client at http://www.openssh.org/, and a comparison of both Open Source and Commercial SSH clients
at http://en.wikipedia.org/wiki/Comparison_of_SSH_clients.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know
the identity of the person running it. It is common for client/server applications that the user can
specify any user name to the client program. For example, anyone can use the mysql program
to connect as any other person simply by invoking it as mysql -u other_user db_name if
other_user has no password. If all accounts have a password, connecting using another user's
account becomes much more difficult.

For a discussion of methods for setting passwords, see Section 6.3.5, “Assigning Account
Passwords”.

• Make sure that the only Unix user account with read or write privileges in the database directories is
the account that is used for running mysqld.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any
user with the FILE privilege is able to cause the server to create files as root (for example,
~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified explicitly
using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a
separate Unix account named mysql to make everything even more secure. Use this account only
for administering MySQL. To start mysqld as a different Unix user, add a user option that specifies
the user name in the [mysqld] group of the my.cnf option file where you specify server options.
For example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section 6.1.5, “How to Run MySQL as a
Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root
user name in the user table. User names for MySQL accounts have nothing to do with user names
for Unix accounts.

• Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can
write a file anywhere in the file system with the privileges of the mysqld daemon. This includes
the server's data directory containing the files that implement the privilege tables. To make FILE-
privilege operations a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite
existing files and are writable by everyone.

http://www.openssh.org/
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Security-Related mysqld Options and Variables

862

The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This
could be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which then
can be displayed with SELECT.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.4, “Server System Variables”.

• Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of
mysqladmin processlist and SHOW PROCESSLIST shows the text of any statements
currently being executed, so any user who is permitted to see the server process list
might be able to see statements issued by other users such as UPDATE user SET
password=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL
root user can log in and check server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by
changing the value of system variables, and control replication servers.

• Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-
symbolic-links option.) This is especially important if you run mysqld as root, because anyone
that has write access to the server's data directory then could delete any file in the system! See
Section 8.12.4.2, “Using Symbolic Links for MyISAM Tables on Unix”.

• Stored programs and views should be written using the security guidelines discussed in
Section 19.6, “Access Control for Stored Programs and Views”.

• If you do not trust your DNS, you should use IP addresses rather than host names in the grant
tables. In any case, you should be very careful about creating grant table entries using host name
values that contain wildcards.

• If you want to restrict the number of connections permitted to a single account, you can do
so by setting the max_user_connections variable in mysqld. The GRANT statement also
supports resource control options for limiting the extent of server use permitted to an account. See
Section 13.7.1.4, “GRANT Syntax”.

• If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting --secure-file-priv to a directory where
SELECT writes can be made safely.

6.1.4 Security-Related mysqld Options and Variables

The following table shows mysqld options and system variables that affect security. For descriptions
of each of these, see Section 5.1.3, “Server Command Options”, and Section 5.1.4, “Server System
Variables”.

Table 6.1 Security Option/Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

allow-suspicious-
udfs

Yes Yes

automatic_sp_privileges Yes Global Yes

chroot Yes Yes

des-key-file Yes Yes

local_infile Yes Global Yes

How to Run MySQL as a Normal User

863

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

old_passwords Yes Both Yes

safe-user-create Yes Yes

secure-auth Yes Yes Global Yes

- Variable:
secure_auth

 Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable:
secure_file_priv

 Yes Global No

skip-grant-tables Yes Yes

skip-name-
resolve

Yes Yes Global No

- Variable:
skip_name_resolve

 Yes Global No

skip-networking Yes Yes Global No

- Variable:
skip_networking

 Yes Global No

skip-show-
database

Yes Yes Global No

- Variable:
skip_show_database

 Yes Global No

6.1.5 How to Run MySQL as a Normal User

On Windows, you can run the server as a Windows service using a normal user account.

On Unix, the MySQL server mysqld can be started and run by any user. However, you should avoid
running the server as the Unix root user for security reasons. To change mysqld to run as a normal
unprivileged Unix user user_name, you must do the following:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files
in them (you might need to do this as the Unix root user):

shell> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server will not be able to access databases or tables when it runs as
user_name.

If directories or files within the MySQL data directory are symbolic links, chown -R might not
follow symbolic links for you. If it does not, you will also need to follow those links and change the
directories and files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user
and use the --user=user_name option. mysqld starts up, then switches to run as the Unix user
user_name before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the user name
by adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf
option file in the server's data directory. For example:

[mysqld]
user=user_name

Security Issues with LOAD DATA LOCAL

864

If your Unix machine itself is not secured, you should assign passwords to the MySQL root account
in the grant tables. Otherwise, any user with a login account on that machine can run the mysql client
with a --user=root option and perform any operation. (It is a good idea to assign passwords to
MySQL accounts in any case, but especially so when other login accounts exist on the server host.)
See Section 2.10.4, “Securing the Initial MySQL Accounts”.

6.1.6 Security Issues with LOAD DATA LOCAL

The LOAD DATA statement can load a file that is located on the server host, or it can load a file that is
located on the client host when the LOCAL keyword is specified.

There are two potential security issues with supporting the LOCAL version of LOAD DATA statements:

• The transfer of the file from the client host to the server host is initiated by the MySQL server. In
theory, a patched server could be built that would tell the client program to transfer a file of the
server's choosing rather than the file named by the client in the LOAD DATA statement. Such a
server could access any file on the client host to which the client user has read access.

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a
user could run any command against the SQL server). In this environment, the client with respect
to the MySQL server actually is the Web server, not the remote program being run by the user who
connects to the Web server.

To deal with these problems, LOAD DATA LOCAL works like this:

• By default, all MySQL clients and libraries in binary distributions are compiled with the -
DENABLED_LOCAL_INFILE=1 option.

• If you build MySQL from source but do not invoke CMake with the -DENABLED_LOCAL_INFILE=1
option, LOAD DATA LOCAL cannot be used by any client unless it is written explicitly to
invoke mysql_options(... MYSQL_OPT_LOCAL_INFILE, 0). See Section 23.8.7.50,
“mysql_options()”.

• You can disable all LOAD DATA LOCAL statements from the server side by starting mysqld with the
--local-infile=0 option.

• For the mysql command-line client, enable LOAD DATA LOCAL by specifying the --local-
infile[=1] option, or disable it with the --local-infile=0 option. For mysqlimport, local
data file loading is off by default; enable it with the --local or -L option. In any case, successful
use of a local load operation requires that the server permits it.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group from
option files, you can add the local-infile=1 option to that group. However, to keep this from
causing problems for programs that do not understand local-infile, specify it using the loose-
prefix:

[client]
loose-local-infile=1

• If LOAD DATA LOCAL is disabled, either in the server or the client, a client that attempts to issue
such a statement receives the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

6.1.7 Client Programming Security Guidelines

Applications that access MySQL should not trust any data entered by users, who can try to trick your
code by entering special or escaped character sequences in Web forms, URLs, or whatever application
you have built. Be sure that your application remains secure if a user enters something like “; DROP

Client Programming Security Guidelines

865

DATABASE mysql;”. This is an extreme example, but large security leaks and data loss might occur
as a result of hackers using similar techniques, if you do not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM table WHERE ID=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the
query SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server retrieves every row
in the table. This exposes every row and causes excessive server load. The simplest way to protect
from this type of attack is to use single quotation marks around the numeric constants: SELECT *
FROM table WHERE ID='234'. If the user enters extra information, it all becomes part of the string.
In a numeric context, MySQL automatically converts this string to a number and strips any trailing
nonnumeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be
protected. This is incorrect. Even if it is permissible to display any row in the database, you should still
protect against denial of service attacks (for example, those that are based on the technique in the
preceding paragraph that causes the server to waste resources). Otherwise, your server becomes
unresponsive to legitimate users.

Checklist:

• Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Section 5.1.7, “Server SQL Modes”.

• Try to enter single and double quotation marks (“'” and “"”) in all of your Web forms. If you get any
kind of MySQL error, investigate the problem right away.

• Try to modify dynamic URLs by adding %22 (“"”), %23 (“#”), and %27 (“'”) to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters
shown in the previous examples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

Many application programming interfaces provide a means of escaping special characters in data
values. Properly used, this prevents application users from entering values that cause the application to
generate statements that have a different effect than you intend:

• MySQL C API: Use the mysql_real_escape_string() API call.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use either the mysqli or pdo_mysql extensions, and not the older ext/mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also Choosing an API.

If the older ext/mysql extension must be used, then for escaping use the
mysql_real_escape_string() function and not mysql_escape_string() or addslashes()
because only mysql_real_escape_string() is character set-aware; the other functions can be
“bypassed” when using (invalid) multibyte character sets.

• Perl DBI: Use placeholders or the quote() method.

• Ruby DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

http://dev.mysql.com/doc/apis-php/en/apis-php-mysqlinfo.api.choosing.html

The MySQL Access Privilege System

866

Other programming interfaces might have similar capabilities.

6.2 The MySQL Access Privilege System
The primary function of the MySQL privilege system is to authenticate a user who connects from a
given host and to associate that user with privileges on a database such as SELECT, INSERT, UPDATE,
and DELETE. Additional functionality includes the ability to have anonymous users and to grant
privileges for MySQL-specific functions such as LOAD DATA INFILE and administrative operations.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create
or drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object
such as a database, table, or routine.

The user interface to the MySQL privilege system consists of SQL statements such as CREATE USER,
GRANT, and REVOKE. See Section 13.7.1, “Account Management Statements”.

Internally, the server stores privilege information in the grant tables of the mysql database (that is, in
the database named mysql). The MySQL server reads the contents of these tables into memory when
it starts and bases access-control decisions on the in-memory copies of the grant tables.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which
you connect and the user name you specify. When you issue requests after connecting, the system
grants privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason
to assume that a given user name belongs to the same person on all hosts. For example, the user
joe who connects from office.example.com need not be the same person as the user joe who
connects from home.example.com. MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by joe from office.example.com, and a different set of privileges for connections by joe from
home.example.com. To see what privileges a given account has, use the SHOW GRANTS statement.
For example:

SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can
verify your identity by supplying the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table
in a database or drop a table from the database, the server verifies that you have the SELECT privilege
for the table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 6.2.4, “Access
Control, Stage 1: Connection Verification”, and Section 6.2.5, “Access Control, Stage 2: Request
Verification”.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details
about the conditions under which the server reloads the grant tables, see Section 6.2.6, “When
Privilege Changes Take Effect”.

Privileges Provided by MySQL

867

For general security-related advice, see Section 6.1, “General Security Issues”. For help in diagnosing
privilege-related problems, see Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”.

6.2.1 Privileges Provided by MySQL

MySQL provides privileges that apply in different contexts and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges
are global because they are not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted
for specific databases, or globally so that they apply to all databases.

• Privileges for database objects such as tables, indexes, views, and stored routines can be granted
for specific objects within a database, for all objects of a given type within a database (for example,
all tables in a database), or globally for all objects of a given type in all databases).

Information about account privileges is stored in the user, db, tables_priv, columns_priv, and
procs_priv tables in the mysql database (see Section 6.2.2, “Privilege System Grant Tables”). The
MySQL server reads the contents of these tables into memory when it starts and reloads them under
the circumstances indicated in Section 6.2.6, “When Privilege Changes Take Effect”. Access-control
decisions are based on the in-memory copies of the grant tables.

Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges
or features. To make sure that you can take advantage of any new capabilities, update your
grant tables to have the current structure whenever you update to a new version of MySQL. See
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

The following table shows the privilege names used at the SQL level in the GRANT and REVOKE
statements, along with the column name associated with each privilege in the grant tables and the
context in which the privilege applies.

Table 6.2 Permissible Privileges for GRANT and REVOKE

Privilege Column Context

CREATE Create_priv databases, tables, or indexes

DROP Drop_priv databases, tables, or views

GRANT OPTION Grant_priv databases, tables, or stored routines

LOCK TABLES Lock_tables_priv databases

REFERENCES References_priv databases or tables

EVENT Event_priv databases

ALTER Alter_priv tables

DELETE Delete_priv tables

INDEX Index_priv tables

INSERT Insert_priv tables or columns

SELECT Select_priv tables or columns

UPDATE Update_priv tables or columns

CREATE TEMPORARY
TABLES

Create_tmp_table_priv tables

TRIGGER Trigger_priv tables

CREATE VIEW Create_view_priv views

SHOW VIEW Show_view_priv views

ALTER ROUTINE Alter_routine_priv stored routines

Privileges Provided by MySQL

868

Privilege Column Context

CREATE ROUTINE Create_routine_priv stored routines

EXECUTE Execute_priv stored routines

FILE File_priv file access on server host

CREATE TABLESPACE Create_tablespace_priv server administration

CREATE USER Create_user_priv server administration

PROCESS Process_priv server administration

PROXY see proxies_priv table server administration

RELOAD Reload_priv server administration

REPLICATION CLIENT Repl_client_priv server administration

REPLICATION SLAVE Repl_slave_priv server administration

SHOW DATABASES Show_db_priv server administration

SHUTDOWN Shutdown_priv server administration

SUPER Super_priv server administration

ALL [PRIVILEGES] server administration

USAGE server administration

The following list provides a general description of each privilege available in MySQL. Particular SQL
statements might have more specific privilege requirements than indicated here. If so, the description
for the statement in question provides the details.

• The ALL or ALL PRIVILEGES privilege specifier is shorthand. It stands for “all privileges available
at a given privilege level” (except GRANT OPTION). For example, granting ALL at the global or table
level grants all global privileges or all table-level privileges.

• The ALTER privilege enables use of ALTER TABLE to change the structure of tables. ALTER TABLE
also requires the CREATE and INSERT privileges. Renaming a table requires ALTER and DROP on
the old table, CREATE, and INSERT on the new table.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines (procedures and functions).

• The CREATE privilege enables creation of new databases and tables.

• The CREATE ROUTINE privilege is needed to create stored routines (procedures and functions).

• The CREATE TABLESPACE privilege is needed to create, alter, or drop tablespaces and log file
groups.

• The CREATE TEMPORARY TABLES privilege enables the creation of temporary tables using the
CREATE TEMPORARY TABLE statement.

After a session has created a temporary table, the server performs no further privilege checks on the
table. The creating session can perform any operation on the table, such as DROP TABLE, INSERT,
UPDATE, or SELECT.

One implication of this behavior is that a session can manipulate its temporary tables even if the
current user has no privilege to create them. Suppose that the current user does not have the
CREATE TEMPORARY TABLES privilege but is able to execute a DEFINER-context stored procedure
that executes with the privileges of a user who does have CREATE TEMPORARY TABLES and that
creates a temporary table. While the procedure executes, the session uses the privileges of the
defining user. After the procedure returns, the effective privileges revert to those of the current user,
which can still see the temporary table and perform any operation on it.

To keep privileges for temporary and nontemporary tables separate, a common workaround for this
situation is to create a database dedicated to the use of temporary tables. Then for that database,

Privileges Provided by MySQL

869

a user can be granted the CREATE TEMPORARY TABLES privilege, along with any other privileges
required for temporary table operations done by that user.

• The CREATE USER privilege enables use of ALTER USER, CREATE USER, DROP USER, RENAME
USER, and REVOKE ALL PRIVILEGES.

• The CREATE VIEW privilege enables use of CREATE VIEW.

• The DELETE privilege enables rows to be deleted from tables in a database.

• The DROP privilege enables you to drop (remove) existing databases, tables, and views. The DROP
privilege is required in order to use the statement ALTER TABLE ... DROP PARTITION on a
partitioned table. The DROP privilege is also required for TRUNCATE TABLE. If you grant the DROP
privilege for the mysql database to a user, that user can drop the database in which the MySQL
access privileges are stored.

• The EVENT privilege is required to create, alter, drop, or see events for the Event Scheduler.

• The EXECUTE privilege is required to execute stored routines (procedures and functions).

• The FILE privilege gives you permission to read and write files on the server host using the LOAD
DATA INFILE and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. A
user who has the FILE privilege can read any file on the server host that is either world-readable or
readable by the MySQL server. (This implies the user can read any file in any database directory,
because the server can access any of those files.) The FILE privilege also enables the user to
create new files in any directory where the MySQL server has write access. This includes the
server's data directory containing the files that implement the privilege tables. As a security measure,
the server will not overwrite existing files.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.4, “Server System Variables”.

• The GRANT OPTION privilege enables you to give to other users or remove from other users those
privileges that you yourself possess.

• The INDEX privilege enables you to create or drop (remove) indexes. INDEX applies to existing
tables. If you have the CREATE privilege for a table, you can include index definitions in the CREATE
TABLE statement.

• The INSERT privilege enables rows to be inserted into tables in a database. INSERT is also required
for the ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

• The LOCK TABLES privilege enables the use of explicit LOCK TABLES statements to lock tables
for which you have the SELECT privilege. This includes the use of write locks, which prevents other
sessions from reading the locked table.

• The PROCESS privilege pertains to display of information about the threads executing within the
server (that is, information about the statements being executed by sessions). The privilege enables
use of SHOW PROCESSLIST or mysqladmin processlist to see threads belonging to other
accounts; you can always see your own threads. The PROCESS privilege also enables use of SHOW
ENGINE.

• The PROXY privilege enables a user to impersonate or become known as another user. See
Section 6.3.10, “Proxy Users”.

• The REFERENCES privilege is unused before MySQL 5.7.6. As of 5.7.6, creation of a foreign key
constraint requires the REFERENCES privilege for the parent table.

• The RELOAD privilege enables use of the FLUSH statement. It also enables mysqladmin commands
that are equivalent to FLUSH operations: flush-hosts, flush-logs, flush-privileges,
flush-status, flush-tables, flush-threads, refresh, and reload.

Privileges Provided by MySQL

870

The reload command tells the server to reload the grant tables into memory. flush-privileges
is a synonym for reload. The refresh command closes and reopens the log files and flushes
all tables. The other flush-xxx commands perform functions similar to refresh, but are more
specific and may be preferable in some instances. For example, if you want to flush just the log files,
flush-logs is a better choice than refresh.

• The REPLICATION CLIENT privilege enables the use of SHOW MASTER STATUS, SHOW SLAVE
STATUS, and SHOW BINARY LOGS.

• The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers to
connect to the current server as their master. Without this privilege, the slave cannot request updates
that have been made to databases on the master server.

• The SELECT privilege enables you to select rows from tables in a database. SELECT statements
require the SELECT privilege only if they actually retrieve rows from a table. Some SELECT
statements do not access tables and can be executed without permission for any database.
For example, you can use SELECT as a simple calculator to evaluate expressions that make no
reference to tables:

SELECT 1+1;
SELECT PI()*2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col_name=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

• The SHOW DATABASES privilege enables the account to see database names by issuing the SHOW
DATABASE statement. Accounts that do not have this privilege see only databases for which they
have some privileges, and cannot use the statement at all if the server was started with the --skip-
show-database option. Note that any global privilege is a privilege for the database.

• The SHOW VIEW privilege enables use of SHOW CREATE VIEW.

• The SHUTDOWN privilege enables use of the SHUTDOWN statement, the mysqladmin shutdown
command, and the mysql_shutdown() C API function.

• The SUPER privilege enables an account to use CHANGE MASTER TO, KILL or mysqladmin
kill to kill threads belonging to other accounts (you can always kill your own threads), PURGE
BINARY LOGS, configuration changes using SET GLOBAL to modify global system variables,
the mysqladmin debug command, enabling or disabling logging, performing updates even if
the read_only system variable is enabled, starting and stopping replication on slave servers,
specification of any account in the DEFINER attribute of stored programs and views, and enables you
to connect (once) even if the connection limit controlled by the max_connections system variable
is reached.

To create or alter stored functions if binary logging is enabled, you may also need the SUPER
privilege, as described in Section 19.7, “Binary Logging of Stored Programs”.

• The TRIGGER privilege enables trigger operations. You must have this privilege for a table to create,
drop, or execute triggers for that table.

• The UPDATE privilege enables rows to be updated in tables in a database.

• The USAGE privilege specifier stands for “no privileges.” It is used at the global level with GRANT to
modify account attributes such as resource limits or SSL characteristics without affecting existing
account privileges.

It is a good idea to grant to an account only those privileges that it needs. You should exercise
particular caution in granting the FILE and administrative privileges:

Privilege System Grant Tables

871

• The FILE privilege can be abused to read into a database table any files that the MySQL server can
read on the server host. This includes all world-readable files and files in the server's data directory.
The table can then be accessed using SELECT to transfer its contents to the client host.

• The GRANT OPTION privilege enables users to give their privileges to other users. Two users that
have different privileges and with the GRANT OPTION privilege are able to combine privileges.

• The ALTER privilege may be used to subvert the privilege system by renaming tables.

• The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating the
server.

• The PROCESS privilege can be used to view the plain text of currently executing statements, including
statements that set or change passwords.

• The SUPER privilege can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql database itself can be used to change passwords and other access
privilege information. Passwords are stored encrypted, so a malicious user cannot simply read them
to know the plain text password. However, a user with write access to the user table Password
column can change an account's password, and then connect to the MySQL server using that
account.

6.2.2 Privilege System Grant Tables

The mysql system database includes several grant tables that contain information about user
accounts and the privileges held by them.

Normally, to manipulate the contents of grant tables, you modify them indirectly by using account-
management statements such as CREATE USER, GRANT, and REVOKE to set up accounts and control
the privileges available to each one. See Section 13.7.1, “Account Management Statements”. The
discussion here describes the underlying structure of the grant tables and how the server uses their
contents when interacting with clients.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE,
or DELETE is discouraged. The server is free to ignore rows that become
malformed as a result of such modifications.

These mysql database tables contain grant information:

• user: User accounts, global privileges, and other non-privilege columns.

• db: Database-level privileges.

• host: Obsolete. MySQL install operations no longer create this table.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

• proxies_priv: Proxy-user privileges.

Other tables in the mysql database do not hold grant information and are discussed elsewhere:

• engine_cost, server_cost: Optimizer cost estimates. See Section 8.9.5, “The Optimizer Cost
Model”.

• event: Information about Event Scheduler events. See Section 19.4, “Using the Event Scheduler”.

• func: Information about user-defined functions. See Section 24.4, “Adding New Functions to
MySQL”.

Privilege System Grant Tables

872

• general_log, slow_log: Used for logging. See Section 5.2, “MySQL Server Logs”.

• gtid_executed: Used for replication. See The mysql.gtid_executed Table.

• help_xxx: Used for server-side help. See Section 5.1.10, “Server-Side Help”.

• innodb_index_stats, innodb_table_stats: Used for InnoDB persistent optimizer
statistics. See Section 14.3.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• ndb_binlog_index: Used for MySQL Cluster replication. See MySQL Cluster Replication
Schema and Tables.

• plugin: Information about server plugins. See Section 5.1.8.1, “Installing and Uninstalling Plugins”,
and Section 24.2, “The MySQL Plugin API”.

• proc: Information about stored procedures and functions. See Section 19.2, “Using Stored
Routines (Procedures and Functions)”.

• servers: Used by the FEDERATED storage engine. See Section 15.8.2.2, “Creating a
FEDERATED Table Using CREATE SERVER”.

• slave_master_info, slave_relay_log_info, slave_worker_info: Used for replication.
See Section 17.2.4, “Replication Relay and Status Logs”.

• time_zone_xxx: Used for time zone information. See Section 10.6, “MySQL Server Time Zone
Support”.

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row in the tables; that is, the context in which the row
applies. For example, a user table row with Host and User values of 'thomas.loc.gov' and
'bob' applies to authenticating connections made to the server from the host thomas.loc.gov by
a client that specifies a user name of bob. Similarly, a db table row with Host, User, and Db column
values of 'thomas.loc.gov', 'bob' and 'reports' applies when bob connects from the host
thomas.loc.gov to access the reports database. The tables_priv and columns_priv
tables contain scope columns indicating tables or table/column combinations to which each row
applies. The procs_priv scope columns indicate the stored routine to which each row applies.

• Privilege columns indicate which privileges a table row grants; that is, which operations it permits to
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 6.2.5, “Access Control, Stage 2: Request Verification”,
describes the rules for this.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's global privileges.
Any privileges granted in this table apply to all databases on the server.

Caution

Because any global privilege is considered a privilege for all databases,
any global privilege enables a user to see all database names with SHOW
DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA.

• The db table scope columns determine which users can access which databases from which hosts.
The privilege columns determine the permitted operations. A privilege granted at the database level
applies to the database and to all objects in the database, such as tables and stored programs.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies
only to a specific column.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-schema.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-schema.html

Privilege System Grant Tables

873

• The procs_priv table applies to stored routines (procedures and functions). A privilege granted at
the routine level applies only to a single procedure or function.

• The proxies_priv table indicates which users can act as proxies for other users and whether a
user can grant the PROXY privilege to other users.

The server uses the user and db tables in the mysql database at both the first and second stages of
access control (see Section 6.2, “The MySQL Access Privilege System”). The columns in the user and
db tables are shown here.

Table 6.3 user and db Table Columns

Table Name user db

Scope columns Host Host

 User Db

 Password User

Privilege columns Select_priv Select_priv

 Insert_priv Insert_priv

 Update_priv Update_priv

 Delete_priv Delete_priv

 Index_priv Index_priv

 Alter_priv Alter_priv

 Create_priv Create_priv

 Drop_priv Drop_priv

 Grant_priv Grant_priv

 Create_view_priv Create_view_priv

 Show_view_priv Show_view_priv

 Create_routine_priv Create_routine_priv

 Alter_routine_priv Alter_routine_priv

 Execute_priv Execute_priv

 Trigger_priv Trigger_priv

 Event_priv Event_priv

 Create_tmp_table_priv Create_tmp_table_priv

 Lock_tables_priv Lock_tables_priv

 References_priv References_priv

 Reload_priv

 Shutdown_priv

 Process_priv

 File_priv

 Show_db_priv

 Super_priv

 Repl_slave_priv

 Repl_client_priv

 Create_user_priv

 Create_tablespace_priv

Security columns ssl_type

Privilege System Grant Tables

874

Table Name user db

 ssl_cipher

 x509_issuer

 x509_subject

 plugin

 authentication_string

 password_expired

 password_last_changed

 password_lifetime

 account_locked

Resource control columns max_questions

 max_updates

 max_connections

 max_user_connections

The user table plugin, Password, and authentication_string columns store authentication
plugin and credential information. In MySQL 5.7.6, the Password column was removed and all
credentials are stored in the authentication_string column.

If an account row names a plugin in the plugin column, the server uses it to authenticate
connection attempts for the account. It is up to the plugin whether it uses the Password and
authentication_string column values.

As of MySQL 5.7.2, the plugin column must be nonempty.

Before MySQL 5.7.2, the plugin column for an account row is permitted to be empty. In this case, the
server authenticates the account using the mysql_native_password or mysql_old_password
plugin implicitly, depending on the format of the password hash in the Password column.
If the Password value is empty or a 4.1 password hash (41 characters), the server uses
mysql_native_password. If the password value is a pre-4.1 password hash (16 characters),
the server uses mysql_old_password. (For additional information about these hash formats, see
Section 6.1.2.4, “Password Hashing in MySQL”.) Clients must match the password in the Password
column of the account row.

At startup, and at runtime when FLUSH PRIVILEGES is executed, the server checks user table rows.
As of MySQL 5.7.2, for any row with an empty plugin column, the server writes a warning to the error
log of this form:

[Warning] User entry 'user_name'@'host_name' has an empty plugin
value. The user will be ignored and no one can login with this user
anymore.

To address this problem, see Section 6.3.9.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

The password_expired column permits DBAs to expire account passwords and require users to
reset their password. The default password_expired value is 'N', but can be set to 'Y' with the
ALTER USER statement. After an account's password has been expired, all operations performed by
the account in subsequent connections to the server result in an error until the user issues an ALTER
USER statement (for MySQL 5.7.6 and up) or SET PASSWORD statement (before MySQL 5.7.6) to
establish a new account password.

It is possible after password expiration to “reset” a password by setting it to its current value. As a
matter of good policy, it is preferable to choose a different password.

Privilege System Grant Tables

875

password_last_changed (added in MySQL 5.7.4) is a TIMESTAMP column indicating when
the password was last changed. The value is non-NULL only for accounts that use MySQL built-in
authentication methods (accounts that use an authentication plugin of mysql_native_password,
mysql_old_password, or sha256_password). The value is NULL for other accounts, such as those
authenticated using an external authentication system.

password_last_changed is updated by the CREATE USER, ALTER USER, and SET PASSWORD
statements, and by GRANT statements that create an account or change an account password.

password_lifetime (added in MySQL 5.7.4) indicates the account password lifetime, in days. If
the password is past its lifetime (assessed using the password_last_changed column), the server
considers the password expired when clients connect using the account. A value of N greater than zero
means that the password must be changed every N days. A value of 0 disables automatic password
expiration. If the value is NULL (the default), the global expiration policy applies, as defined by the
default_password_lifetime system variable.

account_locked (added in MySQL 5.7.6) indicates whether the account is locked (see
Section 6.3.11, “User Account Locking”).

During the second stage of access control, the server performs request verification to ensure that
each client has sufficient privileges for each request that it issues. In addition to the user and db grant
tables, the server may also consult the tables_priv and columns_priv tables for requests that
involve tables. The latter tables provide finer privilege control at the table and column levels. They have
the columns shown in the following table.

Table 6.4 tables_priv and columns_priv Table Columns

Table Name tables_priv columns_priv

Scope columns Host Host

 Db Db

 User User

 Table_name Table_name

 Column_name

Privilege columns Table_priv Column_priv

 Column_priv

Other columns Timestamp Timestamp

 Grantor

The Timestamp and Grantor columns are set to the current timestamp and the CURRENT_USER
value, respectively, but are otherwise unused.

For verification of requests that involve stored routines, the server may consult the procs_priv table,
which has the columns shown in the following table.

Table 6.5 procs_priv Table Columns

Table Name procs_priv

Scope columns Host

 Db

 User

 Routine_name

 Routine_type

Privilege columns Proc_priv

Other columns Timestamp

 Grantor

Privilege System Grant Tables

876

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to
indicate the type of routine the row refers to. This column enables privileges to be granted separately
for a function and a procedure with the same name.

The Timestamp and Grantor columns are unused.

The proxies_priv table records information about proxy accounts. It has these columns:

• Host, User: The proxy account; that is, the account that has the PROXY privilege for the proxied
account.

• Proxied_host, Proxied_user: The proxied account.

• Grantor, Timestamp: Unused.

• With_grant: Whether the proxy account can grant the PROXY privilege to other accounts.

For an account to be able to grant the PROXY privilege to other accounts, it must have a row in
the proxies_priv table with With_grant set to 1 and Proxied_host and Proxied_user
set to indicate the account or accounts for which the privilege can be granted. For example, the
'root'@'localhost' account created during MySQL installation has a row in the proxies_priv
table that enables granting the PROXY privilege for ''@'', that is, for all users and all hosts. This
enables root to set up proxy users, as well as to delegate to other accounts the authority to set up
proxy users. See Section 6.3.10, “Proxy Users”.

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 6.6 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters

Host, Proxied_host 60

User, Proxied_user 32 (16 before MySQL 5.7.8)

Password 41

Db 64

Table_name 64

Column_name 64

Routine_name 64

For access-checking purposes, comparisons of User, Proxied_user, Password, Db, and
Table_name values are case sensitive. Comparisons of Host, Proxied_host, Column_name, and
Routine_name values are not case sensitive.

The user and db tables list each privilege in a separate column that is declared as ENUM('N','Y')
DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with the default being
disabled.

The tables_priv, columns_priv, and procs_priv tables declare the privilege columns as SET
columns. Values in these columns can contain any combination of the privileges controlled by the table.
Only those privileges listed in the column value are enabled.

Table 6.7 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert', 'Update',
'Delete', 'Create', 'Drop', 'Grant',
'References', 'Index', 'Alter',
'Create View', 'Show view', 'Trigger'

Specifying Account Names

877

Table Name Column Name Possible Set Elements

tables_priv Column_priv 'Select', 'Insert', 'Update',
'References'

columns_priv Column_priv 'Select', 'Insert', 'Update',
'References'

procs_priv Proc_priv 'Execute', 'Alter Routine', 'Grant'

Only the user table specifies administrative privileges, such as RELOAD and SHUTDOWN. Administrative
operations are operations on the server itself and are not database-specific, so there is no reason to list
these privileges in the other grant tables. Consequently, the server need consult only the user table to
determine whether a user can perform an administrative operation.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as
such, but a user's ability to read or write files on the server host is independent of the database being
accessed.

The server reads the contents of the grant tables into memory when it starts. You can tell it to reload
the tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin flush-
privileges or mysqladmin reload command. Changes to the grant tables take effect as indicated
in Section 6.2.6, “When Privilege Changes Take Effect”.

When you modify an account, it is a good idea to verify that your changes have the intended effect.
To check the privileges for a given account, use the SHOW GRANTS statement. For example, to
determine the privileges that are granted to an account with user name and host name values of bob
and pc84.example.com, use this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

To display nonprivilege properties of an account, use SHOW CREATE USER:

SHOW CREATE USER 'bob'@'pc84.example.com';

6.2.3 Specifying Account Names

MySQL account names consist of a user name and a host name. This enables creation of accounts for
users with the same name who can connect from different hosts. This section describes how to write
account names, including special values and wildcard rules.

In SQL statements such as CREATE USER, GRANT, and SET PASSWORD, write account names using
the following rules:

• Syntax for account names is 'user_name'@'host_name'.

• An account name consisting only of a user name is equivalent to 'user_name'@'%'. For example,
'me' is equivalent to 'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes
are necessary to specify a user_name string containing special characters (such as “-”), or a
host_name string containing special characters or wildcard characters (such as “%”); for example,
'test-user'@'%.com'.

• Quote user names and host names as identifiers or as strings, using either backticks (“`”), single
quotation marks (“'”), or double quotation marks (“"”).

• The user name and host name parts, if quoted, must be quoted separately. That is, write
'me'@'localhost', not 'me@localhost'; the latter is interpreted as 'me@localhost'@'%'.

• A reference to the CURRENT_USER or CURRENT_USER() function is equivalent to specifying the
current client's user name and host name literally.

Specifying Account Names

878

MySQL stores account names in grant tables in the mysql database using separate columns for the
user name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user
name and host name. This table also indicates which global privileges the account has.

• Other grant tables indicate privileges an account has for databases and objects within databases.
These tables have User and Host columns to store the account name. Each row in these tables
associates with the account in the user table that has the same User and Host values.

For additional detail about grant table structure, see Section 6.2.2, “Privilege System Grant Tables”.

User names and host names have certain special values or wildcard conventions, as described
following.

A user name is either a nonblank value that literally matches the user name for incoming connection
attempts, or a blank value (empty string) that matches any user name. An account with a blank user
name is an anonymous user. To specify an anonymous user in SQL statements, use a quoted empty
user name part, such as ''@'localhost'.

The host name part of an account name can take many forms, and wildcards are permitted:

• A host value can be a host name or an IP address (IPv4 or IPv6). The name 'localhost'
indicates the local host. The IP address '127.0.0.1' indicates the IPv4 loopback interface. The IP
address '::1' indicates the IPv6 loopback interface.

• You can use the wildcard characters “%” and “_” in host name or IP address values. These have the
same meaning as for pattern-matching operations performed with the LIKE operator. For example, a
host value of '%' matches any host name, whereas a value of '%.mysql.com' matches any host
in the mysql.com domain. '192.168.1.%' matches any host in the 192.168.1 class C network.

Because you can use IP wildcard values in host values (for example, '192.168.1.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
192.168.1.somewhere.com. To foil such attempts, MySQL disallows matching on host names
that start with digits and a dot. Thus, if you have a host named something like 1.2.example.com,
its name never matches the host part of account names. An IP wildcard value can match only IP
addresses, not host names.

• For a host value specified as an IPv4 address, you can specify a netmask indicating how many
address bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.

The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'192.58.197.0/255.255.255.0';

This enables david to connect from any client host having an IP address client_ip for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 192.58.197.0

IP addresses that satisfy this condition and can connect to the MySQL server are those in the range
from 192.58.197.0 to 192.58.197.255.

A netmask typically begins with bits set to 1, followed by bits set to 0. Examples:

• 192.0.0.0/255.0.0.0: Any host on the 192 class A network

Access Control, Stage 1: Connection Verification

879

• 192.168.0.0/255.255.0.0: Any host on the 192.168 class B network

• 192.168.1.0/255.255.255.0: Any host on the 192.168.1 class C network

• 192.168.1.1: Only the host with this specific IP address

The following netmask will not work because it masks 28 bits, and 28 is not a multiple of 8:

192.168.0.1/255.255.255.240

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, this comparison is performed as a string match,
even for an account host value given as an IP address. This means that you should specify account
host values in the same format used by DNS. Here are examples of problems to watch out for:

• Suppose that a host on the local network has a fully qualified name of host1.example.com. If DNS
returns name lookups for this host as host1.example.com, use that name in account host values.
But if DNS returns just host1, use host1 instead.

• If DNS returns the IP address for a given host as 192.168.1.2, that will match an account host
value of 192.168.1.2 but not 192.168.01.2. Similarly, it will match an account host pattern like
192.168.1.% but not 192.168.01.%.

To avoid problems like this, it is advisable to check the format in which your DNS returns host names
and addresses, and use values in the same format in MySQL account names.

6.2.4 Access Control, Stage 1: Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based
on these conditions:

• Your identity and whether you can verify your identity by supplying the correct password

• Whether your account is locked or unlocked

The server checks credentials first, then account locking state. A failure for either step causes the
server to deny access to you completely. Otherwise, the server accepts the connection, and then
enters Stage 2 and waits for requests.

Credential checking is performed using the three user table scope columns (Host, User, and
Password). Locking state is recorded in the user table account_locked column. The server
accepts the connection only if the Host and User columns in some user table row match the
client host name and user name, the client supplies the password specified in that row, and the
account_locked value is 'N'. The rules for permissible Host and User values are given in
Section 6.2.3, “Specifying Account Names”. Account locking can be changed with the ALTER USER
statement.

Your identity is based on two pieces of information:

• The client host from which you connect

• Your MySQL user name

If the User column value is nonblank, the user name in an incoming connection must match exactly.
If the User value is blank, it matches any user name. If the user table row that matches an incoming
connection has a blank user name, the user is considered to be an anonymous user with no name, not
a user with the name that the client actually specified. This means that a blank user name is used for
all further access checking for the duration of the connection (that is, during Stage 2).

Access Control, Stage 1: Connection Verification

880

The Password column can be blank. This is not a wildcard and does not mean that any password
matches. It means that the user must connect without specifying a password. If the server
authenticates a client using a plugin, the authentication method that the plugin implements may or may
not use the password in the Password column. In this case, it is possible that an external password is
also used to authenticate to the MySQL server.

Nonblank Password values in the user table represent encrypted passwords. MySQL does not
store passwords in cleartext form for anyone to see. Rather, the password supplied by a user who is
attempting to connect is encrypted (using the PASSWORD() function). The encrypted password then
is used during the connection process when checking whether the password is correct. This is done
without the encrypted password ever traveling over the connection. See Section 6.3.1, “User Names
and Passwords”.

From MySQL's point of view, the encrypted password is the real password, so you should never give
anyone access to it. In particular, do not give nonadministrative users read access to tables in the
mysql database.

The following table shows how various combinations of Host and User values in the user table apply
to incoming connections.

Host Value User Value Permissible Connections

'thomas.loc.gov' 'fred' fred, connecting from thomas.loc.gov

'thomas.loc.gov' '' Any user, connecting from thomas.loc.gov

'%' 'fred' fred, connecting from any host

'%' '' Any user, connecting from any host

'%.loc.gov' 'fred' fred, connecting from any host in the loc.gov
domain

'x.y.%' 'fred' fred, connecting from x.y.net, x.y.com,
x.y.edu, and so on; this is probably not useful

'144.155.166.177' 'fred' fred, connecting from the host with IP address
144.155.166.177

'144.155.166.%' 'fred' fred, connecting from any host in the
144.155.166 class C subnet

'144.155.166.0/255.255.255.0''fred' Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than
one row in the user table. The preceding set of examples demonstrates this: Several of the entries
shown match a connection from thomas.loc.gov by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this
issue as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first. Literal host
names and IP addresses are the most specific. (The specificity of a literal IP address is not affected by
whether it has a netmask, so 192.168.1.13 and 192.168.1.0/255.255.255.0 are considered
equally specific.) The pattern '%' means “any host” and is least specific. The empty string '' also
means “any host” but sorts after '%'. Rows with the same Host value are ordered with the most-
specific User values first (a blank User value means “any user” and is least specific). For rows with
equally-specific Host and User values, the order is indeterminate.

To see how this works, suppose that the user table looks like this:

Access Control, Stage 1: Connection Verification

881

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it sorts the rows using the rules just described. The
result after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from localhost by jeffrey, two of the rows from the table match: the
one with Host and User values of 'localhost' and '', and the one with values of '%' and
'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-

A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a connection
by jeffrey from any host is matched by the second.

Note

It is a common misconception to think that, for a given user name, all rows
that explicitly name that user are used first when the server attempts to find a
match for the connection. This is not true. The preceding example illustrates
this, where a connection from thomas.loc.gov by jeffrey is first matched
not by the row containing 'jeffrey' as the User column value, but by the row
with no user name. As a result, jeffrey is authenticated as an anonymous
user, even though he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are
being authenticated as some other account. To find out what account the server used to authenticate
you, use the CURRENT_USER() function. (See Section 12.14, “Information Functions”.) It returns a
value in user_name@host_name format that indicates the User and Host values from the matching
user table row. Suppose that jeffrey connects and issues the following query:

Access Control, Stage 2: Request Verification

882

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In
other words, the server is treating jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to
see where the first match is being made.

6.2.5 Access Control, Stage 2: Request Verification

After you establish a connection, the server enters Stage 2 of access control. For each request that you
issue through that connection, the server determines what operation you want to perform, then checks
whether you have sufficient privileges to do so. This is where the privilege columns in the grant tables
come into play. These privileges can come from any of the user, db, tables_priv, columns_priv,
or procs_priv tables. (You may find it helpful to refer to Section 6.2.2, “Privilege System Grant
Tables”, which lists the columns present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter
what the default database is. For example, if the user table grants you the DELETE privilege, you can
delete rows from any table in any database on the server host! It is wise to grant privileges in the user
table only to people who need them, such as database administrators. For other users, you should
leave all privileges in the user table set to 'N' and grant privileges at more specific levels only. You
can grant privileges for particular databases, tables, columns, or routines.

The db table grants database-specific privileges. Values in the scope columns of this table can take the
following forms:

• A blank User value matches the anonymous user. A nonblank value matches literally; there are no
wildcards in user names.

• The wildcard characters “%” and “_” can be used in the Host and Db columns. These have the same
meaning as for pattern-matching operations performed with the LIKE operator. If you want to use
either character literally when granting privileges, you must escape it with a backslash. For example,
to include the underscore character (“_”) as part of a database name, specify it as “_” in the GRANT
statement.

• A '%' or blank Host value means “any host.”

• A '%' or blank Db value means “any database.”

The server reads the db table into memory and sorts it at the same time that it reads the user table.
The server sorts the db table based on the Host, Db, and User scope columns. As with the user
table, sorting puts the most-specific values first and least-specific values last, and when the server
looks for matching rows, it uses the first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific,
and routine-specific privileges. Values in the scope columns of these tables can take the following
forms:

• The wildcard characters “%” and “_” can be used in the Host column. These have the same meaning
as for pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be
blank.

When Privilege Changes Take Effect

883

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host,
Db, and User columns. This is similar to db table sorting, but simpler because only the Host column
can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user table row
because that is the only table that specifies administrative privileges. The server grants access if the
row permits the requested operation and denies access otherwise. For example, if you want to execute
mysqladmin shutdown but your user table row does not grant the SHUTDOWN privilege to you, the
server denies access without even checking the db table. (It contains no Shutdown_priv column, so
there is no need to do so.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global
privileges by looking in the user table row. If the row permits the requested operation, access is
granted. If the global privileges in the user table are insufficient, the server determines the user's
database-specific privileges by checking the db table:

The server looks in the db table for a match on the Host, Db, and User columns. The Host and User
columns are matched to the connecting user's host name and MySQL user name. The Db column
is matched to the database that the user wants to access. If there is no row for the Host and User,
access is denied.

After determining the database-specific privileges granted by the db table rows, the server adds them
to the global privileges granted by the user table. If the result permits the requested operation, access
is granted. Otherwise, the server successively checks the user's table and column privileges in the
tables_priv and columns_priv tables, adds those to the user's privileges, and permits or denies
access based on the result. For stored-routine operations, the server uses the procs_priv table
rather than tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global user row privileges are initially found to be insufficient for the
requested operation, the server adds those privileges to the database, table, and column privileges
later. The reason is that a request might require more than one type of privilege. For example, if you
execute an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT
privileges. Your privileges might be such that the user table row grants one privilege and the db table
row grants the other. In this case, you have the necessary privileges to perform the request, but the
server cannot tell that from either table by itself; the privileges granted by the rows in both tables must
be combined.

6.2.6 When Privilege Changes Take Effect

When mysqld starts, it reads all grant table contents into memory. The in-memory tables become
effective for access control at that point.

If you modify the grant tables indirectly using account-management statements such as GRANT,
REVOKE, SET PASSWORD, or RENAME USER, the server notices these changes and loads the grant
tables into memory again immediately.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE, your
changes have no effect on privilege checking until you either restart the server or tell it to reload
the tables. If you change the grant tables directly but forget to reload them, your changes have no

Troubleshooting Problems Connecting to MySQL

884

effect until you restart the server. This may leave you wondering why your changes seem to make no
difference!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRIVILEGES statement or by executing a mysqladmin flush-privileges or
mysqladmin reload command.

A grant table reload affects privileges for each existing client connection as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not
be visible to them without actually changing to a different database or flushing
the privileges.

• Global privileges and passwords are unaffected for a connected client. These changes take effect
only for subsequent connections.

If the server is started with the --skip-grant-tables option, it does not read the grant tables or
implement any access control. Anyone can connect and do anything, which is insecure. To cause a
server thus started to read the tables and enable access checking, flush the privileges.

6.2.7 Troubleshooting Problems Connecting to MySQL

If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an
attempt to connect to the server fails with a message such as one of those following, one cause
might be that the server is not running:

shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe,
or Unix socket file different from the one on which the server is listening. To correct this when you
invoke a client program, specify a --port option to indicate the proper port number, or a --socket
option to indicate the proper named pipe or Unix socket file. To find out where the socket file is, you
can use this command:

shell> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you
are attempting to connect remotely) that it has not been configured to listen only locally on its
network interfaces. If the server was started with --skip-networking, it will not accept TCP/IP
connections at all. If the server was started with --bind-address=127.0.0.1, it will listen for
TCP/IP connections only locally on the loopback interface and will not accept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for
communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration
to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or
the Windows XP personal firewall may need to be configured not to block the MySQL port.

Troubleshooting Problems Connecting to MySQL

885

• The grant tables must be properly set up so that the server can use them for access control. For
some distribution types (such as binary distributions on Windows, or RPM distributions on Linux), the
installation process initializes the MySQL data directory, including the mysql database containing
the grant tables. For distributions that do not do this, you must initialize the data directory manually.
For details, see Section 2.10, “Postinstallation Setup and Testing”.

To determine whether you need to initialize the grant tables, look for a mysql directory under the
data directory. (The data directory normally is named data or var and is located under your MySQL
installation directory.) Make sure that you have a file named user.MYD in the mysql database
directory. If not, initialize the data directory. After doing so and starting the server, test the initial
privileges by executing this command:

shell> mysql -u root

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access
permissions:

shell> mysql -u root mysql

The server should let you connect because the MySQL root user has no password initially. That is
also a security risk, so setting the password for the root account is something you should do while
you're setting up your other MySQL accounts. For instructions on setting the initial password, see
Section 2.10.4, “Securing the Initial MySQL Accounts”.

• If you have updated an existing MySQL installation to a newer version, did you run the
mysql_upgrade script? If not, do so. The structure of the grant tables changes occasionally when
new capabilities are added, so after an upgrade you should always make sure that your tables have
the current structure. For instructions, see Section 4.4.7, “mysql_upgrade — Check and Upgrade
MySQL Tables”.

• If a client program receives the following error message when it tries to connect, it means that the
server expects passwords in a newer format than the client is capable of generating:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 6.1.2.4, “Password Hashing in MySQL”, and
Section B.5.2.4, “Client does not support authentication protocol”.

• Remember that client programs use connection parameters specified in option files or
environment variables. If a client program seems to be sending incorrect default connection
parameters when you have not specified them on the command line, check any applicable option
files and your environment. For example, if you get Access denied when you run a client without
any options, make sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults
option. For example:

shell> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Section 4.2.6, “Using Option Files”. Environment
variables are listed in Section 2.12, “Environment Variables”.

• If you get the following error, it means that you are using an incorrect root password:

shell> mysqladmin -u root -pxxxx ver

Troubleshooting Problems Connecting to MySQL

886

Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the --no-defaults option as described in the
previous item.

For information on changing passwords, see Section 6.3.5, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see Section B.5.3.2, “How to Reset the Root
Password”.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the
password using the PASSWORD() function. If you do not use PASSWORD() for these statements, the
password will not work. For example, the following statement assigns a password, but fails to encrypt
it, so the user is not able to connect afterward:

SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the CREATE USER
or GRANT statements or the mysqladmin password command. Each of those automatically uses
PASSWORD() to encrypt the password. See Section 6.3.5, “Assigning Account Passwords”, and
Section 13.7.1.2, “CREATE USER Syntax”.

• localhost is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

You can use a --host=127.0.0.1 option to name the server host explicitly. This will make a TCP/
IP connection to the local mysqld server. You can also use TCP/IP by specifying a --host option
that uses the actual host name of the local host. In this case, the host name must be specified in a
user table row on the server host, even though you are running the client program on the same host
as the server.

• The Access denied error message tells you who you are trying to log in as, the client host from
which you are trying to connect, and whether you were using a password. Normally, you should have
one row in the user table that exactly matches the host name and user name that were given in the
error message. For example, if you get an error message that contains using password: NO, it
means that you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -u
root mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name
and your MySQL user name.

• If the following error occurs when you try to connect from a host other than the one on which the
MySQL server is running, it means that there is no row in the user table with a Host value that
matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that
you are using when trying to connect.

Troubleshooting Problems Connecting to MySQL

887

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with '%' as the Host column value in the user table. After trying to connect from
the client machine, use a SELECT USER() query to see how you really did connect. Then change
the '%' in the user table row to the actual host name that shows up in the log. Otherwise, your
system is left insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version
that is compiled with a different version of the glibc library than the one you are using. In this case,
you should either upgrade your operating system or glibc, or download a source distribution of
MySQL version and compile it yourself. A source RPM is normally trivial to compile and install, so
this is not a big problem.

• If you specify a host name when trying to connect, but get an error message where the host name
is not shown or is an IP address, it means that the MySQL server got an error when trying to resolve
the IP address of the client host to a name:

shell> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

If you try to connect as root and get the following error, it means that you do not have a row in the
user table with a User column value of 'root' and that mysqld cannot resolve the host name for
your client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the
internal DNS host cache. See Section 8.12.6.2, “DNS Lookup Optimization and the Host Cache”.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP addresses rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on
Windows.

• Start mysqld with the --skip-name-resolve option.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to
localhost. For connections to localhost, MySQL programs attempt to connect to the local
server by using a Unix socket file, unless there are connection parameters specified to ensure that
the client makes a TCP/IP connection. For more information, see Section 4.2.2, “Connecting to the
MySQL Server”.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

• If mysql -u root works but mysql -h your_hostname -u root results in Access denied
(where your_hostname is the actual host name of the local host), you may not have the correct
name for your host in the user table. A common problem here is that the Host value in the user
table row specifies an unqualified host name, but your system's name resolution routines return a
fully qualified domain name (or vice versa). For example, if you have a row with host 'pluto' in
the user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the
row does not work. Try adding a row to the user table that contains the IP address of your host as
the Host column value. (Alternatively, you could add a row to the user table with a Host value

Troubleshooting Problems Connecting to MySQL

888

that contains a wildcard; for example, 'pluto.%'. However, use of Host values ending with “%” is
insecure and is not recommended!)

• If mysql -u user_name works but mysql -u user_name some_db does not, you have not
granted access to the given user for the database named some_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -
u user_name does not work when executed on a remote client host, you have not enabled access
to the server for the given user name from the remote host.

• If you cannot figure out why you get Access denied, remove from the user table all rows that
have Host values containing wildcards (rows that contain '%' or '_' characters). A very common
error is to insert a new row with Host='%' and User='some_user', thinking that this enables
you to specify localhost to connect from the same machine. The reason that this does not work
is that the default privileges include a row with Host='localhost' and User=''. Because that
row has a Host value 'localhost' that is more specific than '%', it is used in preference to the
new row when connecting from localhost! The correct procedure is to insert a second row with
Host='localhost' and User='some_user', or to delete the row with Host='localhost' and
User=''. After deleting the row, remember to issue a FLUSH PRIVILEGES statement to reload the
grant tables. See also Section 6.2.4, “Access Control, Stage 1: Connection Verification”.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you
issue a SELECT ... INTO OUTFILE or LOAD DATA INFILE statement, your row in the user
table does not have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE
statements) and your changes seem to be ignored, remember that you must execute a FLUSH
PRIVILEGES statement or a mysqladmin flush-privileges command to cause the server to
reload the privilege tables. Otherwise, your changes have no effect until the next time the server is
restarted. Remember that after you change the root password with an UPDATE statement, you will
not need to specify the new password until after you flush the privileges, because the server will not
know you've changed the password yet!

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL
administrator has changed them. Reloading the grant tables affects new client connections, but
it also affects existing connections as indicated in Section 6.2.6, “When Privilege Changes Take
Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to
the server with mysql -u user_name db_name or mysql -u user_name -pyour_pass
db_name. If you are able to connect using the mysql client, the problem lies with your program, not
with the access privileges. (There is no space between -p and the password; you can also use the
--password=your_pass syntax to specify the password. If you use the -p or --password option
with no password value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then
you can change the MySQL grant tables and use the SHOW GRANTS statement to check whether
your modifications have the desired effect. When you are satisfied with your changes, execute
mysqladmin flush-privileges to tell the mysqld server to reload the privileges. This enables
you to begin using the new grant table contents without stopping and restarting the server.

• If everything else fails, start the mysqld server with a debugging option (for example, --
debug=d,general,query). This prints host and user information about attempted connections, as
well as information about each command issued. See Section 24.5.3, “The DBUG Package”.

• If you have any other problems with the MySQL grant tables and feel you must post the problem to
the mailing list, always provide a dump of the MySQL grant tables. You can dump the tables with
the mysqldump mysql command. To file a bug report, see the instructions at Section 1.7, “How to
Report Bugs or Problems”. In some cases, you may need to restart mysqld with --skip-grant-
tables to run mysqldump.

MySQL User Account Management

889

6.3 MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the
following topics:

• The meaning of account names and passwords as used in MySQL and how that compares to names
and passwords used by your operating system

• How to set up new accounts and remove existing accounts

• How to change passwords

• Guidelines for using passwords securely

• How to use secure connections with SSL

See also Section 13.7.1, “Account Management Statements”, which describes the syntax and use for
all user-management SQL statements.

6.3.1 User Names and Passwords

MySQL stores accounts in the user table of the mysql system database. An account is defined in
terms of a user name and the client host or hosts from which the user can connect to the server. For
information about account representation in the user table, see Section 6.2.2, “Privilege System Grant
Tables”.

The account may also have a password. MySQL supports authentication plugins, so it is possible that
an account authenticates using some external authentication method. See Section 6.3.8, “Pluggable
Authentication”.

There are several distinctions between the way user names and passwords are used by MySQL and
your operating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names
(login names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in
using the current Unix user name as the MySQL user name, but that is for convenience only. The
default can be overridden easily, because client programs permit any user name to be specified
with a -u or --user option. This means that anyone can attempt to connect to the server using
any user name, so you cannot make a database secure in any way unless all MySQL accounts
have passwords. Anyone who specifies a user name for an account that has no password is able to
connect successfully to the server.

• MySQL user names can be up to 32 characters long (16 characters before MySQL 5.7.8). Operating
system user names may be of a different maximum length. For example, Unix user names typically
are limited to eight characters.

Warning

The limit on MySQL user name length is hardcoded in MySQL servers and
clients, and trying to circumvent it by modifying the definitions of the tables in
the mysql database does not work.

You should never alter the structure of tables in the mysql database in any
manner whatsoever except by means of the procedure that is described in
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
Attempting to redefine MySQL's system tables in any other fashion results in
undefined (and unsupported!) behavior. The server is free to ignore rows that
become malformed as a result of such modifications.

• To authenticate client connections for accounts that use MySQL native authentication (implemented
by the mysql_native_password authentication plugin), the server uses passwords stored in the

Adding User Accounts

890

user table. These passwords are distinct from passwords for logging in to your operating system.
There is no necessary connection between the “external” password you use to log in to a Windows
or Unix machine and the password you use to access the MySQL server on that machine.

If the server authenticates a client using some other plugin, the authentication method that the plugin
implements may or may not use a password stored in the user table. In this case, it is possible that
an external password is also used to authenticate to the MySQL server.

• Passwords stored in the user table are encrypted using plugin-specific algorithms. For information
about MySQL native password hashing, see Section 6.1.2.4, “Password Hashing in MySQL”.

• If the user name and password contain only ASCII characters, it is possible to connect to the
server regardless of character set settings. To connect when the user name or password contain
non-ASCII characters, the client should call the mysql_options() C API function with the
MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments. This causes
authentication to take place using the specified character set. Otherwise, authentication will fail
unless the server default character set is the same as the encoding in the authentication defaults.

Standard MySQL client programs support a --default-character-set option that causes
mysql_options() to be called as just described. In addition, character set autodetection is
supported as described in Section 10.1.4, “Connection Character Sets and Collations”. For programs
that use a connector that is not based on the C API, the connector may provide an equivalent to
mysql_options() that can be used instead. Check the connector documentation.

The preceding notes do not apply for ucs2, utf16, and utf32, which are not permitted as client
character sets.

The MySQL installation process populates the grant tables with an initial root account, as described in
Section 2.10.4, “Securing the Initial MySQL Accounts”, which also discusses how to assign passwords
to it. Thereafter, you normally set up, modify, and remove MySQL accounts using statements such
as CREATE USER, DROP USER, GRANT, and REVOKE. See Section 13.7.1, “Account Management
Statements”.

To connect to a MySQL server with a command-line client, specify user name and password options as
necessary for the account that you want to use:

shell> mysql --user=monty --password db_name

If you prefer short options, the command looks like this:

shell> mysql -u monty -p db_name

If you omit the password value following the --password or -p option on the command line (as just
shown), the client prompts for one. Alternatively, the password can be specified on the command line:

shell> mysql --user=monty --password=password db_name
shell> mysql -u monty -ppassword db_name

If you use the -p option, there must be no space between -p and the following password value.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file or a login path file to avoid
giving the password on the command line. See Section 4.2.6, “Using Option Files”, and Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about specifying user names, passwords, and other connection parameters,
see Section 4.2.2, “Connecting to the MySQL Server”.

6.3.2 Adding User Accounts

Adding User Accounts

891

You can create MySQL accounts two ways:

• By using account-management statements intended for creating accounts and establishing their
privileges, such as CREATE USER and GRANT. These statements cause the server to make
appropriate modifications to the underlying grant tables.

• By manipulating the MySQL grant tables directly with statements such as INSERT, UPDATE, or
DELETE.

The preferred method is to use account-management statements because they are more concise
and less error-prone than manipulating the grant tables directly. All such statements are described in
Section 13.7.1, “Account Management Statements”. Direct grant table manipulation is discouraged,
and is not described here. The server is free to ignore rows that become malformed as a result of such
modifications.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Also, several third-party
programs offer capabilities for MySQL account administration. phpMyAdmin is one such program.

The following examples show how to use the mysql client program to set up new accounts.
These examples assume that privileges have been set up according to the defaults described in
Section 2.10.4, “Securing the Initial MySQL Accounts”. This means that to make changes, you must
connect to the MySQL server as the MySQL root user, which has the CREATE USER privilege.

First, use the mysql program to connect to the server as the MySQL root user:

shell> mysql --user=root mysql

If you have assigned a password to the root account, you must also supply a --password or -p
option.

After connecting to the server as root, you can add new accounts. The following example uses
CREATE USER and GRANT statements to set up four accounts:

mysql> CREATE USER 'monty'@'localhost' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost'
 -> WITH GRANT OPTION;
mysql> CREATE USER 'monty'@'%' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'%'
 -> WITH GRANT OPTION;
mysql> CREATE USER 'admin'@'localhost' IDENTIFIED BY 'admin_pass';
mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> CREATE USER 'dummy'@'localhost';

The accounts created by those statements have the following properties:

• Two accounts have a user name of monty and a password of some_pass. Both are superuser
accounts with full privileges to do anything. The 'monty'@'localhost' account can be used only
when connecting from the local host. The 'monty'@'%' account uses the '%' wildcard for the host
part, so it can be used to connect from any host.

The 'monty'@'localhost' account is necessary if there is an anonymous-user account for
localhost. Without the 'monty'@'localhost' account, that anonymous-user account takes
precedence when monty connects from the local host and monty is treated as an anonymous user.
The reason for this is that the anonymous-user account has a more specific Host column value than
the 'monty'@'%' account and thus comes earlier in the user table sort order. (user table sorting
is discussed in Section 6.2.4, “Access Control, Stage 1: Connection Verification”.)

• The 'admin'@'localhost' account has a password of admin_pass. This account can be used
only by admin to connect from the local host. It is granted the RELOAD and PROCESS administrative
privileges. These privileges enable the admin user to execute the mysqladmin reload,

Removing User Accounts

892

mysqladmin refresh, and mysqladmin flush-xxx commands, as well as mysqladmin
processlist . No privileges are granted for accessing any databases. You could add such
privileges using GRANT statements.

• The 'dummy'@'localhost' account has no password (which is insecure and not recommended).
This account can be used only to connect from the local host. No privileges are granted. It is
assumed that you will grant specific privileges to the account using GRANT statements.

To see the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT RELOAD, PROCESS ON *.* TO 'admin'@'localhost' |
+---+

To see nonprivilege properties for an account, use SHOW CREATE USER:

mysql> SHOW CREATE USER 'admin'@'localhost'\G
*************************** 1. row ***************************
CREATE USER for admin@localhost: CREATE USER 'admin'@'localhost'
IDENTIFIED WITH 'mysql_native_password'
AS '*67ACDEBDAB923990001F0FFB017EB8ED41861105'
REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK

The next examples create three accounts and grant them access to specific databases. Each of them
has a user name of custom and password of obscure:

mysql> CREATE USER 'custom'@'localhost' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 -> ON bankaccount.*
 -> TO 'custom'@'localhost';
mysql> CREATE USER 'custom'@'host47.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 -> ON expenses.*
 -> TO 'custom'@'host47.example.com';
mysql> CREATE USER 'custom'@'%.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 -> ON customer.*
 -> TO 'custom'@'%.example.com';

The three accounts can be used as follows:

• The first account can access the bankaccount database, but only from the local host.

• The second account can access the expenses database, but only from the host
host47.example.com.

• The third account can access the customer database, from any host in the example.com domain.
This account has access from all machines in the domain due to use of the “%” wildcard character in
the host part of the account name.

6.3.3 Removing User Accounts

To remove an account, use the DROP USER statement, which is described in Section 13.7.1.3, “DROP
USER Syntax”. For example:

mysql> DROP USER 'jeffrey'@'localhost';

6.3.4 Setting Account Resource Limits

Setting Account Resource Limits

893

One means of restricting client use of MySQL server resources is to set the global
max_user_connections system variable to a nonzero value. This limits the number of simultaneous
connections that can be made by any given account, but places no limits on what a client can do once
connected. In addition, setting max_user_connections does not enable management of individual
accounts. Both types of control are of interest to MySQL administrators.

To address such concerns, MySQL permits limits for individual accounts on use of these server
resources:

• The number of queries an account can issue per hour

• The number of updates an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit, unless its results are served from
the query cache. Only statements that modify databases or tables count against the update limit.

An “account” in this context corresponds to a row in the mysql.user table. That is, a connection is
assessed against the User and Host values in the user table row that applies to the connection. For
example, an account 'usera'@'%.example.com' corresponds to a row in the user table that has
User and Host values of usera and %.example.com, to permit usera to connect from any host in
the example.com domain. In this case, the server applies resource limits in this row collectively to all
connections by usera from any host in the example.com domain because all such connections use
the same account.

Before MySQL 5.0.3, an “account” was assessed against the actual host from which a user connects.
This older method of accounting may be selected by starting the server with the --old-style-
user-limits option. In this case, if usera connects simultaneously from host1.example.com and
host2.example.com, the server applies the account resource limits separately to each connection.
If usera connects again from host1.example.com, the server applies the limits for that connection
together with the existing connection from that host.

To establish resource limits for an account at account-creation time, use the CREATE USER statement.
To modify the limits for an existing account, use ALTER USER. (Before MySQL 5.7.6, use GRANT,
for new or existing accounts.) Provide a WITH clause that names each resource to be limited. The
default value for each limit is zero (no limit). For example, to create a new account that can access the
customer database, but only in a limited fashion, issue these statements:

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank'
 -> WITH MAX_QUERIES_PER_HOUR 20
 -> MAX_UPDATES_PER_HOUR 10
 -> MAX_CONNECTIONS_PER_HOUR 5
 -> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any
order. The value for each per-hour limit should be an integer representing a count per hour. For
MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user_connections system
variable value determines the number of simultaneous connections. If max_user_connections is
also zero, there is no limit for the account.

To modify limits for an existing account, use an ALTER USER statement. The following statement
changes the query limit for francis to 100:

mysql> ALTER USER 'francis'@'localhost' WITH MAX_QUERIES_PER_HOUR 100;

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

Assigning Account Passwords

894

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
francis can connect, use this statement:

mysql> ALTER USER 'francis'@'localhost' WITH MAX_CONNECTIONS_PER_HOUR 0;

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTIONS limit and the max_user_connections system variable. Suppose that
the global max_user_connections value is 10 and three accounts have individual resource limits
specified as follows:

ALTER USER 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
ALTER USER 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
ALTER USER 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;

user1 has a connection limit of 10 (the global max_user_connections value) because it has
a MAX_USER_CONNECTIONS limit of zero. user2 and user3 have connection limits of 5 and 20,
respectively, because they have nonzero MAX_USER_CONNECTIONS limits.

The server stores resource limits for an account in the user table row corresponding to the account.
The max_questions, max_updates, and max_connections columns store the per-hour limits, and
the max_user_connections column stores the MAX_USER_CONNECTIONS limit. (See Section 6.2.2,
“Privilege System Grant Tables”.)

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of
the resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, the server rejects further connections for the
account until that hour is up. Similarly, if the account reaches its limit on the number of queries or
updates, the server rejects further queries or updates until the hour is up. In all such cases, the server
issues appropriate error messages.

Resource counting occurs per account, not per client. For example, if your account has a query limit of
50, you cannot increase your limit to 100 by making two simultaneous client connections to the server.
Queries issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a
given account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIVILEGES
statement or a mysqladmin reload command).

• The counts for an individual account can be reset to zero by setting any of its limits again. Specify a
limit value equal to the value currently assigned to the account.

Per-hour counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts. Counts do not carry over through server restarts.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result
in an error (ER_TOO_MANY_USER_CONNECTIONS or ER_USER_LIMIT_REACHED) if the server has not
fully processed the disconnect by the time the connect occurs. When the server finishes disconnect
processing, another connection will once more be permitted.

6.3.5 Assigning Account Passwords

Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts. Client authentication occurs using plugins;
see Section 6.3.8, “Pluggable Authentication”.

Assigning Account Passwords

895

MySQL stores passwords in the user table in the mysql database. Operations that assign or modify
passwords are permitted only to users with the CREATE USER privilege, or, alternatively, privileges
for the mysql database (INSERT to create new accounts, UPDATE to modify existing accounts). If
the read_only system variable is enabled, use of account-modification statements such as CREATE
USER or SET PASSWORD additionally requires the SUPER privilege.

To assign a password when you create a new account with CREATE USER, include an IDENTIFIED
BY clause:

mysql> CREATE USER 'jeffrey'@'localhost'
 -> IDENTIFIED BY 'mypass';

CREATE USER also supports syntax for specifying the account authentication plugin. See
Section 13.7.1.2, “CREATE USER Syntax”.

As of MySQL 5.7.6, to assign or change a password for an existing account, use the ALTER USER
statement:

mysql> ALTER USER 'jeffrey'@'localhost'
 -> IDENTIFIED BY 'mypass';

If you are not connected as an anonymous user, you can change your own password without naming
your own account literally:

mysql> ALTER USER USER()
 -> IDENTIFIED BY 'mypass';

Before MySQL 5.7.6, use SET PASSWORD:

mysql> SET PASSWORD FOR
 -> 'jeffrey'@'localhost' = PASSWORD('mypass');

If you are not connected as an anonymous user, you can change your own password by omitting the
FOR clause:

mysql> SET PASSWORD = PASSWORD('mypass');

The old_passwords system variable value determines the hashing method used by PASSWORD().
If you specify the password using that function and SET PASSWORD rejects the password as not being
in the correct format, it may be necessary to set old_passwords to change the hashing method. See
Section 13.7.1.7, “SET PASSWORD Syntax”.

You can also use a GRANT USAGE statement at the global level (ON *.*) to assign a password to an
account without affecting the account's current privileges:

mysql> GRANT USAGE ON *.* TO 'jeffrey'@'localhost'
 -> IDENTIFIED BY 'mypass';

Note

Use of SET PASSWORD or GRANT for password modification is deprecated as of
MySQL 5.7.6. Use ALTER USER instead.

To assign a password from the command line, use the mysqladmin command:

shell> mysqladmin -u user_name -h host_name password "new_password"

The account for which this command sets the password is the one with a user table row that matches
user_name in the User column and the client host from which you connect in the Host column.

Password Expiration Policy

896

During authentication when a client connects to the server, MySQL treats the password in the user
table as an encrypted hash value. When assigning a password to an account, it is important to store an
encrypted value, not the cleartext password. Use the following guidelines:

• When you assign a password using CREATE USER or ALTER USER, GRANT with an IDENTIFIED
BY clause, or the mysqladmin password command, they encrypt the password for you. Specify
the literal cleartext password. For example:

mysql> CREATE USER 'jeffrey'@'localhost'
 -> IDENTIFIED BY 'mypass';

• For CREATE USER or GRANT, you can avoid sending the cleartext password if you know the hash
value that PASSWORD() would return for the password. Specify the hash value preceded by the
keyword PASSWORD:

mysql> CREATE USER 'jeffrey'@'localhost'
 -> IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';

Note

IDENTIFIED BY PASSWORD syntax is deprecated as of MySQL 5.7.6.

• Before MySQL 5.7.6, when you assign an account a nonempty password using SET PASSWORD, you
must use the PASSWORD() function to encrypt the password, otherwise the password is stored as
cleartext. Suppose that you assign a password like this:

mysql> SET PASSWORD FOR
 -> 'jeffrey'@'localhost' = 'mypass';

The result is that the literal value 'mypass' is stored as the password in the user table, not the
encrypted value. When jeffrey attempts to connect to the server using this password, the value
is encrypted and compared to the value stored in the user table. However, the stored value is
the literal string 'mypass', so the comparison fails and the server rejects the connection with an
Access denied error.

As of MySQL 5.7.6, if you specify the password without PASSWORD(), SET PASSWORD interprets the
string as a cleartext string and hashes it appropriately for the account authentication plugin before
storing it in the user account row.

Note

PASSWORD() encryption differs from Unix password encryption. See
Section 6.3.1, “User Names and Passwords”.

Although it is preferable to modify passwords using SET PASSWORD, GRANT, or mysqladmin, it is also
possible to modify the user table directly. In this case, you must also use FLUSH PRIVILEGES to
cause the server to reread the grant tables. Otherwise, the change remains unnoticed by the server
until you restart it.

6.3.6 Password Expiration Policy

MySQL enables database administrators to expire account passwords manually, and to establish a
policy for automatic password expiration.

Note

Be aware that, if you make no changes to the default_password_lifetime
variable nor to the individual user accounts, all user passwords will expire after
360 days, and all user accounts will start running in restricted mode when

Password Expiration Policy

897

this happens. Clients (which are effectively users) connecting to the server
will then get an error indicating that the password must be changed: ERROR
1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.

However, this is easy to miss for clients that automatically connect to the
server, like scripts. To avoid having such clients suddenly stop working due to
a password expiring, make sure to change the password expiration settings for
those clients, like this:

ALTER USER 'script'@'localhost' PASSWORD EXPIRE NEVER

Alternatively, set the default_password_lifetime variable to 0, thus
disabling automatic password expiration for all users, although this is not
recommended for security reasons.

To expire a password manually, the database administratior uses the ALTER USER statement:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

This operation marks the password expired in the corresponding mysql.user table row.

Automatic password expiration is available in MySQL 5.7.4 and later. The mysql.user table indicates
for each account when its password was last changed, and the server automatically treats the
password as expired at client connection time if it is past its permitted lifetime. This works with no
explicit manual password expiration.

The default_password_lifetime system variable defines the global automatic password
expiration policy. It applies to accounts that use MySQL built-in authentication methods (accounts
that use an authentication plugin of mysql_native_password, mysql_old_password, or
sha256_password).

The default global policy is that passwords have a lifetime of 360 days. To change the policy, change
the value of the default_password_lifetime. If the value is a positive integer, it indicates the
permitted password lifetime in days. A value of 0 disables automatic expiration.

Examples:

• To establish a global policy that passwords have a lifetime of approximately six months, start the
server with these lines in an option file:

[mysqld]
default_password_lifetime=180

• To establish a global policy such that passwords never expire, set default_password_lifetime
to 0:

[mysqld]
default_password_lifetime=0

• default_password_lifetime can also be changed at runtime (this requires the SUPER
privilege):

SET GLOBAL default_password_lifetime = 180;

No matter the global policy, it can be overridden for individual accounts with ALTER USER:

• Require the password to be changed every 90 days:

Password Expiration and Sandbox Mode

898

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 90 DAY;

• Disable password expiration:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

• Defer to the global expiration policy:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

These ALTER USER statements update the corresponding mysql.user table row.

When a client successfully connects, the server determines whether the account password is expired:

• The server checks whether the password has been manually expired and, if so, restricts the session.

• Otherwise, the server checks whether the password is past its lifetime according to the automatic
password expiration policy. If so, the server considers the password expired and restricts the
session.

A client session operates in restricted mode if the account password was expired manually or if
the password is considered past its lifetime per the automatic expiration policy. In restricted mode,
operations performed within the session result in an error until the user establishes a new account
password:

mysql> SELECT 1;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

mysql> ALTER USER USER() IDENTIFIED BY 'new_password';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

This restricted mode of operation permits SET statements, which is useful before MySQL 5.7.6 if SET
PASSWORD must be used instead of ALTER USER and the account password has a hashing format that
requires old_passwords to be set to a value different from its default.

It is possible for an administrative user to reset the account password, but any existing sessions for the
account remain restricted. A client using the account must disconnect and reconnect before statements
can be executed successfully.

Note

It is possible to “reset” a password by setting it to its current value. As a matter
of good policy, it is preferable to choose a different password.

6.3.7 Password Expiration and Sandbox Mode

MySQL 5.7 provides a password-expiration capability, to enable database administrators to expire
account passwords and require users to reset their password. This section describes how password
expiration works.

To expire an account password, use the ALTER USER statement. For example:

ALTER USER 'myuser'@'localhost' PASSWORD EXPIRE;

Password Expiration and Sandbox Mode

899

This statement modifies the row of the mysql.user table associated with the named account, setting
the password_expired column to 'Y'. This does not affect any current connections the account has
open. For each subsequent connection that uses the account, the server either disconnects the client
or handles the client in “sandbox mode,” in which the server permits the client only those operations
necessary to reset the expired password. (The action taken by the server depends on both client and
server settings.)

If the server disconnects the client, it returns an ER_MUST_CHANGE_PASSWORD_LOGIN error:

shell> mysql -u myuser -p
Password: ******
ERROR 1862 (HY000): Your password has expired. To log in you must
change it using a client that supports expired passwords.

If the server puts the client in sandbox mode, these operations are permitted within the client session:

• The client can reset the account password with SET PASSWORD. This modifies the row of the
mysql.user table associated with the current account, setting the password_expired column to
'N'. After the password has been reset, the server restores normal access for the session, as well
as for subsequent connections that use the account.

It is possible to “reset” a password by setting it to its current value. As a matter of good policy, it is
preferable to choose a different password.

• The client can use SET statements. This might be necessary prior to resetting the password; for
example, if the account password uses a hashing format that requires the old_passwords system
variable to be set to a value different from its default.

For any operation not permitted within the session, the server returns an
ER_MUST_CHANGE_PASSWORD error:

mysql> USE test;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

As mentioned previously, whether the server disconnects an expired-password client or puts it in
sandbox mode depends on a combination of client and server settings. The following discussion
describes the relevant settings and how they interact.

On the client side, a given client indicates whether it can handle sandbox mode for expired passwords.
For clients that use the C client library, there are two ways to do this:

• Pass the MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_options() prior to
connecting:

arg = 1;
result = mysql_options(mysql,
 MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS, &arg);

• Pass the CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_real_connect() at
connection time:

mysql = mysql_real_connect(mysql,
 host, user, password, "test",
 port, unix_socket,
 CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS);

Other MySQL Connectors have their own conventions for indicating readiness to handle sandbox
mode. See the relevant Connector documentation.

On the server side, if a client indicates that it can handle expired passwords, the server puts it in
sandbox mode.

Pluggable Authentication

900

If a client does not indicate that it can handle expired passwords (or uses an older version
of the client library that cannot so indicate), the server action depends on the value of the
disconnect_on_expired_password system variable:

• If disconnect_on_expired_password is enabled (the default), the server disconnects the client
with an ER_MUST_CHANGE_PASSWORD_LOGIN error.

• If disconnect_on_expired_password is disabled, the server puts the client in sandbox mode.

The preceding client and server settings apply only for accounts with expired passwords. If a client
connects using a nonexpired password, the server handles the client normally.

6.3.8 Pluggable Authentication

When a client connects to the MySQL server, the server uses the user name provided by the client
and the client host to select the appropriate account row from the mysql.user table. The server then
authenticates the client, determining from the account row which authentication plugin applies for the
client:

• If the account row specifies a plugin, the server invokes it to authenticate the user. If the server
cannot find the plugin, an error occurs.

• If the account row specifies no plugin name, the server authenticates the account using either
the mysql_native_password or mysql_old_password plugin, depending on whether the
password hash value in the Password column used native hashing or the older pre-4.1 hashing
method. Clients must match the password in the Password column of the account row. As of
MySQL 5.7.2, the server requires the plugin value to be nonempty, and as of 5.7.5, support for
mysql_old_password is removed.

The plugin returns a status to the server indicating whether the user is permitted to connect.

Pluggable authentication enables two important capabilities:

• External authentication: Pluggable authentication makes it possible for clients to connect to the
MySQL server with credentials that are appropriate for authentication methods other than native
authentication based on passwords stored in the mysql.user table. For example, plugins can
be created to use external authentication methods such as PAM, Windows login IDs, LDAP, or
Kerberos.

• Proxy users: If a user is permitted to connect, an authentication plugin can return to the server a
user name different from the name of the connecting user, to indicate that the connecting user is a
proxy for another user. While the connection lasts, the proxy user is treated, for purposes of access
control, as having the privileges of a different user. In effect, one user impersonates another. For
more information, see Section 6.3.10, “Proxy Users”.

Several authentication plugins are available in MySQL:

• Plugins that perform native authentication that matches the password against the Password
column of the account row. The mysql_native_password plugin implements authentication
based on the native password hashing method. The mysql_old_password plugin
implements native authentication based on the older (pre-4.1) password hashing method
(and is deprecated and removed in MySQL 5.7.5). See Section 6.3.9.1, “The Native
Authentication Plugin”, and Section 6.3.9.2, “The Old Native Authentication Plugin”. Native
authentication using mysql_native_password is the default for new accounts, unless the
default_authentication_plugin system variable is set otherwise.

• A plugin that performs authentication using SHA-256 password hashing. This plugin matches the
password against the authentication_string column of the account row. This is stronger
encryption than that available with native authentication. See Section 6.3.9.4, “The SHA-256
Authentication Plugin”.

Pluggable Authentication

901

• A plugin prevents all client connections to any account that uses it. Use cases for such a plugin
includes accounts that must be able to execute stored programs and views with elevated privileges
without exposing those privileges to ordinary users, and proxy accounts that should never permit
direct login. See Section 6.3.9.7, “The No-Login Authentication Plugin”.

• A client-side plugin that sends the password to the server without hashing or encryption. This plugin
can be used by server-side plugins that require access to the password exactly as provided by the
client user. See Section 6.3.9.8, “The Cleartext Client-Side Authentication Plugin”.

• A plugin that authenticates clients that connect from the local host through the Unix socket file. See
Section 6.3.9.9, “The Socket Peer-Credential Authentication Plugin”.

• A test plugin that authenticates using MySQL native authentication. This plugin is intended for
testing and development purposes, and as an example of how to write an authentication plugin. See
Section 6.3.9.10, “The Test Authentication Plugin”.

Note

For information about current restrictions on the use of pluggable authentication,
including which connectors support which plugins, see Section C.9,
“Restrictions on Pluggable Authentication”.

Third-party connector developers should read that section to determine the
extent to which a connector can take advantage of pluggable authentication
capabilities and what steps to take to become more compliant.

If you are interested in writing your own authentication plugins, see Section 24.2.4.9, “Writing
Authentication Plugins”.

Authentication Plugin Usage Instructions

This section provides general instructions for installing and using authentication plugins.

In general, pluggable authentication uses corresponding plugins on the server and client sides, so you
use a given authentication method like this:

• On the server host, install the library containing the appropriate server plugin, if necessary, so that
the server can use it to authenticate client connections. Similarly, on each client host, install the
library containing the appropriate client plugin for use by client programs.

• Create MySQL accounts that specify use of the plugin for authentication.

• When a client connects, the server plugin tells the client program which client plugin to use for
authentication.

The instructions here use an example authentication plugin included in MySQL distributions (see
Section 6.3.9.10, “The Test Authentication Plugin”). The procedure is similar for other authentication
plugins; substitute the appropriate plugin and file names.

The example authentication plugin has these characteristics:

• The server-side plugin name is test_plugin_server.

• The client-side plugin name is auth_test_plugin.

• Both plugins are located in the shared library object file named auth_test_plugin.so in the
plugin directory (the directory named by the plugin_dir system variable). The file name suffix
might differ on your system.

Install and use the example authentication plugin as follows:

1. Make sure that the plugin library is installed on the server and client hosts.

Pluggable Authentication

902

2. Install the server-side test plugin at server startup or at runtime:

• To install the plugin at startup, use the --plugin-load option. With this plugin-loading method,
the option must be given each time you start the server. For example, use these lines in a
my.cnf option file:

[mysqld]
plugin-load=test_plugin_server=auth_test_plugin.so

• To install the plugin at runtime, use the INSTALL PLUGIN statement:

mysql> INSTALL PLUGIN test_plugin_server SONAME 'auth_test_plugin.so';

This installs the plugin permanently and need be done only once.

3. Verify that the plugin is installed. For example, use SHOW PLUGINS:

mysql> SHOW PLUGINS\G
...
*************************** 21. row ***************************
 Name: test_plugin_server
 Status: ACTIVE
 Type: AUTHENTICATION
Library: auth_test_plugin.so
License: GPL

For other ways to check the plugin, see Section 5.1.8.2, “Obtaining Server Plugin Information”.

4. To specify that a MySQL user must be authenticated using a specific server plugin, name the plugin
in the IDENTIFIED WITH clause of the CREATE USER statement that creates the user:

CREATE USER 'testuser'@'localhost' IDENTIFIED WITH test_plugin_server;

5. Connect to the server using a client program. The test plugin authenticates the same way as native
MySQL authentication, so provide the usual --user and --password options that you normally
use to connect to the server. For example:

shell> mysql --user=your_name --password=your_pass

For connections by testuser, the server sees that the account must be authenticated using the
server-side plugin named test_plugin_server and communicates to the client program which
client-side plugin it must use—in this case, auth_test_plugin.

In the case that the account uses the authentication method that is the default for both the server
and the client program, the server need not communicate to the client which plugin to use, and
a round trip in client/server negotiation can be avoided. This is true for accounts that use native
MySQL authentication (mysql_native_password).

The --default-auth=plugin_name option can be specified on the mysql command line as a
hint about which client-side plugin the program can expect to use, although the server will override
this if the user account requires a different plugin.

If the client program does not find the plugin, specify a --plugin-dir=dir_name option to
indicate where the plugin is located.

Note

If you start the server with the --skip-grant-tables option, authentication
plugins are not used even if loaded because the server performs no client
authentication and permits any client to connect. Because this is insecure,

Authentication Plugins Available in MySQL

903

you might want to use --skip-grant-tables in conjunction with --skip-
networking to prevent remote clients from connecting.

6.3.9 Authentication Plugins Available in MySQL

The following sections describe the authentication plugins available in MySQL.

The default plugin is mysql_native_password unless the default_authentication_plugin
system variable is set otherwise.

6.3.9.1 The Native Authentication Plugin

MySQL includes two plugins that implement native authentication; that is, authentication against
passwords stored in the Password column of the mysql.user table. This section describes
mysql_native_password, which implements authentication against the mysql.user table
using the native password hashing method. For information about mysql_old_password, which
implements authentication using the older (pre-4.1) password hashing method, see Section 6.3.9.2,
“The Old Native Authentication Plugin”. For information about these password hashing methods, see
Section 6.1.2.4, “Password Hashing in MySQL”.

The mysql_native_password native authentication plugin is backward compatible. Clients older
than MySQL 5.5.7 do not support authentication plugins but do use the native authentication protocol,
so they can connect to servers from MySQL 5.5.7 and up.

The following table shows the plugin names on the server and client sides.

Table 6.8 MySQL Native Password Authentication Plugin

Server-side plugin name mysql_native_password

Client-side plugin name mysql_native_password

Library object file name None (plugins are built in)

The plugin exists in both client and server form:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library as of MySQL 5.5.7 and
available to any program linked against libmysqlclient from that version or newer.

• MySQL client programs use mysql_native_password by default. The --default-auth option
can be used as a hint about which client-side plugin the program can expect to use:

shell> mysql --default-auth=mysql_native_password ...

If an account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password
hash value in the Password column used native hashing or the older pre-4.1 hashing method. Clients
must match the password in the Password column of the account row. As of MySQL 5.7.2, the server
requires the plugin value to be nonempty, and as of 5.7.5, support for mysql_old_password is
removed.

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

6.3.9.2 The Old Native Authentication Plugin

MySQL includes two plugins that implement native authentication; that is, authentication against
passwords stored in the Password column of the mysql.user table. This section describes
mysql_old_password, which implements authentication against the mysql.user table using the

Authentication Plugins Available in MySQL

904

older (pre-4.1) password hashing method. For information about mysql_native_password, which
implements authentication using the native password hashing method, see Section 6.3.9.1, “The Native
Authentication Plugin”. For information about these password hashing methods, see Section 6.1.2.4,
“Password Hashing in MySQL”.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them (including
the mysql_old_password plugin) is removed in MySQL 5.7.5. For account
upgrade instructions, see Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password Plugin”.

The mysql_old_password native authentication plugin is backward compatible. Clients older than
MySQL 5.5.7 do not support authentication plugins but do use the native authentication protocol, so
they can connect to servers from MySQL 5.5.7 and up.

The following table shows the plugin names on the server and client sides.

Table 6.9 MySQL Old Native Authentication Plugin

Server-side plugin name mysql_old_password

Client-side plugin name mysql_old_password

Library object file name None (plugins are built in)

The plugin exists in both client and server form:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library as of MySQL 5.5.7 and
available to any program linked against libmysqlclient from that version or newer.

• MySQL client programs can use the --default-auth option to specify the
mysql_old_password plugin as a hint about which client-side plugin the program can expect to
use:

shell> mysql --default-auth=mysql_old_password ...

If an account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password
hash value in the Password column used native hashing or the older pre-4.1 hashing method. Clients
must match the password in the Password column of the account row. As of MySQL 5.7.2, the server
requires the plugin value to be nonempty, and as of 5.7.5, support for mysql_old_password is
removed.

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

6.3.9.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password
Plugin

The MySQL server authenticates connection attempts for each account listed in the mysql.user
table using the authentication plugin named in the plugin column. If the plugin column is empty, the
server authenticates the account as follows:

• Before MySQL 5.7.2, the server uses the mysql_native_password or mysql_old_password
plugin implicitly, depending on the format of the password hash in the Password column.
If the Password value is empty or a 4.1 password hash (41 characters), the server uses

Authentication Plugins Available in MySQL

905

mysql_native_password. If the password value is a pre-4.1 password hash (16 characters),
the server uses mysql_old_password. (For additional information about these hash formats, see
Section 6.1.2.4, “Password Hashing in MySQL”.)

• As of MySQL 5.7.2, the server requires the plugin column to be nonempty and disables accounts
that have an empty plugin value.

Pre-4.1 password hashes and the mysql_old_password plugin are deprecated as of MySQL 5.6.5
and support for them is removed in MySQL 5.7.5. They provide a level of security inferior to that offered
by 4.1 password hashing and the mysql_native_password plugin.

Given the requirement in MySQL 5.7.2 that the plugin column must be nonempty, coupled with
removal of mysql_old_password support in 5.7.5, DBAs are advised to upgrade accounts as
follows:

• Upgrade accounts that use mysql_native_password implicitly to use it explicitly

• Upgrade accounts that use mysql_old_password (either implicitly or explicitly) to use
mysql_native_password explicitly

The instructions in this section describe how to perform those upgrades. The result is that no
account has an empty plugin value and no account uses pre-4.1 password hashing or the
mysql_old_password plugin.

As a variant on these instructions, DBAs might offer users the choice to upgrade to the
sha256_password plugin, which authenticates using SHA-256 password hashes. For information
about this plugin, see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

The following table lists the types of mysql.user accounts considered in this discussion.

plugin Column Password
Column

Authentication Result Upgrade Action

Empty Empty Implicitly uses
mysql_native_password

Assign plugin

Empty 4.1 hash Implicitly uses
mysql_native_password

Assign plugin

Empty Pre-4.1 hash Implicitly uses
mysql_old_password

Assign plugin,
rehash password

mysql_native_password Empty Explicitly uses
mysql_native_password

None

mysql_native_password 4.1 hash Explicitly uses
mysql_native_password

None

mysql_old_password Empty Explicitly uses
mysql_old_password

Upgrade plugin

mysql_old_password Pre-4.1 hash Explicitly uses
mysql_old_password

Upgrade plugin,
rehash password

Accounts corresponding to lines for the mysql_native_password plugin require no upgrade action
(because no change of plugin or hash format is required). For accounts corresponding to lines for
which the password is empty, consider asking the account owners to choose a password (or require it
by using ALTER USER to expire empty account passwords).

Upgrading Accounts from Implicit to Explicit mysql_native_password Use

Accounts that have an empty plugin and a 4.1 password hash use mysql_native_password
implicitly. To upgrade these accounts to use mysql_native_password explicitly, execute these
statements:

Authentication Plugins Available in MySQL

906

UPDATE mysql.user SET plugin = 'mysql_native_password'
WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRIVILEGES;

Before MySQL 5.7.2, you can execute those statements to uprade accounts proactively. As of MySQL
5.7.2, you can run mysql_upgrade, which performs the same operation among its upgrade actions.

Notes:

• The upgrade operation just described is safe to execute at any time because it makes the
mysql_native_password plugin explicit only for accounts that already use it implicitly.

• This operation requires no password changes, so it can be performed without affecting users or
requiring their involvement in the upgrade process.

Upgrading Accounts from mysql_old_password to mysql_native_password

Accounts that use mysql_old_password (either implicitly or explicitly) should be upgraded to use
mysql_native_password explicitly. This requires changing the plugin and changing the password
from pre-4.1 to 4.1 hash format.

For the accounts covered in this step that must be upgraded, one of these conditions is true:

• The account uses mysql_old_password implicitly because the plugin column is empty and the
password has the pre-4.1 hash format (16 characters).

• The account uses mysql_old_password explicitly.

To identify such accounts, use this query:

SELECT User, Host, Password FROM mysql.user
WHERE (plugin = '' AND LENGTH(Password) = 16)
OR plugin = 'mysql_old_password';

The following discussion provides two methods for updating that set of accounts. They have differing
characteristics, so read both and decide which is most suitable for a given MySQL installation.

Method 1.

Characteristics of this method:

• It requires that server and clients be run with secure_auth=0 until all users have been upgraded to
mysql_native_password. (Otherwise, users cannot connect to the server using their old-format
password hashes for the purpose of upgrading to a new-format hash.)

• It works for MySQL 5.5 through 5.7.1. As of 5.7.2, it does not work because the server requires
accounts to have a nonempty plugin and disables them otherwise. Therefore, if you have already
upgraded to 5.7.2 or later, choose Method 2, described later.

You should ensure that the server is running with secure_auth=0.

For all accounts that use mysql_old_password explicitly, set them to the empty plugin:

UPDATE mysql.user SET plugin = ''
WHERE plugin = 'mysql_old_password';
FLUSH PRIVILEGES;

To also expire the password for affected accounts, use these statements instead:

UPDATE mysql.user SET plugin = '', password_expired = 'Y'
WHERE plugin = 'mysql_old_password';
FLUSH PRIVILEGES;

Authentication Plugins Available in MySQL

907

Now affected users can reset their password to use 4.1 hashing. Ask each user who now has an empty
plugin to connect to the server and execute these statements:

SET old_passwords = 0;
SET PASSWORD = PASSWORD('user-chosen-password');

Note

In MySQL 5.6.5 or later, the client-side --secure-auth option is enabled by
default, so remind users to disable it or they will be unable to connect:

shell> mysql -u user_name -p --secure-auth=0

After an affected user has executed those statements, you can set the corresponding account plugin to
mysql_native_password to make the plugin explicit. Or you can periodically run these statements
to find and fix any accounts for which affected users have reset their password:

UPDATE mysql.user SET plugin = 'mysql_native_password'
WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRIVILEGES;

When there are no more accounts with an empty plugin, this query returns an empty result:

SELECT User, Host, Password FROM mysql.user
WHERE (plugin = '' AND LENGTH(Password) = 16);

At that point, all accounts have been migrated away from pre-4.1 password hashing and the server no
longer need be run with secure_auth=0.

Method 2.

Characteristics of this method:

• It assigns each affected account a new password, so you must tell each such user the new password
and ask the user to choose a new one. Communication of passwords to users is outside the scope of
MySQL, but should be done carefully.

• It does not require server or clients to be run with secure_auth=0.

• It works for any version of MySQL 5.5 or later (and for 5.7.6 or later has an easier variant).

With this method, you update each account separately due to the need to set passwords individually.
Choose a different password for each account.

Suppose that 'user1'@'localhost' is one of the accounts to be upgraded. Modify it as follows:

• In MySQL 5.7.6 and up, ALTER USER provides the capability of modifying both the account
password and its authentication plugin, so you need not modify the mysql.user table directly:

ALTER USER 'user1'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'DBA-chosen-password';

To also expire the account password, use this statement instead:

ALTER USER 'user1'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'DBA-chosen-password'
PASSWORD EXPIRE;

Then tell the user the new password and ask the user to connect to the server with that password
and execute this statement to choose a new password:

Authentication Plugins Available in MySQL

908

ALTER USER USER() IDENTIFIED BY 'user-chosen-password';

• Before MySQL 5.7.6, you must modify the mysql.user table directly using these statements:

SET old_passwords = 0;
UPDATE mysql.user SET plugin = 'mysql_native_password',
Password = PASSWORD('DBA-chosen-password')
WHERE (User, Host) = ('user1', 'localhost');
FLUSH PRIVILEGES;

To also expire the account password, use these statements instead:

SET old_passwords = 0;
UPDATE mysql.user SET plugin = 'mysql_native_password',
Password = PASSWORD('DBA-chosen-password'), password_expired = 'Y'
WHERE (User, Host) = ('user1', 'localhost');
FLUSH PRIVILEGES;

Then tell the user the new password and ask the user to connect to the server with that password
and execute these statements to choose a new password:

SET old_passwords = 0;
SET PASSWORD = PASSWORD('user-chosen-password');

Repeat for each account to be upgraded.

6.3.9.4 The SHA-256 Authentication Plugin

MySQL provides an authentication plugin that implements SHA-256 hashing for user account
passwords.

Important

To connect to the server using an account that authenticates with the
sha256_password plugin, you must use either an SSL connection or an
unencrypted connection that encrypts the password using RSA, as described
later in this section. Either way, use of the sha256_password plugin requires
that MySQL be built with SSL capabilities. See Section 6.3.12, “Using Secure
Connections”.

The following table shows the plugin names on the server and client sides.

Table 6.10 MySQL SHA-256 Authentication Plugin

Server-side plugin name sha256_password

Client-side plugin name sha256_password

Library object file name None (plugins are built in)

The server-side sha256_password plugin is built into the server, need not be loaded explicitly, and
cannot be disabled by unloading it. Similarly, clients need not specify the location of the client-side
plugin.

To set up an account that uses the sha256_password plugin for SHA-256 password hashing, use the
following statement for MySQL 5.7.6 and up:

CREATE USER 'sha256user'@'localhost'
IDENTIFIED WITH sha256_password BY 'Sh@256Pa33';

Authentication Plugins Available in MySQL

909

Before MySQL 5.7.6, use this procedure:

1. Create the account and specify that it authenticates using the sha256_password plugin:

CREATE USER 'sha256user'@'localhost' IDENTIFIED WITH sha256_password;

2. Set the old_passwords system variable to 2 to cause the PASSWORD() function to use SHA-256
hashing of password strings, then set the account password:

SET old_passwords = 2;
SET PASSWORD FOR 'sha256user'@'localhost' = PASSWORD('Sh@256Pa33');

Alternatively, start the server with the default authentication plugin set to sha256_password. For
example, put these lines in the server option file:

[mysqld]
default_authentication_plugin=sha256_password

That causes the sha256_password plugin to be used by default for new accounts. As a result, it
is possible to create the account and set its password without naming the plugin explicitly using this
CREATE USER syntax:

CREATE USER 'sha256user'@'localhost' IDENTIFIED BY 'Sh@256Pa33';

In this case, the server assigns the sha256_password plugin to the account and encrypts the
password using SHA-256.

Accounts in the mysql.user table that use SHA-256 passwords can be identified as rows
with 'sha256_password' in the plugin column and a SHA-256 password hash in the
authentication_string column.

Another consequence of using sha256_password as the default authentication plugin is that to create
an account that uses a different plugin, you must specify the plugin using an IDENTIFIED WITH
clause in the CREATE USER statement. For example, to use the mysql_native_password plugin,
use this statement for MySQL 5.7.6 and up:

CREATE USER 'nativeuser'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'N@tivePa33';

Before MySQL 5.7.6, create the account, then set old_passwords appropriately for the plugin before
using SET PASSWORD to set the account password.

CREATE USER 'nativeuser'@'localhost' IDENTIFIED WITH mysql_native_password;
SET old_passwords = 0;
SET PASSWORD FOR 'nativeuser'@'localhost' = PASSWORD('N@tivePa33');

Before MySQL 5.7.6, to set or change the password for an account that authenticates using the
sha256_password plugin, be sure that the value of old_passwords is 2 before using SET
PASSWORD. If old_passwords has a value other than 2, an error occurs for attempts to set the
password:

mysql> SET old_passwords = 0;
mysql> SET PASSWORD FOR 'sha256user'@'localhost' = PASSWORD('NewSh@256Pa33');
ERROR 1827 (HY000): The password hash doesn't have the expected format.
Check if the correct password algorithm is being used with the
PASSWORD() function.

For more information about old_passwords and PASSWORD(), see Section 5.1.4, “Server System
Variables”, and Section 12.13, “Encryption and Compression Functions”.

Authentication Plugins Available in MySQL

910

MySQL can be compiled using either OpenSSL or yaSSL (see Section 6.3.12.1, “OpenSSL Versus
yaSSL”). The sha256_password plugin works with distributions compiled using either package, but if
MySQL is compiled using OpenSSL, RSA encryption is available and sha256_password implements
the following additional capabilities. (To enable these capabilities, you must also follow the RSA
configuration procedure given later in this section.)

• It is possible for the client to transmit passwords to the server using RSA encryption during the client
connection process, as described later.

• The server exposes two additional system variables, sha256_password_private_key_path
and sha256_password_public_key_path. It is intended that the database administrator will set
these to the names of the RSA private and public key-pair files at server startup if the key files have
names that differ from the system variable default values.

• The server exposes a status variable, Rsa_public_key, that displays the RSA public key value.

• The mysql and mysqltest client programs support a --server-public-key-path option for
specifying an RSA public key file explicitly.

For clients that use the sha256_password plugin, passwords are never exposed as cleartext when
connecting to the server. How password transmission occurs depends on whether an SSL connection
is used and whether RSA encryption is available:

• If an SSL connection is used, the password is sent as cleartext but cannot be snooped because the
connection is encrypted using SSL.

• If an SSL connection is not used but RSA encryption is available, the password is sent within an
unencrypted connection, but the password is RSA-encrypted to prevent snooping. When the server
receives the password, it decrypts it. A scramble is used in the encryption to prevent repeat attacks.

• If an SSL connection is not used and RSA encryption is not available, the sha256_password plugin
causes the connection attempt to fail because the password cannot be sent without being exposed
as cleartext.

As mentioned previously, RSA password encryption is available only if MySQL was compiled using
OpenSSL. The implication for MySQL distributions compiled using yaSSL is that SHA-256 passwords
can be used only when clients use SSL to access the server. See Section 6.3.12.4, “Configuring
MySQL to Use Secure Connections”.

Assuming that MySQL has been compiled using OpenSSL, the following procedure describes how to
enable RSA encryption of passwords during the client connection process:

1. Create the RSA private and public key-pair files using the instructions in Section 6.3.13, “Creating
SSL and RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and are
named private_key.pem and public_key.pem (the default values of the
sha256_password_private_key_path and sha256_password_public_key_path system
variables), the server will use them automatically at startup.

Otherwise, in the server option file, set the system variables to the key file names. If the files are
located in the server data directory, you need not specify their full path names:

[mysqld]
sha256_password_private_key_path=myprivkey.pem
sha256_password_public_key_path=mypubkey.pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysqld]

Authentication Plugins Available in MySQL

911

sha256_password_private_key_path=/usr/local/mysql/myprivkey.pem
sha256_password_public_key_path=/usr/local/mysql/mypubkey.pem

3. Restart the server, then connect to it and check the Rsa_public_key status variable value. The
value will differ from that shown here, but should be nonempty:

mysql> SHOW STATUS LIKE 'Rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Rsa_public_key
 Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa
aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, clients have the option of using them
to connect to the server using accounts that authenticate with the sha256_password plugin. As
mentioned previously, such accounts can use either an SSL connection (in which case RSA is not
used) or an unencrypted connection that encrypts the password using RSA. Assume for the following
discussion that SSL is not used. Connecting to the server involves no special preparation on the client
side. For example:

shell> mysql --ssl=0 -u sha256user -p
Enter password: Sh@256Pa33

For connection attempts by sha256user, the server determines that sha256_password is the
appropriate authentication plugin and invokes it. The plugin finds that the connection does not use SSL
and thus requires the password to be transmitted using RSA encryption. In this case, the plugin sends
the RSA public key to the client, which uses it to encrypt the password and returns the result to the
server. The plugin uses the RSA key on the server side to decrypt the password and accepts or rejects
the connection based on whether the password is correct.

The server sends the public key to the client as needed, but if a copy of the RSA public key is available
on the client host, the client can use it to save a round trip in the client/server protocol:

shell> mysql --ssl=0 -u sha256user -p --server-public-key-path=file_name

The public key value in the file named by the --server-public-key-path option should be the
same as the key value in the server-side file named by the sha256_password_public_key_path
system variable. If the key file contains a valid public key value but the value is incorrect, an access-
denied error occurs. If the key file does not contain a valid public key, the client program cannot use
it. In this case, the sha256_password plugin sends the public key to the client as if no --server-
public-key-path option had been specified.

Client users can get the RSA public key two ways:

• The database administrator can provide a copy of the public key file.

• A client user who can connect to the server some other way can use a SHOW STATUS LIKE
'Rsa_public_key' statement and save the returned key value in a file.

6.3.9.5 The PAM Authentication Plugin

Note

The PAM authentication plugin is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
http://www.mysql.com/products/.

http://www.mysql.com/products/

Authentication Plugins Available in MySQL

912

As of MySQL 5.7.9, MySQL Enterprise Edition includes an authentication plugin that enables MySQL
Server to use PAM (Pluggable Authentication Modules) to authenticate MySQL users. PAM enables
a system to use a standard interface to access various kinds of authentication methods, such as Unix
passwords or an LDAP directory.

The PAM plugin uses the information passed to it by MySQL Server (such as user name, host name,
password, and authentication string), plus whatever method is available for PAM lookup. The plugin
checks the user credentials against PAM and returns 'Authentication succeeded, Username
is user_name' or 'Authentication failed'.

The PAM authentication plugin provides these capabilities:

• External authentication: The plugin enables MySQL Server to accept connections from users defined
outside the MySQL grant tables.

• Proxy user support: The plugin can return to MySQL a user name different from the login user,
based on the groups the external user is in and the authentication string provided. This means that
the plugin can return the MySQL user that defines the privileges the external PAM-authenticated
user should have. For example, a PAM user named joe can connect and have the privileges of the
MySQL user named developer.

The following table shows the plugin and library file names. The file name suffix might be different on
your system. The file location must be the directory named by the plugin_dir system variable. For
installation information, see Installing the PAM Authentication Plugin.

Table 6.11 MySQL PAM Authentication Plugin

Server-side plugin name authentication_pam

Client-side plugin name mysql_clear_password

Library object file name authentication_pam.so

The library file includes only the server-side plugin. The client-side plugin is built into the
libmysqlclient client library. See Section 6.3.9.8, “The Cleartext Client-Side Authentication Plugin”.

The server-side PAM authentication plugin is included only in MySQL Enterprise Edition. It is not
included in MySQL community distributions. The client-side clear-text plugin that communicates with
the server-side plugin is built into the MySQL client library and is included in all distributions, including
community distributions. This permits clients from any 5.6.10 or newer distribution to connect to a
server that has the server-side plugin loaded.

The PAM authentication plugin has been tested on Linux and Mac OS X. It requires MySQL Server
5.6.10 or newer.

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”. For proxy user information, see Section 6.3.10, “Proxy Users”.

Installing the PAM Authentication Plugin

The PAM authentication plugin must be located in the MySQL plugin directory (the directory named by
the plugin_dir system variable). If necessary, set the value of plugin_dir at server startup to tell
the server the location of the plugin directory.

To enable the plugin, start the server with the --plugin-load option. For example, put the following
lines in your my.cnf file. If object files have a suffix different from .so on your system, substitute the
correct suffix.

[mysqld]
plugin-load=authentication_pam.so

Authentication Plugins Available in MySQL

913

Use the plugin name authentication_pam in the IDENTIFIED WITH clause of CREATE USER or
GRANT statements for MySQL accounts that should be authenticated with this plugin.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.

Using the PAM Authentication Plugin

This section describes how to use the PAM authentication plugin to connect from MySQL client
programs to the server. It is assumed that the server-side plugin is enabled and that client programs
are recent enough to include the client-side plugin.

Note

The client-side plugin with which the PAM plugin communicates simply sends
the password to the server in clear text so it can be passed to PAM. This may
be a security problem in some configurations, but is necessary to use the
server-side PAM library. To avoid problems if there is any possibility that the
password would be intercepted, clients should connect to MySQL Server using
SSL. See Section 6.3.9.8, “The Cleartext Client-Side Authentication Plugin”.

To refer to the PAM authentication plugin in the IDENTIFIED WITH clause of a CREATE USER or
GRANT statement, use the name authentication_pam. For example:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'authentication_string';

The authentication string specifies the following types of information:

• PAM supports the notion of “service name,” which is a name that the system administrator can
use to configure the authentication method for a particular application. There can be several such
“applications” associated with a single database server instance, so the choice of service name is left
to the SQL application developer. When you define an account that should authenticate using PAM,
specify the service name in the authentication string.

• PAM provides a way for a PAM module to return to the server a MySQL user name other than the
login name supplied at login time. Use the authentication string to control the mapping between
login name and MySQL user name. If you want to take advantage of proxy user capabilities, the
authentication string must include this kind of mapping.

For example, if the service name is mysql and users in the root and users PAM groups should be
mapped to the developer and data_entry users, respectively, use a statement like this:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'mysql, root=developer, users=data_entry';

Authentication string syntax for the PAM authentication plugin follows these rules:

• The string consists of a PAM service name, optionally followed by a group mapping list consisting of
one or more keyword/value pairs each specifying a group name and a SQL user name:

pam_service_name[,group_name=sql_user_name]...

• Each group_name=sql_user_name pair must be preceded by a comma.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted pam_service_name, group_name, and sql_user_name values can contain anything
except equal sign, comma, or space.

Authentication Plugins Available in MySQL

914

• If a pam_service_name, group_name, or sql_user_name value is quoted with double quotation
marks, everything between the quotation marks is part of the value. This is necessary, for example,
if the value contains space characters. All characters are legal except double quotation mark and
backslash ('\'). To include either character, escape it with a backslash.

The plugin parses the authentication string on each login check. To minimize overhead, keep the string
as short as possible.

If the plugin successfully authenticates a login name, it looks for a group mapping list in the
authentication string and uses it to return a different user name to the MySQL server based on the
groups the external user is a member of:

• If the authentication string contains no group mapping list, the plugin returns the login name.

• If the authentication string does contain a group mapping list, the plugin examines each
group_name=sql_user_name pair in the list from left to right and tries to find a match for the
group_name value in a non-MySQL directory of the groups assigned to the authenticated user and
returns sql_user_name for the first match it finds. If the plugin finds no match for any group, it
returns the login name. If the plugin is not capable of looking up a group in a directory, it ignores the
group mapping list and returns the login name.

The following sections describe how to set up several authentication scenarios that use the PAM
authentication plugin:

• No proxy users. This uses PAM only to check login names and passwords. Every external user
permitted to connect to MySQL Server should have a matching MySQL account that is defined
to use external PAM authentication. Authentication can be performed by various PAM-supported
methods. The discussion shows how to use traditional Unix passwords and LDAP.

PAM authentication, when not done through proxy users or groups, requires the MySQL account
to have the same user name as the Unix account. Because MySQL user names are limited to
16 characters (see Section 6.2.2, “Privilege System Grant Tables”), this limits PAM nonproxy
authentication to Unix accounts with names of at most 16 characters.

• Proxy login only and group mapping. For this scenario, create a few MySQL accounts that define
different sets of privileges. (Ideally, nobody should log in through these directly.) Then define a
default user authenticating through PAM that uses some mapping scheme (usually by the external
groups the users are in) to map all the external logins to the few MySQL accounts holding the
privilege sets. Any user that logs in is mapped to one of the MySQL accounts and uses its privileges.
The discussion shows how to set this up using Unix passwords, but other PAM methods such as
LDAP could be used instead.

Variations on these scenarios are possible. For example, you can permit some users to log in directly
but require others to connect through proxy users.

The examples make the following assumptions. You might need to make some adjustments if your
system is set up differently.

• The PAM configuration directory is /etc/pam.d.

• The PAM service name is mysql, which means that you must set up a PAM file named mysql in the
PAM configuration directory (creating the file if it does not exist). If you use a different service name,
the file name will be different and you must use a different name in the AS clause of CREATE USER
and GRANT statements.

• The examples use a login name of antonio and password of verysecret. Change these to
correspond to the users you want to authenticate.

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set. If so, the plugin enables logging of diagnostic messages to the standard

Authentication Plugins Available in MySQL

915

output. These messages may be helpful for debugging PAM-related problems that occur when the
plugin performs authentication. For more information, see PAM Authentication Plugin Debugging.

Unix Password Authentication without Proxy Users

This authentication scenario uses PAM only to check Unix user login names and passwords. Every
external user permitted to connect to MySQL Server should have a matching MySQL account that is
defined to use external PAM authentication.

1. Verify that Unix authentication in PAM permits you to log in as antonio with password
verysecret.

2. Set up PAM to authenticate the mysql service. Put the following in /etc/pam.d/mysql:

#%PAM-1.0
auth include password-auth
account include password-auth

3. Create a MySQL account with the same user name as the Unix login name and define it to
authenticate using the PAM plugin:

CREATE USER 'antonio'@'localhost'
 IDENTIFIED WITH authentication_pam AS 'mysql';
GRANT ALL PRIVILEGES ON mydb.* TO 'antonio'@'localhost';

4. Try to connect to the MySQL server using the mysql command-line client. For example:

mysql --user=antonio --password=verysecret --enable-cleartext-plugin mydb

The server should permit the connection and the following query should return output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+-------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+-------------------+--------------+
| antonio@localhost | antonio@localhost | NULL |
+-------------------+-------------------+--------------+

This shows that antonio uses the privileges granted to the antonio MySQL account, and that no
proxying has occurred.

LDAP Authentication without Proxy Users

This authentication scenario uses PAM only to check LDAP user login names and passwords. Every
external user permitted to connect to MySQL Server should have a matching MySQL account that is
defined to use external PAM authentication.

1. Verify that LDAP authentication in PAM permits you to log in as antonio with password
verysecret.

2. Set up PAM to authenticate the mysql service through LDAP. Put the following in /etc/pam.d/
mysql:

#%PAM-1.0
auth required pam_ldap.so
account required pam_ldap.so

If PAM object files have a suffix different from .so on your system, substitute the correct suffix.

3. MySQL account creation and connecting to the server is the same as previously described in Unix
Password Authentication without Proxy Users.

Authentication Plugins Available in MySQL

916

Unix Password Authentication with Proxy Users and Group Mapping

This authentication scheme uses proxying and group mapping to map users who connect to the
MySQL server through PAM onto a few MySQL accounts that define different sets of privileges. Users
do not connect directly through the accounts that define the privileges. Instead, they connect through
a default proxy user authenticating through PAM that uses a mapping scheme to map all the external
logins to the few MySQL accounts holding the privileges. Any user who connects is mapped to one of
the MySQL accounts and uses its privileges.

The procedure shown here uses Unix password authentication. To use LDAP instead, see the early
steps of LDAP Authentication without Proxy Users.

1. Verify that Unix authentication in PAM permits you to log in as antonio with password
verysecret and that antonio is a member of the root or users group.

2. Set up PAM to authenticate the mysql service. Put the following in /etc/pam.d/mysql:

#%PAM-1.0
auth include password-auth
account include password-auth

3. Create the default proxy user that maps the external PAM users to the proxied accounts. It maps
external users from the root PAM group to the developer MySQL account and the external
users from the users PAM group to the data_entry MySQL account:

CREATE USER ''@''
 IDENTIFIED WITH authentication_pam
 AS 'mysql, root=developer, users=data_entry';

The mapping list following the service name is required when you set up proxy users. Otherwise,
the plugin cannot tell how to map the name of PAM groups to the proper proxied user name.

4. Create the proxied accounts that will be used to access the databases:

CREATE USER 'developer'@'localhost' IDENTIFIED BY 'very secret password';
GRANT ALL PRIVILEGES ON mydevdb.* TO 'developer'@'localhost';
CREATE USER 'data_entry'@'localhost' IDENTIFIED BY 'very secret password';
GRANT ALL PRIVILEGES ON mydb.* TO 'data_entry'@'localhost';

If you do not let anyone know the passwords for these accounts, other users cannot use them
to connect directly to the MySQL server. Instead, it is expected that users will authenticate using
PAM and that they will use the developer or data_entry account by proxy based on their PAM
group.

5. Grant the PROXY privilege to the proxy account for the proxied accounts:

GRANT PROXY ON 'developer'@'localhost' TO ''@'';
GRANT PROXY ON 'data_entry'@'localhost' TO ''@'';

6. Try to connect to the MySQL server using the mysql command-line client. For example:

mysql --user=antonio --password=verysecret --enable-cleartext-plugin mydb

The server authenticates the connection using the ''@'' account. The privileges antonio will
have depends on what PAM groups he is a member of. If antonio is a member of the root PAM
group, the PAM plugin maps root to the developer MySQL user name and returns that name to
the server. The server verifies that ''@'' has the PROXY privilege for developer and permits the
connection. the following query should return output as shown:

Authentication Plugins Available in MySQL

917

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+---------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+---------------------+--------------+
| antonio@localhost | developer@localhost | ''@'' |
+-------------------+---------------------+--------------+

This shows that antonio uses the privileges granted to the developer MySQL account, and that
proxying occurred through the default proxy user account.

If antonio is not a member of the root PAM group but is a member of the users group, a
similar process occurs, but the plugin maps user group membership to the data_entry MySQL
user name and returns that name to the server. In this case, antonio uses the privileges of the
data_entry MySQL account:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+----------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+----------------------+--------------+
| antonio@localhost | data_entry@localhost | ''@'' |
+-------------------+----------------------+--------------+

PAM Authentication Plugin Debugging

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set (the value does not matter). If so, the plugin enables logging of diagnostic
messages to the standard output. These messages may be helpful for debugging PAM-related
problems that occur when the plugin performs authentication.

Some messages include reference to PAM plugin source files and line numbers, which enables plugin
actions to be tied more closely to the location in the code where they occur.

The following transcript demonstrates the kind of information produced by enabling logging. It resulted
from a successful proxy authentication attempt.

entering auth_pam_server
entering auth_pam_next_token
auth_pam_next_token:reading at [cups,admin=writer,everyone=reader], sep=[,]
auth_pam_next_token:state=PRESPACE, ptr=[cups,admin=writer,everyone=reader],
out=[]
auth_pam_next_token:state=IDENT, ptr=[cups,admin=writer,everyone=reader],
out=[]
auth_pam_next_token:state=AFTERSPACE, ptr=[,admin=writer,everyone=reader],
out=[cups]
auth_pam_next_token:state=DELIMITER, ptr=[,admin=writer,everyone=reader],
out=[cups]
auth_pam_next_token:state=DONE, ptr=[,admin=writer,everyone=reader],
out=[cups]
leaving auth_pam_next_token on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/parser.c:191
auth_pam_server:password 12345qq received
auth_pam_server:pam_start rc=0
auth_pam_server:pam_set_item(PAM_RUSER,gkodinov) rc=0
auth_pam_server:pam_set_item(PAM_RHOST,localhost) rc=0
entering auth_pam_server_conv
auth_pam_server_conv:PAM_PROMPT_ECHO_OFF [Password:] received
leaving auth_pam_server_conv on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/authentication_pam.c:257
auth_pam_server:pam_authenticate rc=0
auth_pam_server:pam_acct_mgmt rc=0
auth_pam_server:pam_setcred(PAM_ESTABLISH_CRED) rc=0
auth_pam_server:pam_get_item rc=0
auth_pam_server:pam_setcred(PAM_DELETE_CRED) rc=0
entering auth_pam_map_groups
entering auth_pam_walk_namevalue_list
auth_pam_walk_namevalue_list:reading at: [admin=writer,everyone=reader]

Authentication Plugins Available in MySQL

918

entering auth_pam_next_token
auth_pam_next_token:reading at [admin=writer,everyone=reader], sep=[=]
auth_pam_next_token:state=PRESPACE, ptr=[admin=writer,everyone=reader], out=[]
auth_pam_next_token:state=IDENT, ptr=[admin=writer,everyone=reader], out=[]
auth_pam_next_token:state=AFTERSPACE, ptr=[=writer,everyone=reader],
out=[admin]
auth_pam_next_token:state=DELIMITER, ptr=[=writer,everyone=reader],
out=[admin]
auth_pam_next_token:state=DONE, ptr=[=writer,everyone=reader], out=[admin]
leaving auth_pam_next_token on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/parser.c:191
auth_pam_walk_namevalue_list:name=[admin]
entering auth_pam_next_token
auth_pam_next_token:reading at [writer,everyone=reader], sep=[,]
auth_pam_next_token:state=PRESPACE, ptr=[writer,everyone=reader], out=[]
auth_pam_next_token:state=IDENT, ptr=[writer,everyone=reader], out=[]
auth_pam_next_token:state=AFTERSPACE, ptr=[,everyone=reader], out=[writer]
auth_pam_next_token:state=DELIMITER, ptr=[,everyone=reader], out=[writer]
auth_pam_next_token:state=DONE, ptr=[,everyone=reader], out=[writer]
leaving auth_pam_next_token on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/parser.c:191
walk, &error_namevalue_list:value=[writer]
entering auth_pam_map_group_to_user
auth_pam_map_group_to_user:pam_user=gkodinov, name=admin, value=writer
examining member root
examining member gkodinov
substitution was made to mysql user writer
leaving auth_pam_map_group_to_user on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/authentication_pam.c:118
auth_pam_walk_namevalue_list:found mapping
leaving auth_pam_walk_namevalue_list on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/parser.c:270
auth_pam_walk_namevalue_list returned 0
leaving auth_pam_map_groups on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/authentication_pam.c:171
auth_pam_server:authenticated_as=writer
auth_pam_server: rc=0
leaving auth_pam_server on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/authentication_pam.c:429

6.3.9.6 The Windows Native Authentication Plugin

Note

The Windows authentication plugin is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see http://www.mysql.com/products/.

As of MySQL 5.7.9, MySQL Enterprise Edition for Windows includes an authentication plugin that
performs external authentication on Windows, enabling MySQL Server to use native Windows services
to authenticate client connections. Users who have logged in to Windows can connect from MySQL
client programs to the server based on the information in their environment without specifying an
additional password.

The client and server exchange data packets in the authentication handshake. As a result of this
exchange, the server creates a security context object that represents the identity of the client in the
Windows OS. This identity includes the name of the client account. The Windows authentication plugin
uses the identity of the client to check whether it is a given account or a member of a group. By default,
negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.

The Windows authentication plugin provides these capabilities:

• External authentication: The plugin enables MySQL Server to accept connections from users defined
outside the MySQL grant tables.

• Proxy user support: The plugin can return to MySQL a user name different from the client user. This
means that the plugin can return the MySQL user that defines the privileges the external Windows-

http://www.mysql.com/products/

Authentication Plugins Available in MySQL

919

authenticated user should have. For example, a Windows user named joe can connect and have
the privileges of the MySQL user named developer.

The following table shows the plugin and library file names. The file location must be the directory
named by the plugin_dir system variable. For installation information, see Installing the Windows
Authentication Plugin.

Table 6.12 MySQL Windows Authentication Plugin

Server-side plugin name authentication_windows

Client-side plugin name authentication_windows_client

Library object file name authentication_windows.dll

The library file includes only the server-side plugin. The client-side plugin is built into the
libmysqlclient client library.

The server-side Windows authentication plugin is included only in MySQL Enterprise Edition. It is
not included in MySQL community distributions. The client-side plugin is included in all distributions,
including community distributions. This permits clients from any distribution to connect to a server that
has the server-side plugin loaded.

The Windows authentication plugin is supported on any version of Windows supported by MySQL
5.7 (see http://www.mysql.com/support/supportedplatforms/database.html). It requires MySQL Server
5.6.10 or newer.

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”. For proxy user information, see Section 6.3.10, “Proxy Users”.

Installing the Windows Authentication Plugin

The Windows authentication plugin must be installed in the MySQL plugin directory (the directory
named by the plugin_dir system variable). If necessary, set the value of plugin_dir at server
startup to tell the server the location of the plugin directory.

To enable the plugin, start the server with the --plugin-load option. For example, put these lines in
your my.ini file:

[mysqld]
plugin-load=authentication_windows.dll

Use the plugin name authentication_windows in the IDENTIFIED WITH clause of CREATE
USER or GRANT statements for MySQL accounts that should be authenticated with this plugin.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.

Using the Windows Authentication Plugin

The Windows authentication plugin supports the use of MySQL accounts such that users who have
logged in to Windows can connect to the MySQL server without having to specify an additional
password. It is assumed that the server-side plugin is enabled and that client programs are recent
enough to include the client-side plugin built into libmysqlclient. Once the DBA has enabled the
server-side plugin and set up accounts to use it, clients can connect using those accounts with no other
setup required on their part.

To refer to the Windows authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
or GRANT statement, use the name authentication_windows. Suppose that the Windows
users Rafal and Tasha should be permitted to connect to MySQL, as well as any users in the
Administrators or Power Users group. To set this up, create a MySQL account named
sql_admin that uses the Windows plugin for authentication:

http://www.mysql.com/support/supportedplatforms/database.html

Authentication Plugins Available in MySQL

920

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal, Tasha, Administrators, "Power Users"';

The plugin name is authentication_windows. The string following the AS keyword is the
authentication string. It specifies that the Windows users named Rafal or Tasha are permitted
to authenticate to the server as the MySQL user sql_admin, as are any Windows users in the
Administrators or Power Users group. The latter group name contains a space, so it must be
quoted with double quote characters.

After you create the sql_admin account, a user who has logged in to Windows can attempt to connect
to the server using that account:

C:\> mysql --user=sql_admin

No password is required here. The authentication_windows plugin uses the Windows security
API to check which Windows user is connecting. If that user is named Rafal or Tasha, or is in the
Administrators or Power Users group, the server grants access and the client is authenticated
as sql_admin and has whatever privileges are granted to the sql_admin account. Otherwise, the
server denies access.

Authentication string syntax for the Windows authentication plugin follows these rules:

• The string consists of one or more user mappings separated by commas.

• Each user mapping associates a Windows user or group name with a MySQL user name:

win_user_or_group_name=sql_user_name
win_user_or_group_name

For the latter syntax, with no sql_user_name value given, the implicit value is the MySQL user
created by the CREATE USER statement. Thus, these statements are equivalent:

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal, Tasha, Administrators, "Power Users"';

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal=sql_admin, Tasha=sql_admin, Administrators=sql_admin,
 "Power Users"=sql_admin';

• Each backslash ('\') in a value must be doubled because backslash is the escape character in
MySQL strings.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted win_user_or_group_name and sql_user_name values can contain anything except
equal sign, comma, or space.

• If a win_user_or_group_name and or sql_user_name value is quoted with double quotation
marks, everything between the quotation marks is part of the value. This is necessary, for example,
if the name contains space characters. All characters within double quotes are legal except double
quotation mark and backslash. To include either character, escape it with a backslash.

• win_user_or_group_name values use conventional syntax for Windows principals, either local or
in a domain. Examples (note the doubling of backslashes):

domain\\user
.\\user
domain\\group

Authentication Plugins Available in MySQL

921

.\\group
BUILTIN\\WellKnownGroup

When invoked by the server to authenticate a client, the plugin scans the authentication string left
to right for a user or group match to the Windows user. If there is a match, the plugin returns the
corresponding sql_user_name to the MySQL server. If there is no match, authentication fails.

A user name match takes preference over a group name match. Suppose that the Windows user
named win_user is a member of win_group and the authentication string looks like this:

'win_group = sql_user1, win_user = sql_user2'

When win_user connects to the MySQL server, there is a match both to win_group and to
win_user. The plugin authenticates the user as sql_user2 because the more-specific user match
takes precedence over the group match, even though the group is listed first in the authentication
string.

Windows authentication always works for connections from the same computer on which the server
is running. For cross-computer connections, both computers must be registered with Windows Active
Directory. If they are in the same Windows domain, it is unnecessary to specify a domain name. It is
also possible to permit connections from a different domain, as in this example:

CREATE USER sql_accounting
 IDENTIFIED WITH authentication_windows
 AS 'SomeDomain\\Accounting';

Here SomeDomain is the name of the other domain. The backslash character is doubled because it is
the MySQL escape character within strings.

MySQL supports the concept of proxy users whereby a client can connect and authenticate to the
MySQL server using one account but while connected has the privileges of another account (see
Section 6.3.10, “Proxy Users”). Suppose that you want Windows users to connect using a single user
name but be mapped based on their Windows user and group names onto specific MySQL accounts
as follows:

• The local_user and MyDomain\domain_user local and domain Windows users should map to
the local_wlad MySQL account.

• Users in the MyDomain\Developers domain group should map to the local_dev MySQL
account.

• Local machine administrators should map to the local_admin MySQL account.

To set this up, create a proxy account for Windows users to connect to, and configure this account
so that users and groups map to the appropriate MySQL accounts (local_wlad, local_dev,
local_admin). In addition, grant the MySQL accounts the privileges appropriate to the operations
they need to perform. The following instructions use win_proxy as the proxy account, and
local_wlad, local_dev, and local_admin as the proxied accounts.

1. Create the proxy MySQL account:

CREATE USER win_proxy
 IDENTIFIED WITH authentication_windows
 AS 'local_user = local_wlad,
 MyDomain\\domain_user = local_wlad,
 MyDomain\\Developers = local_dev,
 BUILTIN\\Administrators = local_admin';

2. For proxying to work, the proxied accounts must exist, so create them:

CREATE USER local_wlad IDENTIFIED BY 'wlad_pass';

Authentication Plugins Available in MySQL

922

CREATE USER local_dev IDENTIFIED BY 'dev_pass';
CREATE USER local_admin IDENTIFIED BY 'admin_pass';

If you do not let anyone know the passwords for these accounts, other users cannot use them to
connect directly to the MySQL server.

You should also issue GRANT statements (not shown) that grant each proxied account the
privileges it needs.

3. The proxy account must have the PROXY privilege for each of the proxied accounts:

GRANT PROXY ON local_wlad TO win_proxy;
GRANT PROXY ON local_dev TO win_proxy;
GRANT PROXY ON local_admin TO win_proxy;

Now the Windows users local_user and MyDomain\domain_user can connect to the MySQL
server as win_proxy and when authenticated have the privileges of the account given in the
authentication string—in this case, local_wlad. A user in the MyDomain\Developers group
who connects as win_proxy has the privileges of the local_dev account. A user in the BUILTIN
\Administrators group has the privileges of the local_admin account.

To configure authentication so that all Windows users who do not have their own MySQL account go
through a proxy account, substitute the default proxy user (''@'') for win_proxy in the preceding
instructions. For information about the default proxy user, see Section 6.3.10, “Proxy Users”.

To use the Windows authentication plugin with Connector/Net connection strings in Connection/Net
6.4.4 and higher, see Using the Windows Native Authentication Plugin.

Additional control over the Windows authentication plugin is provided
by the authentication_windows_use_principal_name and
authentication_windows_log_level system variables. See Section 5.1.4, “Server System
Variables”.

6.3.9.7 The No-Login Authentication Plugin

The mysql_no_login server-side authentication plugin prevents all client connections to any account
that uses it. Use cases for such a plugin includes accounts that must be able to execute stored
programs and views with elevated privileges without exposing those privileges to ordinary users, and
proxy accounts that should never permit direct login.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file location is the directory named by the plugin_dir system variable. For installation
information, see Section 6.3.8, “Pluggable Authentication”.

Table 6.13 MySQL “No Login” Authentication Plugin

Server-side plugin name mysql_no_login

Client-side plugin name None

Library object file name mysql_no_login.so

An account that authenticates using mysql_no_login may be used as the DEFINER for stored
program and view objects. If such an object definition also includes SQL SECURITY DEFINER, it
executes with that account's privileges. DBAs can use this behavior to provide access to confidential or
sensitive data that is exposed only through well-controlled interfaces.

The following example provides a simple illustration of these principles. It defines an account that does
not permit client connections, and associates with it a view that exposes only certain columns of the
mysql.user table:

CREATE DATABASE nologindb;
CREATE USER 'nologin'@'localhost' IDENTIFIED WITH mysql_no_login;

http://dev.mysql.com/doc/connector-net/en/connector-net-programming-authentication-windows-native.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_authentication_windows_use_principal_name
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_authentication_windows_log_level

Authentication Plugins Available in MySQL

923

GRANT ALL ON nologindb.* TO 'nologin'@'localhost';
GRANT SELECT ON mysql.user TO 'nologin'@'localhost';
CREATE DEFINER = 'nologin'@'localhost' SQL SECURITY DEFINER
VIEW nologindb.myview AS SELECT User, Host FROM mysql.user;

To provide protected access to the view to ordinary users, do this:

GRANT SELECT ON nologindb.myview TO 'ordinaryuser'@'localhost';

Now the ordinary user can use the view to access the limited information it presents:

SELECT * FROM nologindb.myview;

Attempts by the user to access columns other than those exposed by the view result in an error.

Note

Because the nologin account cannot be used directly, the operations required
to set up objects that it uses must be performed by root or similar account with
the privileges required to create the objects and set DEFINER values.

An account that authenticates using mysql_no_login may be used as a base user for proxy
accounts:

CREATE USER 'proxy_base'@'localhost' IDENTIFIED WITH mysql_no_login;
... grant to 'proxy_base'@'localhost' any privileges it requires ...
GRANT PROXY ON 'proxy_base'@'localhost' TO 'real_user'@'localhost';

This enables clients to access MySQL through the proxy account but not to bypass the proxy
mechanism by connecting directly as the proxy user.

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

6.3.9.8 The Cleartext Client-Side Authentication Plugin

A client-side authentication plugin is available that sends the password to the server without hashing or
encryption. This plugin is built into the MySQL client library.

The following table shows the plugin name.

Table 6.14 MySQL Cleartext Authentication Plugin

Server-side plugin name None, see discussion

Client-side plugin name mysql_clear_password

Library object file name None (plugin is built in)

With native MySQL authentication, the client performs one-way hashing on the password before
sending it to the server. This enables the client to avoid sending the password in clear text. See
Section 6.1.2.4, “Password Hashing in MySQL”. However, because the hash algorithm is one way, the
original password cannot be recovered on the server side.

One-way hashing cannot be done for authentication schemes that require the server to receive the
password as entered on the client side. In such cases, the mysql_clear_password client-side plugin
can be used to send the password to the server in clear text. There is no corresponding server-side
plugin. Rather, the client-side plugin can be used by any server-side plugin that needs a clear text
password. (The PAM authentication plugin is one such; see Section 6.3.9.5, “The PAM Authentication
Plugin”.)

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

Authentication Plugins Available in MySQL

924

Note

Sending passwords in clear text may be a security problem in some
configurations. To avoid problems if there is any possibility that the password
would be intercepted, clients should connect to MySQL Server using a method
that protects the password. Possibilities include SSL (see Section 6.3.12, “Using
Secure Connections”), IPsec, or a private network.

To make inadvertent use of this plugin less likely, it is required that clients explicitly enable it. This can
be done several ways:

• Set the LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable to a value that begins with
1, Y, or y. This enables the plugin for all client connections.

• The mysql, mysqladmin, and mysqlslap client programs support an --enable-cleartext-
plugin option that enables the plugin on a per-invocation basis.

• The mysql_options() C API function supports a MYSQL_ENABLE_CLEARTEXT_PLUGIN option
that enables the plugin on a per-connection basis. Also, any program that uses libmysqlclient
and reads option files can enable the plugin by including an enable-cleartext-plugin option in
an option group read by the client library.

6.3.9.9 The Socket Peer-Credential Authentication Plugin

A server-side authentication plugin is available that authenticates clients that connect from the local
host through the Unix socket file.

The source code for this plugin can be examined as a relatively simple example demonstrating how to
write a loadable authentication plugin.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file location is the directory named by the plugin_dir system variable. For installation
information, see Section 6.3.8, “Pluggable Authentication”.

Table 6.15 MySQL Socket Peer-Credential Authentication Plugin

Server-side plugin name auth_socket

Client-side plugin name None, see discussion

Library object file name auth_socket.so

The auth_socket authentication plugin authenticates clients that connect from the local host through
the Unix socket file. The plugin uses the SO_PEERCRED socket option to obtain information about
the user running the client program. Thus, the plugin can be built only on systems that support the
SO_PEERCRED option, such as Linux.

The plugin checks whether the socket user name matches the MySQL user name specified by the
client program to the server. As of MySQL 5.7.6, if the names do not match, the plugin also checks
whether the socket user name matches the name specified in the authentication_string column
of the mysql.user table row. If a match is found, the plugin permits the connection.

Suppose that a MySQL account is created for a user named valerie who is to be authenticated by
the auth_socket plugin for connections from the local host through the socket file:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;

If a user on the local host with a login name of stefanie invokes mysql with the option --
user=valerie to connect through the socket file, the server uses auth_socket to authenticate the
client. The plugin determines that the --user option value (valerie) differs from the client user's
name (stephanie) and refuses the connection. If a user named valerie tries the same thing,
the plugin finds that the user name and the MySQL user name are both valerie and permits the

Proxy Users

925

connection. However, the plugin refuses the connection even for valerie if the connection is made
using a different protocol, such as TCP/IP.

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

6.3.9.10 The Test Authentication Plugin

MySQL includes a test plugin that authenticates using MySQL native authentication, but is a loadable
plugin (not built in) and must be installed prior to use. It can authenticate against either normal or older
(shorter) password hash values.

This plugin is intended for testing and development purposes, and not for use in production
environments. The test plugin source code is separate from the server source, unlike the built-in native
plugin, so it can be examined as a relatively simple example demonstrating how to write a loadable
authentication plugin.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file location is the directory named by the plugin_dir system variable. For installation
information, see Section 6.3.8, “Pluggable Authentication”.

Table 6.16 MySQL Test Authentication Plugin

Server-side plugin name test_plugin_server

Client-side plugin name auth_test_plugin

Library object file name auth_test_plugin.so

Because the test plugin authenticates the same way as native MySQL authentication, provide the usual
--user and --password options that you normally use for accounts that use native authentication
when you connect to the server. For example:

shell> mysql --user=your_name --password=your_pass

For general information about pluggable authentication in MySQL, see Section 6.3.8, “Pluggable
Authentication”.

6.3.10 Proxy Users

When authentication to the MySQL server occurs by means of an authentication plugin, the plugin
may request that the connecting (external) user be treated as a different user for privilege-checking
purposes. This enables the external user to be a proxy for the second user; that is, to have the
privileges of the second user. In other words, the external user is a “proxy user” (a user who can
impersonate or become known as another user) and the second user is a “proxied user” (a user whose
identity can be taken on by a proxy user).

This section describes how the proxy user capability works. For general information about
authentication plugins, see Section 6.3.8, “Pluggable Authentication”. If you are interested in writing
your own authentication plugins that support proxy users, see Implementing Proxy User Support in
Authentication Plugins.

For proxying to occur for a given authentication plugin, these conditions must be satisfied:

• When a connecting client should be treated as a proxy user, the plugin must return a different name,
to indicate the proxied user name.

• A proxy user account must be set up to be authenticated by the plugin. Use the CREATE USER
statement to associate an account with a plugin, or ALTER USER to change its plugin.

• A proxy user account must have the PROXY privilege for the proxied account. Use the GRANT
statement for this.

Proxy Users

926

Consider the following definitions:

CREATE USER 'empl_external'@'localhost'
 IDENTIFIED WITH auth_plugin AS 'auth_string';
CREATE USER 'employee'@'localhost'
 IDENTIFIED BY 'employee_pass';
GRANT PROXY
 ON 'employee'@'localhost'
 TO 'empl_external'@'localhost';

When a client connects as empl_external from the local host, MySQL uses auth_plugin to
perform authentication. Suppose that auth_plugin returns the employee user name to the server,
based on the content of 'auth_string' and perhaps by consulting some external authentication
system. That serves as a request to the server to treat this client, for purposes of privilege checking, as
the employee local user.

In this case, empl_external is the proxy user and employee is the proxied user.

The server verifies that proxy authentication for employee is possible for the empl_external user
by checking whether empl_external (the proxy user) has the PROXY privilege for employee (the
proxied user). If this privilege had not been granted, an error occurs.

When proxying occurs, the USER() and CURRENT_USER() functions can be used to see the difference
between the connecting user and the account whose privileges apply during the current session. For
the example just described, those functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+-------------------------+--------------------+
| USER() | CURRENT_USER() |
+-------------------------+--------------------+
| empl_external@localhost | employee@localhost |
+-------------------------+--------------------+

The IDENTIFIED WITH clause that names the authentication plugin may be followed by an AS clause
specifying a string that the server passes to the plugin when the user connects. It is up to each plugin
whether the AS clause is required. If it is required, the format of the authentication string depends on
how the plugin intends to use it. Consult the documentation for a given plugin for information about the
authentication string values it accepts.

Server Support for Proxy User Mapping

Some authentication plugins implement proxy user mapping for themselves. As of MySQL
5.7.7, the MySQL server itself can map proxy users according to granted proxy privileges. If the
check_proxy_users system variable is enabled, the server performs proxy user mapping for any
authentication plugin that requests it. By default, check_proxy_users is disabled, so the server
performs no proxy user mapping even for authentication plugins that request it.

With check_proxy_users enabled, it may also be necessary to enable plugin-specific system
variables to take advantage of server proxy user mapping support:

• For the mysql_native_password plugin, enable mysql_native_password_proxy_users.

• For the sha256_password plugin, enable sha256_password_proxy_users.

These restrictions apply to proxy user mapping performed by the server:

• The server will not proxy to or from an anonymous user, even if the associated PROXY privilege is
granted.

• When a single account has been granted proxy privileges to more than one account, server proxy
user mapping is nondeterministic. Therefore, granting proxy privileges on multiple accounts to a
single account is discouraged.

Proxy Users

927

Granting the Proxy Privilege

A special PROXY privilege is needed to enable an external user to connect as and have the privileges of
another user. To grant this privilege, use the GRANT statement. For example:

GRANT PROXY ON 'proxied_user' TO 'proxy_user';

The statement creates a row in the mysql.proxies_priv grant table.

At connection time, proxy_user must represent a valid externally authenticated MySQL user, and
proxied_user must represent a valid locally authenticated user. Otherwise, connection attempts fail.

The corresponding REVOKE syntax is:

REVOKE PROXY ON 'proxied_user' FROM 'proxy_user';

MySQL GRANT and REVOKE syntax extensions work as usual. For example:

GRANT PROXY ON 'a' TO 'b', 'c', 'd';
GRANT PROXY ON 'a' TO 'd' WITH GRANT OPTION;
GRANT PROXY ON 'a' TO ''@'';
REVOKE PROXY ON 'a' FROM 'b', 'c', 'd';

In the preceding example, ''@'' is the default proxy user and means “any user.” The default proxy
user is discussed later in this section.

The PROXY privilege can be granted in these cases:

• By proxied_user for itself: The value of USER() must exactly match CURRENT_USER() and
proxied_user, for both the user name and host name parts of the account name.

• By a user that has GRANT PROXY ... WITH GRANT OPTION for proxied_user.

The root account created by default during MySQL installation has the PROXY ... WITH GRANT
OPTION privilege for ''@'', that is, for all users and all hosts. This enables root to set up proxy
users, as well as to delegate to other accounts the authority to set up proxy users. For example, root
can do this:

CREATE USER 'admin'@'localhost' IDENTIFIED BY 'test';
GRANT PROXY ON ''@'' TO 'admin'@'localhost' WITH GRANT OPTION;

Now the admin user can manage all the specific GRANT PROXY mappings. For example, admin can
do this:

GRANT PROXY ON sally TO joe;

Default Proxy Users

To specify that some or all users should connect using a given plugin, create a “blank” MySQL user,
set it up to use that plugin for authentication, and let the plugin return the real authenticated user name
(if different from the blank user). For example, suppose that there exists a hypothetical plugin named
ldap_auth that implements LDAP authentication:

CREATE USER ''@'' IDENTIFIED WITH ldap_auth AS 'O=Oracle, OU=MySQL';
CREATE USER 'developer'@'localhost' IDENTIFIED BY 'developer_pass';
CREATE USER 'manager'@'localhost' IDENTIFIED BY 'manager_pass';
GRANT PROXY ON 'manager'@'localhost' TO ''@'';
GRANT PROXY ON 'developer'@'localhost' TO ''@'';

Now assume that a client tries to connect as follows:

Proxy Users

928

mysql --user=myuser --password='myuser_pass' ...

The server will not find myuser defined as a MySQL user. But because there is a blank user account
(''@''), that matches the client user name and host name, the server authenticates the client against
that account: The server invokes ldap_auth, passing it myuser and myuser_pass as the user name
and password.

If the ldap_auth plugin finds in the LDAP directory that myuser_pass is not the correct password for
myuser, authentication fails and the server rejects the connection.

If the password is correct and ldap_auth finds that myuser is a developer, it returns the user
name developer to the MySQL server, rather than myuser. The server verifies that ''@'' can
authenticate as developer (because it has the PROXY privilege to do so) and accepts the connection.
The session proceeds with myuser having the privileges of developer. (These privileges should be
set up by the DBA using GRANT statements, not shown.) The USER() and CURRENT_USER() functions
return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------+---------------------+
| USER() | CURRENT_USER() |
+------------------+---------------------+
| myuser@localhost | developer@localhost |
+------------------+---------------------+

If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the
user name and the session proceeds with myuser having the privileges of manager.

mysql> SELECT USER(), CURRENT_USER();
+------------------+-------------------+
| USER() | CURRENT_USER() |
+------------------+-------------------+
| myuser@localhost | manager@localhost |
+------------------+-------------------+

For simplicity, external authentication cannot be multilevel: Neither the credentials for developer nor
those for manager are taken into account in the preceding example. However, they are still used if a
client tries to authenticate directly against the developer or manager account, which is why those
accounts should be assigned passwords.

The default proxy account uses '' in the host part, which matches any host. If you set up a default
proxy user, take care to also check for accounts with '%' in the host part, because that also matches
any host, but has precedence over '' by the rules that the server uses to sort account rows internally
(see Section 6.2.4, “Access Control, Stage 1: Connection Verification”).

Suppose that a MySQL installation includes these two accounts:

CREATE USER ''@'' IDENTIFIED WITH some_plugin;
CREATE USER ''@'%' IDENTIFIED BY 'some_password';

The intent of the first account is to serve as the default proxy user, to be used to authenticate
connections for users who do not otherwise match a more-specific account. The second account might
have been created, for example, to enable users without their own account as the anonymous user.

However, in this configuration, the first account is never used because the matching rules sort ''@'%'
ahead of ''@''. For accounts that do not match any more-specific account, the server attempts to
authenticate them against ''@'%' rather than ''@''.

If you intend to create a default proxy user, check for other existing “match any user” accounts that will
take precedence over the default proxy user and thus prevent that user from working as intended. It
may be necessary to remove any such accounts.

User Account Locking

929

Proxy User System Variables

Two system variables help trace the proxy login process:

• proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user
account. For example, if a client authenticates through the ''@'' proxy account, this variable is set
as follows:

mysql> SELECT @@proxy_user;
+--------------+
| @@proxy_user |
+--------------+
| ''@'' |
+--------------+

• external_user: Sometimes the authentication plugin may use an external user to authenticate
to the MySQL server. For example, when using Windows native authentication, a plugin that
authenticates using the windows API does not need the login ID passed to it. However, it still uses a
Windows user ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8
bytes of it) to the server using the external_user read-only session variable. If the plugin does not
set this variable, its value is NULL.

6.3.11 User Account Locking

As of version 5.7.6, MySQL supports locking and unlocking user accounts using the ACCOUNT LOCK
and ACCOUNT UNLOCK clauses for the CREATE USER and ALTER USER statements:

• When used with CREATE USER, these clauses specify the initial locking state for a new account. In
the absence of either clause, the account is created in an unlocked state.

• When used with ALTER USER, these clauses specify the new locking state for an existing account.
In the absence of either clause, the account locking state remains unchanged.

Account locking state is recorded in the account_locked column of the mysql.user table. The
output from SHOW CREATE USER indicates whether an account is locked or unlocked.

If a client attempts to connect to a locked account, the attempt fails. The server increments the
Locked_connects status variable that indicates the number of attempts to connect to a locked
account, returns an ER_ACCOUNT_HAS_BEEN_LOCKED error, and writes a message to the error log:

Access denied for user 'user_name'@'host_name'.
Account is locked.

Locking an account does not affect being able to connect using a proxy user that assumes the identity
of the locked account. It also does not affect the ability to execute stored programs or views that have
a DEFINER clause naming the locked account. That is, the ability to use a proxied account or stored
programs or views is not affected by locking the account.

The account-locking capability depends on the presence of the account_locked column in the
mysql.user table. For upgrades to MySQL 5.7.6 and later from older versions, run mysql_upgrade
to ensure that this column exists. For nonupgraded installations that have no account_locked
column, the server treats all accounts as unlocked, and using the ACCOUNT LOCK or ACCOUNT
UNLOCK clauses produces an error.

6.3.12 Using Secure Connections

With an unencrypted connection between the MySQL client and the server, someone with access to
the network could watch all your traffic and inspect the data being sent or received between client and
server.

Using Secure Connections

930

When you must move information over a network in a secure fashion, an unencrypted connection
is unacceptable. To make any kind of data unreadable, use encryption. Encryption algorithms must
include security elements to resist many kinds of known attacks such as changing the order of
encrypted messages or replaying data twice.

MySQL supports secure (encrypted) connections between clients and the server using the Secure
Sockets Layer (SSL) protocol. SSL uses encryption algorithms to ensure that data received over a
public network can be trusted. It has mechanisms to detect data change, loss, or replay. SSL also
incorporates algorithms that provide identity verification using the X509 standard.

X509 makes it possible to identify someone on the Internet. In basic terms, there should be some entity
called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs them.
Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key and
a secret key). A certificate owner can present the certificate to another party as proof of identity. A
certificate consists of its owner's public key. Any data encrypted using this public key can be decrypted
only using the corresponding secret key, which is held by the owner of the certificate.

For more information about SSL, X509, encryption, or public-key cryptography, perform an Internet
search for the keywords in which you are interested.

MySQL can be compiled for secure-connection support using OpenSSL or yaSSL. For a comparison
of the two packages, see Section 6.3.12.1, “OpenSSL Versus yaSSL” For information about the
encryption protocols and ciphers each package supports, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

MySQL performs encryption on a per-connection basis, and use of encryption can be optional
or mandatory. This enables you to choose an encrypted or unencrypted connection according
to the requirements of individual applications. For information on how to require users to use
encrypted connections, see the discussion of the REQUIRE clause of the CREATE USER
statement in Section 13.7.1.2, “CREATE USER Syntax”. See also the description of the
require_secure_transport system variable at Section 5.1.4, “Server System Variables”

Several improvements were made to secure-connection support in MySQL 5.7. The following timeline
summarizes the changes:

• 5.7.3: On the client side, an explicit --ssl option is no longer advisory but prescriptive. Given a
server enabled to support SSL, a client program can require an SSL conection by specifying only the
--ssl option. The connection attempt fails if SSL is not available. Other --ssl-xxx options on the
client side mean that SSL is advisory.

• 5.7.5: The server-side --ssl option value is enabled by default.

For servers compiled using OpenSSL, the auto_generate_certs and
sha256_password_auto_generate_rsa_keys system variables are available to enable
autogeneration and autodiscovery of SSL/RSA certificate and key files at startup. For SSL
autodiscovery, if --ssl is enabled and other SSL options are not given to configure SSL explicitly,
the server attempts to enable SSL automatically at startup if it discovers the requisite SSL files in the
data directory.

• 5.7.6: The mysql_ssl_rsa_setup utility is available to make it easier to manually generate SSL/
RSA certificate and key files. Autodiscovery of SSL/RSA files at startup is expanded to apply to all
servers, whether compiled using OpenSSL or yaSSL. (This means that auto_generate_certs
need not be enabled for autodiscovery to occur.)

If the server discovers at startup that the CA certificate is self-signed, it writes a warning to its error
log. (The certificate will be self-signed if created automatically by the server or manually using
mysql_ssl_rsa_setup.)

• 5.7.7: The C client library tries to establish an SSL connection by default whenever the server is
enabled to support SSL. This affects client programs as follows:

Using Secure Connections

931

• In the absence of an --ssl option, the client falls back to an unencrypted connection if SSL is not
available.

• To require an SSL connection and fail if SSL is unavailable, invoke the client with an explicit --
ssl option.

• To suppress the attempt at using SSL for the connection, invoke the client with an --ssl=0
option.

This change also affects subsequent releases of MySQL Connectors that are based on the C client
library: Connector/C, Connector/C++, and Connector/ODBC.

• 5.7.8: The require_secure_transport is available to require client connections to the server to
use some form of secure transport.

• 5.7.10: TLS support is extended from TLSv1 to also include TLSv1.1 and TLSv1.2. See
Section 6.3.12.2, “Secure Connection Protocols and Ciphers”.

Secure connections are available through the MySQL C API using the mysql_ssl_set() function.
See Section 23.8.7.73, “mysql_ssl_set()”.

Replication uses the C API, so secure connections can be used between master and slave servers.
See Section 17.3.7, “Setting Up Replication Using SSL”.

It is also possible to connect securely from within an SSH connection to the MySQL server host. For an
example, see Section 6.3.14, “Connecting to MySQL Remotely from Windows with SSH”.

6.3.12.1 OpenSSL Versus yaSSL

MySQL can be compiled using OpenSSL or yaSSL, both of which enable secure conections based on
the OpenSSL API:

• MySQL Enterprise Edition binary distributions are compiled using OpenSSL. It is not possible to use
yaSSL with MySQL Enterprise Edition.

• MySQL Community Edition binary distributions are compiled using yaSSL.

• MySQL Community Edition source distributions can be compiled using either OpenSSL or yaSSL
(see Section 6.3.12.3, “Building MySQL with SSL Support”).

OpenSSL and yaSSL offer the same basic functionality, but additional features are available in MySQL
distributions compiled using OpenSSL:

• OpenSSL supports a wider range of encryption ciphers from which to choose for the --ssl-cipher
option. OpenSSL supports the --ssl-capath, --ssl-crl, and --ssl-crlpath options. See
Section 6.3.12.5, “SSL Command Options”.

• Accounts that authenticate using the sha256_password plugin can use RSA key files for
secure password exchange over unencrypted connections. See Section 6.3.9.4, “The SHA-256
Authentication Plugin”.

• The server can automatically generate missing SSL and RSA certificate and key files at startup. See
Section 6.3.13.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

• OpenSSL supports more encryption modes for the AES_ENCRYPT() and AES_DECRYPT()
functions. See Section 12.13, “Encryption and Compression Functions”

Certain OpenSSL-related system and status variables are present only if MySQL was compiled using
OpenSSL:

Using Secure Connections

932

• auto_generate_certs (added in MySQL 5.7.5)

• sha256_password_auto_generate_rsa_keys (added in MySQL 5.7.5)

• sha256_password_private_key_path

• sha256_password_public_key_path

• Rsa_public_key

To determine whether your server was compiled using OpenSSL, test the existence of any of those
variables. For example, this statement returns a row if OpenSSL was used and an empty result if
yaSSL was used:

SHOW STATUS LIKE 'Rsa_public_key';

Such tests assume that your server version is not older than the first appearance of the variable tested.
For example, you cannot test for auto_generate_certs before MySQL 5.7.6.

6.3.12.2 Secure Connection Protocols and Ciphers

To determine which encryption protocol and cipher are in use for an encrypted connection, use the
following statements to check the values of the Ssl_version and Ssl_cipher status variables:

mysql> SHOW SESSION STATUS LIKE 'Ssl_version';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Ssl_version | TLSv1 |
+---------------+-------+
mysql> SHOW SESSION STATUS LIKE 'Ssl_cipher';
+---------------+---------------------------+
| Variable_name | Value |
+---------------+---------------------------+
| Ssl_cipher | DHE-RSA-AES128-GCM-SHA256 |
+---------------+---------------------------+

If the connection is not encrypted, both variables have an empty value.

MySQL supports encrypted connections using TLS protocols:

• When compiled using OpenSSL 1.0.1 or higher, MySQL supports the TLSv1, TLSv1.1, and TLSv1.2
protocols.

• When compiled using the bundled version of yaSSL, MySQL supports the TLSv1 and TLSv1.1
protocols.

The value of the tls_version system variable determines which protocols the server is permitted
to use from those that are available. The tls_version value is a comma-separated list containing
one or more of these protocols (not case sensitive): TLSv1, TLSv1.1, TLSv1.2. By default, this variable
lists all protocols supported by the SSL library used to compile MySQL (TLSv1,TLSv1.1,TLSv1.2
for OpenSSL, TLSv1,TLSv1.1 for yaSSL). To change the value of tls_version, set it at server
startup. To determine its value at runtime, use this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'tls_version';
+---------------+-----------------------+
| Variable_name | Value |
+---------------+-----------------------+
| tls_version | TLSv1,TLSv1.1,TLSv1.2 |
+---------------+-----------------------+

For client programs, the --tls-version option enables specifying the TLS protocols permitted per
client invocation. The value format is the same as for tls_version.

Using Secure Connections

933

By default, MySQL attempts to use the highest TLS protocol version available, depending on which
SSL library was used to compile the server and client, which key size is used, and whether the server
or client are restricted from using some protocols; for example, by means of tls_version/--tls-
version:

• If the server and client are compiled using OpenSSL, TLSv1.2 is used if possible.

• If either or both the server and client are compiled using yaSSL, TLSv1.1 is used if possible.

• TLSv1.2 does not work with all ciphers that have a key size of 512 bits or less. To use this protocol
with such a key, use --ssl-cipher to specify the cipher name explicitly:

AES128-SHA
AES128-SHA256
AES256-SHA
AES256-SHA256
CAMELLIA128-SHA
CAMELLIA256-SHA
DES-CBC3-SHA
DHE-RSA-AES256-SHA
RC4-MD5
RC4-SHA
SEED-SHA

• For better security, use a certificate with an RSA key size of of 2048 bits or more.

Note

Prior to MySQL 5.7.10, MySQL supports only TLSv1, for both OpenSSL and
yaSSL, and no system variable or client option exist for specifying which TLS
protocols to permit.

If the server and client protocol capabilities have no protocol in common, the server terminates the
connection request. For example, if the server is configured with tls_version=TLSv1.1,TLSv1.2,
connection attempts will fail for clients invoked with --tls-version=TLSv1, and for older clients that
do not support the --tls-version option and implicitly support only TLSv1.

To determine which ciphers a given server supports, use the following statement to check the value of
the Ssl_cipher_list status variable:

SHOW SESSION STATUS LIKE 'Ssl_cipher_list';

As of MySQL 5.7.10, order of ciphers passed by MySQL to the SSL library is significant. More secure
ciphers are mentioned first in the list, and the first cipher supported by the provided certificate is
selected.

The set of available ciphers depends on your MySQL version and whether MySQL was compiled using
OpenSSL or yaSSL, and (for OpenSSL) the library version used to compile MySQL.

MySQL passes this cipher list to OpenSSL:

ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES128-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDHE-RSA-AES256-SHA384
DHE-RSA-AES128-GCM-SHA256
DHE-DSS-AES128-GCM-SHA256
DHE-RSA-AES128-SHA256
DHE-DSS-AES128-SHA256
DHE-DSS-AES256-GCM-SHA384

Using Secure Connections

934

DHE-RSA-AES256-SHA256
DHE-DSS-AES256-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA
DHE-DSS-AES128-SHA
DHE-RSA-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
DHE-RSA-AES256-SHA
AES128-GCM-SHA256
DH-DSS-AES128-GCM-SHA256
ECDH-ECDSA-AES128-GCM-SHA256
AES256-GCM-SHA384
DH-DSS-AES256-GCM-SHA384
ECDH-ECDSA-AES256-GCM-SHA384
AES128-SHA256
DH-DSS-AES128-SHA256
ECDH-ECDSA-AES128-SHA256
AES256-SHA256
DH-DSS-AES256-SHA256
ECDH-ECDSA-AES256-SHA384
AES128-SHA
DH-DSS-AES128-SHA
ECDH-ECDSA-AES128-SHA
AES256-SHA
DH-DSS-AES256-SHA
ECDH-ECDSA-AES256-SHA
DHE-RSA-AES256-GCM-SHA384
DH-RSA-AES128-GCM-SHA256
ECDH-RSA-AES128-GCM-SHA256
DH-RSA-AES256-GCM-SHA384
ECDH-RSA-AES256-GCM-SHA384
DH-RSA-AES128-SHA256
ECDH-RSA-AES128-SHA256
DH-RSA-AES256-SHA256
ECDH-RSA-AES256-SHA384
ECDHE-RSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA
DHE-DSS-AES128-SHA
DHE-RSA-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
DHE-RSA-AES256-SHA
AES128-SHA
DH-DSS-AES128-SHA
ECDH-ECDSA-AES128-SHA
AES256-SHA
DH-DSS-AES256-SHA
ECDH-ECDSA-AES256-SHA
DH-RSA-AES128-SHA
ECDH-RSA-AES128-SHA
DH-RSA-AES256-SHA
ECDH-RSA-AES256-SHA
DES-CBC3-SHA

MySQL passes this cipher list to yaSSL:

DHE-RSA-AES256-SHA
DHE-RSA-AES128-SHA
AES128-RMD
DES-CBC3-RMD
DHE-RSA-AES256-RMD
DHE-RSA-AES128-RMD
DHE-RSA-DES-CBC3-RMD
AES256-SHA
RC4-SHA
RC4-MD5
DES-CBC3-SHA
DES-CBC-SHA

Using Secure Connections

935

EDH-RSA-DES-CBC3-SHA
EDH-RSA-DES-CBC-SHA
AES128-SHA:AES256-RMD

As of MySQL 5.7.10, these cipher restrictions are in place:

• The following ciphers are permanently restricted:

!DHE-DSS-DES-CBC3-SHA
!DHE-RSA-DES-CBC3-SHA
!ECDH-RSA-DES-CBC3-SHA
!ECDH-ECDSA-DES-CBC3-SHA
!ECDHE-RSA-DES-CBC3-SHA
!ECDHE-ECDSA-DES-CBC3-SHA

• The following categories of ciphers are permanently restricted:

!aNULL
!eNULL
!EXPORT
!LOW
!MD5
!DES
!RC2
!RC4
!PSK
!SSLv3

If the server is started using a compatible certificate that uses any of the preceding restricted ciphers or
cipher categories, the server starts with SSL disabled.

6.3.12.3 Building MySQL with SSL Support

To use SSL connections between the MySQL server and client programs, your system must support
either OpenSSL or yaSSL:

• MySQL Enterprise Edition binary distributions are compiled using OpenSSL. It is not possible to use
yaSSL with MySQL Enterprise Edition.

• MySQL Community Edition binary distributions are compiled using yaSSL.

• MySQL Community Edition source distributions can be compiled using either OpenSSL or yaSSL.

If you compile MySQL from a source distribution, CMake configures the distribution to use yaSSL by
default. To compile using OpenSSL instead, use this procedure:

1. Ensure OpenSSL 1.0.1 or higher is installed on your system. To obtain OpenSSL, visit http://
www.openssl.org.

If the installed OpenSSL version is lower than 1.0.1, CMake produces an error at MySQL
configuration time.

2. To use OpenSSL, add the -DWITH_SSL=system option to the CMake command you normally use
to configure the MySQL source distribution. For example:

shell> cmake . -DWITH_SSL=system

That command configures the distribution to use the installed OpenSSL library. Alternatively, to
explicitly specify the path name to the OpenSSL installation, use the following syntax. This can
be useful if you have multiple versions of OpenSSL installed, to prevent CMake from choosing the
wrong one:

http://www.openssl.org
http://www.openssl.org

Using Secure Connections

936

shell> cmake . -DWITH_SSL=path_name

See Section 2.9.4, “MySQL Source-Configuration Options”.

3. Compile and install the distribution.

To check whether a mysqld server supports SSL, examine the value of the have_ssl system
variable:

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+

If the value is YES, the server supports SSL connections. If the value is DISABLED, the server is
capable of supporting SSL connections but was not started with the appropriate --ssl-xxx options to
enable SSL to be used; see Section 6.3.12.4, “Configuring MySQL to Use Secure Connections”.

To determine whether a server was compiled using OpenSSL or yaSSL, check the existence of any
of the system or status variables that are present only for OpenSSL. See Section 6.3.12.1, “OpenSSL
Versus yaSSL”

6.3.12.4 Configuring MySQL to Use Secure Connections

To enable SSL connections, the proper SSL-related options must be used to specify the appropriate
certificate and key files. For a complete list of SSL options, see Section 6.3.12.5, “SSL Command
Options”.

If you need to create the required SSL files, see Section 6.3.13, “Creating SSL and RSA Certificates
and Keys”.

Server-Side SSL Configuration

To start the MySQL server so that it permits clients to connect using SSL, use options that identify the
certificate and key files the server uses when establishing a secure connection:

• --ssl-ca identifies the Certificate Authority (CA) certificate.

• --ssl-cert identifies the server public key certificate. This can be sent to the client and
authenticated against the CA certificate that it has.

• --ssl-key identifies the server private key.

For example, start the server with these lines in the my.cnf file, changing the file names as necessary:

[mysqld]
ssl-ca=ca.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

Each option names a file in PEM format. If you have a MySQL source distribution, you can also test
your setup using the demonstration certificate and key files in its mysql-test/std_data directory.

As of MySQL 5.7.5, the server-side --ssl option value is enabled by default. Also as of MySQL 5.7.5,
MySQL servers compiled using OpenSSL can generate missing SSL files automatically at startup. See
Section 6.3.13.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

SSL file autodiscovery is enabled as of MySQL 5.7.5 (for servers compiled using OpenSSL) or
5.7.6 (for servers compiled using yaSSL). If --ssl is enabled (possibly along with --ssl-cipher)

Using Secure Connections

937

and other SSL options are not given to configure SSL explicitly, the server attempts to enable SSL
automatically at startup:

• If the server discovers valid SSL files named ca.pem, server-cert.pem, and server-key.pem
in the data directory, it enables SSL to permit SSL connections by clients. (These files need not have
been autogenerated; what matters is that they have the indicated names and are valid.)

• If the server does not find valid SSL files in the data directory, it continues executing but does not
enable SSL.

If the server automatically enables SSL, it writes a message to the error log. As of MySQL
5.7.6, if the server discovers that the CA certificate is self-signed, it writes a warning to the error
log. (The certificate will be self-signed if created automatically by the server or manually using
mysql_ssl_rsa_setup.)

For any SSL files that the server discovers and uses automatically, it uses the file names to set the
corresponding system variables (ssl_ca, ssl_cert, ssl_key).

For further control over whether clients must connect securely, use the
require_secure_transport system variable; see Section 5.1.4, “Server System Variables”.
For information about permitted encryption protocols and ciphers, see Section 6.3.12.2, “Secure
Connection Protocols and Ciphers”.

Client-Side SSL Configuration

For client programs, SSL options are similar to those used on the server side, but --ssl-cert and --
ssl-key identify the client public and private key:

• --ssl-ca identifies the Certificate Authority (CA) certificate. This option, if used, must specify the
same certificate used by the server.

• --ssl-cert identifies the client public key certificate.

• --ssl-key identifies the client private key.

To establish a secure connection to a MySQL server with SSL support, the options that a client must
specify depend on the SSL requirements of the MySQL account used by the client. (See the discussion
of the REQUIRE clause in Section 13.7.1.2, “CREATE USER Syntax”.)

Suppose that you want to connect using an account that has no special SSL requirements or was
created using a CREATE USER statement that includes the REQUIRE SSL option. As a recommended
set of SSL options, start the server with at least --ssl-cert and --ssl-key, and invoke the client
with --ssl-ca. A client can connect securely like this:

shell> mysql --ssl-ca=ca.pem

To require that a client certificate also be specified, create the account using the REQUIRE X509
option. Then the client must also specify the proper client key and certificate files or the server will
reject the connection:

shell> mysql --ssl-ca=ca.pem \
 --ssl-cert=client-cert.pem \
 --ssl-key=client-key.pem

To prevent use of SSL and override other SSL options, invoke the client program with --ssl=0 or a
synonym (--skip-ssl, --disable-ssl):

shell> mysql --ssl=0

As of MySQL 5.7.3, --ssl on the client side is prescriptive (not advisory as before MySQL 5.7.3). With
--ssl, connection attempts fail if SSL is not available.

Using Secure Connections

938

As of MySQL 5.7.7, MySQL client programs attempt to establish an SSL connection by default
whenever the server is enabled to support SSL:

• In the absence of an --ssl option, the client falls back to an unencrypted connection if SSL is not
available.

• To require an SSL connection and fail if SSL is unavailable, invoke the client with an explicit --ssl
option.

• To suppress the attempt at using SSL for the connection, invoke the client with an --ssl=0 option.

For information about permitted encryption protocols and ciphers, see Section 6.3.12.2, “Secure
Connection Protocols and Ciphers”.

A client can determine whether the current connection with the server uses SSL by checking the value
of the Ssl_cipher status variable. The value is nonempty if SSL is used, and empty otherwise. For
example:

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

For the mysql client, an alternative is to use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...

Or:

mysql> \s
...
SSL: Not in use
...

SSL Configuration and the C API

The C API enables application programs to use SSL:

• To establish a secure connection, use the mysql_ssl_set() C API function to set
the appropriate certificate options before calling mysql_real_connect(). See
Section 23.8.7.73, “mysql_ssl_set()”. To require the use of SSL, call mysql_options()
with the MYSQL_OPT_SSL_ENFORCE option. To establish permitted encryption protocols, call
mysql_options() with the MYSQL_OPT_TLS_VERSION option.

• To determine whether SSL is in use after the connection is established, use
mysql_get_ssl_cipher(). A non-NULL return value indicates a secure connection and names
the SSL cipher used for encryption. A NULL return value indicates that SSL is not being used. See
Section 23.8.7.34, “mysql_get_ssl_cipher()”.

Replication uses the C API, so secure connections can be used between master and slave servers.
See Section 17.3.7, “Setting Up Replication Using SSL”.

6.3.12.5 SSL Command Options

This section describes options that specify whether to use SSL and the names of SSL certificate
and key files. These options can be given on the command line or in an option file. For examples of

Using Secure Connections

939

suggested use and how to check whether a connection is secure, see Section 6.3.12.4, “Configuring
MySQL to Use Secure Connections”.

Table 6.17 SSL Option/Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

have_openssl Yes Global No

have_ssl Yes Global No

skip-ssl Yes Yes

ssl Yes Yes

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes Global No

- Variable:
ssl_capath

 Yes Global No

ssl-cert Yes Yes Global No

- Variable:
ssl_cert

 Yes Global No

ssl-cipher Yes Yes Global No

- Variable:
ssl_cipher

 Yes Global No

ssl-crl Yes Yes Global No

- Variable: ssl_crl Yes Global No

ssl-crlpath Yes Yes Global No

- Variable:
ssl_crlpath

 Yes Global No

ssl-key Yes Yes Global No

- Variable:
ssl_key

 Yes Global No

• --ssl

For the MySQL server, this option specifies that the server permits but does not require SSL
connections. The option is enabled on the server side by default as of MySQL 5.7.5, and disabled
before 5.7.5. Also as of MySQL 5.7.5, MySQL servers compiled using OpenSSL can generate
missing SSL files automatically at startup. See Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”.

SSL file autodiscovery is enabled as of MySQL 5.7.5 (for servers compiled using OpenSSL) or
5.7.6 (for servers compiled using yaSSL). If --ssl is enabled (possibly along with --ssl-cipher)
and other SSL options are not given to configure SSL explicitly, the server attempts to enable SSL
automatically at startup:

• If the server discovers valid SSL files named ca.pem, server-cert.pem, and server-
key.pem in the data directory, it enables SSL to permit SSL connections by clients. (These files
need not have been autogenerated; what matters is that they have the indicated names and are
valid.)

• If the server does not find valid SSL files in the data directory, it continues executing but does not
enable SSL.

For MySQL client programs, the --ssl option is used as follows:

Using Secure Connections

940

• As of MySQL 5.7.3, --ssl requires the client to connect to the server using SSL. If an encrypted
connection cannot be established, the connection attempt fails. If the connection attempt
succeeds, the connection is guaranteed to use SSL.

• Before MySQL 5.7.3, --ssl permits but does not require the client to connect to the server using
SSL. Therefore, this option is not sufficient in itself to cause an SSL connection to be used. For
example, if you specify this option for a client program but the server has not been configured to
permit SSL connections, the client falls back to an unencrypted connection.

--ssl is implied by other --ssl-xxx options, as indicated in the descriptions for those options.

As of MySQL 5.7.7, client programs attempt to establish an SSL connection by default whenever the
server is enabled to support SSL:

• In the absence of an --ssl option, the client falls back to an unencrypted connection if SSL is not
available.

• To require an SSL connection and fail if SSL is unavailable, invoke the client with an explicit --
ssl option.

• To suppress the attempt at using SSL for the connection, invoke the client with an --ssl=0
option.

If other --ssl-xxx options are given in the absence of --ssl, the client attempts to connect using
SSL. If the server is configured to enable SSL, the connection attempt fails if an SSL connection
cannot be established. If the server is not configured to enable SSL, the client falls back to an
unencrypted connection.

As a recommended set of options to enable SSL connections, use at least --ssl-cert and --
ssl-key on the server side and --ssl-ca on the client side. See Section 6.3.12.4, “Configuring
MySQL to Use Secure Connections”.

The --ssl option in negated form overrides other SSL options and indicates that SSL should not be
used. To do this, specify the option as --ssl=0 or a synonym (--skip-ssl, --disable-ssl).
For example, you might have SSL options specified in the [client] group of your option file to
use SSL connections by default when you invoke MySQL client programs. To use an unencrypted
connection instead, invoke the client program with --ssl=0 on the command line to override the
options in the option file.

To require use of SSL connections for a MySQL account, use CREATE USER to create the account
with at least a REQUIRE SSL clause, or use ALTER USER for an existing account to add a REQUIRE
clause. Connections for the account will be rejected unless MySQL supports SSL connections and
the server and client have been started with the proper SSL options.

The REQUIRE clause permits other SSL-related options, which can be used to enforce stricter
requirements than REQUIRE SSL. For additional details about which SSL command options may
or must be specified by clients that connect using accounts configured using the various REQUIRE
options, see the description of REQUIRE in Section 13.7.1.2, “CREATE USER Syntax”.

• --ssl-ca=file_name

The path to a file in PEM format that contains a list of trusted SSL certificate authorities. This option
implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

If you use SSL when establishing a client connection, to tell the client not to authenticate the
server certificate, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client
according to any applicable requirements established for the client account, and it still uses any --
ssl-ca or --ssl-capath option values specified at server startup.

• --ssl-capath=dir_name

Using Secure Connections

941

The path to a directory that contains trusted SSL certificate authority certificates in PEM format. This
option implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

If you use SSL when establishing a client connection, to tell the client not to authenticate the
server certificate, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client
according to any applicable requirements established for the client account, and it still uses any --
ssl-ca or --ssl-capath option values specified at server startup.

MySQL distributions compiled using OpenSSL support the --ssl-capath option (see
Section 6.3.12.1, “OpenSSL Versus yaSSL”). Distributions compiled using yaSSL do not because
yaSSL does not look in any directory and does not follow a chained certificate tree. yaSSL requires
that all components of the CA certificate tree be contained within a single CA certificate tree and that
each certificate in the file has a unique SubjectName value. To work around this yaSSL limitation,
concatenate the individual certificate files comprising the certificate tree into a new file and specify
that file as the value of the --ssl-ca option.

• --ssl-cert=file_name

The name of the SSL certificate file in PEM format to use for establishing a secure connection. This
option implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

• --ssl-cipher=cipher_list

A list of permissible ciphers to use for SSL encryption. If no cipher in the list is supported, SSL
connections will not work. This option implies --ssl when used on the server side, and on the client
side before MySQL 5.7.3.

For greatest portability, cipher_list should be a list of one or more cipher names, separated by
colons. This format is understood both by OpenSSL and yaSSL. Examples:

--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES256-SHA:AES128-SHA

OpenSSL supports a more flexible syntax for specifying ciphers, as described in the OpenSSL
documentation at http://www.openssl.org/docs/apps/ciphers.html. However, yaSSL does not, so
attempts to use that extended syntax fail for a MySQL distribution compiled using yaSSL.

For information about which encryption ciphers MySQL supports, see Section 6.3.12.2, “Secure
Connection Protocols and Ciphers”.

• --ssl-crl=file_name

The path to a file containing certificate revocation lists in PEM format. This option implies --ssl
when used on the server side, and on the client side before MySQL 5.7.3.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA
path contains certificate revocation lists.

MySQL distributions compiled using OpenSSL support the --ssl-crl option (see Section 6.3.12.1,
“OpenSSL Versus yaSSL”). Distributions compiled using yaSSL do not because revocation lists do
not work with yaSSL.

• --ssl-crlpath=dir_name

The path to a directory that contains files containing certificate revocation lists in PEM format. This
option implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA
path contains certificate revocation lists.

http://www.openssl.org/docs/apps/ciphers.html

Creating SSL and RSA Certificates and Keys

942

MySQL distributions compiled using OpenSSL support the --ssl-crlpath option (see
Section 6.3.12.1, “OpenSSL Versus yaSSL”). Distributions compiled using yaSSL do not because
revocation lists do not work with yaSSL.

• --ssl-key=file_name

The name of the SSL key file in PEM format to use for establishing a secure connection. This option
implies --ssl when used on the server side, and on the client side before MySQL 5.7.3.

If the key file is protected by a passphrase, the program prompts the user for the passphrase. The
password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect, the
program continues as if it could not read the key.

For better security, use a certificate with an RSA key size of of 2048 bits or more.

• --ssl-verify-server-cert

This option is available for client programs only, not the server. It causes the client to check the
server's Common Name value in the certificate that the server sends to the client. The client verifies
that name against the host name the client uses for connecting to the server, and the connection
fails if there is a mismatch. When SSL is used, this option helps prevent man-in-the-middle attacks.
Verification is disabled by default.

6.3.13 Creating SSL and RSA Certificates and Keys

The following discussion describes how to create the files required for SSL and RSA support in
MySQL. File creation can be performed using facilities provided by MySQL itself, or by invoking the
openssl command directly.

SSL certificate and key files enable MySQL to support secure connections using SSL. See
Section 6.3.12.4, “Configuring MySQL to Use Secure Connections”.

RSA key files enable MySQL to support secure password exchange over unencrypted connections
for accounts authenticated by the sha256_password plugin. See Section 6.3.9.4, “The SHA-256
Authentication Plugin”.

6.3.13.1 Creating SSL and RSA Certificates and Keys using MySQL

MySQL provides two ways to create the SSL certificate and key files and RSA key-pair files required to
support secure connections using SSL and secure password exchange using RSA over unencrypted
connections, if those files are missing:

• The server can autogenerate these files at startup.

• Users can invoke the mysql_ssl_rsa_setup utility manually.

Important

Server autogeneration and mysql_ssl_rsa_setup help lower the barrier
to using SSL by making it easier to generate the required files. However,
certificates generated by these methods are self-signed, which is not very
secure. After you gain experience using such files, consider obtaining a CA
certificate from a registered certificate authority.

Automatic Generation of SSL and RSA Files

As of MySQL 5.7.5, MySQL servers have the capability of automatically generating missing SSL and
RSA files at startup, for MySQL distributions compiled using OpenSSL. The auto_generate_certs
and sha256_password_auto_generate_rsa_keys system variables control automatic generation
of these files. Both variables are enabled by default. They can be enabled at startup and inspected but
not set at runtime.

Creating SSL and RSA Certificates and Keys

943

At startup, the server automatically generates server-side and client-side SSL certificate and key files
in the data directory if the auto_generate_certs system variable is enabled, no SSL options other
than --ssl are specified, and the server-side SSL files are missing from the data directory. These files
enable secure client connections using SSL; see Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”.

1. The server checks the data directory for SSL files with the following names:

ca.pem
server-cert.pem
server-key.pem

2. If any of those files are present, the server creates no SSL files. Otherwise, it creates them, plus
some additional files:

ca.pem Self-signed CA certificate
ca-key.pem CA private key
server-cert.pem Server certificate
server-key.pem Server private key
client-cert.pem Client certificate
client-key.pem Client private key

3. If the server autogenerates SSL files, it uses the names of the ca.pem, server-cert.pem, and
server-key.pem files to set the corresponding system variables (ssl_ca, ssl_cert, ssl_key).

At startup, the server automatically generates RSA private/public key-pair files in the data directory if
the sha256_password_auto_generate_rsa_keys system variable is enabled, no RSA options
are specified, and the RSA files are missing from the data directory. These files enable secure
password exchange using RSA over unencrypted connections for accounts authenticated by the
sha256_password plugin; see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

1. The server checks the data directory for RSA files with the following names:

private_key.pem Private member of private/public key pair
public_key.pem Public member of private/public key pair

2. If any of these files are present, the server creates no RSA files. Otherwise, it creates them.

3. If the server autogenerates the RSA files, it uses their names to set the corresponding system
variables (sha256_password_private_key_path, sha256_password_public_key_path).

Manual Generation of SSL and RSA Files Using mysql_ssl_rsa_setup

As of MySQL 5.7.6, MySQL distributions include a mysql_ssl_rsa_setup utility that can be invoked
manually to generate SSL and RSA files. This utility is included with all MySQL distributions (whether
compiled using OpenSSL or yaSSL), but it does require that the openssl command be available. For
usage instructions, see Section 4.4.5, “mysql_ssl_rsa_setup — Create SSL/RSA Files”.

SSL and RSA File Characteristics

SSL and RSA files created automatically by the server or by invoking mysql_ssl_rsa_setup have
these characteristics:

• SSL and RSA keys are 2048 bit.

• The SSL CA certificate is self signed.

• The SSL server and client certificates are signed with the CA certificate and key, using the
sha256WithRSAEncryption signature algorithm.

• SSL certificates use these Common Name (CN) values, with the appropriate certificate type (CA,
Server, Client):

Creating SSL and RSA Certificates and Keys

944

ca.pem: MySQL_Server_suffix_Auto_Generated_CA_Certificate
server-cert.pm: MySQL_Server_suffix_Auto_Generated_Server_Certificate
client-cert.pm: MySQL_Server_suffix_Auto_Generated_Client_Certificate

The suffix value is based on the MySQL version number. For files generated by
mysql_ssl_rsa_setup, the suffix can be specified explicitly using the --suffix option.

For files generated by the server, if the resulting CN values exceed 64 characters, the _suffix
portion of the name is omitted.

• SSL files have blank values for Country (C), State or Province (ST), Organization (O), Organization
Unit Name (OU) and email address.

• SSL files created by the server or by mysql_ssl_rsa_setup are valid for ten years from the time
of generation. (Before MySQL 5.7.6, files created by the server are valid for one year.)

• RSA files do not expire.

• SSL files have different serial numbers for each certificate/key pair (1 for CA, 2 for Server, 3 for
Client).

• Files created automatically by the server are owned by the account that runs the server. Files
created using mysql_ssl_rsa_setup are owned by the user who invoked that program. This can
be changed on systems that support the chown() system call if the program is invoked by root and
the --uid option is given to specify the user who should own the files.

• On Unix and Unix-like systems, the file access mode is 644 for certificate files (that is, world
readable) and 600 for key files (that is, accessible only by the account that runs the server).

To see the contents of an SSL certificate (for example, to check the range of dates over which it is
valid), invoke openssl directly:

shell> openssl x509 -text -in ca.pem
shell> openssl x509 -text -in server-cert.pem
shell> openssl x509 -text -in client-cert.pem

It is also possible to check SSL certificate expiration information using this SQL statement:

mysql> SHOW STATUS LIKE 'Ssl_server_not%';
+-----------------------+--------------------------+
| Variable_name | Value |
+-----------------------+--------------------------+
| Ssl_server_not_after | Apr 28 14:16:39 2025 GMT |
| Ssl_server_not_before | May 1 14:16:39 2015 GMT |
+-----------------------+--------------------------+

6.3.13.2 Creating SSL Certificates and Keys Using openssl

This section describes how to use the openssl command to set up SSL certificate and key files
for use by MySQL servers and clients. The first example shows a simplified procedure such as you
might use from the command line. The second shows a script that contains more detail. The first two
examples are intended for use on Unix and both use the openssl command that is part of OpenSSL.
The third example describes how to set up SSL files on Windows.

Note

There are easier alternatives to generating the files required for SSL than
the procedure described here: Let the server autogenerate them or use the
mysql_ssl_rsa_setup program. See Section 6.3.13.1, “Creating SSL and
RSA Certificates and Keys using MySQL”.

Creating SSL and RSA Certificates and Keys

945

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ
from the Common Name value used for the CA certificate. Otherwise, the
certificate and key files will not work for servers compiled using OpenSSL. A
typical error in this case is:

ERROR 2026 (HY000): SSL connection error:
error:00000001:lib(0):func(0):reason(1)

Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and key
files. You will need to respond to several prompts by the openssl commands. To generate test files,
you can press Enter to all prompts. To generate files for production use, you should provide nonempty
responses.

Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

Create CA certificate
shell> openssl genrsa 2048 > ca-key.pem
shell> openssl req -new -x509 -nodes -days 3600 \
 -key ca-key.pem -out ca.pem

Create server certificate, remove passphrase, and sign it
server-cert.pem = public key, server-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout server-key.pem -out server-req.pem
shell> openssl rsa -in server-key.pem -out server-key.pem
shell> openssl x509 -req -in server-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem

Create client certificate, remove passphrase, and sign it
client-cert.pem = public key, client-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout client-key.pem -out client-req.pem
shell> openssl rsa -in client-key.pem -out client-key.pem
shell> openssl x509 -req -in client-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

shell> openssl verify -CAfile ca.pem server-cert.pem client-cert.pem
server-cert.pem: OK
client-cert.pem: OK

To see the contents of a certificate (for example, to check the range of dates over which a certificate is
valid), invoke openssl like this:

shell> openssl x509 -text -in ca.pem
shell> openssl x509 -text -in server-cert.pem
shell> openssl x509 -text -in client-cert.pem

Now you have a set of files that can be used as follows:

• ca.pem: Use this as the argument to --ssl-ca on the server and client sides. (The CA certificate, if
used, must be the same on both sides.)

• server-cert.pem, server-key.pem: Use these as the arguments to --ssl-cert and --ssl-
key on the server side.

Creating SSL and RSA Certificates and Keys

946

• client-cert.pem, client-key.pem: Use these as the arguments to --ssl-cert and --ssl-
key on the client side.

To use the files for SSL connections, see Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”.

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files for SSL connections as described in Section 6.3.12.4, “Configuring
MySQL to Use Secure Connections”.

DIR=`pwd`/openssl
PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

Create necessary files: $database, $serial and $new_certs_dir
directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
Generation of Certificate Authority(CA)
#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca.pem \
 -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/monty/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:

#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \
 $DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to '/home/monty/openssl/server-key.pem'
Enter PEM pass phrase:

Creating SSL and RSA Certificates and Keys

947

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
Sign server cert
#
openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/server-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/server-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \
 $DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/monty/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.

Creating SSL and RSA Certificates and Keys

948

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
Sign client cert
#

openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/client-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/client-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create a my.cnf file that you can use to test the certificates
#

cat <<EOF > $DIR/my.cnf
[client]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/client-cert.pem
ssl-key=$DIR/client-key.pem
[mysqld]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/server-cert.pem
ssl-key=$DIR/server-key.pem
EOF

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available
packages can be seen here:

http://www.slproweb.com/products/Win32OpenSSL.html

http://www.slproweb.com/products/Win32OpenSSL.html

Creating SSL and RSA Certificates and Keys

949

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture
(32-bit or 64-bit). The default installation location will be C:\OpenSSL-Win32 or C:\OpenSSL-Win64,
depending on which package you downloaded. The following instructions assume a default location of
C:\OpenSSL-Win32. Modify this as necessary if you are using the 64-bit package.

If a message occurs during setup indicating '...critical component is missing:
Microsoft Visual C++ 2008 Redistributables', cancel the setup and download one of the
following packages as well, again depending on your architecture (32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF

• Visual C++ 2008 Redistributables (x64), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the
default option 'Copy OpenSSL DLL files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path
variable of your server:

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the Environment
Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable
dialogue should appear.

4. Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).

5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Windows\system32>cd \

C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.

C:\>

Depending on your version of Windows, the preceding path-setting instructions might differ slightly.

After OpenSSL has been installed, use instructions similar to those from Example 1 (shown earlier in
this section), with the following changes:

• Change the following Unix commands:

Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

On Windows, use these commands instead:

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

Connecting to MySQL Remotely from Windows with SSH

950

Create clean environment
shell> md c:\newcerts
shell> cd c:\newcerts

• When a '\' character is shown at the end of a command line, this '\' character must be removed
and the command lines entered all on a single line.

After generating the certificate and key files, to use them for SSL connections, see Section 6.3.12.4,
“Configuring MySQL to Use Secure Connections”.

6.3.13.3 Creating RSA Keys Using openssl

This section describes how to use the openssl command to set up the RSA key files that enable
MySQL to support secure password exchange over unencrypted connections for accounts
authenticated by the sha256_password plugin.

Note

There are easier alternatives to generating the files required for RSA than
the procedure described here: Let the server autogenerate them or use the
mysql_ssl_rsa_setup program. See Section 6.3.13.1, “Creating SSL and
RSA Certificates and Keys using MySQL”.

To create the RSA private and public key-pair files, run these commands while logged into the system
account used to run the MySQL server so the files will be owned by that account:

openssl genrsa -out private_key.pem 2048
openssl rsa -in private_key.pem -pubout -out public_key.pem

Those commands create 2,048-bit keys. To create stronger keys, use a larger value.

Then set the access modes for the key files. The private key should be readable only by the server,
whereas the public key can be freely distributed to client users:

chmod 400 private_key.pem
chmod 444 public_key.pem

6.3.14 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get a secure connection to a remote MySQL server with SSH. The
information was provided by David Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. For a comparison of SSH clients, see http://
en.wikipedia.org/wiki/Comparison_of_SSH_clients.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value might not be the same as the
user name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host:
yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set port: 3306,
host: localhost, remote port: 3306).

4. Save everything, otherwise you will have to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

MySQL Enterprise Audit Log Plugin

951

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally
do, except type in localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

6.3.15 MySQL Enterprise Audit Log Plugin

Note

MySQL Enterprise Audit is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see http://
www.mysql.com/products/.

As of MySQL 5.7.9, MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a
server plugin named audit_log. MySQL Enterprise Audit uses the open MySQL Audit API to enable
standard, policy-based monitoring and logging of connection and query activity executed on specific
MySQL servers. Designed to meet the Oracle audit specification, MySQL Enterprise Audit provides
an out of box, easy to use auditing and compliance solution for applications that are governed by both
internal and external regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

After you install the plugin (see Section 6.3.15.1, “Installing the Audit Log Plugin”), it writes an audit log
file. By default, the file is named audit.log in the server data directory. To change the name of the
file, set the audit_log_file system variable at server startup.

Audit log file contents are not encrypted. See Section 6.3.15.2, “Audit Log Plugin Security
Considerations”.

The audit log file is written in XML, with auditable events encoded as <AUDIT_RECORD> elements. To
select the file format, set the audit_log_format system variable at server startup. For details on file
format and contents, see Section 6.3.15.3, “The Audit Log File”.

To control what information audit_log writes to its log file, set the audit_log_policy system
variable. By default, this variable is set to ALL (write all auditable events), but also permits values of
LOGINS or QUERIES to log only login or query events, or NONE to disable logging.

For more information about controlling how logging occurs, see Section 6.3.15.4, “Audit Log Plugin
Logging Control”. For descriptions of the parameters used to configure the audit log plugin, see
Section 6.3.15.6, “Audit Log Plugin Options and Variables”.

If the audit_log plugin is enabled, the Performance Schema (see Chapter 21, MySQL Performance
Schema) has instrumentation for the audit log plugin. To identify the relevant instruments, use this
query:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE '%/alog/%';

6.3.15.1 Installing the Audit Log Plugin

The audit log plugin is named audit_log. To be usable by the server, the plugin library object file
must be located in the MySQL plugin directory (the directory named by the plugin_dir system
variable). If necessary, set the value of plugin_dir at server startup to tell the server the location of
the plugin directory.

To load the plugin at server startup, use the --plugin-load option to name the object file that
contains the plugin. With this plugin-loading method, the option must be given each time the server
starts. For example, put the following lines in your my.cnf file:

http://www.mysql.com/products/
http://www.mysql.com/products/

MySQL Enterprise Audit Log Plugin

952

[mysqld]
plugin-load=audit_log.so

If object files have a suffix different from .so on your system, substitute the correct suffix (for example,
.dll on Windows).

Alternatively, to register the plugin at runtime, use this statement (changing the suffix as necessary):

mysql> INSTALL PLUGIN audit_log SONAME 'audit_log.so';

INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins table to cause the
plugin to be loaded for each subsequent normal server startup.

If the plugin is loaded with --plugin-load or has been previously registered with INSTALL PLUGIN,
you can use the --audit-log option at server startup to control plugin activation. For example, to
load the plugin and prevent it from being removed at runtime, use these options:

[mysqld]
plugin-load=audit_log.so
audit-log=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without the audit plugin, use --audit-log with
a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not
initialize successfully.

For general information about installing plugins, see Section 5.1.8, “Server Plugins”. To verify plugin
installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS
statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.

Audit log file contents are not encrypted. See Section 6.3.15.2, “Audit Log Plugin Security
Considerations”.

For additional information about the parameters used to configure operation of the audit_log plugin,
see Section 6.3.15.6, “Audit Log Plugin Options and Variables”.

6.3.15.2 Audit Log Plugin Security Considerations

Contents of the audit log file produced by the audit_log audit log plugin are not encrypted and may
contain sensitive information, such as the text of SQL statements. For security reasons, this file should
be written to a directory accessible only to the MySQL server and users with a legitimate reason to
view the log. The default file is audit.log in the data directory. This can be changed by setting the
audit_log_file system variable at server startup.

6.3.15.3 The Audit Log File

Audit log file contents are not encrypted. See Section 6.3.15.2, “Audit Log Plugin Security
Considerations”.

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element
is <AUDIT>. The closing </AUDIT> tag of the root element is written when the audit log plugin
terminates, so the tag is not present in the file while the plugin is active.

The root element contains <AUDIT_RECORD> elements, each of which provides information about an
audited event.

MySQL 5.7 changed audit log file output to a new format, it is possible to select either the old or new
format using the audit_log_format system variable, which has permitted values of OLD and NEW
(default NEW).

If you change the value of audit_log_format, use this procedure to avoid writing log entries in one
format to an existing log file that contains entries in a different format:

MySQL Enterprise Audit Log Plugin

953

1. Stop the server.

2. Rename the current audit log file manually.

3. Restart the server with the new value of audit_log_format. The audit log plugin will create a
new log file, which will contain log entries in the selected format.

Here is a sample log file in the default (new) format, reformatted slightly for readability:

<?xml version="1.0" encoding="UTF-8"?>
<AUDIT>
 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:24 UTC</TIMESTAMP>
 <RECORD_ID>1_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Audit</NAME>
 <SERVER_ID>1</SERVER_ID>
 <VERSION>1</VERSION>
 <STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --socket=/usr/local/mysql/mysql.sock
 --port=3306</STARTUP_OPTIONS>
 <OS_VERSION>x86_64-osx10.6</OS_VERSION>
 <MYSQL_VERSION>5.7.2-m12-log</MYSQL_VERSION>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:40 UTC</TIMESTAMP>
 <RECORD_ID>2_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Connect</NAME>
 <CONNECTION_ID>2</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <PRIV_USER>root</PRIV_USER>
 <PROXY_USER></PROXY_USER>
 <DB>test</DB>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:41 UTC</TIMESTAMP>
 <RECORD_ID>4_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>2</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>drop_table</COMMAND_CLASS>
 <SQLTEXT>DROP TABLE IF EXISTS t</SQLTEXT>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:41 UTC</TIMESTAMP>
 <RECORD_ID>5_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>2</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>create_table</COMMAND_CLASS>
 <SQLTEXT>CREATE TABLE t (i INT)</SQLTEXT>
 </AUDIT_RECORD>

MySQL Enterprise Audit Log Plugin

954

...

 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:41 UTC</TIMESTAMP>
 <RECORD_ID>7_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>2</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER></USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST></HOST>
 <IP></IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:47 UTC</TIMESTAMP>
 <RECORD_ID>9_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Shutdown</NAME>
 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS></COMMAND_CLASS>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:47 UTC</TIMESTAMP>
 <RECORD_ID>10_2013-09-17T15:03:24</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER></USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST></HOST>
 <IP></IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2013-09-17T15:03:49 UTC</TIMESTAMP>
 <RECORD_ID>11_2013-09-17T15:03:24</RECORD_ID>
 <NAME>NoAudit</NAME>
 <SERVER_ID>1</SERVER_ID>
 </AUDIT_RECORD>
</AUDIT>

Here is a sample log file in the old format, reformatted slightly for readability:

<?xml version="1.0" encoding="UTF-8"?>
<AUDIT>
 <AUDIT_RECORD
 TIMESTAMP="2012-08-02T14:52:12"
 NAME="Audit"
 SERVER_ID="1"
 VERSION="1"
 STARTUP_OPTIONS="--port=3306"
 OS_VERSION="i686-Linux"
 MYSQL_VERSION="5.6.10-log"/>
 <AUDIT_RECORD
 TIMESTAMP="2012-08-02T14:52:41"
 NAME="Connect"
 CONNECTION_ID="1"
 STATUS="0"
 USER="root"
 PRIV_USER="root"

MySQL Enterprise Audit Log Plugin

955

 OS_LOGIN=""
 PROXY_USER=""
 HOST="localhost"
 IP="127.0.0.1"
 DB=""/>
 <AUDIT_RECORD
 TIMESTAMP="2012-08-02T14:53:45"
 NAME="Query"
 CONNECTION_ID="1"
 STATUS="0"
 SQLTEXT="INSERT INTO t1 () VALUES()"/>
 <AUDIT_RECORD
 TIMESTAMP="2012-08-02T14:53:51"
 NAME="Quit"
 CONNECTION_ID="1"
 STATUS="0"/>
 <AUDIT_RECORD
 TIMESTAMP="2012-08-06T14:21:03"
 NAME="NoAudit"
 SERVER_ID="1"/>
</AUDIT>

Elements within <AUDIT_RECORD> elements have these characteristics:

• Some elements appear in every <AUDIT_RECORD> element, but many are optional and do not
necessarily appear in every element.

• Order of elements within an <AUDIT_RECORD> element is not guaranteed.

• Element values are not fixed length. Long values may be truncated as indicated in the element
descriptions given later.

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

New Audit Log File Format

Every <AUDIT_RECORD> element contains a set of mandatory elements. Other optional elements may
appear, depending on the audit record type.

The following elements are mandatory in every <AUDIT_RECORD> element:

• <NAME>

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example:

<NAME>Query</NAME>

Some common <NAME> values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)
Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects

MySQL Enterprise Audit Log Plugin

956

NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics,
Table Dump, Time.

With the exception of Audit and NoAudit, these values correspond to the COM_xxx command
values listed in the mysql_com.h header file. For example, Create DB and Shutdown correspond
to COM_CREATE_DB and COM_SHUTDOWN, respectively.

• <RECORD_ID>

A unique identifier for the audit record. The value is composed from a sequence number and
timestamp, in the format SEQ_TIMESTAMP. The sequence number is initialized to the size of the
audit log file at the time the audit log plugin opens it and increments by 1 for each record logged. The
timestamp is a UTC value in yyyy-mm-ddThh:mm:ss format indicating the time when the audit log
plugin opened the file.

Example:

<RECORD_ID>28743_2013-09-18T21:03:24</RECORD_ID>

• <TIMESTAMP>

The date and time that the audit event was generated. For example, the event corresponding to
execution of an SQL statement received from a client has a <TIMESTAMP> value occurring after the
statement finishes, not when it is received. The value has the format yyyy-mm-ddThh:mm:ss UTC
(with T, no decimals). The format includes a time zone specifier at the end. The time zone is always
UTC.

Example:

<TIMESTAMP>2013-09-17T15:03:49 UTC</TIMESTAMP>

The following elements are optional in <AUDIT_RECORD> elements. Many of them occur only with
specific <NAME> values.

• <COMMAND_CLASS>

A string that indicates the type of action performed.

Example:

<COMMAND_CLASS>drop_table</COMMAND_CLASS>

The values come from the com_status_vars array in the sql/mysqld.cc file in a MySQL source
distribution. They correspond to the status variables displayed by this statment:

SHOW STATUS LIKE 'Com%';

• <CONNECTION_ID>

An unsigned integer representing the client connection identifier. This is the same as the
CONNECTION_ID() function value within the session.

Example:

MySQL Enterprise Audit Log Plugin

957

<CONNECTION_ID>127</CONNECTION_ID>

• <DB>

A string representing the default database name. This element appears only if the <NAME> value is
Connect or Change user.

• <HOST>

A string representing the client host name. This element appears only if the <NAME> value is
Connect, Change user, or Query.

Example:

<HOST>localhost</HOST>

• <IP>

A string representing the client IP address. This element appears only if the <NAME> value is
Connect, Change user, or Query.

Example:

<IP>127.0.0.1</IP>

• <MYSQL_VERSION>

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable. This element appears only if the <NAME> value is Audit.

Example:

<MYSQL_VERSION>5.7.1-m11-log</MYSQL_VERSION>

• <OS_LOGIN>

A string representing the external user (empty if none). The value may differ from the <USER> value,
for example, if the server authenticates the client using an external authentication method. This
element appears only if the <NAME> value is Connect, Change user, or Query.

• <OS_VERSION>

A string representing the operating system on which the server was built or is running. This element
appears only if the <NAME> value is Audit.

Example:

<OS_VERSION>x86_64-Linux</OS_VERSION>

• <PRIV_USER>

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and may differ from the <USER> value. This element appears
only if the <NAME> value is Connect or Change user.

• <PROXY_USER>

A string representing the proxy user. The value is empty if user proxying is not in effect. This element
appears only if the <NAME> value is Connect or Change user.

• <SERVER_ID>

MySQL Enterprise Audit Log Plugin

958

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable. This element appears only if the <NAME> value is Audit or NoAudit.

Example:

<SERVER_ID>1</SERVER_ID>

• <SQLTEXT>

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. This element appears only if the <NAME> value is Query or Execute.

The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so the
value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example:

<SQLTEXT>DELETE FROM t1</SQLTEXT>

• <STARTUP_OPTIONS>

A string representing the options that were given on the command line or in option files when the
MySQL server was started. This element appears only if the <NAME> value is Audit.

Example:

<STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --port=3306 --log-output=FILE</STARTUP_OPTIONS>

• <STATUS>

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Section B.3, “Server Error Codes and
Messages”.

Warnings are not logged.

See the description for <STATUS_CODE> for information about how it differs from <STATUS>.

Example:

<STATUS>1051</STATUS>

• <STATUS_CODE>

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of
the mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not
necessarily 1 for error.

Example:

<STATUS_CODE>0</STATUS_CODE>

MySQL Enterprise Audit Log Plugin

959

• <USER>

A string representing the user name sent by the client. This may differ from the <PRIV_USER> value.
This element appears only if the <NAME> value is Connect, Change user, or Query.

Example:

<USER>root[root] @ localhost [127.0.0.1]</USER>

• <VERSION>

An unsigned integer representing the version of the audit log file format. This element appears only if
the <NAME> value is Audit.

Example:

<VERSION>1</VERSION>

Old Audit Log File Format

Every <AUDIT_RECORD> element contains a set of mandatory attributes. Other optional attributes may
appear depending on the audit record type.

The following attributes are mandatory in every <AUDIT_RECORD> element:

• NAME

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example: NAME="Query"

Some common NAME values:

"Audit" When auditing starts, which may be server startup time
"Connect" When a client connects, also known as logging in
"Query" An SQL statement (executed directly)
"Prepare" Preparation of an SQL statement; usually followed by Execute
"Execute" Execution of an SQL statement; usually follows Prepare
"Shutdown" Server shutdown
"Quit" When a client disconnects
"NoAudit" Auditing has been turned off

The possible values are "Audit", "Binlog Dump", "Change user", "Close stmt",
"Connect Out", "Connect", "Create DB", "Daemon", "Debug", "Delayed insert",
"Drop DB", "Execute", "Fetch", "Field List", "Init DB", "Kill", "Long Data",
"NoAudit", "Ping", "Prepare", "Processlist", "Query", "Quit", "Refresh", "Register
Slave", "Reset stmt", "Set option", "Shutdown", "Sleep", "Statistics", "Table
Dump", "Time".

With the exception of "Audit" and "NoAudit", these values correspond to the COM_xxx
command values listed in the mysql_com.h header file. For example, "Create DB" and
"Shutdown" correspond to COM_CREATE_DB and COM_SHUTDOWN, respectively.

• TIMESTAMP

The date and time that the audit event was generated. For example, the event corresponding to
execution of an SQL statement received from a client has a TIMESTAMP value occurring after the
statement finishes, not when it is received. The value is UTC, in the format yyyy-mm-ddThh:mm:ss
(with T, no decimals).

MySQL Enterprise Audit Log Plugin

960

Example: TIMESTAMP="2012-08-09T12:55:16"

The following attributes are optional in <AUDIT_RECORD> elements. Many of them occur only for
elements with specific values of the NAME attribute.

• CONNECTION_ID

An unsigned integer representing the client connection identifier. This is the same as the
CONNECTION_ID() function value within the session.

Example: CONNECTION_ID="127"

• DB

A string representing the default database name. This attribute appears only if the NAME value is
"Connect" or "Change user".

• HOST

A string representing the client host name. This attribute appears only if the NAME value is
"Connect" or "Change user".

Example: HOST="localhost"

• IP

A string representing the client IP address. This attribute appears only if the NAME value is
"Connect" or "Change user".

Example: IP="127.0.0.1"

• MYSQL_VERSION

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable. This attribute appears only if the NAME value is "Audit".

Example: MYSQL_VERSION="5.6.11-log"

• OS_LOGIN

A string representing the external user (empty if none). The value may differ from USER, for example,
if the server authenticates the client using an external authentication method. This attribute appears
only if the NAME value is "Connect" or "Change user".

• OS_VERSION

A string representing the operating system on which the server was built or is running. This attribute
appears only if the NAME value is "Audit".

Example: OS_VERSION="x86_64-Linux"

• PRIV_USER

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and may be different from the USER value. This attribute
appears only if the NAME value is "Connect" or "Change user".

• PROXY_USER

A string representing the proxy user. The value is empty if user proxying is not in effect. This attribute
appears only if the NAME value is "Connect" or "Change user".

• SERVER_ID

MySQL Enterprise Audit Log Plugin

961

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable. This attribute appears only if the NAME value is "Audit" or "NoAudit".

Example: SERVER_ID="1"

• SQLTEXT

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. This attribute appears only if the NAME value is "Query" or "Execute".

The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so the
value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example: SQLTEXT="DELETE FROM t1"

• STARTUP_OPTIONS

A string representing the options that were given on the command line or in option files when the
MySQL server was started. This attribute appears only if the NAME value is "Audit".

Example: STARTUP_OPTIONS="--port=3306 --log-output=FILE"

• STATUS

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Section B.3, “Server Error Codes and
Messages”.

Warnings are not logged.

Example: STATUS="1051"

• USER

A string representing the user name sent by the client. This may be different from the PRIV_USER
value. This attribute appears only if the NAME value is "Connect" or "Change user".

• VERSION

An unsigned integer representing the version of the audit log file format. This attribute appears only if
the NAME value is "Audit".

Example: VERSION="1"

6.3.15.4 Audit Log Plugin Logging Control

This section describes how the audit_log plugin performs logging and the system variables that
control how logging occurs. It assumes familiarity with the log file format described in Section 6.3.15.3,
“The Audit Log File”.

When the audit log plugin opens its log file, it checks whether the XML declaration and opening
<AUDIT> root element tag must be written and writes them if so. When the audit log plugin terminates,
it writes a closing </AUDIT> tag to the file.

If the log file exists at open time, the plugin checks whether the file ends with an </AUDIT> tag and
truncates it if so before writing any <AUDIT_RECORD> elements. If the log file exists but does not end
with </AUDIT> or the </AUDIT> tag cannot be truncated, the plugin considers the file malformed and

MySQL Enterprise Audit Log Plugin

962

fails to initialize. This can occur if the server crashes or is killed with the audit log plugin running. No
logging occurs until the problem is rectified. Check the error log for diagnostic information:

[ERROR] Plugin 'audit_log' init function returned error.

To deal with this problem, you must either remove or rename the malformed log file and restart the
server.

The MySQL server calls the audit log plugin to write an <AUDIT_RECORD> element whenever an
auditable event occurs, such as when it completes execution of an SQL statement received from
a client. Typically the first <AUDIT_RECORD> element written after server startup has the server
description and startup options. Elements following that one represent events such as client connect
and disconnect events, executed SQL statements, and so forth. Only top-level statements are logged,
not statements within stored programs such as triggers or stored procedures. Contents of files
referenced by statements such as LOAD DATA INFILE are not logged.

To permit control over how logging occurs, the audit_log plugin provides several system variables,
described following. For more information, see Section 6.3.15.6, “Audit Log Plugin Options and
Variables”.

Audit Log File Naming

To control the audit log file name, set the audit_log_file system variable at server startup. By
default, the name is audit.log in the server data directory. For security reasons, the audit log file
should be written to a directory accessible only to the MySQL server and users with a legitimate reason
to view the log.

Audit Logging Strategy

The audit log plugin can use any of several strategies for log writes. To specify a strategy, set
the audit_log_strategy system variable at server startup. By default, the strategy value is
ASYNCHRONOUS and the plugin logs asynchronously to a buffer, waiting if the buffer is full. It's possible
to tell the plugin not to wait (PERFORMANCE) or to log synchronously, either using file system caching
(SEMISYNCHRONOUS) or forcing output with a sync() call after each write request (SYNCHRONOUS).

Asynchronous logging strategy has these characteristics:

• Minimal impact on server performance and scalability.

• Blocking of threads that generate audit events for the shortest possible time; that is, time to allocate
the buffer plus time to copy the event to the buffer.

• Output goes to the buffer. A separate thread handles writes from the buffer to the log file.

A disadvantage of PERFORMANCE strategy is that it drops events when the buffer is full. For a heavily
loaded server, it is more likely that the audit log will be missing events.

With asynchronous logging, the integrity of the log file may be compromised if a problem occurs
during a write to the file or if the plugin does not shut down cleanly (for example, in the event that the
server host crashes). To reduce this risk, set audit_log_strategy to use synchronous logging.
Regardless of strategy, logging occurs on a best-effort basis, with no guarantee of consistency.

Audit Log Space Management

The audit log plugin provides several system variables that enable you to manage the space used by
its log files:

• audit_log_buffer_size: Set this variable at server startup to set the size of the buffer for
asynchronous logging. The plugin uses a single buffer, which it allocates when it initializes and
removes when it terminates. The plugin allocates this buffer only if logging is asynchronous.

MySQL Enterprise Audit Log Plugin

963

• audit_log_rotate_on_size, audit_log_flush: These variables permit audit log file rotation
and flushing. The audit log file has the potential to grow very large and consume a lot of disk space.
To manage the space used, either enable automatic log rotation, or manually rename the audit file
and flush the log to open a new file. The renamed file can be removed or backed up as desired.

By default, audit_log_rotate_on_size=0 and there is no log rotation. In this case, the audit log
plugin closes and reopens the log file when the audit_log_flush value changes from disabled
to enabled. Log file renaming must be done externally to the server. Suppose that you want to
maintain the three most recent log files, which cycle through the names audit.log.1.xml through
audit.log.3.xml. On Unix, perform rotation manually like this:

1. From the command line, rename the current log files:

shell> mv audit.log.2.xml audit.log.3.xml
shell> mv audit.log.1.xml audit.log.2.xml
shell> mv audit.log audit.log.1.xml

At this point, the plugin is still writing to the current log file, which has been renamed to
audit.log.1.xml.

2. Connect to the server and flush the log file so the plugin closes it and reopens a new audit.log
file:

mysql> SET GLOBAL audit_log_flush = ON;

If audit_log_rotate_on_size is greater than 0, setting audit_log_flush has no effect. In
this case, the audit log plugin closes and reopens its log file whenever a write to the file causes
its size to exceed the audit_log_rotate_on_size value. The plugin renames the original file
to have an extension consisting of a timestamp and .xml suffix. For example, audit.log might
be renamed to audit.log.13792588477726520.xml. The last 7 digits of the timestamp are a
fractional second part. The first 10 digits are a Unix timestamp value that can be interpreted using
the FROM_UNIXTIME() function:

mysql> SELECT FROM_UNIXTIME(1379258847);
+---------------------------+
| FROM_UNIXTIME(1379258847) |
+---------------------------+
| 2013-09-15 10:27:27 |
+---------------------------+

Audit Log Filtering

The audit log plugin can filter audited events. This enables you to control whether it writes events to the
audit log file based on the account from which events originate or event status. Status filtering occurs
separately for connection events and statement events.

Event Filtering by Account

To filter audited events based on the originating account, set one of these system variables at server
startup or runtime:

• audit_log_include_accounts: The accounts to include in audit logging. If this variable is set,
only these accounts are audited.

• audit_log_exclude_accounts: The accounts to exclude from audit logging. If this variable is
set, all but these accounts are audited.

The value for either variable can be NULL or a string containing one or more comma-separated account
names, each in user_name@host_name format. By default, both variables are NULL, in which case,
no account filtering is done and auditing occurs for all accounts.

MySQL Enterprise Audit Log Plugin

964

Modifications to audit_log_include_accounts or audit_log_exclude_accounts affect only
connections created subsequent to the modification, not existing connections.

Example: To enable audit logging only for the user1 and user2 local host account accounts, set the
audit_log_include_accounts system variable like this:

SET GLOBAL audit_log_include_accounts = 'user1@localhost,user2@localhost';

Only one of audit_log_include_accounts or audit_log_exclude_accounts can be
non-NULL at a time:

• If you set audit_log_include_accounts, the server sets audit_log_exclude_accounts to
NULL.

• If you attempt to set audit_log_exclude_accounts, an error occurs unless
audit_log_include_accounts is NULL. In this case, you must first clear
audit_log_include_accounts by setting it to NULL.

-- This sets audit_log_exclude_accounts to NULL
SET GLOBAL audit_log_include_accounts = value;

-- This fails because audit_log_include_accounts is not NULL
SET GLOBAL audit_log_exclude_accounts = value;

-- To set audit_log_exclude_accounts, first set
-- audit_log_include_accounts to NULL
SET GLOBAL audit_log_include_accounts = NULL;
SET GLOBAL audit_log_exclude_accounts = value;

If you inspect the value of either variable, be aware that SHOW VARIABLES displays NULL as an empty
string. To avoid this, use SELECT instead:

mysql> SHOW VARIABLES LIKE 'audit_log_include_accounts';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| audit_log_include_accounts | |
+----------------------------+-------+
mysql> SELECT @@audit_log_include_accounts;
+------------------------------+
| @@audit_log_include_accounts |
+------------------------------+
| NULL |
+------------------------------+

If a user name or host name requires quoting because it contains a comma, space, or other special
character, quote it using single quotes. If the variable value itself is quoted with single quotes, double
each inner single quote or escape it with a backslash. The following statements each enable audit
logging for the local root account and are equivalent, even though the quoting styles differ:

SET GLOBAL audit_log_include_accounts = 'root@localhost';
SET GLOBAL audit_log_include_accounts = '''root''@''localhost''';
SET GLOBAL audit_log_include_accounts = '\'root\'@\'localhost\'';
SET GLOBAL audit_log_include_accounts = "'root'@'localhost'";

The last statement will not work if the ANSI_QUOTES SQL mode is enabled because in that mode
double quotes signify identifier quoting, not string quoting.

Event Filtering by Status

To filter audited events based on status, set these system variables at server startup or runtime:

• audit_log_connection_policy: Logging policy for connection events

MySQL Enterprise Audit Log Plugin

965

• audit_log_statement_policy: Logging policy for statement events

Each variable takes a value of ALL (log all associated events; this is the default), ERRORS (log only
failed events), or NONE (do not log events). For example, to log all statement events but only failed
connection events, use these settings:

SET GLOBAL audit_log_statement_policy = ALL;
SET GLOBAL audit_log_connection_policy = ERRORS;

Another policy system variable, audit_log_policy, is available but does not afford as much control
as audit_log_connection_policy and audit_log_statement_policy. It can be set only
at server startup. At runtime, it is a read-only variable. It takes a value of ALL (log all events; this is
the default), LOGINS (log connection events), QUERIES (log statement events), or NONE (do not log
events). For any of those values, the audit log plugin logs all selected events without distinction as to
success or failure. Use of audit_log_policy at startup works as follows:

• If you do not set audit_log_policy or set it to its default of ALL, any explicit settings for
audit_log_connection_policy or audit_log_statement_policy apply as specified. If not
specified, they default to ALL.

• If you set audit_log_policy to a non-ALL value, that value takes precedence over and is used to
set audit_log_connection_policy and audit_log_statement_policy, as indicated in the
following table. If you also set either of those variables to a value other than their default of ALL, the
server writes a message to the error log to indicate that their values are being overridden.

Startup audit_log_policy
Value

Resulting
audit_log_connection_policy
Value

Resulting
audit_log_statement_policy
Value

LOGINS ALL NONE

QUERIES NONE ALL

NONE NONE NONE

Event Filtering Reporting

To check the effect of filtering, you can inspect the values of these status variables:

• Audit_log_events: The number of events handled by the audit log plugin, whether or not they
were written to the log based on filtering policy.

• Audit_log_events_filtered: The number of events handled by the audit log plugin that were
filtered (not written to the log) based on filtering policy.

• Audit_log_events_written: The number of events written to the audit log.

6.3.15.5 Audit Log Plugin Option and Variable Reference

Table 6.18 Audit Log Plugin Option/Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit-log Yes Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

Audit_log_current_size Yes Global No

Audit_log_event_max_drop_size Yes Global No

Audit_log_events Yes Global No

MySQL Enterprise Audit Log Plugin

966

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Audit_log_events_filtered Yes Global No

Audit_log_events_lost Yes Global No

Audit_log_events_written Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_flush Yes Global Yes

audit_log_format Yes Yes Yes Global No

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_policy Yes Yes Yes Global No

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategy Yes Yes Yes Global No

Audit_log_total_size Yes Global No

Audit_log_write_waits Yes Global No

6.3.15.6 Audit Log Plugin Options and Variables

This section describes the command options and system variables that control operation of the audit
log plugin. If values specified at startup time are incorrect, the plugin may fail to initialize properly and
the server does not load it. In this case, the server may also produce error messages for other audit log
settings because it will not recognize them.

To control the activation of the audit_log plugin, use this option:

• --audit-log[=value]

Introduced 5.7.9

Command-Line Format --audit-log[=value]

Type enumeration

Default ON

ON

OFF

FORCE

Permitted Values

Valid
Values

FORCE_PLUS_PERMANENT

This option controls how the server loads the audit_log plugin at startup. It is available only if the
audit log plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-
load. See Section 6.3.15.1, “Installing the Audit Log Plugin”.

The option value should be one of those available for plugin-loading options, as described
in Section 5.1.8.1, “Installing and Uninstalling Plugins”. For example, --audit-
log=FORCE_PLUS_PERMANENT tells the server to load the plugin and prevent it from being removed
while the server is running.

If the audit_log plugin is installed, it exposes several system variables that permit control over
logging: These variables are available only if the audit_log plugin is enabled.

mysql> SHOW VARIABLES LIKE 'audit_log%';
+-----------------------------+--------------+
| Variable_name | Value |

MySQL Enterprise Audit Log Plugin

967

+-----------------------------+--------------+
audit_log_buffer_size	1048576
audit_log_connection_policy	ALL
audit_log_current_session	ON
audit_log_exclude_accounts	
audit_log_file	audit.log
audit_log_flush	OFF
audit_log_format	NEW
audit_log_include_accounts	
audit_log_policy	ALL
audit_log_rotate_on_size	0
audit_log_statement_policy	ALL
audit_log_strategy	ASYNCHRONOUS
+-----------------------------+--------------+

You can set any of these variables at server startup, and some of them at runtime.

• audit_log_buffer_size

Introduced 5.7.9

Command-Line Format --audit_log_buffer_size=value

Name audit_log_buffer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1048576

Min
Value

4096

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1048576

Min
Value

4096

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

When the audit log plugin writes events to the log asynchronously, it uses a buffer to store event
contents prior to writing them. This variable controls the size of that buffer, in bytes. The server
adjusts the value to a multiple of 4096. The plugin uses a single buffer, which it allocates when
it initializes and removes when it terminates. The plugin allocates this buffer only if logging is
asynchronous.

• audit_log_connection_policy

Introduced 5.7.9

Command-Line Format --audit_log_connection_policy=value

Name audit_log_connection_policy

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type enumeration

MySQL Enterprise Audit Log Plugin

968

Default ALL

ALL

ERRORS

Valid
Values

NONE

The policy controlling how the audit log plugin writes connection events to its log file. The following
table shows the permitted values.

Value Description

ALL Log all connection events

ERRORS Log only failed connection events

NONE Do not log connection events

Note

At server startup, any explicit value given for
audit_log_connection_policy may be overridden if
audit_log_policy is also specified, as described in Section 6.3.15.4,
“Audit Log Plugin Logging Control”.

• audit_log_current_session

Introduced 5.7.9

Name audit_log_current_session

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default depends on filtering policy

Whether audit logging is enabled for the current session. The session value of this variable is read
only. It is set when the session begins based on the values of the audit_log_include_accounts
and audit_log_exclude_accounts system variables. The audit log plugin uses the session
value to determine whether to audit events for the session. (There is a global value, but the plugin
does not use it.)

• audit_log_exclude_accounts

Introduced 5.7.9

Command-Line Format --audit_log_exclude_accounts=value

Name audit_log_exclude_accounts

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default NULL

The accounts for which events should not be logged. The value should be NULL or a string
containing a list of one or more comma-separated account names. For more information, see
Section 6.3.15.4, “Audit Log Plugin Logging Control”.

MySQL Enterprise Audit Log Plugin

969

Modifications to audit_log_exclude_accounts affect only connections created subsequent to
the modification, not existing connections.

• audit_log_file

Introduced 5.7.9

Command-Line Format --audit_log_file=file_name

Name audit_log_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default audit.log

The name of the file to which the audit log plugin writes events. The default value is audit.log.
If the file name is a relative path, the server interprets it relative to the data directory. For security
reasons, the audit log file should be written to a directory accessible only to the MySQL server and
users with a legitimate reason to view the log.

• audit_log_flush

Introduced 5.7.9

Name audit_log_flush

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When this variable is set to enabled (1 or ON), the audit log plugin closes and reopens its log file to
flush it. (The value remains OFF so that you need not disable it explicitly before enabling it again to
perform another flush.) Enabling this variable has no effect unless audit_log_rotate_on_size
is 0.

• audit_log_format

Introduced 5.7.9

Command-Line Format --audit_log_format=value

Name audit_log_format

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type enumeration

Default NEW

OLD

Permitted Values (>=
5.7.9)

Valid
Values NEW

MySQL Enterprise Audit Log Plugin

970

The audit log file format. Permitted values are OLD and NEW (default NEW). For details about each
format, see Section 6.3.15.3, “The Audit Log File”.

If you change the value of audit_log_format, use this procedure to avoid writing log entries in
one format to an existing log file that contains entries in a different format:

1. Stop the server.

2. Rename the current audit log file manually.

3. Restart the server with the new value of audit_log_format. The audit log plugin will create a
new log file, which will contain log entries in the selected format.

• audit_log_include_accounts

Introduced 5.7.9

Command-Line Format --audit_log_include_accounts=value

Name audit_log_include_accounts

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default NULL

The accounts for which events should be logged. The value should be NULL or a string containing
a list of one or more comma-separated account names. For more information, see Section 6.3.15.4,
“Audit Log Plugin Logging Control”.

Modifications to audit_log_include_accounts affect only connections created subsequent to
the modification, not existing connections.

• audit_log_policy

Introduced 5.7.9

Command-Line Format --audit_log_policy=value

Name audit_log_policy

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type enumeration

Default ALL

ALL

LOGINS

QUERIES

Permitted Values

Valid
Values

NONE

The policy controlling how the audit log plugin writes events to its log file. The following table shows
the permitted values.

MySQL Enterprise Audit Log Plugin

971

Value Description

ALL Log all events

LOGINS Log only login events

QUERIES Log only query events

NONE Log nothing (disable the audit stream)

audit_log_policy can be set only at server startup. At runtime, it is a read-only
variable. Two other system variables, audit_log_connection_policy and
audit_log_statement_policy, provide finer control over logging policy and can be set either at
startup or at runtime. If you use audit_log_policy at startup instead of the other two variables,
the server uses its value to set those variables. For more information about the policy variables and
their interaction, see Section 6.3.15.4, “Audit Log Plugin Logging Control”.

• audit_log_rotate_on_size

Introduced 5.7.9

Command-Line Format --audit_log_rotate_on_size=N

Name audit_log_rotate_on_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

If the audit_log_rotate_on_size value is greater than 0, the audit log plugin closes and
reopens its log file if a write to the file causes its size to exceed this value. The original file is
renamed to have a timestamp extension.

If the audit_log_rotate_on_size value is 0, the plugin does not close and reopen its log based
on size. Instead, use audit_log_flush to close and reopen the log on demand. In this case,
rename the file externally to the server before flushing it.

For more information about audit log file rotation and timestamp interpretation, see Section 6.3.15.4,
“Audit Log Plugin Logging Control”.

If you set this variable to a value that is not a multiple of 4096, it is truncated to the nearest multiple.
(Thus, setting it to a value less than 4096 has the effect of setting it to 0 and no rotation occurs.)

• audit_log_statement_policy

Introduced 5.7.9

Command-Line Format --audit_log_statement_policy=value

Name audit_log_statement_policy

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values

Default ALL

MySQL Enterprise Audit Log Plugin

972

ALL

ERRORS

Valid
Values

NONE

The policy controlling how the audit log plugin writes statement events to its log file. The following
table shows the permitted values.

Value Description

ALL Log all statement events

ERRORS Log only failed statement events

NONE Do not log statement events

Note

At server startup, any explicit value given for
audit_log_statement_policy may be overridden if
audit_log_policy is also specified, as described in Section 6.3.15.4,
“Audit Log Plugin Logging Control”.

• audit_log_strategy

Introduced 5.7.9

Command-Line Format --audit_log_strategy=value

Name audit_log_strategy

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type enumeration

Default ASYNCHRONOUS

ASYNCHRONOUS

PERFORMANCE

SEMISYNCHRONOUS

Permitted Values

Valid
Values

SYNCHRONOUS

The logging method used by the audit log plugin. The following table describes the permitted values.

Table 6.19 Audit Log Strategies

Value Meaning

ASYNCHRONOUS Log asynchronously, wait for space in output buffer

PERFORMANCE Log asynchronously, drop request if insufficient space in output buffer

SEMISYNCHRONOUS Log synchronously, permit caching by operating system

SYNCHRONOUS Log synchronously, call sync() after each request

6.3.15.7 Audit Log Plugin Status Variables

The audit log plugin supports the following status variables. They are available only if the audit_log
plugin is enabled.

• Audit_log_current_size

SQL-Based MySQL Account Activity Auditing

973

The size of the current audit log file. The value increases when an event is written to the log and is
reset to 0 when the log is rotated.

• Audit_log_event_max_drop_size

The size of the largest dropped event in performance logging mode. For a description of logging
modes, see Section 6.3.15.4, “Audit Log Plugin Logging Control”.

• Audit_log_events

The number of events handled by the audit log plugin, whether or not they were written to the log
based on filtering policy (see Section 6.3.15.4, “Audit Log Plugin Logging Control”).

• Audit_log_events_filtered

The number of events handled by the audit log plugin that were filtered (not written to the log) based
on filtering policy (see Section 6.3.15.4, “Audit Log Plugin Logging Control”).

• Audit_log_events_lost

The number of events lost in performance logging mode because an event was larger than
than the available audit log buffer space. This value may be useful for assessing how to set
audit_log_buffer_size to size the buffer for performance mode. For a description of logging
modes, see Section 6.3.15.4, “Audit Log Plugin Logging Control”.

• Audit_log_events_written

The number of events written to the audit log.

• Audit_log_total_size

The total size of events written to all audit log files. Unlike Audit_log_current_size, the value of
Audit_log_total_size increases even when the log is rotated.

• Audit_log_write_waits

The number of times an event had to wait for space in the audit log buffer in asynchronous logging
mode. For a description of logging modes, see Section 6.3.15.4, “Audit Log Plugin Logging Control”.

6.3.15.8 Audit Log Plugin Restrictions

The audit log plugin is subject to these restrictions:

• Only top-level statements are logged, not statements within stored programs such as triggers or
stored procedures.

• Contents of files referenced by statements such as LOAD DATA INFILE are not logged.

6.3.16 SQL-Based MySQL Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity
to MySQL accounts.

MySQL accounts correspond to rows in the mysql.user table. When a client connects successfully,
the server authenticates the client to a particular row in this table. The User and Host column values
in this row uniquely identify the account and correspond to the 'user_name'@'host_name' format in
which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT_USER() function can be invoked to determine which account this is for the client user. Its
value is constructed from the User and Host columns of the user table row for the account.

SQL-Based MySQL Account Activity Auditing

974

However, there are circumstances under which the CURRENT_USER() value corresponds not to the
client user but to a different account. This occurs in contexts when privilege checking is not based the
client's account:

• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic

• Views defined with the SQL SECURITY DEFINER characteristic

• Triggers and events

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER()
refers to that account, not to the account for the client who invoked the stored routine or view or who
caused the trigger to activate. To determine the invoking user, you can call the USER() function, which
returns a value indicating the actual user name provided by the client and the host from which the client
connected. However, this value does not necessarily correspond directly to an account in the user
table, because the USER() value never contains wildcards, whereas account values (as returned by
CURRENT_USER()) may contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables
clients to connect as an anonymous user from the local host with any user name. In this case, if a client
connects as user1 from the local host, USER() and CURRENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+

The host name part of an account can contain wildcards, too. If the host name contains a '%' or
'_' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT_USER() value will not indicate which one. For example, the account
'user2'@'%.example.com' can be used by user2 to connect from any host in the example.com
domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return
different values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within
triggers) but must also be able to associate the USER() value with an account in the user table, it
is necessary to avoid accounts that contain wildcards in the User or Host column. Specifically, do
not permit User to be empty (which creates an anonymous-user account), and do not permit pattern
characters or netmask notation in Host values. All accounts must have a nonempty User value and
literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com'
accounts should be changed not to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the
SUBSTRING_INDEX() function:

MySQL Enterprise Firewall

975

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+--+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+--+
| localhost |
+--+

6.3.17 MySQL Enterprise Firewall

Note

MySQL Enterprise Firewall is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
http://www.mysql.com/products/.

As of MySQL 5.7.9, MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-
level firewall that enables database administrators to permit or deny SQL statement execution based
on matching against whitelists of accepted statement patterns. This helps harden MySQL Server
against attacks such as SQL injection or attempts to exploit applications by using them outside of their
legitimate query workload characteristics.

Each MySQL account registered with the firewall has its own statement whitelist, enabling protection
to be tailored per account. For a given account, the firewall can operate in recording, protecting, or
detecting mode, for training in the accepted statement patterns, active protection against unacceptable
statements, or passive detection of unacceptable statements. The diagram illustrates how the firewall
processes incoming statements in each mode.

Figure 6.1 MySQL Enterprise Firewall Operation

The following sections describe the components of MySQL Enterprise Firewall, discuss how to install
and use it, and provide reference information for its components.

http://www.mysql.com/products/

MySQL Enterprise Firewall

976

6.3.17.1 MySQL Enterprise Firewall Components

MySQL Enterprise Firewall is based on a plugin library that implements these components:

• A server-side plugin named MYSQL_FIREWALL examines SQL statements before they execute and,
based on its in-memory cache, renders a decision whether to execute or reject each statement.

• Server-side plugins named MYSQL_FIREWALL_USERS and MYSQL_FIREWALL_WHITELIST
implement INFORMATION_SCHEMA tables that provide views into the firewall data cache.

• System tables named firewall_users and firewall_whitelist in the mysql database
provide persistent storage of firewall data.

• Stored procedures named sp_set_firewall_mode() and sp_reload_firewall_rules()
perform tasks such as registering MySQL accounts with the firewall, establishing their operational
mode, and managing transfer of firewall data between the cache and the underlying system tables.

• A set of user-defined functions provides an SQL-level API for lower-level tasks such as
synchronizing the cache with the underlying system tables.

• System variables enable firewall configuration and status variables provide runtime operational
information.

6.3.17.2 Installing or Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall installation is a one-time operation that installs the components described
in Section 6.3.17.1, “MySQL Enterprise Firewall Components”. Installation can be performed using a
graphical interface or manually:

• On Windows, MySQL Installer includes an option to enable MySQL Enterprise Firewall for you.

• MySQL Workbench 6.3.4 or higher can install MySQL Enterprise Firewall, enable or disable an
installed firewall, or uninstall the firewall.

• Manual MySQL Enterprise Firewall installation involves running a script located in the share
directory of your MySQL installation.

Note

If installed, MySQL Enterprise Firewall involves some minimal overhead even
when disabled. To avoid this overhead, do not install the firewall unless you
plan to use it.

Note

MySQL Enterprise Firewall does not work together with the query cache.
If the query cache is enabled, disable it before installing the firewall (see
Section 8.10.3.3, “Query Cache Configuration”).

For usage instructions, see Section 6.3.17.3, “Using MySQL Enterprise Firewall”. For reference
information, see Section 6.3.17.4, “MySQL Enterprise Firewall Reference”.

Installing MySQL Enterprise Firewall

If MySQL Enterprise Firewall is already installed from an older version version of MySQL, uninstall it
using the instructions given later in this section before installing the current version. In this case, it is
also necessary to register your configuration again.

On Windows, you can use MySQL Installer to install MySQL Enterprise Firewall, as shown in
Figure 6.2, “MySQL Enterprise Firewall Installation on Windows”. Check the Enable Enterprise
Firewall checkbox. (Open Firewall port for network access has a different purpose. It refers to

MySQL Enterprise Firewall

977

Windows Firewall and controls whether Windows blocks the TCP/IP port on which the MySQL server
listens for client connections.)

Figure 6.2 MySQL Enterprise Firewall Installation on Windows

To install MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL Enterprise
Firewall Interface.

To install MySQL Enterprise Firewall manually, look in the share directory of your MySQL installation
and choose the script that is appropriate for your platform. The available scripts differ in the suffix used
to refer to the plugin library file:

• win_install_firewall.sql: Choose this script for Windows systems that use .dll as the file
name suffix.

• linux_install_firewall.sql: Choose this script for Linux and similar systems that use .so as
the file name suffix.

The installation script creates stored procedures in the default database, so choose a database to use.
Then run the script as follows, naming the chosen database on the command line. The example here
uses the mysql database and the Linux installation script. Make the appropriate substitutions for your
system.

shell> mysql -u root -p mysql < linux_install_firewall.sql
Enter password: (enter root password here)

Installing MySQL Enterprise Firewall either using a graphical interface or manually should enable the
firewall. To verify that, connect to the server and execute this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'mysql_firewall_mode';

http://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
http://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

978

+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| mysql_firewall_mode | ON |
+---------------------+-------+

Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall can be uninstalled using MySQL Workbench or manually.

To uninstall MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL
Enterprise Firewall Interface.

To uninstall MySQL Enterprise Firewall manually, execute the following statements. It is assumed that
the stored procedures were created in the mysql database. Adjust the DROP PROCEDURE statements
appropriately if the procedures were created in a different database.

DROP TABLE mysql.firewall_whitelist;
DROP TABLE mysql.firewall_users;
UNINSTALL PLUGIN mysql_firewall;
UNINSTALL PLUGIN mysql_firewall_whitelist;
UNINSTALL PLUGIN mysql_firewall_users;
DROP FUNCTION set_firewall_mode;
DROP FUNCTION normalize_statement;
DROP FUNCTION read_firewall_whitelist;
DROP FUNCTION read_firewall_users;
DROP FUNCTION mysql_firewall_flush_status;
DROP PROCEDURE mysql.sp_set_firewall_mode;
DROP PROCEDURE mysql.sp_reload_firewall_rules;

6.3.17.3 Using MySQL Enterprise Firewall

Before using MySQL Enterprise Firewall, install it according to the instructions at Section 6.3.17.2,
“Installing or Uninstalling MySQL Enterprise Firewall”. Also, MySQL Enterprise Firewall does not work
together with the query cache; disable the query cache if it is enabled (see Section 8.10.3.3, “Query
Cache Configuration”).

This section describes how to configure MySQL Enterprise Firewall using SQL statements.
Alternatively, MySQL Workbench 6.3.4 or higher provides a graphical interface for firewall control. See
MySQL Enterprise Firewall Interface.

To enable or disable the firewall, set the mysql_firewall_mode system variable. By default, this
variable is enabled when the firewall is installed. To control the initial firewall state explicitly, you can
set the variable at server startup. For example, to enable the firewall in an option file, use these lines:

[mysqld]
mysql_firewall_mode=ON

It is also possible to disable or enable the firewall at runtime:

mysql> SET GLOBAL mysql_firewall_mode = OFF;
mysql> SET GLOBAL mysql_firewall_mode = ON;

In addition to the global on/off firewall mode, each account registered with the firewall has its own
operational mode. For an account in recording mode, the firewall learns an application's “fingerprint,”
that is, the acceptable statement patterns that, taken together, form a whitelist. After training, switch
the firewall to protecting mode to harden MySQL against access by statements that deviate from
the fingerprint. For additional training, switch the firewall back to recording mode as necessary to
update the whitelist with new statement patterns. An intrusion-detection mode is available that writes
suspicious statements to the error log but does not deny access.

The firewall maintains whitelist rules on a per-account basis, enabling implementation of protection
strategies such as these:

http://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
http://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
http://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

979

• For an application that has unique protection requirements, configure it to use an account that is not
used for any other purpose.

• For applications that are related and share protection requirements, configure them as a group to
use the same account.

Firewall operation is based on conversion of SQL statements to normalized digest form.
Firewall digests are like the statement digests used by the Performance Schema (see
Section 21.7, “Performance Schema Statement Digests”). However, unlike the Performance
Schema, the relevant digest-related system variables are max_digest_length and
mysql_firewall_max_query_size.

For a connection from a registered account, the firewall converts each incoming statement to
normalized form and processes it according to the account mode:

• In recording mode, the firewall adds the normalized statement to the account whitelist rules.

• In protecting mode, the firewall compares the normalized statement to the account whitelist rules. If
there is a match, the statement passes and the server continues to process it. Otherwise, the server
rejects the statement and returns an error to the client. The firewall also writes the rejected statement
to the error log if the mysql_firewall_trace system variable is enabled.

• In detecting mode, the firewall matches statements as in protecting mode, but writes nonmatching
statements to the error log without denying access.

Accounts that have a mode of OFF or are not registered with the firewall are ignored by it.

To protect an account using MySQL Enterprise Firewall, follow these steps:

1. Register the account and put it in recording mode.

2. Connect to the MySQL server using the registered account and execute statements to be learned.
This establishes the account's whitelist of accepted statements.

3. Switch the registered account to protecting mode.

The following example shows how to register an account with the firewall, use the firewall to learn
acceptable statements for that account, and protect the account against execution of unacceptable
statements. The example account, 'fwuser'@'localhost', is for use by an application that
accesses tables in the sakila database. (This database is available at http://dev.mysql.com/doc/
index-other.html.)

Note

The user and host parts of the account name are quoted separately for
statements such as CREATE USER and GRANT, whereas to specify an
account for use with a firewall component, name it as a single quoted string
'fwuser@localhost'.

The convention for naming accounts as a single quoted string for firewall
components means that you cannot use accounts that have embedded @
characters in the user name.

Perform the steps in the following procedure using an administrative MySQL account, except those
designated for execution by the account registered with the firewall. The default database should be
sakila for statements executed using the registered account.

1. If necessary, create the account to be protected (choose an appropriate password) and grant it
privileges for the sakila database:

mysql> CREATE USER 'fwuser'@'localhost' IDENTIFIED BY 'fWp@3sw0rd';

http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/index-other.html

MySQL Enterprise Firewall

980

mysql> GRANT ALL ON sakila.* TO 'fwuser'@'localhost';

2. Use the sp_set_firewall_mode() stored procedure to register the account with the firewall and
place it in recording mode (if the procedure is located in a database other than mysql, adjust the
statement accordingly):

mysql> CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'RECORDING');

During the course of its execution, the stored procedure invokes firewall user-defined functions,
which may produce output of their own.

3. Using the registered account, connect to the server, then execute some statements that are
legitimate for it:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = 1;
mysql> UPDATE rental SET return_date = NOW() WHERE rental_id = 1;
mysql> SELECT get_customer_balance(1, NOW());

The firewall converts the statements to digest form and records them in the account whitelist.

Note

Until the account executes statements in recording mode, its whitelist is
empty, which is equivalent to “deny all.” If switched to protecting mode, the
account will be effectively prohibited from executing statements.

4. At this point, the user and whitelist information is cached and can be seen in the firewall
INFORMATION_SCHEMA tables:

mysql> SELECT MODE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_USERS
 -> WHERE USERHOST = 'fwuser@localhost';
+-----------+
| MODE |
+-----------+
| RECORDING |
+-----------+
mysql> SELECT RULE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_WHITELIST
 -> WHERE USERHOST = 'fwuser@localhost';
+--+
| RULE |
+--+
| SELECT `first_name` , `last_name` FROM `customer` WHERE `customer_id` = ? |
| SELECT `get_customer_balance` (? , NOW ()) |
| UPDATE `rental` SET `return_date` = NOW () WHERE `rental_id` = ? |
| SELECT @@`version_comment` LIMIT ? |
+--+

Note

The @@version_comment rule comes from a statement sent automatically
by the mysql client when you connect to the server as the registered user.

It is important to train the firewall under conditions matching application use.
For example, a given MySQL connector might send statements to the server
at the beginning of a connection to determine server characteristics and
capabilities. If an application normally is used through that connector, train
the firewall that way, too. That enables those initial statements to become
part of the whitelist for the account associated with the application.

5. Use the stored procedure to switch the registered user to protecting mode:

mysql> CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'PROTECTING');

MySQL Enterprise Firewall

981

Important

Switching the account out of RECORDING mode synchronizes its firewall
cache data to the underlying mysql system database tables for persistent
storage. If you do not switch the mode for a user who is being recorded, the
cached whitelist data is not written to the system tables and will be lost when
the server is restarted.

6. Using the registered account, execute some acceptable and unacceptable statements. The firewall
matches each one against the account whitelist and accepts or rejects it.

This statement is not identical to a training statement but produces the same normalized statement
as one of them, so the firewall accepts it:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = '48';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| ANN | EVANS |
+------------+-----------+

These statements do not match anything in the whitelist and each results in an error:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = 1 OR TRUE;
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> SHOW TABLES LIKE 'customer%';
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> TRUNCATE TABLE mysql.slow_log;
ERROR 1045 (28000): Statement was blocked by Firewall

The firewall also writes the rejected statements to the error log if the mysql_firewall_trace
system variable is enabled. For example:

[Note] Plugin MYSQL_FIREWALL reported:
'ACCESS DENIED for fwuser@localhost. Reason: No match in whitelist.
Statement: TRUNCATE TABLE `mysql` . `slow_log` '

You can use these log messages in your efforts to identify the source of attacks.

7. You can log nonmatching statements as suspicious without denying access. To do this, put the
account in intrusion-detecting mode:

mysql> CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'DETECTING');

8. Using the registered account, connect to the server, then execute some statement does not match
the whitelist:

mysql> SHOW TABLES LIKE 'customer%';
+------------------------------+
| Tables_in_sakila (customer%) |
+------------------------------+
| customer |
| customer_list |
+------------------------------+

In detecting mode, the firewall permits the nonmatching statement to execute but writes a message
to the error log:

[Note] Plugin MYSQL_FIREWALL reported:
'SUSPICIOUS STATEMENT from 'fwuser@localhost'. Reason: No match in whitelist.

MySQL Enterprise Firewall

982

Statement: SHOW TABLES LIKE ? '

9. To assess firewall activity, examine its status variables:

mysql> SHOW GLOBAL STATUS LIKE 'Firewall%';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
Firewall_access_denied	3
Firewall_access_granted	4
Firewall_access_suspicious	1
Firewall_cached_entries	4
+----------------------------+-------+

The variables indicate the number of statements rejected, accepted, logged as suspicious, and
added to the cache, respectively. The Firewall_access_granted count is 4 because of the
@@version_comment statement sent by the mysql client each of the three time you used it
to connect as the registered user, plus the SHOW TABLES statement that was not blocked in
DETECTING mode.

Should additional training for an account be necessary, switch it to recording mode again, then back to
protecting mode after executing statements to be added to the whitelist.

6.3.17.4 MySQL Enterprise Firewall Reference

The following discussion serves as a reference to these MySQL Enterprise Firewall components:

• Firewall tables in the mysql and INFORMATION_SCHEMA databases

• Firewall procedures and functions

• Firewall system and status variables

MySQL Enterprise Firewall Tables

MySQL Enterprise Firewall maintains account and whitelist information. It uses
INFORMATION_SCHEMA tables to provide views into cached data, and tables in the mysql system
database to store this data in persistent form. When enabled, the firewall bases its operational
decisions on the cached data.

The INFORMATION_SCHEMA tables are accessible by anyone. The mysql tables can be accessed only
by users with privileges for that database.

The INFORMATION_SCHEMA.MYSQL_FIREWALL_USERS and mysql.firewall_users tables list
registered firewall accounts and their operational modes. The tables have these columns:

• USERHOST

An account registered with the firewall. Each account has the format user_name@host_name
and represents actual user and host names as authenticated by the server. Patterns and netmasks
should not be used when registering users.

• MODE

The current firewall operational mode for the account. The permitted mode values are OFF,
DETECTING, PROTECTING, RECORDING, and RESET. For details about their meanings, see
the description of sp_set_firewall_mode() in MySQL Enterprise Firewall Procedures and
Functions.

The INFORMATION_SCHEMA.MYSQL_FIREWALL_WHITELIST and mysql.firewall_whitelist
tables list registered firewall accounts and their whitelists. The tables have these columns:

• USERHOST

MySQL Enterprise Firewall

983

An account registered with the firewall. The format is the same as for the user account tables.

• RULE

A normalized statement indicating an acceptable statement pattern for the account. An account
whitelist is the union of its rules.

MySQL Enterprise Firewall Procedures and Functions

MySQL Enterprise Firewall has stored procedures that perform tasks such as registering MySQL
accounts with the firewall, establishing their operational mode, and managing transfer of firewall
data between the cache and the underlying system tables. It also has a set of user-defined functions
(UDFs) that provides an SQL-level API for lower-level tasks such as synchronizing the cache with the
underlying system tables.

Under normal operation, the stored procedures implement the user interface. The UDFs are invoked by
the stored procedures, not directly by users.

To invoke a stored procedure when the default database is not the database that contains the
procedure, qualify the procedure name with the database name. For example:

CALL mysql.sp_set_firewall_mode(user, mode);

The following list describes each firewall stored procedure and UDF:

• sp_reload_firewall_rules(user)

This stored procedure uses firewall UDFs to reset a registered account and reload the in-memory
rules for it from the rules stored in the mysql.firewall_whitelist table. This procedure
provides control over firewall operation for individual accounts.

The user argument names the affected account, as a string in user_name@host_name format.

Example:

CALL mysql.sp_reload_firewall_rules('fwuser@localhost');

Warning

This procedure sets the account mode to RESET, which clears the
account whitelist and sets its mode to OFF. If the account mode was
not OFF prior to the sp_reload_firewall_rules() call, use
sp_set_firewall_mode() to restore its previous mode after reloading
the rules. For example, if the account was in PROTECTING mode, that is no
longer true after calling sp_reload_firewall_rules() and you must set
it to PROTECTING again explicitly.

• sp_set_firewall_mode(user, mode)

This stored procedure registers a MySQL account with the firewall and establishes its operational
mode. The procedure also invokes firewall UDFs as necessary to transfer firewall data
between the cache and the underlying system tables. This procedure may be called even if the
mysql_firewall_mode system variable is OFF, although setting the mode for an account has no
operational effect while the firewall is disabled.

The user argument names the affected account, as a string in user_name@host_name format.

The mode is the operational mode for the user, as a string. These mode values are permitted:

• OFF: Disable the firewall for the account.

MySQL Enterprise Firewall

984

• DETECTING: Intrusion-detection mode: Write suspicious (nonmatching) statements to the error log
but do not deny access.

• PROTECTING: Protect the account by matching incoming statements against the account whitelist.

• RECORDING: Training mode: Record acceptable statements for the account. Incoming statements
that do not immediately fail with a syntax error are recorded to become part of the account whitelist
rules.

• RESET: Clear the account whitelist and set the account mode to OFF.

Switching the mode for an account to any mode but RECORDING synchronizes the firewall cache
data to the underlying mysql system database tables for persistent storage. Switching the mode
from OFF to RECORDING reloads the whitelist from the mysql.firewall_whitelist table into the
cache.

If an account has an empty whitelist, setting its mode to PROTECTING produces an error message
that is returned in a result set, but not an SQL error:

mysql> CALL mysql.sp_set_firewall_mode('a@b','PROTECTING');
+--+
| set_firewall_mode(arg_userhost, arg_mode) |
+--+
| ERROR: PROTECTING mode requested for a@b but the whitelist is empty. |
+--+
1 row in set (0.02 sec)

Query OK, 0 rows affected (0.02 sec)

• mysql_firewall_flush_status()

This UDF resets several firewall status variables to 0:

Firewall_access_denied
Firewall_access_granted
Firewall_access_suspicious

Example:

SELECT mysql_firewall_flush_status();

• normalize_statement(stmt)

This UDF normalizes a SQL statement into the digest form used for whitelist rules.

Example:

SELECT normalize_statement('SELECT * FROM t1 WHERE c1 > 2');

• read_firewall_users(user, mode)

This aggregate UDF updates the firewall user cache through a SELECT statement on the
mysql.firewall_users table.

Example:

SELECT read_firewall_users('fwuser@localhost', 'RECORDING')
FROM mysql.firewall_users;

• read_firewall_whitelist(user, rule)

MySQL Enterprise Firewall

985

This aggregate UDF updates the recorded statement cache through a SELECT statement on the
mysql.firewall_whitelist table.

Example:

SELECT read_firewall_whitelist('fwuser@localhost', 'RECORDING')
FROM mysql.firewall_whitelist;

• set_firewall_mode(user, mode)

This UDF manages the user cache and establishes the user operational mode.

Example:

SELECT set_firewall_mode('fwuser@localhost', 'RECORDING');

MySQL Enterprise Firewall System Variables

MySQL Enterprise Firewall supports the following system variables. Use them to configure firewall
operation. These variables are unavailable unless the firewall is installed (see Section 6.3.17.2,
“Installing or Uninstalling MySQL Enterprise Firewall”).

• mysql_firewall_max_query_size

Introduced 5.7.9

Command-Line Format --mysql_firewall_max_query_size=size

Name mysql_firewall_max_query_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4096

Min
Value

0

Permitted Values

Max
Value

4294967295

The maximum size of a normalized statement that can be inserted in the MySQL Enterprise
Firewall cache. Normalized statements longer than this size are truncated. Truncated statements
are discarded if the firewall mode for the current user is RECORDING and rejected if the mode is
PROTECTING.

• mysql_firewall_mode

Introduced 5.7.9

Command-Line Format --mysql_firewall_mode={OFF|ON}

Name mysql_firewall_mode

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

MySQL Enterprise Firewall

986

Default ON

Whether MySQL Enterprise Firewall is enabled (the default) or disabled.

• mysql_firewall_trace

Introduced 5.7.9

Command-Line Format --mysql_firewall_trace={OFF|ON}

Name mysql_firewall_trace

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether the MySQL Enterprise Firewall trace is enabled or disabled (the default). When
mysql_firewall_trace is enabled, for PROTECTING mode, the firewall writes rejected
statements to the error log.

MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall supports the following status variables. Use them to obtain information
about firewall operational status. These variables are unavailable unless the firewall is installed (see
Section 6.3.17.2, “Installing or Uninstalling MySQL Enterprise Firewall”). Firewall status variables are
set to 0 whenever the MYSQL_FIREWALL plugin is installed or the server is started. Many of them
are reset to zero by the mysql_firewall_flush_status() UDF (see MySQL Enterprise Firewall
Procedures and Functions).

• Firewall_access_denied

The number of statements rejected by MySQL Enterprise Firewall.

• Firewall_access_granted

The number of statements accepted by MySQL Enterprise Firewall.

• Firewall_access_suspicious

The number of statements logged by MySQL Enterprise Firewall as suspicious for users who are in
DETECTING mode.

• Firewall_cached_entries

The number of statements recorded by MySQL Enterprise Firewall, including duplicates.

987

Chapter 7 Backup and Recovery

Table of Contents
7.1 Backup and Recovery Types ... 988
7.2 Database Backup Methods ... 991
7.3 Example Backup and Recovery Strategy ... 993

7.3.1 Establishing a Backup Policy .. 993
7.3.2 Using Backups for Recovery .. 995
7.3.3 Backup Strategy Summary ... 996

7.4 Using mysqldump for Backups .. 996
7.4.1 Dumping Data in SQL Format with mysqldump .. 996
7.4.2 Reloading SQL-Format Backups ... 997
7.4.3 Dumping Data in Delimited-Text Format with mysqldump ... 998
7.4.4 Reloading Delimited-Text Format Backups .. 999
7.4.5 mysqldump Tips ... 1000

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log ... 1002
7.5.1 Point-in-Time Recovery Using Event Times ... 1003
7.5.2 Point-in-Time Recovery Using Event Positions ... 1004

7.6 MyISAM Table Maintenance and Crash Recovery .. 1004
7.6.1 Using myisamchk for Crash Recovery ... 1005
7.6.2 How to Check MyISAM Tables for Errors .. 1006
7.6.3 How to Repair MyISAM Tables ... 1006
7.6.4 MyISAM Table Optimization .. 1009
7.6.5 Setting Up a MyISAM Table Maintenance Schedule ... 1009

It is important to back up your databases so that you can recover your data and be up and running
again in case problems occur, such as system crashes, hardware failures, or users deleting data by
mistake. Backups are also essential as a safeguard before upgrading a MySQL installation, and they
can be used to transfer a MySQL installation to another system or to set up replication slave servers.

MySQL offers a variety of backup strategies from which you can choose the methods that best suit
the requirements for your installation. This chapter discusses several backup and recovery topics with
which you should be familiar:

• Types of backups: Logical versus physical, full versus incremental, and so forth.

• Methods for creating backups.

• Recovery methods, including point-in-time recovery.

• Backup scheduling, compression, and encryption.

• Table maintenance, to enable recovery of corrupt tables.

Additional Resources

Resources related to backup or to maintaining data availability include the following:

• Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product for backups.
For an overview of the MySQL Enterprise Backup product, see Section 25.2, “MySQL Enterprise
Backup Overview”.

• A forum dedicated to backup issues is available at http://forums.mysql.com/list.php?28.

• Details for mysqldump can be found in Chapter 4, MySQL Programs.

• The syntax of the SQL statements described here is given in Chapter 13, SQL Statement Syntax.

http://forums.mysql.com/list.php?28

Backup and Recovery Types

988

• For additional information about InnoDB backup procedures, see Section 14.15, “InnoDB Backup
and Recovery”.

• Replication enables you to maintain identical data on multiple servers. This has several benefits,
such as enabling client query load to be distributed over servers, availability of data even if a given
server is taken offline or fails, and the ability to make backups with no impact on the master by using
a slave server. See Chapter 17, Replication.

• MySQL Cluster provides a high-availability, high-redundancy version of MySQL adapted for the
distributed computing environment. See MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4,
which provides information about MySQL Cluster NDB 7.3 (based on MySQL 5.6 but containing the
latest improvements and fixes for the NDBCLUSTER storage engine).

Note

The NDBCLUSTER storage engine is currently not supported in MySQL 5.7.

• Distributed Replicated Block Device (DRBD) is another high-availability solution. It works by
replicating a block device from a primary server to a secondary server at the block level. See
Chapter 16, High Availability and Scalability

7.1 Backup and Recovery Types
This section describes the characteristics of different types of backups.

Physical (Raw) Versus Logical Backups

Physical backups consist of raw copies of the directories and files that store database contents. This
type of backup is suitable for large, important databases that need to be recovered quickly when
problems occur.

Logical backups save information represented as logical database structure (CREATE DATABASE,
CREATE TABLE statements) and content (INSERT statements or delimited-text files). This type of
backup is suitable for smaller amounts of data where you might edit the data values or table structure,
or recreate the data on a different machine architecture.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or
part of the MySQL data directory.

• Physical backup methods are faster than logical because they involve only file copying without
conversion.

• Output is more compact than for logical backup.

• Because backup speed and compactness are important for busy, important databases, the MySQL
Enterprise Backup product performs physical backups. For an overview of the MySQL Enterprise
Backup product, see Section 25.2, “MySQL Enterprise Backup Overview”.

• Backup and restore granularity ranges from the level of the entire data directory down to the level of
individual files. This may or may not provide for table-level granularity, depending on storage engine.
For example, InnoDB tables can each be in a separate file, or share file storage with other InnoDB
tables; each MyISAM table corresponds uniquely to a set of files.

• In addition to databases, the backup can include any related files such as log or configuration files.

• Data from MEMORY tables is tricky to back up this way because their contents are not stored on disk.
(The MySQL Enterprise Backup product has a feature where you can retrieve data from MEMORY
tables during a backup.)

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Online Versus Offline Backups

989

• Backups are portable only to other machines that have identical or similar hardware characteristics.

• Backups can be performed while the MySQL server is not running. If the server is running, it is
necessary to perform appropriate locking so that the server does not change database contents
during the backup. MySQL Enterprise Backup does this locking automatically for tables that require
it.

• Physical backup tools include the mysqlbackup of MySQL Enterprise Backup for InnoDB or any
other tables, or file system-level commands (such as cp, scp, tar, rsync) for MyISAM tables.

• For restore:

• MySQL Enterprise Backup restores InnoDB and other tables that it backed up.

• ndb_restore restores NDB tables.

• Files copied at the file system level can be copied back to their original locations with file system
commands.

Logical backup methods have these characteristics:

• The backup is done by querying the MySQL server to obtain database structure and content
information.

• Backup is slower than physical methods because the server must access database information and
convert it to logical format. If the output is written on the client side, the server must also send it to
the backup program.

• Output is larger than for physical backup, particularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all
tables in a particular database), or table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not
part of databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running. The server is not taken offline.

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE
statement. These work for any storage engine, even MEMORY.

• To restore logical backups, SQL-format dump files can be processed using the mysql client. To load
delimited-text files, use the LOAD DATA INFILE statement or the mysqlimport client.

Online Versus Offline Backups

Online backups take place while the MySQL server is running so that the database information can be
obtained from the server. Offline backups take place while the server is stopped. This distinction can
also be described as “hot” versus “cold” backups; a “warm” backup is one where the server remains
running but locked against modifying data while you access database files externally.

Online backup methods have these characteristics:

• The backup is less intrusive to other clients, which can connect to the MySQL server during the
backup and may be able to access data depending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that
would compromise backup integrity. The MySQL Enterprise Backup product does such locking
automatically.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Local Versus Remote Backups

990

Offline backup methods have these characteristics:

• Clients can be affected adversely because the server is unavailable during backup. For that reason,
such backups are often taken from a replication slave server that can be taken offline without
harming availability.

• The backup procedure is simpler because there is no possibility of interference from client activity.

A similar distinction between online and offline applies for recovery operations, and similar
characteristics apply. However, it is more likely that clients will be affected for online recovery than for
online backup because recovery requires stronger locking. During backup, clients might be able to read
data while it is being backed up. Recovery modifies data and does not just read it, so clients must be
prevented from accessing data while it is being restored.

Local Versus Remote Backups

A local backup is performed on the same host where the MySQL server runs, whereas a remote
backup is done from a different host. For some types of backups, the backup can be initiated from a
remote host even if the output is written locally on the server. host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT
statements), local or remote dumps can be done and generate output on the client. For delimited-text
output (with the --tab option), data files are created on the server host.

• SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file
is created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server
can be taken offline, although the destination for copied files might be remote.

Snapshot Backups

Some file system implementations enable “snapshots” to be taken. These provide logical copies of
the file system at a given point in time, without requiring a physical copy of the entire file system. (For
example, the implementation may use copy-on-write techniques so that only parts of the file system
modified after the snapshot time need be copied.) MySQL itself does not provide the capability for
taking file system snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.

Full Versus Incremental Backups

A full backup includes all data managed by a MySQL server at a given point in time. An incremental
backup consists of the changes made to the data during a given time span (from one point in time to
another). MySQL has different ways to perform full backups, such as those described earlier in this
section. Incremental backups are made possible by enabling the server's binary log, which the server
uses to record data changes.

Full Versus Point-in-Time (Incremental) Recovery

A full recovery restores all data from a full backup. This restores the server instance to the state that it
had when the backup was made. If that state is not sufficiently current, a full recovery can be followed
by recovery of incremental backups made since the full backup, to bring the server to a more up-to-
date state.

Incremental recovery is recovery of changes made during a given time span. This is also called point-
in-time recovery because it makes a server's state current up to a given time. Point-in-time recovery
is based on the binary log and typically follows a full recovery from the backup files that restores the
server to its state when the backup was made. Then the data changes written in the binary log files are
applied as incremental recovery to redo data modifications and bring the server up to the desired point
in time.

Table Maintenance

991

Table Maintenance

Data integrity can be compromised if tables become corrupt. For InnoDB tables, this is not a typical
issue. For programs to check MyISAM tables and repair them if problems are found, see Section 7.6,
“MyISAM Table Maintenance and Crash Recovery”.

Backup Scheduling, Compression, and Encryption

Backup scheduling is valuable for automating backup procedures. Compression of backup
output reduces space requirements, and encryption of the output provides better security against
unauthorized access of backed-up data. MySQL itself does not provide these capabilities. The MySQL
Enterprise Backup product can compress InnoDB backups, and compression or encryption of backup
output can be achieved using file system utilities. Other third-party solutions may be available.

7.2 Database Backup Methods
This section summarizes some general methods for making backups.

Making a Hot Backup with MySQL Enterprise Backup

Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product to do physical
backups of entire instances or selected databases, tables, or both. This product includes features
for incremental and compressed backups. Backing up the physical database files makes restore
much faster than logical techniques such as the mysqldump command. InnoDB tables are copied
using a hot backup mechanism. (Ideally, the InnoDB tables should represent a substantial majority
of the data.) Tables from other storage engines are copied using a warm backup mechanism. For an
overview of the MySQL Enterprise Backup product, see Section 25.2, “MySQL Enterprise Backup
Overview”.

Making Backups with mysqldump

The mysqldump program can make backups. It can back up all kinds of tables. (See Section 7.4,
“Using mysqldump for Backups”.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables using the --
single-transaction option to mysqldump. See Section 7.3.1, “Establishing a Backup Policy”.

Making Backups by Copying Table Files

For storage engines that represent each table using its own files, tables can be backed up by copying
those files. For example, MyISAM tables are stored as files, so it is easy to do a backup by copying files
(*.frm, *.MYD, and *.MYI files). To get a consistent backup, stop the server or lock and flush the
relevant tables:

FLUSH TABLES tbl_list WITH READ LOCK;

You need only a read lock; this enables other clients to continue to query the tables while you are
making a copy of the files in the database directory. The flush is needed to ensure that the all active
index pages are written to disk before you start the backup. See Section 13.3.5, “LOCK TABLES and
UNLOCK TABLES Syntax”, and Section 13.7.6.3, “FLUSH Syntax”.

You can also create a binary backup simply by copying all table files, as long as the server isn't
updating anything. (But note that table file copying methods do not work if your database contains
InnoDB tables. Also, even if the server is not actively updating data, InnoDB may still have modified
data cached in memory and not flushed to disk.)

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name'
FROM tbl_name. The file is created on the MySQL server host, not the client host. For this statement,

Making Incremental Backups by Enabling the Binary Log

992

the output file cannot already exist because permitting files to be overwritten constitutes a security risk.
See Section 13.2.9, “SELECT Syntax”. This method works for any kind of data file, but saves only table
data, not the table structure.

Another way to create text data files (along with files containing CREATE TABLE statements for the
backed up tables) is to use mysqldump with the --tab option. See Section 7.4.3, “Dumping Data in
Delimited-Text Format with mysqldump”.

To reload a delimited-text data file, use LOAD DATA INFILE or mysqlimport.

Making Incremental Backups by Enabling the Binary Log

MySQL supports incremental backups: You must start the server with the --log-bin option to
enable binary logging; see Section 5.2.4, “The Binary Log”. The binary log files provide you with the
information you need to replicate changes to the database that are made subsequent to the point at
which you performed a backup. At the moment you want to make an incremental backup (containing
all changes that happened since the last full or incremental backup), you should rotate the binary log
by using FLUSH LOGS. This done, you need to copy to the backup location all binary logs which range
from the one of the moment of the last full or incremental backup to the last but one. These binary logs
are the incremental backup; at restore time, you apply them as explained in Section 7.5, “Point-in-
Time (Incremental) Recovery Using the Binary Log”. The next time you do a full backup, you should
also rotate the binary log using FLUSH LOGS or mysqldump --flush-logs. See Section 4.5.4,
“mysqldump — A Database Backup Program”.

Making Backups Using Replication Slaves

If you have performance problems with your master server while making backups, one strategy that
can help is to set up replication and perform backups on the slave rather than on the master. See
Section 17.3.1, “Using Replication for Backups”.

If you are backing up a slave replication server, you should back up its master info and relay log info
repositories (see Section 17.2.4, “Replication Relay and Status Logs”) when you back up the slave's
databases, regardless of the backup method you choose. These information files are always needed to
resume replication after you restore the slave's data. If your slave is replicating LOAD DATA INFILE
statements, you should also back up any SQL_LOAD-* files that exist in the directory that the slave
uses for this purpose. The slave needs these files to resume replication of any interrupted LOAD DATA
INFILE operations. The location of this directory is the value of the --slave-load-tmpdir option.
If the server was not started with that option, the directory location is the value of the tmpdir system
variable.

Recovering Corrupt Tables

If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR
TABLE or myisamchk -r first. That should work in 99.9% of all cases. If myisamchk fails, see
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.

Making Backups Using a File System Snapshot

If you are using a Veritas file system, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.

Example Backup and Recovery Strategy

993

7.3 Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that enables you to recover data after
several types of crashes:

• Operating system crash

• Power failure

• File system crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysqldump
and mysql client programs. You should include such options as necessary to enable client programs
to connect to the MySQL server.

Assume that data is stored in the InnoDB storage engine, which has support for transactions and
automatic crash recovery. Assume also that the MySQL server is under load at the time of the crash. If
it were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is
available after a restart. The InnoDB data files might not contain consistent data due to the crash, but
InnoDB reads its logs and finds in them the list of pending committed and noncommitted transactions
that have not been flushed to the data files. InnoDB automatically rolls back those transactions that
were not committed, and flushes to its data files those that were committed. Information about this
recovery process is conveyed to the user through the MySQL error log. The following is an example log
excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data
is not available after a restart. This means that MySQL fails to start successfully because some blocks
of disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one,
or otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from
backups, which means that backups must already have been made. To make sure that is the case,
design and implement a backup policy.

7.3.1 Establishing a Backup Policy

To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in
time) can be done in MySQL with several tools. For example, MySQL Enterprise Backup can perform
a physical backup of an entire instance, with optimizations to minimize overhead and avoid disruption

Establishing a Backup Policy

994

when backing up InnoDB data files; mysqldump provides online logical backup. This discussion uses
mysqldump.

Assume that we make a full backup of all our InnoDB tables in all databases using the following
command on Sunday at 1 p.m., when load is low:

shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be
used to reload the dumped tables at a later time.

This backup operation acquires a global read lock on all tables at the beginning of the dump (using
FLUSH TABLES WITH READ LOCK). As soon as this lock has been acquired, the binary log
coordinates are read and the lock is released. If long updating statements are running when the FLUSH
statement is issued, the backup operation may stall until those statements finish. After that, the dump
becomes lock-free and does not disturb reads and writes on the tables.

It was assumed earlier that the tables to back up are InnoDB tables, so --single-transaction
uses a consistent read and guarantees that data seen by mysqldump does not change. (Changes
made by other clients to InnoDB tables are not seen by the mysqldump process.) If the backup
operation includes nontransactional tables, consistency requires that they do not change during the
backup. For example, for the MyISAM tables in the mysql database, there must be no administrative
changes to MySQL accounts during the backup.

Full backups are necessary, but it is not always convenient to create them. They produce large backup
files and take time to generate. They are not optimal in the sense that each successive full backup
includes all data, even that part that has not changed since the previous full backup. It is more efficient
to make an initial full backup, and then to make incremental backups. The incremental backups are
smaller and take less time to produce. The tradeoff is that, at recovery time, you cannot restore your
data just by reloading the full backup. You must also process the incremental backups to recover the
incremental changes.

To make incremental backups, we need to save the incremental changes. In MySQL, these changes
are represented in the binary log, so the MySQL server should always be started with the --log-bin
option to enable that log. With binary logging enabled, the server writes each data change into a file
while it updates data. Looking at the data directory of a MySQL server that was started with the --
log-bin option and that has been running for some days, we find these MySQL binary log files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the
sequence. While the server is running, you can also tell it to close the current binary log file and begin
a new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-logs
command. mysqldump also has an option to flush the logs. The .index file in the data directory
contains the list of all MySQL binary logs in the directory.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If
you make sure to flush the logs when you make your full backup, the binary log files created afterward
contain all the data changes made since the backup. Let's modify the previous mysqldump command
a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the dump
file contains the name of the new current binary log:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases > backup_sunday_1_PM.sql

Using Backups for Recovery

995

After executing this command, the data directory contains a new binary log file, gbichot2-
bin.000007, because the --flush-logs option causes the server to flush its logs. The --master-
data option causes mysqldump to write binary log information to its output, so the resulting .sql
dump file includes these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The dump file contains all changes made before any changes written to the gbichot2-
bin.000007 binary log file or newer.

• All data changes logged after the backup are not present in the dump file, but are present in the
gbichot2-bin.000007 binary log file or newer.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new
binary log file. For example, executing a mysqladmin flush-logs command creates gbichot2-
bin.000008. All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. will be in the
gbichot2-bin.000007 file. This incremental backup is important, so it is a good idea to copy it to
a safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday
at 1 p.m., execute another mysqladmin flush-logs command. All changes between Monday 1
p.m. and Tuesday 1 p.m. will be in the gbichot2-bin.000008 file (which also should be copied
somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One
way to do this is by deleting the binary logs that are no longer needed, such as when we make a full
backup:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note

Deleting the MySQL binary logs with mysqldump --delete-master-logs
can be dangerous if your server is a replication master server, because slave
servers might not yet fully have processed the contents of the binary log. The
description for the PURGE BINARY LOGS statement explains what should be
verified before deleting the MySQL binary logs. See Section 13.4.1.1, “PURGE
BINARY LOGS Syntax”.

7.3.2 Using Backups for Recovery

Now, suppose that we have a catastrophic crash on Wednesday at 8 a.m. that requires recovery from
backups. To recover, first we restore the last full backup we have (the one from Sunday 1 p.m.). The
full backup file is just a set of SQL statements, so restoring it is very easy:

shell> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since
then, we must use the incremental backups; that is, the gbichot2-bin.000007 and gbichot2-
bin.000008 binary log files. Fetch the files if necessary from where they were backed up, and then
process their contents like this:

shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes
from that date to the date of the crash. To not lose them, we would have needed to have the MySQL
server store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place

Backup Strategy Summary

996

where it stores its data files, so that these logs were not on the destroyed disk. (That is, we can start
the server with a --log-bin option that specifies a location on a different physical device from the
one on which the data directory resides. That way, the logs are safe even if the device containing
the directory is lost.) If we had done this, we would have the gbichot2-bin.000009 file (and any
subsequent files) at hand, and we could apply them using mysqlbinlog and mysql to restore the
most recent data changes with no loss up to the moment of the crash:

shell> mysqlbinlog gbichot2-bin.000009 ... | mysql

For more information about using mysqlbinlog to process binary log files, see Section 7.5, “Point-in-
Time (Incremental) Recovery Using the Binary Log”.

7.3.3 Backup Strategy Summary

In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data.
But to make sure that you can sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where
the log file name is located on some safe media different from the drive on which the data directory is
located. If you have such safe media, this technique can also be good for disk load balancing (which
results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 7.3.1,
“Establishing a Backup Policy”, that makes an online, nonblocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-
logs.

7.4 Using mysqldump for Backups
This section describes how to use mysqldump to produce dump files, and how to reload dump files. A
dump file can be used in several ways:

• As a backup to enable data recovery in case of data loss.

• As a source of data for setting up replication slaves.

• As a source of data for experimentation:

• To make a copy of a database that you can use without changing the original data.

• To test potential upgrade incompatibilities.

mysqldump produces two types of output, depending on whether the --tab option is given:

• Without --tab, mysqldump writes SQL statements to the standard output. This output consists of
CREATE statements to create dumped objects (databases, tables, stored routines, and so forth), and
INSERT statements to load data into tables. The output can be saved in a file and reloaded later
using mysql to recreate the dumped objects. Options are available to modify the format of the SQL
statements, and to control which objects are dumped.

• With --tab, mysqldump produces two output files for each dumped table. The server writes one
file as tab-delimited text, one line per table row. This file is named tbl_name.txt in the output
directory. The server also sends a CREATE TABLE statement for the table to mysqldump, which
writes it as a file named tbl_name.sql in the output directory.

7.4.1 Dumping Data in SQL Format with mysqldump

This section describes how to use mysqldump to create SQL-format dump files. For information about
reloading such dump files, see Section 7.4.2, “Reloading SQL-Format Backups”.

Reloading SQL-Format Backups

997

By default, mysqldump writes information as SQL statements to the standard output. You can save the
output in a file:

shell> mysqldump [arguments] > file_name

To dump all databases, invoke mysqldump with the --all-databases option:

shell> mysqldump --all-databases > dump.sql

To dump only specific databases, name them on the command line and use the --databases option:

shell> mysqldump --databases db1 db2 db3 > dump.sql

The --databases option causes all names on the command line to be treated as database names.
Without this option, mysqldump treats the first name as a database name and those following as table
names.

With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE
statements prior to the dump output for each database. This ensures that when the dump file is
reloaded, it creates each database if it does not exist and makes it the default database so database
contents are loaded into the same database from which they came. If you want to cause the dump file
to force a drop of each database before recreating it, use the --add-drop-database option as well.
In this case, mysqldump writes a DROP DATABASE statement preceding each CREATE DATABASE
statement.

To dump a single database, name it on the command line:

shell> mysqldump --databases test > dump.sql

In the single-database case, it is permissible to omit the --databases option:

shell> mysqldump test > dump.sql

The difference between the two preceding commands is that without --databases, the dump output
contains no CREATE DATABASE or USE statements. This has several implications:

• When you reload the dump file, you must specify a default database name so that the server knows
which database to reload.

• For reloading, you can specify a database name different from the original name, which enables you
to reload the data into a different database.

• If the database to be reloaded does not exist, you must create it first.

• Because the output will contain no CREATE DATABASE statement, the --add-drop-database
option has no effect. If you use it, it produces no DROP DATABASE statement.

To dump only specific tables from a database, name them on the command line following the database
name:

shell> mysqldump test t1 t3 t7 > dump.sql

7.4.2 Reloading SQL-Format Backups

To reload a dump file written by mysqldump that consists of SQL statements, use it as input to
the mysql client. If the dump file was created by mysqldump with the --all-databases or --
databases option, it contains CREATE DATABASE and USE statements and it is not necessary to
specify a default database into which to load the data:

Dumping Data in Delimited-Text Format with mysqldump

998

shell> mysql < dump.sql

Alternatively, from within mysql, use a source command:

mysql> source dump.sql

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the
database first (if necessary):

shell> mysqladmin create db1

Then specify the database name when you load the dump file:

shell> mysql db1 < dump.sql

Alternatively, from within mysql, create the database, select it as the default database, and load the
dump file:

mysql> CREATE DATABASE IF NOT EXISTS db1;
mysql> USE db1;
mysql> source dump.sql

7.4.3 Dumping Data in Delimited-Text Format with mysqldump

This section describes how to use mysqldump to create delimited-text dump files. For information
about reloading such dump files, see Section 7.4.4, “Reloading Delimited-Text Format Backups”.

If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory
and dumps tables individually in that directory using two files for each table. The table name is the base
name for these files. For a table named t1, the files are named t1.sql and t1.txt. The .sql file
contains a CREATE TABLE statement for the table. The .txt file contains the table data, one line per
table row.

The following command dumps the contents of the db1 database to files in the /tmp database:

shell> mysqldump --tab=/tmp db1

The .txt files containing table data are written by the server, so they are owned by the system
account used for running the server. The server uses SELECT ... INTO OUTFILE to write the files,
so you must have the FILE privilege to perform this operation, and an error occurs if a given .txt file
already exists.

The server sends the CREATE definitions for dumped tables to mysqldump, which writes them to .sql
files. These files therefore are owned by the user who executes mysqldump.

It is best that --tab be used only for dumping a local server. If you use it with a remote server, the
--tab directory must exist on both the local and remote hosts, and the .txt files will be written
by the server in the remote directory (on the server host), whereas the .sql files will be written by
mysqldump in the local directory (on the client host).

For mysqldump --tab, the server by default writes table data to .txt files one line per row with tabs
between column values, no quotation marks around column values, and newline as the line terminator.
(These are the same defaults as for SELECT ... INTO OUTFILE.)

To enable data files to be written using a different format, mysqldump supports these options:

• --fields-terminated-by=str

The string for separating column values (default: tab).

Reloading Delimited-Text Format Backups

999

• --fields-enclosed-by=char

The character within which to enclose column values (default: no character).

• --fields-optionally-enclosed-by=char

The character within which to enclose non-numeric column values (default: no character).

• --fields-escaped-by=char

The character for escaping special characters (default: no escaping).

• --lines-terminated-by=str

The line-termination string (default: newline).

Depending on the value you specify for any of these options, it might be necessary on the command
line to quote or escape the value appropriately for your command interpreter. Alternatively, specify the
value using hex notation. Suppose that you want mysqldump to quote column values within double
quotation marks. To do so, specify double quote as the value for the --fields-enclosed-by option.
But this character is often special to command interpreters and must be treated specially. For example,
on Unix, you can quote the double quote like this:

--fields-enclosed-by='"'

On any platform, you can specify the value in hex:

--fields-enclosed-by=0x22

It is common to use several of the data-formatting options together. For example, to dump tables in
comma-separated values format with lines terminated by carriage-return/newline pairs (\r\n), use this
command (enter it on a single line):

shell> mysqldump --tab=/tmp --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1

Should you use any of the data-formatting options to dump table data, you will need to specify the
same format when you reload data files later, to ensure proper interpretation of the file contents.

7.4.4 Reloading Delimited-Text Format Backups

For backups produced with mysqldump --tab, each table is represented in the output directory by an
.sql file containing the CREATE TABLE statement for the table, and a .txt file containing the table
data. To reload a table, first change location into the output directory. Then process the .sql file with
mysql to create an empty table and process the .txt file to load the data into the table:

shell> mysql db1 < t1.sql
shell> mysqlimport db1 t1.txt

An alternative to using mysqlimport to load the data file is to use the LOAD DATA INFILE statement
from within the mysql client:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1;

If you used any data-formatting options with mysqldump when you initially dumped the table, you must
use the same options with mysqlimport or LOAD DATA INFILE to ensure proper interpretation of
the data file contents:

mysqldump Tips

1000

shell> mysqlimport --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt

Or:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1
 -> FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"'
 -> LINES TERMINATED BY '\r\n';

7.4.5 mysqldump Tips

This section surveys techniques that enable you to use mysqldump to solve specific problems:

• How to make a copy a database

• How to copy a database from one server to another

• How to dump stored programs (stored procedures and functions, triggers, and events)

• How to dump definitions and data separately

7.4.5.1 Making a Copy of a Database

shell> mysqldump db1 > dump.sql
shell> mysqladmin create db2
shell> mysql db2 < dump.sql

Do not use --databases on the mysqldump command line because that causes USE db1 to be
included in the dump file, which overrides the effect of naming db2 on the mysql command line.

7.4.5.2 Copy a Database from one Server to Another

On Server 1:

shell> mysqldump --databases db1 > dump.sql

Copy the dump file from Server 1 to Server 2.

On Server 2:

shell> mysql < dump.sql

Use of --databases with the mysqldump command line causes the dump file to include CREATE
DATABASE and USE statements that create the database if it does exist and make it the default
database for the reloaded data.

Alternatively, you can omit --databases from the mysqldump command. Then you will need to
create the database on Server 2 (if necessary) and specify it as the default database when you reload
the dump file.

On Server 1:

shell> mysqldump db1 > dump.sql

On Server 2:

shell> mysqladmin create db1

mysqldump Tips

1001

shell> mysql db1 < dump.sql

You can specify a different database name in this case, so omitting --databases from the
mysqldump command enables you to dump data from one database and load it into another.

7.4.5.3 Dumping Stored Programs

Several options control how mysqldump handles stored programs (stored procedures and functions,
triggers, and events):

• --events: Dump Event Scheduler events

• --routines: Dump stored procedures and functions

• --triggers: Dump triggers for tables

The --triggers option is enabled by default so that when tables are dumped, they are accompanied
by any triggers they have. The other options are disabled by default and must be specified explicitly to
dump the corresponding objects. To disable any of these options explicitly, use its skip form: --skip-
events, --skip-routines, or --skip-triggers.

7.4.5.4 Dumping Table Definitions and Content Separately

The --no-data option tells mysqldump not to dump table data, resulting in the dump file containing
only statements to create the tables. Conversely, the --no-create-info option tells mysqldump to
suppress CREATE statements from the output, so that the dump file contains only table data.

For example, to dump table definitions and data separately for the test database, use these
commands:

shell> mysqldump --no-data test > dump-defs.sql
shell> mysqldump --no-create-info test > dump-data.sql

For a definition-only dump, add the --routines and --events options to also include stored routine
and event definitions:

shell> mysqldump --no-data --routines --events test > dump-defs.sql

7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your
current production version. Then you can dump the database and database object definitions from the
production server and load them into the new server to verify that they are handled properly. (This is
also useful for testing downgrades.)

On the production server:

shell> mysqldump --all-databases --no-data --routines --events > dump-defs.sql

On the upgraded server:

shell> mysql < dump-defs.sql

Because the dump file does not contain table data, it can be processed quickly. This enables you to
spot potential incompatibilities without waiting for lengthy data-loading operations. Look for warnings or
errors while the dump file is being processed.

After you have verified that the definitions are handled properly, dump the data and try to load it into the
upgraded server.

Point-in-Time (Incremental) Recovery Using the Binary Log

1002

On the production server:

shell> mysqldump --all-databases --no-create-info > dump-data.sql

On the upgraded server:

shell> mysql < dump-data.sql

Now check the table contents and run some test queries.

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log

Point-in-time recovery refers to recovery of data changes made since a given point in time. Typically,
this type of recovery is performed after restoring a full backup that brings the server to its state as of
the time the backup was made. (The full backup can be made in several ways, such as those listed
in Section 7.2, “Database Backup Methods”.) Point-in-time recovery then brings the server up to date
incrementally from the time of the full backup to a more recent time.

Point-in-time recovery is based on these principles:

• The source of information for point-in-time recovery is the set of incremental backups represented by
the binary log files generated subsequent to the full backup operation. Therefore, the server must be
started with the --log-bin option to enable binary logging (see Section 5.2.4, “The Binary Log”).

To restore data from the binary log, you must know the name and location of the current binary log
files. By default, the server creates binary log files in the data directory, but a path name can be
specified with the --log-bin option to place the files in a different location. Section 5.2.4, “The
Binary Log”.

To see a listing of all binary log files, use this statement:

mysql> SHOW BINARY LOGS;

To determine the name of the current binary log file, issue the following statement:

mysql> SHOW MASTER STATUS;

• The mysqlbinlog utility converts the events in the binary log files from binary format to text so
that they can be executed or viewed. mysqlbinlog has options for selecting sections of the binary
log based on event times or position of events within the log. See Section 4.6.7, “mysqlbinlog —
Utility for Processing Binary Log Files”.

• Executing events from the binary log causes the data modifications they represent to be redone. This
enables recovery of data changes for a given span of time. To execute events from the binary log,
process mysqlbinlog output using the mysql client:

shell> mysqlbinlog binlog_files | mysql -u root -p

• Viewing log contents can be useful when you need to determine event times or positions to select
partial log contents prior to executing events. To view events from the log, send mysqlbinlog
output into a paging program:

shell> mysqlbinlog binlog_files | more

Alternatively, save the output in a file and view the file in a text editor:

shell> mysqlbinlog binlog_files > tmpfile

Point-in-Time Recovery Using Event Times

1003

shell> ... edit tmpfile ...

• Saving the output in a file is useful as a preliminary to executing the log contents with certain events
removed, such as an accidental DROP DATABASE. You can delete from the file any statements not to
be executed before executing its contents. After editing the file, execute the contents as follows:

shell> mysql -u root -p < tmpfile

If you have more than one binary log to execute on the MySQL server, the safe method is to process
them all using a single connection to the server. Here is an example that demonstrates what may be
unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using different connections to the server causes problems if the
first log file contains a CREATE TEMPORARY TABLE statement and the second log contains a
statement that uses the temporary table. When the first mysql process terminates, the server drops
the temporary table. When the second mysql process attempts to use the table, the server reports
“unknown table.”

To avoid problems like this, use a single connection to execute the contents of all binary logs that you
want to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"

When writing to a dump file while reading back from a binary log containing GTIDs (see Section 17.1.3,
“Replication with Global Transaction Identifiers”), use the --skip-gtids option with mysqlbinlog,
like this:

shell> mysqlbinlog --skip-gtids binlog.000001 > /tmp/dump.sql
shell> mysqlbinlog --skip-gtids binlog.000002 >> /tmp/dump.sql
shell> mysql -u root -p -e "source /tmp/dump.sql"

7.5.1 Point-in-Time Recovery Using Event Times

To indicate the start and end times for recovery, specify the --start-datetime and --stop-
datetime options for mysqlbinlog, in DATETIME format. As an example, suppose that exactly at
10:00 a.m. on April 20, 2005 an SQL statement was executed that deleted a large table. To restore
the table and data, you could restore the previous night's backup, and then execute the following
command:

shell> mysqlbinlog --stop-datetime="2005-04-20 9:59:59" \
 /var/log/mysql/bin.123456 | mysql -u root -p

This command recovers all of the data up until the date and time given by the --stop-datetime
option. If you did not detect the erroneous SQL statement that was entered until hours later, you
will probably also want to recover the activity that occurred afterward. Based on this, you could run
mysqlbinlog again with a start date and time, like so:

shell> mysqlbinlog --start-datetime="2005-04-20 10:01:00" \

Point-in-Time Recovery Using Event Positions

1004

 /var/log/mysql/bin.123456 | mysql -u root -p

In this command, the SQL statements logged from 10:01 a.m. on will be re-executed. The combination
of restoring of the previous night's dump file and the two mysqlbinlog commands restores everything
up until one second before 10:00 a.m. and everything from 10:01 a.m. on.

To use this method of point-in-time recovery, you should examine the log to be sure of the exact
times to specify for the commands. To display the log file contents without executing them, use this
command:

shell> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

Then open the /tmp/mysql_restore.sql file with a text editor to examine it.

Excluding specific changes by specifying times for mysqlbinlog does not work well if multiple
statements executed at the same time as the one to be excluded.

7.5.2 Point-in-Time Recovery Using Event Positions

Instead of specifying dates and times, the --start-position and --stop-position options for
mysqlbinlog can be used for specifying log positions. They work the same as the start and stop
date options, except that you specify log position numbers rather than dates. Using positions may
enable you to be more precise about which part of the log to recover, especially if many transactions
occurred around the same time as a damaging SQL statement. To determine the position numbers, run
mysqlbinlog for a range of times near the time when the unwanted transaction was executed, but
redirect the results to a text file for examination. This can be done like so:

shell> mysqlbinlog --start-datetime="2005-04-20 9:55:00" \
 --stop-datetime="2005-04-20 10:05:00" \
 /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

This command creates a small text file in the /tmp directory that contains the SQL statements around
the time that the deleterious SQL statement was executed. Open this file with a text editor and look
for the statement that you do not want to repeat. Determine the positions in the binary log for stopping
and resuming the recovery and make note of them. Positions are labeled as log_pos followed by a
number. After restoring the previous backup file, use the position numbers to process the binary log
file. For example, you would use commands something like these:

shell> mysqlbinlog --stop-position=368312 /var/log/mysql/bin.123456 \
 | mysql -u root -p

shell> mysqlbinlog --start-position=368315 /var/log/mysql/bin.123456 \
 | mysql -u root -p

The first command recovers all the transactions up until the stop position given. The second command
recovers all transactions from the starting position given until the end of the binary log. Because the
output of mysqlbinlog includes SET TIMESTAMP statements before each SQL statement recorded,
the recovered data and related MySQL logs will reflect the original times at which the transactions were
executed.

7.6 MyISAM Table Maintenance and Crash Recovery

This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have
.MYD and .MYI files for storing data and indexes). For general myisamchk background, see
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Other table-repair information can
be found at Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.

You can use myisamchk to check, repair, or optimize database tables. The following sections describe
how to perform these operations and how to set up a table maintenance schedule. For information

Using myisamchk for Crash Recovery

1005

about using myisamchk to get information about your tables, see Section 4.6.3.5, “Obtaining Table
Information with myisamchk”.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup
before doing a repair or any maintenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause MyISAM FULLTEXT indexes to be rebuilt with
full-text parameters that are incompatible with the values used by the MySQL server. To avoid this
problem, follow the guidelines in Section 4.6.3.1, “myisamchk General Options”.

MyISAM table maintenance can also be done using the SQL statements that perform operations similar
to what myisamchk can do:

• To check MyISAM tables, use CHECK TABLE.

• To repair MyISAM tables, use REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

For additional information about these statements, see Section 13.7.2, “Table Maintenance
Statements”.

These statements can be used directly or by means of the mysqlcheck client program. One
advantage of these statements over myisamchk is that the server does all the work. With myisamchk,
you must make sure that the server does not use the tables at the same time so that there is no
unwanted interaction between myisamchk and the server.

7.6.1 Using myisamchk for Crash Recovery

This section describes how to check for and deal with data corruption in MySQL databases. If your
tables become corrupted frequently, you should try to find the reason why. See Section B.5.3.3, “What
to Do If MySQL Keeps Crashing”.

For an explanation of how MyISAM tables can become corrupted, see Section 15.2.4, “MyISAM Table
Problems”.

If you run mysqld with external locking disabled (which is the default), you cannot reliably use
myisamchk to check a table when mysqld is using the same table. If you can be certain that no
one will access the tables through mysqld while you run myisamchk, you only have to execute
mysqladmin flush-tables before you start checking the tables. If you cannot guarantee this, you
must stop mysqld while you check the tables. If you run myisamchk to check tables that mysqld is
updating at the same time, you may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any
time. In this case, if the server tries to update a table that myisamchk is using, the server will wait for
myisamchk to finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server
is not using the table (this also applies if external locking is disabled). If you do not stop mysqld, you
should at least do a mysqladmin flush-tables before you run myisamchk. Your tables may
become corrupted if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a
database corresponds to the three files in the database directory shown in the following table.

File Purpose

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

How to Check MyISAM Tables for Errors

1006

File Purpose

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in
data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by
removing the old .MYD file and renaming the new file to the original file name. If you use --quick,
myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD file is correct
and generates only a new index file without touching the .MYD file. This is safe, because myisamchk
automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify
the --quick option twice to myisamchk. In this case, myisamchk does not abort on some errors
(such as duplicate-key errors) but instead tries to resolve them by modifying the .MYD file. Normally
the use of two --quick options is useful only if you have too little free disk space to perform a normal
repair. In this case, you should at least make a backup of the table before running myisamchk.

7.6.2 How to Check MyISAM Tables for Errors

To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which
is very unusual). If you want to check a table, you should normally run myisamchk without options or
with the -s (silent) option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all
rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches
the checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-
read of every key for each row to verify that they indeed point to the correct row. This may take a
long time for a large table that has many indexes. Normally, myisamchk stops after the first error
it finds. If you want to obtain more information, you can add the -v (verbose) option. This causes
myisamchk to keep going, up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

This is like the previous command, but the -i option tells myisamchk to print additional statistical
information.

In most cases, a simple myisamchk command with no arguments other than the table name is
sufficient to check a table.

7.6.3 How to Repair MyISAM Tables

The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI
and .MYD).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM
tables. See Section 13.7.2.2, “CHECK TABLE Syntax”, and Section 13.7.2.5, “REPAIR TABLE
Syntax”.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as
these:

How to Repair MyISAM Tables

1007

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The
following example shows how to use perror to find the meanings for the most common error numbers
that indicate a problem with a table:

shell> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not
errors that can be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the
MAX_ROWS and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems
that occur.

The repair process involves up to four stages, described here. Before you begin, you should change
location to the database directory and check the permissions of the table files. On Unix, make sure that
they are readable by the user that mysqld runs as (and to you, because you need to access the files
you are checking). If it turns out you need to modify files, they must also be writable by you.

This section is for the cases where a table check fails (such as those described in Section 7.6.2, “How
to Check MyISAM Tables for Errors”), or you want to use the extended features that myisamchk
provides.

The myisamchk options used for table maintenance with are described in Section 4.6.3, “myisamchk
— MyISAM Table-Maintenance Utility”. myisamchk also has variables that you can set to control
memory allocation that may improve performance. See Section 4.6.3.6, “myisamchk Memory Usage”.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note
that when you do mysqladmin shutdown on a remote server, the mysqld server is still available for
a while after mysqladmin returns, until all statement-processing has stopped and all index changes
have been flushed to disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option
to suppress unnecessary information.

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to
mark the table as “checked.”

How to Repair MyISAM Tables

1008

You have to repair only those tables for which myisamchk announces an error. For such tables,
proceed to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to
repair the index file without touching the data file. If the data file contains everything that it should and
the delete links point at the correct locations within the data file, this should work, and the table is fixed.
Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and
deleted rows from the data file and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode
uses an old recovery method that handles a few cases that regular recovery mode does not (but is
slower).

Note

If you want a repair operation to go much faster, you should set the values of
the sort_buffer_size and key_buffer_size variables each to about 25%
of your available memory when running myisamchk.

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains
incorrect information, or if the index file is missing. In this case, it is necessary to create a new index
file. Do so as follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto
the new file. You want to retain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above
procedure, since it involves file system operations, and these are not logged by
MySQL.

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs
the whole procedure automatically. There is also no possibility of unwanted interaction between
a utility and the server, because the server does all the work when you use REPAIR TABLE. See
Section 13.7.2.5, “REPAIR TABLE Syntax”.

MyISAM Table Optimization

1009

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never
happen, because the description file is not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index
file and go back to Stage 2. In the latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table
in another database. Remove the new data file, and then move the .frm description and .MYI
index files from the other database to your crashed database. This gives you new description and
index files, but leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct the
index file.

7.6.4 MyISAM Table Optimization

To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows,
run myisamchk in recovery mode:

shell> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE
TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are
faster. There is also no possibility of unwanted interaction between a utility and the server, because the
server does all the work when you use OPTIMIZE TABLE. See Section 13.7.2.4, “OPTIMIZE TABLE
Syntax”.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze or -a: Perform key distribution analysis. This improves join performance by enabling the
join optimizer to better choose the order in which to join the tables and which indexes it should use.

• --sort-index or -S: Sort the index blocks. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=index_num or -R index_num: Sort data rows according to a given index.
This makes your data much more localized and may speed up range-based SELECT and ORDER BY
operations that use this index.

For a full description of all available options, see Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

7.6.5 Setting Up a MyISAM Table Maintenance Schedule

It is a good idea to perform table checks on a regular basis rather than waiting for problems to
occur. One way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE
statements. See Section 13.7.2, “Table Maintenance Statements”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use
myisamchk -s. The -s option (short for --silent) causes myisamchk to run in silent mode,
printing messages only when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine
has done a restart in the middle of an update, you usually need to check each table that could have
been affected before it is used further. (These are “expected crashed tables.”) To cause the server
to check MyISAM tables automatically, start it with the --myisam-recover-options option. See
Section 5.1.3, “Server Command Options”.

You should also check your tables regularly during normal system operation. For example, you can run
a cron job to check important tables once a week, using a line like this in a crontab file:

Setting Up a MyISAM Table Maintenance Schedule

1010

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that you can examine and repair them as
necessary.

To start with, execute myisamchk -s each night on all tables that have been updated during the last
24 hours. As you see that problems occur infrequently, you can back off the checking frequency to
once a week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables
with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many
deleted rows you may want to defragment/reclaim space from the tables from time to time. You can do
this by using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop the mysqld
server for a while, change location into the data directory and use this command while the server is
stopped:

shell> myisamchk -r -s --sort-index --myisam_sort_buffer_size=16M */*.MYI

1011

Chapter 8 Optimization

Table of Contents
8.1 Optimization Overview .. 1012
8.2 Optimizing SQL Statements .. 1014

8.2.1 Optimizing SELECT Statements .. 1014
8.2.2 Optimizing DML Statements ... 1065
8.2.3 Optimizing Database Privileges ... 1066
8.2.4 Optimizing INFORMATION_SCHEMA Queries ... 1066
8.2.5 Other Optimization Tips .. 1071

8.3 Optimization and Indexes .. 1071
8.3.1 How MySQL Uses Indexes ... 1072
8.3.2 Using Primary Keys ... 1073
8.3.3 Using Foreign Keys .. 1073
8.3.4 Column Indexes ... 1073
8.3.5 Multiple-Column Indexes .. 1074
8.3.6 Verifying Index Usage .. 1076
8.3.7 InnoDB and MyISAM Index Statistics Collection ... 1076
8.3.8 Comparison of B-Tree and Hash Indexes .. 1077
8.3.9 Optimizer Use of Generated Column Indexes .. 1079

8.4 Optimizing Database Structure .. 1080
8.4.1 Optimizing Data Size .. 1080
8.4.2 Optimizing MySQL Data Types ... 1082
8.4.3 Optimizing for Many Tables .. 1084
8.4.4 Internal Temporary Table Use in MySQL ... 1085

8.5 Optimizing for InnoDB Tables .. 1087
8.5.1 Optimizing Storage Layout for InnoDB Tables .. 1087
8.5.2 Optimizing InnoDB Transaction Management ... 1088
8.5.3 Optimizing InnoDB Read-Only Transactions .. 1089
8.5.4 Optimizing InnoDB Redo Logging ... 1090
8.5.5 Bulk Data Loading for InnoDB Tables ... 1090
8.5.6 Optimizing InnoDB Queries ... 1091
8.5.7 Optimizing InnoDB DDL Operations .. 1092
8.5.8 Optimizing InnoDB Disk I/O .. 1092
8.5.9 Optimizing InnoDB Configuration Variables .. 1093
8.5.10 Optimizing InnoDB for Systems with Many Tables .. 1094

8.6 Optimizing for MyISAM Tables .. 1094
8.6.1 Optimizing MyISAM Queries ... 1095
8.6.2 Bulk Data Loading for MyISAM Tables .. 1096
8.6.3 Speed of REPAIR TABLE Statements ... 1097

8.7 Optimizing for MEMORY Tables .. 1098
8.8 Understanding the Query Execution Plan ... 1099

8.8.1 Optimizing Queries with EXPLAIN ... 1099
8.8.2 EXPLAIN Output Format .. 1100
8.8.3 EXPLAIN EXTENDED Output Format ... 1112
8.8.4 Obtaining Execution Plan Information for a Named Connection 1114
8.8.5 Estimating Query Performance ... 1115

8.9 Controlling the Query Optimizer ... 1115
8.9.1 Controlling Query Plan Evaluation ... 1115
8.9.2 Controlling Switchable Optimizations ... 1116
8.9.3 Optimizer Hints .. 1119
8.9.4 Index Hints .. 1124
8.9.5 The Optimizer Cost Model .. 1127

8.10 Buffering and Caching ... 1129
8.10.1 The InnoDB Buffer Pool ... 1129

Optimization Overview

1012

8.10.2 The MyISAM Key Cache .. 1132
8.10.3 The MySQL Query Cache .. 1137
8.10.4 Caching of Prepared Statements and Stored Programs .. 1143

8.11 Optimizing Locking Operations .. 1144
8.11.1 Internal Locking Methods .. 1144
8.11.2 Table Locking Issues .. 1146
8.11.3 Concurrent Inserts .. 1147
8.11.4 Metadata Locking ... 1148
8.11.5 External Locking .. 1149

8.12 Optimizing the MySQL Server ... 1150
8.12.1 System Factors and Startup Parameter Tuning .. 1150
8.12.2 Tuning Server Parameters .. 1150
8.12.3 Optimizing Disk I/O .. 1155
8.12.4 Using Symbolic Links ... 1156
8.12.5 Optimizing Memory Use ... 1159
8.12.6 Optimizing Network Use ... 1162
8.12.7 The Thread Pool Plugin .. 1164

8.13 Measuring Performance (Benchmarking) .. 1170
8.13.1 Measuring the Speed of Expressions and Functions ... 1170
8.13.2 Using Your Own Benchmarks ... 1171
8.13.3 Measuring Performance with performance_schema .. 1171

8.14 Examining Thread Information ... 1171
8.14.1 Thread Command Values ... 1172
8.14.2 General Thread States ... 1174
8.14.3 Query Cache Thread States ... 1180
8.14.4 Replication Master Thread States .. 1180
8.14.5 Replication Slave I/O Thread States .. 1181
8.14.6 Replication Slave SQL Thread States .. 1182
8.14.7 Replication Slave Connection Thread States .. 1183
8.14.8 Event Scheduler Thread States ... 1183

This chapter explains how to optimize MySQL performance and provides examples. Optimization
involves configuring, tuning, and measuring performance, at several levels. Depending on your job
role (developer, DBA, or a combination of both), you might optimize at the level of individual SQL
statements, entire applications, a single database server, or multiple networked database servers.
Sometimes you can be proactive and plan in advance for performance, while other times you might
troubleshoot a configuration or code issue after a problem occurs. Optimizing CPU and memory usage
can also improve scalability, allowing the database to handle more load without slowing down.

8.1 Optimization Overview
Database performance depends on several factors at the database level, such as tables, queries,
and configuration settings. These software constructs result in CPU and I/O operations at the
hardware level, which you must minimize and make as efficient as possible. As you work on database
performance, you start by learning the high-level rules and guidelines for the software side, and
measuring performance using wall-clock time. As you become an expert, you learn more about what
happens internally, and start measuring things such as CPU cycles and I/O operations.

Typical users aim to get the best database performance out of their existing software and hardware
configurations. Advanced users look for opportunities to improve the MySQL software itself, or develop
their own storage engines and hardware appliances to expand the MySQL ecosystem.

Optimizing at the Database Level

The most important factor in making a database application fast is its basic design:

• Are the tables structured properly? In particular, do the columns have the right data types, and
does each table have the appropriate columns for the type of work? For example, applications that

Optimizing at the Hardware Level

1013

perform frequent updates often have many tables with few columns, while applications that analyze
large amounts of data often have few tables with many columns.

• Are the right indexes in place to make queries efficient?

• Are you using the appropriate storage engine for each table, and taking advantage of the strengths
and features of each storage engine you use? In particular, the choice of a transactional storage
engine such as InnoDB or a nontransactional one such as MyISAM can be very important for
performance and scalability.

Note

In MySQL 5.5 and higher, InnoDB is the default storage engine for new
tables. In practice, the advanced InnoDB performance features mean that
InnoDB tables often outperform the simpler MyISAM tables, especially for a
busy database.

• Does each table use an appropriate row format? This choice also depends on the storage engine
used for the table. In particular, compressed tables use less disk space and so require less disk I/O
to read and write the data. Compression is available for all kinds of workloads with InnoDB tables,
and for read-only MyISAM tables.

• Does the application use an appropriate locking strategy? For example, by allowing shared access
when possible so that database operations can run concurrently, and requesting exclusive access
when appropriate so that critical operations get top priority. Again, the choice of storage engine is
significant. The InnoDB storage engine handles most locking issues without involvement from you,
allowing for better concurrency in the database and reducing the amount of experimentation and
tuning for your code.

• Are all memory areas used for caching sized correctly? That is, large enough to hold frequently
accessed data, but not so large that they overload physical memory and cause paging. The main
memory areas to configure are the InnoDB buffer pool, the MyISAM key cache, and the MySQL
query cache.

Optimizing at the Hardware Level

Any database application eventually hits hardware limits as the database becomes more and more
busy. A DBA must evaluate whether it is possible to tune the application or reconfigure the server
to avoid these bottlenecks, or whether more hardware resources are required. System bottlenecks
typically arise from these sources:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time
for this is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time
improves slowly with new disks and is very hard to optimize for a single table. The way to optimize
seek time is to distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read or write the data.
With modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than
seeks because you can read in parallel from multiple disks.

• CPU cycles. When the data is in main memory, we must process it to get our result. Having large
tables compared to the amount of memory is the most common limiting factor. But with small tables,
speed is usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory
bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one to be
aware of.

Balancing Portability and Performance

Optimizing SQL Statements

1014

To use performance-oriented SQL extensions in a portable MySQL program, you can wrap MySQL-
specific keywords in a statement within /*! */ comment delimiters. Other SQL servers ignore the
commented keywords. For information about writing comments, see Section 9.6, “Comment Syntax”.

8.2 Optimizing SQL Statements
The core logic of a database application is performed through SQL statements, whether issued directly
through an interpreter or submitted behind the scenes through an API. The tuning guidelines in this
section help to speed up all kinds of MySQL applications. The guidelines cover SQL operations that
read and write data, the behind-the-scenes overhead for SQL operations in general, and operations
used in specific scenarios such as database monitoring.

8.2.1 Optimizing SELECT Statements

Queries, in the form of SELECT statements, perform all the lookup operations in the database. Tuning
these statements is a top priority, whether to achieve sub-second response times for dynamic web
pages, or to chop hours off the time to generate huge overnight reports.

Besides SELECT statements, the tuning techniques for queries also apply to constructs such as
CREATE TABLE...AS SELECT, INSERT INTO...SELECT, and WHERE clauses in DELETE
statements. Those statements have additional performance considerations because they combine write
operations with the read-oriented query operations.

8.2.1.1 Speed of SELECT Statements

The main considerations for optimizing queries are:

• To make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add
an index. Set up indexes on columns used in the WHERE clause, to speed up evaluation, filtering, and
the final retrieval of results. To avoid wasted disk space, construct a small set of indexes that speed
up many related queries used in your application.

Indexes are especially important for queries that reference different tables, using features such as
joins and foreign keys. You can use the EXPLAIN statement to determine which indexes are used for
a SELECT. See Section 8.3.1, “How MySQL Uses Indexes” and Section 8.8.1, “Optimizing Queries
with EXPLAIN”.

• Isolate and tune any part of the query, such as a function call, that takes excessive time. Depending
on how the query is structured, a function could be called once for every row in the result set, or even
once for every row in the table, greatly magnifying any inefficiency.

• Minimize the number of full table scans in your queries, particularly for big tables.

• Keep table statistics up to date by using the ANALYZE TABLE statement periodically, so the
optimizer has the information needed to construct an efficient execution plan.

• Learn the tuning techniques, indexing techniques, and configuration parameters that are specific to
the storage engine for each table. Both InnoDB and MyISAM have sets of guidelines for enabling
and sustaining high performance in queries. For details, see Section 8.5.6, “Optimizing InnoDB
Queries” and Section 8.6.1, “Optimizing MyISAM Queries”.

• You can optimize single-query transactions for InnoDB tables, using the technique in Section 8.5.3,
“Optimizing InnoDB Read-Only Transactions”.

• Avoid transforming the query in ways that make it hard to understand, especially if the optimizer does
some of the same transformations automatically.

• If a performance issue is not easily solved by one of the basic guidelines, investigate the internal
details of the specific query by reading the EXPLAIN plan and adjusting your indexes, WHERE
clauses, join clauses, and so on. (When you reach a certain level of expertise, reading the EXPLAIN
plan might be your first step for every query.)

Optimizing SELECT Statements

1015

• Adjust the size and properties of the memory areas that MySQL uses for caching. With efficient use
of the InnoDB buffer pool, MyISAM key cache, and the MySQL query cache, repeated queries run
faster because the results are retrieved from memory the second and subsequent times.

• Even for a query that runs fast using the cache memory areas, you might still optimize further so that
they require less cache memory, making your application more scalable. Scalability means that your
application can handle more simultaneous users, larger requests, and so on without experiencing a
big drop in performance.

• Deal with locking issues, where the speed of your query might be affected by other sessions
accessing the tables at the same time.

8.2.1.2 How MySQL Optimizes WHERE Clauses

This section discusses optimizations that can be made for processing WHERE clauses. The examples
use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE
statements.

Note

Because work on the MySQL optimizer is ongoing, not all of the optimizations
that MySQL performs are documented here.

You might be tempted to rewrite your queries to make arithmetic operations faster, while sacrificing
readability. Because MySQL does similar optimizations automatically, you can often avoid this work,
and leave the query in a more understandable and maintainable form. Some of the optimizations
performed by MySQL follow:

• Removal of unnecessary parentheses:

 ((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

 (a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal (needed because of constant folding):

 (B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
-> B=5 OR B=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information for
MyISAM and MEMORY tables. This is also done for any NOT NULL expression when used with only
one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT
statements are impossible and returns no rows.

• HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(),
MIN(), and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table
and also to skip rows as soon as possible.

• All constant tables are read first before any other tables in the query. A constant table is any of the
following:

Optimizing SELECT Statements

1016

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all index
parts are compared to constant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2
 WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns in
ORDER BY and GROUP BY clauses come from the same table, that table is preferred first when
joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.

• If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is more
efficient to use a table scan. At one time, a scan was used based on whether the best index spanned
more than 30% of the table, but a fixed percentage no longer determines the choice between using
an index or a scan. The optimizer now is more complex and bases its estimate on additional factors
such as table size, number of rows, and I/O block size.

• In some cases, MySQL can read rows from the index without even consulting the data file. If all
columns used from the index are numeric, only the index tree is used to resolve the query.

• Before each row is output, those that do not match the HAVING clause are skipped.

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;

SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;

SELECT MAX(key_part2) FROM tbl_name
 WHERE key_part1=constant;

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... LIMIT 10;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

MySQL resolves the following queries using only the index tree, assuming that the indexed columns
are numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;

SELECT COUNT(*) FROM tbl_name
 WHERE key_part1=val1 AND key_part2=val2;

SELECT key_part2 FROM tbl_name GROUP BY key_part1;

The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name

Optimizing SELECT Statements

1017

 ORDER BY key_part1 DESC, key_part2 DESC, ... ;

8.2.1.3 Range Optimization

The range access method uses a single index to retrieve a subset of table rows that are contained
within one or several index value intervals. It can be used for a single-part or multiple-part index. The
following sections give descriptions of conditions under which the optimizer uses range access.

The Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding
conditions in the WHERE clause, so we speak of range conditions rather than “intervals.”

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range
condition when using the =, <=>, IN(), IS NULL, or IS NOT NULL operators.

• Additionally, for BTREE indexes, comparison of a key part with a constant value is a range condition
when using the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE comparisons if the argument to
LIKE is a constant string that does not start with a wildcard character.

• For all types of indexes, multiple range conditions combined with OR or AND form a range condition.

“Constant value” in the preceding descriptions means one of the following:

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1
 WHERE key_col > 1
 AND key_col < 10;

SELECT * FROM t1
 WHERE key_col = 1
 OR key_col IN (15,18,20);

SELECT * FROM t1
 WHERE key_col LIKE 'ab%'
 OR key_col BETWEEN 'bar' AND 'foo';

Some nonconstant values may be converted to constants during the constant propagation phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes.
During the extraction process, conditions that cannot be used for constructing the range condition are
dropped, conditions that produce overlapping ranges are combined, and conditions that produce empty
ranges are removed.

Consider the following statement, where key1 is an indexed column and nonkey is not indexed:

SELECT * FROM t1 WHERE
 (key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
 (key1 < 'bar' AND nonkey = 4) OR
 (key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

Optimizing SELECT Statements

1018

1. Start with original WHERE clause:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan. The
correct way to remove them is to replace them with TRUE, so that we do not miss any matching
rows when doing the range scan. Having replaced them with TRUE, we get:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

Replacing these conditions with constants, we get:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Removing unnecessary TRUE and FALSE constants, we obtain:

(key1 < 'abc') OR (key1 < 'bar')

4. Combining overlapping intervals into one yields the final condition to be used for the range scan:

(key1 < 'bar')

In general (and as demonstrated by the preceding example), the condition used for a range scan is
less restrictive than the WHERE clause. MySQL performs an additional check to filter out rows that
satisfy the range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and
its output does not depend on the order in which conditions appear in WHERE clause.

MySQL does not support merging multiple ranges for the range access method for spatial indexes. To
work around this limitation, you can use a UNION with identical SELECT statements, except that you put
each spatial predicate in a different SELECT.

The Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part index.
A range condition on a multiple-part index restricts index rows to lie within one or several key tuple
intervals. Key tuple intervals are defined over a set of key tuples, using ordering from the index.

For example, consider a multiple-part index defined as key1(key_part1, key_part2,
key_part3), and the following set of key tuples listed in key order:

key_part1 key_part2 key_part3
 NULL 1 'abc'
 NULL 1 'xyz'
 NULL 2 'foo'
 1 1 'abc'
 1 1 'xyz'
 1 2 'abc'
 2 1 'aaa'

Optimizing SELECT Statements

1019

The condition key_part1 = 1 defines this interval:

(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range
access method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used
by the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater
detail.

• For HASH indexes, each interval containing identical values can be used. This means that the interval
can be produced only for conditions in the following form:

 key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, … are constants, cmp is one of the =, <=>, or IS NULL comparison
operators, and the conditions cover all index parts. (That is, there are N conditions, one for each part
of an N-part index.) For example, the following is a range condition for a three-part HASH index:

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

For the definition of what is considered to be a constant, see The Range Access Method for Single-
Part Indexes.

• For a BTREE index, an interval might be usable for conditions combined with AND, where each
condition compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>,
BETWEEN, or LIKE 'pattern' (where 'pattern' does not start with a wildcard). An interval can
be used as long as it is possible to determine a single key tuple containing all rows that match the
condition (or two intervals if <> or != is used).

The optimizer attempts to use additional key parts to determine the interval as long as the
comparison operator is =, <=>, or IS NULL. If the operator is >, <, >=, <=, !=, <>, BETWEEN,
or LIKE, the optimizer uses it but considers no more key parts. For the following expression,
the optimizer uses = from the first comparison. It also uses >= from the second comparison but
considers no further key parts and does not use the third comparison for interval construction:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo',10,-inf) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)

It is possible that the created interval contains more rows than the initial condition. For example,
the preceding interval includes the value ('foo', 11, 0), which does not satisfy the original
condition.

• If conditions that cover sets of rows contained within intervals are combined with OR, they form a
condition that covers a set of rows contained within the union of their intervals. If the conditions are
combined with AND, they form a condition that covers a set of rows contained within the intersection
of their intervals. For example, for this condition on a two-part index:

(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)

Optimizing SELECT Statements

1020

The intervals are:

(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key parts for
the right bound. The interval on the second line uses only one key part. The key_len column in the
EXPLAIN output indicates the maximum length of the key prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you
would expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len column
displays two key part lengths for the following condition:

key_part1 >= 1 AND key_part2 < 2

But, in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

The Range Access Method for Single-Part Indexes, describes how optimizations are performed
to combine or eliminate intervals for range conditions on a single-part index. Analogous steps are
performed for range conditions on multiple-part indexes.

Equality Range Optimization of Many-Valued Comparisons

Consider these expressions, where col_name is an indexed column:

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

Each expression is true if col_name is equal to any of several values. These comparisons are equality
range comparisons (where the “range” is a single value). The optimizer estimates the cost of reading
qualifying rows for equality range comparisons as follows:

• If there is a unique index on col_name, the row estimate for each range is 1 because at most one
row can have the given value.

• Otherwise, the optimizer can estimate the row count for each range using dives into the index or
index statistics.

With index dives, the optimizer makes a dive at each end of a range and uses the number of rows in
the range as the estimate. For example, the expression col_name IN (10, 20, 30) has three
equality ranges and the optimizer makes two dives per range to generate a row estimate. Each pair of
dives yields an estimate of the number of rows that have the given value.

Index dives provide accurate row estimates, but as the number of comparison values in the expression
increases, the optimizer takes longer to generate a row estimate. Use of index statistics is less
accurate than index dives but permits faster row estimation for large value lists.

The eq_range_index_dive_limit system variable enables you to configure the number of values
at which the optimizer switches from one row estimation strategy to the other. To disable use of
statistics and always use index dives, set eq_range_index_dive_limit to 0. To permit use of
index dives for comparisons of up to N equality ranges, set eq_range_index_dive_limit to N + 1.

To update table index statistics for best estimates, use ANALYZE TABLE.

Range Optimization of Row Constructor Expressions

As of MySQL 5.7.3, the optimizer is able to apply the range scan access method to queries of this form:

Optimizing SELECT Statements

1021

SELECT ... FROM t1 WHERE (col_1, col_2) IN (('a', 'b'), ('c', 'd'));

Previously, for range scans to be used it was necessary for the query to be written as:

SELECT ... FROM t1 WHERE (col_1 = 'a' AND col_2 = 'b')
OR (col_1 = 'c' AND col_2 = 'd');

For the optimizer to use a range scan, queries must satisfy these conditions:

• Only IN predicates can be used, not NOT IN.

• There may only be column references in the row constructor on the IN predicate's left hand side.

• There must be more than one row constructor on the IN predicate's right hand side.

• Row constructors on the IN predicate's right hand side must contain only runtime constants, which
are either literals or local column references that are bound to constants during execution.

Compared to similar queries executed before MySQL 5.7.3, EXPLAIN output for applicable queries
changes from full table or index scan to range scan. Changes are also visible by checking the values of
the Handler_read_first, Handler_read_key, and Handler_read_next status variables.

8.2.1.4 Index Merge Optimization

The Index Merge method is used to retrieve rows with several range scans and to merge their results
into one. The merge can produce unions, intersections, or unions-of-intersections of its underlying
scans. This access method merges index scans from a single table; it does not merge scans across
multiple tables.

In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this
case, the key column contains a list of indexes used, and key_len contains a list of the longest key
parts for those indexes.

Examples:

SELECT * FROM tbl_name WHERE key1 = 10 OR key2 = 20;

SELECT * FROM tbl_name
 WHERE (key1 = 10 OR key2 = 20) AND non_key=30;

SELECT * FROM t1, t2
 WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
 AND t2.key1=t1.some_col;

SELECT * FROM t1, t2
 WHERE t1.key1=1
 AND (t2.key1=t1.some_col OR t2.key2=t1.some_col2);

The Index Merge method has several access algorithms (seen in the Extra field of EXPLAIN output):

• Using intersect(...)

• Using union(...)

• Using sort_union(...)

The following sections describe these methods in greater detail.

Note

The Index Merge optimization algorithm has the following known deficiencies:

Optimizing SELECT Statements

1022

• If your query has a complex WHERE clause with deep AND/OR nesting and
MySQL does not choose the optimal plan, try distributing terms using the
following identity laws:

(x AND y) OR z = (x OR z) AND (y OR z)
(x OR y) AND z = (x AND z) OR (y AND z)

• Index Merge is not applicable to full-text indexes. We plan to extend it to
cover these in a future MySQL release.

The choice between different possible variants of the Index Merge access method and other access
methods is based on cost estimates of various available options.

The Index Merge Intersection Access Algorithm

This access algorithm can be employed when a WHERE clause was converted to several range
conditions on different keys combined with AND, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB table.

Examples:

SELECT * FROM innodb_table WHERE primary_key < 10 AND key_col1=20;

SELECT * FROM tbl_name
 WHERE (key1_part1=1 AND key1_part2=2) AND key2=2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and
produces the intersection of row sequences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table rows are not retrieved
(EXPLAIN output contains Using index in Extra field in this case). Here is an example of such a
query:

SELECT COUNT(*) FROM t1 WHERE key1=1 AND key2=1;

If the used indexes do not cover all columns used in the query, full rows are retrieved only when the
range conditions for all used keys are satisfied.

If one of the merged conditions is a condition over a primary key of an InnoDB table, it is not used for
row retrieval, but is used to filter out rows retrieved using other conditions.

The Index Merge Union Access Algorithm

The applicability criteria for this algorithm are similar to those for the Index Merge method intersection
algorithm. The algorithm can be employed when the table's WHERE clause was converted to several
range conditions on different keys combined with OR, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB table.

• A condition for which the Index Merge method intersection algorithm is applicable.

Optimizing SELECT Statements

1023

Examples:

SELECT * FROM t1 WHERE key1=1 OR key2=2 OR key3=3;

SELECT * FROM innodb_table WHERE (key1=1 AND key2=2) OR
 (key3='foo' AND key4='bar') AND key5=5;

The Index Merge Sort-Union Access Algorithm

This access algorithm is employed when the WHERE clause was converted to several range conditions
combined by OR, but for which the Index Merge method union algorithm is not applicable.

Examples:

SELECT * FROM tbl_name WHERE key_col1 < 10 OR key_col2 < 20;

SELECT * FROM tbl_name
 WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col=30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm
must first fetch row IDs for all rows and sort them before returning any rows.

8.2.1.5 Engine Condition Pushdown Optimization

This optimization improves the efficiency of direct comparisons between a nonindexed column and
a constant. In such cases, the condition is “pushed down” to the storage engine for evaluation. This
optimization can be used only by the NDB storage engine.

Note

The NDB storage engine is currently not available in MySQL 5.7. If you are
interested in using MySQL Cluster, see MySQL Cluster NDB 7.3 and MySQL
Cluster NDB 7.4, which provides information about MySQL Cluster NDB 7.5
(based on MySQL 5.6 but containing the latest improvements and fixes for the
NDBCLUSTER storage engine).

For MySQL Cluster, this optimization can eliminate the need to send nonmatching rows over the
network between the cluster's data nodes and the MySQL Server that issued the query, and can speed
up queries where it is used by a factor of 5 to 10 times over cases where condition pushdown could be
but is not used.

Suppose that a MySQL Cluster table is defined as follows:

CREATE TABLE t1 (
 a INT,
 b INT,
 KEY(a)
) ENGINE=NDB;

Condition pushdown can be used with queries such as the one shown here, which includes a
comparison between a nonindexed column and a constant:

SELECT a, b FROM t1 WHERE b = 10;

The use of condition pushdown can be seen in the output of EXPLAIN:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Optimizing SELECT Statements

1024

 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where with pushed condition

However, condition pushdown cannot be used with either of these two queries:

SELECT a,b FROM t1 WHERE a = 10;
SELECT a,b FROM t1 WHERE b + 1 = 10;

Condition pushdown is not applicable to the first query because an index exists on column a. (An index
access method would be more efficient and so would be chosen in preference to condition pushdown.)
Condition pushdown cannot be employed for the second query because the comparison involving the
nonindexed column b is indirect. (However, condition pushdown could be applied if you were to reduce
b + 1 = 10 to b = 9 in the WHERE clause.)

Condition pushdown may also be employed when an indexed column is compared with a constant
using a > or < operator:

mysql> EXPLAIN SELECT a, b FROM t1 WHERE a < 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: range
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 2
 Extra: Using where with pushed condition

Other supported comparisons for condition pushdown include the following:

• column [NOT] LIKE pattern

pattern must be a string literal containing the pattern to be matched; for syntax, see
Section 12.5.1, “String Comparison Functions”.

• column IS [NOT] NULL

• column IN (value_list)

Each item in the value_list must be a constant, literal value.

• column BETWEEN constant1 AND constant2

constant1 and constant2 must each be a constant, literal value.

In all of the cases in the preceding list, it is possible for the condition to be converted into the form of
one or more direct comparisons between a column and a constant.

Engine condition pushdown is enabled by default. To disable it at server startup, set the
optimizer_switch system variable. For example, in a my.cnf file, use these lines:

[mysqld]
optimizer_switch=engine_condition_pushdown=off

At runtime, enable condition pushdown like this:

Optimizing SELECT Statements

1025

SET optimizer_switch='engine_condition_pushdown=off';

Limitations. Engine condition pushdown is subject to the following limitations:

• Condition pushdown is supported only by the NDB storage engine.

• Columns may be compared with constants only; however, this includes expressions which evaluate
to constant values.

• Columns used in comparisons cannot be of any of the BLOB or TEXT types.

• A string value to be compared with a column must use the same collation as the column.

• Joins are not directly supported; conditions involving multiple tables are pushed separately where
possible. Use EXPLAIN EXTENDED to determine which conditions are actually pushed down.

8.2.1.6 Index Condition Pushdown Optimization

Index Condition Pushdown (ICP) is an optimization for the case where MySQL retrieves rows from a
table using an index. Without ICP, the storage engine traverses the index to locate rows in the base
table and returns them to the MySQL server which evaluates the WHERE condition for the rows. With
ICP enabled, and if parts of the WHERE condition can be evaluated by using only fields from the index,
the MySQL server pushes this part of the WHERE condition down to the storage engine. The storage
engine then evaluates the pushed index condition by using the index entry and only if this is satisfied is
the row read from the table. ICP can reduce the number of times the storage engine must access the
base table and the number of times the MySQL server must access the storage engine.

Index Condition Pushdown optimization is used for the range, ref, eq_ref, and ref_or_null
access methods when there is a need to access full table rows. This strategy can be used for InnoDB
and MyISAM tables. Beginning with MySQL 5.7.3, it can also be used with partitioned InnoDB and
MyISAM tables (Bug #17306882, Bug #70001). For InnoDB tables, however, ICP is used only for
secondary indexes. The goal of ICP is to reduce the number of full-record reads and thereby reduce IO
operations. For InnoDB clustered indexes, the complete record is already read into the InnoDB buffer.
Using ICP in this case does not reduce IO.

The ICP optimization is not supported with secondary indexes created on virtual generated columns.
InnoDB supports secondary indexes on virtual generated columns as of MySQL 5.7.8.

To see how this optimization works, consider first how an index scan proceeds when Index Condition
Pushdown is not used:

1. Get the next row, first by reading the index tuple, and then by using the index tuple to locate and
read the full table row.

2. Test the part of the WHERE condition that applies to this table. Accept or reject the row based on the
test result.

When Index Condition Pushdown is used, the scan proceeds like this instead:

1. Get the next row's index tuple (but not the full table row).

2. Test the part of the WHERE condition that applies to this table and can be checked using only index
columns. If the condition is not satisfied, proceed to the index tuple for the next row.

3. If the condition is satisfied, use the index tuple to locate and read the full table row.

4. Test the remaining part of the WHERE condition that applies to this table. Accept or reject the row
based on the test result.

When Index Condition Pushdown is used, the Extra column in EXPLAIN output shows Using index
condition. It will not show Index only because that does not apply when full table rows must be
read.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Optimizing SELECT Statements

1026

Suppose that we have a table containing information about people and their addresses and that the
table has an index defined as INDEX (zipcode, lastname, firstname). If we know a person's
zipcode value but are not sure about the last name, we can search like this:

SELECT * FROM people
 WHERE zipcode='95054'
 AND lastname LIKE '%etrunia%'
 AND address LIKE '%Main Street%';

MySQL can use the index to scan through people with zipcode='95054'. The second part
(lastname LIKE '%etrunia%') cannot be used to limit the number of rows that must be scanned,
so without Index Condition Pushdown, this query must retrieve full table rows for all the people who
have zipcode='95054'.

With Index Condition Pushdown, MySQL will check the lastname LIKE '%etrunia%' part before
reading the full table row. This avoids reading full rows corresponding to all index tuples that do not
match the lastname condition.

Index Condition Pushdown is enabled by default; it can be controlled with the optimizer_switch
system variable by setting the index_condition_pushdown flag. See Section 8.9.2, “Controlling
Switchable Optimizations”.

8.2.1.7 Use of Index Extensions

InnoDB automatically extends each secondary index by appending the primary key columns to it.
Consider this table definition:

CREATE TABLE t1 (
 i1 INT NOT NULL DEFAULT 0,
 i2 INT NOT NULL DEFAULT 0,
 d DATE DEFAULT NULL,
 PRIMARY KEY (i1, i2),
 INDEX k_d (d)
) ENGINE = InnoDB;

This table defines the primary key on columns (i1, i2). It also defines a secondary index k_d on
column (d), but internally InnoDB extends this index and treats it as columns (d, i1, i2).

The optimizer takes into account the primary key columns of the extended secondary index when
determining how and whether to use that index. This can result in more efficient query execution plans
and better performance.

The optimizer can use extended secondary indexes for ref, range, and index_merge index access,
for loose index scans, for join and sorting optimization, and for MIN()/MAX() optimization.

The following example shows how execution plans are affected by whether the optimizer uses
extended secondary indexes. Suppose that t1 is populated with these rows:

INSERT INTO t1 VALUES
(1, 1, '1998-01-01'), (1, 2, '1999-01-01'),
(1, 3, '2000-01-01'), (1, 4, '2001-01-01'),
(1, 5, '2002-01-01'), (2, 1, '1998-01-01'),
(2, 2, '1999-01-01'), (2, 3, '2000-01-01'),
(2, 4, '2001-01-01'), (2, 5, '2002-01-01'),
(3, 1, '1998-01-01'), (3, 2, '1999-01-01'),
(3, 3, '2000-01-01'), (3, 4, '2001-01-01'),
(3, 5, '2002-01-01'), (4, 1, '1998-01-01'),
(4, 2, '1999-01-01'), (4, 3, '2000-01-01'),
(4, 4, '2001-01-01'), (4, 5, '2002-01-01'),
(5, 1, '1998-01-01'), (5, 2, '1999-01-01'),
(5, 3, '2000-01-01'), (5, 4, '2001-01-01'),
(5, 5, '2002-01-01');

Optimizing SELECT Statements

1027

Now consider this query:

EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'

The optimizer cannot use the primary key in this case because that comprises columns (i1, i2) and
the query does not refer to i2. Instead, the optimizer can use the secondary index k_d on (d), and
the execution plan depends on whether the extended index is used.

When the optimizer does not consider index extensions, it treats the index k_d as only (d). EXPLAIN
for the query produces this result:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 4
 ref: const
 rows: 5
 Extra: Using where; Using index

When the optimizer takes index extensions into account, it treats k_d as (d, i1, i2). In this case, it
can use the leftmost index prefix (d, i1) to produce a better execution plan:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 8
 ref: const,const
 rows: 1
 Extra: Using index

In both cases, key indicates that the optimizer will use secondary index k_d but the EXPLAIN output
shows these improvements from using the extended index:

• key_len goes from 4 bytes to 8 bytes, indicating that key lookups use columns d and i1, not just d.

• The ref value changes from const to const,const because the key lookup uses two key parts,
not one.

• The rows count decreases from 5 to 1, indicating that InnoDB should need to examine fewer rows
to produce the result.

• The Extra value changes from Using where; Using index to Using index. This means that
rows can be read using only the index, without consulting columns in the data row.

Differences in optimizer behavior for use of extended indexes can also be seen with SHOW STATUS:

FLUSH TABLE t1;
FLUSH STATUS;
SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01';
SHOW STATUS LIKE 'handler_read%'

The preceding statements include FLUSH TABLE and FLUSH STATUS to flush the table cache and
clear the status counters.

Optimizing SELECT Statements

1028

Without index extensions, SHOW STATUS produces this result:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	5
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

With index extensions, SHOW STATUS produces this result. The Handler_read_next value
decreases from 5 to 1, indicating more efficient use of the index:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	1
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

The use_index_extensions flag of the optimizer_switch system variable permits control
over whether the optimizer takes the primary key columns into account when determining how to use
an InnoDB table's secondary indexes. By default, use_index_extensions is enabled. To check
whether disabling use of index extensions will improve performance, use this statement:

SET optimizer_switch = 'use_index_extensions=off';

Use of index extensions by the optimizer is subject to the usual limits on the number of key parts in an
index (16) and the maximum key length (3072 bytes).

8.2.1.8 IS NULL Optimization

MySQL can perform the same optimization on col_name IS NULL that it can use for col_name =
constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS
NULL.

Examples:

SELECT * FROM tbl_name WHERE key_col IS NULL;

SELECT * FROM tbl_name WHERE key_col <=> NULL;

SELECT * FROM tbl_name
 WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT
NULL, that expression is optimized away. This optimization does not occur in cases when the column
might produce NULL anyway; for example, if it comes from a table on the right side of a LEFT JOIN.

MySQL can also optimize the combination col_name = expr OR col_name IS NULL, a form that
is common in resolved subqueries. EXPLAIN shows ref_or_null when this optimization is used.

This optimization can handle one IS NULL for any key part.

Optimizing SELECT Statements

1029

Some examples of queries that are optimized, assuming that there is an index on columns a and b of
table t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1, t2
 WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
 OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key, and then a separate search for rows
with a NULL key value.

The optimization can handle only one IS NULL level. In the following query, MySQL uses key lookups
only on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to use the key part on b:

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL)
 OR (t1.b=t2.b AND t2.b IS NULL);

8.2.1.9 LEFT JOIN and RIGHT JOIN Optimization

MySQL implements an A LEFT JOIN B join_condition as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any
condition in the WHERE clause is not used.)

• All standard join optimizations are performed, with the exception that a table is always read after all
tables on which it depends. If there is a circular dependence, MySQL issues an error.

• All standard WHERE optimizations are performed.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON
condition, an extra B row is generated with all columns set to NULL.

• If you use LEFT JOIN to find rows that do not exist in some table and you have the following test:
col_name IS NULL in the WHERE part, where col_name is a column that is declared as NOT
NULL, MySQL stops searching for more rows (for a particular key combination) after it has found one
row that matches the LEFT JOIN condition.

The implementation of RIGHT JOIN is analogous to that of LEFT JOIN with the roles of the tables
reversed.

 The join optimizer calculates the order in which tables should be joined. The table read order forced by
LEFT JOIN or STRAIGHT_JOIN helps the join optimizer do its work much more quickly, because there
are fewer table permutations to check. Note that this means that if you do a query of the following type,
MySQL does a full scan on b because the LEFT JOIN forces it to be read before d:

SELECT *
 FROM a JOIN b LEFT JOIN c ON (c.key=a.key)
 LEFT JOIN d ON (d.key=a.key)
 WHERE b.key=d.key;

Optimizing SELECT Statements

1030

The fix in this case is reverse the order in which a and b are listed in the FROM clause:

SELECT *
 FROM b JOIN a LEFT JOIN c ON (c.key=a.key)
 LEFT JOIN d ON (d.key=a.key)
 WHERE b.key=d.key;

For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT JOIN
is changed to a normal join. For example, the WHERE clause would be false in the following query if
t2.column1 were NULL:

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it is safe to convert the query to a normal join:

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

 This can be made faster because MySQL can use table t2 before table t1 if doing so would result
in a better query plan. To provide a hint about the table join order, use STRAIGHT_JOIN. (See
Section 13.2.9, “SELECT Syntax”.)

8.2.1.10 Nested-Loop Join Algorithms

MySQL executes joins between tables using a nested-loop algorithm or variations on it.

Nested-Loop Join Algorithm

A simple nested-loop join (NLJ) algorithm reads rows from the first table in a loop one at a time,
passing each row to a nested loop that processes the next table in the join. This process is repeated as
many times as there remain tables to be joined.

Assume that a join between three tables t1, t2, and t3 is to be executed using the following join
types:

Table Join Type
t1 range
t2 ref
t3 ALL

If a simple NLJ algorithm is used, the join is processed like this:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 for each row in t3 {
 if row satisfies join conditions,
 send to client
 }
 }
}

Because the NLJ algorithm passes rows one at a time from outer loops to inner loops, it typically reads
tables processed in the inner loops many times.

Block Nested-Loop Join Algorithm

A Block Nested-Loop (BNL) join algorithm uses buffering of rows read in outer loops to reduce the
number of times that tables in inner loops must be read. For example, if 10 rows are read into a buffer
and the buffer is passed to the next inner loop, each row read in the inner loop can be compared
against all 10 rows in the buffer. The reduces the number of times the inner table must be read by an
order of magnitude.

Optimizing SELECT Statements

1031

MySQL uses join buffering under these conditions:

• The join_buffer_size system variable determines the size of each join buffer.

• Join buffering can be used when the join is of type ALL or index (in other words, when no possible
keys can be used, and a full scan is done, of either the data or index rows, respectively), or range.
Use of buffering is also applicable to outer joins, as described in Section 8.2.1.14, “Block Nested-
Loop and Batched Key Access Joins”.

• One buffer is allocated for each join that can be buffered, so a given query might be processed using
multiple join buffers.

• A join buffer is never allocated for the first nonconst table, even if it would be of type ALL or index.

• A join buffer is allocated prior to executing the join and freed after the query is done.

• Only columns of interest to the join are stored in the join buffer, not whole rows.

For the example join described previously for the NLJ algorithm (without buffering), the join is done as
follow using join buffering:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 store used columns from t1, t2 in join buffer
 if buffer is full {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions,
 send to client
 }
 }
 empty buffer
 }
 }
}

if buffer is not empty {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions,
 send to client
 }
 }
}

If S is the size of each stored t1, t2 combination is the join buffer and C is the number of combinations
in the buffer, the number of times table t3 is scanned is:

(S * C)/join_buffer_size + 1

The number of t3 scans decreases as the value of join_buffer_size increases, up to the point
when join_buffer_size is large enough to hold all previous row combinations. At that point, there
is no speed to be gained by making it larger.

8.2.1.11 Nested Join Optimization

The syntax for expressing joins permits nested joins. The following discussion refers to the join syntax
described in Section 13.2.9.2, “JOIN Syntax”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts
only table_reference, not a list of them inside a pair of parentheses. This is a conservative
extension if we consider each comma in a list of table_reference items as equivalent to an inner
join. For example:

Optimizing SELECT Statements

1032

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is a syntactic equivalent to INNER JOIN (they can replace each other). In
standard SQL, they are not equivalent. INNER JOIN is used with an ON clause; CROSS JOIN is used
otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations. After
removing parentheses and grouping operations to the left, the join expression:

t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 ON t1.a=t2.a

transforms into the expression:

(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3
 ON t2.b=t3.b OR t2.b IS NULL

Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have
the following state:

• Table t1 contains rows (1), (2)

• Table t2 contains row (1,101)

• Table t3 contains row (101)

In this case, the first expression returns a result set including the rows (1,1,101,101),
(2,NULL,NULL,NULL), whereas the second expression returns the rows (1,1,101,101),
(2,NULL,NULL,101):

mysql> SELECT *
 -> FROM t1
 -> LEFT JOIN
 -> (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 -> ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 -> FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
 -> LEFT JOIN t3
 -> ON t2.b=t3.b OR t2.b IS NULL;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

In the following example, an outer join operation is used together with an inner join operation:

t1 LEFT JOIN (t2, t3) ON t1.a=t2.a

Optimizing SELECT Statements

1033

That expression cannot be transformed into the following expression:

t1 LEFT JOIN t2 ON t1.a=t2.a, t3.

For the given table states, the two expressions return different sets of rows:

mysql> SELECT *
 -> FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 -> FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

Therefore, if we omit parentheses in a join expression with outer join operators, we might change the
result set for the original expression.

More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in
the left operand of a right join operation. In other words, we cannot ignore parentheses for the inner
table expressions of outer join operations. Parentheses for the other operand (operand for the outer
table) can be ignored.

The following expression:

(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)

is equivalent to this expression:

t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)

for any tables t1,t2,t3 and any condition P over attributes t2.b and t3.b.

Whenever the order of execution of the join operations in a join expression (join_table) is not from
left to right, we talk about nested joins. Consider the following queries:

SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
 WHERE t1.a > 1

SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
 WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1

Those queries are considered to contain these nested joins:

t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3

The nested join is formed in the first query with a left join operation, whereas in the second query it is
formed with an inner join operation.

In the first query, the parentheses can be omitted: The grammatical structure of the join expression will
dictate the same order of execution for join operations. For the second query, the parentheses cannot
be omitted, although the join expression here can be interpreted unambiguously without them. (In our

Optimizing SELECT Statements

1034

extended syntax the parentheses in (t2, t3) of the second query are required, although theoretically
the query could be parsed without them: We still would have unambiguous syntactical structure for the
query because LEFT JOIN and ON would play the role of the left and right delimiters for the expression
(t2,t3).)

The preceding examples demonstrate these points:

• For join expressions involving only inner joins (and not outer joins), parentheses can be removed.
You can remove parentheses and evaluate left to right (or, in fact, you can evaluate the tables in any
order).

• The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of
parentheses may change the result.

Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins.
More exactly, a variation of the nested-loop join algorithm is exploited. Recall by what algorithmic
schema the nested-loop join executes a query. Suppose that we have a join query over 3 tables
T1,T2,T3 of the form:

SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
 INNER JOIN T3 ON P2(T2,T3)
 WHERE P(T1,T2,T3).

Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas P(T1,T2,T3)
is a condition over columns of tables T1,T2,T3.

The nested-loop join algorithm would execute this query in the following manner:

FOR each row t1 in T1 {
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

The notation t1||t2||t3 means “a row constructed by concatenating the columns of rows t1,
t2, and t3.” In some of the following examples, NULL where a row name appears means that NULL
is used for each column of that row. For example, t1||t2||NULL means “a row constructed by
concatenating the columns of rows t1 and t2, and NULL for each column of t3.”

Now let's consider a query with nested outer joins:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON P2(T2,T3))
 ON P1(T1,T2)
 WHERE P(T1,T2,T3).

For this query, we modify the nested-loop pattern to get:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;

Optimizing SELECT Statements

1035

 }
 IF (!f2) {
 IF P(t1,t2,NULL) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that
is turned off before the loop and is checked after the loop. The flag is turned on when for the current
row from the outer table a match from the table representing the inner operand is found. If at the end of
the loop cycle the flag is still off, no match has been found for the current row of the outer table. In this
case, the row is complemented by NULL values for the columns of the inner tables. The result row is
passed to the final check for the output or into the next nested loop, but only if the row satisfies the join
condition of all embedded outer joins.

In our example, the outer join table expressed by the following expression is embedded:

(T2 LEFT JOIN T3 ON P2(T2,T3))

For the query with inner joins, the optimizer could choose a different order of nested loops, such as this
one:

FOR each row t3 in T3 {
 FOR each row t2 in T2 such that P2(t2,t3) {
 FOR each row t1 in T1 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

For the queries with outer joins, the optimizer can choose only such an order where loops for outer
tables precede loops for inner tables. Thus, for our query with outer joins, only one nesting order is
possible. For the following query, the optimizer will evaluate two different nestings:

SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
 WHERE P(T1,T2,T3)

The nestings are these:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t1,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

Optimizing SELECT Statements

1036

and:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t3 in T3 such that P2(t1,t3) {
 FOR each row t2 in T2 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

In both nestings, T1 must be processed in the outer loop because it is used in an outer join. T2 and T3
are used in an inner join, so that join must be processed in the inner loop. However, because the join is
an inner join, T2 and T3 can be processed in either order.

When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact
on the performance of query execution may be huge. We did not mention so-called “pushed-down”
conditions. Suppose that our WHERE condition P(T1,T2,T3) can be represented by a conjunctive
formula:

P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).

In this case, MySQL actually uses the following nested-loop schema for the execution of the query with
inner joins:

FOR each row t1 in T1 such that C1(t1) {
 FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2) {
 FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to
the most outer loop where it can be evaluated. If C1(T1) is a very restrictive condition, this condition
pushdown may greatly reduce the number of rows from table T1 passed to the inner loops. As a result,
the execution time for the query may improve immensely.

For a query with outer joins, the WHERE condition is to be checked only after it has been found that
the current row from the outer table has a match in the inner tables. Thus, the optimization of pushing
conditions out of the inner nested loops cannot be applied directly to queries with outer joins. Here we
have to introduce conditional pushed-down predicates guarded by the flags that are turned on when a
match has been encountered.

For our example with outer joins with:

P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)

the nested-loop schema using guarded pushed-down conditions looks like this:

FOR each row t1 in T1 such that C1(t1) {
 BOOL f1:=FALSE;
 FOR each row t2 in T2

Optimizing SELECT Statements

1037

 such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3
 such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
 IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }
 }
 IF (!f1 && P(t1,NULL,NULL)) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
}

In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and
P(T2,T3). In this case, a pushed-down predicate is guarded also by a flag that prevents checking the
predicate for the NULL-complemented row generated by the corresponding outer join operation.

Access by key from one inner table to another in the same nested join is prohibited if it is induced
by a predicate from the WHERE condition. (We could use conditional key access in this case, but this
technique is not employed yet in MySQL.)

8.2.1.12 Outer Join Simplification

Table expressions in the FROM clause of a query are simplified in many cases.

At the parser stage, queries with right outer joins operations are converted to equivalent queries
containing only left join operations. In the general case, the conversion is performed according to the
following rule:

(T1, ...) RIGHT JOIN (T2,...) ON P(T1,...,T2,...) =
(T2, ...) LEFT JOIN (T1,...) ON P(T1,...,T2,...)

All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list
T1,T2, P(T1,T2) being joined as a conjunct to the WHERE condition (or to the join condition of the
embedding join, if there is any).

When the optimizer evaluates plans for join queries with outer join operation, it takes into consideration
only the plans where, for each such operation, the outer tables are accessed before the inner tables.
The optimizer options are limited because only such plans enables us to execute queries with outer
joins operations by the nested loop schema.

Suppose that we have a query of the form:

SELECT * T1 LEFT JOIN T2 ON P1(T1,T2)
 WHERE P(T1,T2) AND R(T2)

with R(T2) narrowing greatly the number of matching rows from table T2. If we executed the query as
it is, the optimizer would have no other choice besides to access table T1 before table T2 that may lead
to a very inefficient execution plan.

Fortunately, MySQL converts such a query into a query without an outer join operation if the WHERE
condition is null-rejected. A condition is called null-rejected for an outer join operation if it evaluates to
FALSE or to UNKNOWN for any NULL-complemented row built for the operation.

Thus, for this outer join:

Optimizing SELECT Statements

1038

T1 LEFT JOIN T2 ON T1.A=T2.A

Conditions such as these are null-rejected:

T2.B IS NOT NULL,
T2.B > 3,
T2.C <= T1.C,
T2.B < 2 OR T2.C > 1

Conditions such as these are not null-rejected:

T2.B IS NULL,
T1.B < 3 OR T2.B IS NOT NULL,
T1.B < 3 OR T2.B > 3

The general rules for checking whether a condition is null-rejected for an outer join operation are
simple. A condition is null-rejected in the following cases:

• If it is of the form A IS NOT NULL, where A is an attribute of any of the inner tables

• If it is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its
arguments is NULL

• If it is a conjunction containing a null-rejected condition as a conjunct

• If it is a disjunction of null-rejected conditions

A condition can be null-rejected for one outer join operation in a query and not null-rejected for another.
In the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

the WHERE condition is null-rejected for the second outer join operation but is not null-rejected for the
first one.

If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is
replaced by an inner join operation.

For example, the preceding query is replaced with the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

For the original query, the optimizer would evaluate plans compatible with only one access order
T1,T2,T3. For the replacing query, it additionally considers the access sequence T3,T1,T2.

A conversion of one outer join operation may trigger a conversion of another. Thus, the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

will be first converted to the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

Optimizing SELECT Statements

1039

which is equivalent to the query:

SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

Now the remaining outer join operation can be replaced by an inner join, too, because the condition
T3.B=T2.B is null-rejected and we get a query without outer joins at all:

SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

Sometimes we succeed in replacing an embedded outer join operation, but cannot convert the
embedding outer join. The following query:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0

is converted to:

SELECT * FROM T1 LEFT JOIN
 (T2 INNER JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0,

That can be rewritten only to the form still containing the embedding outer join operation:

SELECT * FROM T1 LEFT JOIN
 (T2,T3)
 ON (T2.A=T1.A AND T3.B=T2.B)
 WHERE T3.C > 0.

When trying to convert an embedded outer join operation in a query, we must take into account the join
condition for the embedding outer join together with the WHERE condition. In the query:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A AND T3.C=T1.C
 WHERE T3.D > 0 OR T1.D > 0

the WHERE condition is not null-rejected for the embedded outer join, but the join condition of the
embedding outer join T2.A=T1.A AND T3.C=T1.C is null-rejected. So the query can be converted to:

SELECT * FROM T1 LEFT JOIN
 (T2, T3)
 ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B
 WHERE T3.D > 0 OR T1.D > 0

8.2.1.13 Multi-Range Read Optimization

Reading rows using a range scan on a secondary index can result in many random disk accesses to
the base table when the table is large and not stored in the storage engine's cache. With the Disk-
Sweep Multi-Range Read (MRR) optimization, MySQL tries to reduce the number of random disk
access for range scans by first scanning the index only and collecting the keys for the relevant rows.
Then the keys are sorted and finally the rows are retrieved from the base table using the order of the
primary key. The motivation for Disk-sweep MRR is to reduce the number of random disk accesses
and instead achieve a more sequential scan of the base table data.

The Multi-Range Read optimization provides these benefits:

Optimizing SELECT Statements

1040

• MRR enables data rows to be accessed sequentially rather than in random order, based on
index tuples. The server obtains a set of index tuples that satisfy the query conditions, sorts them
according to data row ID order, and uses the sorted tuples to retrieve data rows in order. This makes
data access more efficient and less expensive.

• MRR enables batch processing of requests for key access for operations that require access to data
rows through index tuples, such as range index scans and equi-joins that use an index for the join
attribute. MRR iterates over a sequence of index ranges to obtain qualifying index tuples. As these
results accumulate, they are used to access the corresponding data rows. It is not necessary to
acquire all index tuples before starting to read data rows.

The MRR optimization is not supported with secondary indexes created on virtual generated columns.
InnoDB supports secondary indexes on virtual generated columns as of MySQL 5.7.8.

The following scenarios illustrate when MRR optimization can be advantageous:

Scenario A: MRR can be used for InnoDB and MyISAM tables for index range scans and equi-join
operations.

1. A portion of the index tuples are accumulated in a buffer.

2. The tuples in the buffer are sorted by their data row ID.

3. Data rows are accessed according to the sorted index tuple sequence.

Scenario B: MRR can be used for NDB tables for multiple-range index scans or when performing an
equi-join by an attribute.

1. A portion of ranges, possibly single-key ranges, is accumulated in a buffer on the central node
where the query is submitted.

2. The ranges are sent to the execution nodes that access data rows.

3. The accessed rows are packed into packages and sent back to the central node.

4. The received packages with data rows are placed in a buffer.

5. Data rows are read from the buffer.

When MRR is used, the Extra column in EXPLAIN output shows Using MRR.

InnoDB and MyISAM do not use MRR if full table rows need not be accessed to produce the query
result. This is the case if results can be produced entirely on the basis on information in the index
tuples (through a covering index); MRR provides no benefit.

Example query for which MRR can be used, assuming that there is an index on (key_part1,
key_part2):

SELECT * FROM t
 WHERE key_part1 >= 1000 AND key_part1 < 2000
 AND key_part2 = 10000;

The index consists of tuples of (key_part1, key_part2) values, ordered first by key_part1 and
then by key_part2.

Without MRR, an index scan covers all index tuples for the key_part1 range from 1000 up to 2000,
regardless of the key_part2 value in these tuples. The scan does extra work to the extent that tuples
in the range contain key_part2 values other than 10000.

With MRR, the scan is broken up into multiple ranges, each for a single value of key_part1 (1000,
1001, ... , 1999). Each of these scans need look only for tuples with key_part2 = 10000. If the index

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Optimizing SELECT Statements

1041

contains many tuples for which key_part2 is not 10000, MRR results in many fewer index tuples
being read.

To express this using interval notation, the non-MRR scan must examine the index range [{1000,
10000}, {2000, MIN_INT}), which may include many tuples other than those for which
key_part2 = 10000. The MRR scan examines multiple single-point intervals [{1000, 10000}], ...,
[{1999, 10000}], which includes only tuples with key_part2 = 10000.

Two optimizer_switch system variable flags provide an interface to the use of MRR optimization.
The mrr flag controls whether MRR is enabled. If mrr is enabled (on), the mrr_cost_based flag
controls whether the optimizer attempts to make a cost-based choice between using and not using
MRR (on) or uses MRR whenever possible (off). By default, mrr is on and mrr_cost_based is on.
See Section 8.9.2, “Controlling Switchable Optimizations”.

For MRR, a storage engine uses the value of the read_rnd_buffer_size system variable
as a guideline for how much memory it can allocate for its buffer. The engine uses up to
read_rnd_buffer_size bytes and determines the number of ranges to process in a single pass.

8.2.1.14 Block Nested-Loop and Batched Key Access Joins

In MySQL, a Batched Key Access (BKA) Join algorithm is available that uses both index access to
the joined table and a join buffer. The BKA algorithm supports inner join, outer join, and semi-join
operations, including nested outer joins. Benefits of BKA include improved join performance due to
more efficient table scanning. Also, the Block Nested-Loop (BNL) Join algorithm previously used only
for inner joins is extended and can be employed for outer join and semi-join operations, including
nested outer joins.

The following sections discuss the join buffer management that underlies the extension of the original
BNL algorithm, the extended BNL algorithm, and the BKA algorithm. For information about semi-join
strategies, see Optimizing Subqueries with Semi-Join Transformations

Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms

MySQL Server can employ join buffers to execute not only inner joins without index access to the inner
table, but also outer joins and semi-joins that appear after subquery flattening. Moreover, a join buffer
can be effectively used when there is an index access to the inner table.

The join buffer management code slightly more efficiently utilizes join buffer space when storing the
values of the interesting row columns: No additional bytes are allocated in buffers for a row column if its
value is NULL, and the minimum number of bytes is allocated for any value of the VARCHAR type.

The code supports two types of buffers, regular and incremental. Suppose that join buffer B1 is
employed to join tables t1 and t2 and the result of this operation is joined with table t3 using join
buffer B2:

• A regular join buffer contains columns from each join operand. If B2 is a regular join buffer, each
row r put into B2 is composed of the columns of a row r1 from B1 and the interesting columns of a
matching row r2 from table t3.

• An incremental join buffer contains only columns from rows of the table produced by the second join
operand. That is, it is incremental to a row from the first operand buffer. If B2 is an incremental join
buffer, it contains the interesting columns of the row r2 together with a link to the row r1 from B1.

Incremental join buffers are always incremental relative to a join buffer from an earlier join operation, so
the buffer from the first join operation is always a regular buffer. In the example just given, the buffer B1
used to join tables t1 and t2 must be a regular buffer.

Each row of the incremental buffer used for a join operation contains only the interesting columns of
a row from the table to be joined. These columns are augmented with a reference to the interesting
columns of the matched row from the table produced by the first join operand. Several rows in the

Optimizing SELECT Statements

1042

incremental buffer can refer to the same row r whose columns are stored in the previous join buffers
insofar as all these rows match row r.

Incremental buffers enable less frequent copying of columns from buffers used for previous join
operations. This provides a savings in buffer space because in the general case a row produced by
the first join operand can be matched by several rows produced by the second join operand. It is
unnecessary to make several copies of a row from the first operand. Incremental buffers also provide a
savings in processing time due to the reduction in copying time.

The block_nested_loop and batched_key_access flags of the optimizer_switch system
variable control how the optimizer uses the Block Nested-Loop and Batched Key Access join
algorithms. By default, block_nested_loop is on and batched_key_access is off. See
Section 8.9.2, “Controlling Switchable Optimizations”.

For information about semi-join strategies, see Optimizing Subqueries with Semi-Join Transformations

Block Nested-Loop Algorithm for Outer Joins and Semi-Joins

The original implementation of the MySQL BNL algorithm is extended to support outer join and semi-
join operations.

When these operations are executed with a join buffer, each row put into the buffer is supplied with a
match flag.

If an outer join operation is executed using a join buffer, each row of the table produced by the second
operand is checked for a match against each row in the join buffer. When a match is found, a new
extended row is formed (the original row plus columns from the second operand) and sent for further
extensions by the remaining join operations. In addition, the match flag of the matched row in the buffer
is enabled. After all rows of the table to be joined have been examined, the join buffer is scanned. Each
row from the buffer that does not have its match flag enabled is extended by NULL complements (NULL
values for each column in the second operand) and sent for further extensions by the remaining join
operations.

The block_nested_loop flag of the optimizer_switch system variable controls how the
optimizer uses the Block Nested-Loop algorithm. By default, block_nested_loop is on. See
Section 8.9.2, “Controlling Switchable Optimizations”.

In EXPLAIN output, use of BNL for a table is signified when the Extra value contains Using join
buffer (Block Nested Loop) and the type value is ALL, index, or range.

For information about semi-join strategies, see Optimizing Subqueries with Semi-Join Transformations

Batched Key Access Joins

MySQL Server implements a method of joining tables called the Batched Key Access (BKA) join
algorithm. BKA can be applied when there is an index access to the table produced by the second
join operand. Like the BNL join algorithm, the BKA join algorithm employs a join buffer to accumulate
the interesting columns of the rows produced by the first operand of the join operation. Then the BKA
algorithm builds keys to access the table to be joined for all rows in the buffer and submits these keys
in a batch to the database engine for index lookups. The keys are submitted to the engine through
the Multi-Range Read (MRR) interface (see Section 8.2.1.13, “Multi-Range Read Optimization”). After
submission of the keys, the MRR engine functions perform lookups in the index in an optimal way,
fetching the rows of the joined table found by these keys, and starts feeding the BKA join algorithm with
matching rows. Each matching row is coupled with a reference to a row in the join buffer.

When BKA is used, the value of join_buffer_size defines how large the batch of keys is in each
request to the storage engine. The larger the buffer, the more sequential access will be to the right
hand table of a join operation, which can significantly improve performance.

For BKA to be used, the batched_key_access flag of the optimizer_switch system variable
must be set to on. BKA uses MRR, so the mrr flag must also be on. Currently, the cost estimation for

Optimizing SELECT Statements

1043

MRR is too pessimistic. Hence, it is also necessary for mrr_cost_based to be off for BKA to be
used. The following setting enables BKA:

mysql> SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

There are two scenarios by which MRR functions execute:

• The first scenario is used for conventional disk-based storage engines such as InnoDB and MyISAM.
For these engines, usually the keys for all rows from the join buffer are submitted to the MRR
interface at once. Engine-specific MRR functions perform index lookups for the submitted keys, get
row IDs (or primary keys) from them, and then fetch rows for all these selected row IDs one by one
by request from BKA algorithm. Every row is returned with an association reference that enables
access to the matched row in the join buffer. The rows are fetched by the MRR functions in an
optimal way: They are fetched in the row ID (primary key) order. This improves performance because
reads are in disk order rather than random order.

• The second scenario is used for remote storage engines such as NDB. A package of keys for a
portion of rows from the join buffer, together with their associations, is sent by a MySQL Server
(SQL node) to MySQL Cluster data nodes. In return, the SQL node receives a package (or several
packages) of matching rows coupled with corresponding associations. The BKA join algorithm takes
these rows and builds new joined rows. Then a new set of keys is sent to the data nodes and the
rows from the returned packages are used to build new joined rows. The process continues until the
last keys from the join buffer are sent to the data nodes, and the SQL node has received and joined
all rows matching these keys. This improves performance because fewer key-bearing packages
sent by the SQL node to the data nodes means fewer round trips between it and the data nodes to
perform the join operation.

With the first scenario, a portion of the join buffer is reserved to store row IDs (primary keys) selected
by index lookups and passed as a parameter to the MRR functions.

There is no special buffer to store keys built for rows from the join buffer. Instead, a function that builds
the key for the next row in the buffer is passed as a parameter to the MRR functions.

In EXPLAIN output, use of BKA for a table is signified when the Extra value contains Using join
buffer (Batched Key Access) and the type value is ref or eq_ref.

8.2.1.15 ORDER BY Optimization

In some cases, MySQL can use an index to satisfy an ORDER BY clause without doing extra sorting.

The index can also be used even if the ORDER BY does not match the index exactly, as long as all
unused portions of the index and all extra ORDER BY columns are constants in the WHERE clause. The
following queries use the index to resolve the ORDER BY part:

SELECT * FROM t1
 ORDER BY key_part1,key_part2,... ;

SELECT * FROM t1
 WHERE key_part1 = constant
 ORDER BY key_part2;

SELECT * FROM t1
 ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
 WHERE key_part1 = 1
 ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
 WHERE key_part1 > constant
 ORDER BY key_part1 ASC;

SELECT * FROM t1

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Optimizing SELECT Statements

1044

 WHERE key_part1 < constant
 ORDER BY key_part1 DESC;

SELECT * FROM t1
 WHERE key_part1 = constant1 AND key_part2 > constant2
 ORDER BY key_part2;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it still uses indexes to
find the rows that match the WHERE clause. These cases include the following:

• The query uses ORDER BY on different indexes:

SELECT * FROM t1 ORDER BY key1, key2;

• The query uses ORDER BY on nonconsecutive parts of an index:

SELECT * FROM t1 WHERE key2=constant ORDER BY key_part2;

• The query mixes ASC and DESC:

SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;

• The index used to fetch the rows differs from the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• The query uses ORDER BY with an expression that includes terms other than the index column
name:

SELECT * FROM t1 ORDER BY ABS(key);
SELECT * FROM t1 ORDER BY -key;

• The query joins many tables, and the columns in the ORDER BY are not all from the first nonconstant
table that is used to retrieve rows. (This is the first table in the EXPLAIN output that does not have a
const join type.)

• The query has different ORDER BY and GROUP BY expressions.

• There is an index on only a prefix of a column named in the ORDER BY clause. In this case, the index
cannot be used to fully resolve the sort order. For example, if only the first 10 bytes of a CHAR(20)
column are indexed, the index cannot distinguish values past the 10th byte and a filesort will be
needed.

• The index does not store rows in order. For example, this is true for a HASH index in a MEMORY table.

Availability of an index for sorting may be affected by the use of column aliases. Suppose that the
column t1.a is indexed. In this statement, the name of the column in the select list is a. It refers to
t1.a, so for the reference to a in the ORDER BY, the index can be used:

SELECT a FROM t1 ORDER BY a;

In this statement, the name of the column in the select list is also a, but it is the alias name. It refers to
ABS(a), so for the reference to a in the ORDER BY, the index cannot be used:

SELECT ABS(a) AS a FROM t1 ORDER BY a;

In the following statement, the ORDER BY refers to a name that is not the name of a column in the
select list. But there is a column in t1 named a, so the ORDER BY uses that and the index can be
used. (The resulting sort order may be completely different from the order for ABS(a), of course.)

Optimizing SELECT Statements

1045

SELECT ABS(a) AS b FROM t1 ORDER BY a;

By default, MySQL sorts all GROUP BY col1, col2, ... queries as if you specified ORDER BY
col1, col2, ... in the query as well. If you include an explicit ORDER BY clause that contains the
same column list, MySQL optimizes it away without any speed penalty, although the sorting still occurs.

Note

Relying on implicit GROUP BY sorting is deprecated. To achieve a specific sort
order of grouped results, it is preferable to use an explicit ORDER BY clause.
GROUP BY sorting is a MySQL extension that may change in a future release;
for example, to make it possible for the optimizer to order groupings in whatever
manner it deems most efficient and to avoid the sorting overhead.

If a query includes GROUP BY but you want to avoid the overhead of sorting the result, you can
suppress sorting by specifying ORDER BY NULL. For example:

INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

The optimizer may still choose to use sorting to implement grouping operations. ORDER BY NULL
suppresses sorting of the result, not prior sorting done by grouping operations to determine the result.

With EXPLAIN SELECT ... ORDER BY, you can check whether MySQL can use indexes to resolve
the query. It cannot if you see Using filesort in the Extra column. See Section 8.8.1, “Optimizing
Queries with EXPLAIN”. Filesort uses a fixed-length row-storage format similar to that used by the
MEMORY storage engine. Variable-length types such as VARCHAR are stored using a fixed length.

MySQL has two filesort algorithms for sorting and retrieving results. The original method uses
only the ORDER BY columns. The modified method uses not just the ORDER BY columns, but all the
columns referenced by the query.

The optimizer selects which filesort algorithm to use. It normally uses the modified algorithm
except when BLOB or TEXT columns are involved, in which case it uses the original algorithm. For both
algorithms, the sort buffer size is the sort_buffer_size system variable value.

The original filesort algorithm works as follows:

1. Read all rows according to key or by table scanning. Skip rows that do not match the WHERE
clause.

2. For each row, store in the sort buffer a tuple consisting of a pair of values (the sort key value and
the row ID).

3. If all pairs fit into the sort buffer, no temporary file is created. Otherwise, when the sort buffer
becomes full, run a qsort (quicksort) on it in memory and write it to a temporary file. Save a pointer
to the sorted block.

4. Repeat the preceding steps until all rows have been read.

5. Do a multi-merge of up to MERGEBUFF (7) regions to one block in another temporary file. Repeat
until all blocks from the first file are in the second file.

6. Repeat the following until there are fewer than MERGEBUFF2 (15) blocks left.

7. On the last multi-merge, only the row ID (the last part of the value pair) is written to a result file.

8. Read the rows in sorted order using the row IDs in the result file. To optimize this, read in a large
block of row IDs, sort them, and use them to read the rows in sorted order into a row buffer. The

Optimizing SELECT Statements

1046

row buffer size is the read_rnd_buffer_size system variable value. The code for this step is in
the sql/records.cc source file.

One problem with this approach is that it reads rows twice: One time during WHERE clause evaluation,
and again after sorting the value pairs. And even if the rows were accessed successively the first time
(for example, if a table scan is done), the second time they are accessed randomly. (The sort keys are
ordered, but the row positions are not.)

The modified filesort algorithm incorporates an optimization to avoid reading the rows twice: It
records the sort key value, but instead of the row ID, it records the columns referenced by the query.
The modified filesort algorithm works like this:

1. Read the rows that match the WHERE clause.

2. For each row, store in the sort buffer a tuple consisting of the sort key value and the columns
referenced by the query.

3. When the sort buffer becomes full, sort the tuples by sort key value in memory and write it to a
temporary file.

4. After merge-sorting the temporary file, retrieve the rows in sorted order, but read the columns
required by the query directly from the sorted tuples rather than by accessing the table a second
time.

The tuples used by the modified filesort algorithm are longer than the pairs used by the original
algorithm, and fewer of them fit in the sort buffer. As a result, it is possible for the extra I/O to make
the modified approach slower, not faster. To avoid a slowdown, the optimizer uses the modified
algorithm only if the total size of the extra columns in the sort tuple does not exceed the value of the
max_length_for_sort_data system variable. (A symptom of setting the value of this variable too
high is a combination of high disk activity and low CPU activity.)

As of MySQL 5.7.3, the modified filesort algorithm includes an additional optimization designed to
enable more tuples to fit into the sort buffer: For additional columns of type CHAR or VARCHAR, or any
nullable fixed-size data type, the values are packed. For example, without packing, a VARCHAR(255)
column value containing only 3 characters takes 255 characters in the sort buffer. With packing, the
value requires only 3 characters plus a two-byte length indicator. NULL values require only a bitmask.

For data containing packable strings shorter than the maximum column length or many NULL
values, more records fit into the sort buffer. This improves in-memory sorting of the sort buffer and
performance of disk-based temporary file merge sorting.

In edge cases, packing may be disadvantageous: If packable strings are the maximum column length
or there are few NULL values, the space required for the length indicators reduces the number of
records that fit into the sort buffer and sorting is slower in memory and on disk.

If a filesort is done, EXPLAIN output includes Using filesort in the Extra column. Also,
optimizer trace output includes a filesort_summary block. For example:

"filesort_summary": {
 "rows": 100,
 "examined_rows": 100,
 "number_of_tmp_files": 0,
 "sort_buffer_size": 25192,
 "sort_mode": "<sort_key, packed_additional_fields>"
}

The sort_mode value provides information about the filesort algorithm used and the contents of
tuples in the sort buffer:

• <sort_key, rowid>: This indicates use of the original algorithm. Sort buffer tuples are pairs that
contain the sort key value and row ID of the original table row. Tuples are sorted by sort key value
and the row ID is used to read the row from the table.

Optimizing SELECT Statements

1047

• <sort_key, additional_fields>: This indicates use of the modified algorithm. Sort buffer
tuples contain the sort key value and columns referenced by the query. Tuples are sorted by sort key
value and column values are read directly from the tuple.

• <sort_key, packed_additional_fields>: This indicates use of the modified algorithm. Sort
buffer tuples contain the sort key value and packed columns referenced by the query. Tuples are
sorted by sort key value and column values are read directly from the tuple.

For information about the optimizer trace, see MySQL Internals: Tracing the Optimizer.

Suppose that a table t1 has four VARCHAR columns a, b, c, and d and that the optimizer uses
filesort for this query:

SELECT * FROM t1 ORDER BY a, b;

The query sorts by a and b, but returns all columns, so the columns referenced by the query are a,
b, c, and d. Depending on which filesort algorithm the optimizer chooses, the query executes as
follows:

For the original algorithm, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
row ID into t1)

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and
uses the row ID in each tuple to read rows from t1 to obtain the select list column values.

For the modified algorithm without packing, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
a value, b value, c value, d value)

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and
uses the values for a, b, c, and d to obtain the select list column values without reading t1 again.

For the modified algorithm with packing, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
a length, packed a value, b length, packed b value,
c length, packed c value, d length, packed d value)

If any of a, b, c, or d are NULL, they take no space in the sort buffer other than in the bitmask.

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and
uses the values for a, b, c, and d to obtain the select list column values without reading t1 again.

For slow queries for which filesort is not used, try lowering max_length_for_sort_data to a
value that is appropriate to trigger a filesort.

To increase ORDER BY speed, check whether you can get MySQL to use indexes rather than an extra
sorting phase. If this is not possible, you can try the following strategies:

• Increase the sort_buffer_size variable value. Ideally, the value should be large enough for the
entire result set to fit in the sort buffer (to avoid writes to disk and merge passes), but at minimum the
value must be large enough to accommodate fifteen tuples.

Take into account that the size of column values stored in the sort buffer is affected by the
max_sort_length system variable value. For example, if tuples store values of long string columns
and you increase the value of max_sort_length, the size of sort buffer tuples increases as well

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

Optimizing SELECT Statements

1048

and may require you to increase sort_buffer_size. For column values calculated as a result
of string expressions (such as those that invoke a string-valued function), the filesort algorithm
cannot tell the maximum length of expression values, so it must allocate max_sort_length bytes
for each tuple.

To monitor the number of merge passes, check the Sort_merge_passes status variable.

• Increase the read_rnd_buffer_size variable value.

• Use less RAM per row by declaring columns only as large as they need to be to hold the values
stored in them. For example, CHAR(16) is better than CHAR(200) if values never exceed 16
characters.

• Change the tmpdir system variable to point to a dedicated file system with large amounts of free
space. The variable value can list several paths that are used in round-robin fashion; you can use
this feature to spread the load across several directories. Paths should be separated by colon
characters (“:”) on Unix and semicolon characters (“;”) on Windows. The paths should name
directories in file systems located on different physical disks, not different partitions on the same disk.

If an index is not used for ORDER BY but a LIMIT clause is also present, the optimizer may be able to
avoid using a merge file and sort the rows in memory. For details, see Section 8.2.1.19, “Optimizing
LIMIT Queries”.

8.2.1.16 GROUP BY Optimization

The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new
temporary table where all rows from each group are consecutive, and then use this temporary table
to discover groups and apply aggregate functions (if any). In some cases, MySQL is able to do much
better than that and to avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns
reference attributes from the same index, and that the index stores its keys in order (for example, this
is a BTREE index and not a HASH index). Whether use of temporary tables can be replaced by index
access also depends on which parts of an index are used in a query, the conditions specified for these
parts, and the selected aggregate functions.

There are two ways to execute a GROUP BY query through index access, as detailed in the following
sections. In the first method, the grouping operation is applied together with all range predicates (if
any). The second method first performs a range scan, and then groups the resulting tuples.

In MySQL, GROUP BY is used for sorting, so the server may also apply ORDER BY optimizations to
grouping. See Section 8.2.1.15, “ORDER BY Optimization”.

Loose Index Scan

The most efficient way to process GROUP BY is when an index is used to directly retrieve the grouping
columns. With this access method, MySQL uses the property of some index types that the keys are
ordered (for example, BTREE). This property enables use of lookup groups in an index without having
to consider all keys in the index that satisfy all WHERE conditions. This access method considers only
a fraction of the keys in an index, so it is called a loose index scan. When there is no WHERE clause, a
loose index scan reads as many keys as the number of groups, which may be a much smaller number
than that of all keys. If the WHERE clause contains range predicates (see the discussion of the range
join type in Section 8.8.1, “Optimizing Queries with EXPLAIN”), a loose index scan looks up the first
key of each group that satisfies the range conditions, and again reads the least possible number of
keys. This is possible under the following conditions:

• The query is over a single table.

• The GROUP BY names only columns that form a leftmost prefix of the index and no other columns.
(If, instead of GROUP BY, the query has a DISTINCT clause, all distinct attributes refer to columns

Optimizing SELECT Statements

1049

that form a leftmost prefix of the index.) For example, if a table t1 has an index on (c1,c2,c3),
loose index scan is applicable if the query has GROUP BY c1, c2,. It is not applicable if the query
has GROUP BY c2, c3 (the columns are not a leftmost prefix) or GROUP BY c1, c2, c4 (c4 is
not in the index).

• The only aggregate functions used in the select list (if any) are MIN() and MAX(), and all of them
refer to the same column. The column must be in the index and must follow the columns in the
GROUP BY.

• Any other parts of the index than those from the GROUP BY referenced in the query must be
constants (that is, they must be referenced in equalities with constants), except for the argument of
MIN() or MAX() functions.

• For columns in the index, full column values must be indexed, not just a prefix. For example, with c1
VARCHAR(20), INDEX (c1(10)), the index cannot be used for loose index scan.

If loose index scan is applicable to a query, the EXPLAIN output shows Using index for group-
by in the Extra column.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The loose index scan
access method can be used for the following queries:

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are aggregate functions other than MIN() or MAX():

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The columns in the GROUP BY clause do not form a leftmost prefix of the index:

SELECT c1, c2 FROM t1 GROUP BY c2, c3;

• The query refers to a part of a key that comes after the GROUP BY part, and for which there is no
equality with a constant:

SELECT c1, c3 FROM t1 GROUP BY c1, c2;

Were the query to include WHERE c3 = const, loose index scan could be used.

The loose index scan access method can be applied to other forms of aggregate function references in
the select list, in addition to the MIN() and MAX() references already supported:

• AVG(DISTINCT), SUM(DISTINCT), and COUNT(DISTINCT) are supported. AVG(DISTINCT)
and SUM(DISTINCT) take a single argument. COUNT(DISTINCT) can have more than one column
argument.

• There must be no GROUP BY or DISTINCT clause in the query.

• The loose scan limitations described earlier still apply.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The loose index scan
access method can be used for the following queries:

Optimizing SELECT Statements

1050

SELECT COUNT(DISTINCT c1), SUM(DISTINCT c1) FROM t1;

SELECT COUNT(DISTINCT c1, c2), COUNT(DISTINCT c2, c1) FROM t1;

Loose index scan is not applicable for the following queries:

SELECT DISTINCT COUNT(DISTINCT c1) FROM t1;

SELECT COUNT(DISTINCT c1) FROM t1 GROUP BY c1;

Tight Index Scan

A tight index scan may be either a full index scan or a range index scan, depending on the query
conditions.

When the conditions for a loose index scan are not met, it still may be possible to avoid creation of
temporary tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method
reads only the keys that satisfy these conditions. Otherwise, it performs an index scan. Because this
method reads all keys in each range defined by the WHERE clause, or scans the whole index if there
are no range conditions, we term it a tight index scan. With a tight index scan, the grouping operation is
performed only after all keys that satisfy the range conditions have been found.

For this method to work, it is sufficient that there is a constant equality condition for all columns in
a query referring to parts of the key coming before or in between parts of the GROUP BY key. The
constants from the equality conditions fill in any “gaps” in the search keys so that it is possible to form
complete prefixes of the index. These index prefixes then can be used for index lookups. If we require
sorting of the GROUP BY result, and it is possible to form search keys that are prefixes of the index,
MySQL also avoids extra sorting operations because searching with prefixes in an ordered index
already retrieves all the keys in order.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The following queries
do not work with the loose index scan access method described earlier, but still work with the tight
index scan access method.

• There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• The GROUP BY does not begin with the first part of the key, but there is a condition that provides a
constant for that part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

8.2.1.17 DISTINCT Optimization

DISTINCT combined with ORDER BY needs a temporary table in many cases.

Because DISTINCT may use GROUP BY, learn how MySQL works with columns in ORDER BY or
HAVING clauses that are not part of the selected columns. See Section 12.20.3, “MySQL Handling of
GROUP BY”.

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example,
the following two queries are equivalent:

SELECT DISTINCT c1, c2, c3 FROM t1
WHERE c1 > const;

SELECT c1, c2, c3 FROM t1

Optimizing SELECT Statements

1051

WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to
queries with a DISTINCT clause. Thus, for more details on the optimization possibilities for DISTINCT
queries, see Section 8.2.1.16, “GROUP BY Optimization”.

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables
as soon as it finds the first match. In the following case, assuming that t1 is used before t2 (which you
can check with EXPLAIN), MySQL stops reading from t2 (for any particular row in t1) when it finds the
first row in t2:

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

8.2.1.18 Subquery Optimization

The MySQL query optimizer has different strategies available to evaluate subqueries. For IN (or =ANY)
subqueries, the optimizer has these choices:

• Semi-join

• Materialization

• EXISTS strategy

For NOT IN (or <>ALL) subqueries, the optimizer has these choices:

• Materialization

• EXISTS strategy

For derived tables (subqueries in the FROM clause) and view references, the optimizer has these
choices:

• Merge the derived table or view into the outer query block

• Materialize the derived table or view to an internal temporary table

The following discussion provides more information about these optimization strategies.

Note

A limitation on UPDATE and DELETE statements that use a subquery to modify
a single table is that the optimizer does not use semi-join or materialization
subquery optimizations. As a workaround, try rewriting them as multiple-table
UPDATE and DELETE statements that use a join rather than a subquery.

Optimizing Subqueries with Semi-Join Transformations

The optimizer uses semi-join strategies to improve subquery execution, as described in this section.

For an inner join between two tables, the join returns a row from one table as many times as there are
matches in the other table. But for some questions, the only information that matters is whether there is
a match, not the number of matches. Suppose that there are tables named class and roster that list
classes in a course curriculum and class rosters (students enrolled in each class), respectively. To list
the classes that actually have students enrolled, you could use this join:

SELECT class.class_num, class.class_name
FROM class INNER JOIN roster

Optimizing SELECT Statements

1052

WHERE class.class_num = roster.class_num;

However, the result lists each class once for each enrolled student. For the question being asked, this
is unnecessary duplication of information.

Assuming that class_num is a primary key in the class table, duplicate suppression could be
achieved by using SELECT DISTINCT, but it is inefficient to generate all matching rows first only to
eliminate duplicates later.

The same duplicate-free result can be obtained by using a subquery:

SELECT class_num, class_name
FROM class
WHERE class_num IN (SELECT class_num FROM roster);

Here, the optimizer can recognize that the IN clause requires the subquery to return only one instance
of each class number from the roster table. In this case, the query can be executed as a semi-join—
that is, an operation that returns only one instance of each row in class that is matched by rows in
roster.

Outer join and inner join syntax is permitted in the outer query specification, and table references may
be base tables or views.

In MySQL, a subquery must satisfy these criteria to be handled as a semi-join:

• It must be an IN (or =ANY) subquery that appears at the top level of the WHERE or ON clause,
possibly as a term in an AND expression. For example:

SELECT ...
FROM ot1, ...
WHERE (oe1, ...) IN (SELECT ie1, ... FROM it1, ... WHERE ...);

Here, ot_i and it_i represent tables in the outer and inner parts of the query, and oe_i and ie_i
represent expressions that refer to columns in the outer and inner tables.

• It must be a single SELECT without UNION constructs.

• It must not contain a GROUP BY or HAVING clause or aggregate functions.

• It must not have ORDER BY with LIMIT.

• It must not have STRAIGHT_JOIN in the outer query.

• The number of outer and inner tables together must be less than the maximum number of tables
permitted in a join.

The subquery may be correlated or uncorrelated. DISTINCT is permitted, as is LIMIT unless ORDER
BY is also used.

If a subquery meets the preceding criteria, MySQL converts it to a semi-join and makes a cost-based
choice from these strategies:

• Convert the subquery to a join, or use table pullout and run the query as an inner join between
subquery tables and outer tables. Table pullout pulls a table out from the subquery to the outer
query.

• Duplicate Weedout: Run the semi-join as if it was a join and remove duplicate records using a
temporary table.

• FirstMatch: When scanning the inner tables for row combinations and there are multiple instances
of a given value group, choose one rather than returning them all. This "shortcuts" scanning and
eliminates production of unnecessary rows.

Optimizing SELECT Statements

1053

• LooseScan: Scan a subquery table using an index that enables a single value to be chosen from
each subquery's value group.

• Materialize the subquery into a temporary table with an index and use the temporary table to perform
a join. The index is used to remove duplicates. The index might also be used later for lookups when
joining the temporary table with the outer tables; if not, the table is scanned.

Each of these strategies can be enabled or disabled using the optimizer_switch system variable.
The semijoin flag controls whether semi-joins are used. If it is set to on, the firstmatch,
loosescan, duplicateweedout (added in MySQL 5.7.8), and materialization flags enable
finer control over the permitted semi-join strategies. These flags are on by default. See Section 8.9.2,
“Controlling Switchable Optimizations”.

If the duplicateweedout semi-join strategy is disabled, it is not used unless all other applicable
strategies are also disabled.

If duplicateweedout is disabled, on occasion the optimizer may generate a query plan that is far
from optimal. This occurs due to heuristic pruning during greedy search, which can be avoided by
setting optimizer_prune_level=0.

As of MySQL 5.7.6, the optimizer minimizes differences in handling of views and subqueries in the
FROM clause. This affects queries with the STRAIGHT_JOIN modifier and a view with an IN subquery
that can be converted into a semi-join. The following query illustrates this because the change in
processing causes a change in transformation, and thus a different execution strategy:

CREATE VIEW v AS
SELECT *
FROM t1
WHERE a IN (SELECT b
 FROM t2);

SELECT STRAIGHT_JOIN *
FROM t3 JOIN v ON t3.x = v.a;

Before 5.7.6, the optimizer first merges the view v into the outer query. When deciding whether to
convert the IN subquery into a semi-join, it notices the STRAIGHT_JOIN and refuses the conversion.

As of 5.7.6, the optimizer first looks at the view and converts the IN subquery into a semi-join, then
checks whether it is possible to merge the view into the outer query. Because the STRAIGHT_JOIN
modifier in the outer query prevents semi-join, the optimizer refuses the merge, causing the derived
table to be evaluated using a materialized table.

The use of semi-join strategies is indicated in EXPLAIN output as follows:

• Semi-joined tables show up in the outer select. EXPLAIN EXTENDED plus SHOW WARNINGS shows
the rewritten query, which displays the semi-join structure. From this you can get an idea about
which tables were pulled out of the semi-join. If a subquery was converted to a semi-join, you will
see that the subquery predicate is gone and its tables and WHERE clause were merged into the outer
query join list and WHERE clause.

• Temporary table use for Duplicate Weedout is indicated by Start temporary and End
temporary in the Extra column. Tables that were not pulled out and are in the range of EXPLAIN
output rows covered by Start temporary and End temporary will have their rowid in the
temporary table.

• FirstMatch(tbl_name) in the Extra column indicates join shortcutting.

• LooseScan(m..n) in the Extra column indicates use of the LooseScan strategy. m and n are key
part numbers.

• Temporary table use for materialization is indicated by rows with a select_type value of
MATERIALIZED and rows with a table value of <subqueryN>.

Optimizing SELECT Statements

1054

Optimizing Subqueries with Subquery Materialization

The optimizer uses subquery materialization as a strategy that enables more efficient subquery
processing. Materialization speeds up query execution by generating a subquery result as a temporary
table, normally in memory. The first time MySQL needs the subquery result, it materializes that result
into a temporary table. Any subsequent time the result is needed, MySQL refers again to the temporary
table. The table is indexed with a hash index to make lookups fast and inexpensive. The index is
unique, which makes the table smaller because it has no duplicates.

Subquery materialization attempts to use an in-memory temporary table when possible, falling back to
on-disk storage if the table becomes too large. See Section 8.4.4, “Internal Temporary Table Use in
MySQL”.

If materialization is not used, the optimizer sometimes rewrites a noncorrelated subquery as a
correlated subquery. For example, the following IN subquery is noncorrelated (where_condition
involves only columns from t2 and not t1):

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

The optimizer might rewrite this as an EXISTS correlated subquery:

SELECT * FROM t1
WHERE EXISTS (SELECT t2.b FROM t2 WHERE where_condition AND t1.a=t2.b);

Subquery materialization using a temporary table avoids such rewrites and makes it possible to
execute the subquery only once rather than once per row of the outer query.

For subquery materialization to be used in MySQL, the materialization flag of the
optimizer_switch system variable must be on. Materialization then applies to subquery predicates
that appear anywhere (in the select list, WHERE, ON, GROUP BY, HAVING, or ORDER BY), for predicates
that fall into any of these use cases:

• The predicate has this form, when no outer expression oe_i or inner expression ie_i is nullable. N
can be 1 or larger.

(oe_1, oe_2, ..., oe_N) [NOT] IN (SELECT ie_1, i_2, ..., ie_N ...)

• The predicate has this form, when there is a single outer expression oe and inner expression ie.
The expressions can be nullable.

oe [NOT] IN (SELECT ie ...)

• The predicate is IN or NOT IN and a result of UNKNOWN (NULL) has the same meaning as a result of
FALSE.

The following examples illustrate how the requirement for equivalence of UNKNOWN and FALSE
predicate evaluation affects whether subquery materialization can be used. Assume that
where_condition involves columns only from t2 and not t1 so that the subquery is noncorrelated.

This query is subject to materialization:

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

Here, it does not matter whether the IN predicate returns UNKNOWN or FALSE. Either way, the row from
t1 is not included in the query result.

An example where subquery materialization will not be used is the following query, where t2.b is a
nullable column.

Optimizing SELECT Statements

1055

SELECT * FROM t1
WHERE (t1.a,t1.b) NOT IN (SELECT t2.a,t2.b FROM t2
 WHERE where_condition);

The following restrictions apply to the use of subquery materialization:

• The types of the inner and outer expressions must match. For example, the optimizer might be able
to use materialization if both expressions are integer or both are decimal. The optimizer cannot use
materialization if one expression is integer and the other is decimal.

• The inner expression cannot be a BLOB.

Use of EXPLAIN with a query can give some indication of whether the optimizer uses subquery
materialization. Compared to query execution that does not use materialization, select_type may
change from DEPENDENT SUBQUERY to SUBQUERY. This indicates that, for a subquery that would
be executed once per outer row, materialization enables the subquery to be executed just once. In
addition, for EXPLAIN EXTENDED, the text displayed by a following SHOW WARNINGS will include
materialize materialize and materialized-subquery.

Optimizing Derived Tables and View References

The optimizer can handle derived tables (subqueries in the FROM clause) and view references using
two strategies:

• Merge the derived table or view into the outer query block

• Materialize the derived table or view to an internal temporary table

Example 1:

SELECT * FROM (SELECT * FROM t1) AS derived_t1;

With merging, that query is executed similar to:

SELECT * FROM t1;

Example 2:

SELECT *
 FROM t1 JOIN (SELECT t2.f1 FROM t2) AS derived_t2 ON t1.f2=derived_t2.f1
 WHERE t1.f1 > 0;

With merging, that query is executed similar to:

SELECT t1.*, t2.f1
 FROM t1 JOIN t2 ON t1.f2=t2.f1
 WHERE t1.f1 > 0;

With materialization, derived_t1 and derived_t2 are treated as a separate table within their
respective queries.

As of MySQL 5.7.6, the optimizer handles derived tables and view references the same way: It avoids
unnecessary materialization whenever possible, which enables pushing down conditions from the
outer query to derived tables and produces more efficient execution plans. (For an example, see
Optimizing Subqueries with Subquery Materialization.) Before MySQL 5.7.6, derived tables were
always materialized, whereas equivalent view references were sometimes materialized and sometimes
merged. This inconsistent treatment of equivalent queries could lead to performance problems:
Unnecessary derived table materialization takes time and prevents the optimizer from pushing down
conditions to derived tables.

Optimizing SELECT Statements

1056

If merging would result in an outer query block that references more than 61 base tables, the optimizer
chooses materialization instead.

As of MySQL 5.7.6, the optimizer handles propagation of an ORDER BY clause in a derived table or
view reference to the outer query block by propagating the ORDER BY clause if the following conditions
apply: The outer query is not grouped or aggregated; does not specify DISTINCT, HAVING, or ORDER
BY; and has this derived table or view reference as the only source in the FROM clause. Otherwise, the
optimizer ignores the ORDER BY clause. Before MySQL 5.7.6, the optimizer always propagated ORDER
BY, even if it was irrelevant or resulted in an invalid query.

For statements such as DELETE or UPDATE that modify tables, using the merge strategy for a derived
table that prior to MySQL 5.7.6 was materialized can result in an ER_UPDATE_TABLE_USED error:

mysql> DELETE FROM t1
 -> WHERE id IN (SELECT id
 -> FROM (SELECT t1.id
 -> FROM t1 INNER JOIN t2 USING (id)
 -> WHERE t2.status = 0) AS t);
ERROR 1093 (HY000): You can't specify target table 't1'
for update in FROM clause

The error occurs when merging a derived table into the outer query block results in a statement that
both selects from and modifies a table. (Materialization does not cause the problem because, in effect,
it converts the derived table to a separate table.) To avoid this error, disable the derived_merge flag
of the optimizer_switch system variable before executing the statement:

mysql> SET optimizer_switch = 'derived_merge=off';

The derived_merge flag controls whether the optimizer attempts to merge derived tables and views
into the outer query block, assuming that no other rule prevents merging. By default, the flag is on to
enable merging. Setting the flag to off prevents merging and avoids the error just described. Other
workarounds include using in the subquery any constructs that prevent merging, although these are not
as explicit in their effect on materialization. Constructs that prevent merging are the same as those that
prevent merging in views. Examples are SELECT DISTINCT or LIMIT in the subquery. For details,
see Section 19.5.2, “View Processing Algorithms”.

The derived_merge flag also applies to views that contain no ALGORITHM clause. Thus, if an
ER_UPDATE_TABLE_USED error occurs for a view reference that uses an expression equivalent to
the subquery, adding ALGORITHM=TEMPTABLE to the view definition prevents merging and takes
precedence over the current derived_merge value.

If the optimizer chooses the materialization strategy for a derived table, it handles the query as follows:

• The optimizer postpones materialization of subqueries in the FROM clause until their contents are
needed during query execution. This improves performance because delay of materialization may
result in not having to do it at all. Consider a query that joins the result of a subquery in the FROM
clause to another table: If the optimizer processes that other table first and finds that it returns no
rows, the join need not be carried out further and the optimizer can completely skip materializing the
subquery.

• During query execution, the optimizer may add an index to a derived table to speed up row retrieval
from it.

Consider the following EXPLAIN statement, for which a subquery appears in the FROM clause of a
SELECT query:

EXPLAIN SELECT * FROM (SELECT * FROM t1) AS derived_t1;

The optimizer avoids materializing the subquery by delaying it until the result is needed during SELECT
execution. In this case, the query is not executed, so the result is never needed.

Optimizing SELECT Statements

1057

Even for queries that are executed, delay of subquery materialization may enable the optimizer to avoid
materialization entirely. When this happens, query execution is quicker by the time needed to perform
materialization. Consider the following query, which joins the result of a subquery in the FROM clause to
another table:

SELECT *
 FROM t1 JOIN (SELECT t2.f1 FROM t2) AS derived_t2
 ON t1.f2=derived_t2.f1
 WHERE t1.f1 > 0;

If the optimization processes t1 first and the WHERE clause produces an empty result, the join must
necessarily be empty and the subquery need not be materialized.

For cases when a derived table requires materialization, the optimizer may speed up access to the
result by adding an index to the materialized table. If such an index enables ref access to the table,
it can greatly reduce amount of data that must be read during query execution. Consider the following
query:

SELECT *
 FROM t1 JOIN (SELECT DISTINCT f1 FROM t2) AS derived_t2
 ON t1.f1=derived_t2.f1;

The optimizer constructs an index over column f1 from derived_t2 if doing so would enable use
of ref access for the lowest cost execution plan. After adding the index, the optimizer can treat the
materialized derived table the same as a regular table with an index, and it benefits similarly from the
generated index. The overhead of index creation is negligible compared to the cost of query execution
without the index. If ref access would result in higher cost than some other access method, the
optimizer creates no index and loses nothing.

Optimizing Subqueries with EXISTS Strategy

Certain optimizations are applicable to comparisons that use the IN operator to test subquery results
(or that use =ANY, which is equivalent). This section discusses these optimizations, particularly with
regard to the challenges that NULL values present. The last part of the discussion includes suggestions
on what you can do to help the optimizer.

Consider the following subquery comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

MySQL evaluates queries “from outside to inside.” That is, it first obtains the value of the outer
expression outer_expr, and then runs the subquery and captures the rows that it produces.

A very useful optimization is to “inform” the subquery that the only rows of interest are those where the
inner expression inner_expr is equal to outer_expr. This is done by pushing down an appropriate
equality into the subquery's WHERE clause. That is, the comparison is converted to this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

After the conversion, MySQL can use the pushed-down equality to limit the number of rows that it must
examine when evaluating the subquery.

More generally, a comparison of N values to a subquery that returns N-value rows is subject to the
same conversion. If oe_i and ie_i represent corresponding outer and inner expression values, this
subquery comparison:

(oe_1, ..., oe_N) IN
 (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

Optimizing SELECT Statements

1058

Becomes:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND oe_1 = ie_1
 AND ...
 AND oe_N = ie_N)

For simplicity, the following discussion assumes a single pair of outer and inner expression values.

The conversion just described has its limitations. It is valid only if we ignore possible NULL values. That
is, the “pushdown” strategy works as long as both of these two conditions are true:

• outer_expr and inner_expr cannot be NULL.

• You do not need to distinguish NULL from FALSE subquery results. If the subquery is a part of an
OR or AND expression in the WHERE clause, MySQL assumes that you do not care. Another instance
where the optimizer notices that NULL and FALSE subquery results need not be distinguished is this
construct:

... WHERE outer_expr IN (subquery)

In this case, the WHERE clause rejects the row whether IN (subquery) returns NULL or FALSE.

When either or both of those conditions do not hold, optimization is more complex.

Suppose that outer_expr is known to be a non-NULL value but the subquery does not produce a row
such that outer_expr = inner_expr. Then outer_expr IN (SELECT ...) evaluates as follows:

• NULL, if the SELECT produces any row where inner_expr is NULL

• FALSE, if the SELECT produces only non-NULL values or produces nothing

In this situation, the approach of looking for rows with outer_expr = inner_expr is no longer valid.
It is necessary to look for such rows, but if none are found, also look for rows where inner_expr is
NULL. Roughly speaking, the subquery can be converted to something like this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND
 (outer_expr=inner_expr OR inner_expr IS NULL))

The need to evaluate the extra IS NULL condition is why MySQL has the ref_or_null access
method:

mysql> EXPLAIN
 -> SELECT outer_expr IN (SELECT t2.maybe_null_key
 -> FROM t2, t3 WHERE ...)
 -> FROM t1;
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: ref_or_null
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Using index
...

Optimizing SELECT Statements

1059

The unique_subquery and index_subquery subquery-specific access methods also have “or
NULL” variants. However, prior to MySQL 5.7.3, they are not visible in EXPLAIN output, so you must
use EXPLAIN EXTENDED followed by SHOW WARNINGS (note the checking NULL in the warning
message):

mysql> EXPLAIN EXTENDED
 -> SELECT outer_expr IN (SELECT maybe_null_key FROM t2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using index

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select (`test`.`t1`.`outer_expr`,
 (((`test`.`t1`.`outer_expr`) in t2 on
 maybe_null_key checking NULL))) AS `outer_expr IN (SELECT
 maybe_null_key FROM t2)` from `test`.`t1`

The additional OR ... IS NULL condition makes query execution slightly more complicated (and
some optimizations within the subquery become inapplicable), but generally this is tolerable.

The situation is much worse when outer_expr can be NULL. According to the SQL interpretation of
NULL as “unknown value,” NULL IN (SELECT inner_expr ...) should evaluate to:

• NULL, if the SELECT produces any rows

• FALSE, if the SELECT produces no rows

For proper evaluation, it is necessary to be able to check whether the SELECT has produced any rows
at all, so outer_expr = inner_expr cannot be pushed down into the subquery. This is a problem,
because many real world subqueries become very slow unless the equality can be pushed down.

Essentially, there must be different ways to execute the subquery depending on the value of
outer_expr.

The optimizer chooses SQL compliance over speed, so it accounts for the possibility that outer_expr
might be NULL.

If outer_expr is NULL, to evaluate the following expression, it is necessary to run the SELECT to
determine whether it produces any rows:

NULL IN (SELECT inner_expr FROM ... WHERE subquery_where)

It is necessary to run the original SELECT here, without any pushed-down equalities of the kind
mentioned earlier.

On the other hand, when outer_expr is not NULL, it is absolutely essential that this comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

Optimizing SELECT Statements

1060

be converted to this expression that uses a pushed-down condition:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

Without this conversion, subqueries will be slow. To solve the dilemma of whether to push down or not
push down conditions into the subquery, the conditions are wrapped in “trigger” functions. Thus, an
expression of the following form:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

is converted into:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(outer_expr=inner_expr))

More generally, if the subquery comparison is based on several pairs of outer and inner expressions,
the conversion takes this comparison:

(oe_1, ..., oe_N) IN (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

and converts it to this expression:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(oe_1=ie_1)
 AND ...
 AND trigcond(oe_N=ie_N)
)

Each trigcond(X) is a special function that evaluates to the following values:

• X when the “linked” outer expression oe_i is not NULL

• TRUE when the “linked” outer expression oe_i is NULL

Note

Trigger functions are not triggers of the kind that you create with CREATE
TRIGGER.

Equalities that are wrapped into trigcond() functions are not first class predicates for the query
optimizer. Most optimizations cannot deal with predicates that may be turned on and off at query
execution time, so they assume any trigcond(X) to be an unknown function and ignore it. At the
moment, triggered equalities can be used by those optimizations:

• Reference optimizations: trigcond(X=Y [OR Y IS NULL]) can be used to construct ref,
eq_ref, or ref_or_null table accesses.

• Index lookup-based subquery execution engines: trigcond(X=Y) can be used to construct
unique_subquery or index_subquery accesses.

• Table-condition generator: If the subquery is a join of several tables, the triggered condition will be
checked as soon as possible.

When the optimizer uses a triggered condition to create some kind of index lookup-based access
(as for the first two items of the preceding list), it must have a fallback strategy for the case when the
condition is turned off. This fallback strategy is always the same: Do a full table scan. In EXPLAIN
output, the fallback shows up as Full scan on NULL key in the Extra column:

mysql> EXPLAIN SELECT t1.col1,
 -> t1.col1 IN (SELECT t2.key1 FROM t2 WHERE t2.col2=t1.col2) FROM t1\G

Optimizing SELECT Statements

1061

*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 ...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: key1
 key: key1
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Full scan on NULL key

If you run EXPLAIN EXTENDED followed by SHOW WARNINGS, you can see the triggered condition:

*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select `test`.`t1`.`col1` AS `col1`,
 <in_optimizer>(`test`.`t1`.`col1`,
 <exists>(<index_lookup>(<cache>(`test`.`t1`.`col1`) in t2
 on key1 checking NULL
 where (`test`.`t2`.`col2` = `test`.`t1`.`col2`) having
 trigcond(<is_not_null_test>(`test`.`t2`.`key1`))))) AS
 `t1.col1 IN (select t2.key1 from t2 where t2.col2=t1.col2)`
 from `test`.`t1`

The use of triggered conditions has some performance implications. A NULL IN (SELECT ...)
expression now may cause a full table scan (which is slow) when it previously did not. This is the price
paid for correct results (the goal of the trigger-condition strategy was to improve compliance and not
speed).

For multiple-table subqueries, execution of NULL IN (SELECT ...) will be particularly slow because
the join optimizer does not optimize for the case where the outer expression is NULL. It assumes that
subquery evaluations with NULL on the left side are very rare, even if there are statistics that indicate
otherwise. On the other hand, if the outer expression might be NULL but never actually is, there is no
performance penalty.

To help the query optimizer better execute your queries, use these tips:

• Declare a column as NOT NULL if it really is. (This also helps other aspects of the optimizer by
simplifying condition testing for the column.)

• If you do not need to distinguish a NULL from FALSE subquery result, you can easily avoid the slow
execution path. Replace a comparison that looks like this:

outer_expr IN (SELECT inner_expr FROM ...)

with this expression:

(outer_expr IS NOT NULL) AND (outer_expr IN (SELECT inner_expr FROM ...))

Then NULL IN (SELECT ...) will never be evaluated because MySQL stops evaluating AND
parts as soon as the expression result is clear.

Another possible rewrite:

EXISTS (SELECT inner_expr FROM ...
 WHERE inner_expr=outer_expr)

Optimizing SELECT Statements

1062

This would apply when you need not distinguish NULL from FALSE subquery results, in which case
you may actually want EXISTS.

The subquery_materialization_cost_based flag enables control over the choice between
subquery materialization and IN-to-EXISTS subquery transformation. See Section 8.9.2, “Controlling
Switchable Optimizations”.

8.2.1.19 Optimizing LIMIT Queries

If you need only a specified number of rows from a result set, use a LIMIT clause in the query, rather
than fetching the whole result set and throwing away the extra data.

MySQL sometimes optimizes a query that has a LIMIT row_count clause and no HAVING clause:

• If you select only a few rows with LIMIT, MySQL uses indexes in some cases when normally it
would prefer to do a full table scan.

• If you combine LIMIT row_count with ORDER BY, MySQL ends the sorting as soon as it has
found the first row_count rows of the sorted result, rather than sorting the entire result. If ordering
is done by using an index, this is very fast. If a filesort must be done, all rows that match the
query without the LIMIT clause are selected, and most or all of them are sorted, before the first
row_count are found. After the initial rows have been found, MySQL does not sort any remainder of
the result set.

One manifestation of this behavior is that an ORDER BY query with and without LIMIT may return
rows in different order, as described later in this section.

• If you combine LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

• In some cases, a GROUP BY can be resolved by reading the index in order (or doing a sort on
the index) and then calculating summaries until the index value changes. In this case, LIMIT
row_count does not calculate any unnecessary GROUP BY values.

• As soon as MySQL has sent the required number of rows to the client, it aborts the query unless
you are using SQL_CALC_FOUND_ROWS. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 12.14, “Information Functions”.

• LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query. It can
also be employed to obtain the types of the result columns if you are using a MySQL API that makes
result set metadata available. With the mysql client program, you can use the --column-type-
info option to display result column types.

• If the server uses temporary tables to resolve the query, it uses the LIMIT row_count clause to
calculate how much space is required.

If multiple rows have identical values in the ORDER BY columns, the server is free to return those rows
in any order, and may do so differently depending on the overall execution plan. In other words, the
sort order of those rows is nondeterministic with respect to the nonordered columns.

One factor that affects the execution plan is LIMIT, so an ORDER BY query with and without LIMIT
may return rows in different orders. Consider this query, which is sorted by the category column but
nondeterministic with respect to the id and rating columns:

mysql> SELECT * FROM ratings ORDER BY category;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
| 1 | 1 | 4.5 |
| 5 | 1 | 3.2 |

Optimizing SELECT Statements

1063

3	2	3.7
4	2	3.5
6	2	3.5
2	3	5.0
7	3	2.7
+----+----------+--------+

Including LIMIT may affect order of rows within each category value. For example, this is a valid
query result:

mysql> SELECT * FROM ratings ORDER BY category LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
4	2	3.5
3	2	3.7
6	2	3.5
+----+----------+--------+

In each case, the rows are sorted by the ORDER BY column, which is all that is required by the SQL
standard.

If it is important to ensure the same row order with and without LIMIT, include additional columns in
the ORDER BY clause to make the order deterministic. For example, if id values are unique, you can
make rows for a given category value appear in id order by sorting like this:

mysql> SELECT * FROM ratings ORDER BY category, id;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
2	3	5.0
7	3	2.7
+----+----------+--------+

mysql> SELECT * FROM ratings ORDER BY category, id LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
+----+----------+--------+

The optimizer does handle queries (and subqueries) of the following form:

SELECT ... FROM single_table ... ORDER BY non_index_column [DESC] LIMIT [M,]N;

That type of query is common in web applications that display only a few rows from a larger result set.
For example:

SELECT col1, ... FROM t1 ... ORDER BY name LIMIT 10;
SELECT col1, ... FROM t1 ... ORDER BY RAND() LIMIT 15;

The sort buffer has a size of sort_buffer_size. If the sort elements for N rows are small enough to
fit in the sort buffer (M+N rows if M was specified), the server can avoid using a merge file and perform
the sort entirely in memory by treating the sort buffer as a priority queue:

Optimizing SELECT Statements

1064

• Scan the table, inserting the select list columns from each selected row in sorted order in the queue.
If the queue is full, bump out the last row in the sort order.

• Return the first N rows from the queue. (If M was specified, skip the first M rows and return the next N
rows.)

Previously, the server performed this operation by using a merge file for the sort:

• Scan the table, repeating these steps through the end of the table:

• Select rows until the sort buffer is filled.

• Write the first N rows in the buffer (M+N rows if M was specified) to a merge file.

• Sort the merge file and return the first N rows. (If M was specified, skip the first M rows and return the
next N rows.)

The cost of the table scan is the same for the queue and merge-file methods, so the optimizer chooses
between methods based on other costs:

• The queue method involves more CPU for inserting rows into the queue in order

• The merge-file method has I/O costs to write and read the file and CPU cost to sort it

The optimizer considers the balance between these factors for particular values of N and the row size.

8.2.1.20 How to Avoid Full Table Scans

The output from EXPLAIN shows ALL in the type column when MySQL uses a full table scan to
resolve a query. This usually happens under the following conditions:

• The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is
common for tables with fewer than 10 rows and a short row length.

• There are no usable restrictions in the ON or WHERE clause for indexed columns.

• You are comparing indexed columns with constant values and MySQL has calculated (based on
the index tree) that the constants cover too large a part of the table and that a table scan would be
faster. See Section 8.2.1.2, “How MySQL Optimizes WHERE Clauses”.

• You are using a key with low cardinality (many rows match the key value) through another column.
In this case, MySQL assumes that by using the key it probably will do many key lookups and that a
table scan would be faster.

For small tables, a table scan often is appropriate and the performance impact is negligible. For large
tables, try the following techniques to avoid having the optimizer incorrectly choose a table scan:

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive
compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
 WHERE t1.col_name=t2.col_name;

See Section 8.9.4, “Index Hints”.

• Start mysqld with the --max-seeks-for-key=1000 option or use SET
max_seeks_for_key=1000 to tell the optimizer to assume that no key scan causes more than
1,000 key seeks. See Section 5.1.4, “Server System Variables”.

Optimizing DML Statements

1065

8.2.2 Optimizing DML Statements

This section explains how to speed up the data manipulation language (DML) statements, INSERT,
UPDATE, and DELETE. Traditional OLTP applications and modern web applications typically do many
small DML operations, where concurrency is vital. Data analysis and reporting applications typically
run DML operations that affect many rows at once, where the main considerations is the I/O to write
large amounts of data and keep indexes up-to-date. For inserting and updating large volumes of data
(known in the industry as ETL, for “extract-transform-load”), sometimes you use other SQL statements
or external commands, that mimic the effects of INSERT, UPDATE, and DELETE statements.

8.2.2.1 Speed of INSERT Statements

To optimize insert speed, combine many small operations into a single large operation. Ideally, you
make a single connection, send the data for many new rows at once, and delay all index updates and
consistency checking until the very end.

The time required for inserting a row is determined by the following factors, where the numbers indicate
approximate proportions:

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

• Inserting row: (1 × size of row)

• Inserting indexes: (1 × number of indexes)

• Closing: (1)

This does not take into consideration the initial overhead to open tables, which is done once for each
concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements with
multiple VALUES lists to insert several rows at a time. This is considerably faster (many times faster
in some cases) than using separate single-row INSERT statements. If you are adding data to a
nonempty table, you can tune the bulk_insert_buffer_size variable to make data insertion
even faster. See Section 5.1.4, “Server System Variables”.

• When loading a table from a text file, use LOAD DATA INFILE. This is usually 20 times faster than
using INSERT statements. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the
value to be inserted differs from the default. This reduces the parsing that MySQL must do and
improves the insert speed.

• See Section 8.5.5, “Bulk Data Loading for InnoDB Tables” for tips specific to InnoDB tables.

• See Section 8.6.2, “Bulk Data Loading for MyISAM Tables” for tips specific to MyISAM tables.

8.2.2.2 Speed of UPDATE Statements

An update statement is optimized like a SELECT query with the additional overhead of a write. The
speed of the write depends on the amount of data being updated and the number of indexes that are
updated. Indexes that are not changed do not get updated.

Optimizing Database Privileges

1066

Another way to get fast updates is to delay updates and then do many updates in a row later.
Performing multiple updates together is much quicker than doing one at a time if you lock the table.

For a MyISAM table that uses dynamic row format, updating a row to a longer total length may
split the row. If you do this often, it is very important to use OPTIMIZE TABLE occasionally. See
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”.

8.2.2.3 Speed of DELETE Statements

The time required to delete individual rows in a MyISAM table is exactly proportional to the number of
indexes. To delete rows more quickly, you can increase the size of the key cache by increasing the
key_buffer_size system variable. See Section 8.12.2, “Tuning Server Parameters”.

To delete all rows from a MyISAM table, TRUNCATE TABLE tbl_name is faster than DELETE FROM
tbl_name. Truncate operations are not transaction-safe; an error occurs when attempting one in the
course of an active transaction or active table lock. See Section 13.1.29, “TRUNCATE TABLE Syntax”.

8.2.3 Optimizing Database Privileges

The more complex your privilege setup, the more overhead applies to all SQL statements. Simplifying
the privileges established by GRANT statements enables MySQL to reduce permission-checking
overhead when clients execute statements. For example, if you do not grant any table-level or column-
level privileges, the server need not ever check the contents of the tables_priv and columns_priv
tables. Similarly, if you place no resource limits on any accounts, the server does not have to perform
resource counting. If you have a very high statement-processing load, consider using a simplified grant
structure to reduce permission-checking overhead.

8.2.4 Optimizing INFORMATION_SCHEMA Queries

Applications that monitor the database can make frequent use of the INFORMATION_SCHEMA tables.
Certain types of queries for INFORMATION_SCHEMA tables can be optimized to execute more quickly.
The goal is to minimize file operations (for example, scanning a directory or opening a table file) to
collect the information that makes up these dynamic tables. These optimizations do have an effect
on how collations are used for searches in INFORMATION_SCHEMA tables. For more information, see
Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”.

1) Try to use constant lookup values for database and table names in the WHERE clause

You can take advantage of this principle as follows:

• To look up databases or tables, use expressions that evaluate to a constant, such as literal values,
functions that return a constant, or scalar subqueries.

• Avoid queries that use a nonconstant database name lookup value (or no lookup value) because
they require a scan of the data directory to find matching database directory names.

• Within a database, avoid queries that use a nonconstant table name lookup value (or no lookup
value) because they require a scan of the database directory to find matching table files.

This principle applies to the INFORMATION_SCHEMA tables shown in the following table, which shows
the columns for which a constant lookup value enables the server to avoid a directory scan. For
example, if you are selecting from TABLES, using a constant lookup value for TABLE_SCHEMA in the
WHERE clause enables a data directory scan to be avoided.

Table Column to specify to avoid
data directory scan

Column to specify to avoid
database directory scan

COLUMNS TABLE_SCHEMA TABLE_NAME

KEY_COLUMN_USAGE TABLE_SCHEMA TABLE_NAME

Optimizing INFORMATION_SCHEMA Queries

1067

Table Column to specify to avoid
data directory scan

Column to specify to avoid
database directory scan

PARTITIONS TABLE_SCHEMA TABLE_NAME

REFERENTIAL_CONSTRAINTS CONSTRAINT_SCHEMA TABLE_NAME

STATISTICS TABLE_SCHEMA TABLE_NAME

TABLES TABLE_SCHEMA TABLE_NAME

TABLE_CONSTRAINTS TABLE_SCHEMA TABLE_NAME

TRIGGERS EVENT_OBJECT_SCHEMA EVENT_OBJECT_TABLE

VIEWS TABLE_SCHEMA TABLE_NAME

The benefit of a query that is limited to a specific constant database name is that checks need be made
only for the named database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

Use of the literal database name test enables the server to check only the test database directory,
regardless of how many databases there might be. By contrast, the following query is less efficient
because it requires a scan of the data directory to determine which database names match the pattern
'test%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE 'test%';

For a query that is limited to a specific constant table name, checks need be made only for the named
table within the corresponding database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';

Use of the literal table name t1 enables the server to check only the files for the t1 table, regardless of
how many tables there might be in the test database. By contrast, the following query requires a scan
of the test database directory to determine which table names match the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME LIKE 't%';

The following query requires a scan of the database directory to determine matching database names
for the pattern 'test%', and for each matching database, it requires a scan of the database directory
to determine matching table names for the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test%' AND TABLE_NAME LIKE 't%';

2) Write queries that minimize the number of table files that must be opened

For queries that refer to certain INFORMATION_SCHEMA table columns, several optimizations are
available that minimize the number of table files that must be opened. Example:

SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

In this case, after the server has scanned the database directory to determine the names of the
tables in the database, those names become available with no further file system lookups. Thus,
TABLE_NAME requires no files to be opened. The ENGINE (storage engine) value can be determined
by opening the table's .frm file, without touching other table files such as the .MYD or .MYI file.

Some values, such as INDEX_LENGTH for MyISAM tables, require opening the .MYD or .MYI file as
well.

The file-opening optimization types are denoted thus:

Optimizing INFORMATION_SCHEMA Queries

1068

• SKIP_OPEN_TABLE: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• OPEN_FRM_ONLY: Only the table's .frm file need be opened.

• OPEN_TRIGGER_ONLY: Only the table's .TRG file need be opened.

• OPEN_FULL_TABLE: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be
opened.

The following list indicates how the preceding optimization types apply to INFORMATION_SCHEMA table
columns. For tables and columns not named, none of the optimizations apply.

• COLUMNS: OPEN_FRM_ONLY applies to all columns

• KEY_COLUMN_USAGE: OPEN_FULL_TABLE applies to all columns

• PARTITIONS: OPEN_FULL_TABLE applies to all columns

• REFERENTIAL_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• STATISTICS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

NON_UNIQUE OPEN_FRM_ONLY

INDEX_SCHEMA OPEN_FRM_ONLY

INDEX_NAME OPEN_FRM_ONLY

SEQ_IN_INDEX OPEN_FRM_ONLY

COLUMN_NAME OPEN_FRM_ONLY

COLLATION OPEN_FRM_ONLY

CARDINALITY OPEN_FULL_TABLE

SUB_PART OPEN_FRM_ONLY

PACKED OPEN_FRM_ONLY

NULLABLE OPEN_FRM_ONLY

INDEX_TYPE OPEN_FULL_TABLE

COMMENT OPEN_FRM_ONLY

• TABLES:

Column Optimization type

TABLE_CATALOG SKIP_OPEN_TABLE

TABLE_SCHEMA SKIP_OPEN_TABLE

TABLE_NAME SKIP_OPEN_TABLE

TABLE_TYPE OPEN_FRM_ONLY

ENGINE OPEN_FRM_ONLY

VERSION OPEN_FRM_ONLY

ROW_FORMAT OPEN_FULL_TABLE

TABLE_ROWS OPEN_FULL_TABLE

Optimizing INFORMATION_SCHEMA Queries

1069

Column Optimization type

AVG_ROW_LENGTH OPEN_FULL_TABLE

DATA_LENGTH OPEN_FULL_TABLE

MAX_DATA_LENGTH OPEN_FULL_TABLE

INDEX_LENGTH OPEN_FULL_TABLE

DATA_FREE OPEN_FULL_TABLE

AUTO_INCREMENT OPEN_FULL_TABLE

CREATE_TIME OPEN_FULL_TABLE

UPDATE_TIME OPEN_FULL_TABLE

CHECK_TIME OPEN_FULL_TABLE

TABLE_COLLATION OPEN_FRM_ONLY

CHECKSUM OPEN_FULL_TABLE

CREATE_OPTIONS OPEN_FRM_ONLY

TABLE_COMMENT OPEN_FRM_ONLY

• TABLE_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• TRIGGERS: OPEN_TRIGGER_ONLY applies to all columns

• VIEWS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

VIEW_DEFINITION OPEN_FRM_ONLY

CHECK_OPTION OPEN_FRM_ONLY

IS_UPDATABLE OPEN_FULL_TABLE

DEFINER OPEN_FRM_ONLY

SECURITY_TYPE OPEN_FRM_ONLY

CHARACTER_SET_CLIENT OPEN_FRM_ONLY

COLLATION_CONNECTION OPEN_FRM_ONLY

3) Use EXPLAIN to determine whether the server can use INFORMATION_SCHEMA optimizations
for a query

This applies particularly for INFORMATION_SCHEMA queries that search for information from more than
one database, which might take a long time and impact performance. The Extra value in EXPLAIN
output indicates which, if any, of the optimizations described earlier the server can use to evaluate
INFORMATION_SCHEMA queries. The following examples demonstrate the kinds of information you can
expect to see in the Extra value.

mysql> EXPLAIN SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS WHERE
 -> TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v1'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: VIEWS
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA,TABLE_NAME
 key_len: NULL

Optimizing INFORMATION_SCHEMA Queries

1070

 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned 0 databases

Use of constant database and table lookup values enables the server to avoid directory scans. For
references to VIEWS.TABLE_NAME, only the .frm file need be opened.

mysql> EXPLAIN SELECT TABLE_NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.TABLES\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: TABLES
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Open_full_table; Scanned all databases

No lookup values are provided (there is no WHERE clause), so the server must scan the data
directory and each database directory. For each table thus identified, the table name and row format
are selected. TABLE_NAME requires no further table files to be opened (the SKIP_OPEN_TABLE
optimization applies). ROW_FORMAT requires all table files to be opened (OPEN_FULL_TABLE applies).
EXPLAIN reports OPEN_FULL_TABLE because it is more expensive than SKIP_OPEN_TABLE.

mysql> EXPLAIN SELECT TABLE_NAME, TABLE_TYPE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'test'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: TABLES
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned 1 database

No table name lookup value is provided, so the server must scan the test database directory. For the
TABLE_NAME and TABLE_TYPE columns, the SKIP_OPEN_TABLE and OPEN_FRM_ONLY optimizations
apply, respectively. EXPLAIN reports OPEN_FRM_ONLY because it is more expensive.

mysql> EXPLAIN SELECT B.TABLE_NAME
 -> FROM INFORMATION_SCHEMA.TABLES AS A, INFORMATION_SCHEMA.COLUMNS AS B
 -> WHERE A.TABLE_SCHEMA = 'test'
 -> AND A.TABLE_NAME = 't1'
 -> AND B.TABLE_NAME = A.TABLE_NAME\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: A
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA,TABLE_NAME
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Skip_open_table; Scanned 0 databases
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: B
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL

Other Optimization Tips

1071

 Extra: Using where; Open_frm_only; Scanned all databases;
 Using join buffer

For the first EXPLAIN output row: Constant database and table lookup values enable the server to
avoid directory scans for TABLES values. References to TABLES.TABLE_NAME require no further table
files.

For the second EXPLAIN output row: All COLUMNS table values are OPEN_FRM_ONLY lookups, so
COLUMNS.TABLE_NAME requires the .frm file to be opened.

mysql> EXPLAIN SELECT * FROM INFORMATION_SCHEMA.COLLATIONS\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: COLLATIONS
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra:

In this case, no optimizations apply because COLLATIONS is not one of the INFORMATION_SCHEMA
tables for which optimizations are available.

8.2.5 Other Optimization Tips

This section lists a number of miscellaneous tips for improving query processing speed:

• If your application makes several database requests to perform related updates, combining the
statements into a stored routine can help performance. Similarly, if your application computes a
single result based on several column values or large volumes of data, combining the computation
into a UDF (user-defined function) can help performance. The resulting fast database operations
are then available to be reused by other queries, applications, and even code written in different
programming languages. See Section 19.2, “Using Stored Routines (Procedures and Functions)”
and Section 24.4, “Adding New Functions to MySQL” for more information.

• To fix any compression issues that occur with ARCHIVE tables, use OPTIMIZE TABLE. See
Section 15.5, “The ARCHIVE Storage Engine”.

• If possible, classify reports as “live” or as “statistical”, where data needed for statistical reports is
created only from summary tables that are generated periodically from the live data.

• If you have data that does not conform well to a rows-and-columns table structure, you can pack and
store data into a BLOB column. In this case, you must provide code in your application to pack and
unpack information, but this might save I/O operations to read and write the sets of related values.

• With Web servers, store images and other binary assets as files, with the path name stored in the
database rather than the file itself. Most Web servers are better at caching files than database
contents, so using files is generally faster. (Although you must handle backups and storage issues
yourself in this case.)

• If you need really high speed, look at the low-level MySQL interfaces. For example, by accessing
the MySQL InnoDB or MyISAM storage engine directly, you could get a substantial speed increase
compared to using the SQL interface.

• Replication can provide a performance benefit for some operations. You can distribute client
retrievals among replication servers to split up the load. To avoid slowing down the master while
making backups, you can make backups using a slave server. See Chapter 17, Replication.

8.3 Optimization and Indexes

How MySQL Uses Indexes

1072

The best way to improve the performance of SELECT operations is to create indexes on one or more of
the columns that are tested in the query. The index entries act like pointers to the table rows, allowing
the query to quickly determine which rows match a condition in the WHERE clause, and retrieve the
other column values for those rows. All MySQL data types can be indexed.

Although it can be tempting to create an indexes for every possible column used in a query,
unnecessary indexes waste space and waste time for MySQL to determine which indexes to use.
Indexes also add to the cost of inserts, updates, and deletes because each index must be updated.
You must find the right balance to achieve fast queries using the optimal set of indexes.

8.3.1 How MySQL Uses Indexes

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must
begin with the first row and then read through the entire table to find the relevant rows. The larger the
table, the more this costs. If the table has an index for the columns in question, MySQL can quickly
determine the position to seek to in the middle of the data file without having to look at all the data. This
is much faster than reading every row sequentially.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees.
Exceptions: Indexes on spatial data types use R-trees; MEMORY tables also support hash indexes;
InnoDB uses inverted lists for FULLTEXT indexes.

In general, indexes are used as described in the following discussion. Characteristics specific to hash
indexes (as used in MEMORY tables) are described in Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”.

MySQL uses indexes for these operations:

• To find the rows matching a WHERE clause quickly.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally
uses the index that finds the smallest number of rows (the most selective index).

• If the table has a multiple-column index, any leftmost prefix of the index can be used by the
optimizer to look up rows. For example, if you have a three-column index on (col1, col2,
col3), you have indexed search capabilities on (col1), (col1, col2), and (col1, col2,
col3). For more information, see Section 8.3.5, “Multiple-Column Indexes”.

• To retrieve rows from other tables when performing joins. MySQL can use indexes on columns
more efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR
are considered the same if they are declared as the same size. For example, VARCHAR(10) and
CHAR(10) are the same size, but VARCHAR(10) and CHAR(15) are not.

For comparisons between nonbinary string columns, both columns should use the same character
set. For example, comparing a utf8 column with a latin1 column precludes use of an index.

Comparison of dissimilar columns (comparing a string column to a temporal or numeric column, for
example) may prevent use of indexes if values cannot be compared directly without conversion. For
a given value such as 1 in the numeric column, it might compare equal to any number of values in
the string column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for
the string column.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a
preprocessor that checks whether you are using WHERE key_part_N = constant on all key
parts that occur before key_col in the index. In this case, MySQL does a single key lookup for each
MIN() or MAX() expression and replaces it with a constant. If all expressions are replaced with
constants, the query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
 FROM tbl_name WHERE key_part1=10;

Using Primary Keys

1073

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable index (for
example, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key
is read in reverse order. See Section 8.2.1.15, “ORDER BY Optimization”, and Section 8.2.1.16,
“GROUP BY Optimization”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. (An
index that provides all the necessary results for a query is called a covering index.) If a query uses
from a table only columns that are included in some index, the selected values can be retrieved from
the index tree for greater speed:

SELECT key_part3 FROM tbl_name
 WHERE key_part1=1

Indexes are less important for queries on small tables, or big tables where report queries process most
or all of the rows. When a query needs to access most of the rows, reading sequentially is faster than
working through an index. Sequential reads minimize disk seeks, even if not all the rows are needed for
the query. See Section 8.2.1.20, “How to Avoid Full Table Scans” for details.

8.3.2 Using Primary Keys

The primary key for a table represents the column or set of columns that you use in your most vital
queries. It has an associated index, for fast query performance. Query performance benefits from
the NOT NULL optimization, because it cannot include any NULL values. With the InnoDB storage
engine, the table data is physically organized to do ultra-fast lookups and sorts based on the primary
key column or columns.

If your table is big and important, but does not have an obvious column or set of columns to use as a
primary key, you might create a separate column with auto-increment values to use as the primary key.
These unique IDs can serve as pointers to corresponding rows in other tables when you join tables
using foreign keys.

8.3.3 Using Foreign Keys

If a table has many columns, and you query many different combinations of columns, it might be
efficient to split the less-frequently used data into separate tables with a few columns each, and relate
them back to the main table by duplicating the numeric ID column from the main table. That way,
each small table can have a primary key for fast lookups of its data, and you can query just the set of
columns that you need using a join operation. Depending on how the data is distributed, the queries
might perform less I/O and take up less cache memory because the relevant columns are packed
together on disk. (To maximize performance, queries try to read as few data blocks as possible from
disk; tables with only a few columns can fit more rows in each data block.)

8.3.4 Column Indexes

The most common type of index involves a single column, storing copies of the values from that
column in a data structure, allowing fast lookups for the rows with the corresponding column values.
The B-tree data structure lets the index quickly find a specific value, a set of values, or a range of
values, corresponding to operators such as =, >, ≤, BETWEEN, IN, and so on, in a WHERE clause.

The maximum number of indexes per table and the maximum index length is defined per storage
engine. See Chapter 15, Alternative Storage Engines. All storage engines support at least 16 indexes
per table and a total index length of at least 256 bytes. Most storage engines have higher limits.

Prefix Indexes

With col_name(N) syntax in an index specification, you can create an index that uses only the first N
characters of a string column. Indexing only a prefix of column values in this way can make the index
file much smaller. When you index a BLOB or TEXT column, you must specify a prefix length for the
index. For example:

Multiple-Column Indexes

1074

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables, unless you have
innodb_large_prefix set).

Note

Prefix limits are measured in bytes, while the prefix length in CREATE TABLE
statements is interpreted as number of characters. Take this into account when
specifying a prefix length for a column that uses a multibyte character set.

FULLTEXT Indexes

You can also create FULLTEXT indexes. These are used for full-text searches. Only the InnoDB and
MyISAM storage engines support FULLTEXT indexes and only for CHAR, VARCHAR, and TEXT columns.
Indexing always takes place over the entire column and column prefix indexing is not supported. For
details, see Section 12.9, “Full-Text Search Functions”.

Optimizations are applied to certain kinds of FULLTEXT queries against single InnoDB tables. Queries
with these characteristics are particularly efficient:

• FULLTEXT queries that only return the document ID, or the document ID and the search rank.

• FULLTEXT queries that sort the matching rows in descending order of score and apply a LIMIT
clause to take the top N matching rows. For this optimization to apply, there must be no WHERE
clauses and only a single ORDER BY clause in descending order.

• FULLTEXT queries that retrieve only the COUNT(*) value of rows matching a search term, with
no additional WHERE clauses. Code the WHERE clause as WHERE MATCH(text) AGAINST
('other_text'), without any > 0 comparison operator.

Spatial Indexes

You can also create indexes on spatial data types. MyISAM and (as of MySQL 5.7.5) InnoDB support
R-tree indexes on spatial types. Other storage engines use B-trees for indexing spatial types (except
for ARCHIVE, which does not support spatial type indexing).

Indexes in the MEMORY Storage Engine

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

8.3.5 Multiple-Column Indexes

MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist
of up to 16 columns. For certain data types, you can index a prefix of the column (see Section 8.3.4,
“Column Indexes”).

MySQL can use multiple-column indexes for queries that test all the columns in the index, or queries
that test just the first column, the first two columns, the first three columns, and so on. If you specify the
columns in the right order in the index definition, a single composite index can speed up several kinds
of queries on the same table.

A multiple-column index can be considered a sorted array, the rows of which contain values that are
created by concatenating the values of the indexed columns.

Note

As an alternative to a composite index, you can introduce a column that is
“hashed” based on information from other columns. If this column is short,

Multiple-Column Indexes

1075

reasonably unique, and indexed, it might be faster than a “wide” index on many
columns. In MySQL, it is very easy to use this extra column:

SELECT * FROM tbl_name
 WHERE hash_col=MD5(CONCAT(val1,val2))
 AND col1=val1 AND col2=val2;

Suppose that a table has the following specification:

CREATE TABLE test (
 id INT NOT NULL,
 last_name CHAR(30) NOT NULL,
 first_name CHAR(30) NOT NULL,
 PRIMARY KEY (id),
 INDEX name (last_name,first_name)
);

The name index is an index over the last_name and first_name columns. The index can be used
for lookups in queries that specify values in a known range for combinations of last_name and
first_name values. It can also be used for queries that specify just a last_name value because that
column is a leftmost prefix of the index (as described later in this section). Therefore, the name index is
used for lookups in the following queries:

SELECT * FROM test WHERE last_name='Widenius';

SELECT * FROM test
 WHERE last_name='Widenius' AND first_name='Michael';

SELECT * FROM test
 WHERE last_name='Widenius'
 AND (first_name='Michael' OR first_name='Monty');

SELECT * FROM test
 WHERE last_name='Widenius'
 AND first_name >='M' AND first_name < 'N';

However, the name index is not used for lookups in the following queries:

SELECT * FROM test WHERE first_name='Michael';

SELECT * FROM test
 WHERE last_name='Widenius' OR first_name='Michael';

Suppose that you issue the following SELECT statement:

SELECT * FROM tbl_name
 WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly.
If separate single-column indexes exist on col1 and col2, the optimizer attempts to use the Index
Merge optimization (see Section 8.2.1.4, “Index Merge Optimization”), or attempts to find the most
restrictive index by deciding which index excludes more rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to look up rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

MySQL cannot use the index to perform lookups if the columns do not form a leftmost prefix of the
index. Suppose that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;

Verifying Index Usage

1076

SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and
fourth queries do involve indexed columns, but (col2) and (col2, col3) are not leftmost prefixes
of (col1, col2, col3).

8.3.6 Verifying Index Usage

Always check whether all your queries really use the indexes that you have created in the tables. Use
the EXPLAIN statement, as described in Section 8.8.1, “Optimizing Queries with EXPLAIN”.

8.3.7 InnoDB and MyISAM Index Statistics Collection

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based
on value groups, where a value group is a set of rows with the same key prefix value. For optimizer
purposes, an important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

• To estimate how may rows must be read for each ref access

• To estimate how many row a partial join will produce; that is, the number of rows that an operation of
this form will produce:

(...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes
because the average number of rows per lookup increases: For the index to be good for optimization
purposes, it is best that each index value target a small number of rows in the table. When a given
index value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The
SHOW INDEX statement displays a cardinality value based on N/S, where N is the number of rows
in the table and S is the average value group size. That ratio yields an approximate number of value
groups in the table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value:
NULL <=> NULL, just as N <=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2
is not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the
form tbl_name.key = expr: MySQL will not access the table if the current value of expr is NULL,
because the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization
purposes, the relevant value is the average size of the non-NULL value groups. However, MySQL does
not currently enable that average size to be collected or used.

For InnoDB and MyISAM tables, you have some control over collection of table statistics by means
of the innodb_stats_method and myisam_stats_method system variables, respectively. These
variables have three possible values, which differ as follows:

• When the variable is set to nulls_equal, all NULL values are treated as identical (that is, they all
form a single value group).

If the NULL value group size is much higher than the average non-NULL value group size, this
method skews the average value group size upward. This makes index appear to the optimizer to be

Comparison of B-Tree and Hash Indexes

1077

less useful than it really is for joins that look for non-NULL values. Consequently, the nulls_equal
method may cause the optimizer not to use the index for ref accesses when it should.

• When the variable is set to nulls_unequal, NULL values are not considered the same. Instead,
each NULL value forms a separate value group of size 1.

If you have many NULL values, this method skews the average value group size downward. If
the average non-NULL value group size is large, counting NULL values each as a group of size 1
causes the optimizer to overestimate the value of the index for joins that look for non-NULL values.
Consequently, the nulls_unequal method may cause the optimizer to use this index for ref
lookups when other methods may be better.

• When the variable is set to nulls_ignored, NULL values are ignored.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons
and one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

The innodb_stats_method system variable has a global value; the myisam_stats_method
system variable has both global and session values. Setting the global value affects statistics
collection for tables from the corresponding storage engine. Setting the session value affects statistics
collection only for the current client connection. This means that you can force a table's statistics to
be regenerated with a given method without affecting other clients by setting the session value of
myisam_stats_method.

To regenerate MyISAM table statistics, you can use any of the following methods:

• Execute myisamchk --stats_method=method_name --analyze

• Change the table to cause its statistics to go out of date (for example, insert a row and then delete it),
and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of innodb_stats_method and myisam_stats_method:

• You can force table statistics to be collected explicitly, as just described. However, MySQL may also
collect statistics automatically. For example, if during the course of executing statements for a table,
some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk
inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics
are collected using whatever value innodb_stats_method or myisam_stats_method has at
the time. Thus, if you collect statistics using one method, but the system variable is set to the other
method when a table's statistics are collected automatically later, the other method will be used.

• There is no way to tell which method was used to generate statistics for a given table.

• These variables apply only to InnoDB and MyISAM tables. Other storage engines have only one
method for collecting table statistics. Usually it is closer to the nulls_equal method.

8.3.8 Comparison of B-Tree and Hash Indexes

Understanding the B-tree and hash data structures can help predict how different queries perform on
different storage engines that use these data structures in their indexes, particularly for the MEMORY
storage engine that lets you choose B-tree or hash indexes.

B-Tree Index Characteristics

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or
BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is
a constant string that does not start with a wildcard character. For example, the following SELECT
statements use indexes:

Comparison of B-Tree and Hash Indexes

1078

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the
second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the
LIKE value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the
Turbo Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform
the search more quickly.

A search using col_name IS NULL employs indexes if col_name is indexed.

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In
other words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3

 /* index = 1 OR index = 2 */
... WHERE index=1 OR A=10 AND index=2

 /* optimized like "index_part1='hello'" */
... WHERE index_part1='hello' AND index_part3=5

 /* Can use index on index1 but not on index2 or index3 */
... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

 /* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

 /* Index is not used in both parts of the WHERE clause */
... WHERE index=1 OR A=10

 /* No index spans all rows */
... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One circumstance under which
this occurs is when the optimizer estimates that using the index would require MySQL to access a
very large percentage of the rows in the table. (In this case, a table scan is likely to be much faster
because it requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the
rows, MySQL uses an index anyway, because it can much more quickly find the few rows to return in
the result.

Hash Index Characteristics

Hash indexes have somewhat different characteristics from those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast). They
are not used for comparison operators such as < that find a range of values. Systems that rely on
this type of single-value lookup are known as “key-value stores”; to use MySQL for such applications,
use hash indexes wherever possible.

Optimizer Use of Generated Column Indexes

1079

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot
be used to search for the next entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is used
by the range optimizer to decide which index to use). This may affect some queries if you change a
MyISAM or InnoDB table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key
can be used to find rows.)

8.3.9 Optimizer Use of Generated Column Indexes

MySQL supports indexes on generated columns. For example:

CREATE TABLE t1 (f1 INT, gc INT AS (f1 + 1) STORED, INDEX (gc));

The generated column, gc, is defined as the expression f1 + 1. The column is also indexed and the
optimizer can take that index into account during execution plan construction. In the following query,
the WHERE clause refers to gc and the optimizer considers whether the index on that column yields a
more efficient plan:

SELECT * FROM t1 WHERE gc > 9;

As of MySQL 5.7.8, the optimizer can use indexes on generated columns to generate execution
plans, even in the absence of direct references in queries to those columns by name. This occurs if
the WHERE, ORDER BY, or GROUP BY clause refers to an expression that matches the definition of
some indexed generated column. The following query does not refer directly to gc but does use an
expression that matches the definition of gc:

SELECT * FROM t1 WHERE f1 + 1 > 9;

The optimizer recognizes that the expression f1 + 1 matches the definition of gc and that gc
is indexed, so it considers that index during execution plan construction. You can see this using
EXPLAIN:

mysql> EXPLAIN SELECT * FROM t1 WHERE f1 + 1 > 9\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: range
possible_keys: gc
 key: gc
 key_len: 5
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: Using index condition

In effect, the optimizer has replaced the expression f1 + 1 with the name of the generated column
that matches the expression. That is also apparent in the rewritten query available in the extended
EXPLAIN information displayed by SHOW WARNINGS:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `test`.`t1`.`f1` AS `f1`,`test`.`t1`.`gc`
 AS `gc` from `test`.`t1` where (`test`.`t1`.`gc` > 9)

The following restrictions and conditions apply to the optimizer's use of generated column indexes:

Optimizing Database Structure

1080

• For a query expression to match a generated column definition, the expression must be identical and
it must have the same result type. For example, if the generated column expression is f1 + 1, the
optimizer will not recognize a match if the query uses 1 + f1, or if f1 + 1 (an integer expression)
is compared with a string.

• The optimization applies to these operators: =, <, <=, >, >=, BETWEEN, and IN().

For operators other than BETWEEN and IN(), either operand can be replaced by a matching
generated column. For BETWEEN and IN(), only the first argument can be replaced by a matching
generated column, and the other arguments must have the same result type. BETWEEN and IN()
are not yet supported for comparisons involving JSON values.

• The generated column must be defined as an expression that contains at least a function call or
one of the operators mentioned in the preceding item. The expression cannot consist of a simple
reference to another column. For example, gc INT AS (f1) STORED consists only of a column
reference, so indexes on gc are not considered.

• For comparisons of strings to indexed generated columns that compute a value from a JSON
function that returns a quoted string, JSON_UNQUOTE() is needed in the column definition to remove
the extra quotes from the function value. (For direct comparison of a string to the function result, the
JSON comparator handles quote removal, but this does not occur for index lookups.) For example,
instead of writing a column definition like this:

doc_name TEXT AS (JSON_EXTRACT(jdoc, '$.name')) STORED

Write it like this:

doc_name TEXT AS (JSON_UNQUOTE(JSON_EXTRACT(jdoc, '$.name'))) STORED

With the latter definition, the optimizer can detect a match for both of these comparisons:

... WHERE JSON_EXTRACT(jdoc, '$.name') = 'some_string' ...

... WHERE JSON_UNQUOTE(JSON_EXTRACT(jdoc, '$.name')) = 'some_string' ...

Without JSON_UNQUOTE() in the column definition, the optimizer detects a match only for the first of
those comparisons.

• If the optimizer fails to choose the desired index, an index hint can be used to force the optimizer to
make a different choice.

8.4 Optimizing Database Structure

In your role as a database designer, look for the most efficient way to organize your schemas, tables,
and columns. As when tuning application code, you minimize I/O, keep related items together, and plan
ahead so that performance stays high as the data volume increases. Starting with an efficient database
design makes it easier for team members to write high-performing application code, and makes the
database likely to endure as applications evolve and are rewritten.

8.4.1 Optimizing Data Size

Design your tables to minimize their space on the disk. This can result in huge improvements by
reducing the amount of data written to and read from disk. Smaller tables normally require less main
memory while their contents are being actively processed during query execution. Any space reduction
for table data also results in smaller indexes that can be processed faster.

MySQL supports many different storage engines (table types) and row formats. For each table, you
can decide which storage and indexing method to use. Choosing the proper table format for your
application can give you a big performance gain. See Chapter 15, Alternative Storage Engines.

Optimizing Data Size

1081

You can get better performance for a table and minimize storage space by using the techniques listed
here:

Table Columns

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that save
disk space and memory. For example, use the smaller integer types if possible to get smaller tables.
MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.

• Declare columns to be NOT NULL if possible. It makes SQL operations faster, by enabling better use
of indexes and eliminating overhead for testing whether each value is NULL. You also save some
storage space, one bit per column. If you really need NULL values in your tables, use them. Just
avoid the default setting that allows NULL values in every column.

Row Format

• In MySQL 5.7.8 and earlier, InnoDB tables are created in the COMPACT row format by default. As of
MySQL 5.7.9, the default row format is DYNAMIC, and the default row format is configurable using
the innodb_default_row_format configuration option.

To request a row format other than the DYNAMIC row format, you can configure
innodb_default_row_format or specify the ROW_FORMAT option explicitly in a CREATE TABLE
or ALTER TABLE statement.

The compact row format decreases row storage space by about 20% at the cost of increasing CPU
use for some operations. If your workload is a typical one that is limited by cache hit rates and disk
speed it is likely to be faster. If it is a rare case that is limited by CPU speed, it might be slower.

The compact InnoDB format also changes how CHAR columns containing utf8 or utf8mb4 data
are stored. With ROW_FORMAT=REDUNDANT, a utf8 or utf8mb4 CHAR(N) column occupies
the maximum character byte length × N bytes. Many languages can be written primarily using
single-byte utf8 or utf8mb4 characters, so a fixed storage length often wastes space. With
ROW_FORMAT=COMPACT, InnoDB allocates a variable amount of storage for these columns by
stripping trailing spaces if necessary. The minimum storage length is kept as N bytes to facilitate in-
place updates in typical cases. For more information, see Section 14.2.7.7, “Physical Row Structure”.

• To minimize space even further by storing table data in compressed form, specify
ROW_FORMAT=COMPRESSED when creating InnoDB tables, or run the myisampack command on an
existing MyISAM table. (InnoDB tables compressed tables are readable and writable, while MyISAM
compressed tables are read-only.)

• For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB
columns), a fixed-size row format is used. This is faster but may waste some space. See
Section 15.2.3, “MyISAM Table Storage Formats”. You can hint that you want to have fixed length
rows even if you have VARCHAR columns with the CREATE TABLE option ROW_FORMAT=FIXED.

Indexes

• The primary index of a table should be as short as possible. This makes identification of each row
easy and efficient. For InnoDB tables, the primary key columns are duplicated in each secondary
index entry, so a short primary key saves considerable space if you have many secondary indexes.

• Create only the indexes that you need to improve query performance. Indexes are good for retrieval,
but slow down insert and update operations. If you access a table mostly by searching on a
combination of columns, create a single composite index on them rather than a separate index for
each column. The first part of the index should be the column most used. If you always use many
columns when selecting from the table, the first column in the index should be the one with the most
duplicates, to obtain better compression of the index.

• If it is very likely that a long string column has a unique prefix on the first number of characters, it is
better to index only this prefix, using MySQL's support for creating an index on the leftmost part of

Optimizing MySQL Data Types

1082

the column (see Section 13.1.11, “CREATE INDEX Syntax”). Shorter indexes are faster, not only
because they require less disk space, but because they also give you more hits in the index cache,
and thus fewer disk seeks. See Section 8.12.2, “Tuning Server Parameters”.

Joins

• In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is
especially true if it is a dynamic-format table and it is possible to use a smaller static format table that
can be used to find the relevant rows when scanning the table.

• Declare columns with identical information in different tables with identical data types, to speed up
joins based on the corresponding columns.

• Keep column names simple, so that you can use the same name across different tables and simplify
join queries. For example, in a table named customer, use a column name of name instead of
customer_name. To make your names portable to other SQL servers, consider keeping them
shorter than 18 characters.

Normalization

• Normally, try to keep all data nonredundant (observing what is referred to in database theory as
third normal form). Instead of repeating lengthy values such as names and addresses, assign them
unique IDs, repeat these IDs as needed across multiple smaller tables, and join the tables in queries
by referencing the IDs in the join clause.

• If speed is more important than disk space and the maintenance costs of keeping multiple copies
of data, for example in a business intelligence scenario where you analyze all the data from large
tables, you can relax the normalization rules, duplicating information or creating summary tables to
gain more speed.

8.4.2 Optimizing MySQL Data Types

8.4.2.1 Optimizing for Numeric Data

• For unique IDs or other values that can be represented as either strings or numbers, prefer numeric
columns to string columns. Since large numeric values can be stored in fewer bytes than the
corresponding strings, it is faster and takes less memory to transfer and compare them.

• If you are using numeric data, it is faster in many cases to access information from a database (using
a live connection) than to access a text file. Information in the database is likely to be stored in a
more compact format than in the text file, so accessing it involves fewer disk accesses. You also
save code in your application because you can avoid parsing the text file to find line and column
boundaries.

8.4.2.2 Optimizing for Character and String Types

For character and string columns, follow these guidelines:

• Use binary collation order for fast comparison and sort operations, when you do not need language-
specific collation features. You can use the BINARY operator to use binary collation within a
particular query.

• When comparing values from different columns, declare those columns with the same character set
and collation wherever possible, to avoid string conversions while running the query.

• For column values less than 8KB in size, use binary VARCHAR instead of BLOB. The GROUP BY and
ORDER BY clauses can generate temporary tables, and these temporary tables can use the MEMORY
storage engine if the original table does not contain any BLOB columns.

• If a table contains string columns such as name and address, but many queries do not retrieve
those columns, consider splitting the string columns into a separate table and using join queries

Optimizing MySQL Data Types

1083

with a foreign key when necessary. When MySQL retrieves any value from a row, it reads a data
block containing all the columns of that row (and possibly other adjacent rows). Keeping each row
small, with only the most frequently used columns, allows more rows to fit in each data block. Such
compact tables reduce disk I/O and memory usage for common queries.

• When you use a randomly generated value as a primary key in an InnoDB table, prefix it with an
ascending value such as the current date and time if possible. When consecutive primary values are
physically stored near each other, InnoDB can insert and retrieve them faster.

• See Section 8.4.2.1, “Optimizing for Numeric Data” for reasons why a numeric column is usually
preferable to an equivalent string column.

8.4.2.3 Optimizing for BLOB Types

• When storing a large blob containing textual data, consider compressing it first. Do not use this
technique when the entire table is compressed by InnoDB or MyISAM.

• For a table with several columns, to reduce memory requirements for queries that do not use the
BLOB column, consider splitting the BLOB column into a separate table and referencing it with a join
query when needed.

• Since the performance requirements to retrieve and display a BLOB value might be very different
from other data types, you could put the BLOB-specific table on a different storage device or even a
separate database instance. For example, to retrieve a BLOB might require a large sequential disk
read that is better suited to a traditional hard drive than to an SSD device.

• See Section 8.4.2.2, “Optimizing for Character and String Types” for reasons why a binary VARCHAR
column is sometimes preferable to an equivalent BLOB column.

• Rather than testing for equality against a very long text string, you can store a hash of the column
value in a separate column, index that column, and test the hashed value in queries. (Use the MD5()
or CRC32() function to produce the hash value.) Since hash functions can produce duplicate results
for different inputs, you still include a clause AND blob_column = long_string_value in
the query to guard against false matches; the performance benefit comes from the smaller, easily
scanned index for the hashed values.

8.4.2.4 Using PROCEDURE ANALYSE

ANALYSE([max_elements[,max_memory]])

ANALYSE() examines the result from a query and returns an analysis of the results that suggests
optimal data types for each column that may help reduce table sizes. To obtain this analysis, append
PROCEDURE ANALYSE to the end of a SELECT statement:

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])

For example:

SELECT col1, col2 FROM table1 PROCEDURE ANALYSE(10, 2000);

The results show some statistics for the values returned by the query, and propose an optimal data
type for the columns. This can be helpful for checking your existing tables, or after importing new data.
You may need to try different settings for the arguments so that PROCEDURE ANALYSE() does not
suggest the ENUM data type when it is not appropriate.

The arguments are optional and are used as follows:

• max_elements (default 256) is the maximum number of distinct values that ANALYSE() notices per
column. This is used by ANALYSE() to check whether the optimal data type should be of type ENUM;
if there are more than max_elements distinct values, then ENUM is not a suggested type.

Optimizing for Many Tables

1084

• max_memory (default 8192) is the maximum amount of memory that ANALYSE() should allocate per
column while trying to find all distinct values.

8.4.3 Optimizing for Many Tables

Some techniques for keeping individual queries fast involve splitting data across many tables. When
the number of tables runs into the thousands or even millions, the overhead of dealing with all these
tables becomes a new performance consideration.

8.4.3.1 How MySQL Opens and Closes Tables

When you execute a mysqladmin status command, you should see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have only six tables.

MySQL is multi-threaded, so there may be many clients issuing queries for a given table
simultaneously. To minimize the problem with multiple client sessions having different states on the
same table, the table is opened independently by each concurrent session. This uses additional
memory but normally increases performance. With MyISAM tables, one extra file descriptor is required
for the data file for each client that has the table open. (By contrast, the index file descriptor is shared
between all sessions.)

The table_open_cache and max_connections system variables affect the maximum number of
files the server keeps open. If you increase one or both of these values, you may run up against a limit
imposed by your operating system on the per-process number of open file descriptors. Many operating
systems permit you to increase the open-files limit, although the method varies widely from system to
system. Consult your operating system documentation to determine whether it is possible to increase
the limit and how to do so.

table_open_cache is related to max_connections. For example, for 200 concurrent running
connections, specify a table cache size of at least 200 * N, where N is the maximum number of tables
per join in any of the queries which you execute. You must also reserve some extra file descriptors for
temporary tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the
table_open_cache setting. If table_open_cache is set too high, MySQL may run out of file
descriptors and refuse connections, fail to perform queries, and be very unreliable.

You should also take into account the fact that the MyISAM storage engine needs two file descriptors
for each unique open table. For a partitioned MyISAM table, two file descriptors are required for each
partition of the opened table. (Note further that when MyISAM opens a partitioned table, it opens every
partition of this table, whether or not a given partition is actually used. See MyISAM and partition file
descriptor usage.) You can increase the number of file descriptors available to MySQL using the --
open-files-limit startup option to mysqld. See Section B.5.2.18, “'File' Not Found and Similar
Errors”.

The cache of open tables is kept at a level of table_open_cache entries. The server autosizes the
cache size at startup. To set the size explicitly, set the table_open_cache system variable at startup.
Note that MySQL may temporarily open more tables than this to execute queries.

MySQL closes an unused table and removes it from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_open_cache entries and a table in the cache is no
longer being used by any threads.

Internal Temporary Table Use in MySQL

1085

• When a table flushing operation occurs. This happens when someone issues a FLUSH TABLES
statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

• Tables that are not currently in use are released, beginning with the table least recently used.

• If a new table needs to be opened, but the cache is full and no tables can be released, the cache is
temporarily extended as necessary. When the cache is in a temporarily extended state and a table
goes from a used to unused state, the table is closed and released from the cache.

A MyISAM table is opened for each concurrent access. This means the table needs to be opened twice
if two threads access the same table or if a thread accesses the table twice in the same query (for
example, by joining the table to itself). Each concurrent open requires an entry in the table cache. The
first open of any MyISAM table takes two file descriptors: one for the data file and one for the index file.
Each additional use of the table takes only one file descriptor for the data file. The index file descriptor
is shared among all threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object
is allocated for the thread. This table object is not shared by other threads and is not closed until the
thread calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put
back in the table cache (if the cache is not full). See Section 13.2.4, “HANDLER Syntax”.

You can determine whether your table cache is too small by checking the mysqld status variable
Opened_tables, which indicates the number of table-opening operations since the server started:

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+

If the value is very large or increases rapidly, even when you have not issued many FLUSH TABLES
statements, increase the table cache size. See Section 5.1.4, “Server System Variables”, and
Section 5.1.6, “Server Status Variables”.

8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

If you have many MyISAM tables in the same database directory, open, close, and create operations
are slow. If you execute SELECT statements on many different tables, there is a little overhead when
the table cache is full, because for every table that has to be opened, another must be closed. You can
reduce this overhead by increasing the number of entries permitted in the table cache.

8.4.4 Internal Temporary Table Use in MySQL

In some cases, the server creates internal temporary tables while processing queries. Users have no
direct control over when the server does this.

Temporary tables can be created under conditions such as these:

• UNION queries use temporary tables, with some exceptions described later.

• Some views require temporary tables, such those evaluated using the TEMPTABLE algorithm, or that
use UNION or aggregation.

• Evaluation of derived tables (subqueries in the FROM clause).

• Tables created for subquery or semi-join materialization (see Section 8.2.1.18, “Subquery
Optimization”).

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.

Internal Temporary Table Use in MySQL

1086

• DISTINCT combined with ORDER BY may require a temporary table.

• If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table, unless the
query also contains elements (described later) that require on-disk storage.

• Multiple-table UPDATE statements.

• Evaluation of GROUP_CONCAT() or COUNT(DISTINCT) expressions.

As of MySQL 5.7.3, the server does not use a temporary table for UNION statements that meet certain
qualifications. Instead, it retains from temporary table creation only the data structures necessary to
perform result column typecasting. The table is not fully instantiated and no rows are written to or read
from it; rows are sent directly to the client. The result is reduced memory and disk requirements, and
smaller delay before the first row is sent to the client because the server need not wait until the last
query block is executed. EXPLAIN and optimizer trace output will change: The UNION RESULT query
block will not be present because that block corresponds to the part that reads from the temporary
table.

The conditions that qualify a UNION for evaluation without a temporary table are:

• The union is UNION ALL, not UNION or UNION DISTINCT.

• There is no global ORDER BY clause.

• The union is not the top-level query block of an {INSERT | REPLACE} ... SELECT ...
statement.

To determine whether a query requires a temporary table, use EXPLAIN and check the Extra column
to see whether it says Using temporary (see Section 8.8.1, “Optimizing Queries with EXPLAIN”).
EXPLAIN will not necessarily say Using temporary for derived or materialized temporary tables.

Storage Engines Used for Temporary Tables

An internal temporary table can be held in memory and processed by the MEMORY storage engine, or
stored on disk by the InnoDB or MyISAM storage engine.

If an internal temporary table is created as an in-memory table but becomes too large, MySQL
automatically converts it to an on-disk table. The maximum size for in-memory temporary tables is the
minimum of the tmp_table_size and max_heap_table_size values. This differs from MEMORY
tables explicitly created with CREATE TABLE: For such tables, only the max_heap_table_size
system variable determines how large the table is permitted to grow and there is no conversion to on-
disk format.

As of MySQL 5.7.5, the internal_tmp_disk_storage_engine system variable determines which
storage engine the server uses to manage on-disk internal temporary tables. The value can be INNODB
or MYISAM. The default in MySQL 5.7.5 is MYISAM. As of MySQL 5.7.6, the default is INNODB. Before
MySQL 5.7.5, the server always uses MyISAM for on-disk internal temporary tables.

Some conditions prevent the use of an in-memory temporary table, in which case the server uses an
on-disk table instead:

• Presence of a BLOB or TEXT column in the table

• Presence of any string column in a GROUP BY or DISTINCT clause larger than 512 bytes for
binary strings or 512 characters for nonbinary strings. (Before MySQL 5.7.3, the limit is 512 bytes
regardless of string type.)

• Presence of any string column with a maximum length larger than 512 (bytes for binary strings,
characters for nonbinary strings) in the SELECT list, if UNION or UNION ALL is used

• The SHOW COLUMNS and the DESCRIBE statements use BLOB as the type for some columns, thus
the temporary table used for the results is an on-disk table.

Optimizing for InnoDB Tables

1087

When the server creates an internal temporary table (either in memory or on disk), it increments the
Created_tmp_tables status variable. If the server creates the table on disk (either initially or by
converting an in-memory table) it increments the Created_tmp_disk_tables status variable.

Temporary Table Storage Format

In-memory temporary tables are managed by the MEMORY storage engine, which uses fixed-length row
format. VARCHAR and VARBINARY column values are padded to the maximum column length, in effect
storing them as CHAR and BINARY columns.

On-disk temporary tables are managed by the InnoDB or MyISAM storage engine (depending on
the internal_tmp_disk_storage_engine setting). Both engines store temporary tables using
dynamic-width row format. Columns take only as much storage as needed, which reduces space
requirements, I/O, and processing time compared to on-disk tables that use fixed-length rows. The
exception to dynamic-length row format is that on-disk temporary tables for derived tables are stored
using fixed-length rows.

For queries that initially create an internal temporary table in memory, then convert it to an on-disk
table, better performance might be achieved by skipping the conversion step and creating the table
on disk to begin with. The SQL_BIG_RESULT directive can be used to force disk storage of internal
temporary tables (see Section 13.2.9, “SELECT Syntax”).

8.5 Optimizing for InnoDB Tables
InnoDB is the storage engine that MySQL customers typically use in production databases where
reliability and concurrency are important. InnoDB is the default storage engine in MySQL. This section
explains how to optimize database operations for InnoDB tables.

8.5.1 Optimizing Storage Layout for InnoDB Tables

• Once your data reaches a stable size, or a growing table has increased by tens or some hundreds
of megabytes, consider using the OPTIMIZE TABLE statement to reorganize the table and compact
any wasted space. The reorganized tables require less disk I/O to perform full table scans. This is a
straightforward technique that can improve performance when other techniques such as improving
index usage or tuning application code are not practical.

OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The benefits come
from improved packing of data within indexes, and reduced fragmentation within the tablespaces
and on disk. The benefits vary depending on the data in each table. You may find that there are
significant gains for some and not for others, or that the gains decrease over time until you next
optimize the table. This operation can be slow if the table is large or if the indexes being rebuilt do
not fit into the buffer pool. The first run after adding a lot of data to a table is often much slower than
later runs.

• In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or several
columns that form a long composite value) wastes a lot of disk space. The primary key value for a
row is duplicated in all the secondary index records that point to the same row. (See Section 14.2.7,
“InnoDB Table and Index Structures”.) Create an AUTO_INCREMENT column as the primary key if
your primary key is long, or index a prefix of a long VARCHAR column instead of the entire column.

• Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns with many
NULL values. A CHAR(N) column always takes N characters to store data, even if the string is shorter
or its value is NULL. Smaller tables fit better in the buffer pool and reduce disk I/O.

When using COMPACT row format (the default InnoDB format) and variable-length character sets,
such as utf8 or sjis, CHAR(N) columns occupy a variable amount of space, but still at least N
bytes.

• For tables that are big, or contain lots of repetitive text or numeric data, consider using COMPRESSED
row format. Less disk I/O is required to bring data into the buffer pool, or to perform full table scans.

Optimizing InnoDB Transaction Management

1088

Before making a permanent decision, measure the amount of compression you can achieve by using
COMPRESSED versus COMPACT row format.

8.5.2 Optimizing InnoDB Transaction Management

To optimize InnoDB transaction processing, find the ideal balance between the performance overhead
of transactional features and the workload of your server. For example, an application might encounter
performance issues if it commits thousands of times per second, and different performance issues if it
commits only every 2-3 hours.

• The default MySQL setting AUTOCOMMIT=1 can impose performance limitations on a busy database
server. Where practical, wrap several related DML operations into a single transaction, by issuing
SET AUTOCOMMIT=0 or a START TRANSACTION statement, followed by a COMMIT statement after
making all the changes.

InnoDB must flush the log to disk at each transaction commit if that transaction made modifications
to the database. When each change is followed by a commit (as with the default autocommit setting),
the I/O throughput of the storage device puts a cap on the number of potential operations per
second.

• Alternatively, for transactions that consist only of a single SELECT statement, turning on
AUTOCOMMIT helps InnoDB to recognize read-only transactions and optimize them. See
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions” for requirements.

• Avoid performing rollbacks after inserting, updating, or deleting huge numbers of rows. If a big
transaction is slowing down server performance, rolling it back can make the problem worse,
potentially taking several times as long to perform as the original DML operations. Killing the
database process does not help, because the rollback starts again on server startup.

To minimize the chance of this issue occurring:

• Increase the size of the buffer pool so that all the DML changes can be cached rather than
immediately written to disk.

• Set innodb_change_buffering=all so that update and delete operations are buffered in
addition to inserts.

• Consider issuing COMMIT statements periodically during the big DML operation, possibly breaking
a single delete or update into multiple statements that operate on smaller numbers of rows.

To get rid of a runaway rollback once it occurs, increase the buffer pool so that the rollback becomes
CPU-bound and runs fast, or kill the server and restart with innodb_force_recovery=3, as
explained in Section 14.15.1, “The InnoDB Recovery Process”.

This issue is expected to be less prominent in MySQL 5.5 and higher because the default setting
innodb_change_buffering=all allows update and delete operations to be cached in memory,
making them faster to perform in the first place, and also faster to roll back if needed. Make sure
to use this parameter setting on servers that process long-running transactions with many inserts,
updates, or deletes.

• If you can afford the loss of some of the latest committed transactions if a crash occurs, you can set
the innodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the log once per
second anyway, although the flush is not guaranteed. Also, set the value of innodb_support_xa
to 0, which will reduce the number of disk flushes due to synchronizing on disk data and the binary
log.

Note

innodb_support_xa is deprecated and will be removed in a future
release. As of MySQL 5.7.10, InnoDB support for two-phase commit in XA

Optimizing InnoDB Read-Only Transactions

1089

transactions is always enabled and disabling innodb_support_xa is no
longer permitted.

• When rows are modified or deleted, the rows and associated undo logs are not physically removed
immediately, or even immediately after the transaction commits. The old data is preserved until
transactions that started earlier or concurrently are finished, so that those transactions can access
the previous state of modified or deleted rows. Thus, a long-running transaction can prevent InnoDB
from purging data that was changed by a different transaction.

• When rows are modified or deleted within a long-running transaction, other transactions using the
READ COMMITTED and REPEATABLE READ isolation levels have to do more work to reconstruct the
older data if they read those same rows.

• When a long-running transaction modifies a table, queries against that table from other transactions
do not make use of the covering index technique. Queries that normally could retrieve all the result
columns from a secondary index, instead look up the appropriate values from the table data.

If secondary index pages are found to have a PAGE_MAX_TRX_ID that is too new, or if records in the
secondary index are delete-marked, InnoDB may need to look up records using a clustered index.

8.5.3 Optimizing InnoDB Read-Only Transactions

InnoDB can avoid the overhead associated with setting up the transaction ID (TRX_ID field) for
transactions that are known to be read-only. A transaction ID is only needed for a transaction that
might perform write operations or locking reads such as SELECT ... FOR UPDATE. Eliminating
unnecessary transaction IDs reduces the size of internal data structures that are consulted each time a
query or DML statement constructs a read view.

InnoDB detects read-only transactions when:

• The transaction is started with the START TRANSACTION READ ONLY statement. In this case,
attempting to make changes to the database (for InnoDB, MyISAM, or other types of tables) causes
an error, and the transaction continues in read-only state:

ERROR 1792 (25006): Cannot execute statement in a READ ONLY transaction.

You can still make changes to session-specific temporary tables in a read-only transaction, or issue
locking queries for them, because those changes and locks are not visible to any other transaction.

• The autocommit setting is turned on, so that the transaction is guaranteed to be a single statement,
and the single statement making up the transaction is a “non-locking” SELECT statement. That is, a
SELECT that does not use a FOR UPDATE or LOCK IN SHARED MODE clause.

• The transaction is started without the READ ONLY option, but no updates or statements that explicitly
lock rows have been executed yet. Until updates or explicit locks are required, a transaction stays in
read-only mode.

Thus, for a read-intensive application such as a report generator, you can tune a sequence of InnoDB
queries by grouping them inside START TRANSACTION READ ONLY and COMMIT, or by turning
on the autocommit setting before running the SELECT statements, or simply by avoiding any DML
statements interspersed with the queries.

For information about START TRANSACTION and autocommit, see Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Syntax”.

Note

Transactions that qualify as auto-commit, non-locking, and read-only (AC-NL-
RO) are kept out of certain internal InnoDB data structures and are therefore
not listed in SHOW ENGINE INNODB STATUS output.

Optimizing InnoDB Redo Logging

1090

8.5.4 Optimizing InnoDB Redo Logging

Consider the following guidelines for optimizing redo logging:

• Make your redo log files big, even as big as the buffer pool. When InnoDB has written the redo log
files full, it must write the modified contents of the buffer pool to disk in a checkpoint. Small redo log
files cause many unnecessary disk writes. Although historically big redo log files caused lengthy
recovery times, recovery is now much faster and you can confidently use large redo log files.

The size and number of redo log files are configured using the innodb_log_file_size and
innodb_log_files_in_group configuration options. For information about modifying an existing
redo log file configuration, see Section 14.4.2, “Changing the Number or Size of InnoDB Redo Log
Files”.

• Consider increasing the size of the log_buffer. A large log buffer enables large transactions to run
without a need to write the log to disk before the transactions commit. Thus, if you have transactions
that update, insert, or delete many rows, making the log buffer larger saves disk I/O. Log buffer size
is configured using the innodb_log_buffer_size configuration option.

8.5.5 Bulk Data Loading for InnoDB Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.2.1, “Speed of
INSERT Statements”.

• When importing data into InnoDB, turn off autocommit mode, because it performs a log flush to
disk for every insert. To disable autocommit during your import operation, surround it with SET
autocommit and COMMIT statements:

SET autocommit=0;
... SQL import statements ...
COMMIT;

The mysqldump option --opt creates dump files that are fast to import into an InnoDB table, even
without wrapping them with the SET autocommit and COMMIT statements.

• If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily
turning off the uniqueness checks during the import session:

SET unique_checks=0;
... SQL import statements ...
SET unique_checks=1;

For big tables, this saves a lot of disk I/O because InnoDB can use its change buffer to write
secondary index records in a batch. Be certain that the data contains no duplicate keys.

• If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning off
the foreign key checks for the duration of the import session:

SET foreign_key_checks=0;
... SQL import statements ...
SET foreign_key_checks=1;

For big tables, this can save a lot of disk I/O.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and the
server if you need to insert many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

Optimizing InnoDB Queries

1091

• When doing bulk inserts into tables with auto-increment columns, set
innodb_autoinc_lock_mode to 2 instead of the default value 1. See Section 14.5.5,
“AUTO_INCREMENT Handling in InnoDB” for details.

• For optimal performance when loading data into an InnoDB FULLTEXT index, follow this set of
steps:

• Define a column FTS_DOC_ID at table creation time, of type BIGINT UNSIGNED NOT NULL, with
a unique index named FTS_DOC_ID_INDEX. For example:

CREATE TABLE t1 (
FTS_DOC_ID BIGINT unsigned NOT NULL AUTO_INCREMENT,
title varchar(255) NOT NULL DEFAULT ”,
text mediumtext NOT NULL,
PRIMARY KEY (`FTS_DOC_ID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
CREATE UNIQUE INDEX FTS_DOC_ID_INDEX on t1(FTS_DOC_ID);

• Load the data into the table.

• Create the FULLTEXT index after the data is loaded.

Note

When adding FTS_DOC_ID column at table creation time, ensure that the
FTS_DOC_ID column is updated when the FULLTEXT indexed column
is updated, as the FTS_DOC_ID must increase monotonically with each
INSERT or UPDATE. If you choose not to add the FTS_DOC_ID at table
creation time and have InnoDB manage DOC IDs for you, InnoDB will add
the FTS_DOC_ID as a hidden column with the next CREATE FULLTEXT
INDEX call. This approach, however, requires a table rebuild which will impact
performance.

8.5.6 Optimizing InnoDB Queries

To tune queries for InnoDB tables, create an appropriate set of indexes on each table. See
Section 8.3.1, “How MySQL Uses Indexes” for details. Follow these guidelines for InnoDB indexes:

• Because each InnoDB table has a primary key (whether you request one or not), specify a set of
primary key columns for each table, columns that are used in the most important and time-critical
queries.

• Do not specify too many or too long columns in the primary key, because these column values are
duplicated in each secondary index. When an index contains unnecessary data, the I/O to read this
data and memory to cache it reduce the performance and scalability of the server.

• Do not create a separate secondary index for each column, because each query can only make
use of one index. Indexes on rarely tested columns or columns with only a few different values
might not be helpful for any queries. If you have many queries for the same table, testing different
combinations of columns, try to create a small number of concatenated indexes rather than a large
number of single-column indexes. If an index contains all the columns needed for the result set
(known as a covering index), the query might be able to avoid reading the table data at all.

• If an indexed column cannot contain any NULL values, declare it as NOT NULL when you create the
table. The optimizer can better determine which index is most effective to use for a query, when it
knows whether each column contains NULL values.

• You can optimize single-query transactions for InnoDB tables, using the technique in Section 8.5.3,
“Optimizing InnoDB Read-Only Transactions”.

• If you often have recurring queries for tables that are not updated frequently, enable the query cache:

Optimizing InnoDB DDL Operations

1092

[mysqld]
query_cache_type = 1
query_cache_size = 10M

8.5.7 Optimizing InnoDB DDL Operations

• For DDL operations on tables and indexes (CREATE, ALTER, and DROP statements), the most
significant aspect for InnoDB tables is that creating and dropping secondary indexes is much faster
in MySQL 5.5 and higher, than in MySQL 5.1 and before. See InnoDB Fast Index Creation for
details.

• “Fast index creation” makes it faster in some cases to drop an index before loading data into a table,
then re-create the index after loading the data.

• Use TRUNCATE TABLE to empty a table, not DELETE FROM tbl_name. Foreign key constraints
can make a TRUNCATE statement work like a regular DELETE statement, in which case a sequence
of commands like DROP TABLE and CREATE TABLE might be fastest.

• Because the primary key is integral to the storage layout of each InnoDB table, and changing the
definition of the primary key involves reorganizing the whole table, always set up the primary key as
part of the CREATE TABLE statement, and plan ahead so that you do not need to ALTER or DROP
the primary key afterward.

8.5.8 Optimizing InnoDB Disk I/O

If you follow the best practices for database design and the tuning techniques for SQL operations, but
your database is still slowed by heavy disk I/O activity, explore these low-level techniques related to
disk I/O. If the Unix top tool or the Windows Task Manager shows that the CPU usage percentage with
your workload is less than 70%, your workload is probably disk-bound.

• When table data is cached in the InnoDB buffer pool, it can be accessed repeatedly
by queries without requiring any disk I/O. Specify the size of the buffer pool with the
innodb_buffer_pool_size option. This memory area is important enough that busy databases
often specify a size approximately 80% of the amount of physical memory. For more information, see
Section 8.10.1, “The InnoDB Buffer Pool”.

• In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call (which
InnoDB uses by default) and similar methods is surprisingly slow. If database write performance is
an issue, conduct benchmarks with the innodb_flush_method parameter set to O_DSYNC.

• When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron),
use direct I/O for InnoDB-related files, to avoid degradation of InnoDB performance. To use
direct I/O for an entire UFS file system used for storing InnoDB-related files, mount it with the
forcedirectio option; see mount_ufs(1M). (The default on Solaris 10/x86_64 is not to use
this option.) To apply direct I/O only to InnoDB file operations rather than the whole file system, set
innodb_flush_method = O_DIRECT. With this setting, InnoDB calls directio() instead of
fcntl() for I/O to data files (not for I/O to log files).

• When using the InnoDB storage engine with a large innodb_buffer_pool_size value on any
release of Solaris 2.6 and up and any platform (sparc/x86/x64/amd64), conduct benchmarks with
InnoDB data files and log files on raw devices or on a separate direct I/O UFS file system, using the
forcedirectio mount option as described earlier. (It is necessary to use the mount option rather
than setting innodb_flush_method if you want direct I/O for the log files.) Users of the Veritas file
system VxFS should use the convosync=direct mount option.

Do not place other MySQL data files, such as those for MyISAM tables, on a direct I/O file system.
Executables or libraries must not be placed on a direct I/O file system.

• If you have additional storage devices available to set up a RAID configuration or symbolic links to
different disks, Section 8.12.3, “Optimizing Disk I/O” for additional low-level I/O tips.

http://dev.mysql.com/doc/refman/5.5/en/innodb-create-index.html

Optimizing InnoDB Configuration Variables

1093

• If throughput drops periodically because of InnoDB checkpoint operations, consider increasing
the value of the innodb_io_capacity configuration option. Higher values cause more frequent
flushing, avoiding the backlog of work that can cause dips in throughput.

• If the system is not falling behind with InnoDB flushing operations, consider lowering the value of
the innodb_io_capacity configuration option. Typically, you keep this option value as low as
practical, but not so low that it causes periodic drops in throughput as mentioned in the preceding
bullet. In a typical scenario where you could lower the option value, you might see a combination like
this in the output from SHOW ENGINE INNODB STATUS:

• History list length low, below a few thousand.

• Insert buffer merges close to rows inserted.

• Modified pages in buffer pool consistently well below innodb_max_dirty_pages_pct of the
buffer pool. (Measure at a time when the server is not doing bulk inserts; it is normal during bulk
inserts for the modified pages percentage to rise significantly.)

• Log sequence number - Last checkpoint is at less than 7/8 or ideally less than 6/8 of the
total size of the InnoDB log files.

• Other InnoDB configuration options to consider when tuning I/O-bound workloads
include innodb_adaptive_flushing, innodb_change_buffer_max_size,
innodb_change_buffering, innodb_flush_neighbors, innodb_log_buffer_size,
innodb_log_file_size, innodb_lru_scan_depth, innodb_max_dirty_pages_pct,
innodb_max_purge_lag, innodb_open_files, innodb_page_size,
innodb_random_read_ahead, innodb_read_ahead_threshold,
innodb_read_io_threads, innodb_rollback_segments, innodb_write_io_threads,
and sync_binlog.

8.5.9 Optimizing InnoDB Configuration Variables

Different settings work best for servers with light, predictable loads, versus servers that are running
near full capacity all the time, or that experience spikes of high activity.

Because the InnoDB storage engine performs many of its optimizations automatically, many
performance-tuning tasks involve monitoring to ensure that the database is performing well, and
changing configuration options when performance drops. See Section 14.13, “InnoDB Integration with
MySQL Performance Schema” for information about detailed InnoDB performance monitoring.

The main configuration steps you can perform include:

• Enabling InnoDB to use high-performance memory allocators on systems that include them. See
Section 14.3.4, “Configuring the Memory Allocator for InnoDB”.

• Controlling the types of DML operations for which InnoDB buffers the changed data, to avoid
frequent small disk writes. See Section 14.3.5, “Configuring InnoDB Change Buffering”. Because
the default is to buffer all types of DML operations, only change this setting if you need to reduce the
amount of buffering.

• Turning the adaptive hash indexing feature on and off using the innodb_adaptive_hash_index
option. See Section 14.2.7.6, “Adaptive Hash Indexes” for more information. You might change this
setting during periods of unusual activity, then restore it to its original setting.

• Setting a limit on the number of concurrent threads that InnoDB processes, if context switching is a
bottleneck. See Section 14.3.6, “Configuring Thread Concurrency for InnoDB”.

• Controlling the amount of prefetching that InnoDB does with its read-ahead operations. When
the system has unused I/O capacity, more read-ahead can improve the performance of queries.
Too much read-ahead can cause periodic drops in performance on a heavily loaded system. See
Section 14.3.3.1, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

Optimizing InnoDB for Systems with Many Tables

1094

• Increasing the number of background threads for read or write operations, if you have a high-end
I/O subsystem that is not fully utilized by the default values. See Section 14.3.7, “Configuring the
Number of Background InnoDB I/O Threads”.

• Controlling how much I/O InnoDB performs in the background. See Section 14.3.8, “Configuring the
InnoDB Master Thread I/O Rate”. You might scale back this setting if you observe periodic drops in
performance.

• Controlling the algorithm that determines when InnoDB performs certain types of background writes.
See Section 14.3.3.2, “Configuring the Rate of InnoDB Buffer Pool Flushing”. The algorithm works for
some types of workloads but not others, so might turn off this setting if you observe periodic drops in
performance.

• Taking advantage of multicore processors and their cache memory configuration, to minimize delays
in context switching. See Section 14.3.9, “Configuring Spin Lock Polling”.

• Preventing one-time operations such as table scans from interfering with the frequently accessed
data stored in the InnoDB buffer cache. See Section 14.3.3.3, “Making the Buffer Pool Scan
Resistant”.

• Adjusting log files to a size that makes sense for reliability and crash recovery. InnoDB log files have
often been kept small to avoid long startup times after a crash. Optimizations introduced in MySQL
5.5.4 speed up certain steps of the crash recovery process. In particular, scanning the redo log and
applying the redo log are faster due to improved algorithms for memory management. If you have
kept your log files artificially small to avoid long startup times, you can now consider increasing log
file size to reduce the I/O that occurs due recycling of redo log records.

• Configuring the size and number of instances for the InnoDB buffer pool, especially important
for systems with multi-gigabyte buffer pools. See Section 14.3.3.4, “Using Multiple Buffer Pool
Instances”.

• Increasing the maximum number of concurrent transactions, which dramatically improves scalability
for the busiest databases. See Section 14.2.5, “InnoDB Undo Logs”.

• Moving purge operations (a type of garbage collection) into a background thread. See
Section 14.3.10, “Configuring InnoDB Purge Scheduling”. To effectively measure the results of this
setting, tune the other I/O-related and thread-related configuration settings first.

• Reducing the amount of switching that InnoDB does between concurrent threads, so that
SQL operations on a busy server do not queue up and form a “traffic jam”. Set a value for the
innodb_thread_concurrency option, up to approximately 32 for a high-powered modern system.
Increase the value for the innodb_concurrency_tickets option, typically to 5000 or so. This
combination of options sets a cap on the number of threads that InnoDB processes at any one time,
and allows each thread to do substantial work before being swapped out, so that the number of
waiting threads stays low and operations can complete without excessive context switching.

8.5.10 Optimizing InnoDB for Systems with Many Tables

• InnoDB computes index cardinality values for a table the first time that table is accessed after
startup, instead of storing such values in the table. This step can take significant time on systems
that partition the data into many tables. Since this overhead only applies to the initial table open
operation, to “warm up” a table for later use, access it immediately after startup by issuing a
statement such as SELECT 1 FROM tbl_name LIMIT 1.

8.6 Optimizing for MyISAM Tables

The MyISAM storage engine performs best with read-mostly data or with low-concurrency operations,
because table locks limit the ability to perform simultaneous updates. In MySQL, InnoDB is the default
storage engine rather than MyISAM.

Optimizing MyISAM Queries

1095

8.6.1 Optimizing MyISAM Queries

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on
a table after it has been loaded with data. This updates a value for each index part that indicates
the average number of rows that have the same value. (For unique indexes, this is always 1.)
MySQL uses this to decide which index to choose when you join two tables based on a nonconstant
expression. You can check the result from the table analysis by using SHOW INDEX FROM
tbl_name and examining the Cardinality value. myisamchk --description --verbose
shows index distribution information.

• To sort an index and data according to an index, use myisamchk --sort-index --sort-
records=1 (assuming that you want to sort on index 1). This is a good way to make queries faster
if you have a unique index from which you want to read all rows in order according to the index. The
first time you sort a large table this way, it may take a long time.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid
problems with table locking that occur due to contention between readers and writers.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you
can INSERT new rows into it at the same time that other threads are reading from the table. If it is
important to be able to do this, consider using the table in ways that avoid deleting rows. Another
possibility is to run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows
from it. This behavior is altered by setting the concurrent_insert variable. You can force new
rows to be appended (and therefore permit concurrent inserts), even in tables that have deleted
rows. See Section 8.11.3, “Concurrent Inserts”.

• For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB,
and TEXT). The table uses dynamic row format if it includes even a single variable-length column.
See Chapter 15, Alternative Storage Engines.

• It is normally not useful to split a table into different tables just because the rows become large. In
accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row.
After finding the data, most modern disks can read the entire row fast enough for most applications.
The only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table
using dynamic row format that you can change to a fixed row size, or if you very often need to scan
the table but do not need most of the columns. See Chapter 15, Alternative Storage Engines.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1,
expr2, ... order. By using this option after extensive changes to the table, you may be able to get
higher performance.

• If you often need to calculate results such as counts based on information from a lot of rows, it may
be preferable to introduce a new table and update the counter in real time. An update of the following
form is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use MySQL storage engines such as MyISAM that has only table-
level locking (multiple readers with single writers). This also gives better performance with most
database systems, because the row locking manager in this case has less to do.

• Use OPTIMIZE TABLE periodically to avoid fragmentation with dynamic-format MyISAM tables. See
Section 15.2.3, “MyISAM Table Storage Formats”.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster
because they are not flushed to disk until the table is closed. The downside is that if something kills
the server while such a table is open, you must ensure that the table is okay by running the server
with the --myisam-recover-options option, or by running myisamchk before restarting the

Bulk Data Loading for MyISAM Tables

1096

server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE,
because the key information can always be generated from the data rows.)

• Strings are automatically prefix- and end-space compressed in MyISAM indexes. See
Section 13.1.11, “CREATE INDEX Syntax”.

• You can increase performance by caching queries or answers in your application and then executing
many inserts or updates together. Locking the table during this operation ensures that the index
cache is only flushed once after all updates. You can also take advantage of MySQL's query cache
to achieve similar results; see Section 8.10.3, “The MySQL Query Cache”.

8.6.2 Bulk Data Loading for MyISAM Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.2.1, “Speed of
INSERT Statements”.

• For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT
statements are running, if there are no deleted rows in middle of the data file. See Section 8.11.3,
“Concurrent Inserts”.

• With some extra work, it is possible to make LOAD DATA INFILE run even faster for a MyISAM
table when the table has many indexes. Use the following procedure:

1. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

2. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name to remove all use of
indexes for the table.

3. Insert data into the table with LOAD DATA INFILE. This does not update any indexes and
therefore is very fast.

4. If you intend only to read from the table in the future, use myisampack to compress it. See
Section 15.2.3.3, “Compressed Table Characteristics”.

5. Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the index
tree in memory before writing it to disk, which is much faster than updating the index during LOAD
DATA INFILE because it avoids lots of disk seeks. The resulting index tree is also perfectly
balanced.

6. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

LOAD DATA INFILE performs the preceding optimization automatically if the MyISAM table into
which you insert data is empty. The main difference between automatic optimization and using the
procedure explicitly is that you can let myisamchk allocate much more temporary memory for the
index creation than you might want the server to allocate for index re-creation when it executes the
LOAD DATA INFILE statement.

You can also disable or enable the nonunique indexes for a MyISAM table by using the following
statements rather than myisamchk. If you use these statements, you can skip the FLUSH TABLE
operations:

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;

• To speed up INSERT operations that are performed with multiple statements for nontransactional
tables, lock your tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...

Speed of REPAIR TABLE Statements

1097

UNLOCK TABLES;

This benefits performance because the index buffer is flushed to disk only once, after all INSERT
statements have completed. Normally, there would be as many index buffer flushes as there are
INSERT statements. Explicit locking statements are not needed if you can insert all rows with a
single INSERT.

Locking also lowers the total time for multiple-connection tests, although the maximum wait time for
individual connections might go up because they wait for locks. Suppose that five clients attempt to
perform inserts simultaneously as follows:

• Connection 1 does 1000 inserts

• Connections 2, 3, and 4 do 1 insert

• Connection 5 does 1000 inserts

If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking,
connections 2, 3, and 4 probably do not finish before 1 or 5, but the total time should be about 40%
faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better overall
performance by adding locks around everything that does more than about five successive inserts
or updates. If you do very many successive inserts, you could do a LOCK TABLES followed by an
UNLOCK TABLES once in a while (each 1,000 rows or so) to permit other threads to access table.
This would still result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA INFILE, even when using the
strategies just outlined.

• To increase performance for MyISAM tables, for both LOAD DATA INFILE and INSERT, enlarge
the key cache by increasing the key_buffer_size system variable. See Section 8.12.2, “Tuning
Server Parameters”.

8.6.3 Speed of REPAIR TABLE Statements

REPAIR TABLE for MyISAM tables is similar to using myisamchk for repair operations, and some of
the same performance optimizations apply:

• myisamchk has variables that control memory allocation. You may be able to its improve
performance by setting these variables, as described in Section 4.6.3.6, “myisamchk Memory
Usage”.

• For REPAIR TABLE, the same principle applies, but because the repair is done by the server, you
set server system variables instead of myisamchk variables. Also, in addition to setting memory-
allocation variables, increasing the myisam_max_sort_file_size system variable increases the
likelihood that the repair will use the faster filesort method and avoid the slower repair by key cache
method. Set the variable to the maximum file size for your system, after checking to be sure that
there is enough free space to hold a copy of the table files. The free space must be available in the
file system containing the original table files.

Suppose that a myisamchk table-repair operation is done using the following options to set its
memory-allocation variables:

--key_buffer_size=128M --myisam_sort_buffer_size=256M
--read_buffer_size=64M --write_buffer_size=64M

Some of those myisamchk variables correspond to server system variables:

myisamchk Variable System Variable

key_buffer_size key_buffer_size

Optimizing for MEMORY Tables

1098

myisamchk Variable System Variable

myisam_sort_buffer_size myisam_sort_buffer_size

read_buffer_size read_buffer_size

write_buffer_size none

Each of the server system variables can be set at runtime, and some of them
(myisam_sort_buffer_size, read_buffer_size) have a session value in addition to a global
value. Setting a session value limits the effect of the change to your current session and does not affect
other users. Changing a global-only variable (key_buffer_size, myisam_max_sort_file_size)
affects other users as well. For key_buffer_size, you must take into account that the buffer
is shared with those users. For example, if you set the myisamchk key_buffer_size variable
to 128MB, you could set the corresponding key_buffer_size system variable larger than that
(if it is not already set larger), to permit key buffer use by activity in other sessions. However,
changing the global key buffer size invalidates the buffer, causing increased disk I/O and slowdown
for other sessions. An alternative that avoids this problem is to use a separate key cache, assign
to it the indexes from the table to be repaired, and deallocate it when the repair is complete. See
Section 8.10.2.2, “Multiple Key Caches”.

Based on the preceding remarks, a REPAIR TABLE operation can be done as follows to use settings
similar to the myisamchk command. Here a separate 128MB key buffer is allocated and the file
system is assumed to permit a file size of at least 100GB.

SET SESSION myisam_sort_buffer_size = 256*1024*1024;
SET SESSION read_buffer_size = 64*1024*1024;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
SET GLOBAL repair_cache.key_buffer_size = 128*1024*1024;
CACHE INDEX tbl_name IN repair_cache;
LOAD INDEX INTO CACHE tbl_name;
REPAIR TABLE tbl_name ;
SET GLOBAL repair_cache.key_buffer_size = 0;

If you intend to change a global variable but want to do so only for the duration of a REPAIR TABLE
operation to minimally affect other users, save its value in a user variable and restore it afterward. For
example:

SET @old_myisam_sort_buffer_size = @@global.myisam_max_sort_file_size;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
REPAIR TABLE tbl_name ;
SET GLOBAL myisam_max_sort_file_size = @old_myisam_max_sort_file_size;

The system variables that affect REPAIR TABLE can be set globally at server startup if you want the
values to be in effect by default. For example, add these lines to the server my.cnf file:

[mysqld]
myisam_sort_buffer_size=256M
key_buffer_size=1G
myisam_max_sort_file_size=100G

These settings do not include read_buffer_size. Setting read_buffer_size globally to a
large value does so for all sessions and can cause performance to suffer due to excessive memory
allocation for a server with many simultaneous sessions.

8.7 Optimizing for MEMORY Tables

Consider using MEMORY tables for noncritical data that is accessed often, and is read-only or rarely
updated. Benchmark your application against equivalent InnoDB or MyISAM tables under a realistic
workload, to confirm that any additional performance is worth the risk of losing data, or the overhead of
copying data from a disk-based table at application start.

Understanding the Query Execution Plan

1099

For best performance with MEMORY tables, examine the kinds of queries against each table, and
specify the type to use for each associated index, either a B-tree index or a hash index. On the CREATE
INDEX statement, use the clause USING BTREE or USING HASH. B-tree indexes are fast for queries
that do greater-than or less-than comparisons through operators such as > or BETWEEN. Hash indexes
are only fast for queries that look up single values through the = operator, or a restricted set of values
through the IN operator. For why USING BTREE is often a better choice than the default USING HASH,
see Section 8.2.1.20, “How to Avoid Full Table Scans”. For implementation details of the different types
of MEMORY indexes, see Section 8.3.8, “Comparison of B-Tree and Hash Indexes”.

8.8 Understanding the Query Execution Plan

Depending on the details of your tables, columns, indexes, and the conditions in your WHERE clause,
the MySQL optimizer considers many techniques to efficiently perform the lookups involved in an SQL
query. A query on a huge table can be performed without reading all the rows; a join involving several
tables can be performed without comparing every combination of rows. The set of operations that the
optimizer chooses to perform the most efficient query is called the “query execution plan”, also known
as the EXPLAIN plan. Your goals are to recognize the aspects of the EXPLAIN plan that indicate a
query is optimized well, and to learn the SQL syntax and indexing techniques to improve the plan if you
see some inefficient operations.

8.8.1 Optimizing Queries with EXPLAIN

The EXPLAIN statement can be used to obtain information about how MySQL executes a statement:

• Permitted explainable statements for EXPLAIN are SELECT, DELETE, INSERT, REPLACE, and
UPDATE.

• When EXPLAIN is used with an explainable statement, MySQL displays information from the
optimizer about the statement execution plan. That is, MySQL explains how it would process the
statement, including information about how tables are joined and in which order. For information
about using EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output
Format”.

• When EXPLAIN is used with FOR CONNECTION connection_id rather than an explainable
statement, it displays the execution plan for the statement executing in the named connection. See
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”.

• Before MySQL 5.7.3, EXPLAIN EXTENDED can be used to obtain additional execution plan
information. See Section 8.8.3, “EXPLAIN EXTENDED Output Format”. As of MySQL 5.7.3,
extended output is enabled by default and the EXTENDED keyword is unnecessry.

• Before MySQL 5.7.3, EXPLAIN PARTITIONS is useful for examining queries involving partitioned
tables. See Section 18.3.5, “Obtaining Information About Partitions”. As of MySQL 5.7.3, partition
information is enabled by default and the PARTITIONS keyword is unnecessry.

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output
in tabular format. This is the default if no FORMAT option is present. JSON format displays the
information in JSON format. With FORMAT = JSON, the output includes extended and partition
information.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the
optimizer joins the tables in an optimal order. To give a hint to the optimizer to use a join order
corresponding to the order in which the tables are named in a SELECT statement, begin the statement
with SELECT STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Syntax”.)

The optimizer trace may sometimes provide information complementary to that of EXPLAIN. However,
the optimizer trace format and content are subject to change between versions. For details, see
MySQL Internals: Tracing the Optimizer.

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

EXPLAIN Output Format

1100

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.

Note

EXPLAIN can also be used to obtain information about the columns in a
table. EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name and
SHOW COLUMNS FROM tbl_name. For more information, see Section 13.8.1,
“DESCRIBE Syntax”, and Section 13.7.5.5, “SHOW COLUMNS Syntax”.

8.8.2 EXPLAIN Output Format

The EXPLAIN statement provides information about the execution plan for a SELECT statement.

EXPLAIN returns a row of information for each table used in the SELECT statement. It lists the tables in
the output in the order that MySQL would read them while processing the statement. MySQL resolves
all joins using a nested-loop join method. This means that MySQL reads a row from the first table,
and then finds a matching row in the second table, the third table, and so on. When all tables are
processed, MySQL outputs the selected columns and backtracks through the table list until a table is
found for which there are more matching rows. The next row is read from this table and the process
continues with the next table.

Before MySQL 5.7.3, when the EXTENDED keyword is used, EXPLAIN produces extra information that
can be viewed by issuing a SHOW WARNINGS statement following the EXPLAIN statement. EXPLAIN
EXTENDED also displays the filtered column. See Section 8.8.3, “EXPLAIN EXTENDED Output
Format”. As of MySQL 5.7.3, extended output is enabled by default and the EXTENDED keyword is
unnecessry.

Note

You cannot use the EXTENDED and PARTITIONS keywords together in the
same EXPLAIN statement. In addition, neither of these keywords can be used
together with the FORMAT option. (FORMAT=JSON causes EXPLAIN to display
extended and partition information automatically; using FORMAT=TRADITIONAL
has no effect on EXPLAIN output.)

• EXPLAIN Output Columns

• EXPLAIN Join Types

• EXPLAIN Extra Information

• EXPLAIN Output Interpretation

EXPLAIN Output Columns

This section describes the output columns produced by EXPLAIN. Later sections provide additional
information about the type and Extra columns.

Each output row from EXPLAIN provides information about one table. Each row contains the values
summarized in Table 8.1, “EXPLAIN Output Columns”, and described in more detail following the
table. Column names are shown in the table's first column; the second column provides the equivalent
property name shown in the output when FORMAT=JSON is used.

Table 8.1 EXPLAIN Output Columns

Column JSON Name Meaning

id select_id The SELECT identifier

select_type None The SELECT type

table table_name The table for the output row

EXPLAIN Output Format

1101

Column JSON Name Meaning

partitions partitions The matching partitions

type access_type The join type

possible_keys possible_keys The possible indexes to choose

key key The index actually chosen

key_len key_length The length of the chosen key

ref ref The columns compared to the index

rows rows Estimate of rows to be examined

filtered filtered Percentage of rows filtered by table condition

Extra None Additional information

Note

JSON properties which are NULL are not displayed in JSON-formatted
EXPLAIN output.

• id (JSON name: select_id)

The SELECT identifier. This is the sequential number of the SELECT within the query. The value can
be NULL if the row refers to the union result of other rows. In this case, the table column shows a
value like <unionM,N> to indicate that the row refers to the union of the rows with id values of M
and N.

• select_type (JSON name: none)

The type of SELECT, which can be any of those shown in the following table. A JSON-formatted
EXPLAIN exposes the SELECT type as a property of a query_block, unless it is SIMPLE or
PRIMARY. The JSON names (where applicable) are also shown in the table.

select_type Value JSON Name Meaning

SIMPLE None Simple SELECT (not using UNION or subqueries)

PRIMARY None Outermost SELECT

UNION None Second or later SELECT statement in a UNION

DEPENDENT UNION dependent (true) Second or later SELECT statement in a UNION,
dependent on outer query

UNION RESULT union_result Result of a UNION.

SUBQUERY None First SELECT in subquery

DEPENDENT
SUBQUERY

dependent (true) First SELECT in subquery, dependent on outer
query

DERIVED None Derived table SELECT (subquery in FROM clause)

MATERIALIZED materialized_from_subqueryMaterialized subquery

UNCACHEABLE
SUBQUERY

cacheable (false) A subquery for which the result cannot be cached
and must be re-evaluated for each row of the
outer query

UNCACHEABLE UNION cacheable (false) The second or later select in a UNION that
belongs to an uncacheable subquery (see
UNCACHEABLE SUBQUERY)

DEPENDENT typically signifies the use of a correlated subquery. See Section 13.2.10.7, “Correlated
Subqueries”.

EXPLAIN Output Format

1102

DEPENDENT SUBQUERY evaluation differs from UNCACHEABLE SUBQUERY evaluation. For
DEPENDENT SUBQUERY, the subquery is re-evaluated only once for each set of different values of
the variables from its outer context. For UNCACHEABLE SUBQUERY, the subquery is re-evaluated for
each row of the outer context.

Cacheability of subqueries differs from caching of query results in the query cache (which is
described in Section 8.10.3.1, “How the Query Cache Operates”). Subquery caching occurs during
query execution, whereas the query cache is used to store results only after query execution
finishes.

When you specify FORMAT=JSON with EXPLAIN, the output has no single property directly
equivalent to select_type; the query_block property corresponds to a given SELECT. Properties
equivalent to most of the SELECT subquery types just shown are available (an example being
materialized_from_subquery for MATERIALIZED), and are displayed when appropriate. There
are no JSON equivalents for SIMPLE or PRIMARY.

As of MySQL 5.7.2, the select_type value for non-SELECT statements displays the statement
type for affected tables. For example, select_type is DELETE for DELETE statements.

• table (JSON name: table_name)

The name of the table to which the row of output refers. This can also be one of the following values:

• <unionM,N>: The row refers to the union of the rows with id values of M and N.

• <derivedN>: The row refers to the derived table result for the row with an id value of N. A
derived table may result, for example, from a subquery in the FROM clause.

• <subqueryN>: The row refers to the result of a materialized subquery for the row with an id value
of N. See Optimizing Subqueries with Subquery Materialization.

• partitions (JSON name: partitions)

The partitions from which records would be matched by the query. This column is displayed only if
the PARTITIONS keyword is used. The value is NULL for nonpartitioned tables. See Section 18.3.5,
“Obtaining Information About Partitions”.

• type (JSON name: access_type)

The join type. For descriptions of the different types, see EXPLAIN Join Types.

• possible_keys (JSON name: possible_keys)

The possible_keys column indicates which indexes MySQL can choose from use to find the rows
in this table. Note that this column is totally independent of the order of the tables as displayed in the
output from EXPLAIN. That means that some of the keys in possible_keys might not be usable in
practice with the generated table order.

If this column is NULL (or undefined in JSON-formatted output), there are no relevant indexes. In this
case, you may be able to improve the performance of your query by examining the WHERE clause to
check whether it refers to some column or columns that would be suitable for indexing. If so, create
an appropriate index and check the query with EXPLAIN again. See Section 13.1.6, “ALTER TABLE
Syntax”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key (JSON name: key)

The key column indicates the key (index) that MySQL actually decided to use. If MySQL decides to
use one of the possible_keys indexes to look up rows, that index is listed as the key value.

EXPLAIN Output Format

1103

It is possible that key will name an index that is not present in the possible_keys value. This
can happen if none of the possible_keys indexes are suitable for looking up rows, but all the
columns selected by the query are columns of some other index. That is, the named index covers
the selected columns, so although it is not used to determine which rows to retrieve, an index scan is
more efficient than a data row scan.

For InnoDB, a secondary index might cover the selected columns even if the query also selects
the primary key because InnoDB stores the primary key value with each secondary index. If key is
NULL, MySQL found no index to use for executing the query more efficiently.

To force MySQL to use or ignore an index listed in the possible_keys column, use FORCE
INDEX, USE INDEX, or IGNORE INDEX in your query. See Section 8.9.4, “Index Hints”.

For MyISAM tables, running ANALYZE TABLE helps the optimizer choose better indexes. For
MyISAM tables, myisamchk --analyze does the same. See Section 13.7.2.1, “ANALYZE TABLE
Syntax”, and Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.

• key_len (JSON name: key_length)

The key_len column indicates the length of the key that MySQL decided to use. The length is NULL
if the key column says NULL. Note that the value of key_len enables you to determine how many
parts of a multiple-part key MySQL actually uses.

• ref (JSON name: ref)

The ref column shows which columns or constants are compared to the index named in the key
column to select rows from the table.

If the value is func, the value used is the result of some function. To see which function, use
EXPLAIN EXTENDED followed by SHOW WARNINGS. The function might actually be an operator such
as an arithmetic operator.

• rows (JSON name: rows)

The rows column indicates the number of rows MySQL believes it must examine to execute the
query.

For InnoDB tables, this number is an estimate, and may not always be exact.

• filtered (JSON name: filtered)

The filtered column indicates an estimated percentage of table rows that will be filtered by the
table condition. That is, rows shows the estimated number of rows examined and rows × filtered
/ 100 shows the number of rows that will be joined with previous tables. Before MySQL 5.7.3, this
column is displayed if you use EXPLAIN EXTENDED. As of MySQL 5.7.3, extended output is enabled
by default and the EXTENDED keyword is unnecessry.

• Extra (JSON name: none)

This column contains additional information about how MySQL resolves the query. For descriptions
of the different values, see EXPLAIN Extra Information.

There is no single JSON property corresponding to the Extra column; however, values that can
occur in this column are exposed as JSON properties, or as the text of the message property.

EXPLAIN Join Types

The type column of EXPLAIN output describes how tables are joined. In JSON-formatted output,
these are found as values of the access_type property. The following list describes the join types,
ordered from the best type to the worst:

EXPLAIN Output Format

1104

• system

The table has only one row (= system table). This is a special case of the const join type.

• const

The table has at most one matching row, which is read at the start of the query. Because there is
only one row, values from the column in this row can be regarded as constants by the rest of the
optimizer. const tables are very fast because they are read only once.

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant values.
In the following queries, tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;

SELECT * FROM tbl_name
 WHERE primary_key_part1=1 AND primary_key_part2=2;

• eq_ref

One row is read from this table for each combination of rows from the previous tables. Other than the
system and const types, this is the best possible join type. It is used when all parts of an index are
used by the join and the index is a PRIMARY KEY or UNIQUE NOT NULL index.

eq_ref can be used for indexed columns that are compared using the = operator. The comparison
value can be a constant or an expression that uses columns from tables that are read before this
table. In the following examples, MySQL can use an eq_ref join to process ref_table:

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• ref

All rows with matching index values are read from this table for each combination of rows from the
previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is not a
PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row based on the
key value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the
following examples, MySQL can use a ref join to process ref_table:

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• fulltext

The join is performed using a FULLTEXT index.

• ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows that contain
NULL values. This join type optimization is used most often in resolving subqueries. In the following
examples, MySQL can use a ref_or_null join to process ref_table:

EXPLAIN Output Format

1105

SELECT * FROM ref_table
 WHERE key_column=expr OR key_column IS NULL;

See Section 8.2.1.8, “IS NULL Optimization”.

• index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key column in the
output row contains a list of indexes used, and key_len contains a list of the longest key parts for
the indexes used. For more information, see Section 8.2.1.4, “Index Merge Optimization”.

• unique_subquery

This type replaces ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery is just an index lookup function that replaces the subquery completely for better
efficiency.

• index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for nonunique
indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

• range

Only rows that are in a given range are retrieved, using an index to select the rows. The key column
in the output row indicates which index is used. The key_len contains the longest key part that was
used. The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =, <>, >, >=, <,
<=, IS NULL, <=>, BETWEEN, or IN() operators:

SELECT * FROM tbl_name
 WHERE key_column = 10;

SELECT * FROM tbl_name
 WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
 WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name
 WHERE key_part1 = 10 AND key_part2 IN (10,20,30);

• index

The index join type is the same as ALL, except that the index tree is scanned. This occurs two
ways:

• If the index is a covering index for the queries and can be used to satisfy all data required from
the table, only the index tree is scanned. In this case, the Extra column says Using index. An
index-only scan usually is faster than ALL because the size of the index usually is smaller than the
table data.

• A full table scan is performed using reads from the index to look up data rows in index order. Uses
index does not appear in the Extra column.

EXPLAIN Output Format

1106

MySQL can use this join type when the query uses only columns that are part of a single index.

• ALL

A full table scan is done for each combination of rows from the previous tables. This is normally
not good if the table is the first table not marked const, and usually very bad in all other cases.
Normally, you can avoid ALL by adding indexes that enable row retrieval from the table based on
constant values or column values from earlier tables.

EXPLAIN Extra Information

The Extra column of EXPLAIN output contains additional information about how MySQL resolves the
query. The following list explains the values that can appear in this column. Some of these values are
reflected in JSON-formatted output as properties, which are shown where applicable; values shown
without corresponding JSON properties are set as the text of a message.

If you want to make your queries as fast as possible, look out for Extra column values of Using
filesort and Using temporary, or, in JSON-formatted EXPLAIN output, for using_filesort
and using_temporary_table properties equal to true.

• const row not found (JSON: const_row_not_found)

For a query such as SELECT ... FROM tbl_name, the table was empty.

• Deleting all rows (JSON: message text)

For DELETE, some storage engines (such as MyISAM) support a handler method that removes
all table rows in a simple and fast way. This Extra value is displayed if the engine uses this
optimization.

• Distinct (JSON: distinct)

MySQL is looking for distinct values, so it stops searching for more rows for the current row
combination after it has found the first matching row.

• FirstMatch(tbl_name) (JSON: first_match)

The semi-join FirstMatch join shortcutting strategy is used for tbl_name.

• Full scan on NULL key (JSON: message text)

This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-
lookup access method.

• Impossible HAVING (JSON: message text)

The HAVING clause is always false and cannot select any rows.

• Impossible WHERE (JSON: message text)

The WHERE clause is always false and cannot select any rows.

• Impossible WHERE noticed after reading const tables (JSON: message text)

MySQL has read all const (and system) tables and notice that the WHERE clause is always false.

• LooseScan(m..n) (JSON: message text)

The semi-join LooseScan strategy is used. m and n are key part numbers.

• No matching min/max row (JSON: message text)

EXPLAIN Output Format

1107

No row satisfies the condition for a query such as SELECT MIN(...) FROM ... WHERE
condition.

• no matching row in const table (JSON: message text)

For a query with a join, there was an empty table or a table with no rows satisfying a unique index
condition.

• No matching rows after partition pruning (JSON: message text)

For DELETE or UPDATE, the optimizer found nothing to delete or update after partition pruning. It is
similar in meaning to Impossible WHERE for SELECT statements.

• No tables used (JSON: message text)

The query has no FROM clause, or has a FROM DUAL clause.

For INSERT or REPLACE statements, EXPLAIN displays this value when there is no SELECT part.
For example, it appears for EXPLAIN INSERT INTO t VALUES(10) because that is equivalent to
EXPLAIN INSERT INTO t SELECT 10 FROM DUAL.

• Not exists (JSON: message text)

MySQL was able to do a LEFT JOIN optimization on the query and does not examine more rows
in this table for the previous row combination after it finds one row that matches the LEFT JOIN
criteria. Here is an example of the type of query that can be optimized this way:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
 WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the rows
in t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows that t2.id can
never be NULL, and does not scan through the rest of the rows in t2 that have the same id value.
In other words, for each row in t1, MySQL needs to do only a single lookup in t2, regardless of how
many rows actually match in t2.

• Plan isn't ready yet (JSON: none)

This value occurs with EXPLAIN FOR CONNECTION when the optimizer has not finished creating
the execution plan for the statement executing in the named connection. If execution plan output
comprises multiple lines, any or all of them could have this Extra value, depending on the progress
of the optimizer in determining the full execution plan.

• Range checked for each record (index map: N) (JSON: message text)

MySQL found no good index to use, but found that some of indexes might be used after column
values from preceding tables are known. For each row combination in the preceding tables, MySQL
checks whether it is possible to use a range or index_merge access method to retrieve rows. This
is not very fast, but is faster than performing a join with no index at all. The applicability criteria are as
described in Section 8.2.1.3, “Range Optimization”, and Section 8.2.1.4, “Index Merge Optimization”,
with the exception that all column values for the preceding table are known and considered to be
constants.

Indexes are numbered beginning with 1, in the same order as shown by SHOW INDEX for the table.
The index map value N is a bitmask value that indicates which indexes are candidates. For example,
a value of 0x19 (binary 11001) means that indexes 1, 4, and 5 will be considered.

• Scanned N databases (JSON: message text)

EXPLAIN Output Format

1108

This indicates how many directory scans the server performs when processing a
query for INFORMATION_SCHEMA tables, as described in Section 8.2.4, “Optimizing
INFORMATION_SCHEMA Queries”. The value of N can be 0, 1, or all.

• Select tables optimized away (JSON: message text)

The query contained only aggregate functions (MIN(), MAX()) that were all resolved using an index,
or COUNT(*), and no GROUP BY clause. The optimizer determined that only one row should be
returned.

• Skip_open_table, Open_frm_only, Open_trigger_only, Open_full_table (JSON:
message text)

These values indicate file-opening optimizations that apply to queries for INFORMATION_SCHEMA
tables, as described in Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”.

• Skip_open_table: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• Open_frm_only: Only the table's .frm file need be opened.

• Open_trigger_only: Only the table's .TRG file need be opened.

• Open_full_table: The unoptimized information lookup. The .frm, .MYD, and .MYI files must
be opened.

• Start temporary, End temporary (JSON: message text)

This indicates temporary table use for the semi-join Duplicate Weedout strategy.

• unique row not found (JSON: message text)

For a query such as SELECT ... FROM tbl_name, no rows satisfy the condition for a UNIQUE
index or PRIMARY KEY on the table.

• Using filesort (JSON: using_filesort)

MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is done
by going through all rows according to the join type and storing the sort key and pointer to the row for
all rows that match the WHERE clause. The keys then are sorted and the rows are retrieved in sorted
order. See Section 8.2.1.15, “ORDER BY Optimization”.

• Using index (JSON: using_index)

The column information is retrieved from the table using only information in the index tree without
having to do an additional seek to read the actual row. This strategy can be used when the query
uses only columns that are part of a single index.

If the Extra also says Using where, it means the index is being used to perform lookups of key
values. Without Using where, the optimizer may be reading the index to avoid reading data rows
but not using it for lookups. For example, if the index is a covering index for the query, the optimizer
may scan it without using it for lookups.

For InnoDB tables that have a user-defined clustered index, that index can be used even when
Using index is absent from the Extra column. This is the case if type is index and key is
PRIMARY.

• Using index condition (JSON: using_index_condition text)

EXPLAIN Output Format

1109

Tables are read by accessing index tuples and testing them first to determine whether to read full
table rows. In this way, index information is used to defer (“push down”) reading full table rows
unless it is necessary. See Section 8.2.1.6, “Index Condition Pushdown Optimization”.

• Using index for group-by (JSON: using_index_for_group_by)

Similar to the Using index table access method, Using index for group-by indicates that
MySQL found an index that can be used to retrieve all columns of a GROUP BY or DISTINCT query
without any extra disk access to the actual table. Additionally, the index is used in the most efficient
way so that for each group, only a few index entries are read. For details, see Section 8.2.1.16,
“GROUP BY Optimization”.

• Using join buffer (Block Nested Loop), Using join buffer (Batched Key
Access) (JSON: using_join_buffer)

Tables from earlier joins are read in portions into the join buffer, and then their rows are used from
the buffer to perform the join with the current table. (Block Nested Loop) indicates use of the
Block Nested-Loop algorithm and (Batched Key Access) indicates use of the Batched Key
Access algorithm. That is, the keys from the table on the preceding line of the EXPLAIN output will
be buffered, and the matching rows will be fetched in batches from the table represented by the line
in which Using join buffer appears.

In JSON-formatted output, the value of using_join_buffer is always either one of Block
Nested Loop or Batched Key Access.

• Using MRR (JSON: message text)

Tables are read using the Multi-Range Read optimization strategy. See Section 8.2.1.13, “Multi-
Range Read Optimization”.

• Using sort_union(...), Using union(...), Using intersect(...) (JSON: message
text)

These indicate how index scans are merged for the index_merge join type. See Section 8.2.1.4,
“Index Merge Optimization”.

• Using temporary (JSON: using_temporary_table)

To resolve the query, MySQL needs to create a temporary table to hold the result. This typically
happens if the query contains GROUP BY and ORDER BY clauses that list columns differently.

• Using where (JSON: attached_condition text)

A WHERE clause is used to restrict which rows to match against the next table or send to the client.
Unless you specifically intend to fetch or examine all rows from the table, you may have something
wrong in your query if the Extra value is not Using where and the table join type is ALL or index.

Using where has no direct counterpart in JSON-formatted output; the attached_condition
property contains any WHERE condition used.

• Using where with pushed condition (JSON: message text)

This item applies to NDB tables only. It means that MySQL Cluster is using the Condition Pushdown
optimization to improve the efficiency of a direct comparison between a nonindexed column and a
constant. In such cases, the condition is “pushed down” to the cluster's data nodes and is evaluated
on all data nodes simultaneously. This eliminates the need to send nonmatching rows over the
network, and can speed up such queries by a factor of 5 to 10 times over cases where Condition
Pushdown could be but is not used. For more information, see Section 8.2.1.5, “Engine Condition
Pushdown Optimization”.

• Zero limit (JSON: message text)

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

EXPLAIN Output Format

1110

The query had a LIMIT 0 clause and cannot select any rows.

EXPLAIN Output Interpretation

You can get a good indication of how good a join is by taking the product of the values in the rows
column of the EXPLAIN output. This should tell you roughly how many rows MySQL must examine to
execute the query. If you restrict queries with the max_join_size system variable, this row product
also is used to determine which multiple-table SELECT statements to execute and which to abort. See
Section 8.12.2, “Tuning Server Parameters”.

The following example shows how a multiple-table join can be optimized progressively based on the
information provided by EXPLAIN.

Suppose that you have the SELECT statement shown here and that you plan to examine it using
EXPLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
 tt.ProjectReference, tt.EstimatedShipDate,
 tt.ActualShipDate, tt.ClientID,
 tt.ServiceCodes, tt.RepetitiveID,
 tt.CurrentProcess, tt.CurrentDPPerson,
 tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
 et_1.COUNTRY, do.CUSTNAME
 FROM tt, et, et AS et_1, do
 WHERE tt.SubmitTime IS NULL
 AND tt.ActualPC = et.EMPLOYID
 AND tt.AssignedPC = et_1.EMPLOYID
 AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows.

Table Column Data Type

tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

• The tables have the following indexes.

Table Index

tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID (primary key)

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the following
information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74

EXPLAIN Output Format

1111

do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872
 ClientID,
 ActualPC
 Range checked for each record (index map: 0x23)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian
product of all the tables; that is, every combination of rows. This takes quite a long time, because the
product of the number of rows in each table must be examined. For the case at hand, this product is 74
× 2135 × 74 × 3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it
would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared
as the same type and size. In this context, VARCHAR and CHAR are considered the same if they are
declared as the same size. tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is CHAR(15),
so there is a length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10
characters to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement
again produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
do ALL PRIMARY NULL NULL NULL 2135
 Range checked for each record (index map: 0x1)
et_1 ALL PRIMARY NULL NULL NULL 74
 Range checked for each record (index map: 0x1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This
version executes in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC
= et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
 -> MODIFY ClientID VARCHAR(15);

After that modification, EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using
 ClientID, where
 ActualPC
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

At this point, the query is optimized almost as well as possible. The remaining problem is that, by
default, MySQL assumes that values in the tt.ActualPC column are evenly distributed, and that is
not the case for the tt table. Fortunately, it is easy to tell MySQL to analyze the key distribution:

mysql> ANALYZE TABLE tt;

With the additional index information, the join is perfect and EXPLAIN produces this result:

EXPLAIN EXTENDED Output Format

1112

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

 The rows column in the output from EXPLAIN is an educated guess from the MySQL join optimizer.
Check whether the numbers are even close to the truth by comparing the rows product with the
actual number of rows that the query returns. If the numbers are quite different, you might get better
performance by using STRAIGHT_JOIN in your SELECT statement and trying to list the tables in a
different order in the FROM clause.

It is possible in some cases to execute statements that modify data when EXPLAIN SELECT is used
with a subquery; for more information, see Section 13.2.10.8, “Subqueries in the FROM Clause”.

8.8.3 EXPLAIN EXTENDED Output Format

When EXPLAIN is used with the EXTENDED keyword, the output includes a filtered column not
otherwise displayed. This column indicates the estimated percentage of table rows that will be filtered
by the table condition. In addition, the statement produces extra information that can be viewed by
issuing a SHOW WARNINGS statement following the EXPLAIN statement. The Message value in
SHOW WARNINGS output displays how the optimizer qualifies table and column names in the SELECT
statement, what the SELECT looks like after the application of rewriting and optimization rules, and
possibly other notes about the optimization process.

Note

As of MySQL 5.7.3, the EXPLAIN statement is changed so that the effect of
the EXTENDED keyword is always enabled. EXTENDED is still recognized, but
is superfluous and is deprecated. It will be removed from EXPLAIN syntax in a
future MySQL release.

Here is an example of extended output:

mysql> EXPLAIN EXTENDED
 -> SELECT t1.a, t1.a IN (SELECT t2.a FROM t2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 4
 filtered: 100.00
 Extra: Using index
*************************** 2. row ***************************
 id: 2
 select_type: SUBQUERY
 table: t2
 type: index
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using index
2 rows in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G

EXPLAIN EXTENDED Output Format

1113

*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `test`.`t1`.`a` AS `a`,
 <in_optimizer>(`test`.`t1`.`a`,`test`.`t1`.`a` in
 (<materialize> (/* select#2 */ select `test`.`t2`.`a`
 from `test`.`t2` where 1 having 1),
 <primary_index_lookup>(`test`.`t1`.`a` in
 <temporary table> on <auto_key>
 where ((`test`.`t1`.`a` = `materialized-subquery`.`a`))))) AS `t1.a
 IN (SELECT t2.a FROM t2)` from `test`.`t1`
1 row in set (0.00 sec)

EXPLAIN EXTENDED can be used with SELECT, DELETE, INSERT, REPLACE, and UPDATE
statements. However, the following SHOW WARNINGS statement displays a nonempty result only for
SELECT statements.

Because the statement displayed by SHOW WARNINGS may contain special markers to provide
information about query rewriting or optimizer actions, the statement is not necessarily valid SQL and
is not intended to be executed. The output may also include rows with Message values that provide
additional non-SQL explanatory notes about actions taken by the optimizer.

The following list describes special markers that can appear in EXTENDED output displayed by SHOW
WARNINGS:

• <auto_key>

An automatically generated key for a temporary table.

• <cache>(expr)

The expression (such as a scalar subquery) is executed once and the resulting value is saved in
memory for later use. For results consisting of multiple values, a temporary table may be created and
you will see <temporary table> instead.

• <exists>(query fragment)

The subquery predicate is converted to an EXISTS predicate and the subquery is transformed so
that it can be used together with the EXISTS predicate.

• <in_optimizer>(query fragment)

This is an internal optimizer object with no user significance.

• <index_lookup>(query fragment)

The query fragment is processed using an index lookup to find qualifying rows.

• <if>(condition, expr1, expr2)

If the condition is true, evaluate to expr1, otherwise expr2.

• <is_not_null_test>(expr)

A test to verify that the expression does not evaluate to NULL.

• <materialize>(query fragment)

Subquery materialization is used.

• `materialized-subquery`.col_name

A reference to the column col_name in an internal temporary table materialized to hold the result
from evaluating a subquery.

Obtaining Execution Plan Information for a Named Connection

1114

• <primary_index_lookup>(query fragment)

The query fragment is processed using a primary key lookup to find qualifying rows.

• <ref_null_helper>(expr)

This is an internal optimizer object with no user significance.

• /* select#N */ select_stmt

The SELECT is associated with the row in non-EXTENDED EXPLAIN output that has an id value of N.

• outer_tables semi join (inner_tables)

A semi-join operation. inner_tables shows the tables that were not pulled out. See Optimizing
Subqueries with Semi-Join Transformations.

• <temporary table>

This represents an internal temporary table created to cache an intermediate result.

When some tables are of const or system type, expressions involving columns from these tables
are evaluated early by the optimizer and are not part of the displayed statement. However, with
FORMAT=JSON, some const table accesses are displayed as a ref access that uses a const value.

8.8.4 Obtaining Execution Plan Information for a Named Connection

To obtain the execution plan for an explainable statement executing in a named connection, use this
statement:

EXPLAIN [options] FOR CONNECTION connection_id;

EXPLAIN FOR CONNECTION returns the EXPLAIN information that is currently being used to execute
a query in a given connection. Because of changes to data (and supporting statistics) it may produce a
different result from running EXPLAIN on the equivalent query text. This difference in behavior can be
useful in diagnosing more transient performance problems. For example, if you are running a statement
in one session that is taking a long time to complete, using EXPLAIN FOR CONNECTION in another
session may yield useful information about the cause of the delay.

connection_id is the connection identifier, as obtained from the INFORMATION_SCHEMA
PROCESSLIST table or the SHOW PROCESSLIST statement. If you have the PROCESS privilege, you
can specify the identifier for any connection. Otherwise, you can specify the identifier only for your own
connections.

If the named connection is not executing a statement, the result is empty. Otherwise, EXPLAIN FOR
CONNECTION applies only if the statement being executed in the named connection is explainable. This
includes SELECT, DELETE, INSERT, REPLACE, and UPDATE. (However, EXPLAIN FOR CONNECTION
does not work for prepared statements, even prepared statements of those types.)

If the named connection is executing an explainable statement, the output is what you would obtain by
using EXPLAIN on the statement itself.

If the named connection is executing a statement that is not explainable, an error occurs. For
example, you cannot name the connection identifier for your current session because EXPLAIN is not
explainable:

mysql> SELECT CONNECTION_ID();
+-----------------+
| CONNECTION_ID() |
+-----------------+
| 373 |

Estimating Query Performance

1115

+-----------------+
1 row in set (0.00 sec)

mysql> EXPLAIN FOR CONNECTION 373;
ERROR 1889 (HY000): EXPLAIN FOR CONNECTION command is supported
only for SELECT/UPDATE/INSERT/DELETE/REPLACE

The Com_explain_other status variable indicates the number of EXPLAIN FOR CONNECTION
statements executed.

8.8.5 Estimating Query Performance

In most cases, you can estimate query performance by counting disk seeks. For small tables, you can
usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can
estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) /
log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1.

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a
500,000-row table with a key value length of three bytes (the size of MEDIUMINT), the formula indicates
log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index buffer fill
ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls to
read data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and
normally two seeks to update the index and write the row.

The preceding discussion does not mean that your application performance slowly degenerates by
log N. As long as everything is cached by the OS or the MySQL server, things become only marginally
slower as the table gets bigger. After the data gets too big to be cached, things start to go much slower
until your applications are bound only by disk seeks (which increase by log N). To avoid this, increase
the key cache size as the data grows. For MyISAM tables, the key cache size is controlled by the
key_buffer_size system variable. See Section 8.12.2, “Tuning Server Parameters”.

8.9 Controlling the Query Optimizer
MySQL provides optimizer control through system variables that affect how query plans are evaluated,
switchable optimizations, optimizer and index hints, and the optimizer cost model.

8.9.1 Controlling Query Plan Evaluation

The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the
difference in performance between “good” and “bad” plans can be orders of magnitude (that is,
seconds versus hours or even days), most query optimizers, including that of MySQL, perform a more
or less exhaustive search for an optimal plan among all possible query evaluation plans. For join
queries, the number of possible plans investigated by the MySQL optimizer grows exponentially with
the number of tables referenced in a query. For small numbers of tables (typically less than 7 to 10)
this is not a problem. However, when larger queries are submitted, the time spent in query optimization
may easily become the major bottleneck in the server's performance.

A more flexible method for query optimization enables the user to control how exhaustive the optimizer
is in its search for an optimal query evaluation plan. The general idea is that the fewer plans that are
investigated by the optimizer, the less time it spends in compiling a query. On the other hand, because
the optimizer skips some plans, it may miss finding an optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled using
two system variables:

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on
estimates of the number of rows accessed for each table. Our experience shows that this kind of

Controlling Switchable Optimizations

1116

“educated guess” rarely misses optimal plans, and may dramatically reduce query compilation
times. That is why this option is on (optimizer_prune_level=1) by default. However,
if you believe that the optimizer missed a better query plan, this option can be switched off
(optimizer_prune_level=0) with the risk that query compilation may take much longer. Note
that, even with the use of this heuristic, the optimizer still explores a roughly exponential number of
plans.

• The optimizer_search_depth variable tells how far into the “future” of each incomplete plan
the optimizer should look to evaluate whether it should be expanded further. Smaller values of
optimizer_search_depth may result in orders of magnitude smaller query compilation times.
For example, queries with 12, 13, or more tables may easily require hours and even days to
compile if optimizer_search_depth is close to the number of tables in the query. At the same
time, if compiled with optimizer_search_depth equal to 3 or 4, the optimizer may compile
in less than a minute for the same query. If you are unsure of what a reasonable value is for
optimizer_search_depth, this variable can be set to 0 to tell the optimizer to determine the
value automatically.

8.9.2 Controlling Switchable Optimizations

The optimizer_switch system variable enables control over optimizer behavior. Its value is a set of
flags, each of which has a value of on or off to indicate whether the corresponding optimizer behavior
is enabled or disabled. This variable has global and session values and can be changed at runtime.
The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,duplicateweedout=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,
 condition_fanout_filter=on,derived_merge=on

To change the value of optimizer_switch, assign a value consisting of a comma-separated list of
one or more commands:

SET [GLOBAL|SESSION] optimizer_switch='command[,command]...';

Each command value should have one of the forms shown in the following table.

Command Syntax Meaning

default Reset every optimization to its default value

opt_name=default Set the named optimization to its default value

opt_name=off Disable the named optimization

opt_name=on Enable the named optimization

The order of the commands in the value does not matter, although the default command is executed
first if present. Setting an opt_name flag to default sets it to whichever of on or off is its default
value. Specifying any given opt_name more than once in the value is not permitted and causes
an error. Any errors in the value cause the assignment to fail with an error, leaving the value of
optimizer_switch unchanged.

Controlling Switchable Optimizations

1117

The following table lists the permissible opt_name flag names, grouped by optimization strategy.

Optimization Flag Name Meaning Default

Batched Key
Access

batched_key_access Controls use of BKA join algorithm OFF

Block Nested-Loop block_nested_loop Controls use of BNL join algorithm ON

Condition Filtering condition_fanout_filter Controls use of condition filtering ON

Engine Condition
Pushdown

engine_condition_pushdown Controls engine condition
pushdown

ON

Index Condition
Pushdown

index_condition_pushdown Controls index condition pushdown ON

Index Extensions use_index_extensions Controls use of index extensions ON

Index Merge index_merge Controls all Index Merge
optimizations

ON

 index_merge_intersection Controls the Index Merge
Intersection Access optimization

ON

 index_merge_sort_union Controls the Index Merge Sort-
Union Access optimization

ON

 index_merge_union Controls the Index Merge Union
Access optimization

ON

Multi-Range Read mrr Controls the Multi-Range Read
strategy

ON

 mrr_cost_based Controls use of cost-based MRR if
mrr=on

ON

Semi-join semijoin Controls all semi-join strategies ON

 firstmatch Controls the semi-join FirstMatch
strategy

ON

 loosescan Controls the semi-join LooseScan
strategy (not to be confused with
LooseScan for GROUP BY)

ON

 duplicateweedout Controls the semi-join Duplicate
Weedout strategy

ON

Subquery
materialization

materialization Controls materialization (including
semi-join materialization)

ON

 subquery_materialization_cost_basedUsed cost-based materialization
choice

ON

Derived table
merging

derived_merge Controls merging of derived tables
and views into outer query block

ON

For batched_key_access to have any effect when set to on, the mrr flag must also be
on. Currently, the cost estimation for MRR is too pessimistic. Hence, it is also necessary for
mrr_cost_based to be off for BKA to be used.

The semijoin, firstmatch, loosescan, duplicateweedout (added in MySQL 5.7.8), and
materialization flags enable control over semi-join and subquery materialization strategies.
The semijoin flag controls whether semi-joins are used. If it is set to on, the firstmatch and
loosescan flags enable finer control over the permitted semi-join strategies. The materialization
flag controls whether subquery materialization is used. If semijoin and materialization are both
on, semi-joins also use materialization where applicable. These flags are on by default.

If the duplicateweedout semi-join strategy is disabled, it is not used unless all other applicable
strategies are also disabled.

Controlling Switchable Optimizations

1118

The subquery_materialization_cost_based flag enables control over the choice between
subquery materialization and IN-to-EXISTS subquery transformation. If the flag is on (the default), the
optimizer performs a cost-based choice between subquery materialization and IN-to-EXISTS subquery
transformation if either method could be used. If the flag is off, the optimizer chooses subquery
materialization over IN -> EXISTS subquery transformation.

The derived_merge flag controls whether the optimizer attempts to merge derived tables and view
references into the outer query block, assuming that no other rule prevents merging; for example,
an ALGORITHM directive for a view takes precedence over the derived_merge setting. By default,
the flag is on to enable merging. For more information, see Optimizing Derived Tables and View
References.

For more information about individual optimization strategies, see the following sections:

• Section 8.2.1.14, “Block Nested-Loop and Batched Key Access Joins”

• Section 8.2.1.5, “Engine Condition Pushdown Optimization”

• Section 8.2.1.7, “Use of Index Extensions”

• Section 8.2.1.6, “Index Condition Pushdown Optimization”

• Section 8.2.1.4, “Index Merge Optimization”

• Section 8.2.1.13, “Multi-Range Read Optimization”

• Section 8.2.1.18, “Subquery Optimization”

When you assign a value to optimizer_switch, flags that are not mentioned keep their current
values. This makes it possible to enable or disable specific optimizer behaviors in a single statement
without affecting other behaviors. The statement does not depend on what other optimizer flags exist
and what their values are. Suppose that all Index Merge optimizations are enabled:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,
 condition_fanout_filter=on

If the server is using the Index Merge Union or Index Merge Sort-Union access methods for certain
queries and you want to check whether the optimizer will perform better without them, set the variable
value like this:

mysql> SET optimizer_switch='index_merge_union=off,index_merge_sort_union=off';

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=off,
 index_merge_sort_union=off,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,

Optimizer Hints

1119

 subquery_materialization_cost_based=on,
 use_index_extensions=on,
 condition_fanout_filter=on

8.9.3 Optimizer Hints

One means of control over optimizer strategies is to set the optimizer_switch system variable
(see Section 8.9.2, “Controlling Switchable Optimizations”). Changes to this variable affect execution
of all subsequent queries; to affect one query differently from another, it's necessary to change
optimizer_switch before each one.

As of MySQL 5.7.7, another way to control the optimizer is by using optimizer hints, which can be
specified within individual statements. Because optimizer hints apply on a per-statement basis, they
provide finer control over statement execution plans than can be achieved using optimizer_switch.
For example, you can enable an optimization for one table in a statement and disable the optimization
for a different table. Hints within a statement take precedence over optimizer_switch flags.

Examples:

SELECT /*+ NO_RANGE_OPTIMIZATION(t3 PRIMARY, f2_idx) */ f1
 FROM t3 WHERE f1 > 30 AND f1 < 33;
SELECT /*+ BKA(t1) NO_BKA(t2) */ * FROM t1 INNER JOIN t2 WHERE ...;
SELECT /*+ NO_ICP(t1, t2) */ * FROM t1 INNER JOIN t2 WHERE ...;
SELECT /*+ SEMIJOIN(FIRSTMATCH, LOOSESCAN) */ * FROM t1 ...;
EXPLAIN SELECT /*+ NO_ICP(t1) */ * FROM t1 WHERE ...;

Optimizer hints, described here, differ from index hints, described in Section 8.9.4, “Index Hints”.
Optimizer and index hints may be used separately or together.

Optimizer hints apply at different scope levels:

• Global: The hint affects the entire statement

• Query block: The hint affects a particular query block within a statement

• Table-level: The hint affects a particular table within a query block

• Index-level: The hint affects a particular index within a table

The following table summarizes the available optimizer hints, the optimizer strategies they affect, and
the scope or scopes at which they apply. More details are given later.

Table 8.2 Optimizer Hints Available

Hint Name Description Applicable Scopes

BKA, NO_BKA Affects Batched Key Access join
processing

Query block, table

BNL, NO_BNL Affects Block Nested-Loop join
processing

Query block, table

MAX_EXECUTION_TIME Limits statement execution time Global

MRR, NO_MRR Affects Multi-Range Read optimization Table, index

NO_ICP Affects Index Condition Pushdown
optimization

Table, index

NO_RANGE_OPTIMIZATION Affects range optimization Table, index

QB_NAME Assigns name to query block Query block

SEMIJOIN, NO_SEMIJOIN Affects semi-join strategies Query block

SUBQUERY Affects materialization, IN-to-EXISTS
subquery stratgies

Query block

Optimizer Hints

1120

Disabling an optimization prevents the optimizer from using it. Enabling an optimization means
the optimizer is free to use the strategy if it applies to statement execution, not that the optimizer
necessarily will use it.

Optimizer Hint Overview

MySQL supports comments in SQL statements as described in Section 9.6, “Comment Syntax”.
Optimizer hints use a variant of /* ... */ C-style comment syntax that includes a + character
following the /* comment opening sequence. Examples:

/*+ BKA(t1) */
/*+ BNL(t1, t2) */
/*+ NO_RANGE_OPTIMIZATION(t4 PRIMARY) */
/*+ QB_NAME(qb2) */

Whitespace is permitted after the + character.

The parser recognizes optimizer hint comments after the initial keyword of SELECT, UPDATE, INSERT,
REPLACE, and DELETE statements. Hints are permitted in these contexts:

• At the beginning of DML statements:

SELECT /*+ ... */ ...
INSERT /*+ ... */ ...
REPLACE /*+ ... */ ...
UPDATE /*+ ... */ ...
DELETE /*+ ... */ ...

• At the beginning of query blocks:

(SELECT /*+ ... */ ...)
(SELECT ...) UNION (SELECT /*+ ... */ ...)
(SELECT /*+ ... */ ...) UNION (SELECT /*+ ... */ ...)
UPDATE ... WHERE x IN (SELECT /*+ ... */ ...)
INSERT ... SELECT /*+ ... */ ...

• In hintable statements prefaced by EXPLAIN. For example:

EXPLAIN SELECT /*+ ... */ ...
EXPLAIN UPDATE ... WHERE x IN (SELECT /*+ ... */ ...)

The implication is that you can use EXPLAIN to see how optimizer hints affect execution plans.

A hint comment may contain multiple hints, but a query block cannot contain multiple hint comments.
This is valid:

SELECT /*+ BNL(t1) BKA(t2) */ ...

But this is invalid:

SELECT /*+ BNL(t1) */ /* BKA(t2) */ ...

When a hint comment contains multiple hints, the possibility of duplicates and conflicts exists:

• Duplicate hints: For a hint such as /*+ MRR(idx1) MRR(idx1) */, MySQL uses the first hint and
issues a warning about the duplicate hint.

• Conflicting hints: For a hint such as /*+ MRR(idx1) NO_MRR(idx1) */, MySQL uses the first
hint and issues a warning about the second conflicting hint.

Optimizer Hints

1121

Query block names are identifiers and follow the usual rules about what names are valid and how to
quote them (see Section 9.2, “Schema Object Names”).

Hint names, query block names, and strategy names are not case sensitive. References to table
and index names follow the usual identifier case sensitivity rules (see Section 9.2.2, “Identifier Case
Sensitivity”), except that table name comparisons do not use the lower_case_table_names value
until MySQL 5.7.8.

Table-Level Optimizer Hints

Table-level hints affect use of the Block Nested-Loop (BNL) and Batched Key Access (BKA) join-
processing algorithms (see Section 8.2.1.14, “Block Nested-Loop and Batched Key Access Joins”).
These hint types apply to specific tables, or all tables in a query block.

Syntax of table-level hints:

hint_name([@query_block_name] [tbl_name [, tbl_name] ...])
hint_name([tbl_name@query_block_name [, tbl_name@query_block_name] ...])

The syntax refers to these terms:

• hint_name: These hint names are permitted:

• BNL, NO_BNL: Enable or disable BNL for the specified tables.

• BKA, NO_BKA: Enable or disable BKA for the specified tables.

• tbl_name: The name of a table used in the statement. The hint applies to all tables that it names. If
the hint names no tables, it applies to all tables of the query block in which it occurs.

If a table has an alias, hints must refer to the alias, not the table name hints.

Table names in hints cannot be qualified with schema names.

• query_block_name: The query block to which the hint applies. If the hint includes no
leading @query_block_name, the hint applies to the query block in which it occurs. For
tbl_name@query_block_name syntax, the hint applies to the named table in the named query
block. To assign a name to a query block, see Optimizer Hints for Naming Query Blocks.

Examples:

SELECT /*+ NO_BNL() BKA(t1) */ t1.* FROM t1 INNER JOIN t2 INNER JOIN t3;
SELECT /*+ NO_BKA(t1, t2) */ t1.* FROM t1 INNER JOIN t2 INNER JOIN t3;

A table-level hint applies to tables that receive records from previous tables, not sender tables.
Consider this statement:

SELECT /*+ BNL(t2) */ FROM t1, t2;

If the optimizer chooses to process t1 first, it applies a Block Nested-Loop join to t2 by buffering the
rows from t1 before starting to read from t2. If the optimizer instead chooses to process t2 first, the
hint has no effect because t2 is a sender table.

Index-Level Optimizer Hints

Index-level hints affect which index-processing strategies the optimizer uses for particular tables or
indexes. These hint types affect use of Index Condition Pushdown (ICP), Multi-Range Read (MRR),
and range optimizations (see Section 8.2.1, “Optimizing SELECT Statements”).

Syntax of index-level hints:

Optimizer Hints

1122

hint_name([@query_block_name] tbl_name [index_name [, index_name] ...])
hint_name(tbl_name@query_block_name [index_name [, index_name] ...])

The syntax refers to these terms:

• hint_name: These hint names are permitted:

• MRR, NO_MRR: Enable or disable MRR for the specified tables or indexes. MRR hints apply only to
InnoDB and MyISAM tables.

• NO_ICP: Disable ICP for the specified tables or indexes. By default, ICP is a candidate
optimization strategy, so there is no hint for enabling it.

• NO_RANGE_OPTIMIZATION: Disable index range access for the specified tables or indexes. This
hint also disables Index Merge and Loose Index Scan for the tables or indexes. By default, range
access is a candidate optimization strategy, so there is no hint for enabling it.

This hint may be useful when the number of ranges may be high and range optimization would
require many resources.

• tbl_name: The table to which the hint applies.`

• index_name: The name of an index in the named table. The hint applies to all indexes that it
names. If the hint names no indexes, it applies to all indexes in the table.

To refer to a primary key, use the name PRIMARY. To see the index names for a table, use SHOW
INDEX.

• query_block_name: The query block to which the hint applies. If the hint includes no
leading @query_block_name, the hint applies to the query block in which it occurs. For
tbl_name@query_block_name syntax, the hint applies to the named table in the named query
block. To assign a name to a query block, see Optimizer Hints for Naming Query Blocks.

Examples:

SELECT /*+ MRR(t1) */ * FROM t1 WHERE f2 <= 3 AND 3 <= f3;
SELECT /*+ NO_RANGE_OPTIMIZATION(t3 PRIMARY, f2_idx) */ f1
 FROM t3 WHERE f1 > 30 AND f1 < 33;
INSERT INTO t3(f1, f2, f3)
 (SELECT /*+ NO_ICP(t2) */ t2.f1, t2.f2, t2.f3 FROM t1,t2
 WHERE t1.f1=t2.f1 AND t2.f2 BETWEEN t1.f1
 AND t1.f2 AND t2.f2 + 1 >= t1.f1 + 1);

Subquery Optimizer Hints

Subquery hints (added in MySQL 5.7.8) affect whether to use semi-join transformations and
which semi-join strategies to permit, and, when semi-joins are not used, whether to use subquery
materialization or IN-to-EXISTS transformations. For more information about these optimizations, see
Section 8.2.1.18, “Subquery Optimization”.

Syntax of hints that affect semi-join strategies:

hint_name([@query_block_name] [strategy [, strategy] ...])

The syntax refers to these terms:

• hint_name: These hint names are permitted:

• SEMIJOIN, NO_SEMIJOIN: Enable or disable the named semi-join strategies.

• strategy: A semi-join strategy to be enabled or disabled. These strategy names are permitted:
DUPSWEEDOUT, FIRSTMATCH, LOOSESCAN, MATERIALIZATION.

Optimizer Hints

1123

For SEMIJOIN() hints, if no strategies are named, semi-join is used if possible based on the
strategies enabled according to the optimizer_switch system variable. If strategies are named
but inapplicable for the statement, DUPSWEEDOUT is used.

For NO_SEMIJOIN() hints, if no strategies are named, semi-join is not used. If strategies are named
that rule out all applicable strategies for the statement, DUPSWEEDOUT is used.

If one subquery is nested within another and both are merged into a semi-join of an outer query,
any specification of semi-join strategies for the innermost query are ignored. SEMIJOIN() and
NO_SEMIJOIN() hints can still be used to enable or disable semi-join transformations for such nested
subqueries.

If DUPSWEEDOUT is disabled, on occasion the optimizer may generate a query plan that is far from
optimal. This occurs due to heuristic pruning during greedy search, which can be avoided by setting
optimizer_prune_level=0.

Examples:

SELECT /*+ NO_SEMIJOIN(@subq1 FIRSTMATCH, LOOSESCAN) */ * FROM t2
 WHERE t2.a IN (SELECT /*+ QB_NAME(subq1) */ a FROM t3);
SELECT /*+ SEMIJOIN(@subq1 MATERIALIZATION, DUPSWEEDOUT) */ * FROM t2
 WHERE t2.a IN (SELECT /*+ QB_NAME(subq1) */ a FROM t3);

Syntax of hints that affect whether to use subquery materialization or IN-to-EXISTS transformations:

SUBQUERY([@query_block_name] strategy)

The hint name is always SUBQUERY.

For SUBQUERY() hints, these strategy values are permitted: INTOEXISTS, MATERIALIZATION.

Examples:

SELECT id, a IN (SELECT /*+ SUBQUERY(MATERIALIZATION) */ a FROM t1) FROM t2;
SELECT * FROM t2 WHERE t2.a IN (SELECT /*+ SUBQUERY(INTOEXISTS) */ a FROM t1);

For semi-join and SUBQUERY() hints, a leading @query_block_name specifies the query block to
which the hint applies. If the hint includes no leading @query_block_name, the hint applies to the
query block in which it occurs. To assign a name to a query block, see Optimizer Hints for Naming
Query Blocks.

If a hint comment contains multiple subquery hints, the first is used. If there are other following hints of
that type, they produce a warning. Following hints of other types are silently ignored.

Statement Execution Time Optimizer Hints

The MAX_EXECUTION_TIME() hint is permitted only for SELECT statements. It places a limit N (a
timeout value in milliseconds) on how long a statement is permitted to execute before the server
terminates it:

MAX_EXECUTION_TIME(N)

Example with a timeout of 1 second (1000 milliseconds):

SELECT /*+ MAX_EXECUTION_TIME(1000) */ * FROM t1 INNER JOIN t2 WHERE ...

The MAX_EXECUTION_TIME(N) hint MAX_EXECUTION_TIME(N) sets a statement execution
timeout of N milliseconds. If this option is absent or N is 0, the statement timeout established by the
max_execution_time system variable applies. (Prior to MySQL 5.7.8, this variable was named
max_statement_time.)

Index Hints

1124

The MAX_EXECUTION_TIME() hint is applicable as follows:

• For statements with multiple SELECT keywords, such as unions or statements with subqueries,
MAX_EXECUTION_TIME() applies to the entire statement and must appear after the first SELECT.

• It applies to read-only SELECT statements. Statements that are not read only are those that invoke a
stored function that modifies data as a side effect.

• It does not apply to SELECT statements in stored programs and is ignored.

Optimizer Hints for Naming Query Blocks

Table-level, index-level, and subquery optimizer hints permit specific query blocks to be named as part
of their argument syntax. To create these names, use the QB_NAME() hint, which assigns a name to
the query block in which it occurs:

QB_NAME(name)

QB_NAME() hints can be used to make explicit in a clear way which query blocks other hints apply to.
They also permit all non-query block name hints to be specified within a single hint comment for easier
understanding of complex statements. Consider the following statement:

SELECT ...
 FROM (SELECT ...
 FROM (SELECT ... FROM ...)) ...

QB_NAME() hints assign names to query blocks in the statement:

SELECT /*+ QB_NAME(qb1) */ ...
 FROM (SELECT /*+ QB_NAME(qb2) */ ...
 FROM (SELECT /*+ QB_NAME(qb3) */ ... FROM ...)) ...

Then other hints can use those names to refer to the appropriate query blocks:

SELECT /*+ QB_NAME(qb1) MRR(@qb1 t1) BKA(@qb2) NO_MRR(@qb3t1 idx1, id2) */ ...
 FROM (SELECT /*+ QB_NAME(qb2) */ ...
 FROM (SELECT /*+ QB_NAME(qb3) */ ... FROM ...)) ...

The resulting effect is as follows:

• MRR(@qb1 t1) applies to table t1 in query block qb1.

• BKA(@qb2) applies to query block qb2.

• NO_MRR(@qb3 t1 idx1, id2) applies to indexes idx1 and idx2 in table t1 in query block qb3.

Query block names are identifiers and follow the usual rules about what names are valid and how to
quote them (see Section 9.2, “Schema Object Names”). For example, a query block name that contains
spaces must be quoted, which can be done using backticks:

SELECT /*+ BKA(@`my hint name`) */ ...
 FROM (SELECT /*+ QB_NAME(`my hint name`) */ ...) ...

If the ANSI_QUOTES SQL mode is enabled, it is also possible to quote query block names within
double quotation marks:

SELECT /*+ BKA(@"my hint name") */ ...
 FROM (SELECT /*+ QB_NAME("my hint name") */ ...) ...

8.9.4 Index Hints

Index Hints

1125

Index hints give the optimizer information about how to choose indexes during query processing. Index
hints, described here, differ from optimizer hints, described in Section 8.9.3, “Optimizer Hints”. Index
and optimizer hints may be used separately or together.

Index hints are specified following a table name. (For the general syntax for specifying tables in a
SELECT statement, see Section 13.2.9.2, “JOIN Syntax”.) The syntax for referring to an individual table,
including index hints, looks like this:

tbl_name [[AS] alias] [index_hint_list]

index_hint_list:
 index_hint [, index_hint] ...

index_hint:
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | IGNORE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
 | FORCE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
 index_name [, index_name] ...

The USE INDEX (index_list) hint tells MySQL to use only one of the named indexes to find rows
in the table. The alternative syntax IGNORE INDEX (index_list) tells MySQL to not use some
particular index or indexes. These hints are useful if EXPLAIN shows that MySQL is using the wrong
index from the list of possible indexes.

The FORCE INDEX hint acts like USE INDEX (index_list), with the addition that a table scan is
assumed to be very expensive. In other words, a table scan is used only if there is no way to use one
of the named indexes to find rows in the table.

Each hint requires the names of indexes, not the names of columns. To refer to a primary key, use the
name PRIMARY. To see the index names for a table, use SHOW INDEX.

An index_name value need not be a full index name. It can be an unambiguous prefix of an index
name. If a prefix is ambiguous, an error occurs.

Examples:

SELECT * FROM table1 USE INDEX (col1_index,col2_index)
 WHERE col1=1 AND col2=2 AND col3=3;

SELECT * FROM table1 IGNORE INDEX (col3_index)
 WHERE col1=1 AND col2=2 AND col3=3;

The syntax for index hints has the following characteristics:

• It is syntactically valid to omit index_list for USE INDEX, which means “use no indexes.” Omitting
index_list for FORCE INDEX or IGNORE INDEX is a syntax error.

• You can specify the scope of an index hint by adding a FOR clause to the hint. This provides more
fine-grained control over the optimizer's selection of an execution plan for various phases of query
processing. To affect only the indexes used when MySQL decides how to find rows in the table and
how to process joins, use FOR JOIN. To influence index usage for sorting or grouping rows, use FOR
ORDER BY or FOR GROUP BY.

• You can specify multiple index hints:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX FOR ORDER BY (i2) ORDER BY a;

It is not an error to name the same index in several hints (even within the same hint):

Index Hints

1126

SELECT * FROM t1 USE INDEX (i1) USE INDEX (i1,i1);

However, it is an error to mix USE INDEX and FORCE INDEX for the same table:

SELECT * FROM t1 USE INDEX FOR JOIN (i1) FORCE INDEX FOR JOIN (i2);

If an index hint includes no FOR clause, the scope of the hint is to apply to all parts of the statement.
For example, this hint:

IGNORE INDEX (i1)

is equivalent to this combination of hints:

IGNORE INDEX FOR JOIN (i1)
IGNORE INDEX FOR ORDER BY (i1)
IGNORE INDEX FOR GROUP BY (i1)

In MySQL 5.0, hint scope with no FOR clause was to apply only to row retrieval. To cause the server
to use this older behavior when no FOR clause is present, enable the old system variable at server
startup. Take care about enabling this variable in a replication setup. With statement-based binary
logging, having different modes for the master and slaves might lead to replication errors.

When index hints are processed, they are collected in a single list by type (USE, FORCE, IGNORE) and
by scope (FOR JOIN, FOR ORDER BY, FOR GROUP BY). For example:

SELECT * FROM t1
 USE INDEX () IGNORE INDEX (i2) USE INDEX (i1) USE INDEX (i2);

is equivalent to:

SELECT * FROM t1
 USE INDEX (i1,i2) IGNORE INDEX (i2);

The index hints then are applied for each scope in the following order:

1. {USE|FORCE} INDEX is applied if present. (If not, the optimizer-determined set of indexes is
used.)

2. IGNORE INDEX is applied over the result of the previous step. For example, the following two
queries are equivalent:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX (i2) USE INDEX (i2);

SELECT * FROM t1 USE INDEX (i1);

For FULLTEXT searches, index hints work as follows:

• For natural language mode searches, index hints are silently ignored. For example, IGNORE
INDEX(i1) is ignored with no warning and the index is still used.

• For boolean mode searches, index hints with FOR ORDER BY or FOR GROUP BY are silently
ignored. Index hints with FOR JOIN or no FOR modifier are honored. In contrast to how hints apply
for non-FULLTEXT searches, the hint is used for all phases of query execution (finding rows and
retrieval, grouping, and ordering). This is true even if the hint is given for a non-FULLTEXT index.

For example, the following two queries are equivalent:

SELECT * FROM t

The Optimizer Cost Model

1127

 USE INDEX (index1)
 IGNORE INDEX (index1) FOR ORDER BY
 IGNORE INDEX (index1) FOR GROUP BY
 WHERE ... IN BOOLEAN MODE ... ;

SELECT * FROM t
 USE INDEX (index1)
 WHERE ... IN BOOLEAN MODE ... ;

8.9.5 The Optimizer Cost Model

To generate execution plans, the optimizer uses a cost model that is based on estimates of the cost
of various operations that occur during query execution. The optimizer has a set of compiled-in default
“cost constants” available to it to make decisions regarding execution plans.

As of MySQL 5.7.5, the optimizer has in addition a database of cost estimates to use during execution
plan construction. These estimates are stored in the server_cost and engine_cost tables in the
mysql system database and are configurable at any time. The intent of these tables is that it should be
possible to easily adjust the cost estimates that the optimizer uses when it attempts to arrive at query
execution plans.

Cost Model General Operation

The configurable optimizer cost model works like this:

• The server reads the cost model tables at startup and uses the in-memory values at runtime. Any
non-NULL cost estimate specified in the tables takes precedence over the corresponding compiled-in
default cost constant. Any NULL estimate indicates to the optimizer to use the compiled-in default.

• At runtime, the server may reread the cost tables. This occurs when a storage engine is dynamically
loaded or when a FLUSH OPTIMIZER_COSTS statement is executed.

• Cost tables enable server administrators to easily adjust cost estimates by changing entries in the
tables. It is also easy to revert to a default by setting an entry's cost to NULL. The optimizer uses the
in-memory cost values, so changes to the tables should be followed by FLUSH OPTIMIZER_COSTS
to take effect.

• The in-memory cost estimates that are current when a client session begins apply throughout that
session until it ends. In particular, if the server rereads the cost tables, any changed estimates apply
only to subsequently started sessions. Existing sessions are unaffected.

• Cost tables are specific to a given server instance. The server does not replicate cost table changes
to any replication slaves.

The Cost Model Database

The optimizer cost model database consists of two tables in the mysql system database that contain
information about cost estimates for operations that occur during query execution:

• server_cost: Optimizer cost estimates for general server operations

• engine_cost: Optimizer cost estimates for operations specific to particular storage engines

The server_cost table contains these columns:

• cost_name

The name of the cost estimate used in the cost model. The name is not case sensitive. If the server
does not recognize the cost name when it reads this table, it writes a warning to the error log.

• cost_value

The cost estimate value. If the value is non-NULL, the server uses it as the cost. Otherwise, it uses
the default estimate (the compiled-in value). DBAs can change a cost estimate by updating this

The Optimizer Cost Model

1128

column. If the server finds that the cost value is invalid (nonpositive) when it reads this table, it writes
a warning to the error log.

To override a default cost estimate (for an entry that specifies NULL), set the cost to a non-NULL
value. To revert to the default, set the value to NULL. Then execute FLUSH OPTIMIZER_COSTS to
tell the server to reread the cost tables.

• last_update

The time of the last row update.

• comment

A descriptive comment associated with the cost estimate. DBAs can use this column to provide
information about why a cost estimate row stores a particular value.

The primary key for the server_cost table is the cost_name column, so it is not possible to create
multiple entries for any cost estimate.

The server recognizes these cost_name values for the server_cost table:

• disk_temptable_create_cost, disk_temptable_row_cost

The cost estimates for internally created temporary tables stored in a disk-based storage engine
(either InnoDB or MyISAM). Increasing these values increases the cost estimate of using internal
temporary tables and makes the optimizer prefer query plans with less use of them. For information
about such tables, see Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• key_compare_cost

The cost of comparing record keys. Increasing this value causes a query plan that compares many
keys to become more expensive. For example, a query plan that performs a filesort becomes
relatively more expensive compared to a query plan that avoids sorting by using an index.

• memory_temptable_create_cost, memory_temptable_row_cost

The cost estimates for internally created temporary tables stored in the MEMORY storage engine.
Increasing these values increases the cost estimate of using internal temporary tables and makes
the optimizer prefer query plans with less use of them. For information about such tables, see
Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• row_evaluate_cost

The cost of evaluating record conditions. Increasing this value causes a query plan that examines
many rows to become more expensive compared to a query plan that examines fewer rows. For
example, a table scan becomes relatively more expensive compared to a range scan that reads
fewer rows.

The engine_cost table contains these columns:

• engine_name

The name of the storage engine to which this cost estimate applies. The name is not case sensitive.
If the value is default, it applies to all storage engines that have no named entry of their own. If the
server does not recognize the engine name when it reads this table, it writes a warning to the error
log.

• device_type

The device type to which this cost estimate applies. The column is intended for specifying different
cost estimates for different storage device types, such as hard disk drives versus solid state drives.
Currently, this information is not used and 0 is the only permitted value.

Buffering and Caching

1129

• cost_name

Same as in the server_cost table.

• cost_value

Same as in the server_cost table.

• last_update

Same as in the server_cost table.

• comment

Same as in the server_cost table.

The primary key for the engine_cost table is a tuple comprising the (cost_name, engine_name,
device_type) columns, so it is not possible to create multiple entries for any combination of values in
those columns.

The server recognizes these cost_name values for the engine_cost table:

• io_block_read_cost

The cost of reading an index or data block from disk. Increasing this value causes a query plan that
reads many disk blocks to become more expensive compared to a query plan that reads fewer disk
blocks. For example, a table scan becomes relatively more expensive compared to a range scan that
reads fewer blocks.

• memory_block_read_cost

Similar to io_block_read_cost, but represents the cost of reading an index or data block from an
in-memory database buffer. This cost parameter was added in MySQL 5.7.8.

The io_block_read_cost and memory_block_read_cost values enable cost models for data
access methods to take into account the costs of reading information from different sources; that is,
the cost of reading information from disk versus reading information already in a memory buffer. For
example, if io_block_read_cost is larger than memory_block_read_cost, then, all other things
being equal, the optimizer will prefer query plans that read information already held in memory to plans
that must read from disk.

This example shows how to change the default value for io_block_read_cost:

UPDATE mysql.engine_cost
 SET cost_value = 2.0
 WHERE cost_name = 'io_block_read_cost';
FLUSH OPTIMIZER_COSTS;

This example shows how to change the value of the cost constants for the InnoDB storage engine:

INSERT INTO mysql.engine_cost
 VALUES ('InnoDB', 0, 'io_block_read_cost', 3.0,
 CURRENT_TIMESTAMP, 'Using a slower disk for InnoDB');
FLUSH OPTIMIZER_COSTS;

8.10 Buffering and Caching

MySQL uses several strategies that cache information in memory buffers to increase performance.

8.10.1 The InnoDB Buffer Pool

The InnoDB Buffer Pool

1130

InnoDB maintains a storage area called the buffer pool for caching data and indexes in memory.
Knowing how the InnoDB buffer pool works, and taking advantage of it to keep frequently accessed
data in memory, is an important aspect of MySQL tuning.

Note

For additional information about the InnoDB buffer pool, see Section 14.3.3,
“InnoDB Buffer Pool Configuration”.

Guidelines

Ideally, you set the size of the buffer pool to as large a value as practical, leaving enough memory for
other processes on the server to run without excessive paging. The larger the buffer pool, the more
InnoDB acts like an in-memory database, reading data from disk once and then accessing the data
from memory during subsequent reads. The buffer pool even caches data changed by insert and
update operations, so that disk writes can be grouped together for better performance.

Depending on the typical workload on your system, you might adjust the proportions of the parts within
the buffer pool. You can tune the way the buffer pool chooses which blocks to cache once it fills up,
to keep frequently accessed data in memory despite sudden spikes of activity for operations such as
backups or reporting.

With 64-bit systems with large memory sizes, you can split the buffer pool into multiple parts, to
minimize contention for the memory structures among concurrent operations. For details, see
Section 14.3.3.4, “Using Multiple Buffer Pool Instances”.

Internal Details

InnoDB manages the pool as a list, using a variation of the least recently used (LRU) algorithm. When
room is needed to add a new block to the pool, InnoDB evicts the least recently used block and adds
the new block to the middle of the list. This “midpoint insertion strategy” treats the list as two sublists:

• At the head, a sublist of “new” (or “young”) blocks that were accessed recently.

• At the tail, a sublist of “old” blocks that were accessed less recently.

This algorithm keeps blocks that are heavily used by queries in the new sublist. The old sublist contains
less-used blocks; these blocks are candidates for eviction.

The LRU algorithm operates as follows by default:

• 3/8 of the buffer pool is devoted to the old sublist.

• The midpoint of the list is the boundary where the tail of the new sublist meets the head of the old
sublist.

• When InnoDB reads a block into the buffer pool, it initially inserts it at the midpoint (the head of the
old sublist). A block can be read in because it is required for a user-specified operation such as an
SQL query, or as part of a read-ahead operation performed automatically by InnoDB.

• Accessing a block in the old sublist makes it “young”, moving it to the head of the buffer pool (the
head of the new sublist). If the block was read in because it was required, the first access occurs
immediately and the block is made young. If the block was read in due to read-ahead, the first
access does not occur immediately (and might not occur at all before the block is evicted).

• As the database operates, blocks in the buffer pool that are not accessed “age” by moving toward
the tail of the list. Blocks in both the new and old sublists age as other blocks are made new. Blocks
in the old sublist also age as blocks are inserted at the midpoint. Eventually, a block that remains
unused for long enough reaches the tail of the old sublist and is evicted.

By default, blocks read by queries immediately move into the new sublist, meaning they will stay in
the buffer pool for a long time. A table scan (such as performed for a mysqldump operation, or a

The InnoDB Buffer Pool

1131

SELECT statement with no WHERE clause) can bring a large amount of data into the buffer pool and
evict an equivalent amount of older data, even if the new data is never used again. Similarly, blocks
that are loaded by the read-ahead background thread and then accessed only once move to the head
of the new list. These situations can push frequently used blocks to the old sublist, where they become
subject to eviction.

Configuration Options

Several InnoDB system variables control the size of the buffer pool and let you tune the LRU
algorithm:

• innodb_buffer_pool_size

Specifies the size of the buffer pool. If your buffer pool is small and you have sufficient memory,
making the pool larger can improve performance by reducing the amount of disk I/O needed as
queries access InnoDB tables. As of MySQL 5.7.5, the innodb_buffer_pool_size option
is dynamic, which allows you to configure buffer pool size without restarting the server. See
Section 14.3.3.7, “Resizing the InnoDB Buffer Pool Online” for more information.

• innodb_buffer_pool_instances

Divides the buffer pool into a user-specified number of separate regions, each with its own
LRU list and related data structures, to reduce contention during concurrent memory read and
write operations. This option takes effect only when you set the innodb_buffer_pool_size
to a size of 1 gigabyte or more. The total size you specify is divided among all the buffer
pools. For best efficiency, specify a combination of innodb_buffer_pool_instances and
innodb_buffer_pool_size so that each buffer pool instance is at least 1 gigabyte.

• innodb_old_blocks_pct

Specifies the approximate percentage of the buffer pool that InnoDB uses for the old block sublist.
The range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool).

• innodb_old_blocks_time

Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its
first access before it can be moved to the new sublist. The default value is 0: A block inserted into
the old sublist moves to the new sublist when Innodb has evicted 1/4 of the inserted block's pages
from the buffer pool, no matter how soon after insertion the access occurs. If the value is greater
than 0, blocks remain in the old sublist until an access occurs at least that many ms after the first
access. For example, a value of 1000 causes blocks to stay in the old sublist for 1 second after the
first access before they become eligible to move to the new sublist.

Setting innodb_old_blocks_time greater than 0 prevents one-time table scans from flooding the
new sublist with blocks used only for the scan. Rows in a block read in for a scan are accessed many
times in rapid succession, but the block is unused after that. If innodb_old_blocks_time is set to
a value greater than time to process the block, the block remains in the “old” sublist and ages to the
tail of the list to be evicted quickly. This way, blocks used only for a one-time scan do not act to the
detriment of heavily used blocks in the new sublist.

innodb_old_blocks_time can be set at runtime, so you can change it temporarily while performing
operations such as table scans and dumps:

SET GLOBAL innodb_old_blocks_time = 1000;
... perform queries that scan tables ...
SET GLOBAL innodb_old_blocks_time = 0;

This strategy does not apply if your intent is to “warm up” the buffer pool by filling it with a table's
content. For example, benchmark tests often perform a table or index scan at server startup, because
that data would normally be in the buffer pool after a period of normal use. In this case, leave
innodb_old_blocks_time set to 0, at least until the warmup phase is complete.

The MyISAM Key Cache

1132

Monitoring the Buffer Pool Using the InnoDB Standard Monitor

The output from the InnoDB Standard Monitor contains several fields in the BUFFER POOL AND
MEMORY section that pertain to operation of the buffer pool LRU algorithm:

• Old database pages: The number of pages in the old sublist of the buffer pool.

• Pages made young, not young: The number of old pages that were moved to the head of the
buffer pool (the new sublist), and the number of pages that have remained in the old sublist without
being made new.

• youngs/s non-youngs/s: The number of accesses to old pages that have resulted in making
them young or not. This metric differs from that of the previous item in two ways. First, it relates only
to old pages. Second, it is based on number of accesses to pages and not the number of pages.
(There can be multiple accesses to a given page, all of which are counted.)

• young-making rate: Hits that cause blocks to move to the head of the buffer pool.

• not: Hits that do not cause blocks to move to the head of the buffer pool (due to the delay not being
met).

The young-making rate and not rate will not normally add up to the overall buffer pool hit rate. Hits
for blocks in the old sublist cause them to move to the new sublist, but hits to blocks in the new sublist
cause them to move to the head of the list only if they are a certain distance from the head.

The preceding information from the Monitor can help you make LRU tuning decisions:

• If you see very low youngs/s values when you do not have large scans going on, that indicates that
you might need to either reduce the delay time, or increase the percentage of the buffer pool used
for the old sublist. Increasing the percentage makes the old sublist larger, so blocks in that sublist
take longer to move to the tail and be evicted. This increases the likelihood that they will be accessed
again and be made young.

• If you do not see a lot of non-youngs/s when you are doing large table scans (and lots of youngs/
s), to tune your delay value to be larger.

Note

Per second averages provided in InnoDB Monitor output are based on the
elapsed time between the current time and the last time InnoDB Monitor output
was printed.

For more information about InnoDB Monitors, see Section 14.14, “InnoDB Monitors”.

The INNODB_BUFFER_POOL_STATS table and InnoDB buffer pool server status variables provide
much of the same buffer pool information that is provided by SHOW ENGINE INNODB STATUS output.

8.10.2 The MyISAM Key Cache

To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database
management systems. It employs a cache mechanism to keep the most frequently accessed table
blocks in memory:

• For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure
contains a number of block buffers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system file
system cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features
that improve key cache performance and that enable you to better control cache operation:

• Multiple sessions can access the cache concurrently.

The MyISAM Key Cache

1133

• You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set
equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is
too small to allocate the minimal number of block buffers (8).

When the key cache is not operational, index files are accessed using only the native file system
buffering provided by the operating system. (In other words, table index blocks are accessed using the
same strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index
block is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree
data structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are nonleaf
nodes.)

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or
less than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available
in some block buffer of the key cache. If it is, the server accesses data in the key cache rather than
on disk. That is, it reads from the cache or writes into it rather than reading from or writing to disk.
Otherwise, the server chooses a cache block buffer containing a different table index block (or blocks)
and replaces the data there by a copy of required table index block. As soon as the new index block is
in the cache, the index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In
this case, prior to being replaced, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for
replacement, it selects the least recently used index block. To make this choice easier, the key cache
module maintains all used blocks in a special list (LRU chain) ordered by time of use. When a block
is accessed, it is the most recently used and is placed at the end of the list. When blocks need to be
replaced, blocks at the beginning of the list are the least recently used and become the first candidates
for eviction.

The InnoDB storage engine also uses an LRU algorithm, to manage its buffer pool. See
Section 8.10.1, “The InnoDB Buffer Pool”.

8.10.2.1 Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

• A buffer that is not being updated can be accessed by multiple sessions.

• A buffer that is being updated causes sessions that need to use it to wait until the update is
complete.

• Multiple sessions can initiate requests that result in cache block replacements, as long as they do not
interfere with each other (that is, as long as they need different index blocks, and thus cause different
cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly.

8.10.2.2 Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among
sessions entirely. They still compete for control structures that manage access to the key cache
buffers. To reduce key cache access contention further, MySQL also provides multiple key caches.
This feature enables you to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing
queries for a given MyISAM table. By default, all MyISAM table indexes are cached in the default
key cache. To assign table indexes to a specific key cache, use the CACHE INDEX statement (see

The MyISAM Key Cache

1134

Section 13.7.6.2, “CACHE INDEX Syntax”). For example, the following statement assigns indexes from
the tables t1, t2, and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET
GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

You cannot destroy the default key cache. Any attempt to do this is ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name | Value |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+

Key cache variables are structured system variables that have a name and components. For
keycache1.key_buffer_size, keycache1 is the cache variable name and key_buffer_size
is the cache component. See Section 5.1.5.1, “Structured System Variables”, for a description of the
syntax used for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, you can use a strategy that involves three key caches:

• A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that
are heavily used for searches but that are not updated.

• A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for
medium-sized, intensively modified tables, such as temporary tables.

• A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache,
to be used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not
block access to the others. Statements that access tables assigned to one cache do not compete with
statements that access tables assigned to another cache. Performance gains occur for other reasons
as well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Consequently,
whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for
replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a
high probability that the index blocks corresponding to nonleaf nodes of the index B-tree remain in
the cache.

The MyISAM Key Cache

1135

• An update operation most frequently executed for temporary tables is performed much faster when
the updated node is in the cache and need not be read in from disk first. If the size of the indexes of
the temporary tables are comparable with the size of cold key cache, the probability is very high that
the updated node is in the cache.

The CACHE INDEX statement sets up an association between a table and a key cache, but the
association is lost each time the server restarts. If you want the association to take effect each time the
server starts, one way to accomplish this is to use an option file: Include variable settings that configure
your key caches, and an init-file option that names a file containing CACHE INDEX statements to
be executed. For example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

The statements in mysqld_init.sql are executed each time the server starts. The file should
contain one SQL statement per line. The following example assigns several tables each to hot_cache
and cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache

8.10.2.3 Midpoint Insertion Strategy

By default, the key cache management system uses a simple LRU strategy for choosing key cache
blocks to be evicted, but it also supports a more sophisticated method called the midpoint insertion
strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot
sublist and a warm sublist. The division point between two parts is not fixed, but the key cache
management system takes care that the warm part is not “too short,” always containing at least
key_cache_division_limit percent of the key cache blocks. key_cache_division_limit is a
component of structured key cache variables, so its value is a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sublist.
After a certain number of hits (accesses of the block), it is promoted to the hot sublist. At present, the
number of hits required to promote a block (3) is the same for all index blocks.

A block promoted into the hot sublist is placed at the end of the list. The block then circulates within
this sublist. If the block stays at the beginning of the sublist for a long enough time, it is demoted to the
warm sublist. This time is determined by the value of the key_cache_age_threshold component of
the key cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of
the hot sublist not accessed within the last N * key_cache_age_threshold / 100 hits is to be
moved to the beginning of the warm sublist. It then becomes the first candidate for eviction, because
blocks for replacement always are taken from the beginning of the warm sublist.

The midpoint insertion strategy enables you to keep more-valued blocks always in the cache. If you
prefer to use the plain LRU strategy, leave the key_cache_division_limit value set to its default
of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that
requires an index scan effectively pushes out of the cache all the index blocks corresponding to
valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the
key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are
preserved in the hot sublist during an index scan operation as well.

The MyISAM Key Cache

1136

8.10.2.4 Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks
corresponding to its nonleaf nodes, it makes sense to preload the key cache with index blocks before
starting to use it. Preloading enables you to put the table index blocks into a key cache buffer in the
most efficient way: by reading the index blocks from disk sequentially.

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the
blocks will stay in the cache, because there are enough buffers for all of them, they are fetched from
disk in random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the
following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.
Thus, the statement shown preloads all index blocks from t1, but only blocks for the nonleaf nodes
from t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places
index blocks into that cache. Otherwise, the index is loaded into the default key cache.

8.10.2.5 Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the
key_cache_block_size variable. This permits tuning of the performance of I/O operations for index
files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size
of the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/
O buffer does not always ensure the best overall performance. When reading the big leaf nodes, the
server pulls in a lot of unnecessary data, effectively preventing reading other leaf nodes.

To control the size of blocks in the .MYI index file of MyISAM tables, use the --myisam-block-size
option at server startup.

8.10.2.6 Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component a
value that differs from the component's current value, the server destroys the cache's old structure and
creates a new one based on the new values. If the cache contains any dirty blocks, the server saves
them to disk before destroying and re-creating the cache. Restructuring does not occur if you change
other key cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After
that, the cache contents become unavailable. However, restructuring does not block queries that need
to use indexes assigned to the cache. Instead, the server directly accesses the table indexes using
native file system caching. File system caching is not as efficient as using a key cache, so although
queries execute, a slowdown can be anticipated. After the cache has been restructured, it becomes
available again for caching indexes assigned to it, and the use of file system caching for the indexes
ceases.

The MySQL Query Cache

1137

8.10.3 The MySQL Query Cache

The query cache stores the text of a SELECT statement together with the corresponding result that was
sent to the client. If an identical statement is received later, the server retrieves the results from the
query cache rather than parsing and executing the statement again. The query cache is shared among
sessions, so a result set generated by one client can be sent in response to the same query issued by
another client.

The query cache can be useful in an environment where you have tables that do not change very
often and for which the server receives many identical queries. This is a typical situation for many Web
servers that generate many dynamic pages based on database content.

The query cache does not return stale data. When tables are modified, any relevant entries in the
query cache are flushed.

Note

The query cache does not work in an environment where you have multiple
mysqld servers updating the same MyISAM tables.

The query cache is used for prepared statements under the conditions described in Section 8.10.3.1,
“How the Query Cache Operates”.

Note

The query cache is not supported for partitioned tables, and is automatically
disabled for queries involving partitioned tables. The query cache cannot be
enabled for such queries.

Some performance data for the query cache follows. These results were generated by running the
MySQL benchmark suite on a Linux Alpha 2×500MHz system with 2GB RAM and a 64MB query
cache.

• If all the queries you are performing are simple (such as selecting a row from a table with one row),
but still differ so that the queries cannot be cached, the overhead for having the query cache active
is 13%. This could be regarded as the worst case scenario. In real life, queries tend to be much more
complicated, so the overhead normally is significantly lower.

• Searches for a single row in a single-row table are 238% faster with the query cache than without it.
This can be regarded as close to the minimum speedup to be expected for a query that is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By
disabling the query cache code, there is no noticeable overhead.

The query cache offers the potential for substantial performance improvement, but do not assume that
it will do so under all circumstances. With some query cache configurations or server workloads, you
might actually see a performance decrease:

• Be cautious about sizing the query cache excessively large, which increases the overhead required
to maintain the cache, possibly beyond the benefit of enabling it. Sizes in tens of megabytes are
usually beneficial. Sizes in the hundreds of megabytes might not be.

• Server workload has a significant effect on query cache efficiency. A query mix consisting almost
entirely of a fixed set of SELECT statements is much more likely to benefit from enabling the cache
than a mix in which frequent INSERT statements cause continual invalidation of results in the cache.
In some cases, a workaround is to use the SQL_NO_CACHE option to prevent results from even
entering the cache for SELECT statements that use frequently modified tables. (See Section 8.10.3.2,
“Query Cache SELECT Options”.)

To verify that enabling the query cache is beneficial, test the operation of your MySQL server with the
cache enabled and disabled. Then retest periodically because query cache efficiency may change as
server workload changes.

The MySQL Query Cache

1138

8.10.3.1 How the Query Cache Operates

This section describes how the query cache works when it is operational. Section 8.10.3.3, “Query
Cache Configuration”, describes how to control whether it is operational.

Incoming queries are compared to those in the query cache before parsing, so the following two
queries are regarded as different by the query cache:

SELECT * FROM tbl_name
Select * from tbl_name

Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings
that are identical may be treated as different for other reasons. Queries that use different databases,
different protocol versions, or different default character sets are considered different queries and are
cached separately.

The cache is not used for queries of the following types:

• Queries that are a subquery of an outer query

• Queries executed within the body of a stored function, trigger, or event

Before a query result is fetched from the query cache, MySQL checks whether the user has SELECT
privilege for all databases and tables involved. If this is not the case, the cached result is not used.

If a query result is returned from query cache, the server increments the Qcache_hits status variable,
not Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

If a table changes, all cached queries that use the table become invalid and are removed from the
cache. This includes queries that use MERGE tables that map to the changed table. A table can be
changed by many types of statements, such as INSERT, UPDATE, DELETE, TRUNCATE TABLE, ALTER
TABLE, DROP TABLE, or DROP DATABASE.

The query cache also works within transactions when using InnoDB tables.

The result from a SELECT query on a view is cached.

The query cache works for SELECT SQL_CALC_FOUND_ROWS ... queries and stores a value that
is returned by a following SELECT FOUND_ROWS() query. FOUND_ROWS() returns the correct value
even if the preceding query was fetched from the cache because the number of found rows is also
stored in the cache. The SELECT FOUND_ROWS() query itself cannot be cached.

Prepared statements that are issued using the binary protocol using mysql_stmt_prepare()
and mysql_stmt_execute() (see Section 23.8.8, “C API Prepared Statements”), are subject to
limitations on caching. Comparison with statements in the query cache is based on the text of the
statement after expansion of ? parameter markers. The statement is compared only with other cached
statements that were executed using the binary protocol. That is, for query cache purposes, prepared
statements issued using the binary protocol are distinct from prepared statements issued using the text
protocol (see Section 13.5, “SQL Syntax for Prepared Statements”).

A query cannot be cached if it contains any of the functions shown in the following table.

AES_DECRYPT() (as of 5.7.4) AES_ENCRYPT() (as of 5.7.4) BENCHMARK()

CONNECTION_ID() CONVERT_TZ() CURDATE()

CURRENT_DATE() CURRENT_TIME() CURRENT_TIMESTAMP()

CURRENT_USER() CURTIME() DATABASE()

ENCRYPT() with one parameter FOUND_ROWS() GET_LOCK()

IS_FREE_LOCK() IS_USED_LOCK() LAST_INSERT_ID()

LOAD_FILE() MASTER_POS_WAIT() NOW()

The MySQL Query Cache

1139

PASSWORD() RAND() RANDOM_BYTES()

RELEASE_ALL_LOCKS() RELEASE_LOCK() SLEEP()

SYSDATE() UNIX_TIMESTAMP() with no
parameters

USER()

UUID() UUID_SHORT()

A query also is not cached under these conditions:

• It refers to user-defined functions (UDFs) or stored functions.

• It refers to user variables or local stored program variables.

• It refers to tables in the mysql, INFORMATION_SCHEMA, or performance_schema database.

• It refers to any partitioned tables.

• It is of any of the following forms:

SELECT ... LOCK IN SHARE MODE
SELECT ... FOR UPDATE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL

The last form is not cached because it is used as the ODBC workaround for obtaining the last insert
ID value. See the Connector/ODBC section of Chapter 23, Connectors and APIs.

Statements within transactions that use SERIALIZABLE isolation level also cannot be cached
because they use LOCK IN SHARE MODE locking.

• It uses TEMPORARY tables.

• It does not use any tables.

• It generates warnings.

• The user has a column-level privilege for any of the involved tables.

8.10.3.2 Query Cache SELECT Options

Two query cache-related options may be specified in SELECT statements:

• SQL_CACHE

The query result is cached if it is cacheable and the value of the query_cache_type system
variable is ON or DEMAND.

•
SQL_NO_CACHE

The server does not use the query cache. It neither checks the query cache to see whether the result
is already cached, nor does it cache the query result.

Examples:

SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;

8.10.3.3 Query Cache Configuration

The have_query_cache server system variable indicates whether the query cache is available:

The MySQL Query Cache

1140

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

When using a standard MySQL binary, this value is always YES, even if query caching is disabled.

Several other system variables control query cache operation. These can be set in an option file or
on the command line when starting mysqld. The query cache system variables all have names that
begin with query_cache_. They are described briefly in Section 5.1.4, “Server System Variables”,
with additional configuration information given here.

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0
disables the query cache, as does setting query_cache_type=0. By default, the query cache is
disabled. This is achieved using a default size of 1M, with a default for query_cache_type of 0.

To reduce overhead significantly, also start the server with query_cache_type=0 if you will not be
using the query cache.

Note

When using the Windows Configuration Wizard to install or configure MySQL,
the default value for query_cache_size will be configured automatically
for you based on the different configuration types available. When using the
Windows Configuration Wizard, the query cache may be enabled (that is, set
to a nonzero value) due to the selected configuration. The query cache is also
controlled by the setting of the query_cache_type variable. Check the values
of these variables as set in your my.ini file after configuration has taken place.

When you set query_cache_size to a nonzero value, keep in mind that the query cache needs
a minimum size of about 40KB to allocate its structures. (The exact size depends on system
architecture.) If you set the value too small, you'll get a warning, as in this example:

mysql> SET GLOBAL query_cache_size = 40000;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1282
Message: Query cache failed to set size 39936;
 new query cache size is 0

mysql> SET GLOBAL query_cache_size = 41984;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_size | 41984 |
+------------------+-------+

For the query cache to actually be able to hold any query results, its size must be set larger:

mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.04 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| query_cache_size | 999424 |

The MySQL Query Cache

1141

+------------------+--------+
1 row in set (0.00 sec)

The query_cache_size value is aligned to the nearest 1024 byte block. The value reported may
therefore be different from the value that you assign.

If the query cache size is greater than 0, the query_cache_type variable influences how it works.
This variable can be set to the following values:

• A value of 0 or OFF prevents caching or retrieval of cached results.

• A value of 1 or ON enables caching except of those statements that begin with SELECT
SQL_NO_CACHE.

• A value of 2 or DEMAND causes caching of only those statements that begin with SELECT
SQL_CACHE.

If query_cache_size is 0, you should also set query_cache_type variable to 0. In this case, the
server does not acquire the query cache mutex at all, which means that the query cache cannot be
enabled at runtime and there is reduced overhead in query execution.

Setting the GLOBAL query_cache_type value determines query cache behavior for all clients
that connect after the change is made. Individual clients can control cache behavior for their own
connection by setting the SESSION query_cache_type value. For example, a client can disable use
of the query cache for its own queries like this:

mysql> SET SESSION query_cache_type = OFF;

If you set query_cache_type at server startup (rather than at runtime with a SET statement), only the
numeric values are permitted.

To control the maximum size of individual query results that can be cached, set the
query_cache_limit system variable. The default value is 1MB.

Be careful not to set the size of the cache too large. Due to the need for threads to lock the cache
during updates, you may see lock contention issues with a very large cache.

Note

You can set the maximum size that can be specified for the query
cache at runtime with the SET statement by using the --maximum-
query_cache_size=32M option on the command line or in the configuration
file.

When a query is to be cached, its result (the data sent to the client) is stored in the query cache
during result retrieval. Therefore the data usually is not handled in one big chunk. The query cache
allocates blocks for storing this data on demand, so when one block is filled, a new block is allocated.
Because memory allocation operation is costly (timewise), the query cache allocates blocks with
a minimum size given by the query_cache_min_res_unit system variable. When a query is
executed, the last result block is trimmed to the actual data size so that unused memory is freed.
Depending on the types of queries your server executes, you might find it helpful to tune the value of
query_cache_min_res_unit:

• The default value of query_cache_min_res_unit is 4KB. This should be adequate for most
cases.

• If you have a lot of queries with small results, the default block size may lead to memory
fragmentation, as indicated by a large number of free blocks. Fragmentation can force the query
cache to prune (delete) queries from the cache due to lack of memory. In this case, decrease the
value of query_cache_min_res_unit. The number of free blocks and queries removed due to
pruning are given by the values of the Qcache_free_blocks and Qcache_lowmem_prunes
status variables.

The MySQL Query Cache

1142

• If most of your queries have large results (check the Qcache_total_blocks and
Qcache_queries_in_cache status variables), you can increase performance by increasing
query_cache_min_res_unit. However, be careful to not make it too large (see the previous
item).

8.10.3.4 Query Cache Status and Maintenance

To check whether the query cache is present in your MySQL server, use the following statement:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE
statement. The statement does not remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH
TABLES statement also does this.

To monitor query cache performance, use SHOW STATUS to view the cache status variables:

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name | Value |
+-------------------------+--------+
Qcache_free_blocks	36
Qcache_free_memory	138488
Qcache_hits	79570
Qcache_inserts	27087
Qcache_lowmem_prunes	3114
Qcache_not_cached	22989
Qcache_queries_in_cache	415
Qcache_total_blocks	912
+-------------------------+--------+

Descriptions of each of these variables are given in Section 5.1.6, “Server Status Variables”. Some
uses for them are described here.

The total number of SELECT queries is given by this formula:

 Com_select
+ Qcache_hits
+ queries with errors found by parser

The Com_select value is given by this formula:

 Qcache_inserts
+ Qcache_not_cached
+ queries with errors found during the column-privileges check

The query cache uses variable-length blocks, so Qcache_total_blocks and
Qcache_free_blocks may indicate query cache memory fragmentation. After FLUSH QUERY
CACHE, only a single free block remains.

Every cached query requires a minimum of two blocks (one for the query text and one or more for the
query results). Also, every table that is used by a query requires one block. However, if two or more
queries use the same table, only one table block needs to be allocated.

The information provided by the Qcache_lowmem_prunes status variable can help you tune the
query cache size. It counts the number of queries that have been removed from the cache to free up

Caching of Prepared Statements and Stored Programs

1143

memory for caching new queries. The query cache uses a least recently used (LRU) strategy to decide
which queries to remove from the cache. Tuning information is given in Section 8.10.3.3, “Query Cache
Configuration”.

8.10.4 Caching of Prepared Statements and Stored Programs

For certain statements that a client might execute multiple times during a session, the server converts
the statement to an internal structure and caches that structure to be used during execution. Caching
enables the server to perform more efficiently because it avoids the overhead of reconverting the
statement should it be needed again during the session. Conversion and caching occurs for these
statements:

• Prepared statements, both those processed at the SQL level (using the PREPARE statement) and
those processed using the binary client/server protocol (using the mysql_stmt_prepare() C
API function). The max_prepared_stmt_count system variable controls the total number of
statements the server caches. (The sum of the number of prepared statements across all sessions.)

• Stored programs (stored procedures and functions, triggers, and events). In this case, the server
converts and caches the entire program body. The stored_program_cache system variable
indicates the approximate number of stored programs the server caches per session.

The server maintains caches for prepared statements and stored programs on a per-session basis.
Statements cached for one session are not accessible to other sessions. When a session ends, the
server discards any statements cached for it.

When the server uses a cached internal statement structure, it must take care that the structure
does not go out of date. Metadata changes can occur for an object used by the statement, causing
a mismatch between the current object definition and the definition as represented in the internal
statement structure. Metadata changes occur for DDL statements such as those that create, drop,
alter, rename, or truncate tables, or that analyze, optimize, or repair tables. Table content changes (for
example, with INSERT or UPDATE) do not change metadata, nor do SELECT statements.

Here is an illustration of the problem. Suppose that a client prepares this statement:

PREPARE s1 FROM 'SELECT * FROM t1';

The SELECT * expands in the internal structure to the list of columns in the table. If the set of columns
in the table is modified with ALTER TABLE, the prepared statement goes out of date. If the server does
not detect this change the next time the client executes s1, the prepared statement will return incorrect
results.

To avoid problems caused by metadata changes to tables or views referred to by the prepared
statement, the server detects these changes and automatically reprepares the statement when it is
next executed. That is, the server reparses the statement and rebuilds the internal structure. Reparsing
also occurs after referenced tables or views are flushed from the table definition cache, either implicitly
to make room for new entries in the cache, or explicitly due to FLUSH TABLES.

Similarly, if changes occur to objects used by a stored program, the server reparses affected
statements within the program.

The server also detects metadata changes for objects in expressions. These might be used in
statements specific to stored programs, such as DECLARE CURSOR or flow-control statements such as
IF, CASE, and RETURN.

To avoid reparsing entire stored programs, the server reparses affected statements or expressions
within a program only as needed. Examples:

• Suppose that metadata for a table or view is changed. Reparsing occurs for a SELECT * within the
program that accesses the table or view, but not for a SELECT * that does not access the table or
view.

Optimizing Locking Operations

1144

• When a statement is affected, the server reparses it only partially if possible. Consider this CASE
statement:

CASE case_expr
 WHEN when_expr1 ...
 WHEN when_expr2 ...
 WHEN when_expr3 ...
 ...
END CASE

If a metadata change affects only WHEN when_expr3, that expression is reparsed. case_expr and
the other WHEN expressions are not reparsed.

Reparsing uses the default database and SQL mode that were in effect for the original conversion to
internal form.

The server attempts reparsing up to three times. An error occurs if all attempts fail.

Reparsing is automatic, but to the extent that it occurs, diminishes prepared statement and stored
program performance.

For prepared statements, the Com_stmt_reprepare status variable tracks the number of
repreparations.

8.11 Optimizing Locking Operations
MySQL manages contention for table contents using locking:

• Internal locking is performed within the MySQL server itself to manage contention for table contents
by multiple threads. This type of locking is internal because it is performed entirely by the server and
involves no other programs. See Section 8.11.1, “Internal Locking Methods”.

• External locking occurs when the server and other programs lock MyISAM table files to coordinate
among themselves which program can access the tables at which time. See Section 8.11.5,
“External Locking”.

8.11.1 Internal Locking Methods

This section discusses internal locking; that is, locking performed within the MySQL server itself to
manage contention for table contents by multiple sessions. This type of locking is internal because it
is performed entirely by the server and involves no other programs. For locking performed on MySQL
files by other programs, see Section 8.11.5, “External Locking”.

Row-Level Locking

MySQL uses row-level locking for InnoDB tables to support simultaneous write access by multiple
sessions, making them suitable for multi-user, highly concurrent, and OLTP applications.

To avoid deadlocks when performing multiple concurrent write operations on a single InnoDB table,
acquire necessary locks at the start of the transaction by issuing a SELECT ... FOR UPDATE
statement for each group of rows expected to be modified, even if the DML statements come later in
the transaction. If transactions modify or lock more than one table, issue the applicable statements
in the same order within each transaction. Deadlocks affect performance rather than representing a
serious error, because InnoDB automatically detects deadlock conditions and rolls back one of the
affected transactions.

Advantages of row-level locking:

• Fewer lock conflicts when different sessions access different rows.

• Fewer changes for rollbacks.

Internal Locking Methods

1145

• Possible to lock a single row for a long time.

Table-Level Locking

MySQL uses table-level locking for MyISAM, MEMORY, and MERGE tables, allowing only one session
to update those tables at a time, making them more suitable for read-only, read-mostly, or single-user
applications.

These storage engines avoid deadlocks by always requesting all needed locks at once at the beginning
of a query and always locking the tables in the same order. The tradeoff is that this strategy reduces
concurrency; other sessions that want to modify the table must wait until the current DML statement
finishes.

MySQL grants table write locks as follows:

1. If there are no locks on the table, put a write lock on it.

2. Otherwise, put the lock request in the write lock queue.

MySQL grants table read locks as follows:

1. If there are no write locks on the table, put a read lock on it.

2. Otherwise, put the lock request in the read lock queue.

Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the
lock is made available to the requests in the write lock queue and then to the requests in the read lock
queue. This ensures that updates to a table are not “starved” even if there is heavy SELECT activity for
the table. However, if you have many updates for a table, SELECT statements wait until there are no
more updates.

For information on altering the priority of reads and writes, see Section 8.11.2, “Table Locking Issues”.

You can analyze the table lock contention on your system by checking the Table_locks_immediate
and Table_locks_waited status variables, which indicate the number of times that requests for
table locks could be granted immediately and the number that had to wait, respectively:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and
writers for a given table: If a MyISAM table has no free blocks in the middle of the data file, rows are
always inserted at the end of the data file. In this case, you can freely mix concurrent INSERT and
SELECT statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table
at the same time other clients are reading from it. Holes can result from rows having been deleted
from or updated in the middle of the table. If there are holes, concurrent inserts are disabled but are
enabled again automatically when all holes have been filled with new data.. This behavior is altered by
the concurrent_insert system variable. See Section 8.11.3, “Concurrent Inserts”.

If you acquire a table lock explicitly with LOCK TABLES, you can request a READ LOCAL lock rather
than a READ lock to enable other sessions to perform concurrent inserts while you have the table
locked.

To perform many INSERT and SELECT operations on a table real_table when concurrent inserts
are not possible, you can insert rows into a temporary table temp_table and update the real table
with the rows from the temporary table periodically. This can be done with the following code:

Table Locking Issues

1146

mysql> LOCK TABLES real_table WRITE, temp_table WRITE;
mysql> INSERT INTO real_table SELECT * FROM temp_table;
mysql> DELETE FROM temp_table;
mysql> UNLOCK TABLES;

Advantages of table-level locking:

• Requires relatively little memory.

• Fast when used on a large part of the table because only a single lock is involved.

• Fast if you often do GROUP BY operations on a large part of the data or if you must scan the entire
table frequently.

Generally, table locks are suited to the following cases:

• Most statements for the table are reads.

• Statements for the table are a mix of reads and writes, where writes are updates or deletes for a
single row that can be fetched with one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE
statements.

• Many scans or GROUP BY operations on the entire table without any writers.

8.11.2 Table Locking Issues

InnoDB tables use row-level locking so that multiple sessions and applications can read from and write
to the same table simultaneously, without making each other wait or producing inconsistent results.
For this storage engine, avoid using the LOCK TABLES statement, because it does not offer any extra
protection, but instead reduces concurrency. The automatic row-level locking makes these tables
suitable for your busiest databases with your most important data, while also simplifying application
logic since you do not need to lock and unlock tables. Consequently, the InnoDB storage engine is the
default in MySQL.

MySQL uses table locking (instead of page, row, or column locking) for all storage engines except
InnoDB. The locking operations themselves do not have much overhead. But because only one
session can write to a table at any one time, for best performance with these other storage engines,
use them primarily for tables that are queried often and rarely inserted into or updated.

Performance Considerations Favoring InnoDB

When choosing whether to create a table using InnoDB or a different storage engine, keep in mind the
following disadvantages of table locking:

• Table locking enables many sessions to read from a table at the same time, but if a session wants to
write to a table, it must first get exclusive access, meaning it might have to wait for other sessions to
finish with the table first. During the update, all other sessions that want to access this particular table
must wait until the update is done.

• Table locking causes problems when a session is waiting because the disk is full and free space
needs to become available before the session can proceed. In this case, all sessions that want to
access the problem table are also put in a waiting state until more disk space is made available.

• A SELECT statement that takes a long time to run prevents other sessions from updating the table in
the meantime, making the other sessions appear slow or unresponsive. While a session is waiting
to get exclusive access to the table for updates, other sessions that issue SELECT statements will
queue up behind it, reducing concurrency even for read-only sessions.

Concurrent Inserts

1147

Workarounds for Locking Performance Issues

The following items describe some ways to avoid or reduce contention caused by table locking:

• Consider switching the table to the InnoDB storage engine, either using CREATE TABLE ...
ENGINE=INNODB during setup, or using ALTER TABLE ... ENGINE=INNODB for an existing table.
See Chapter 14, The InnoDB Storage Engine for more details about this storage engine.

• Optimize SELECT statements to run faster so that they lock tables for a shorter time. You might have
to create some summary tables to do this.

• Start mysqld with --low-priority-updates. For storage engines that use only table-level
locking (such as MyISAM, MEMORY, and MERGE), this gives all statements that update (modify) a table
lower priority than SELECT statements. In this case, the second SELECT statement in the preceding
scenario would execute before the UPDATE statement, and would not wait for the first SELECT to
finish.

• To specify that all updates issued in a specific connection should be done with low priority, set the
low_priority_updates server system variable equal to 1.

• To give a specific INSERT, UPDATE, or DELETE statement lower priority, use the LOW_PRIORITY
attribute.

• To give a specific SELECT statement higher priority, use the HIGH_PRIORITY attribute. See
Section 13.2.9, “SELECT Syntax”.

• Start mysqld with a low value for the max_write_lock_count system variable to force MySQL to
temporarily elevate the priority of all SELECT statements that are waiting for a table after a specific
number of inserts to the table occur. This permits READ locks after a certain number of WRITE locks.

• If you have problems with INSERT combined with SELECT, consider switching to MyISAM tables,
which support concurrent SELECT and INSERT statements. (See Section 8.11.3, “Concurrent
Inserts”.)

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE may
help. See Section 13.2.2, “DELETE Syntax”.

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks
shorter. See Section 13.2.9, “SELECT Syntax”.

• Splitting table contents into separate tables may help, by allowing queries to run against columns in
one table, while updates are confined to columns in a different table.

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this case, write
locks and read locks would have the same priority, which might help some applications.

8.11.3 Concurrent Inserts

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and
writers for a given table: If a MyISAM table has no holes in the data file (deleted rows in the middle), an
INSERT statement can be executed to add rows to the end of the table at the same time that SELECT
statements are reading rows from the table. If there are multiple INSERT statements, they are queued
and performed in sequence, concurrently with the SELECT statements. The results of a concurrent
INSERT may not be visible immediately.

The concurrent_insert system variable can be set to modify the concurrent-insert processing.
By default, the variable is set to AUTO (or 1) and concurrent inserts are handled as just described. If
concurrent_insert is set to NEVER (or 0), concurrent inserts are disabled. If the variable is set to
ALWAYS (or 2), concurrent inserts at the end of the table are permitted even for tables that have deleted
rows. See also the description of the concurrent_insert system variable.

Metadata Locking

1148

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ...
SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact
copy of your tables by applying the log during a backup operation. See Section 5.2.4, “The Binary Log”.
In addition, for those statements a read lock is placed on the selected-from table such that inserts into
that table are blocked. The effect is that concurrent inserts for that table must wait as well.

With LOAD DATA INFILE, if you specify CONCURRENT with a MyISAM table that satisfies the condition
for concurrent inserts (that is, it contains no free blocks in the middle), other sessions can retrieve data
from the table while LOAD DATA is executing. Use of the CONCURRENT option affects the performance
of LOAD DATA a bit, even if no other session is using the table at the same time.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used.

For LOCK TABLE, the difference between READ LOCAL and READ is that READ LOCAL permits
nonconflicting INSERT statements (concurrent inserts) to execute while the lock is held. However, this
cannot be used if you are going to manipulate the database using processes external to the server
while you hold the lock.

8.11.4 Metadata Locking

MySQL uses metadata locking to manage concurrent access to database objects and to ensure
data consistency. Metadata locking applies not just to tables, but also to schemas, stored programs
(procedures, functions, triggers, and scheduled events), and (as of MySQL 5.7.6) tablespaces.

Metadata locking does involve some overhead, which increases as query volume increases. Metadata
contention increases the more that multiple queries attempt to access the same objects.

Metadata locking is not a replacement for the table definition cache, and its mutexes and locks differ
from the LOCK_open mutex. The following discussion provides some information about how metadata
locking works.

To ensure transaction serializability, the server must not permit one session to perform a data definition
language (DDL) statement on a table that is used in an uncompleted explicitly or implicitly started
transaction in another session. The server achieves this by acquiring metadata locks on tables used
within a transaction and deferring release of those locks until the transaction ends. A metadata lock
on a table prevents changes to the table's structure. This locking approach has the implication that a
table that is being used by a transaction within one session cannot be used in DDL statements by other
sessions until the transaction ends.

This principle applies not only to transactional tables, but also to nontransactional tables. Suppose that
a session begins a transaction that uses transactional table t and nontransactional table nt as follows:

START TRANSACTION;
SELECT * FROM t;
SELECT * FROM nt;

The server holds metadata locks on both t and nt until the transaction ends. If another session
attempts a DDL or write lock operation on either table, it blocks until metadata lock release at
transaction end. For example, a second session blocks if it attempts any of these operations:

DROP TABLE t;
ALTER TABLE t ...;
DROP TABLE nt;
ALTER TABLE nt ...;
LOCK TABLE t ... WRITE;

As of MySQL 5.7.5, the same behavior applies for The LOCK TABLES ... READ. That is, explicitly or
implicitly started transactions that update any table (transactional or nontransactional) will block and be
blocked by LOCK TABLES ... READ for that table.

External Locking

1149

If the server acquires metadata locks for a statement that is syntactically valid but fails during
execution, it does not release the locks early. Lock release is still deferred to the end of the transaction
because the failed statement is written to the binary log and the locks protect log consistency.

In autocommit mode, each statement is in effect a complete transaction, so metadata locks acquired
for the statement are held only to the end of the statement.

Metadata locks acquired during a PREPARE statement are released once the statement has been
prepared, even if preparation occurs within a multiple-statement transaction.

8.11.5 External Locking

External locking is the use of file system locking to manage contention for MyISAM database tables by
multiple processes. External locking is used in situations where a single process such as the MySQL
server cannot be assumed to be the only process that requires access to tables. Here are some
examples:

• If you run multiple servers that use the same database directory (not recommended), each server
must have external locking enabled.

• If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either
ensure that the server is not running, or that the server has external locking enabled so that it locks
table files as necessary to coordinate with myisamchk for access to the tables. The same is true for
use of myisampack to pack MyISAM tables.

If the server is run with external locking enabled, you can use myisamchk at any time for read
operations such a checking tables. In this case, if the server tries to update a table that myisamchk
is using, the server will wait for myisamchk to finish before it continues.

If you use myisamchk for write operations such as repairing or optimizing tables, or if you use
myisampack to pack tables, you must always ensure that the mysqld server is not using the table.
If you do not stop mysqld, at least do a mysqladmin flush-tables before you run myisamchk.
Your tables may become corrupted if the server and myisamchk access the tables simultaneously.

With external locking in effect, each process that requires access to a table acquires a file system lock
for the table files before proceeding to access the table. If all necessary locks cannot be acquired,
the process is blocked from accessing the table until the locks can be obtained (after the process that
currently holds the locks releases them).

External locking affects server performance because the server must sometimes wait for other
processes before it can access tables.

External locking is unnecessary if you run a single server to access a given data directory (which is
the usual case) and if no other programs such as myisamchk need to modify tables while the server
is running. If you only read tables with other programs, external locking is not required, although
myisamchk might report warnings if the server changes tables while myisamchk is reading them.

With external locking disabled, to use myisamchk, you must either stop the server while myisamchk
executes or else lock and flush the tables before running myisamchk. (See Section 8.12.1, “System
Factors and Startup Parameter Tuning”.) To avoid this requirement, use the CHECK TABLE and
REPAIR TABLE statements to check and repair MyISAM tables.

For mysqld, external locking is controlled by the value of the skip_external_locking system
variable. When this variable is enabled, external locking is disabled, and vice versa. External locking is
disabled by default.

Use of external locking can be controlled at server startup by using the --external-locking or --
skip-external-locking option.

If you do use external locking option to enable updates to MyISAM tables from many MySQL
processes, you must ensure that the following conditions are satisfied:

Optimizing the MySQL Server

1150

• Do not use the query cache for queries that use tables that are updated by another process.

• Do not start the server with the --delay-key-write=ALL option or use the DELAY_KEY_WRITE=1
table option for any shared tables. Otherwise, index corruption can occur.

The easiest way to satisfy these conditions is to always use --external-locking together with
--delay-key-write=OFF and --query-cache-size=0. (This is not done by default because in
many setups it is useful to have a mixture of the preceding options.)

8.12 Optimizing the MySQL Server
This section discusses optimization techniques for the database server, primarily dealing with system
configuration rather than tuning SQL statements. The information in this section is appropriate for
DBAs who want to ensure performance and scalability across the servers they manage; for developers
constructing installation scripts that include setting up the database; and people running MySQL
themselves for development, testing, and so on who want to maximize their own productivity.

8.12.1 System Factors and Startup Parameter Tuning

We start with system-level factors, because some of these decisions must be made very early to
achieve large performance gains. In other cases, a quick look at this section may suffice. However, it is
always nice to have a sense of how much can be gained by changing factors that apply at this level.

Before using MySQL in production, we advise you to test it on your intended platform.

Other tips:

• If you have enough RAM, you could remove all swap devices. Some operating systems use a swap
device in some contexts even if you have free memory.

• Avoid external locking for MyISAM tables. The default is for external locking to be disabled. The
--external-locking and --skip-external-locking options explicitly enable and disable
external locking.

Disabling external locking does not affect MySQL's functionality as long as you run only one server.
Just remember to take down the server (or lock and flush the relevant tables) before you run
myisamchk. On some systems it is mandatory to disable external locking because it does not work,
anyway.

The only case in which you cannot disable external locking is when you run multiple MySQL servers
(not clients) on the same data, or if you run myisamchk to check (not repair) a table without telling
the server to flush and lock the tables first. Note that using multiple MySQL servers to access the
same data concurrently is generally not recommended, except when using MySQL Cluster.

Note

MySQL Cluster is currently not supported in MySQL 5.7. If you are interested
in using MySQL Cluster, see MySQL Cluster NDB 7.3 and MySQL Cluster
NDB 7.4, which provides information about MySQL Cluster NDB 7.5 (based
on MySQL 5.6 but containing the latest improvements and fixes for the
NDBCLUSTER storage engine).

The LOCK TABLES and UNLOCK TABLES statements use internal locking, so you can use them
even if external locking is disabled.

8.12.2 Tuning Server Parameters

You can determine the default buffer sizes used by the mysqld server using this command:

shell> mysqld --verbose --help

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Tuning Server Parameters

1151

This command produces a list of all mysqld options and configurable system variables. The output
includes the default variable values and looks something like this:

abort-slave-event-count 0
allow-suspicious-udfs FALSE
auto-increment-increment 1
auto-increment-offset 1
automatic-sp-privileges TRUE
back_log 50
basedir /home/jon/bin/mysql-5.7/
bind-address (No default value)
binlog-row-event-max-size 1024
binlog_cache_size 32768
binlog_format (No default value)
bulk_insert_buffer_size 8388608
character-set-client-handshake TRUE
character-set-filesystem binary
character-set-server latin1
character-sets-dir /home/jon/bin/mysql-5.7/share/mysql/charsets/
chroot (No default value)
collation-server latin1_swedish_ci
completion-type 0
concurrent-insert 1
connect_timeout 10
console FALSE
datadir .
datetime_format %Y-%m-%d %H:%i:%s
date_format %Y-%m-%d
default-storage-engine MyISAM
default-time-zone (No default value)
default_week_format 0
delayed_insert_limit 100
delayed_insert_timeout 300
delayed_queue_size 1000
disconnect-slave-event-count 0
div_precision_increment 4
engine-condition-pushdown TRUE
expire_logs_days 0
external-locking FALSE
flush_time 0
ft_max_word_len 84
ft_min_word_len 4
ft_query_expansion_limit 20
ft_stopword_file (No default value)
gdb FALSE
general_log FALSE
general_log_file (No default value)
group_concat_max_len 1024
help TRUE
init-connect (No default value)
init-file (No default value)
init-slave (No default value)
innodb TRUE
innodb-adaptive-hash-index TRUE
innodb-additional-mem-pool-size 1048576
innodb-autoextend-increment 8
innodb-autoinc-lock-mode 1
innodb-buffer-pool-size 8388608
innodb-checksums TRUE
innodb-commit-concurrency 0
innodb-concurrency-tickets 500
innodb-data-file-path (No default value)
innodb-data-home-dir (No default value)
innodb-doublewrite TRUE
innodb-fast-shutdown 1
innodb-file-io-threads 4
innodb-file-per-table FALSE
innodb-flush-log-at-trx-commit 1
innodb-flush-method (No default value)
innodb-force-recovery 0

Tuning Server Parameters

1152

innodb-lock-wait-timeout 50
innodb-locks-unsafe-for-binlog FALSE
innodb-log-buffer-size 1048576
innodb-log-file-size 5242880
innodb-log-files-in-group 2
innodb-log-group-home-dir (No default value)
innodb-max-dirty-pages-pct 90
innodb-max-purge-lag 0
innodb-mirrored-log-groups 1
innodb-open-files 300
innodb-rollback-on-timeout FALSE
innodb-stats-on-metadata TRUE
innodb-status-file FALSE
innodb-support-xa TRUE
innodb-sync-spin-loops 20
innodb-table-locks TRUE
innodb-thread-concurrency 8
innodb-thread-sleep-delay 10000
interactive_timeout 28800
join_buffer_size 131072
keep_files_on_create FALSE
key_buffer_size 8384512
key_cache_age_threshold 300
key_cache_block_size 1024
key_cache_division_limit 100
language /home/jon/bin/mysql-5.7/share/mysql/english/
large-pages FALSE
lc-time-names en_US
local-infile TRUE
log (No default value)
log-bin (No default value)
log-bin-index (No default value)
log-bin-trust-function-creators FALSE
log-error
log-error-verbosity 1
log-isam myisam.log
log-output FILE
log-queries-not-using-indexes FALSE
log-short-format FALSE
log-slave-updates FALSE
log-slow-admin-statements FALSE
log-slow-slave-statements FALSE
log-tc tc.log
log-tc-size 24576
log-warnings 1
log_slow_queries (No default value)
long_query_time 10
low-priority-updates FALSE
lower_case_table_names 0
master-retry-count 86400
max-binlog-dump-events 0
max_allowed_packet 4194304
max_binlog_cache_size 18446744073709547520
max_binlog_size 1073741824
max_connections 151
max_connect_errors 100
max_delayed_threads 20
max_error_count 64
max_heap_table_size 16777216
max_join_size 18446744073709551615
max_length_for_sort_data 1024
max_prepared_stmt_count 16382
max_relay_log_size 0
max_seeks_for_key 18446744073709551615
max_sort_length 1024
max_sp_recursion_depth 0
max_tmp_tables 32
max_user_connections 0
max_write_lock_count 18446744073709551615
memlock FALSE
min_examined_row_limit 0
myisam-recover-options OFF

Tuning Server Parameters

1153

myisam_block_size 1024
myisam_data_pointer_size 6
myisam_max_sort_file_size 9223372036853727232
myisam_repair_threads 1
myisam_sort_buffer_size 8388608
myisam_stats_method nulls_unequal
myisam_use_mmap FALSE
ndb-autoincrement-prefetch-sz 1
ndb-cache-check-time 0
ndb-connectstring (No default value)
ndb-extra-logging 0
ndb-force-send TRUE
ndb-index-stat-enable FALSE
ndb-mgmd-host (No default value)
ndb-nodeid 0
ndb-optimized-node-selection TRUE
ndb-report-thresh-binlog-epoch-slip 3
ndb-report-thresh-binlog-mem-usage 10
ndb-shm FALSE
ndb-use-copying-alter-table FALSE
ndb-use-exact-count TRUE
ndb-use-transactions TRUE
ndb_force_send TRUE
ndb_use_exact_count TRUE
ndb_use_transactions TRUE
net_buffer_length 16384
net_read_timeout 30
net_retry_count 10
net_write_timeout 60
new FALSE
old FALSE
old-alter-table FALSE
old-passwords FALSE
old-style-user-limits FALSE
open_files_limit 1024
optimizer_prune_level 1
optimizer_search_depth 62
pid-file /home/jon/bin/mysql-5.7/var/tonfisk.pid
plugin_dir /home/jon/bin/mysql-5.7/lib/mysql/plugin
port 3306
port-open-timeout 0
preload_buffer_size 32768
profiling_history_size 15
query_alloc_block_size 8192
query_cache_limit 1048576
query_cache_min_res_unit 4096
query_cache_size 0
query_cache_type 1
query_cache_wlock_invalidate FALSE
query_prealloc_size 8192
range_alloc_block_size 4096
read_buffer_size 131072
read_only FALSE
read_rnd_buffer_size 262144
relay-log (No default value)
relay-log-index (No default value)
relay-log-info-file relay-log.info
relay_log_purge TRUE
relay_log_space_limit 0
replicate-same-server-id FALSE
report-host (No default value)
report-password (No default value)
report-port 3306
report-user (No default value)
safe-user-create FALSE
secure-auth TRUE
secure-file-priv (No default value)
server-id 0
show-slave-auth-info FALSE
skip-grant-tables FALSE
skip-slave-start FALSE
slave-exec-mode STRICT

Tuning Server Parameters

1154

slave-load-tmpdir /tmp
slave_compressed_protocol FALSE
slave_net_timeout 3600
slave_transaction_retries 10
slow-query-log FALSE
slow_launch_time 2
slow_query_log_file (No default value)
socket /tmp/mysql.sock
sort_buffer_size 2097144
sporadic-binlog-dump-fail FALSE
sql-mode OFF
symbolic-links TRUE
sync-binlog 0
sync-frm TRUE
sysdate-is-now FALSE
table_definition_cache 256
table_open_cache 400
tc-heuristic-recover (No default value)
temp-pool TRUE
thread_cache_size 0
thread_concurrency 10
thread_stack 262144
time_format %H:%i:%s
tmpdir (No default value)
tmp_table_size 16777216
transaction_alloc_block_size 8192
transaction_prealloc_size 4096
updatable_views_with_limit 1
verbose TRUE
wait_timeout 28800

For a mysqld server that is currently running, you can see the current values of its system variables by
connecting to it and issuing this statement:

mysql> SHOW VARIABLES;

You can also see some statistical and status indicators for a running server by issuing this statement:

mysql> SHOW STATUS;

System variable and status information also can be obtained using mysqladmin:

shell> mysqladmin variables
shell> mysqladmin extended-status

For a full description of all system and status variables, see Section 5.1.4, “Server System Variables”,
and Section 5.1.6, “Server Status Variables”.

MySQL uses algorithms that are very scalable, so you can usually run with very little memory.
However, normally you get better performance by giving MySQL more memory.

When tuning a MySQL server, the two most important variables to configure are key_buffer_size
and table_open_cache. You should first feel confident that you have these set appropriately before
trying to change any other variables.

The following examples indicate some typical variable values for different runtime configurations.

• If you have at least 256MB of memory and many tables and want maximum performance with a
moderate number of clients, use something like this:

shell> mysqld_safe --key_buffer_size=64M --table_open_cache=256 \
 --sort_buffer_size=4M --read_buffer_size=1M &

• If you have only 128MB of memory and only a few tables, but you still do a lot of sorting, you can use
something like this:

Optimizing Disk I/O

1155

shell> mysqld_safe --key_buffer_size=16M --sort_buffer_size=1M

If there are very many simultaneous connections, swapping problems may occur unless mysqld has
been configured to use very little memory for each connection. mysqld performs better if you have
enough memory for all connections.

• With little memory and lots of connections, use something like this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
 --read_buffer_size=100K &

Or even this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
 --table_open_cache=32 --read_buffer_size=8K \
 --net_buffer_length=1K &

If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your
available memory, increase the value of read_rnd_buffer_size to speed up the reading of rows
following sorting operations.

You can make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.

If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only for
that invocation of the server. To use the option every time the server runs, put it in an option file.

To see the effects of a parameter change, do something like this:

shell> mysqld --key_buffer_size=32M --verbose --help

The variable values are listed near the end of the output. Make sure that the --verbose and --help
options are last. Otherwise, the effect of any options listed after them on the command line are not
reflected in the output.

For information on optimizing the InnoDB storage engine performance, see Section 8.5, “Optimizing
for InnoDB Tables”.

8.12.3 Optimizing Disk I/O

This section describes ways to configure storage devices when you can devote more and faster
storage hardware to the database server. For information about optimizing an InnoDB configuration to
improve I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• Disk seeks are a huge performance bottleneck. This problem becomes more apparent when
the amount of data starts to grow so large that effective caching becomes impossible. For large
databases where you access data more or less randomly, you can be sure that you need at least
one disk seek to read and a couple of disk seeks to write things. To minimize this problem, use disks
with low seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either
symlinking files to different disks or striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and data files from their usual
location in the data directory to another disk (that may also be striped). This makes both the

Using Symbolic Links

1156

seek and read times better, assuming that the disk is not used for other purposes as well. See
Section 8.12.4, “Using Symbolic Links”.

Symbolic links are not supported for use with InnoDB tables. However, you can create an
InnoDB file-per-table tablespace in a location outside of the MySQL data directory using the DATA
DIRECTORY = absolute_path_to_directory clause of the CREATE TABLE statement.
For more information, see Section 14.4.5, “Creating a File-Per-Table Tablespace Outside the
Data Directory”. General tablespaces can also be created in a location outside of the MySQL data
directory. For more information, see Section 14.4.9, “InnoDB General Tablespaces”.

• Striping

Striping means that you have many disks and put the first block on the first disk, the second block
on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so on. This
means if your normal data size is less than the stripe size (or perfectly aligned), you get much
better performance. Striping is very dependent on the operating system and the stripe size, so
benchmark your application with different stripe sizes. See Section 8.13.2, “Using Your Own
Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how you
set the striping parameters and number of disks, you may get differences measured in orders of
magnitude. You have to choose to optimize for random or sequential access.

• For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need
2 × N drives to hold N drives of data. This is probably the best option if you have the money for it.
However, you may also have to invest in some volume-management software to handle it efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example, store
semi-important data that can be regenerated on a RAID 0 disk, but store really important data such
as host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you have
many writes, due to the time required to update the parity bits.

• On Linux, you can get much better performance by using hdparm to configure your disk's interface.
(Up to 100% under load is not uncommon.) The following hdparm options should be quite good for
MySQL, and probably for many other applications:

hdparm -m 16 -d 1

Performance and reliability when using this command depend on your hardware, so we strongly
suggest that you test your system thoroughly after using hdparm. Please consult the hdparm
manual page for more information. If hdparm is not used wisely, file system corruption may result, so
back up everything before experimenting!

• You can also set the parameters for the file system that the database uses:

If you do not need to know when files were last accessed (which is not really useful on a database
server), you can mount your file systems with the -o noatime option. That skips updates to the last
access time in inodes on the file system, which avoids some disk seeks.

On many operating systems, you can set a file system to be updated asynchronously by mounting
it with the -o async option. If your computer is reasonably stable, this should give you better
performance without sacrificing too much reliability. (This flag is on by default on Linux.)

8.12.4 Using Symbolic Links

You can move databases or tables from the database directory to other locations and replace them
with symbolic links to the new locations. You might want to do this, for example, to move a database
to a file system with more free space or increase the speed of your system by spreading your tables to
different disks.

Using Symbolic Links

1157

For InnoDB tables, use the DATA DIRECTORY clause on the CREATE TABLE statement instead of
symbolic links, as explained in Section 14.4.5, “Creating a File-Per-Table Tablespace Outside the Data
Directory”. This new feature is a supported, cross-platform technique.

The recommended way to do this is to symlink entire database directories to a different disk. Symlink
MyISAM tables only as a last resort.

To determine the location of your data directory, use this statement:

SHOW VARIABLES LIKE 'datadir';

8.12.4.1 Using Symbolic Links for Databases on Unix

On Unix, the way to symlink a database is first to create a directory on some disk where you have free
space and then to create a soft link to it from the MySQL data directory.

shell> mkdir /dr1/databases/test
shell> ln -s /dr1/databases/test /path/to/datadir

MySQL does not support linking one directory to multiple databases. Replacing a database directory
with a symbolic link works as long as you do not make a symbolic link between databases. Suppose
that you have a database db1 under the MySQL data directory, and then make a symlink db2 that
points to db1:

shell> cd /path/to/datadir
shell> ln -s db1 db2

The result is that, or any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one
client updates db1.tbl_a and another client updates db2.tbl_a, problems are likely to occur.

8.12.4.2 Using Symbolic Links for MyISAM Tables on Unix

Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines,
you may get strange problems if you try to use symbolic links. For InnoDB tables, use the alternative
technique explained in Section 14.4.5, “Creating a File-Per-Table Tablespace Outside the Data
Directory” instead.

Do not symlink tables on systems that do not have a fully operational realpath() call. (Linux and
Solaris support realpath()). To determine whether your system supports symbolic links, check the
value of the have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

The handling of symbolic links for MyISAM tables works as follows:

• In the data directory, you always have the table format (.frm) file, the data (.MYD) file, and the index
(.MYI) file. The data file and index file can be moved elsewhere and replaced in the data directory by
symlinks. The format file cannot.

• You can symlink the data file and the index file independently to different directories.

• To instruct a running MySQL server to perform the symlinking, use the DATA DIRECTORY and
INDEX DIRECTORY options to CREATE TABLE. See Section 13.1.14, “CREATE TABLE Syntax”.
Alternatively, if mysqld is not running, symlinking can be accomplished manually using ln -s from
the command line.

Note

The path used with either or both of the DATA DIRECTORY and INDEX
DIRECTORY options may not include the MySQL data directory. (Bug
#32167)

Using Symbolic Links

1158

• myisamchk does not replace a symlink with the data file or index file. It works directly on the file to
which the symlink points. Any temporary files are created in the directory where the data file or index
file is located. The same is true for the ALTER TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements.

• Note

When you drop a table that is using symlinks, both the symlink and the file
to which the symlink points are dropped. This is an extremely good reason
not to run mysqld as the system root or permit system users to have write
access to MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME or RENAME TABLE and you do not move
the table to another database, the symlinks in the database directory are renamed to the new names
and the data file and index file are renamed accordingly.

• If you use ALTER TABLE ... RENAME or RENAME TABLE to move a table to another database,
the table is moved to the other database directory. If the table name changed, the symlinks in the
new database directory are renamed to the new names and the data file and index file are renamed
accordingly.

• If you are not using symlinks, start mysqld with the --skip-symbolic-links option to ensure
that no one can use mysqld to drop or rename a file outside of the data directory.

These table symlink operations are not supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

• As indicated previously, only the data and index files can be symbolic links. The .frm file must
never be a symbolic link. Attempting to do this (for example, to make one table name a synonym
for another) produces incorrect results. Suppose that you have a database db1 under the MySQL
data directory, a table tbl1 in this database, and in the db1 directory you make a symlink tbl2 that
points to tbl1:

shell> cd /path/to/datadir/db1
shell> ln -s tbl1.frm tbl2.frm
shell> ln -s tbl1.MYD tbl2.MYD
shell> ln -s tbl1.MYI tbl2.MYI

Problems result if one thread reads db1.tbl1 and another thread updates db1.tbl2:

• The query cache is “fooled” (it has no way of knowing that tbl1 has not been updated, so it
returns outdated results).

• ALTER statements on tbl2 fail.

8.12.4.3 Using Symbolic Links for Databases on Windows

On Windows, symbolic links can be used for database directories. This enables you to put a database
directory at a different location (for example, on a different disk) by setting up a symbolic link to it. Use
of database symlinks on Windows is similar to their use on Unix, although the procedure for setting up
the link differs.

Suppose that you want to place the database directory for a database named mydb at D:\data\mydb.
To do this, create a symbolic link in the MySQL data directory that points to D:\data\mydb. However,
before creating the symbolic link, make sure that the D:\data\mydb directory exists by creating it if
necessary. If you already have a database directory named mydb in the data directory, move it to D:
\data. Otherwise, the symbolic link will be ineffective. To avoid problems, make sure that the server is
not running when you move the database directory.

Windows Vista, Windows Server 2008, or newer have native symbolic link support, so you can create a
symlink using the mklink command. This command requires administrative privileges.

Optimizing Memory Use

1159

1. Change location into the data directory:

C:\> cd \path\to\datadir

2. In the data directory, create a symlink named mydb that points to the location of the database
directory:

C:\> mklink /d mydb D:\data\mydb

After this, all tables created in the database mydb are created in D:\data\mydb.

8.12.5 Optimizing Memory Use

8.12.5.1 How MySQL Uses Memory

The following list indicates some of the ways that the mysqld server uses memory. Where applicable,
the name of the system variable relevant to the memory use is given:

• All threads share the MyISAM key buffer; its size is determined by the key_buffer_size variable.
Other buffers used by the server are allocated as needed. See Section 8.12.2, “Tuning Server
Parameters”.

• Each thread that is used to manage client connections uses some thread-specific space. The
following list indicates these and which variables control their size:

• A stack (variable thread_stack)

• A connection buffer (variable net_buffer_length)

• A result buffer (variable net_buffer_length)

The connection buffer and result buffer each begin with a size equal to net_buffer_length bytes,
but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer
shrinks to net_buffer_length bytes after each SQL statement. While a statement is running, a
copy of the current statement string is also allocated.

Each connection thread uses memory for computing statement digests (see Section 21.7,
“Performance Schema Statement Digests”): Before MySQL 5.7.4, 1024 bytes per session if the
Performance Schema is compiled in with statement instrumentation. In 5.7.4 and 5.7.5, 1024 bytes
per session. In 5.7.6 and up, max_digest_length bytes per session.

• All threads share the same base memory.

• When a thread is no longer needed, the memory allocated to it is released and returned to the
system unless the thread goes back into the thread cache. In that case, the memory remains
allocated.

• The myisam_use_mmap system variable can be set to 1 to enable memory-mapping for all MyISAM
tables.

• Each request that performs a sequential scan of a table allocates a read buffer (variable
read_buffer_size).

• When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer
(variable read_rnd_buffer_size) may be allocated to avoid disk seeks.

• All joins are executed in a single pass, and most joins can be done without even using a temporary
table. Most temporary tables are memory-based hash tables. Temporary tables with a large row
length (calculated as the sum of all column lengths) or that contain BLOB columns are stored on disk.

If an internal in-memory temporary table becomes too large, MySQL handles this automatically by
changing the table from in-memory to on-disk format, to be handled by the MyISAM storage engine.

Optimizing Memory Use

1160

You can increase the permissible temporary table size as described in Section 8.4.4, “Internal
Temporary Table Use in MySQL”.

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on
the result set size. See Section B.5.3.5, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in thread-local and reusable memory pools. No memory
overhead is needed for small items, so the normal slow memory allocation and freeing is avoided.
Memory is allocated only for unexpectedly large strings.

• For each MyISAM table that is opened, the index file is opened once; the data file is opened once for
each concurrently running thread. For each concurrent thread, a table structure, column structures
for each column, and a buffer of size 3 * N are allocated (where N is the maximum row length, not
counting BLOB columns). A BLOB column requires five to eight bytes plus the length of the BLOB
data. The MyISAM storage engine maintains one extra row buffer for internal use.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB values.
If you scan a table, a buffer as large as the largest BLOB value is allocated.

• Handler structures for all in-use tables are saved in a cache and managed as a FIFO. The initial
cache size is taken from the value of the table_open_cache system variable. If a table has been
used by two running threads at the same time, the cache contains two entries for the table. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that
are not in use at once and marks all in-use tables to be closed when the currently executing thread
finishes. This effectively frees most in-use memory. FLUSH TABLES does not return until all tables
have been closed.

• The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER,
and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE,
DROP USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes
many instances of the statements that cause caching, there will be an increase in memory use. This
cached memory can be freed with FLUSH PRIVILEGES.

ps and other system status programs may report that mysqld uses a lot of memory. This may be
caused by thread stacks on different memory addresses. For example, the Solaris version of ps counts
the unused memory between stacks as used memory. To verify this, check available swap with swap
-s. We test mysqld with several memory-leakage detectors (both commercial and Open Source), so
there should be no memory leaks.

8.12.5.2 Enabling Large Page Support

Some hardware/operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and
operating system. Applications that perform a lot of memory accesses may obtain performance
improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

In MySQL, large pages can be used by InnoDB, to allocate memory for its buffer pool and additional
memory pool.

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for
recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --
skip-super-large-pages option.

MySQL also supports the Linux implementation of large page support (which is called HugeTLB in
Linux).

Before large pages can be used on Linux, the kernel must be enabled to support them and it is
necessary to configure the HugeTLB memory pool. For reference, the HugeTBL API is documented in
the Documentation/vm/hugetlbpage.txt file of your Linux sources.

Optimizing Memory Use

1161

The kernel for some recent systems such as Red Hat Enterprise Linux appear to have the large pages
feature enabled by default. To check whether this is true for your kernel, use the following command
and look for output lines containing “huge”:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB

The nonempty command output indicates that large page support is present, but the zero values
indicate that no pages are configured for use.

If your kernel needs to be reconfigured to support large pages, consult the hugetlbpage.txt file for
instructions.

Assuming that your Linux kernel has large page support enabled, configure it for use by MySQL using
the following commands. Normally, you put these in an rc file or equivalent startup file that is executed
during the system boot sequence, so that the commands execute each time the system starts. The
commands should execute early in the boot sequence, before the MySQL server starts. Be sure to
change the allocation numbers and the group number as appropriate for your system.

Set the number of pages to be used.
Each page is normally 2MB, so a value of 20 = 40MB.
This command actually allocates memory, so this much
memory must be available.
echo 20 > /proc/sys/vm/nr_hugepages

Set the group number that is permitted to access this
memory (102 in this case). The mysql user must be a
member of this group.
echo 102 > /proc/sys/vm/hugetlb_shm_group

Increase the amount of shmem permitted per segment
(12G in this case).
echo 1560281088 > /proc/sys/kernel/shmmax

Increase total amount of shared memory. The value
is the number of pages. At 4KB/page, 4194304 = 16GB.
echo 4194304 > /proc/sys/kernel/shmall

For MySQL usage, you normally want the value of shmmax to be close to the value of shmall.

To verify the large page configuration, check /proc/meminfo again as described previously. Now you
should see some nonzero values:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB

The final step to make use of the hugetlb_shm_group is to give the mysql user an “unlimited”
value for the memlock limit. This can by done either by editing /etc/security/limits.conf or by
adding the following command to your mysqld_safe script:

ulimit -l unlimited

Adding the ulimit command to mysqld_safe causes the root user to set the memlock limit to
unlimited before switching to the mysql user. (This assumes that mysqld_safe is started by
root.)

Optimizing Network Use

1162

Large page support in MySQL is disabled by default. To enable it, start the server with the --large-
pages option. For example, you can use the following lines in your server's my.cnf file:

[mysqld]
large-pages

With this option, InnoDB uses large pages automatically for its buffer pool and additional memory pool.
If InnoDB cannot do this, it falls back to use of traditional memory and writes a warning to the error log:
Warning: Using conventional memory pool

To verify that large pages are being used, check /proc/meminfo again:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 2
HugePages_Surp: 0
Hugepagesize: 4096 kB

8.12.6 Optimizing Network Use

8.12.6.1 How MySQL Uses Threads for Client Connections

Connection manager threads handle client connection requests on the network interfaces that the
server listens to. On all platforms, one manager thread handles TCP/IP connection requests. On Unix,
this manager thread also handles Unix socket file connection requests. On Windows, a manager thread
handles shared-memory connection requests, and another handles named-pipe connection requests.
The server does not create threads to handle interfaces that it does not listen to. For example, a
Windows server that does not have support for named-pipe connections enabled does not create a
thread to handle them.

Connection manager threads associate each client connection with a thread dedicated to it that
handles authentication and request processing for that connection. Manager threads create a new
thread when necessary but try to avoid doing so by consulting the thread cache first to see whether it
contains a thread that can be used for the connection. When a connection ends, its thread is returned
to the thread cache if the cache is not full.

In this connection thread model, there are as many threads as there are clients currently connected,
which has some disadvantages when server workload must scale to handle large numbers of
connections. For example, thread creation and disposal becomes expensive. Also, each thread
requires server and kernel resources, such as stack space. To accommodate a large number of
simultaneous connections, the stack size per thread must be kept small, leading to a situation where
it is either too small or the server consumes large amounts of memory. Exhaustion of other resources
can occur as well, and scheduling overhead can become significant.

To control and monitor how the server manages threads that handle client connections, several system
and status variables are relevant. (See Section 5.1.4, “Server System Variables”, and Section 5.1.6,
“Server Status Variables”.)

The thread cache has a size determined by the thread_cache_size system variable. The default
value is 0 (no caching), which causes a thread to be set up for each new connection and disposed
of when the connection terminates. Set thread_cache_size to N to enable N inactive connection
threads to be cached. thread_cache_size can be set at server startup or changed while the server
runs. A connection thread becomes inactive when the client connection with which it was associated
terminates.

To monitor the number of threads in the cache and how many threads have been created because a
thread could not be taken from the cache, monitor the Threads_cached and Threads_created
status variables.

Optimizing Network Use

1163

You can set max_connections at server startup or at runtime to control the maximum number of
clients that can connect simultaneously.

When the thread stack is too small, this limits the complexity of the SQL statements which the server
can handle, the recursion depth of stored procedures, and other memory-consuming actions. To set a
stack size of N bytes for each thread, start the server with --thread_stack=N.

8.12.6.2 DNS Lookup Optimization and the Host Cache

The MySQL server maintains a host cache in memory that contains information about clients: IP
address, host name, and error information. The server uses this cache for nonlocal TCP connections.
It does not use the cache for TCP connections established using a loopback interface address
(127.0.0.1 or ::1), or for connections established using a Unix socket file, named pipe, or shared
memory.

For each new client connection, the server uses the client IP address to check whether the client host
name is in the host cache. If not, the server attempts to resolve the host name. First, it resolves the
IP address to a host name and resolves that host name back to an IP address. Then it compares
the result to the original IP address to ensure that they are the same. The server stores information
about the result of this operation in the host cache. If the cache is full, the least recently used entry is
discarded.

The host_cache Performance Schema table exposes the contents of the host cache so that it can be
examined using SELECT statements. This may help you diagnose the causes of connection problems.
See Section 21.9.15.1, “The host_cache Table”.

The server handles entries in the host cache like this:

1. When the first TCP client connection reaches the server from a given IP address, a new entry is
created to record the client IP, host name, and client lookup validation flag. Initially, the host name
is set to NULL and the flag is false. This entry is also used for subsequent client connections from
the same originating IP.

2. If the validation flag for the client IP entry is false, the server attempts an IP-to-host name DNS
resolution. If that is successful, the host name is updated with the resolved host name and the
validation flag is set to true. If resolution is unsuccessful, the action taken depends on whether
the error is permanent or transient. For permanent failures, the host name remains NULL and
the validation flag is set to true. For transient failures, the host name and validation flag remain
unchanged. (Another DNS resolution attempt occurs the next time a client connects from this IP.)

3. If an error occurs while processing an incoming client connection from a given IP address, the
server updates the corresponding error counters in the entry for that IP. For a description of the
errors recorded, see Section 21.9.15.1, “The host_cache Table”.

The server performs host name resolution using the thread-safe gethostbyaddr_r() and
gethostbyname_r() calls if the operating system supports them. Otherwise, the thread performing
the lookup locks a mutex and calls gethostbyaddr() and gethostbyname() instead. In this case,
no other thread can resolve host names that are not in the host cache until the thread holding the
mutex lock releases it.

The server uses the host cache for several purposes:

• By caching the results of IP-to-host name lookups, the server avoids doing a DNS lookup for each
client connection. Instead, for a given host, it needs to perform a lookup only for the first connection
from that host.

• The cache contains information about errors that occur during the connection process. Some
errors are considered “blocking.” If too many of these occur successively from a given host
without a successful connection, the server blocks further connections from that host. The
max_connect_errors system variable determines the number of permitted errors before blocking
occurs. See Section B.5.2.6, “Host 'host_name' is blocked”.

The Thread Pool Plugin

1164

To unblock blocked hosts, flush the host cache by issuing a FLUSH HOSTS statement or executing a
mysqladmin flush-hosts command.

It is possible for a blocked host to become unblocked even without FLUSH HOSTS if activity from other
hosts has occurred since the last connection attempt from the blocked host. This can occur because
the server discards the least recently used cache entry to make room for a new entry if the cache is full
when a connection arrives from a client IP not in the cache. If the discarded entry is for a blocked host,
that host becomes unblocked.

The host cache is enabled by default. To disable it, set the host_cache_size system variable to 0,
either at server startup or at runtime.

To disable DNS host name lookups, start the server with the --skip-name-resolve option. In this
case, the server uses only IP addresses and not host names to match connecting hosts to rows in the
MySQL grant tables. Only accounts specified in those tables using IP addresses can be used. (Be sure
that an account exists that specifies an IP address or you may not be able to connect.)

If you have a very slow DNS and many hosts, you might be able to improve performance
either by disabling DNS lookups with --skip-name-resolve or by increasing the value of
host_cache_size to make the host cache larger.

To disallow TCP/IP connections entirely, start the server with the --skip-networking option.

Some connection errors are not associated with TCP connections, occur very early in the connection
process (even before an IP address is known), or are not specific to any particular IP address (such as
out-of-memory conditions). For information about these errors, check the Connection_errors_xxx
status variables (see Section 5.1.6, “Server Status Variables”).

8.12.7 The Thread Pool Plugin

Note

MySQL Thread Pool is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, http://
www.mysql.com/products/.

As of MySQL 5.7.9, MySQL Enterprise Edition includes MySQL Thread Pool, implemented using a
server plugin. The default thread-handling model in MySQL Server executes statements using one
thread per client connection. As more clients connect to the server and execute statements, overall
performance degrades. The thread pool plugin provides an alternative thread-handling model designed
to reduce overhead and improve performance. The plugin implements a thread pool that increases
server performance by efficiently managing statement execution threads for large numbers of client
connections.

The thread pool addresses several problems of the one thread per connection model:

• Too many thread stacks make CPU caches almost useless in highly parallel execution workloads.
The thread pool promotes thread stack reuse to minimize the CPU cache footprint.

• With too many threads executing in parallel, context switching overhead is high. This also presents
a challenging task to the operating system scheduler. The thread pool controls the number of active
threads to keep the parallelism within the MySQL server at a level that it can handle and that is
appropriate for the server host on which MySQL is executing.

• Too many transactions executing in parallel increases resource contention. In InnoDB, this
increases the time spent holding central mutexes. The thread pool controls when transactions start to
ensure that not too many execute in parallel.

The thread pool plugin is included only in MySQL Enterprise Edition. It is not included in MySQL
community distributions.

http://www.mysql.com/products/
http://www.mysql.com/products/

The Thread Pool Plugin

1165

On Windows, the thread pool plugin requires Windows Vista or newer. On Linux, the plugin requires
kernel 2.6.9 or newer.

Additional Resources

Section A.14, “MySQL 5.7 FAQ: MySQL Enterprise Thread Pool”

8.12.7.1 Thread Pool Components and Installation

The thread pool feature comprises these components:

• A plugin library object file contains a plugin for the thread pool code and plugins for several
INFORMATION_SCHEMA tables.

For a detailed description of how the thread pool works, see Section 8.12.7.2, “Thread Pool
Operation”.

The INFORMATION_SCHEMA tables are named TP_THREAD_STATE, TP_THREAD_GROUP_STATE,
and TP_THREAD_GROUP_STATS. These tables provide information about thread pool operation. For
more information, see Thread Pool INFORMATION_SCHEMA Tables.

• Several system variables are related to the thread pool. The thread_handling system variable
has a value of loaded-dynamically when the server successfully loads the thread pool plugin.

The other related variables are implemented by the thread pool plugin; they are not available unless
it is enabled:

• thread_pool_algorithm: The concurrency algorithm to use for scheduling.

• thread_pool_high_priority_connection: How to schedule statement execution for a
session.

• thread_pool_prio_kickup_timer: How long before the thread pool moves a statement
awaiting execution from the low-priority queue to the high-priority queue.

• thread_pool_max_unused_threads: How many sleeping threads to permit.

• thread_pool_size: The number of thread groups in the thread pool. This is the most important
parameter controlling thread pool performance.

• thread_pool_stall_limit: The time before an executing statement is considered to be
stalled.

If any variable implemented by the plugin is set to an illegal value at startup, plugin initialization fails
and the plugin does not load.

For information about setting thread pool parameters, see Section 8.12.7.3, “Thread Pool Tuning”.

• The Performance Schema exposes information about the thread pool and may be used to
investigate operational performance. For more information, see Chapter 21, MySQL Performance
Schema.

To be usable by the server, the thread pool library object file must be located in the MySQL plugin
directory (the directory named by the plugin_dir system variable). To enable thread pool capability,
load the plugins to be used by starting the server with the --plugin-load option. For example, if
you name just the plugin object file, the server loads all plugins that it contains (that is, the thread pool
plugin and all the INFORMATION_SCHEMA tables). To do this, put these lines in your my.cnf file:

[mysqld]
plugin-load=thread_pool.so

That is equivalent to loading all thread pool plugins by naming them individually:

http://dev.mysql.com/doc/refman/5.6/en/tp-thread-state-table.html
http://dev.mysql.com/doc/refman/5.6/en/tp-thread-group-state-table.html
http://dev.mysql.com/doc/refman/5.6/en/tp-thread-group-stats-table.html
http://dev.mysql.com/doc/refman/5.6/en/thread-pool-i_s-tables.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_algorithm
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_high_priority_connection
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_prio_kickup_timer
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_max_unused_threads
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_size
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit

The Thread Pool Plugin

1166

[mysqld]
plugin-load=thread_pool.so
plugin-load=thread_pool=thread_pool.so;tp_thread_state=thread_pool.so;tp_thread_group_state=thread_pool.so;tp_thread_group_stats=thread_pool.so

If object files have a suffix different from .so on your system, substitute the correct suffix (for example,
.dll on Windows).

If necessary, set the value of the plugin_dir system variable to tell the server the location of the
plugin directory.

If desired, you can load individual plugins from the library file. To load the thread pool plugin but not the
INFORMATION_SCHEMA tables, use an option like this:

[mysqld]
plugin-load=thread_pool=thread_pool.so

To load the thread pool plugin and only the TP_THREAD_STATE INFORMATION_SCHEMA table, use an
option like this:

[mysqld]
plugin-load=thread_pool=thread_pool.so;TP_THREAD_STATE=thread_pool.so

However, if you do not load all the INFORMATION_SCHEMA tables, some or all MySQL Enterprise
Monitor thread pool graphs will be empty.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.

If the server loads the thread plugin successfully, it sets the thread_handling system variable to
dynamically-loaded. If the plugin fails to load, the server writes a message to the error log.

8.12.7.2 Thread Pool Operation

The thread pool consists of a number of thread groups, each of which manages a set of client
connections. As connections are established, the thread pool assigns them to thread groups in round-
robin fashion.

The number of thread groups is configurable using the thread_pool_size system variable. The
default number of groups is 16. For guidelines on setting this variable, see Section 8.12.7.3, “Thread
Pool Tuning”.

The maximum number of threads per group is 4096 (or 4095 on some systems where one thread is
used internally).

The thread pool separates connections and threads, so there is no fixed relationship between
connections and the threads that execute statements received from those connections. This differs
from the default thread-handling model that associates one thread with one connection such that the
thread executes all statements from the connection.

The thread pool tries to ensure a maximum of one thread executing in each group at any time, but
sometimes permits more threads to execute temporarily for best performance. The algorithm works in
the following manner:

• Each thread group has a listener thread that listens for incoming statements from the connections
assigned to the group. When a statement arrives, the thread group either begins executing it
immediately or queues it for later execution:

• Immediate execution occurs if the statement is the only one received and no statements are
queued or currently executing.

http://dev.mysql.com/doc/refman/5.6/en/tp-thread-state-table.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_size

The Thread Pool Plugin

1167

• Queuing occurs if the statement cannot begin executing immediately.

• If immediate execution occurs, execution is performed by the listener thread. (This means that
temporarily no thread in the group is listening.) If the statement finishes quickly, the executing thread
returns to listening for statements. Otherwise, the thread pool considers the statement stalled and
starts another thread as a listener thread (creating it if necessary). To ensure that no thread group
becomes blocked by stalled statements, the thread pool has a background thread that regularly
monitors thread group states.

By using the listening thread to execute a statement that can begin immediately, there is no need to
create an additional thread if the statement finishes quickly. This ensures the most efficient execution
possible in the case of a low number of concurrent threads.

When the thread pool plugin starts, it creates one thread per group (the listener thread), plus the
background thread. Additional threads are created as necessary to execute statements.

• The value of the thread_pool_stall_limit system variable determines the meaning of “finishes
quickly” in the previous item. The default time before threads are considered stalled is 60ms but
can be set to a maximum of 6s. This parameter is configurable to enable you to strike a balance
appropriate for the server work load. Short wait values permit threads to start more quickly. Short
values are also better for avoiding deadlock situations. Long wait values are useful for workloads that
include long-running statements, to avoid starting too many new statements while the current ones
execute.

• The thread pool focuses on limiting the number of concurrent short-running statements. Before an
executing statement reaches the stall time, it prevents other statements from beginning to execute.
If the statement executes past the stall time, it is permitted to continue but no longer prevents other
statements from starting. In this way, the thread pool tries to ensure that in each thread group there
is never more than one short-running statement, although there might be multiple long-running
statements. It is undesirable to let long-running statements prevent other statements from executing
because there is no limit on the amount of waiting that might be necessary. For example, on a
replication master, a thread that is sending binary log events to a slave effectively runs forever.

• A statement becomes blocked if it encounters a disk I/O operation or a user level lock (row lock
or table lock). The block would cause the thread group to become unused, so there are callbacks
to the thread pool to ensure that the thread pool can immediately start a new thread in this group
to execute another statement. When a blocked thread returns, the thread pool permits it to restart
immediately.

• There are two queues, a high-priority queue and a low-priority queue. The first statement in a
transaction goes to the low-priority queue. Any following statements for the transaction go to
the high-priority queue if the transaction is ongoing (statements for it have begun executing),
or to the low-priority queue otherwise. Queue assignment can be affected by enabling the
thread_pool_high_priority_connection system variable, which causes all queued
statements for a session to go into the high-priority queue.

Statements for a nontransactional storage engine, or a transactional engine if autocommit is
enabled, are treated as low-priority statements because in this case each statement is a transaction.
Thus, given a mix of statements for InnoDB and MyISAM tables, the thread pool prioritizes those
for InnoDB over those for MyISAM unless autocommit is enabled. With autocommit enabled, all
statements will be low priority.

• When the thread group selects a queued statement for execution, it first looks in the high-priority
queue, then in the low-priority queue. If a statement is found, it is removed from its queue and begins
to execute.

• If a statement stays in the low-priority queue too long, the thread pool moves to the high-priority
queue. The value of the thread_pool_prio_kickup_timer system variable controls the time
before movement. For each thread group, a maximum of one statement per 10ms or 100 per second
will be moved from the low-priority queue to the high-priority queue.

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_high_priority_connection
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_prio_kickup_timer

The Thread Pool Plugin

1168

• The thread pool reuses the most active threads to obtain a much better use of CPU caches. This is a
small adjustment that has a great impact on performance.

• While a thread executes a statement from a user connection, Performance Schema instrumentation
accounts thread activity to the user connection. Otherwise, Performance Schema accounts activity to
the thread pool.

Here are examples of conditions under which a thread group might have multiple threads started to
execute statements:

• One thread begins executing a statement, but runs long enough to be considered stalled. The thread
group permits another thread to begin executing another statement even through the first thread is
still executing.

• One thread begins executing a statement, then becomes blocked and reports this back to the thread
pool. The thread group permits another thread to begin executing another statement.

• One thread begins executing a statement, becomes blocked, but does not report back that it is
blocked because the block does not occur in code that has been instrumented with thread pool
callbacks. In this case, the thread appears to the thread group to be still running. If the block lasts
long enough for the statement to be considered stalled, the group permits another thread to begin
executing another statement.

The thread pool is designed to be scalable across an increasing number of connections. It is also
designed to avoid deadlocks that can arise from limiting the number of actively executing statements.
It is important that threads that do not report back to the thread pool do not prevent other statements
from executing and thus cause the thread pool to become deadlocked. Examples of such statements
follow:

• Long-running statements. These would lead to all resources used by only a few statements and they
could prevent all others from accessing the server.

• Binary log dump threads that read the binary log and send it to slaves. This is a kind of long-
running “statement” that runs for a very long time, and that should not prevent other statements from
executing.

• Statements blocked on a row lock, table lock, sleep, or any other blocking activity that has not been
reported back to the thread pool by MySQL Server or a storage engine.

In each case, to prevent deadlock, the statement is moved to the stalled category when it does not
complete quickly, so that the thread group can permit another statement to begin executing. With this
design, when a thread executes or becomes blocked for an extended time, the thread pool moves the
thread to the stalled category and for the rest of the statement's execution, it does not prevent other
statements from executing.

The maximum number of threads that can occur is the sum of max_connections and
thread_pool_size. This can happen in a situation where all connections are in execution mode and
an extra thread is created per group to listen for more statements. This is not necessarily a state that
happens often, but it is theoretically possible.

8.12.7.3 Thread Pool Tuning

This section provides guidelines on setting thread pool system variables for best performance,
measured using a metric such as transactions per second.

thread_pool_size is the most important parameter controlling thread pool performance. It can be
set only at server startup. Our experience in testing the thread pool indicates the following:

• If the primary storage engine is InnoDB, the optimal thread_pool_size setting is likely to be
between 16 and 36, with the most common optimal values tending to be from 24 to 36. We have

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_size
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_size
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_size

The Thread Pool Plugin

1169

not seen any situation where the setting has been optimal beyond 36. There may be special cases
where a value smaller than 16 is optimal.

For workloads such as DBT2 and Sysbench, the optimum for InnoDB seems to be usually around
36. For very write-intensive workloads, the optimal setting can sometimes be lower.

• If the primary storage engine is MyISAM, the thread_pool_size setting should be fairly low. We
tend to get optimal performance for values from 4 to 8. Higher values tend to have a slightly negative
but not dramatic impact on performance.

Another system variable, thread_pool_stall_limit, is important for handling of blocked and
long-running statements. If all calls that block the MySQL Server are reported to the thread pool, it
would always know when execution threads are blocked. However, this may not always be true. For
example, blocks could occur in code that has not been instrumented with thread pool callbacks. For
such cases, the thread pool must be able to identify threads that appear to be blocked. This is done by
means of a timeout, the length of which can be tuned using the thread_pool_stall_limit system
variable. This parameter ensures that the server does not become completely blocked. The value of
thread_pool_stall_limit has an upper limit of 6 seconds to prevent the risk of a deadlocked
server.

thread_pool_stall_limit also enables the thread pool to handle long-running statements. If a
long-running statement was permitted to block a thread group, all other connections assigned to the
group would be blocked and unable to start execution until the long-running statement completed. In
the worst case, this could take hours or even days.

The value of thread_pool_stall_limit should be chosen such that statements that execute
longer than its value are considered stalled. Stalled statements generate a lot of extra overhead since
they involve extra context switches and in some cases even extra thread creations. On the other hand,
setting the thread_pool_stall_limit parameter too high means that long-running statements will
block a number of short-running statements for longer than necessary. Short wait values permit threads
to start more quickly. Short values are also better for avoiding deadlock situations. Long wait values are
useful for workloads that include long-running statements, to avoid starting too many new statements
while the current ones execute.

Suppose a server executes a workload where 99.9% of the statements complete within 100ms even
when the server is loaded, and the remaining statements take between 100ms and 2 hours fairly
evenly spread. In this case, it would make sense to set thread_pool_stall_limit to 10 (meaning
100ms). The default value of 60ms is okay for servers that primarily execute very simple statements.

The thread_pool_stall_limit parameter can be changed at runtime to enable you to strike a
balance appropriate for the server work load. Assuming that the TP_THREAD_GROUP_STATS table is
enabled, you can use the following query to determine the fraction of executed statements that stalled:

SELECT SUM(STALLED_QUERIES_EXECUTED) / SUM(QUERIES_EXECUTED)
FROM information_schema.TP_THREAD_GROUP_STATS;

This number should be as low as possible. To decrease the likelihood of statements stalling, increase
the value of thread_pool_stall_limit.

When a statement arrives, what is the maximum time it can be delayed before it actually starts
executing? Suppose that the following conditions apply:

• There are 200 statements queued in the low-priority queue.

• There are 10 statements queued in the high-priority queue.

• thread_pool_prio_kickup_timer is set to 10000 (10 seconds).

• thread_pool_stall_limit is set to 100 (1 second).

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_size
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_prio_kickup_timer
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_thread_pool_stall_limit

Measuring Performance (Benchmarking)

1170

In the worst case, the 10 high-priority statements represent 10 transactions that continue executing for
a long time. Thus, in the worst case, no statements will be moved to the high-priority queue because
it will always already contain statements awaiting execution. After 10 seconds, the new statement is
eligible to be moved to the high-priority queue. However, before it can be moved, all the statements
before it must be moved as well. This could take another 2 seconds because a maximum of 100
statements per second are moved to the high-priority queue. Now when the statement reaches the
high-priority queue, there could potentially be many long-running statements ahead of it. In the worst
case, every one of those will become stalled and it will take 1 second for each statement before the
next statement is retrieved from the high-priority queue. Thus, in this scenario, it will take 222 seconds
before the new statement starts executing.

This example shows a worst case for an application. How to handle it depends on the application. If
the application has high requirements for the response time, it should most likely throttle users at a
higher level itself. Otherwise, it can use the thread pool configuration parameters to set some kind of a
maximum waiting time.

8.13 Measuring Performance (Benchmarking)

To measure performance, consider the following factors:

• Whether you are measuring the speed of a single operation on a quiet system, or how a set of
operations (a “workload”) works over a period of time. With simple tests, you usually test how
changing one aspect (a configuration setting, the set of indexes on a table, the SQL clauses in a
query) affects performance. Benchmarks are typically long-running and elaborate performance tests,
where the results could dictate high-level choices such as hardware and storage configuration, or
how soon to upgrade to a new MySQL version.

• For benchmarking, sometimes you must simulate a heavy database workload to get an accurate
picture.

• Performance can vary depending on so many different factors that a difference of a few percentage
points might not be a decisive victory. The results might shift the opposite way when you test in a
different environment.

• Certain MySQL features help or do not help performance depending on the workload. For
completeness, always test performance with those features turned on and turned off. The two most
important features to try with each workload are the MySQL query cache, and the adaptive hash
index for InnoDB tables.

This section progresses from simple and direct measurement techniques that a single developer can
do, to more complicated ones that require additional expertise to perform and interpret the results.

8.13.1 Measuring the Speed of Expressions and Functions

To measure the speed of a specific MySQL expression or function, invoke the BENCHMARK() function
using the mysql client program. Its syntax is BENCHMARK(loop_count,expression). The return
value is always zero, but mysql prints a line displaying approximately how long the statement took to
execute. For example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000
simple addition expressions in 0.32 seconds on that system.

Using Your Own Benchmarks

1171

The built-in MySQL functions are typically highly optimized, but there may be some exceptions.
BENCHMARK() is an excellent tool for finding out if some function is a problem for your queries.

8.13.2 Using Your Own Benchmarks

Benchmark your application and database to find out where the bottlenecks are. After fixing one
bottleneck (or by replacing it with a “dummy” module), you can proceed to identify the next bottleneck.
Even if the overall performance for your application currently is acceptable, you should at least make a
plan for each bottleneck and decide how to solve it if someday you really need the extra performance.

A free benchmark suite is the Open Source Database Benchmark, available at http://
osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have
had many customers who contact us when they have a (tested) system in production and have
encountered load problems. In most cases, performance problems turn out to be due to issues of
basic database design (for example, table scans are not good under high load) or problems with the
operating system or libraries. Most of the time, these problems would be much easier to fix if the
systems were not already in production.

To avoid problems like this, benchmark your whole application under the worst possible load:

• The mysqlslap program can be helpful for simulating a high load produced by multiple clients
issuing queries simultaneously. See Section 4.5.8, “mysqlslap — Load Emulation Client”.

• You can also try benchmarking packages such as SysBench and DBT2, available at https://
launchpad.net/sysbench, and http://osdldbt.sourceforge.net/#dbt2.

These programs or packages can bring a system to its knees, so be sure to use them only on your
development systems.

8.13.3 Measuring Performance with performance_schema

You can query the tables in the performance_schema database to see real-time information about
the performance characteristics of your server and the applications it is running. See Chapter 21,
MySQL Performance Schema for details.

8.14 Examining Thread Information

When you are attempting to ascertain what your MySQL server is doing, it can be helpful to examine
the process list, which is the set of threads currently executing within the server. Process list
information is available from these sources:

• The SHOW [FULL] PROCESSLIST statement: Section 13.7.5.29, “SHOW PROCESSLIST Syntax”

• The SHOW PROFILE statement: Section 13.7.5.31, “SHOW PROFILES Syntax”

• The INFORMATION_SCHEMA PROCESSLIST table: Section 20.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”

• The mysqladmin processlist command: Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”

• The performance_schema.threads table: Section 21.9.15, “Performance Schema Miscellaneous
Tables”

Access to threads does not require a mutex and has minimal impact on server performance.
INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance
consequences because they require a mutex. threads also shows information about background

http://osdb.sourceforge.net/
http://osdb.sourceforge.net/
https://launchpad.net/sysbench
https://launchpad.net/sysbench
http://osdldbt.sourceforge.net/#dbt2

Thread Command Values

1172

threads, which INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST do not. This means
that threads can be used to monitor activity the other thread information sources cannot.

You can always view information about your own threads. To view information about threads being
executed for other accounts, you must have the PROCESS privilege.

Each process list entry contains several pieces of information:

• Id is the connection identifier for the client associated with the thread.

• User and Host indicate the account associated with the thread.

• db is the default database for the thread, or NULL if none is selected.

• Command and State indicate what the thread is doing.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• Time indicates how long the thread has been in its current state. The thread's notion of the current
time may be altered in some cases: The thread can change the time with SET TIMESTAMP =
value. For a thread running on a slave that is processing events from the master, the thread time is
set to the time found in the events and thus reflects current time on the master and not the slave.

• Info contains the text of the statement being executed by the thread, or NULL if it is not executing
one. By default, this value contains only the first 100 characters of the statement. To see the
complete statements, use SHOW FULL PROCESSLIST.

The following sections list the possible Command values, and State values grouped by category. The
meaning for some of these values is self-evident. For others, additional description is provided.

8.14.1 Thread Command Values

A thread can have any of the following Command values:

• Binlog Dump

This is a thread on a master server for sending binary log contents to a slave server.

• Change user

The thread is executing a change-user operation.

• Close stmt

The thread is closing a prepared statement.

• Connect

A replication slave is connected to its master.

• Connect Out

A replication slave is connecting to its master.

• Create DB

The thread is executing a create-database operation.

• Daemon

This thread is internal to the server, not a thread that services a client connection.

Thread Command Values

1173

• Debug

The thread is generating debugging information.

• Delayed insert

The thread is a delayed-insert handler.

• Drop DB

The thread is executing a drop-database operation.

• Error

• Execute

The thread is executing a prepared statement.

• Fetch

The thread is fetching the results from executing a prepared statement.

• Field List

The thread is retrieving information for table columns.

• Init DB

The thread is selecting a default database.

• Kill

The thread is killing another thread.

• Long Data

The thread is retrieving long data in the result of executing a prepared statement.

• Ping

The thread is handling a server-ping request.

• Prepare

The thread is preparing a prepared statement.

• Processlist

The thread is producing information about server threads.

• Query

The thread is executing a statement.

• Quit

The thread is terminating.

• Refresh

The thread is flushing table, logs, or caches, or resetting status variable or replication server
information.

• Register Slave

General Thread States

1174

The thread is registering a slave server.

• Reset stmt

The thread is resetting a prepared statement.

• Set option

The thread is setting or resetting a client statement-execution option.

• Shutdown

The thread is shutting down the server.

• Sleep

The thread is waiting for the client to send a new statement to it.

• Statistics

The thread is producing server-status information.

• Table Dump

The thread is sending table contents to a slave server.

• Time

Unused.

8.14.2 General Thread States

The following list describes thread State values that are associated with general query processing
and not more specialized activities such as replication. Many of these are useful only for finding bugs in
the server.

• After create

This occurs when the thread creates a table (including internal temporary tables), at the end of the
function that creates the table. This state is used even if the table could not be created due to some
error.

• Analyzing

The thread is calculating a MyISAM table key distributions (for example, for ANALYZE TABLE).

• checking permissions

The thread is checking whether the server has the required privileges to execute the statement.

• Checking table

The thread is performing a table check operation.

• cleaning up

The thread has processed one command and is preparing to free memory and reset certain state
variables.

• closing tables

The thread is flushing the changed table data to disk and closing the used tables. This should be a
fast operation. If not, verify that you do not have a full disk and that the disk is not in very heavy use.

General Thread States

1175

• converting HEAP to MyISAM

The thread is converting an internal temporary table from a MEMORY table to an on-disk MyISAM
table.

• copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the new
structure has been created but before rows are copied into it.

For a thread in this state, the Performance Schema can be used to obtain about the progress of the
copy operation. See Section 21.9.5, “Performance Schema Stage Event Tables”.

• Copying to group table

If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and
copied to a temporary table.

• Copying to tmp table

The server is copying to a temporary table in memory.

• altering table

The server is in the process of executing an in-place ALTER TABLE.

• Copying to tmp table on disk

The server is copying to a temporary table on disk. The temporary result set has become too large
(see Section 8.4.4, “Internal Temporary Table Use in MySQL”). Consequently, the thread is changing
the temporary table from in-memory to disk-based format to save memory.

• Creating index

The thread is processing ALTER TABLE ... ENABLE KEYS for a MyISAM table.

• Creating sort index

The thread is processing a SELECT that is resolved using an internal temporary table.

• creating table

The thread is creating a table. This includes creation of temporary tables.

• Creating tmp table

The thread is creating a temporary table in memory or on disk. If the table is created in memory
but later is converted to an on-disk table, the state during that operation will be Copying to tmp
table on disk.

• committing alter table to storage engine

The server has finished an in-place ALTER TABLE and is committing the result.

• deleting from main table

The server is executing the first part of a multiple-table delete. It is deleting only from the first table,
and saving columns and offsets to be used for deleting from the other (reference) tables.

• deleting from reference tables

The server is executing the second part of a multiple-table delete and deleting the matched rows
from the other tables.

General Thread States

1176

• discard_or_import_tablespace

The thread is processing an ALTER TABLE ... DISCARD TABLESPACE or ALTER TABLE ...
IMPORT TABLESPACE statement.

• end

This occurs at the end but before the cleanup of ALTER TABLE, CREATE VIEW, DELETE, INSERT,
SELECT, or UPDATE statements.

• executing

The thread has begun executing a statement.

• Execution of init_command

The thread is executing statements in the value of the init_command system variable.

• freeing items

The thread has executed a command. Some freeing of items done during this state involves the
query cache. This state is usually followed by cleaning up.

• Flushing tables

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables.

• FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

• init

This occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE
statements. Actions taken by the server in this state include flushing the binary log, the InnoDB log,
and some query cache cleanup operations.

For the end state, the following operations could be happening:

• Removing query cache entries after data in a table is changed

• Writing an event to the binary log

• Freeing memory buffers, including for blobs

• Killed

Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag.
The flag is checked in each major loop in MySQL, but in some cases it might still take a short time
for the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the
other thread releases its lock.

• logging slow query

The thread is writing a statement to the slow-query log.

• NULL

This state is used for the SHOW PROCESSLIST state.

• login

The initial state for a connection thread until the client has been authenticated successfully.

General Thread States

1177

• manage keys

The server is enabling or disabling a table index.

• Opening tables, Opening table

The thread is trying to open a table. This is should be very fast procedure, unless something
prevents opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent opening
a table until the statement is finished. It is also worth checking that your table_open_cache value
is large enough.

• optimizing

The server is performing initial optimizations for a query.

• preparing

This state occurs during query optimization.

• Purging old relay logs

The thread is removing unneeded relay log files.

• query end

This state occurs after processing a query but before the freeing items state.

• Reading from net

The server is reading a packet from the network. This state is called Receiving from client as
of MySQL 5.7.8.

• Receiving from client

The server is reading a packet from the client. This state is called Reading from net prior to
MySQL 5.7.8.

• Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the
distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all
duplicated rows before sending the result to the client.

• removing tmp table

The thread is removing an internal temporary table after processing a SELECT statement. This state
is not used if no temporary table was created.

• rename

The thread is renaming a table.

• rename result table

The thread is processing an ALTER TABLE statement, has created the new table, and is renaming it
to replace the original table.

• Reopen tables

The thread got a lock for the table, but noticed after getting the lock that the underlying table
structure changed. It has freed the lock, closed the table, and is trying to reopen it.

• Repair by sorting

General Thread States

1178

The repair code is using a sort to create indexes.

• preparing for alter table

The server is preparing to execute an in-place ALTER TABLE.

• Repair done

The thread has completed a multi-threaded repair for a MyISAM table.

• Repair with keycache

The repair code is using creating keys one by one through the key cache. This is much slower than
Repair by sorting.

• Rolling back

The thread is rolling back a transaction.

• Saving state

For MyISAM table operations such as repair or analysis, the thread is saving the new table state to
the .MYI file header. State includes information such as number of rows, the AUTO_INCREMENT
counter, and key distributions.

• Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be done
if the UPDATE is changing the index that is used to find the involved rows.

• Sending data

The thread is reading and processing rows for a SELECT statement, and sending data to the client.
Because operations occurring during this state tend to perform large amounts of disk access (reads),
it is often the longest-running state over the lifetime of a given query.

• Sending to client

The server is writing a packet to the client. This state is called Writing to net prior to MySQL
5.7.8.

• setup

The thread is beginning an ALTER TABLE operation.

• Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

• Sorting for order

The thread is doing a sort to satisfy a ORDER BY.

• Sorting index

The thread is sorting index pages for more efficient access during a MyISAM table optimization
operation.

• Sorting result

For a SELECT statement, this is similar to Creating sort index, but for nontemporary tables.

• statistics

General Thread States

1179

The server is calculating statistics to develop a query execution plan. If a thread is in this state for a
long time, the server is probably disk-bound performing other work.

• System lock

The thread is going to request or is waiting for an internal or external system lock for the table. If this
state is being caused by requests for external locks and you are not using multiple mysqld servers
that are accessing the same MyISAM tables, you can disable external system locks with the --
skip-external-locking option. However, external locking is disabled by default, so it is likely
that this option will have no effect. For SHOW PROFILE, this state means the thread is requesting the
lock (not waiting for it).

• update

The thread is getting ready to start updating the table.

• Updating

The thread is searching for rows to update and is updating them.

• updating main table

The server is executing the first part of a multiple-table update. It is updating only the first table, and
saving columns and offsets to be used for updating the other (reference) tables.

• updating reference tables

The server is executing the second part of a multiple-table update and updating the matched rows
from the other tables.

• User lock

The thread is going to request or is waiting for an advisory lock requested with a GET_LOCK() call.
For SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).

• User sleep

The thread has invoked a SLEEP() call.

• Waiting for commit lock

FLUSH TABLES WITH READ LOCK is waiting for a commit lock.

• Waiting for global read lock

FLUSH TABLES WITH READ LOCK is waiting for a global read lock or the global read_only
system variable is being set.

• Waiting for tables, Waiting for table flush

The thread got a notification that the underlying structure for a table has changed and it needs to
reopen the table to get the new structure. However, to reopen the table, it must wait until all other
threads have closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• Waiting for lock_type lock

The server is waiting to acquire a lock, where lock_type indicates the type of lock:

• Waiting for event metadata lock

Query Cache Thread States

1180

• Waiting for global read lock

• Waiting for schema metadata lock

• Waiting for stored function metadata lock

• Waiting for stored procedure metadata lock

• Waiting for table level lock

• Waiting for table metadata lock

• Waiting for trigger metadata lock

• Waiting on cond

A generic state in which the thread is waiting for a condition to become true. No specific state
information is available.

• Writing to net

The server is writing a packet to the network. This state is called Sending to client as of
MySQL 5.7.8.

8.14.3 Query Cache Thread States

These thread states are associated with the query cache (see Section 8.10.3, “The MySQL Query
Cache”).

• checking privileges on cached query

The server is checking whether the user has privileges to access a cached query result.

• checking query cache for query

The server is checking whether the current query is present in the query cache.

• invalidating query cache entries

Query cache entries are being marked invalid because the underlying tables have changed.

• sending cached result to client

The server is taking the result of a query from the query cache and sending it to the client.

• storing result in query cache

The server is storing the result of a query in the query cache.

• Waiting for query cache lock

This state occurs while a session is waiting to take the query cache lock. This can happen for any
statement that needs to perform some query cache operation, such as an INSERT or DELETE that
invalidates the query cache, a SELECT that looks for a cached entry, RESET QUERY CACHE, and so
forth.

8.14.4 Replication Master Thread States

The following list shows the most common states you may see in the State column for the master's
Binlog Dump thread. If you see no Binlog Dump threads on a master server, this means that
replication is not running—that is, that no slaves are currently connected.

Replication Slave I/O Thread States

1181

• Sending binlog event to slave

Binary logs consist of events, where an event is usually an update plus some other information. The
thread has read an event from the binary log and is now sending it to the slave.

• Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the slave.

• Master has sent all binlog to slave; waiting for more updates

The thread has read all remaining updates from the binary logs and sent them to the slave. The
thread is now idle, waiting for new events to appear in the binary log resulting from new updates
occurring on the master.

• Waiting to finalize termination

A very brief state that occurs as the thread is stopping.

8.14.5 Replication Slave I/O Thread States

The following list shows the most common states you see in the State column for a slave server I/O
thread. This state also appears in the Slave_IO_State column displayed by SHOW SLAVE STATUS,
so you can get a good view of what is happening by using that statement.

• Waiting for master update

The initial state before Connecting to master.

• Connecting to master

The thread is attempting to connect to the master.

• Checking master version

A state that occurs very briefly, after the connection to the master is established.

• Registering slave on master

A state that occurs very briefly after the connection to the master is established.

• Requesting binlog dump

A state that occurs very briefly, after the connection to the master is established. The thread sends
to the master a request for the contents of its binary logs, starting from the requested binary log file
name and position.

• Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while it
sleeps, then tries to reconnect periodically. The interval between retries can be specified using the
CHANGE MASTER TO statement.

• Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the master.

• Waiting for master to send event

The thread has connected to the master and is waiting for binary log events to arrive. This can last
for a long time if the master is idle. If the wait lasts for slave_net_timeout seconds, a timeout
occurs. At that point, the thread considers the connection to be broken and makes an attempt to
reconnect.

Replication Slave SQL Thread States

1182

• Queueing master event to the relay log

The thread has read an event and is copying it to the relay log so that the SQL thread can process it.

• Waiting to reconnect after a failed master event read

An error occurred while reading (due to disconnection). The thread is sleeping for the number of
seconds set by the CHANGE MASTER TO statement (default 60) before attempting to reconnect.

• Reconnecting after a failed master event read

The thread is trying to reconnect to the master. When connection is established again, the state
becomes Waiting for master to send event.

• Waiting for the slave SQL thread to free enough relay log space

You are using a nonzero relay_log_space_limit value, and the relay logs have grown large
enough that their combined size exceeds this value. The I/O thread is waiting until the SQL thread
frees enough space by processing relay log contents so that it can delete some relay log files.

• Waiting for slave mutex on exit

A state that occurs briefly as the thread is stopping.

• Waiting for its turn to commit

A state that occurs when the slave thread is waiting for older worker threads to commit if
slave_preserve_commit_order is enabled.

8.14.6 Replication Slave SQL Thread States

The following list shows the most common states you may see in the State column for a slave server
SQL thread:

• Waiting for the next event in relay log

The initial state before Reading event from the relay log.

• Reading event from the relay log

The thread has read an event from the relay log so that the event can be processed.

• Making temporary file (append) before replaying LOAD DATA INFILE

The thread is executing a LOAD DATA INFILE statement and is appending the data to a temporary
file containing the data from which the slave will read rows.

• Making temporary file (create) before replaying LOAD DATA INFILE

The thread is executing a LOAD DATA INFILE statement and is creating a temporary file containing
the data from which the slave will read rows. This state can only be encountered if the original LOAD
DATA INFILE statement was logged by a master running a version of MySQL earlier than version
5.0.3.

• Slave has read all relay log; waiting for more updates

The thread has processed all events in the relay log files, and is now waiting for the I/O thread to
write new events to the relay log.

• Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

Replication Slave Connection Thread States

1183

• Waiting until MASTER_DELAY seconds after master executed event

The SQL thread has read an event but is waiting for the slave delay to lapse. This delay is set with
the MASTER_DELAY option of CHANGE MASTER TO.

• Killing slave

The thread is processing a STOP SLAVE statement.

• Waiting for an event from Coordinator

Using the multi-threaded slave (slave_parallel_workers is greater than 1), one of the slave
worker threads is waiting for an event from the coordinator thread.

The Info column for the SQL thread may also show the text of a statement. This indicates that the
thread has read an event from the relay log, extracted the statement from it, and may be executing it.

8.14.7 Replication Slave Connection Thread States

These thread states occur on a replication slave but are associated with connection threads, not with
the I/O or SQL threads.

• Changing master

The thread is processing a CHANGE MASTER TO statement.

• Killing slave

The thread is processing a STOP SLAVE statement.

• Opening master dump table

This state occurs after Creating table from master dump.

• Reading master dump table data

This state occurs after Opening master dump table.

• Rebuilding the index on master dump table

This state occurs after Reading master dump table data.

8.14.8 Event Scheduler Thread States

These states occur for the Event Scheduler thread, threads that are created to execute scheduled
events, or threads that terminate the scheduler.

• Clearing

The scheduler thread or a thread that was executing an event is terminating and is about to end.

• Initialized

The scheduler thread or a thread that will execute an event has been initialized.

• Waiting for next activation

The scheduler has a nonempty event queue but the next activation is in the future.

• Waiting for scheduler to stop

The thread issued SET GLOBAL event_scheduler=OFF and is waiting for the scheduler to stop.

Event Scheduler Thread States

1184

• Waiting on empty queue

The scheduler's event queue is empty and it is sleeping.

1185

Chapter 9 Language Structure

Table of Contents
9.1 Literal Values ... 1185

9.1.1 String Literals ... 1185
9.1.2 Number Literals ... 1188
9.1.3 Date and Time Literals ... 1188
9.1.4 Hexadecimal Literals .. 1190
9.1.5 Boolean Literals ... 1191
9.1.6 Bit-Field Literals ... 1191
9.1.7 NULL Values ... 1191

9.2 Schema Object Names ... 1191
9.2.1 Identifier Qualifiers ... 1193
9.2.2 Identifier Case Sensitivity ... 1194
9.2.3 Mapping of Identifiers to File Names ... 1196
9.2.4 Function Name Parsing and Resolution ... 1198

9.3 Keywords and Reserved Words ... 1201
9.4 User-Defined Variables ... 1207
9.5 Expression Syntax .. 1211
9.6 Comment Syntax .. 1212

This chapter discusses the rules for writing the following elements of SQL statements when using
MySQL:

• Literal values such as strings and numbers

• Identifiers such as database, table, and column names

• Keywords and reserved words

• User-defined and system variables

• Comments

9.1 Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers,
hexadecimal values, boolean values, and NULL. The section also covers the various nuances and
“gotchas” that you may run into when dealing with these basic types in MySQL.

9.1.1 String Literals

A string is a sequence of bytes or characters, enclosed within either single quote (“'”) or double quote
(“"”) characters. Examples:

'a string'
"another string"

Quoted strings placed next to each other are concatenated to a single string. The following lines are
equivalent:

'a string'
'a' ' ' 'string'

If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotation
marks because a string quoted within double quotation marks is interpreted as an identifier.

String Literals

1186

A binary string is a string of bytes that has no character set or collation. A nonbinary string is a string of
characters that has a character set and collation. For both types of strings, comparisons are based on
the numeric values of the string unit. For binary strings, the unit is the byte. For nonbinary strings the
unit is the character and some character sets support multibyte characters. Character value ordering is
a function of the string collation.

String literals may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For more information about these forms of string syntax, see Section 10.1.3.5, “Character String Literal
Character Set and Collation”, and Section 10.1.3.6, “National Character Set”.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES SQL
mode is enabled. Each of these sequences begins with a backslash (“\”), known as the escape
character. MySQL recognizes the escape sequences shown in Table 9.1, “Special Character Escape
Sequences”. For all other escape sequences, backslash is ignored. That is, the escaped character is
interpreted as if it was not escaped. For example, “\x” is just “x”. These sequences are case sensitive.
For example, “\b” is interpreted as a backspace, but “\B” is interpreted as “B”. Escape processing is
done according to the character set indicated by the character_set_connection system variable.
This is true even for strings that are preceded by an introducer that indicates a different character set,
as discussed in Section 10.1.3.5, “Character String Literal Character Set and Collation”.

Table 9.1 Special Character Escape Sequences

Escape
Sequence

Character Represented by Sequence

\0 An ASCII NUL (X'00') character

\' A single quote (“'”) character

\" A double quote (“"”) character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character

\Z ASCII 26 (Control+Z); see note following the table

\\ A backslash (“\”) character

\% A “%” character; see note following the table

_ A “_” character; see note following the table

The ASCII 26 character can be encoded as “\Z” to enable you to work around the problem that ASCII
26 stands for END-OF-FILE on Windows. ASCII 26 within a file causes problems if you try to use
mysql db_name < file_name.

String Literals

1187

The “\%” and “_” sequences are used to search for literal instances of “%” and “_” in pattern-matching
contexts where they would otherwise be interpreted as wildcard characters. See the description of
the LIKE operator in Section 12.5.1, “String Comparison Functions”. If you use “\%” or “_” outside of
pattern-matching contexts, they evaluate to the strings “\%” and “_”, not to “%” and “_”.

There are several ways to include quote characters within a string:

• A “'” inside a string quoted with “'” may be written as “''”.

• A “"” inside a string quoted with “"” may be written as “""”.

• Precede the quote character by an escape character (“\”).

• A “'” inside a string quoted with “"” needs no special treatment and need not be doubled or escaped.
In the same way, “"” inside a string quoted with “'” needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+

mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

If you want to insert binary data into a string column (such as a BLOB column), you should represent
certain characters by escape sequences. Backslash (“\”) and the quote character used to quote
the string must be escaped. In certain client environments, it may also be necessary to escape
NUL or Control+Z. The mysql client truncates quoted strings containing NUL characters if they are
not escaped, and Control+Z may be taken for END-OF-FILE on Windows if not escaped. For the
escape sequences that represent each of these characters, see Table 9.1, “Special Character Escape
Sequences”.

When writing application programs, any string that might contain any of these special characters must
be properly escaped before the string is used as a data value in an SQL statement that is sent to the
MySQL server. You can do this in two ways:

• Process the string with a function that escapes the special characters. In a C program, you can use
the mysql_real_escape_string() C API function to escape characters. See Section 23.8.7.55,
“mysql_real_escape_string()”. Within SQL statements that construct other SQL statements, you
can use the QUOTE() function. The Perl DBI interface provides a quote method to convert special
characters to the proper escape sequences. See Section 23.10, “MySQL Perl API”. Other language
interfaces may provide a similar capability.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder
capability that enables you to insert special markers into a statement string, and then bind data
values to them when you issue the statement. In this case, the API takes care of escaping special
characters in the values for you.

Number Literals

1188

9.1.2 Number Literals

Number literals include exact-value (integer and DECIMAL) literals and approximate-value (floating-
point) literals.

Integers are represented as a sequence of digits. Numbers may include “.” as a decimal separator.
Numbers may be preceded by “-” or “+” to indicate a negative or positive value, respectively. Numbers
represented in scientific notation with a mantissa and exponent are approximate-value numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed.
Examples: 1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-
point) number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types. For more
information about exact-value calculations, see Section 12.21, “Precision Math”.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In
MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

An integer may be used in a floating-point context; it is interpreted as the equivalent floating-point
number.

9.1.3 Date and Time Literals

Date and time values can be represented in several formats, such as quoted strings or as numbers,
depending on the exact type of the value and other factors. For example, in contexts where MySQL
expects a date, it interprets any of '2015-07-21', '20150721', and 20150721 as a date.

This section describes the acceptable formats for date and time literals. For more information about the
temporal data types, such as the range of permitted values, consult these sections:

• Section 11.1.2, “Date and Time Type Overview”

• Section 11.3, “Date and Time Types”

Standard SQL and ODBC Date and Time Literals. Standard SQL permits temporal literals to be
specified using a type keyword and a string. The space between the keyword and string is optional.

DATE 'str'
TIME 'str'
TIMESTAMP 'str'

MySQL recognizes those constructions and also the corresponding ODBC syntax:

{ d 'str' }
{ t 'str' }
{ ts 'str' }

MySQL uses the type keyword and these constructions produce DATE, TIME, and DATETIME values,
respectively, including a trailing fractional seconds part if specified. The TIMESTAMP syntax produces
a DATETIME value in MySQL because DATETIME has a range that more closely corresponds to the
standard SQL TIMESTAMP type, which has a year range from 0001 to 9999. (The MySQL TIMESTAMP
year range is 1970 to 2038.)

String and Numeric Literals in Date and Time Context. MySQL recognizes DATE values in these
formats:

Date and Time Literals

1189

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is permitted:
Any punctuation character may be used as the delimiter between date parts. For example,
'2012-12-31', '2012/12/31', '2012^12^31', and '2012@12@31' are equivalent.

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the
string makes sense as a date. For example, '20070523' and '070523' are interpreted as
'2007-05-23', but '071332' is illegal (it has nonsensical month and day parts) and becomes
'0000-00-00'.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a
date. For example, 19830905 and 830905 are interpreted as '1983-09-05'.

MySQL recognizes DATETIME and TIMESTAMP values in these formats:

• As a string in either 'YYYY-MM-DD HH:MM:SS' or 'YY-MM-DD HH:MM:SS' format. A “relaxed”
syntax is permitted here, too: Any punctuation character may be used as the delimiter between
date parts or time parts. For example, '2012-12-31 11:30:45', '2012^12^31 11+30+45',
'2012/12/31 11*30*45', and '2012@12@31 11^30^45' are equivalent.

The only delimiter recognized between a date and time part and a fractional seconds part is the
decimal point.

The date and time parts can be separated by T rather than a space. For example, '2012-12-31
11:30:45' '2012-12-31T11:30:45' are equivalent.

• As a string with no delimiters in either 'YYYYMMDDHHMMSS' or 'YYMMDDHHMMSS' format, provided
that the string makes sense as a date. For example, '20070523091528' and '070523091528'
are interpreted as '2007-05-23 09:15:28', but '071122129015' is illegal (it has a nonsensical
minute part) and becomes '0000-00-00 00:00:00'.

• As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the number
makes sense as a date. For example, 19830905132800 and 830905132800 are interpreted as
'1983-09-05 13:28:00'.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. The fractional part should always be separated from the rest of the time by a
decimal point; no other fractional seconds delimiter is recognized. For information about fractional
seconds support in MySQL, see Section 11.3.6, “Fractional Seconds in Time Values”.

Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

See also Section 11.3.8, “Two-Digit Years in Dates”.

For values specified as strings that include date part delimiters, it is unnecessary to specify two digits
for month or day values that are less than 10. '2015-6-9' is the same as '2015-06-09'. Similarly,
for values specified as strings that include time part delimiters, it is unnecessary to specify two digits
for hour, minute, or second values that are less than 10. '2015-10-30 1:2:3' is the same as
'2015-10-30 01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it
is assumed to be in YYYYMMDD or YYYYMMDDHHMMSS format and that the year is given by the first 4
digits. If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDHHMMSS format and
that the year is given by the first 2 digits. Numbers that are not one of these lengths are interpreted as
though padded with leading zeros to the closest length.

Values specified as nondelimited strings are interpreted according their length. For a string 8 or 14
characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is
assumed to be given by the first 2 characters. The string is interpreted from left to right to find year,

Hexadecimal Literals

1190

month, day, hour, minute, and second values, for as many parts as are present in the string. This
means you should not use strings that have fewer than 6 characters. For example, if you specify
'9903', thinking that represents March, 1999, MySQL converts it to the “zero” date value. This occurs
because the year and month values are 99 and 03, but the day part is completely missing. However,
you can explicitly specify a value of zero to represent missing month or day parts. For example, to
insert the value '1999-03-00', use '990300'.

MySQL recognizes TIME values in these formats:

• As a string in 'D HH:MM:SS' format. You can also use one of the following “relaxed” syntaxes:
'HH:MM:SS', 'HH:MM', 'D HH:MM', 'D HH', or 'SS'. Here D represents days and can have a
value from 0 to 34.

• As a string with no delimiters in 'HHMMSS' format, provided that it makes sense as a time. For
example, '101112' is understood as '10:11:12', but '109712' is illegal (it has a nonsensical
minute part) and becomes '00:00:00'.

• As a number in HHMMSS format, provided that it makes sense as a time. For example, 101112 is
understood as '10:11:12'. The following alternative formats are also understood: SS, MMSS, or
HHMMSS.

A trailing fractional seconds part is recognized in the 'D HH:MM:SS.fraction',
'HH:MM:SS.fraction', 'HHMMSS.fraction', and HHMMSS.fraction time formats, where
fraction is the fractional part in up to microseconds (6 digits) precision. The fractional part should
always be separated from the rest of the time by a decimal point; no other fractional seconds delimiter
is recognized. For information about fractional seconds support in MySQL, see Section 11.3.6,
“Fractional Seconds in Time Values”.

For TIME values specified as strings that include a time part delimiter, it is unnecessary to specify
two digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as
'08:03:02'.

9.1.4 Hexadecimal Literals

MySQL supports hexadecimal values, written using X'val', x'val', or 0xval format, where val
contains hexadecimal digits (0..9, A..F). Lettercase of the digits does not matter. For values written
using X'val' or x'val' format, val must contain an even number of digits. For values written using
0xval syntax, values that contain an odd number of digits are treated as having an extra leading 0.
For example, 0x0a and 0xaaa are interpreted as 0x0a and 0x0aaa.

In numeric contexts, hexadecimal values act like integers (64-bit precision). In string contexts, they act
like binary strings, where each pair of hex digits is converted to a character:

mysql> SELECT X'4D7953514C';
 -> 'MySQL'
mysql> SELECT x'0a'+0;
 -> 10
mysql> SELECT 0x5061756c;
 -> 'Paul'

The default type of a hexadecimal value is a string. If you want to ensure that the value is treated as a
number, you can use CAST(... AS UNSIGNED):

mysql> SELECT X'41', CAST(X'41' AS UNSIGNED);
 -> 'A', 65

The X'hexstring' and x'val' syntaxes are based on standard SQL. The 0x syntax is based on
ODBC. Hexadecimal strings are often used by ODBC to supply values for BLOB columns.

To convert a string or a number to a string in hexadecimal format, use the HEX() function:

Boolean Literals

1191

mysql> SELECT HEX('cat');
 -> '636174'
mysql> SELECT X'636174';
 -> 'cat'

9.1.5 Boolean Literals

The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written
in any lettercase.

mysql> SELECT TRUE, true, FALSE, false;
 -> 1, 1, 0, 0

9.1.6 Bit-Field Literals

Bit-field values can be written using b'value' or 0bvalue notation. value is a binary value written
using zeros and ones.

Bit-field notation is convenient for specifying values to be assigned to BIT columns:

mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
mysql> INSERT INTO t SET b = b'0101';

Bit values are returned as binary values. To display them in printable form, add 0 or use a conversion
function such as BIN(). High-order 0 bits are not displayed in the converted value.

mysql> SELECT b+0, BIN(b+0), OCT(b+0), HEX(b+0) FROM t;
+------+----------+----------+----------+
| b+0 | BIN(b+0) | OCT(b+0) | HEX(b+0) |
+------+----------+----------+----------+
255	11111111	377	FF
10	1010	12	A
5	101	5	5
+------+----------+----------+----------+

Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to
a user variable, use CAST() or +0:

mysql> SET @v1 = 0b1000001;
mysql> SET @v2 = CAST(0b1000001 AS UNSIGNED), @v3 = 0b1000001+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

9.1.7 NULL Values

The NULL value means “no data.” NULL can be written in any lettercase. A synonym is \N (case
sensitive).

For text file import or export operations performed with LOAD DATA INFILE or SELECT ... INTO
OUTFILE, NULL is represented by the \N sequence. See Section 13.2.6, “LOAD DATA INFILE
Syntax”.

Be aware that the NULL value is different from values such as 0 for numeric types or the empty string
for string types. For more information, see Section B.5.4.3, “Problems with NULL Values”.

9.2 Schema Object Names

Schema Object Names

1192

Certain objects within MySQL, including database, table, index, column, alias, view, stored procedure,
partition, tablespace, and other object names are known as identifiers. This section describes the
permissible syntax for identifiers in MySQL. Section 9.2.2, “Identifier Case Sensitivity”, describes which
types of identifiers are case sensitive and under what conditions.

An identifier may be quoted or unquoted. If an identifier contains special characters or is a reserved
word, you must quote it whenever you refer to it. (Exception: A reserved word that follows a period
in a qualified name must be an identifier, so it need not be quoted.) Reserved words are listed at
Section 9.3, “Keywords and Reserved Words”.

Identifiers are converted to Unicode internally. They may contain these characters:

• Permitted characters in unquoted identifiers:

• ASCII: [0-9,a-z,A-Z$_] (basic Latin letters, digits 0-9, dollar, underscore)

• Extended: U+0080 .. U+FFFF

• Permitted characters in quoted identifiers include the full Unicode Basic Multilingual Plane (BMP),
except U+0000:

• ASCII: U+0001 .. U+007F

• Extended: U+0080 .. U+FFFF

• ASCII NUL (U+0000) and supplementary characters (U+10000 and higher) are not permitted in
quoted or unquoted identifiers.

• Identifiers may begin with a digit but unless quoted may not consist solely of digits.

• Database, table, and column names cannot end with space characters.

The identifier quote character is the backtick (“`”):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the ANSI_QUOTES SQL mode is enabled, it is also permissible to quote identifiers within double
quotation marks:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax...
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

The ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifiers.
Consequently, when this mode is enabled, string literals must be enclosed within single quotation
marks. They cannot be enclosed within double quotation marks. The server SQL mode is controlled as
described in Section 5.1.7, “Server SQL Modes”.

Identifier quote characters can be included within an identifier if you quote the identifier. If the character
to be included within the identifier is the same as that used to quote the identifier itself, then you need
to double the character. The following statement creates a table named a`b that contains a column
named c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

mysql> SELECT 1 AS `one`, 2 AS 'two';
+-----+-----+

Identifier Qualifiers

1193

| one | two |
+-----+-----+
| 1 | 2 |
+-----+-----+

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference
is treated as a string literal.

It is recommended that you do not use names that begin with Me or MeN, where M and N are integers.
For example, avoid using 1e as an identifier, because an expression such as 1e+3 is ambiguous.
Depending on context, it might be interpreted as the expression 1e + 3 or as the number 1e+3.

Be careful when using MD5() to produce table names because it can produce names in illegal or
ambiguous formats such as those just described.

A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier.
See Section 9.4, “User-Defined Variables”, for more information and examples of workarounds.

Special characters in database and table names are encoded in the corresponding file system names
as described in Section 9.2.3, “Mapping of Identifiers to File Names”. If you have databases or tables
from an older version of MySQL that contain special characters and for which the underlying directory
names or file names have not been updated to use the new encoding, the server displays their names
with a prefix of #mysql50#. For information about referring to such names or converting them to the
newer encoding, see that section.

The following table describes the maximum length for each type of identifier.

Identifier Maximum Length (characters)

Database 64

Table 64

Column 64

Index 64

Constraint 64

Stored Program 64

View 64

Tablespace 64

Server 64

Log File Group 64

Alias 256 (see exception following table)

Compound Statement Label 16

User-Defined Variable 64 as of MySQL 5.7.5, no limit before that

Aliases for column names in CREATE VIEW statements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters).

Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are
stored in .frm files and to identifiers stored in the grant tables in the mysql database. The sizes of
the identifier string columns in the grant tables are measured in characters. You can use multibyte
characters without reducing the number of characters permitted for values stored in these columns. As
indicated earlier, the permissible Unicode characters are those in the Basic Multilingual Plane (BMP).
Supplementary characters are not permitted.

9.2.1 Identifier Qualifiers

MySQL permits names that consist of a single identifier or multiple identifiers. The components of a
multiple-part name must be separated by period (“.”) characters. The initial parts of a multiple-part
name act as qualifiers that affect the context within which the final identifier is interpreted.

Identifier Case Sensitivity

1194

In MySQL, you can refer to a table column using any of the following forms.

Column Reference Meaning

col_name The column col_name from whichever table used in the statement
contains a column of that name.

tbl_name.col_name The column col_name from table tbl_name of the default database.

db_name.tbl_name.col_nameThe column col_name from table tbl_name of the database
db_name.

The qualifier character is a separate token and need not be contiguous with the associated identifiers.
For example, tbl_name.col_name and tbl_name . col_name are equivalent.

If any components of a multiple-part name require quoting, quote them individually rather than quoting
the name as a whole. For example, write `my-table`.`my-column`, not `my-table.my-
column`.

A reserved word that follows a period in a qualified name must be an identifier, so in that context it
need not be quoted.

You need not specify a tbl_name or db_name.tbl_name prefix for a column reference in a
statement unless the reference would be ambiguous. Suppose that tables t1 and t2 each contain
a column c, and you retrieve c in a SELECT statement that uses both t1 and t2. In this case, c is
ambiguous because it is not unique among the tables used in the statement. You must qualify it with a
table name as t1.c or t2.c to indicate which table you mean. Similarly, to retrieve from a table t in
database db1 and from a table t in database db2 in the same statement, you must refer to columns in
those tables as db1.t.col_name and db2.t.col_name.

The syntax .tbl_name means the table tbl_name in the default database. This syntax is accepted
for ODBC compatibility because some ODBC programs prefix table names with a “.” character.

9.2.2 Identifier Case Sensitivity

In MySQL, databases correspond to directories within the data directory. Each table within a database
corresponds to at least one file within the database directory (and possibly more, depending on the
storage engine). Triggers also correspond to files. Consequently, the case sensitivity of the underlying
operating system plays a part in the case sensitivity of database, table, and trigger names. This means
such names are not case sensitive in Windows, but are case sensitive in most varieties of Unix. One
notable exception is OS X, which is Unix-based but uses a default file system type (HFS+) that is not
case sensitive. However, OS X also supports UFS volumes, which are case sensitive just as on any
Unix. See Section 1.8.1, “MySQL Extensions to Standard SQL”. The lower_case_table_names
system variable also affects how the server handles identifier case sensitivity, as described later in this
section.

Note

Although database, table, and trigger names are not case sensitive on some
platforms, you should not refer to one of these using different cases within the
same statement. The following statement would not work because it refers to a
table both as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column, index, stored routine, and event names are not case sensitive on any platform, nor are column
aliases.

However, names of logfile groups are case sensitive. This differs from standard SQL.

By default, table aliases are case sensitive on Unix, but not so on Windows or OS X. The following
statement would not work on Unix, because it refers to the alias both as a and as A:

Identifier Case Sensitivity

1195

mysql> SELECT col_name FROM tbl_name AS a
 -> WHERE a.col_name = 1 OR A.col_name = 2;

However, this same statement is permitted on Windows. To avoid problems caused by such
differences, it is best to adopt a consistent convention, such as always creating and referring to
databases and tables using lowercase names. This convention is recommended for maximum
portability and ease of use.

How table and database names are stored on disk and used in MySQL is affected by the
lower_case_table_names system variable, which you can set when starting mysqld.
lower_case_table_names can take the values shown in the following table. This variable does not
affect case sensitivity of trigger identifiers. On Unix, the default value of lower_case_table_names
is 0. On Windows the default value is 1. On OS X, the default value is 2.

Value Meaning

0 Table and database names are stored on disk using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. You
should not set this variable to 0 if you are running MySQL on a system that has case-
insensitive file names (such as Windows or OS X). If you force this variable to 0 with --
lower-case-table-names=0 on a case-insensitive file system and access MyISAM
tablenames using different lettercases, index corruption may result.

1 Table names are stored in lowercase on disk and name comparisons are not case
sensitive. MySQL converts all table names to lowercase on storage and lookup. This
behavior also applies to database names and table aliases.

2 Table and database names are stored on disk using the lettercase specified in the
CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to
lowercase on lookup. Name comparisons are not case sensitive. This works only on file
systems that are not case sensitive! InnoDB table names are stored in lowercase, as for
lower_case_table_names=1.

If you are using MySQL on only one platform, you do not normally have to change the
lower_case_table_names variable from its default value. However, you may encounter difficulties if
you want to transfer tables between platforms that differ in file system case sensitivity. For example, on
Unix, you can have two different tables named my_table and MY_TABLE, but on Windows these two
names are considered identical. To avoid data transfer problems arising from lettercase of database or
table names, you have two options:

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that when
you use SHOW TABLES or SHOW DATABASES, you do not see the names in their original lettercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows.
This preserves the lettercase of database and table names. The disadvantage of this is that you
must ensure that your statements always refer to your database and table names with the correct
lettercase on Windows. If you transfer your statements to Unix, where lettercase is significant, they
do not work if the lettercase is incorrect.

Exception: If you are using InnoDB tables and you are trying to avoid these data transfer problems,
you should set lower_case_table_names to 1 on all platforms to force names to be converted to
lowercase.

If you plan to set the lower_case_table_names system variable to 1 on Unix, you must first convert
your old database and table names to lowercase before stopping mysqld and restarting it with the new
variable setting. To do this for an individual table, use RENAME TABLE:

RENAME TABLE T1 TO t1;

To convert one or more entire databases, dump them before setting lower_case_table_names,
then drop the databases, and reload them after setting lower_case_table_names:

Mapping of Identifiers to File Names

1196

1. Use mysqldump to dump each database:

mysqldump --databases db1 > db1.sql
mysqldump --databases db2 > db2.sql
...

Do this for each database that must be recreated.

2. Use DROP DATABASE to drop each database.

3. Stop the server, set lower_case_table_names, and restart the server.

4. Reload the dump file for each database. Because lower_case_table_names is set, each
database and table name will be converted to lowercase as it is recreated:

mysql < db1.sql
mysql < db2.sql
...

Object names may be considered duplicates if their uppercase forms are equal according to a binary
collation. That is true for names of cursors, conditions, procedures, functions, savepoints, stored
routine parameters, stored program local variables, and plugins. It is not true for names of columns,
constraints, databases, partitions, statements prepared with PREPARE, tables, triggers, users, and
user-defined variables.

File system case sensitivity can affect searches in string columns of INFORMATION_SCHEMA tables.
For more information, see Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”.

9.2.3 Mapping of Identifiers to File Names

There is a correspondence between database and table identifiers and names in the file system. For
the basic structure, MySQL represents each database as a directory in the data directory, and each
table by one or more files in the appropriate database directory. For the table format files (.FRM), the
data is always stored in this structure and location.

For the data and index files, the exact representation on disk is storage engine specific. These files
may be stored in the same location as the FRM files, or the information may be stored in a separate
file. InnoDB data is stored in the InnoDB data files. If you are using tablespaces with InnoDB, then the
specific tablespace files you create are used instead.

Any character is legal in database or table identifiers except ASCII NUL (X'00'). MySQL encodes
any characters that are problematic in the corresponding file system objects when it creates database
directories or table files:

• Basic Latin letters (a..zA..Z), digits (0..9) and underscore (_) are encoded as is. Consequently,
their case sensitivity directly depends on file system features.

• All other national letters from alphabets that have uppercase/lowercase mapping are encoded as
shown in the following table. Values in the Code Range column are UCS-2 values.

Code Range Pattern Number Used Unused Blocks

00C0..017F [@][0..4][g..z] 5*20= 100 97 3 Latin-1 Supplement +
Latin Extended-A

0370..03FF [@][5..9][g..z] 5*20= 100 88 12 Greek and Coptic

0400..052F [@][g..z][0..6] 20*7= 140 137 3 Cyrillic + Cyrillic
Supplement

0530..058F [@][g..z][7..8] 20*2= 40 38 2 Armenian

2160..217F [@][g..z][9] 20*1= 20 16 4 Number Forms

Mapping of Identifiers to File Names

1197

Code Range Pattern Number Used Unused Blocks

0180..02AF [@][g..z][a..k] 20*11=220 203 17 Latin Extended-B + IPA
Extensions

1E00..1EFF [@][g..z][l..r] 20*7= 140 136 4 Latin Extended
Additional

1F00..1FFF [@][g..z][s..z] 20*8= 160 144 16 Greek Extended

.... [@][a..f][g..z] 6*20= 120 0 120 RESERVED

24B6..24E9 [@][@][a..z] 26 26 0 Enclosed
Alphanumerics

FF21..FF5A [@][a..z][@] 26 26 0 Halfwidth and Fullwidth
forms

One of the bytes in the sequence encodes lettercase. For example: LATIN CAPITAL LETTER A
WITH GRAVE is encoded as @0G, whereas LATIN SMALL LETTER A WITH GRAVE is encoded as
@0g. Here the third byte (G or g) indicates lettercase. (On a case-insensitive file system, both letters
will be treated as the same.)

For some blocks, such as Cyrillic, the second byte determines lettercase. For other blocks, such as
Latin1 Supplement, the third byte determines lettercase. If two bytes in the sequence are letters (as
in Greek Extended), the leftmost letter character stands for lettercase. All other letter bytes must be
in lowercase.

• All nonletter characters except underscore (_), as well as letters from alphabets that do not have
uppercase/lowercase mapping (such as Hebrew) are encoded using hexadecimal representation
using lowercase letters for hex digits a..f:

0x003F -> @003f
0xFFFF -> @ffff

The hexadecimal values correspond to character values in the ucs2 double-byte character set.

On Windows, some names such as nul, prn, and aux are encoded by appending @@@ to the name
when the server creates the corresponding file or directory. This occurs on all platforms for portability of
the corresponding database object between platforms.

If you have databases or tables from a version of MySQL older than 5.1.6 that contain special
characters and for which the underlying directory names or file names have not been updated to use
the new encoding, the server displays their names with a prefix of #mysql50# in the output from
INFORMATION_SCHEMA tables or SHOW statements. For example, if you have a table named a@b and
its name encoding has not been updated, SHOW TABLES displays it like this:

mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| #mysql50#a@b |
+----------------+

To refer to such a name for which the encoding has not been updated, you must supply the
#mysql50# prefix:

mysql> SHOW COLUMNS FROM `a@b`;
ERROR 1146 (42S02): Table 'test.a@b' doesn't exist

mysql> SHOW COLUMNS FROM `#mysql50#a@b`;
+-------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+

Function Name Parsing and Resolution

1198

| i | int(11) | YES | | NULL | |
+-------+---------+------+-----+---------+-------+

To update old names to eliminate the need to use the special prefix to refer to them, re-encode them
with mysqlcheck. The following commands update all names to the new encoding:

shell> mysqlcheck --check-upgrade --all-databases
shell> mysqlcheck --fix-db-names --fix-table-names --all-databases

To check only specific databases or tables, omit --all-databases and provide the appropriate
database or table arguments. For information about mysqlcheck invocation syntax, see Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

Note

The #mysql50# prefix is intended only to be used internally by the server. You
should not create databases or tables with names that use this prefix.

Also, mysqlcheck cannot fix names that contain literal instances of the @
character that is used for encoding special characters. If you have databases
or tables that contain this character, use mysqldump to dump them before
upgrading to MySQL 5.1.6 or later, and then reload the dump file after
upgrading.

Note

Conversion of pre-MySQL 5.1 database names containing special characters
to 5.1 format with the addition of a #mysql50# prefix is deprecated as of
MySQL 5.7.6 and will be removed in a future version of MySQL. Because such
conversions are deprecated, the --fix-db-names and --fix-table-names
options for mysqlcheck and the UPGRADE DATA DIRECTORY NAME clause
for the ALTER DATABASE statement are also deprecated.

Upgrades are supported only from one release series to another (for example,
5.0 to 5.1, or 5.1 to 5.5), so there should be little remaining need for conversion
of older 5.0 database names to current versions of MySQL. As a workaround,
upgrade a MySQL 5.0 installation to MySQL 5.1 before upgrading to a more
recent release.

9.2.4 Function Name Parsing and Resolution

MySQL 5.7 supports built-in (native) functions, user-defined functions (UDFs), and stored functions.
This section describes how the server recognizes whether the name of a built-in function is used as
a function call or as an identifier, and how the server determines which function to use in cases when
functions of different types exist with a given name.

Built-In Function Name Parsing

The parser uses default rules for parsing names of built-in functions. These rules can be changed by
enabling the IGNORE_SPACE SQL mode.

When the parser encounters a word that is the name of a built-in function, it must determine whether
the name signifies a function call or is instead a nonexpression reference to an identifier such as a
table or column name. For example, in the following statements, the first reference to count is a
function call, whereas the second reference is a table name:

SELECT COUNT(*) FROM mytable;
CREATE TABLE count (i INT);

Function Name Parsing and Resolution

1199

The parser should recognize the name of a built-in function as indicating a function call only when
parsing what is expected to be an expression. That is, in nonexpression context, function names are
permitted as identifiers.

However, some built-in functions have special parsing or implementation considerations, so the parser
uses the following rules by default to distinguish whether their names are being used as function calls
or as identifiers in nonexpression context:

• To use the name as a function call in an expression, there must be no whitespace between the name
and the following “(” parenthesis character.

• Conversely, to use the function name as an identifier, it must not be followed immediately by a
parenthesis.

The requirement that function calls be written with no whitespace between the name and the
parenthesis applies only to the built-in functions that have special considerations. COUNT is one such
name. The sql/lex.h source file lists the names of these special functions for which following
whitespace determines their interpretation:

• MySQL 5.7.7 and up: Names defined by the SYM_FN() macro in the symbols[] array

• Before MySQL 5.7.7: Names listed in the sql_functions[] array

In MySQL 5.7, there are about 30 such function names. You may find it easiest to treat the no-
whitespace requirement as applying to all function calls.

The following table names the functions that are affected by the IGNORE_SPACE setting and listed as
special in the sql/lex.h source file.

ADDDATE BIT_AND BIT_OR BIT_XOR

CAST COUNT CURDATE CURTIME

DATE_ADD DATE_SUB EXTRACT GROUP_CONCAT

MAX MID MIN NOW

POSITION SESSION_USER STD STDDEV

STDDEV_POP STDDEV_SAMP SUBDATE SUBSTR

SUBSTRING SUM SYSDATE SYSTEM_USER

TRIM VARIANCE VAR_POP VAR_SAMP

For functions not listed as special in sql/lex.h, whitespace does not matter. They are interpreted as
function calls only when used in expression context and may be used freely as identifiers otherwise.
ASCII is one such name. However, for these nonaffected function names, interpretation may vary in
expression context: func_name () is interpreted as a built-in function if there is one with the given
name; if not, func_name () is interpreted as a user-defined function or stored function if one exists
with that name.

The IGNORE_SPACE SQL mode can be used to modify how the parser treats function names that are
whitespace-sensitive:

• With IGNORE_SPACE disabled, the parser interprets the name as a function call when there is no
whitespace between the name and the following parenthesis. This occurs even when the function
name is used in nonexpression context:

mysql> CREATE TABLE count(i INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'count(i INT)'

To eliminate the error and cause the name to be treated as an identifier, either use whitespace
following the name or write it as a quoted identifier (or both):

Function Name Parsing and Resolution

1200

CREATE TABLE count (i INT);
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

• With IGNORE_SPACE enabled, the parser loosens the requirement that there be no whitespace
between the function name and the following parenthesis. This provides more flexibility in writing
function calls. For example, either of the following function calls are legal:

SELECT COUNT(*) FROM mytable;
SELECT COUNT (*) FROM mytable;

However, enabling IGNORE_SPACE also has the side effect that the parser treats the affected
function names as reserved words (see Section 9.3, “Keywords and Reserved Words”). This means
that a space following the name no longer signifies its use as an identifier. The name can be used
in function calls with or without following whitespace, but causes a syntax error in nonexpression
context unless it is quoted. For example, with IGNORE_SPACE enabled, both of the following
statements fail with a syntax error because the parser interprets count as a reserved word:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

To use the function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

To enable the IGNORE_SPACE SQL mode, use this statement:

SET sql_mode = 'IGNORE_SPACE';

IGNORE_SPACE is also enabled by certain other composite modes such as ANSI that include it in their
value:

SET sql_mode = 'ANSI';

Check Section 5.1.7, “Server SQL Modes”, to see which composite modes enable IGNORE_SPACE.

To minimize the dependency of SQL code on the IGNORE_SPACE setting, use these guidelines:

• Avoid creating UDFs or stored functions that have the same name as a built-in function.

• Avoid using function names in nonexpression context. For example, these statements use count
(one of the affected function names affected by IGNORE_SPACE), so they fail with or without
whitespace following the name if IGNORE_SPACE is enabled:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

If you must use a function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

Function Name Resolution

The following rules describe how the server resolves references to function names for function creation
and invocation:

• Built-in functions and user-defined functions

Keywords and Reserved Words

1201

An error occurs if you try to create a UDF with the same name as a built-in function.

• Built-in functions and stored functions

It is possible to create a stored function with the same name as a built-in function, but to invoke
the stored function it is necessary to qualify it with a schema name. For example, if you create a
stored function named PI in the test schema, invoke it as test.PI() because the server resolves
PI() without a qualifier as a reference to the built-in function. The server generates a warning if the
stored function name collides with a built-in function name. The warning can be displayed with SHOW
WARNINGS.

• User-defined functions and stored functions

User-defined functions and stored functions share the same namespace, so you cannot create a
UDF and a stored function with the same name.

The preceding function name resolution rules have implications for upgrading to versions of MySQL
that implement new built-in functions:

• If you have already created a user-defined function with a given name and upgrade MySQL to a
version that implements a new built-in function with the same name, the UDF becomes inaccessible.
To correct this, use DROP FUNCTION to drop the UDF and CREATE FUNCTION to re-create the UDF
with a different nonconflicting name. Then modify any affected code to use the new name.

• If a new version of MySQL implements a built-in function with the same name as an existing stored
function, you have two choices: Rename the stored function to use a nonconflicting name, or change
calls to the function so that they use a schema qualifier (that is, use schema_name.func_name()
syntax). In either case, modify any affected code accordingly.

9.3 Keywords and Reserved Words
Keywords are words that have significance in SQL. Certain keywords, such as SELECT, DELETE, or
BIGINT, are reserved and require special treatment for use as identifiers such as table and column
names. This may also be true for the names of built-in functions.

Nonreserved keywords are permitted as identifiers without quoting. Reserved words are permitted as
identifiers if you quote them as described in Section 9.2, “Schema Object Names”:

mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'

BEGIN and END are keywords but not reserved, so their use as identifiers does not require quoting.
INTERVAL is a reserved keyword and must be quoted to be used as an identifier:

mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Exception: A word that follows a period in a qualified name must be an identifier, so it need not be
quoted even if it is reserved:

mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Names of built-in functions are permitted as identifiers but may require care to be used as such. For
example, COUNT is acceptable as a column name. However, by default, no whitespace is permitted
in function invocations between the function name and the following “(” character. This requirement
enables the parser to distinguish whether the name is used in a function call or in nonfunction context.
For further details on recognition of function names, see Section 9.2.4, “Function Name Parsing and
Resolution”.

Keywords and Reserved Words

1202

The following table shows the keywords and reserved words in MySQL 5.7, along with changes
to individual words from version to version. Reserved keywords are marked with (R). In addition,
_FILENAME is reserved.

At some point, you might upgrade to a higher version, so it is a good idea to have a look at future
reserved words, too. You can find these in the manuals that cover higher versions of MySQL. Most of
the reserved words in the table are forbidden by standard SQL as column or table names (for example,
GROUP). A few are reserved because MySQL needs them and uses a yacc parser.

Table 9.2 Keywords and Reserved Words in MySQL 5.7

ACCESSIBLE (R) ACCOUNTa ACTION

ADD (R) AFTER AGAINST

AGGREGATE ALGORITHM ALL (R)

ALTER (R) ALWAYSb ANALYSE

ANALYZE (R) AND (R) ANY

AS (R) ASC (R) ASCII

ASENSITIVE (R) AT AUTOEXTEND_SIZE

AUTO_INCREMENT AVG AVG_ROW_LENGTH

BACKUP BEFORE (R) BEGIN

BETWEEN (R) BIGINT (R) BINARY (R)

BINLOG BIT BLOB (R)

BLOCK BOOL BOOLEAN

BOTH (R) BTREE BY (R)

BYTE CACHE CALL (R)

CASCADE (R) CASCADED CASE (R)

CATALOG_NAME CHAIN CHANGE (R)

CHANGED CHANNELc CHAR (R)

CHARACTER (R) CHARSET CHECK (R)

CHECKSUM CIPHER CLASS_ORIGIN

CLIENT CLOSE COALESCE

CODE COLLATE (R) COLLATION

COLUMN (R) COLUMNS COLUMN_FORMAT

COLUMN_NAME COMMENT COMMIT

COMMITTED COMPACT COMPLETION

COMPRESSED COMPRESSIONd CONCURRENT

CONDITION (R) CONNECTION CONSISTENT

CONSTRAINT (R) CONSTRAINT_CATALOG CONSTRAINT_NAME

CONSTRAINT_SCHEMA CONTAINS CONTEXT

CONTINUE (R) CONVERT (R) CPU

CREATE (R) CROSS (R) CUBE

CURRENT CURRENT_DATE (R) CURRENT_TIME (R)

CURRENT_TIMESTAMP (R) CURRENT_USER (R) CURSOR (R)

CURSOR_NAME DATA DATABASE (R)

DATABASES (R) DATAFILE DATE

DATETIME DAY DAY_HOUR (R)

Keywords and Reserved Words

1203

DAY_MICROSECOND (R) DAY_MINUTE (R) DAY_SECOND (R)

DEALLOCATE DEC (R) DECIMAL (R)

DECLARE (R) DEFAULT (R) DEFAULT_AUTH

DEFINER DELAYED (R) DELAY_KEY_WRITE

DELETE (R) DESC (R) DESCRIBE (R)

DES_KEY_FILE DETERMINISTIC (R) DIAGNOSTICS

DIRECTORY DISABLE DISCARD

DISK DISTINCT (R) DISTINCTROW (R)

DIV (R) DO DOUBLE (R)

DROP (R) DUAL (R) DUMPFILE

DUPLICATE DYNAMIC EACH (R)

ELSE (R) ELSEIF (R) ENABLE

ENCLOSED (R) END ENDS

ENGINE ENGINES ENUM

ERROR ERRORS ESCAPE

ESCAPED (R) EVENT EVENTS

EVERY EXCHANGE EXECUTE

EXISTS (R) EXIT (R) EXPANSION

EXPIRE EXPLAIN (R) EXPORT

EXTENDED EXTENT_SIZE FALSE (R)

FAST FAULTS FETCH (R)

FIELDS FILE FILE_BLOCK_SIZEe

FILTERf FIRST FIXED

FLOAT (R) FLOAT4 (R) FLOAT8 (R)

FLUSH FOLLOWSg FOR (R)

FORCE (R) FOREIGN (R) FORMAT

FOUND FROM (R) FULL

FULLTEXT (R) FUNCTION GENERAL

GENERATEDh (R) GEOMETRY GEOMETRYCOLLECTION

GET (R) GET_FORMAT GLOBAL

GRANT (R) GRANTS GROUP (R)

GROUP_REPLICATIONi HANDLER HASH

HAVING (R) HELP HIGH_PRIORITY (R)

HOST HOSTS HOUR

HOUR_MICROSECOND (R) HOUR_MINUTE (R) HOUR_SECOND (R)

IDENTIFIED IF (R) IGNORE (R)

IGNORE_SERVER_IDS IMPORT IN (R)

INDEX (R) INDEXES INFILE (R)

INITIAL_SIZE INNER (R) INOUT (R)

INSENSITIVE (R) INSERT (R) INSERT_METHOD

INSTALL INT (R) INT1 (R)

INT2 (R) INT3 (R) INT4 (R)

Keywords and Reserved Words

1204

INT8 (R) INTEGER (R) INTERVAL (R)

INTO (R) INVOKER IO

IO_AFTER_GTIDS (R) IO_BEFORE_GTIDS (R) IO_THREAD

IPC IS (R) ISOLATION

ISSUER ITERATE (R) JOIN (R)

JSONj KEY (R) KEYS (R)

KEY_BLOCK_SIZE KILL (R) LANGUAGE

LAST LEADING (R) LEAVE (R)

LEAVES LEFT (R) LESS

LEVEL LIKE (R) LIMIT (R)

LINEAR (R) LINES (R) LINESTRING

LIST LOAD (R) LOCAL

LOCALTIME (R) LOCALTIMESTAMP (R) LOCK (R)

LOCKS LOGFILE LOGS

LONG (R) LONGBLOB (R) LONGTEXT (R)

LOOP (R) LOW_PRIORITY (R) MASTER

MASTER_AUTO_POSITION MASTER_BIND (R) MASTER_CONNECT_RETRY

MASTER_DELAY MASTER_HEARTBEAT_PERIOD MASTER_HOST

MASTER_LOG_FILE MASTER_LOG_POS MASTER_PASSWORD

MASTER_PORT MASTER_RETRY_COUNT MASTER_SERVER_ID

MASTER_SSL MASTER_SSL_CA MASTER_SSL_CAPATH

MASTER_SSL_CERT MASTER_SSL_CIPHER MASTER_SSL_CRL

MASTER_SSL_CRLPATH MASTER_SSL_KEY MASTER_SSL_VERIFY_SERVER_CERT
(R)

MASTER_TLS_VERSIONk MASTER_USER MATCH (R)

MAXVALUE (R) MAX_CONNECTIONS_PER_HOUR MAX_QUERIES_PER_HOUR

MAX_ROWS MAX_SIZE MAX_STATEMENT_TIMEl

MAX_UPDATES_PER_HOUR MAX_USER_CONNECTIONS MEDIUM

MEDIUMBLOB (R) MEDIUMINT (R) MEDIUMTEXT (R)

MEMORY MERGE MESSAGE_TEXT

MICROSECOND MIDDLEINT (R) MIGRATE

MINUTE MINUTE_MICROSECOND (R) MINUTE_SECOND (R)

MIN_ROWS MOD (R) MODE

MODIFIES (R) MODIFY MONTH

MULTILINESTRING MULTIPOINT MULTIPOLYGON

MUTEX MYSQL_ERRNO NAME

NAMES NATIONAL NATURAL (R)

NCHAR NDB NDBCLUSTER

NEVERm NEW NEXT

NO NODEGROUP NONBLOCKINGn

NONE NOT (R) NO_WAIT

NO_WRITE_TO_BINLOG (R) NULL (R) NUMBER

Keywords and Reserved Words

1205

NUMERIC (R) NVARCHAR OFFSET

OLD_PASSWORDo ON (R) ONE

ONLY OPEN OPTIMIZE (R)

OPTIMIZER_COSTSp (R) OPTION (R) OPTIONALLY (R)

OPTIONS OR (R) ORDER (R)

OUT (R) OUTER (R) OUTFILE (R)

OWNER PACK_KEYS PAGE

PARSER PARSE_GCOL_EXPRq PARTIAL

PARTITION (R) PARTITIONING PARTITIONS

PASSWORD PHASE PLUGIN

PLUGINS PLUGIN_DIR POINT

POLYGON PORT PRECEDESr

PRECISION (R) PREPARE PRESERVE

PREV PRIMARY (R) PRIVILEGES

PROCEDURE (R) PROCESSLIST PROFILE

PROFILES PROXY PURGE (R)

QUARTER QUERY QUICK

RANGE (R) READ (R) READS (R)

READ_ONLY READ_WRITE (R) REAL (R)

REBUILD RECOVER REDOFILE

REDO_BUFFER_SIZE REDUNDANT REFERENCES (R)

REGEXP (R) RELAY RELAYLOG

RELAY_LOG_FILE RELAY_LOG_POS RELAY_THREAD

RELEASE (R) RELOAD REMOVE

RENAME (R) REORGANIZE REPAIR

REPEAT (R) REPEATABLE REPLACE (R)

REPLICATE_DO_DBs REPLICATE_DO_TABLEt REPLICATE_IGNORE_DBu

REPLICATE_IGNORE_TABLEv REPLICATE_REWRITE_DBw REPLICATE_WILD_DO_TABLEx

REPLICATE_WILD_IGNORE_TABLEyREPLICATION REQUIRE (R)

RESET RESIGNAL (R) RESTORE

RESTRICT (R) RESUME RETURN (R)

RETURNED_SQLSTATE RETURNS REVERSE

REVOKE (R) RIGHT (R) RLIKE (R)

ROLLBACK ROLLUP ROUTINE

ROW ROWS ROW_COUNT

ROW_FORMAT RTREE SAVEPOINT

SCHEDULE SCHEMA (R) SCHEMAS (R)

SCHEMA_NAME SECOND SECOND_MICROSECOND (R)

SECURITY SELECT (R) SENSITIVE (R)

SEPARATOR (R) SERIAL SERIALIZABLE

SERVER SESSION SET (R)

SHARE SHOW (R) SHUTDOWN

Keywords and Reserved Words

1206

SIGNAL (R) SIGNED SIMPLE

SLAVE SLOW SMALLINT (R)

SNAPSHOT SOCKET SOME

SONAME SOUNDS SOURCE

SPATIAL (R) SPECIFIC (R) SQL (R)

SQLEXCEPTION (R) SQLSTATE (R) SQLWARNING (R)

SQL_AFTER_GTIDS SQL_AFTER_MTS_GAPS SQL_BEFORE_GTIDS

SQL_BIG_RESULT (R) SQL_BUFFER_RESULT SQL_CACHE

SQL_CALC_FOUND_ROWS (R) SQL_NO_CACHE SQL_SMALL_RESULT (R)

SQL_THREAD SQL_TSI_DAY SQL_TSI_HOUR

SQL_TSI_MINUTE SQL_TSI_MONTH SQL_TSI_QUARTER

SQL_TSI_SECOND SQL_TSI_WEEK SQL_TSI_YEAR

SSL (R) STACKED START

STARTING (R) STARTS STATS_AUTO_RECALC

STATS_PERSISTENT STATS_SAMPLE_PAGES STATUS

STOP STORAGE STOREDz (R)

STRAIGHT_JOIN (R) STRING SUBCLASS_ORIGIN

SUBJECT SUBPARTITION SUBPARTITIONS

SUPER SUSPEND SWAPS

SWITCHES TABLE (R) TABLES

TABLESPACE TABLE_CHECKSUM TABLE_NAME

TEMPORARY TEMPTABLE TERMINATED (R)

TEXT THAN THEN (R)

TIME TIMESTAMP TIMESTAMPADD

TIMESTAMPDIFF TINYBLOB (R) TINYINT (R)

TINYTEXT (R) TO (R) TRAILING (R)

TRANSACTION TRIGGER (R) TRIGGERS

TRUE (R) TRUNCATE TYPE

TYPES UNCOMMITTED UNDEFINED

UNDO (R) UNDOFILE UNDO_BUFFER_SIZE

UNICODE UNINSTALL UNION (R)

UNIQUE (R) UNKNOWN UNLOCK (R)

UNSIGNED (R) UNTIL UPDATE (R)

UPGRADE USAGE (R) USE (R)

USER USER_RESOURCES USE_FRM

USING (R) UTC_DATE (R) UTC_TIME (R)

UTC_TIMESTAMP (R) VALIDATIONaa VALUE

VALUES (R) VARBINARY (R) VARCHAR (R)

VARCHARACTER (R) VARIABLES VARYING (R)

VIEW VIRTUALab (R) WAIT

WARNINGS WEEK WEIGHT_STRING

WHEN (R) WHERE (R) WHILE (R)

User-Defined Variables

1207

WITH (R) WITHOUTac WORK

WRAPPER WRITE (R) X509

XA XIDad XML

XOR (R) YEAR YEAR_MONTH (R)

ZEROFILL (R)
aACCOUNT: added in 5.7.6 (nonreserved)
bALWAYS: added in 5.7.6 (nonreserved)
cCHANNEL: added in 5.7.6 (nonreserved)
dCOMPRESSION: added in 5.7.8 (nonreserved)
eFILE_BLOCK_SIZE: added in 5.7.6 (nonreserved)
fFILTER: added in 5.7.3 (nonreserved)
gFOLLOWS: added in 5.7.2 (nonreserved)
hGENERATED: added in 5.7.6 (reserved)
iGROUP_REPLICATION: added in 5.7.6 (nonreserved)
jJSON: added in 5.7.8 (nonreserved)
kMASTER_TLS_VERSION: added in 5.7.10 (nonreserved)
lMAX_STATEMENT_TIME: added in 5.7.4 (nonreserved); removed in 5.7.8
mNEVER: added in 5.7.4 (nonreserved)
nNONBLOCKING: removed in 5.7.6
oOLD_PASSWORD: removed in 5.7.5
pOPTIMIZER_COSTS: added in 5.7.5 (reserved)
qPARSE_GCOL_EXPR: added in 5.7.6 (reserved); became nonreserved in 5.7.8
rPRECEDES: added in 5.7.2 (nonreserved)
sREPLICATE_DO_DB: added in 5.7.3 (nonreserved)
tREPLICATE_DO_TABLE: added in 5.7.3 (nonreserved)
uREPLICATE_IGNORE_DB: added in 5.7.3 (nonreserved)
vREPLICATE_IGNORE_TABLE: added in 5.7.3 (nonreserved)
wREPLICATE_REWRITE_DB: added in 5.7.3 (nonreserved)
xREPLICATE_WILD_DO_TABLE: added in 5.7.3 (nonreserved)
yREPLICATE_WILD_IGNORE_TABLE: added in 5.7.3 (nonreserved)
zSTORED: added in 5.7.6 (reserved)
aaVALIDATION: added in 5.7.5 (nonreserved)
abVIRTUAL: added in 5.7.6 (reserved)
acWITHOUT: added in 5.7.5 (nonreserved)
adXID: added in 5.7.5 (nonreserved)

The following table shows the keywords and reserved words that are new in MySQL 5.7. Reserved
keywords are marked with (R).

Table 9.3 New Keywords and Reserved Words in MySQL 5.7 compared to MySQL 5.6

ACCOUNT ALWAYS CHANNEL

COMPRESSION FILE_BLOCK_SIZE FILTER

FOLLOWS GENERATED (R) GROUP_REPLICATION

JSON MASTER_TLS_VERSION NEVER

OPTIMIZER_COSTS (R) PARSE_GCOL_EXPR PRECEDES

REPLICATE_DO_DB REPLICATE_DO_TABLE REPLICATE_IGNORE_DB

REPLICATE_IGNORE_TABLE REPLICATE_REWRITE_DB REPLICATE_WILD_DO_TABLE

REPLICATE_WILD_IGNORE_TABLESTACKED STORED (R)

VALIDATION VIRTUAL (R) WITHOUT

XID

9.4 User-Defined Variables

User-Defined Variables

1208

You can store a value in a user-defined variable in one statement and then refer to it later in another
statement. This enables you to pass values from one statement to another.

User variables are written as @var_name, where the variable name var_name consists of
alphanumeric characters, “.”, “_”, and “$”. A user variable name can contain other characters if you
quote it as a string or identifier (for example, @'my-var', @"my-var", or @`my-var`).

User-defined variables are session-specific. A user variable defined by one client cannot be
seen or used by other clients. (Exception: A user with access to the Performance Schema
user_variables_by_thread table can see all user variables for all sessions.) All variables for a
given client session are automatically freed when that client exits.

User variable names are not case sensitive. Names have a maximum length of 64 characters as of
MySQL 5.7.5. (Length is not constrained before that.)

One way to set a user-defined variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator.

You can also assign a value to a user variable in statements other than SET. In this case, the
assignment operator must be := and not = because the latter is treated as the comparison operator =
in non-SET statements:

mysql> SET @t1=1, @t2=2, @t3:=4;
mysql> SELECT @t1, @t2, @t3, @t4 := @t1+@t2+@t3;
+------+------+------+--------------------+
| @t1 | @t2 | @t3 | @t4 := @t1+@t2+@t3 |
+------+------+------+--------------------+
| 1 | 2 | 4 | 7 |
+------+------+------+--------------------+

User variables can be assigned a value from a limited set of data types: integer, decimal, floating-point,
binary or nonbinary string, or NULL value. Assignment of decimal and real values does not preserve the
precision or scale of the value. A value of a type other than one of the permissible types is converted to
a permissible type. For example, a value having a temporal or spatial data type is converted to a binary
string. A value having the JSON data type is converted to a string with a character set of utf8mb4 and
a collation of utf8mb4_bin.

If a user variable is assigned a nonbinary (character) string value, it has the same character set and
collation as the string. The coercibility of user variables is implicit. (This is the same coercibility as for
table column values.)

Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to
a user variable, use CAST() or +0:

mysql> SET @v1 = b'1000001';
mysql> SET @v2 = CAST(b'1000001' AS UNSIGNED), @v3 = b'1000001'+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

If the value of a user variable is selected in a result set, it is returned to the client as a string.

If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.

User-Defined Variables

1209

User variables may be used in most contexts where expressions are permitted. This does not currently
include contexts that explicitly require a literal value, such as in the LIMIT clause of a SELECT
statement, or the IGNORE N LINES clause of a LOAD DATA statement.

As a general rule, other than in SET statements, you should never assign a value to a user variable and
read the value within the same statement. For example, to increment a variable, this is okay:

SET @a = @a + 1;

For other statements, such as SELECT, you might get the results you expect, but this is not
guaranteed. In the following statement, you might think that MySQL will evaluate @a first and then do
an assignment second:

SELECT @a, @a:=@a+1, ...;

However, the order of evaluation for expressions involving user variables is undefined.

Another issue with assigning a value to a variable and reading the value within the same non-SET
statement is that the default result type of a variable is based on its type at the start of the statement.
The following example illustrates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL reports to the client that column one is a string and converts all
accesses of @a to strings, even though @a is set to a number for the second row. After the SELECT
statement executes, @a is regarded as a number for the next statement.

To avoid problems with this behavior, either do not assign a value to and read the value of the same
variable within a single statement, or else set the variable to 0, 0.0, or '' to define its type before you
use it.

In a SELECT statement, each select expression is evaluated only when sent to the client. This means
that in a HAVING, GROUP BY, or ORDER BY clause, referring to a variable that is assigned a value in
the select expression list does not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

The reference to b in the HAVING clause refers to an alias for an expression in the select list that uses
@aa. This does not work as expected: @aa contains the value of id from the previous selected row, not
from the current row.

User variables are intended to provide data values. They cannot be used directly in an SQL statement
as an identifier or as part of an identifier, such as in contexts where a table or database name is
expected, or as a reserved word such as SELECT. This is true even if the variable is quoted, as shown
in the following example:

mysql> SELECT c1 FROM t;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> SET @col = "c1";
Query OK, 0 rows affected (0.00 sec)

User-Defined Variables

1210

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| c1 |
+------+
1 row in set (0.00 sec)

mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): Unknown column '@col' in 'field list'

mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)

An exception to this principle that user variables cannot be used to provide identifiers, is when you are
constructing a string for use as a prepared statement to execute later. In this case, user variables can
be used to provide any part of the statement. The following example illustrates how this can be done:

mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE stmt FROM @s;
Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE stmt;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

See Section 13.5, “SQL Syntax for Prepared Statements”, for more information.

A similar technique can be used in application programs to construct SQL statements using program
variables, as shown here using PHP 5:

<?php
 $mysqli = new mysqli("localhost", "user", "pass", "test");

 if(mysqli_connect_errno())
 die("Connection failed: %s\n", mysqli_connect_error());

 $col = "c1";

 $query = "SELECT $col FROM t";

 $result = $mysqli->query($query);

 while($row = $result->fetch_assoc())
 {
 echo "<p>" . $row["$col"] . "</p>\n";

Expression Syntax

1211

 }

 $result->close();

 $mysqli->close();
?>

Assembling an SQL statement in this fashion is sometimes known as “Dynamic SQL”.

9.5 Expression Syntax
The following rules define expression syntax in MySQL. The grammar shown here is based on that
given in the sql/sql_yacc.yy file of MySQL source distributions. See the notes after the grammar
for additional information about some of the terms.

expr:
 expr OR expr
 | expr || expr
 | expr XOR expr
 | expr AND expr
 | expr && expr
 | NOT expr
 | ! expr
 | boolean_primary IS [NOT] {TRUE | FALSE | UNKNOWN}
 | boolean_primary

boolean_primary:
 boolean_primary IS [NOT] NULL
 | boolean_primary <=> predicate
 | boolean_primary comparison_operator predicate
 | boolean_primary comparison_operator {ALL | ANY} (subquery)
 | predicate

comparison_operator: = | >= | > | <= | < | <> | !=

predicate:
 bit_expr [NOT] IN (subquery)
 | bit_expr [NOT] IN (expr [, expr] ...)
 | bit_expr [NOT] BETWEEN bit_expr AND predicate
 | bit_expr SOUNDS LIKE bit_expr
 | bit_expr [NOT] LIKE simple_expr [ESCAPE simple_expr]
 | bit_expr [NOT] REGEXP bit_expr
 | bit_expr

bit_expr:
 bit_expr | bit_expr
 | bit_expr & bit_expr
 | bit_expr << bit_expr
 | bit_expr >> bit_expr
 | bit_expr + bit_expr
 | bit_expr - bit_expr
 | bit_expr * bit_expr
 | bit_expr / bit_expr
 | bit_expr DIV bit_expr
 | bit_expr MOD bit_expr
 | bit_expr % bit_expr
 | bit_expr ^ bit_expr
 | bit_expr + interval_expr
 | bit_expr - interval_expr
 | simple_expr

simple_expr:
 literal
 | identifier
 | function_call
 | simple_expr COLLATE collation_name
 | param_marker
 | variable
 | simple_expr || simple_expr
 | + simple_expr

Comment Syntax

1212

 | - simple_expr
 | ~ simple_expr
 | ! simple_expr
 | BINARY simple_expr
 | (expr [, expr] ...)
 | ROW (expr, expr [, expr] ...)
 | (subquery)
 | EXISTS (subquery)
 | {identifier expr}
 | match_expr
 | case_expr
 | interval_expr

Notes:

For operator precedence, see in Section 12.3.1, “Operator Precedence”.

For literal value syntax, see Section 9.1, “Literal Values”.

For identifier syntax, see Section 9.2, “Schema Object Names”.

Variables can be user variables, system variables, or stored program local variables or parameters:

• User variables: Section 9.4, “User-Defined Variables”

• System variables: Section 5.1.5, “Using System Variables”

• Local variables: Section 13.6.4.1, “Local Variable DECLARE Syntax”

• Parameters: Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”

param_marker is ? as used in prepared statements for placeholders. See Section 13.5.1, “PREPARE
Syntax”.

(subquery) indicates a subquery that returns a single value; that is, a scalar subquery. See
Section 13.2.10.1, “The Subquery as Scalar Operand”.

{identifier expr} is ODBC escape syntax and is accepted for ODBC compatibility. The value
is expr. The curly braces in the syntax should be written literally; they are not metasyntax as used
elsewhere in syntax descriptions.

match_expr indicates a MATCH [1446] expression. See Section 12.9, “Full-Text Search Functions”.

case_expr indicates a CASE expression. See Section 12.4, “Control Flow Functions”.

interval_expr represents a time interval. The syntax is INTERVAL expr unit, where unit is
a specifier such as HOUR, DAY, or WEEK. For the full list of unit specifiers, see the description of the
DATE_ADD() function in Section 12.7, “Date and Time Functions”.

The meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 5.1.7, “Server SQL Modes”.

9.6 Comment Syntax

MySQL Server supports three comment styles:

• From a “#” character to the end of the line.

Comment Syntax

1213

• From a “-- ” sequence to the end of the line. In MySQL, the “-- ” (double-dash) comment style
requires the second dash to be followed by at least one whitespace or control character (such as a
space, tab, newline, and so on). This syntax differs slightly from standard SQL comment syntax, as
discussed in Section 1.8.2.4, “'--' as the Start of a Comment”.

• From a /* sequence to the following */ sequence, as in the C programming language. This syntax
enables a comment to extend over multiple lines because the beginning and closing sequences need
not be on the same line.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;

Nested comments are not supported. (Under some conditions, nested comments might be permitted,
but usually are not, and users should avoid them.)

MySQL Server supports some variants of C-style comments. These enable you to write code that
includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other
SQL statement, but other SQL servers will ignore the extensions. For example, MySQL Server
recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the “!” character, the syntax within the comment is executed only if
the MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword
in the following comment is executed only by servers from MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The comment syntax just described applies to how the mysqld server parses SQL statements. The
mysql client program also performs some parsing of statements before sending them to the server. (It
does this to determine statement boundaries within a multiple-statement input line.)

Comments in this format, /*!12345 ... */, are not stored on the server. If this format is used to
comment stored routines, the comments will not be retained on the server.

Another variant of C-style comment syntax is used to specify optimizer hints. Hint comments include a
+ character following the /* comment opening sequence. Example:

SELECT /*+ BKA(t1) */ FROM ... ;

For more information, see Section 8.9.3, “Optimizer Hints”.

The use of short-form mysql commands such as \C within multiple-line /* ... */ comments is not
supported.

1214

1215

Chapter 10 Globalization

Table of Contents
10.1 Character Set Support .. 1215

10.1.1 Character Sets and Collations in General .. 1216
10.1.2 Character Sets and Collations in MySQL ... 1217
10.1.3 Specifying Character Sets and Collations .. 1218
10.1.4 Connection Character Sets and Collations ... 1225
10.1.5 Configuring the Character Set and Collation for Applications 1228
10.1.6 Character Set for Error Messages ... 1229
10.1.7 Collation Issues .. 1230
10.1.8 String Repertoire .. 1239
10.1.9 Operations Affected by Character Set Support ... 1241
10.1.10 Unicode Support .. 1244
10.1.11 Upgrading from Previous to Current Unicode Support ... 1248
10.1.12 UTF-8 for Metadata .. 1251
10.1.13 Column Character Set Conversion .. 1252
10.1.14 Character Sets and Collations That MySQL Supports ... 1253

10.2 Setting the Error Message Language ... 1267
10.3 Adding a Character Set ... 1268

10.3.1 Character Definition Arrays ... 1270
10.3.2 String Collating Support for Complex Character Sets .. 1271
10.3.3 Multi-Byte Character Support for Complex Character Sets 1271

10.4 Adding a Collation to a Character Set .. 1271
10.4.1 Collation Implementation Types ... 1272
10.4.2 Choosing a Collation ID .. 1275
10.4.3 Adding a Simple Collation to an 8-Bit Character Set ... 1276
10.4.4 Adding a UCA Collation to a Unicode Character Set ... 1277

10.5 Character Set Configuration .. 1284
10.6 MySQL Server Time Zone Support .. 1285

10.6.1 Staying Current with Time Zone Changes .. 1287
10.6.2 Time Zone Leap Second Support .. 1288

10.7 MySQL Server Locale Support .. 1289

This chapter covers issues of globalization, which includes internationalization (MySQL's capabilities
for adapting to local use) and localization (selecting particular local conventions):

• MySQL support for character sets in SQL statements.

• How to configure the server to support different character sets.

• Selecting the language for error messages.

• How to set the server's time zone and enable per-connection time zone support.

• Selecting the locale for day and month names.

10.1 Character Set Support

MySQL includes character set support that enables you to store data using a variety of character sets
and perform comparisons according to a variety of collations. You can specify character sets at the
server, database, table, and column level. MySQL supports the use of character sets for the MyISAM,
MEMORY, and InnoDB storage engines.

Character Sets and Collations in General

1216

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system for character set assignment.

• Syntax for specifying character sets and collations.

• Affected functions and operations.

• Unicode support.

• The character sets and collations that are available, with notes.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about configuring character sets for application use and character set-related
issues in client/server communication, see Section 10.1.5, “Configuring the Character Set and Collation
for Applications”, and Section 10.1.4, “Connection Character Sets and Collations”.

10.1.1 Character Sets and Collations in General

A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters
in a character set. Let's make the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: “A”, “B”, “a”, “b”. We give each letter a number: “A”
= 0, “B” = 1, “a” = 2, “b” = 3. The letter “A” is a symbol, the number 0 is the encoding for “A”, and the
combination of all four letters and their encodings is a character set.

Suppose that we want to compare two string values, “A” and “B”. The simplest way to do this is to look
at the encodings: 0 for “A” and 1 for “B”. Because 0 is less than 1, we say “A” is less than “B”. What
we've just done is apply a collation to our character set. The collation is a set of rules (only one rule in
this case): “compare the encodings.” We call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would
have at least two rules: (1) treat the lowercase letters “a” and “b” as equivalent to “A” and “B”; (2) then
compare the encodings. We call this a case-insensitive collation. It is a little more complex than a
binary collation.

In real life, most character sets have many characters: not just “A” and “B” but whole alphabets,
sometimes multiple alphabets or eastern writing systems with thousands of characters, along with
many special symbols and punctuation marks. Also in real life, most collations have many rules, not
just for whether to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a
mark attached to a character as in German “Ö”), and for multiple-character mappings (such as the rule
that “Ö” = “OE” in one of the two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets.

• Compare strings using a variety of collations.

• Mix strings with different character sets or collations in the same server, the same database, or even
the same table.

Character Sets and Collations in MySQL

1217

• Enable specification of character set and collation at any level.

In these respects, MySQL is far ahead of most other database management systems. However, to use
these features effectively, you need to know what character sets and collations are available, how to
change the defaults, and how they affect the behavior of string operators and functions.

10.1.2 Character Sets and Collations in MySQL

The MySQL server can support multiple character sets. To list the available character sets, use the
SHOW CHARACTER SET statement. A partial listing follows. For more complete information, see
Section 10.1.14, “Character Sets and Collations That MySQL Supports”.

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
...

Any given character set always has at least one collation. It may have several collations. To list the
collations for a character set, use the SHOW COLLATION statement. For example, to see the collations
for the latin1 (cp1252 West European) character set, use this statement to find those collation
names that begin with latin1:

mysql> SHOW COLLATION LIKE 'latin1%';
+---------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+---------------------+---------+----+---------+----------+---------+

The latin1 collations have the following meanings.

Collation Meaning

latin1_german1_ci German DIN-1

latin1_swedish_ci Swedish/Finnish

latin1_danish_ci Danish/Norwegian

Specifying Character Sets and Collations

1218

Collation Meaning

latin1_german2_ci German DIN-2

latin1_bin Binary according to latin1 encoding

latin1_general_ci Multilingual (Western European)

latin1_general_cs Multilingual (ISO Western European), case sensitive

latin1_spanish_ci Modern Spanish

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has one collation that is the default collation. For example, the default collation for
latin1 is latin1_swedish_ci. The output for SHOW CHARACTER SET indicates which collation
is the default for each displayed character set.

• There is a convention for collation names: They start with the name of the character set with which
they are associated, they usually include a language name, and they end with _ci (case insensitive),
_cs (case sensitive), or _bin (binary).

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform
some comparisons with representative data values to make sure that a given collation sorts values the
way you expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

10.1.3 Specifying Character Sets and Collations

There are default settings for character sets and collations at four levels: server, database, table,
and column. The description in the following sections may appear complex, but it has been found in
practice that multiple-level defaulting leads to natural and obvious results.

CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym
for CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see
Section 10.1.4, “Connection Character Sets and Collations”.

10.1.3.1 Server Character Set and Collation

MySQL Server has a server character set and a server collation. These can be set at server startup on
the command line or in an option file and changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start
mysqld. You can use --character-set-server for the character set. Along with it, you can add
--collation-server for the collation. If you don't specify a character set, that is the same as saying
--character-set-server=latin1. If you specify only a character set (for example, latin1) but
not a collation, that is the same as saying --character-set-server=latin1 --collation-
server=latin1_swedish_ci because latin1_swedish_ci is the default collation for latin1.
Therefore, the following three commands all have the same effect:

http://www.collation-charts.org/

Specifying Character Sets and Collations

1219

shell> mysqld
shell> mysqld --character-set-server=latin1
shell> mysqld --character-set-server=latin1 \
 --collation-server=latin1_swedish_ci

One way to change the settings is by recompiling. To change the default server character set and
collation when building from sources, use the DEFAULT_CHARSET and DEFAULT_COLLATION options
for CMake. For example:

shell> cmake . -DDEFAULT_CHARSET=latin1

Or:

shell> cmake . -DDEFAULT_CHARSET=latin1 \
 -DDEFAULT_COLLATION=latin1_german1_ci

Both mysqld and CMake verify that the character set/collation combination is valid. If not, each
program displays an error message and terminates.

The server character set and collation are used as default values if the database character set and
collation are not specified in CREATE DATABASE statements. They have no other purpose.

The current server character set and collation can be determined from the values of the
character_set_server and collation_server system variables. These variables can be
changed at runtime.

10.1.3.2 Database Character Set and Collation

Every database has a database character set and a database collation. The CREATE DATABASE and
ALTER DATABASE statements have optional clauses for specifying the database character set and
collation:

CREATE DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

All database options are stored in a text file named db.opt that can be found in the database
directory.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different
character sets and collations on the same MySQL server.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are
used. To see the default collation for each character set, use the SHOW COLLATION statement.

Specifying Character Sets and Collations

1220

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and
collation Y are used.

• Otherwise, the server character set and server collation are used.

The character set and collation for the default database can be determined from the values of the
character_set_database and collation_database system variables. The server sets these
variables whenever the default database changes. If there is no default database, the variables have
the same value as the corresponding server-level system variables, character_set_server and
collation_server.

To see the default character set and collation for a given database, use these statements:

USE db_name;
SELECT @@character_set_database, @@collation_database;

Alternatively, to display the values without changing the default database:

SELECT DEFAULT_CHARACTER_SET_NAME, DEFAULT_COLLATION_NAME
FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = 'db_name';

The database character set and collation affect these aspects of server operation:

• For CREATE TABLE statements, the database character set and collation are used as default values
for table definitions if the table character set and collation are not specified. To override this, provide
explicit CHARACTER SET and COLLATE table options.

• For LOAD DATA statements that include no CHARACTER SET clause, the server uses the character
set indicated by the character_set_database system variable to interpret the information in the
file. To override this, provide an explicit CHARACTER SET clause.

• For stored routines (procedures and functions), the database character set and collation in effect at
routine creation time are used as the character set and collation of character data parameters for
which the declaration includes no CHARACTER SET or COLLATE attribute. To override this, provide
explicit CHARACTER SET and COLLATE attributes.

10.1.3.3 Table Character Set and Collation

Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE
statements have optional clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]]

ALTER TABLE tbl_name
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]

Example:

CREATE TABLE t1 (...)
CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are
used. To see the default collation for each character set, use the SHOW COLLATION statement.

Specifying Character Sets and Collations

1221

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and
collation Y are used.

• Otherwise, the database character set and collation are used.

The table character set and collation are used as default values for column definitions if the column
character set and collation are not specified in individual column definitions. The table character set
and collation are MySQL extensions; there are no such things in standard SQL.

10.1.3.4 Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column character
set and a column collation. Column definition syntax for CREATE TABLE and ALTER TABLE has
optional clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

These clauses can also be used for ENUM and SET columns:

col_name {ENUM | SET} (val_list)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

Examples:

CREATE TABLE t1
(
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_german1_ci
);

ALTER TABLE t1 MODIFY
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_swedish_ci;

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set and collation are specified for the column, so they are used. The column has
character set utf8 and collation utf8_unicode_ci.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are
used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set is specified for the column, but the collation is not. The column has character set
utf8 and the default collation for utf8, which is utf8_general_ci. To see the default collation for
each character set, use the SHOW COLLATION statement.

Specifying Character Sets and Collations

1222

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and
collation Y are used.

CREATE TABLE t1
(
 col1 CHAR(10) COLLATE utf8_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The collation is specified for the column, but the character set is not. The column has collation
utf8_polish_ci and the character set is the one associated with the collation, which is utf8.

• Otherwise, the table character set and collation are used.

CREATE TABLE t1
(
 col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;

Neither the character set nor collation are specified for the column, so the table defaults are used.
The column has character set latin1 and collation latin1_bin.

The CHARACTER SET and COLLATE clauses are standard SQL.

If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to
map the data values, but if the character sets are incompatible, there may be data loss.

10.1.3.5 Character String Literal Character Set and Collation

Every character string literal has a character set and a collation.

A character string literal may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT 'string';
SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

For the simple statement SELECT 'string', the string has the character set and collation defined by
the character_set_connection and collation_connection system variables.

The _charset_name expression is formally called an introducer. It tells the parser, “the string that is
about to follow uses character set X.” Because this has confused people in the past, we emphasize
that an introducer does not change the string to the introducer character set like CONVERT() would do.
It does not change the string's value, although padding may occur. The introducer is just a signal. An
introducer is also legal before standard hex literal and numeric hex literal notation (x'literal' and
0xnnnn), or before bit-field literal notation (b'literal' and 0bnnnn).

Examples:

SELECT _latin1 x'AABBCC';
SELECT _latin1 0xAABBCC;
SELECT _latin1 b'1100011';
SELECT _latin1 0b1100011;

MySQL determines a literal's character set and collation in the following manner:

• If both _X and COLLATE Y are specified, character set X and collation Y are used.

Specifying Character Sets and Collations

1223

• If _X is specified but COLLATE is not specified, character set X and its default collation are used. To
see the default collation for each character set, use the SHOW COLLATION statement.

• Otherwise, the character set and collation given by the character_set_connection and
collation_connection system variables are used.

Examples:

• A string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A string with latin1 character set and its default collation (that is, latin1_swedish_ci):

SELECT _latin1'Müller';

• A string with the connection default character set and collation:

SELECT 'Müller';

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

An introducer indicates the character set for the following string, but does not change now how the
parser performs escape processing within the string. Escapes are always interpreted by the parser
according to the character set given by character_set_connection.

The following examples show that escape processing occurs using character_set_connection
even in the presence of an introducer. The examples use SET NAMES (which changes
character_set_connection, as discussed in Section 10.1.4, “Connection Character Sets and
Collations”), and display the resulting strings using the HEX() function so that the exact string contents
can be seen.

Example 1:

mysql> SET NAMES latin1;
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+
1 row in set (0.00 sec)

Here, “à” (hex value E0) is followed by “\n”, the escape sequence for newline. The escape sequence
is interpreted using the character_set_connection value of latin1 to produce a literal newline
(hex value 0A). This happens even for the second string. That is, the introducer of _sjis does not
affect the parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+

Specifying Character Sets and Collations

1224

| E05C6E | E05C6E |
+------------+-------------------+
1 row in set (0.04 sec)

Here, character_set_connection is sjis, a character set in which the sequence of “à” followed
by “\” (hex values 05 and 5C) is a valid multibyte character. Hence, the first two bytes of the string
are interpreted as a single sjis character, and the “\” is not interpreted as an escape character. The
following “n” (hex value 6E) is not interpreted as part of an escape sequence. This is true even for the
second string; the introducer of _latin1 does not affect escape processing.

10.1.3.6 National Character Set

Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should
use some predefined character set. MySQL uses utf8 as this predefined character set. For example,
these data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NVARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For information on upgrading character sets to MySQL 5.7 from versions prior to 4.1, see the MySQL
3.23, 4.0, 4.1 Reference Manual.

10.1.3.7 Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The
definition is explicit, so that is straightforward. Notice that there is no problem with storing a latin1
column in a latin2 table.

Example 2: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

Connection Character Sets and Collations

1225

This time we have a column with a latin1 character set and a default collation. Although it
might seem natural, the default collation is not taken from the table level. Instead, because the
default collation for latin1 is always latin1_swedish_ci, column c1 has a collation of
latin1_swedish_ci (not latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL
checks the table level to determine the column character set and collation. Consequently, the character
set for column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
 DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;
USE d1;
CREATE TABLE t1
(
 c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a
character set and a collation at the table level. In this circumstance, MySQL checks the database
level to determine the table settings, which thereafter become the column settings.) Consequently, the
character set for column c1 is latin2 and its collation is latin2_czech_ci.

10.1.3.8 Compatibility with Other DBMSs

For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

10.1.4 Connection Character Sets and Collations

Several character set and collation system variables relate to a client's interaction with the server.
Some of these have been mentioned in earlier sections:

• The server character set and collation are the values of the character_set_server and
collation_server system variables.

• The character set and collation of the default database are the values of the
character_set_database and collation_database system variables.

Additional character set and collation system variables are involved in handling traffic for the
connection between a client and the server. Every client has connection-related character set and
collation system variables.

A “connection” is what you make when you connect to the server. The client sends SQL statements,
such as queries, over the connection to the server. The server sends responses, such as result sets or
error messages, over the connection back to the client. This leads to several questions about character
set and collation handling for client connections, each of which can be answered in terms of system
variables:

• What character set is the statement in when it leaves the client?

Connection Character Sets and Collations

1226

The server takes the character_set_client system variable to be the character set in which
statements are sent by the client.

• What character set should the server translate a statement to after receiving it?

For this, the server uses the character_set_connection and collation_connection
system variables. It converts statements sent by the client from character_set_client
to character_set_connection (except for string literals that have an introducer such as
_latin1 or _utf8). collation_connection is important for comparisons of literal strings. For
comparisons of strings with column values, collation_connection does not matter because
columns have their own collation, which has a higher collation precedence.

• What character set should the server translate to before shipping result sets or error messages back
to the client?

The character_set_results system variable indicates the character set in which the server
returns query results to the client. This includes result data such as column values, and result
metadata such as column names and error messages.

Clients can fine-tune the settings for these variables, or depend on the defaults (in which case, you can
skip the rest of this section). If you do not use the defaults, you must change the character settings for
each connection to the server.

Two statements affect the connection-related character set variables as a group:

• SET NAMES 'charset_name' [COLLATE 'collation_name']

SET NAMES indicates what character set the client will use to send SQL statements to the server.
Thus, SET NAMES 'cp1251' tells the server, “future incoming messages from this client are in
character set cp1251.” It also specifies the character set that the server should use for sending
results back to the client. (For example, it indicates what character set to use for column values if you
use a SELECT statement.)

A SET NAMES 'charset_name' statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET character_set_connection = charset_name;

Setting character_set_connection to charset_name also implicitly sets
collation_connection to the default collation for charset_name. It is unnecessary to set that
collation explicitly. To specify a particular collation, use the optional COLLATE clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

• SET CHARACTER SET charset_name

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and
collation_connection to character_set_database and collation_database. A SET
CHARACTER SET charset_name statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET collation_connection = @@collation_database;

Setting collation_connection also implicitly sets character_set_connection
to the character set associated with the collation (equivalent to executing SET
character_set_connection = @@character_set_database). It is unnecessary to set
character_set_connection explicitly.

Connection Character Sets and Collations

1227

Note

ucs2, utf16, utf16le, and utf32 cannot be used as a client character set,
which means that they do not work for SET NAMES or SET CHARACTER SET.

The MySQL client programs mysql, mysqladmin, mysqlcheck, mysqlimport, and mysqlshow
determine the default character set to use as follows:

• In the absence of other information, the programs use the compiled-in default character set, usually
latin1.

• The programs can autodetect which character set to use based on the operating system setting,
such as the value of the LANG or LC_ALL locale environment variable on Unix systems or the code
page setting on Windows systems. For systems on which the locale is available from the OS, the
client uses it to set the default character set rather than using the compiled-in default. For example,
setting LANG to ru_RU.KOI8-R causes the koi8r character set to be used. Thus, users can
configure the locale in their environment for use by MySQL clients.

The OS character set is mapped to the closest MySQL character set if there is no exact match. If
the client does not support the matching character set, it uses the compiled-in default. For example,
ucs2 is not supported as a connection character set.

C applications can use character set autodetection based on the OS setting by invoking
mysql_options() as follows before connecting to the server:

mysql_options(mysql,
 MYSQL_SET_CHARSET_NAME,
 MYSQL_AUTODETECT_CHARSET_NAME);

• The programs support a --default-character-set option, which enables users to specify the
character set explicitly to override whatever default the client otherwise determines.

When a client connects to the server, it sends the name of the character set that it wants to use.
The server uses the name to set the character_set_client, character_set_results, and
character_set_connection system variables. In effect, the server performs a SET NAMES
operation using the character set name.

With the mysql client, to use a character set different from the default, you could explicitly execute
SET NAMES every time you start up. To accomplish the same result more easily, add the --default-
character-set option setting to your mysql command line or in your option file. For example, the
following option file setting changes the three connection-related character set variables set to koi8r
each time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is
preferable to use the charset command rather than SET NAMES. For example:

mysql> charset utf8
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set
that mysql uses when it reconnects after the connection has dropped.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say
SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends back
all the values for column1 using the character set that the client specified when it connected. On the
other hand, if you say SET NAMES 'latin1' or SET CHARACTER SET latin1 before issuing the

Configuring the Character Set and Collation for Applications

1228

SELECT statement, the server converts the latin2 values to latin1 just before sending results back.
Conversion may be lossy if there are characters that are not in both character sets.

If you want the server to perform no conversion of result sets or error messages, set
character_set_results to NULL or binary:

SET character_set_results = NULL;

To see the values of the character set and collation system variables that apply to your connection, use
these statements:

SHOW VARIABLES LIKE 'character_set%';
SHOW VARIABLES LIKE 'collation%';

You must also consider the environment within which your MySQL applications execute. See
Section 10.1.5, “Configuring the Character Set and Collation for Applications”.

For more information about character sets and error messages, see Section 10.1.6, “Character Set for
Error Messages”.

10.1.5 Configuring the Character Set and Collation for Applications

For applications that store data using the default MySQL character set and collation (latin1,
latin1_swedish_ci), no special configuration should be needed. If applications require data storage
using a different character set or collation, you can configure character set information several ways:

• Specify character settings per database. For example, applications that use one database might
require utf8, whereas applications that use another database might require sjis.

• Specify character settings at server startup. This causes the server to use the given settings for all
applications that do not make other arrangements.

• Specify character settings at configuration time, if you build MySQL from source. This causes the
server to use the given settings for all applications, without having to specify them at server startup.

When different applications require different character settings, the per-database technique provides
a good deal of flexibility. If most or all applications use the same character set, specifying character
settings at server startup or configuration time may be most convenient.

For the per-database or server-startup techniques, the settings control the character set for
data storage. Applications must also tell the server which character set to use for client/server
communications, as described in the following instructions.

The examples shown here assume use of the utf8 character set and utf8_general_ci collation.

Specify character settings per database. To create a database such that its tables will use a given
default character set and collation for data storage, use a CREATE DATABASE statement like this:

CREATE DATABASE mydb
 DEFAULT CHARACTER SET utf8
 DEFAULT COLLATE utf8_general_ci;

Tables created in the database will use utf8 and utf8_general_ci by default for any character
columns.

Applications that use the database should also configure their connection to the server each time
they connect. This can be done by executing a SET NAMES 'utf8' statement after connecting. The
statement can be used regardless of connection method: The mysql client, PHP scripts, and so forth.

Character Set for Error Messages

1229

In some cases, it may be possible to configure the connection to use the desired character set some
other way. For example, for connections made using mysql, you can specify the --default-
character-set=utf8 command-line option to achieve the same effect as SET NAMES 'utf8'.

For more information about configuring client connections, see Section 10.1.4, “Connection Character
Sets and Collations”.

If you change the default character set or collation for a database, stored routines that use the
database defaults must be dropped and recreated so that they use the new defaults. (In a stored
routine, variables with character data types use the database defaults if the character set or collation
are not specified explicitly. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION
Syntax”.)

Specify character settings at server startup. To select a character set and collation at server
startup, use the --character-set-server and --collation-server options. For example, to
specify the options in an option file, include these lines:

[mysqld]
character-set-server=utf8
collation-server=utf8_general_ci

These settings apply server-wide and apply as the defaults for databases created by any application,
and for tables created in those databases.

It is still necessary for applications to configure their connection using SET NAMES or equivalent
after they connect, as described previously. You might be tempted to start the server with the --
init_connect="SET NAMES 'utf8'" option to cause SET NAMES to be executed automatically
for each client that connects. However, this will yield inconsistent results because the init_connect
value is not executed for users who have the SUPER privilege.

Specify character settings at MySQL configuration time. To select a character set and
collation when you configure and build MySQL from source, use the DEFAULT_CHARSET and
DEFAULT_COLLATION options for CMake:

shell> cmake . -DDEFAULT_CHARSET=utf8 \
 -DDEFAULT_COLLATION=utf8_general_ci

The resulting server uses utf8 and utf8_general_ci as the default for databases and tables and
for client connections. It is unnecessary to use --character-set-server and --collation-
server to specify those defaults at server startup. It is also unnecessary for applications to configure
their connection using SET NAMES or equivalent after they connect to the server.

Regardless of how you configure the MySQL character set for application use, you must also consider
the environment within which those applications execute. If you will send statements using UTF-8 text
taken from a file that you create in an editor, you should edit the file with the locale of your environment
set to UTF-8 so that the file encoding is correct and so that the operating system handles it correctly.
If you use the mysql client from within a terminal window, the window must be configured to use
UTF-8 or characters may not display properly. For a script that executes in a Web environment, the
script must handle character encoding properly for its interaction with the MySQL server, and it must
generate pages that correctly indicate the encoding so that browsers know how to display the content
of the pages. For example, you can include this <meta> tag within your <head> element:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

10.1.6 Character Set for Error Messages

This section describes how the server uses character sets for constructing error messages and
returning them to clients. For information about the language of error messages (rather than the
character set), see Section 10.2, “Setting the Error Message Language”.

Collation Issues

1230

In MySQL 5.7, the server constructs error messages using UTF-8 and returns them to clients in the
character set specified by the character_set_results system variable.

The server constructs error messages as follows:

• The message template uses UTF-8.

• Parameters in the message template are replaced with values that apply to a specific error
occurrence:

• Identifiers such as table or column names use UTF-8 internally so they are copied as is.

• Character (nonbinary) string values are converted from their character set to UTF-8.

• Binary string values are copied as is for bytes in the range 0x20 to 0x7E, and using \x hex
encoding for bytes outside that range. For example, if a duplicate-key error occurs for an attempt
to insert 0x41CF9F into a VARBINARY unique column, the resulting error message uses UTF-8
with some bytes hex encoded:

Duplicate entry 'A\xC3\x9F' for key 1

To return a message to the client after it has been constructed, the server converts it from
UTF-8 to the character set specified by the character_set_results system variable. If
character_set_results has a value of NULL or binary, no conversion occurs. No conversion
occurs if the variable value is utf8, either, because that matches the original error message character
set.

For characters that cannot be represented in character_set_results, some encoding may occur
during the conversion. The encoding uses Unicode code point values:

• Characters in the Basic Multilingual Plane (BMP) range (0x0000 to 0xFFFF) are written using
\nnnn notation.

• Characters outside the BMP range (0x01000 to 0x10FFFF) are written using \+nnnnnn notation.

Clients can set character_set_results to control the character set in which they receive error
messages. The variable can be set directly, or indirectly by means such as SET NAMES. For more
information about character_set_results, see Section 10.1.4, “Connection Character Sets and
Collations”.

The encoding that occurs during the conversion to character_set_results before returning error
messages to clients can result in different message content compared to earlier versions (before
MySQL 5.5). For example, if an error occurs for an attempt to drop a table named ペ (KATAKANA
LETTER PE) and character_set_results is a character set such as latin1 that does not contain
that character, the resulting message sent to the client has an encoded table name:

ERROR 1051 (42S02): Unknown table '\30DA'

Before MySQL 5.5, the name is not encoded:

ERROR 1051 (42S02): Unknown table 'ペ'

10.1.7 Collation Issues

The following sections discuss various aspects of character set collations.

10.1.7.1 Collation Names

MySQL collation names follow these rules:

Collation Issues

1231

• A name ending in _ci indicates a case-insensitive collation.

• A name ending in _cs indicates a case-sensitive collation.

• A name ending in _bin indicates a binary collation. Character comparisons are based on character
binary code values.

• Unicode collation names may include a version number to indicate the version of the Unicode
Collation Algorithm (UCA) on which the collation is based. UCA-based collations without a version
number in the name use the version-4.0.0 UCA weight keys: http://www.unicode.org/Public/
UCA/4.0.0/allkeys-4.0.0.txt. A collation name such as utf8_unicode_520_ci is based on UCA
5.2.0 weight keys: http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt.

10.1.7.2 Using COLLATE in SQL Statements

With the COLLATE clause, you can override whatever the default collation is for a comparison.
COLLATE may be used in various parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

 SELECT *
 FROM t1
 WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

 SELECT *
 FROM t1
 WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k

http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

Collation Issues

1232

FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

10.1.7.3 COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the following two expressions are
equivalent:

x || y COLLATE z
x || (y COLLATE z)

10.1.7.4 Collations Must Be for the Right Character Set

Each character set has one or more collations, but each collation is associated with one and only one
character set. Therefore, the following statement causes an error message because the latin2_bin
collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

10.1.7.5 Collation of Expressions

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison
operation. For example, in the following cases, it should be clear that the collation is the collation of
column charset_name:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, with multiple operands, there can be ambiguity. For example:

SELECT x FROM T WHERE x = 'Y';

Should the comparison use the collation of the column x, or of the string literal 'Y'? Both x and 'Y'
have collations, so which collation takes precedence?

Standard SQL resolves such questions using what used to be called “coercibility” rules. MySQL
assigns coercibility values as follows:

• An explicit COLLATE clause has a coercibility of 0. (Not coercible at all.)

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a
coercibility of 3.

• The collation of a literal has a coercibility of 4.

• NULL or an expression that is derived from NULL has a coercibility of 5.

MySQL uses coercibility values with the following rules to resolve ambiguities:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

Collation Issues

1233

• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set,
the side with Unicode character set wins, and automatic character set conversion is applied to the
non-Unicode side. For example, the following statement does not return an error:

SELECT CONCAT(utf8_column, latin1_column) FROM t1;

It returns a result that has a character set of utf8 and the same collation as utf8_column.
Values of latin1_column are automatically converted to utf8 before concatenating.

• For an operation with operands from the same character set but that mix a _bin collation and
a _ci or _cs collation, the _bin collation is used. This is similar to how operations that mix
nonbinary and binary strings evaluate the operands as binary strings, except that it is for collations
rather than data types.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that
every character set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-
known principle that “what applies to a superset can apply to a subset,” we believe that a collation for
Unicode can apply for comparisons with non-Unicode strings.

Examples:

Comparison Collation Used

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

The COERCIBILITY() function can be used to determine the coercibility of a string expression:

mysql> SELECT COERCIBILITY('A' COLLATE latin1_swedish_ci);
 -> 0
mysql> SELECT COERCIBILITY(VERSION());
 -> 3
mysql> SELECT COERCIBILITY('A');
 -> 4

See Section 12.14, “Information Functions”.

For implicit conversion of a numeric or temporal value to a string, such as occurs for the argument 1 in
the expression CONCAT(1, 'abc'), the result is a character (nonbinary) string that has a character
set and collation determined by the character_set_connection and collation_connection
system variables. See Section 12.2, “Type Conversion in Expression Evaluation”.

10.1.7.6 The _bin and binary Collations

This section describes how _bin collations for nonbinary strings differ from the binary “collation” for
binary strings.

Nonbinary strings (as stored in the CHAR, VARCHAR, and TEXT data types) have a character set and
collation. A given character set can have several collations, each of which defines a particular sorting
and comparison order for the characters in the set. One of these is the binary collation for the character
set, indicated by a _bin suffix in the collation name. For example, latin1 and utf8 have binary
collations named latin1_bin and utf8_bin.

Binary strings (as stored in the BINARY, VARBINARY, and BLOB data types) have no character set
or collation in the sense that nonbinary strings do. (Applied to a binary string, the CHARSET() and

Collation Issues

1234

COLLATION() functions both return a value of binary.) Binary strings are sequences of bytes and the
numeric values of those bytes determine sort order.

The _bin collations differ from the binary collation in several respects.

The unit for sorting and comparison. Binary strings are sequences of bytes. Sorting and comparison
is always based on numeric byte values. Nonbinary strings are sequences of characters, which might
be multibyte. Collations for nonbinary strings define an ordering of the character values for sorting
and comparison. For the _bin collation, this ordering is based solely on binary code values of the
characters (which is similar to ordering for binary strings except that a _bin collation must take into
account that a character might contain multiple bytes). For other collations, character ordering might
take additional factors such as lettercase into account.

Character set conversion. A nonbinary string has a character set and is converted to another
character set in many cases, even when the string has a _bin collation:

• When assigning column values from another column that has a different character set:

UPDATE t1 SET utf8_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8_bin_column FROM t2;

• When assigning column values for INSERT or UPDATE using a string literal:

SET NAMES latin1;
INSERT INTO t1 (utf8_bin_column) VALUES ('string-in-latin1');

• When sending results from the server to a client:

SET NAMES latin1;
SELECT utf8_bin_column FROM t2;

For binary string columns, no conversion occurs. For the preceding cases, the string value is copied
byte-wise.

Lettercase conversion. Collations provide information about lettercase of characters, so characters
in a nonbinary string can be converted from one lettercase to another, even for _bin collations that
ignore lettercase for ordering:

mysql> SET NAMES latin1 COLLATE latin1_bin;
Query OK, 0 rows affected (0.02 sec)

mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa | ZZ |
+-------------+-------------+
1 row in set (0.13 sec)

The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion,
the string must be converted to a nonbinary string:

mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING latin1));
+-------------+-----------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING latin1)) |
+-------------+-----------------------------------+
| aA | aa |
+-------------+-----------------------------------+

Collation Issues

1235

1 row in set (0.00 sec)

Trailing space handling in comparisons. Nonbinary strings have PADSPACE behavior for all
collations, including _bin collations. Trailing spaces are insignificant in comparisons:

mysql> SET NAMES utf8 COLLATE utf8_bin;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 1 |
+------------+
1 row in set (0.00 sec)

For binary strings, all characters are significant in comparisons, including trailing spaces:

mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+
1 row in set (0.00 sec)

Trailing space handling for inserts and retrievals. CHAR(N) columns store nonbinary strings.
Values shorter than N characters are extended with spaces on insertion. For retrieval, trailing spaces
are removed.

BINARY(N) columns store binary strings. Values shorter than N bytes are extended with 0x00 bytes
on insertion. For retrieval, nothing is removed; a value of the declared length is always returned.

mysql> CREATE TABLE t1 (
 -> a CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin,
 -> b BINARY(10)
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO t1 VALUES ('a','a');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(a), HEX(b) FROM t1;
+--------+----------------------+
| HEX(a) | HEX(b) |
+--------+----------------------+
| 61 | 61000000000000000000 |
+--------+----------------------+
1 row in set (0.04 sec)

10.1.7.7 The BINARY Operator

The BINARY operator casts the string following it to a binary string. This is an easy way to force a
comparison to be done byte by byte rather than character by character. BINARY also causes trailing
spaces to be significant.

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT BINARY 'a' = 'A';
 -> 0
mysql> SELECT 'a' = 'a ';
 -> 1

Collation Issues

1236

mysql> SELECT BINARY 'a' = 'a ';
 -> 0

BINARY str is shorthand for CAST(str AS BINARY).

The BINARY attribute in character column definitions has a different effect. A character column
defined with the BINARY attribute is assigned the binary collation of the column character set. Every
character set has a binary collation. For example, the binary collation for the latin1 character set
is latin1_bin, so if the table default character set is latin1, these two column definitions are
equivalent:

CHAR(10) BINARY
CHAR(10) CHARACTER SET latin1 COLLATE latin1_bin

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes
the column to be treated as a binary data type. For example, the following pairs of definitions are
equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)

VARCHAR(10) CHARACTER SET binary
VARBINARY(10)

TEXT CHARACTER SET binary
BLOB

10.1.7.8 Examples of the Effect of Collation

Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Muffler
Müller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations.

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is the U with two dots over it (ü),
which the Germans call “U-umlaut.”

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says
that U-umlaut sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-
umlaut sorts with U.

Collation Issues

1237

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-
umlaut sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

mysql> SET NAMES utf8;
mysql> CREATE TABLE german1 (
 -> c CHAR(10)
 ->) CHARACTER SET latin1 COLLATE latin1_german1_ci;
mysql> CREATE TABLE german2 (
 -> c CHAR(10)
 ->) CHARACTER SET latin1 COLLATE latin1_german2_ci;
mysql> CREATE TABLE germanutf8 (
 -> c CHAR(10)
 ->) CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Each table contains two records:

mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');

Two of the above collations have an A = Ä equality, and one has no such equality
(latin1_german2_ci). For that reason, you'll get these results in comparisons:

mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c |
+------+
| Bär |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+

This is not a bug but rather a consequence of the sorting properties of latin1_german1_ci and
utf8_unicode_ci (the sorting shown is done according to the German DIN 5007 standard).

10.1.7.9 Collation and INFORMATION_SCHEMA Searches

String columns in INFORMATION_SCHEMA tables have a collation of utf8_general_ci, which is
case insensitive. However, searches in INFORMATION_SCHEMA string columns are also affected by file
system case sensitivity. For values that correspond to objects that are represented in the file system,
such as names of databases and tables, searches may be case sensitive if the file system is case
sensitive. This section describes how to work around this issue if necessary; see also Bug #34921.

Suppose that a query searches the SCHEMATA.SCHEMA_NAME column for the test database. On
Linux, file systems are case sensitive, so comparisons of SCHEMATA.SCHEMA_NAME with 'test'
match, but comparisons with 'TEST' do not:

Collation Issues

1238

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.01 sec)

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'TEST';
Empty set (0.00 sec)

On Windows or OS X where file systems are not case sensitive, comparisons match both 'test' and
'TEST':

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.00 sec)

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| TEST |
+-------------+
1 row in set (0.00 sec)

The value of the lower_case_table_names system variable makes no difference in this context.

This behavior occurs because the utf8_general_ci collation is not used for
INFORMATION_SCHEMA queries when searching the file system for database objects. It is a result of
optimizations implemented for INFORMATION_SCHEMA searches in MySQL. For information about
these optimizations, see Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”.

Searches in INFORMATION_SCHEMA string columns for values that refer to INFORMATION_SCHEMA
itself do use the utf8_general_ci collation because INFORMATION_SCHEMA is a “virtual” database
and is not represented in the file system. For example, comparisons with SCHEMATA.SCHEMA_NAME
match 'information_schema' or 'INFORMATION_SCHEMA' regardless of platform:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'information_schema';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+
1 row in set (0.00 sec)

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME = 'INFORMATION_SCHEMA';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+
1 row in set (0.00 sec)

If the result of a string operation on an INFORMATION_SCHEMA column differs from expectations, a
workaround is to use an explicit COLLATE clause to force a suitable collation (Section 10.1.7.2, “Using

String Repertoire

1239

COLLATE in SQL Statements”). For example, to perform a case-insensitive search, use COLLATE with
the INFORMATION_SCHEMA column name:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.00 sec)

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 -> WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'TEST';
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.00 sec)

You can also use the UPPER() or LOWER() function:

WHERE UPPER(SCHEMA_NAME) = 'TEST'
WHERE LOWER(SCHEMA_NAME) = 'test'

Although a case-insensitive comparison can be performed even on platforms with case-sensitive
file systems, as just shown, it is not necessarily always the right thing to do. On such platforms, it is
possible to have multiple objects with names that differ only in lettercase. For example, tables named
city, CITY, and City can all exist simultaneously. Consider whether a search should match all such
names or just one and write queries accordingly:

WHERE TABLE_NAME COLLATE utf8_bin = 'City'
WHERE TABLE_NAME COLLATE utf8_general_ci = 'city'
WHERE UPPER(TABLE_NAME) = 'CITY'
WHERE LOWER(TABLE_NAME) = 'city'

The first of those comparisons (with utf8_bin) is case sensitive; the others are not.

10.1.8 String Repertoire

The repertoire of a character set is the collection of characters in the set.

String expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only characters in the Unicode range U+0000 to U+007F.

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+FFFF.

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted
safely without loss of information to the character set of any string with UNICODE repertoire or to a
character set that is a superset of ASCII. (All MySQL character sets are supersets of ASCII with the
exception of swe7, which reuses some punctuation characters for Swedish accented characters.) The
use of repertoire enables character set conversion in expressions for many cases where MySQL would
otherwise return an “illegal mix of collations” error.

The following discussion provides examples of expressions and their repertoires, and describes how
the use of repertoire changes string expression evaluation:

• The repertoire for string constants depends on string content:

SET NAMES utf8; SELECT 'abc';

String Repertoire

1240

SELECT _utf8'def';
SELECT N'MySQL';

Although the character set is utf8 in each of the preceding cases, the strings do not actually contain
any characters outside the ASCII range, so their repertoire is ASCII rather than UNICODE.

• Columns having the ascii character set have ASCII repertoire because of their character set. In
the following table, c1 has ASCII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where
an error occurs without repertoire:

CREATE TABLE t1 (
 c1 CHAR(1) CHARACTER SET latin1,
 c2 CHAR(1) CHARACTER SET ascii
);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is
returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+

• Functions with one string argument inherit the repertoire of their argument. The result of
UPPER(_utf8'abc') has ASCII repertoire because its argument has ASCII repertoire.

• For functions that return a string but do not have string arguments and use
character_set_connection as the result character set, the result repertoire is ASCII if
character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |

Operations Affected by Character Set Support

1241

+-------------------------+
| 1.0000b |
+-------------------------+

• Functions with two or more string arguments use the “widest” argument repertoire for the result
repertoire (UNICODE is wider than ASCII). Consider the following CONCAT() calls:

CONCAT(_ucs2 X'0041', _ucs2 X'0042')
CONCAT(_ucs2 X'0041', _ucs2 X'00C2')

For the first call, the repertoire is ASCII because both arguments are within the range of the ascii
character set. For the second call, the repertoire is UNICODE because the second argument is
outside the ascii character set range.

• The repertoire for function return values is determined based only on the repertoire of the arguments
that affect the result's character set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third
argument) both have ASCII repertoire. The first argument does not matter for the result repertoire,
even if the expression uses string values.

10.1.9 Operations Affected by Character Set Support

This section describes operations that take character set information into account.

10.1.9.1 Result Strings

MySQL has many operators and functions that return a string. This section answers the question: What
is the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output's character
set and collation are the same as those of the principal input value. For example, UPPER(X) returns a
string whose character string and collation are the same as that of X. The same applies for INSTR(),
LCASE(), LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(), RPAD(),
RTRIM(), SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note: The REPLACE() function, unlike all other functions, always ignores the collation of the string
input and performs a case-sensitive comparison.

If a string input or function result is a binary string, the string has no character set or collation. This can
be checked by using the CHARSET() and COLLATION() functions, both of which return binary to
indicate that their argument is a binary string:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+
| binary | binary |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation
rules” of standard SQL apply for determining the collation of the result:

• If an explicit COLLATE X occurs, use X.

• If explicit COLLATE X and COLLATE Y occur, raise an error.

• Otherwise, if all collations are X, use X.

Operations Affected by Character Set Support

1242

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting
collation is X. The same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and
LEAST().

For operations that convert to character data, the character set and collation of the strings
that result from the operations are defined by the character_set_connection and
collation_connection system variables. This applies only to CAST(), CONV(), FORMAT(),
HEX(), and SPACE().

If you are uncertain about the character set or collation of the result returned by a string function, you
can use the CHARSET() or COLLATION() function to find out:

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+----------------+-----------------+-------------------+
| test@localhost | utf8 | utf8_general_ci |
+----------------+-----------------+-------------------+

10.1.9.2 CONVERT() and CAST()

CONVERT() provides a way to convert data between different character sets. The syntax is:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8table (utf8column)
 SELECT CONVERT(latin1field USING utf8) FROM latin1table;

CONVERT(... USING ...) is implemented according to the standard SQL specification.

You may also use CAST() to convert a string to a different character set. The syntax is:

CAST(character_string AS character_data_type CHARACTER SET charset_name)

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8);

If you use CAST() without specifying CHARACTER SET, the resulting character set and collation are
defined by the character_set_connection and collation_connection system variables.
If you use CAST() with CHARACTER SET X, the resulting character set and collation are X and the
default collation of X.

You may not use a COLLATE clause inside a CONVERT() or CAST() call, but you may use it outside.
For example, CAST(... COLLATE ...) is illegal, but CAST(...) COLLATE ... is legal:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

10.1.9.3 SHOW Statements and INFORMATION_SCHEMA

Several SHOW statements provide additional character set information. These include SHOW
CHARACTER SET, SHOW COLLATION, SHOW CREATE DATABASE, SHOW CREATE TABLE and SHOW

Operations Affected by Character Set Support

1243

COLUMNS. These statements are described here briefly. For more information, see Section 13.7.5,
“SHOW Syntax”.

INFORMATION_SCHEMA has several tables that contain information similar to that displayed by
the SHOW statements. For example, the CHARACTER_SETS and COLLATIONS tables contain
the information displayed by SHOW CHARACTER SET and SHOW COLLATION. See Chapter 20,
INFORMATION_SCHEMA Tables.

The SHOW CHARACTER SET statement shows all available character sets. It takes an optional LIKE
clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

The output from SHOW COLLATION includes all available character sets. It takes an optional LIKE
clause that indicates which collation names to match. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

SHOW CREATE DATABASE displays the CREATE DATABASE statement that creates a given database:

mysql> SHOW CREATE DATABASE test;
+----------+---+
| Database | Create Database |
+----------+---+
| test | CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ |
+----------+---+

If no COLLATE clause is shown, the default collation for the character set applies.

SHOW CREATE TABLE is similar, but displays the CREATE TABLE statement to create a given table.
The column definitions indicate any character set specifications, and the table options include character
set information.

The SHOW COLUMNS statement displays the collations of a table's columns when invoked as SHOW
FULL COLUMNS. Columns with CHAR, VARCHAR, or TEXT data types have collations. Numeric and
other noncharacter types have no collation (indicated by NULL as the Collation value). For example:

mysql> SHOW FULL COLUMNS FROM person\G
*************************** 1. row ***************************
 Field: id
 Type: smallint(5) unsigned
 Collation: NULL
 Null: NO

Unicode Support

1244

 Key: PRI
 Default: NULL
 Extra: auto_increment
Privileges: select,insert,update,references
 Comment:
*************************** 2. row ***************************
 Field: name
 Type: char(60)
 Collation: latin1_swedish_ci
 Null: NO
 Key:
 Default:
 Extra:
Privileges: select,insert,update,references
 Comment:

The character set is not part of the display but is implied by the collation name.

10.1.10 Unicode Support

The initial implementation of Unicode support (in MySQL 4.1) included two character sets for storing
Unicode data:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

These two character sets support the characters from the Basic Multilingual Plane (BMP) of Unicode
Version 3.0. BMP characters have these characteristics:

• Their code values are between 0 and 65535 (or U+0000 .. U+FFFF).

• They can be encoded with a fixed 16-bit word, as in ucs2.

• They can be encoded with 8, 16, or 24 bits, as in utf8.

• They are sufficient for almost all characters in major languages.

Characters not supported by the aforementioned character sets include supplementary characters that
lie outside the BMP. Characters outside the BMP compare as REPLACEMENT CHARACTER and
convert to '?' when converted to a Unicode character set.

In MySQL 5.7, Unicode support includes supplementary characters, which requires new character
sets that have a broader range (including non-BMP characters) and therefore take more space. The
following table shows a brief feature comparison of previous and current Unicode support.

Before MySQL 5.5 MySQL 5.5 and up

All Unicode 3.0 characters All Unicode 5.0 and 6.0 characters

No supplementary characters With supplementary characters

ucs2 character set, BMP only No change

utf8 character set for up to three bytes, BMP
only

No change

 New utf8mb4 character set for up to four bytes,
BMP or supplemental

 New utf16 character set, BMP or supplemental

 New utf16le character set, BMP or
supplemental

 New utf32 character set, BMP or supplemental

Unicode Support

1245

These changes are upward compatible. If you want to use the new character sets, there are potential
incompatibility issues for your applications; see Section 10.1.11, “Upgrading from Previous to Current
Unicode Support”. That section also describes how to convert tables from utf8 to the (4-byte)
utf8mb4 character set, and what constraints may apply in doing so.

MySQL supports these Unicode character sets:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.

• utf16, the UTF-16 encoding for the Unicode character set; like ucs2 but with an extension for
supplementary characters.

• utf16le, the UTF-16LE encoding for the Unicode character set; like utf16 but little-endian rather
than big-endian.

• utf32, the UTF-32 encoding for the Unicode character set using 32 bits per character.

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

• utf8mb4, a UTF-8 encoding of the Unicode character set using one to four bytes per character.

ucs2 and utf8 support BMP characters. utf8mb4, utf16, utf16le, and utf32 support BMP and
supplementary characters.

A similar set of collations is available for most Unicode character sets. For example, each has a Danish
collation, the names of which are ucs2_danish_ci, utf16_danish_ci, utf32_danish_ci,
utf8_danish_ci, and utf8mb4_danish_ci. The exception is utf16le, which has only two
collations. All Unicode collations are listed at Section 10.1.14.1, “Unicode Character Sets”, which also
describes collation properties for supplementary characters.

Note that although many of the supplementary characters come from East Asian languages, what
MySQL 5.7 adds is support for more Japanese and Chinese characters in Unicode character sets, not
support for new Japanese and Chinese character sets.

The MySQL implementation of UCS-2, UTF-16, and UTF-32 stores characters in big-endian byte order
and does not use a byte order mark (BOM) at the beginning of values. Other database systems might
use little-endian byte order or a BOM. In such cases, conversion of values will need to be performed
when transferring data between those systems and MySQL. The implementation of UTF-16LE is little-
endian.

MySQL uses no BOM for UTF-8 values.

Client applications that need to communicate with the server using Unicode should set the client
character set accordingly; for example, by issuing a SET NAMES 'utf8' statement. ucs2, utf16,
utf16le, and utf32 cannot be used as a client character set, which means that they do not work
for SET NAMES or SET CHARACTER SET. (See Section 10.1.4, “Connection Character Sets and
Collations”.)

The following sections provide additional detail on the Unicode character sets in MySQL.

10.1.10.1 The ucs2 Character Set (UCS-2 Unicode Encoding)

In UCS-2, every character is represented by a 2-byte Unicode code with the most significant byte
first. For example: LATIN CAPITAL LETTER A has the code 0x0041 and it is stored as a 2-byte
sequence: 0x00 0x41. CYRILLIC SMALL LETTER YERU (Unicode 0x044B) is stored as a 2-byte
sequence: 0x04 0x4B. For Unicode characters and their codes, please refer to the Unicode Home
Page.

In MySQL, the ucs2 character set is a fixed-length 16-bit encoding for Unicode BMP characters.

10.1.10.2 The utf16 Character Set (UTF-16 Unicode Encoding)

http://www.unicode.org/
http://www.unicode.org/

Unicode Support

1246

The utf16 character set is the ucs2 character set with an extension that enables encoding of
supplementary characters:

• For a BMP character, utf16 and ucs2 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf16 has a special sequence for representing the character using
32 bits. This is called the “surrogate” mechanism: For a number greater than 0xffff, take 10 bits
and add them to 0xd800 and put them in the first 16-bit word, take 10 more bits and add them to
0xdc00 and put them in the next 16-bit word. Consequently, all supplementary characters require
32 bits, where the first 16 bits are a number between 0xd800 and 0xdbff, and the last 16 bits
are a number between 0xdc00 and 0xdfff. Examples are in Section 15.5 Surrogates Area of the
Unicode 4.0 document.

Because utf16 supports surrogates and ucs2 does not, there is a validity check that applies only in
utf16: You cannot insert a top surrogate without a bottom surrogate, or vice versa. For example:

INSERT INTO t (ucs2_column) VALUES (0xd800); /* legal */
INSERT INTO t (utf16_column)VALUES (0xd800); /* illegal */

There is no validity check for characters that are technically valid but are not true Unicode (that is,
characters that Unicode considers to be “unassigned code points” or “private use” characters or even
“illegals” like 0xffff). For example, since U+F8FF is the Apple Logo, this is legal:

INSERT INTO t (utf16_column)VALUES (0xf8ff); /* legal */

Such characters cannot be expected to mean the same thing to everyone.

Because MySQL must allow for the worst case (that one character requires four bytes) the maximum
length of a utf16 column or index is only half of the maximum length for a ucs2 column or index. For
example, the maximum length of a MEMORY table index key is 3072 bytes, so these statements create
tables with the longest permitted indexes for ucs2 and utf16 columns:

CREATE TABLE tf (s1 VARCHAR(1536) CHARACTER SET ucs2) ENGINE=MEMORY;
CREATE INDEX i ON tf (s1);
CREATE TABLE tg (s1 VARCHAR(768) CHARACTER SET utf16) ENGINE=MEMORY;
CREATE INDEX i ON tg (s1);

10.1.10.3 The utf16le Character Set (UTF-16LE Unicode Encoding)

This is the same as utf16 but is little-endian rather than big-endian.

10.1.10.4 The utf32 Character Set (UTF-32 Unicode Encoding)

The utf32 character set is fixed length (like ucs2 and unlike utf16). utf32 uses 32 bits for every
character, unlike ucs2 (which uses 16 bits for every character), and unlike utf16 (which uses 16 bits
for some characters and 32 bits for others).

utf32 takes twice as much space as ucs2 and more space than utf16, but utf32 has the same
advantage as ucs2 that it is predictable for storage: The required number of bytes for utf32 equals
the number of characters times 4. Also, unlike utf16, there are no tricks for encoding in utf32, so the
stored value equals the code value.

To demonstrate how the latter advantage is useful, here is an example that shows how to determine a
utf8mb4 value given the utf32 code value:

/* Assume code value = 100cc LINEAR B WHEELED CHARIOT */
CREATE TABLE tmp (utf32_col CHAR(1) CHARACTER SET utf32,
 utf8mb4_col CHAR(1) CHARACTER SET utf8mb4);

http://unicode.org/versions/Unicode4.0.0/ch15.pdf

Unicode Support

1247

INSERT INTO tmp VALUES (0x000100cc,NULL);
UPDATE tmp SET utf8mb4_col = utf32_col;
SELECT HEX(utf32_col),HEX(utf8mb4_col) FROM tmp;

MySQL is very forgiving about additions of unassigned Unicode characters or private-use-area
characters. There is in fact only one validity check for utf32: No code value may be greater than
0x10ffff. For example, this is illegal:

INSERT INTO t (utf32_column) VALUES (0x110000); /* illegal */

10.1.10.5 The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)

UTF-8 (Unicode Transformation Format with 8-bit units) is an alternative way to store Unicode data.
It is implemented according to RFC 3629, which describes encoding sequences that take from one to
four bytes. (An older standard for UTF-8 encoding, RFC 2279, describes UTF-8 sequences that take
from one to six bytes. RFC 3629 renders RFC 2279 obsolete; for this reason, sequences with five and
six bytes are no longer used.)

The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different
lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a 2-byte sequence: extended Latin letters (with
tilde, macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac,
and others.

• Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences.

The utf8 character set is the same in MySQL 5.7 as before 5.7 and has exactly the same
characteristics:

• No support for supplementary characters (BMP characters only).

• A maximum of three bytes per multibyte character.

Exactly the same set of characters is available in utf8 as in ucs2. That is, they have the same
repertoire.

Tip: To save space with UTF-8, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve three
bytes for each character in a CHAR CHARACTER SET utf8 column because that is the maximum
possible length. For example, MySQL must reserve 30 bytes for a CHAR(10) CHARACTER SET utf8
column.

For additional information about data type storage, see Section 11.8, “Data Type Storage
Requirements”. For information about InnoDB physical row storage, including how InnoDB tables that
use COMPACT row format handle UTF-8 CHAR(N) columns internally, see Section 14.2.7.7, “Physical
Row Structure”.

10.1.10.6 The utf8mb3 Character Set (Alias for utf8)

In a future version of MySQL, it is possible that utf8 will become the 4-byte utf8, and that users who
want to indicate 3-byte utf8 will have to say utf8mb3. To avoid some future problems which might
occur with replication when master and slave servers have different MySQL versions, it is possible for
users to specify utf8mb3 in CHARACTER SET clauses, and utf8mb3_collation_substring in
COLLATE clauses, where collation_substring is bin, czech_ci, danish_ci, esperanto_ci,
estonian_ci, and so forth. For example:

CREATE TABLE t (s1 CHAR(1) CHARACTER SET utf8mb3;

Upgrading from Previous to Current Unicode Support

1248

SELECT * FROM t WHERE s1 COLLATE utf8mb3_general_ci = 'x';
DECLARE x VARCHAR(5) CHARACTER SET utf8mb3 COLLATE utf8mb3_danish_ci;
SELECT CAST('a' AS CHAR CHARACTER SET utf8) COLLATE utf8_czech_ci;

MySQL immediately converts instances of utf8mb3 in an alias to utf8, so in
statements such as SHOW CREATE TABLE or SELECT CHARACTER_SET_NAME
FROM INFORMATION_SCHEMA.COLUMNS or SELECT COLLATION_NAME FROM
INFORMATION_SCHEMA.COLUMNS, users will see the true name, utf8 or
utf8_collation_substring.

The utf8mb3 alias is valid only in CHARACTER SET clauses, and in certain other places. For example,
these are legal:

mysqld --character-set-server=utf8mb3
SET NAMES 'utf8mb3'; /* and other SET statements that have similar effect */
SELECT _utf8mb3 'a';

There is no utf8mb3 alias to the corresponding utf8 collation for collation names that include a
version number (for example, utf8_unicode_520_ci) to indicate the Unicode Collation Algorithm
version on which the collation is based.

10.1.10.7 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

The character set named utf8 uses a maximum of three bytes per character and contains only
BMP characters. The utf8mb4 character set uses a maximum of four bytes per character supports
supplemental characters:

• For a BMP character, utf8 and utf8mb4 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8 cannot store the character at all, while utf8mb4 requires four
bytes to store it. Since utf8 cannot store the character at all, you do not have any supplementary
characters in utf8 columns and you need not worry about converting characters or losing data when
upgrading utf8 data from older versions of MySQL.

utf8mb4 is a superset of utf8, so for an operation such as the following concatenation, the result has
character set utf8mb4 and the collation of utf8mb4_col:

SELECT CONCAT(utf8_col, utf8mb4_col);

Similarly, the following comparison in the WHERE clause works according to the collation of
utf8mb4_col:

SELECT * FROM utf8_tbl, utf8mb4_tbl
WHERE utf8_tbl.utf8_col = utf8mb4_tbl.utf8mb4_col;

Tip: To save space with utf8mb4, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve
four bytes for each character in a CHAR CHARACTER SET utf8mb4 column because that is the
maximum possible length. For example, MySQL must reserve 40 bytes for a CHAR(10) CHARACTER
SET utf8mb4 column.

10.1.11 Upgrading from Previous to Current Unicode Support

This section describes issues pertaining to Unicode support that you may face when upgrading to
MySQL 5.7 from an older MySQL release. It also provides guidelines for downgrading from MySQL 5.7
to an older release.

In most respects, upgrading to MySQL 5.7 should present few problems with regard to Unicode usage,
although there are some potential areas of incompatibility. These are the primary areas of concern:

Upgrading from Previous to Current Unicode Support

1249

• For the variable-length character data types (VARCHAR and the TEXT types), the maximum length in
characters is less for utf8mb4 columns than for utf8 columns.

• For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of
characters that can be indexed is less for utf8mb4 columns than for utf8 columns.

Consequently, if you want to upgrade tables from utf8 to utf8mb4 to take advantage of
supplementary-character support, it may be necessary to change some column or index definitions.

Tables can be converted from utf8 to utf8mb4 by using ALTER TABLE. Suppose that a table was
originally defined as follows:

CREATE TABLE t1 (
 col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL,
 col2 CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL
) CHARACTER SET utf8;

The following statement converts t1 to use utf8mb4:

ALTER TABLE t1
 DEFAULT CHARACTER SET utf8mb4,
 MODIFY col1 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 MODIFY col2 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_bin NOT NULL;

In terms of table content, conversion from utf8 to utf8mb4 presents no problems:

• For a BMP character, utf8 and utf8mb4 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8 cannot store the character at all, while utf8mb4 requires four
bytes to store it. Since utf8 cannot store the character at all, you do not have any supplementary
characters in utf8 columns and you need not worry about converting characters or losing data when
upgrading utf8 data from older versions of MySQL.

In terms of table structure, the catch when converting from utf8 to utf8mb4 is that the maximum
length of a column or index key is unchanged in terms of bytes. Therefore, it is smaller in terms of
characters because the maximum length of a character is four bytes instead of three. For the CHAR,
VARCHAR, and TEXT data types, watch for these things when converting your MySQL tables:

• Check all definitions of utf8 columns and make sure they will not exceed the maximum length for
the storage engine.

• Check all indexes on utf8 columns and make sure they will not exceed the maximum length for the
storage engine. Sometimes the maximum can change due to storage engine enhancements.

If the preceding conditions apply, you must either reduce the defined length of columns or indexes, or
continue to use utf8 rather than utf8mb4.

Here are some examples where structural changes may be needed:

• A TINYTEXT column can hold up to 255 bytes, so it can hold up to 85 3-byte or 63 4-byte characters.
Suppose that you have a TINYTEXT column that uses utf8 but must be able to contain more than
63 characters. You cannot convert it to utf8mb4 unless you also change the data type to a longer
type such as TEXT.

Similarly, a very long VARCHAR column may need to be changed to one of the longer TEXT types if
you want to convert it from utf8 to utf8mb4.

• InnoDB has a maximum index length of 767 bytes for tables that use a COMPACT or REDUNDANT
row format, so for utf8 or utf8mb4 columns, you can index a maximum of 255 or 191 characters,

Upgrading from Previous to Current Unicode Support

1250

respectively. If you currently have utf8 columns with indexes longer than 191 characters, you will
need to index a smaller number of characters.

In an InnoDB table that uses a COMPACT or REDUNDANT row format, these column and index
definitions are legal:

col1 VARCHAR(500) CHARACTER SET utf8, INDEX (col1(255))

To use utf8mb4 instead, the index must be smaller:

col1 VARCHAR(500) CHARACTER SET utf8mb4, INDEX (col1(191))

Note

For InnoDB tables that use COMPRESSED or DYNAMIC row format, you
can enable the innodb_large_prefix option to allow index key
prefixes longer than 767 bytes (up to 3072 bytes). Creating such tables
also requires the option values innodb_file_format=barracuda
and innodb_file_per_table=true.) In this case, enabling the
innodb_large_prefix option would allow you to index a maximum of
1024 or 768 characters for utf8 or utf8mb4 columns, respectively. For
related information, see Section 14.5.7, “Limits on InnoDB Tables”.

The preceding types of changes are most likely to be required only if you have very long columns
or indexes. Otherwise, you should be able to convert your tables from utf8 to utf8mb4 without
problems. You can do this by using ALTER TABLE as described earlier in this section after upgrading
in place to 5.7.

The following items summarize other potential areas of incompatibility:

• Performance of 4-byte UTF-8 (utf8mb4) is slower than for 3-byte UTF-8 (utf8). If you do not want
to incur this penalty, continue to use utf8.

• SET NAMES 'utf8mb4' causes use of the 4-byte character set for connection character sets. As
long as no 4-byte characters are sent from the server, there should be no problems. Otherwise,
applications that expect to receive a maximum of three bytes per character may have problems.
Conversely, applications that expect to send 4-byte characters must ensure that the server
understands them.

• Applications cannot send utf16, utf16le, or utf32 character data to an older server that does not
understand them.

• For replication, if the character sets that support supplementary characters are going to be used on
the master, all slaves must understand them as well. If you attempt to replicate from a MySQL 5.7
master to an older slave, utf8 data will be seen as utf8 by the slave and should replicate correctly.
But you cannot send utf8mb4, utf16, utf16le, or utf32 data.

Also, keep in mind the general principle that if a table has different definitions on the master and
slave, this can lead to unexpected results. For example, the differences in limitations on index key
length makes it risky to use utf8 on the master and utf8mb4 on the slave.

If you have upgraded to MySQL 5.7, and then decide to downgrade back to an older release, these
considerations apply:

• ucs2 and utf8 data should present no problems.

• If the server is older than MySQL 5.5.3, it will not recognize any definitions that refer to the utf8mb4,
utf16, or utf32 character sets, which were added in 5.5.3. Similarly, if the server is older than
MySQL 5.6.1, it will not recognize any definitions that refer to the utf16le character set, which was
added in 5.6.1.

UTF-8 for Metadata

1251

• For object definitions that refer to the utf8mb4 character set, you can dump them with mysqldump
in MySQL 5.7, edit the dump file to change instances of utf8mb4 to utf8, and reload the file in the
older server, as long as there are no 4-byte characters in the data. The older server will see utf8 in
the dump file object definitions and create new objects that use the (3-byte) utf8 character set.

10.1.12 UTF-8 for Metadata

Metadata is “the data about the data.” Anything that describes the database—as opposed to being
the contents of the database—is metadata. Thus column names, database names, user names,
version names, and most of the string results from SHOW are metadata. This is also true of the contents
of tables in INFORMATION_SCHEMA because those tables by definition contain information about
database objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW statements nor SELECT
statements for tables in INFORMATION_SCHEMA would work properly because different rows in the
same column of the results of these operations would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name
columns and tables using their own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This
does not cause any disruption if you never use accented or non-Latin characters. But if you do, you
should be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(),
SESSION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8
character set by default.

The server sets the character_set_system system variable to the name of the metadata character
set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and
the results of DESCRIBE functions in the character_set_system character set by default. When
you use SELECT column1 FROM t, the name column1 itself is returned from the server to the
client in the character set determined by the value of the character_set_results system variable,
which has a default value of latin1. If you want the server to pass metadata results back in a
different character set, use the SET NAMES statement to force the server to perform character set
conversion. SET NAMES sets the character_set_results and other related system variables.
(See Section 10.1.4, “Connection Character Sets and Collations”.) Alternatively, a client program can
perform the conversion after receiving the result from the server. It is more efficient for the client to
perform the conversion, but this option is not always available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns
metadata using its original character set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set
automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single
statement, don't worry. MySQL performs some automatic conversion for you.

Column Character Set Conversion

1252

SELECT * FROM t1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the
comparison.

INSERT INTO t1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the
assignment.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that
every character set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-
known principle that “what applies to a superset can apply to a subset,” we believe that a collation for
Unicode can apply for comparisons with non-Unicode strings. For more information about coercion of
strings, see Section 10.1.7.5, “Collation of Expressions”.

10.1.13 Column Character Set Conversion

To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE.
For successful conversion to occur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains
must be encoded using a single character set (the character set you're converting the column to). If
you use a binary column to store information in multiple character sets, MySQL has no way to know
which values use which character set and cannot convert the data properly.

• If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded
in the column character set, not some other character set. If the contents are encoded in a different
character set, you can convert the column to use a binary data type first, and then to a nonbinary
column with the desired character set.

Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that
the information in the column is encoded using a single character set, you can convert it to a nonbinary
column that has that character set. For example, if col1 contains binary data representing characters
in the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;

If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting
values will be padded with 0x00 bytes at the end, which may be undesirable. To remove these bytes,
use the TRIM() function:

UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);

Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET
latin1 but you want to convert it to use utf8 so that you can store values from many languages. The
following statement accomplishes this:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8;

Conversion may be lossy if the column contains characters that are not in both character sets.

A special case occurs if you have old tables from before MySQL 4.1 where a nonbinary column
contains values that actually are encoded in a character set different from the server's default character
set. For example, an application might have stored sjis values in a column, even though MySQL's
default character set was latin1. It is possible to convert the column to use the proper character set
but an additional step is required. Suppose that the server's default character set was latin1 and

Character Sets and Collations That MySQL Supports

1253

col1 is defined as CHAR(50) but its contents are sjis values. The first step is to convert the column
to a binary data type, which removes the existing character set information without performing any
character conversion:

ALTER TABLE t MODIFY col1 BLOB;

The next step is to convert the column to a nonbinary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT
or UPDATE after an upgrade to MySQL 4.1 or later. In that case, MySQL would store new values in the
column using latin1, and the column will contain a mix of sjis and latin1 values and cannot be
converted properly.

If you specified attributes when creating a column initially, you should also specify them when altering
the table with ALTER TABLE. For example, if you specified NOT NULL and an explicit DEFAULT
value, you should also provide them in the ALTER TABLE statement. Otherwise, the resulting column
definition will not include those attributes.

To convert all character columns in a table, the ALTER TABLE ... CONVERT TO CHARACTER SET
charset statement may be useful. See Section 13.1.6, “ALTER TABLE Syntax”.

10.1.14 Character Sets and Collations That MySQL Supports

MySQL supports 70+ collations for 30+ character sets. This section indicates which character sets
MySQL supports. There is one subsection for each group of related character sets. For each character
set, the permissible collations are listed.

You can always list the available character sets and their default collations with the SHOW CHARACTER
SET statement:

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp866	DOS Russian	cp866_general_ci	1
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci	1
macce	Mac Central European	macce_general_ci	1
macroman	Mac West European	macroman_general_ci	1

Character Sets and Collations That MySQL Supports

1254

cp852	DOS Central European	cp852_general_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
utf8mb4	UTF-8 Unicode	utf8mb4_general_ci	4
cp1251	Windows Cyrillic	cp1251_general_ci	1
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
cp1256	Windows Arabic	cp1256_general_ci	1
cp1257	Windows Baltic	cp1257_general_ci	1
utf32	UTF-32 Unicode	utf32_general_ci	4
binary	Binary pseudo charset	binary	1
geostd8	GEOSTD8 Georgian	geostd8_general_ci	1
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
gb18030	China National Standard GB18030	gb18030_chinese_ci	4
+----------+---------------------------------+---------------------+--------+

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform
some comparisons with representative data values to make sure that a given collation sorts values the
way you expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

10.1.14.1 Unicode Character Sets

MySQL supports these Unicode character sets:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.

• utf16, the UTF-16 encoding for the Unicode character set; like ucs2 but with an extension for
supplementary characters.

• utf16le, the UTF-16LE encoding for the Unicode character set; like utf16 but little-endian rather
than big-endian.

• utf32, the UTF-32 encoding for the Unicode character set using 32 bits per character.

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

• utf8mb4, a UTF-8 encoding of the Unicode character set using one to four bytes per character.

ucs2 and utf8 support Basic Multilingual Plane (BMP) characters. utf8mb4, utf16, utf16le, and
utf32 support BMP and supplementary characters.

You can store text in about 650 languages using these character sets. This section lists the collations
available for each Unicode character set and describes their differentiating properties. For general
information about the character sets, see Section 10.1.10, “Unicode Support”.

A similar set of collations is available for most Unicode character sets. These are shown in the
following list, where xxx represents the character set name. For example, xxx_danish_ci represents
the Danish collations, the specific names of which are ucs2_danish_ci, utf16_danish_ci,
utf32_danish_ci, utf8_danish_ci, and utf8mb4_danish_ci.

Collation support for utf16le is more limited. The only collations available are
utf16le_general_ci and utf16le_bin. These are similar to utf16_general_ci and
utf16_bin.

Unicode collation names may also include a version number (for example, xxx_unicode_520_ci) to
indicate the Unicode Collation Algorithm version on which the collation is based, as described later in
this section. For such collations, there is no utf8mb3 alias to the corresponding utf8 collation. See
Section 10.1.10.6, “The utf8mb3 Character Set (Alias for utf8)”.

• xxx_bin

http://www.collation-charts.org/

Character Sets and Collations That MySQL Supports

1255

• xxx_croatian_ci

• xxx_czech_ci

• xxx_danish_ci

• xxx_esperanto_ci

• xxx_estonian_ci

• xxx_general_ci (default)

• xxx_german2_ci

• xxx_general_mysql500_ci

• xxx_hungarian_ci

• xxx_icelandic_ci

• xxx_latvian_ci

• xxx_lithuanian_ci

• xxx_persian_ci

• xxx_polish_ci

• xxx_roman_ci

• xxx_romanian_ci

• xxx_sinhala_ci

• xxx_slovak_ci

• xxx_slovenian_ci

• xxx_spanish_ci

• xxx_spanish2_ci

• xxx_swedish_ci

• xxx_turkish_ci

• xxx_unicode_ci

• xxx_vietnamese_ci

MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm
(UCA) described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA
weight keys: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. The xxx_unicode_ci
collations have only partial support for the Unicode Collation Algorithm. Some characters are not
supported yet. Also, combining marks are not fully supported. This affects primarily Vietnamese,
Yoruba, and some smaller languages such as Navajo. A combined character will be considered
different from the same character written with a single unicode character in string comparisons,
and the two characters are considered to have a different length (for example, as returned by the
CHAR_LENGTH() function or in result set metadata).

MySQL implements language-specific Unicode collations only if the ordering with xxx_unicode_ci
does not work well for a language. Language-specific collations are UCA-based. They are derived from
xxx_unicode_ci with additional language tailoring rules.

http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

Character Sets and Collations That MySQL Supports

1256

Collations based on UCA versions later than 4.0.0 include the version in the collation name. Thus,
xxx_unicode_520_ci collations are based on UCA 5.2.0 weight keys: http://www.unicode.org/
Public/UCA/5.2.0/allkeys.txt.

LOWER() and UPPER() perform case folding according to the collation of their argument. A character
that has uppercase and lowercase versions only in a Unicode version more recent than 4.0.0 will be
converted by these functions only if the argument has a collation that uses a recent enough UCA
version.

For any Unicode character set, operations performed using the xxx_general_ci collation are faster
than those for the xxx_unicode_ci collation. For example, comparisons for the utf8_general_ci
collation are faster, but slightly less correct, than comparisons for utf8_unicode_ci. The reason
for this is that utf8_unicode_ci supports mappings such as expansions; that is, when one
character compares as equal to combinations of other characters. For example, in German and some
other languages “ß” is equal to “ss”. utf8_unicode_ci also supports contractions and ignorable
characters. utf8_general_ci is a legacy collation that does not support expansions, contractions, or
ignorable characters. It can make only one-to-one comparisons between characters.

To further illustrate, the following equalities hold in both utf8_general_ci and utf8_unicode_ci
(for the effect this has in comparisons or when doing searches, see Section 10.1.7.8, “Examples of the
Effect of Collation”):

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8_general_ci:

ß = s

Whereas this is true for utf8_unicode_ci, which supports the German DIN-1 ordering (also known
as dictionary order):

ß = ss

MySQL implements language-specific collations for the utf8 character set only if the ordering with
utf8_unicode_ci does not work well for a language. For example, utf8_unicode_ci works fine
for German dictionary order and French, so there is no need to create special utf8 collations.

utf8_general_ci also is satisfactory for both German and French, except that “ß” is equal to
“s”, and not to “ss”. If this is acceptable for your application, you should use utf8_general_ci
because it is faster. If this is not acceptable (for example, if you require German dictionary order), use
utf8_unicode_ci because it is more accurate.

If you require German DIN-2 (phone book) ordering, use the utf8_german2_ci collation, which
compares the following sets of characters equal:

Ä = Æ = AE
Ö = Œ = OE
Ü = UE
ß = ss

utf8_german2_ci is similar to latin1_german2_ci, but the latter does not compare “Æ” equal to
“AE” or “Œ” equal to “OE”. There is no utf8_german_ci corresponding to latin1_german_ci for
German dictionary order because utf8_general_ci suffices.

xxx_swedish_ci includes Swedish rules. For example, in Swedish, the following relationship holds,
which is not something expected by a German or French speaker:

Ü = Y < Ö

http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

Character Sets and Collations That MySQL Supports

1257

The xxx_spanish_ci and xxx_spanish2_ci collations correspond to modern Spanish and
traditional Spanish, respectively. In both collations, “ñ” (n-tilde) is a separate letter between “n” and “o”.
In addition, for traditional Spanish, “ch” is a separate letter between “c” and “d”, and “ll” is a separate
letter between “l” and “m”

The xxx_spanish2_ci collations may also be used for Asturian and Galician.

The xxx_danich_ci collations may also be used for Norwegian.

In the xxx_roman_ci collations, I and J compare as equal, and U and V compare as equal.

The xxx_croatian_ci collations are tailored for these Croatian letters: Č, Ć, Dž, Đ, Lj, Nj, Š, Ž.

For all Unicode collations except the “binary” (xxx_bin) collations, MySQL performs a table lookup
to find a character's collating weight. This weight can be displayed using the WEIGHT_STRING()
function. (See Section 12.5, “String Functions”.) If a character is not in the table (for example, because
it is a “new” character), collating weight determination becomes more complex:

• For BMP characters in general collations (xxx_general_ci), weight = code point.

• For BMP characters in UCA collations (for example, xxx_unicode_ci and language-specific
collations), the following algorithm applies:

if (code >= 0x3400 && code <= 0x4DB5)
 base= 0xFB80; /* CJK Ideograph Extension */
else if (code >= 0x4E00 && code <= 0x9FA5)
 base= 0xFB40; /* CJK Ideograph */
else
 base= 0xFBC0; /* All other characters */
aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

The result is a sequence of two collating elements, aaaa followed by bbbb. For example:

mysql> SELECT HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci));
+--+
| HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci)) |
+--+
| FBC084CF |
+--+

Thus, U+04cf CYRILLIC SMALL LETTER PALOCHKA is, with all UCA 4.0.0 collations, greater
than U+04c0 CYRILLIC LETTER PALOCHKA. With UCA 5.2.0 collations, all palochkas sort
together.

• For supplementary characters in general collations, the weight is the weight for 0xfffd
REPLACEMENT CHARACTER. For supplementary characters in UCA 4.0.0 collations, their collating
weight is 0xfffd. That is, to MySQL, all supplementary characters are equal to each other, and
greater than almost all BMP characters.

An example with Deseret characters and COUNT(DISTINCT):

CREATE TABLE t (s1 VARCHAR(5) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0xfffd); /* REPLACEMENT CHARACTER */
INSERT INTO t VALUES (0x010412); /* DESERET CAPITAL LETTER BEE */
INSERT INTO t VALUES (0x010413); /* DESERET CAPITAL LETTER TEE */
SELECT COUNT(DISTINCT s1) FROM t;

The result is 2 because in the MySQL xxx_unicode_ci collations, the replacement character has a
weight of 0x0dc6, whereas Deseret Bee and Deseret Tee both have a weight of 0xfffd. (Were the
utf32_general_ci collation used instead, the result would be 1 because all three characters have
a weight of 0xfffd in that collation.)

Character Sets and Collations That MySQL Supports

1258

An example with cuneiform characters and WEIGHT_STRING():

/*
The four characters in the INSERT string are
00000041 # LATIN CAPITAL LETTER A
0001218F # CUNEIFORM SIGN KAB
000121A7 # CUNEIFORM SIGN KISH
00000042 # LATIN CAPITAL LETTER B
*/
CREATE TABLE t (s1 CHAR(4) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0x000000410001218f000121a700000042);
SELECT HEX(WEIGHT_STRING(s1)) FROM t;

The result is:

0E33 FFFD FFFD 0E4A

0E33 and 0E4A are primary weights as in UCA 4.0.0. FFFD is the weight for KAB and also for KISH.

The rule that all supplementary characters are equal to each other is nonoptimal but is not expected
to cause trouble. These characters are very rare, so it will be very rare that a multi-character string
consists entirely of supplementary characters. In Japan, since the supplementary characters are
obscure Kanji ideographs, the typical user does not care what order they are in, anyway. If you really
want rows sorted by MySQL's rule and secondarily by code point value, it is easy:

ORDER BY s1 COLLATE utf32_unicode_ci, s1 COLLATE utf32_bin

• For supplementary characters based on UCA versions later than 4.0.0 (for example,
xxx_unicode_520_ci), supplementary characters do not necessarily all have the same collation
weight. Some have explicit weights from the UCA allkeys.txt file. Others have weights calculated
from this algorithm:

aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

The utf16_bin Collation

There is a difference between “ordering by the character's code value” and “ordering by the character's
binary representation,” a difference that appears only with utf16_bin, because of surrogates.

Suppose that utf16_bin (the binary collation for utf16) was a binary comparison “byte by byte”
rather than “character by character.” If that were so, the order of characters in utf16_bin would differ
from the order in utf8_bin. For example, the following chart shows two rare characters. The first
character is in the range E000-FFFF, so it is greater than a surrogate but less than a supplementary.
The second character is a supplementary.

Code point Character utf8 utf16
---------- --------- ---- -----
0FF9D HALFWIDTH KATAKANA LETTER N EF BE 9D FF 9D
10384 UGARITIC LETTER DELTA F0 90 8E 84 D8 00 DF 84

The two characters in the chart are in order by code point value because 0xff9d < 0x10384. And
they are in order by utf8 value because 0xef < 0xf0. But they are not in order by utf16 value, if we
use byte-by-byte comparison, because 0xff > 0xd8.

So MySQL's utf16_bin collation is not “byte by byte.” It is “by code point.” When MySQL sees a
supplementary-character encoding in utf16, it converts to the character's code-point value, and then
compares. Therefore, utf8_bin and utf16_bin are the same ordering. This is consistent with the
SQL:2008 standard requirement for a UCS_BASIC collation: “UCS_BASIC is a collation in which the

ftp://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

Character Sets and Collations That MySQL Supports

1259

ordering is determined entirely by the Unicode scalar values of the characters in the strings being
sorted. It is applicable to the UCS character repertoire. Since every character repertoire is a subset of
the UCS repertoire, the UCS_BASIC collation is potentially applicable to every character set. NOTE 11:
The Unicode scalar value of a character is its code point treated as an unsigned integer.”

If the character set is ucs2, comparison is byte-by-byte, but ucs2 strings should not contain
surrogates, anyway.

The xxx_general_mysql500_ci collations preserve the pre-5.1.24 ordering of the original
xxx_general_ci collations and permit upgrades for tables created before MySQL 5.1.24. For
more information, see Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, and
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.

For additional information about Unicode collations in MySQL, see Collation-Charts.Org (utf8).

10.1.14.2 West European Character Sets

Western European character sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

http://www.collation-charts.org/mysql60/by-charset.html#utf8

Character Sets and Collations That MySQL Supports

1260

latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252
character set. This means it is the same as the official ISO 8859-1 or IANA (Internet Assigned
Numbers Authority) latin1, except that IANA latin1 treats the code points between 0x80 and
0x9f as “undefined,” whereas cp1252, and therefore MySQL's latin1, assign characters for
those positions. For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL
translates 0x81 to Unicode 0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d
to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL
customers. Although it is frequently said that it is based on the Swedish/Finnish collation rules, there
are Swedes and Finns who disagree with this statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and
DIN-2 standards, where DIN stands for Deutsches Institut für Normung (the German equivalent of
ANSI). DIN-1 is called the “dictionary collation” and DIN-2 is called the “phone book collation.” For
an example of the effect this has in comparisons or when doing searches, see Section 10.1.7.8,
“Examples of the Effect of Collation”.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

In the latin1_spanish_ci collation, “ñ” (n-tilde) is a separate letter between “n” and “o”.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

For additional information about Western European collations in MySQL, see Collation-Charts.Org
(ascii, cp850, dec8, hp8, latin1, macroman, swe7).

10.1.14.3 Central European Character Sets

MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, Poland, and Serbia (Latin).

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

http://www.collation-charts.org/mysql60/by-charset.html#ascii
http://www.collation-charts.org/mysql60/by-charset.html#cp850
http://www.collation-charts.org/mysql60/by-charset.html#dec8
http://www.collation-charts.org/mysql60/by-charset.html#hp8
http://www.collation-charts.org/mysql60/by-charset.html#latin1
http://www.collation-charts.org/mysql60/by-charset.html#macroman
http://www.collation-charts.org/mysql60/by-charset.html#swe7

Character Sets and Collations That MySQL Supports

1261

• cp1250_general_ci (default)

• cp1250_polish_ci

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

For additional information about Central European collations in MySQL, see Collation-Charts.Org
(cp1250, cp852, keybcs2, latin2, macce).

10.1.14.4 South European and Middle East Character Sets

South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic,
Georgian, Greek, Hebrew, and Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

http://www.collation-charts.org/mysql60/by-charset.html#cp1250
http://www.collation-charts.org/mysql60/by-charset.html#cp852
http://www.collation-charts.org/mysql60/by-charset.html#keybcs2
http://www.collation-charts.org/mysql60/by-charset.html#latin2
http://www.collation-charts.org/mysql60/by-charset.html#macce

Character Sets and Collations That MySQL Supports

1262

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

• latin5_bin

• latin5_turkish_ci (default)

For additional information about South European and Middle Eastern collations in MySQL, see
Collation-Charts.Org (armscii8, cp1256, geostd8, greek, hebrew, latin5).

10.1.14.5 Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

For additional information about Baltic collations in MySQL, see Collation-Charts.Org (cp1257, latin7).

10.1.14.6 Cyrillic Character Sets

The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian,
and Serbian (Cyrillic) languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

http://www.collation-charts.org/mysql60/by-charset.html#armscii8
http://www.collation-charts.org/mysql60/by-charset.html#cp1256
http://www.collation-charts.org/mysql60/by-charset.html#geostd8
http://www.collation-charts.org/mysql60/by-charset.html#greek
http://www.collation-charts.org/mysql60/by-charset.html#hebrew
http://www.collation-charts.org/mysql60/by-charset.html#latin5
http://www.collation-charts.org/mysql60/by-charset.html#cp1257
http://www.collation-charts.org/mysql60/by-charset.html#latin7

Character Sets and Collations That MySQL Supports

1263

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

For additional information about Cyrillic collations in MySQL, see Collation-Charts.Org (cp1251, cp866,
koi8r, koi8u).).

10.1.14.7 Asian Character Sets

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can be
complicated. For example, the Chinese sets must allow for thousands of different characters. See The
cp932 Character Set, for additional information about the cp932 and sjis character sets. See The
gb18030 Character Set, for additional information about character set support for the Chinese National
Standard GB 18030.

For answers to some common questions and problems relating support for Asian character sets in
MySQL, see Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• gb18030 (China National Standard GB18030) collations:

http://www.collation-charts.org/mysql60/by-charset.html#cp1251
http://www.collation-charts.org/mysql60/by-charset.html#cp866
http://www.collation-charts.org/mysql60/by-charset.html#koi8r
http://www.collation-charts.org/mysql60/by-charset.html#koi8u

Character Sets and Collations That MySQL Supports

1264

• gb18030_bin

• gb18030_chinese_ci (default)

• gb18030_unicode_520_ci

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

The big5_chinese_ci collation sorts on number of strokes.

For additional information about Asian collations in MySQL, see Collation-Charts.Org (big5, cp932,
eucjpms, euckr, gb2312, gbk, sjis, tis620, ujis).

The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA,
which supports JIS X0201 and JIS X0208 characters. (See http://www.iana.org/assignments/character-
sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often
includes the extensions to Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of
Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addition to
the characters supported by Shift_JIS, cp932 supports extension characters such as NEC special
characters, NEC selected—IBM extended characters, and IBM selected characters.

Many Japanese users have experienced problems using these extension characters. These problems
stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted using Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters
are converted to Unicode differently depending on the conversion rule. MySQL supports only one of
these rules (described later).

The MySQL cp932 character set is designed to solve these problems.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and
cp932 into two different character sets because they provide different conversion rules.

http://www.collation-charts.org/mysql60/by-charset.html#big5
http://www.collation-charts.org/mysql60/by-charset.html#cp932
http://www.collation-charts.org/mysql60/by-charset.html#eucjpms
http://www.collation-charts.org/mysql60/by-charset.html#euckr
http://www.collation-charts.org/mysql60/by-charset.html#gb2312
http://www.collation-charts.org/mysql60/by-charset.html#gbk
http://www.collation-charts.org/mysql60/by-charset.html#sjis
http://www.collation-charts.org/mysql60/by-charset.html#tis620
http://www.collation-charts.org/mysql60/by-charset.html#ujis
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Character Sets and Collations That MySQL Supports

1265

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected—IBM extended characters, and IBM
selected characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode
code point. When converting from Unicode back to cp932, one of the code points must be
selected. For this “round trip conversion,” the rule recommended by Microsoft is used. (See http://
support.microsoft.com/kb/170559/EN-US/.)

The conversion rule works like this:

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X
0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point
of NEC special characters.

• If the character is in both IBM selected characters and NEC selected—IBM extended characters,
use the code point of IBM extended characters.

The table shown at https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx provides information
about the Unicode values of cp932 characters. For cp932 table entries with characters under which
a four-digit number appears, the number represents the corresponding Unicode (ucs2) encoding.
For table entries with an underlined two-digit value appears, there is a range of cp932 character
values that begin with those two digits. Clicking such a table entry takes you to a page that displays
the Unicode value for each of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of
characters:

• NEC special characters (lead byte 0x87):

https://msdn.microsoft.com/en-us/goglobal/gg674964

• NEC selected—IBM extended characters (lead byte 0xED and 0xEE):

https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838

• IBM selected characters (lead byte 0xFA, 0xFB, 0xFC):

https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841

• cp932 supports conversion of user-defined characters in combination with eucjpms, and solves
the problems with sjis/ujis conversion. For details, please refer to http://www.sljfaq.org/afaq/
encodings.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following
tables illustrate these differences.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

http://support.microsoft.com/kb/170559/EN-US/
http://support.microsoft.com/kb/170559/EN-US/
https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx
https://msdn.microsoft.com/en-us/goglobal/gg674964
https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838
https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841
http://www.sljfaq.org/afaq/encodings.html
http://www.sljfaq.org/afaq/encodings.html

Character Sets and Collations That MySQL Supports

1266

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-
handshake (or --skip-character-set-client-handshake) has an important effect. See
Section 5.1.3, “Server Command Options”.

The gb18030 Character Set

In MySQL, the gb18030 character set, introduced in MySQL 5.7.4, corresponds to the “Chinese
National Standard GB 18030-2005: Information technology—Chinese coded character set”, which is
the official character set of the People's Republic of China (PRC).

Characteristics of the MySQL gb18030 Character Set

• Supports all code points defined by the GB 18030-2005 standard. Unassigned code points in the
ranges (GB+8431A439, GB+90308130) and (GB+E3329A36, GB+EF39EF39) are treated as
'?' (0x3F). Conversion of unassigned code points return '?'.

• Supports UPPER and LOWER conversion for all GB18030 code points. Case folding defined by
Unicode is also supported (based on CaseFolding-6.3.0.txt).

Setting the Error Message Language

1267

• Supports Conversion of data to and from other character sets.

• Supports SQL statements such as SET NAMES.

• Supports comparison between gb18030 strings, and between gb18030 strings and strings of other
character sets. There is a conversion if strings have different character sets. Comparisons that
include or ignore trailing spaces are also supported.

• The private use area (U+E000, U+F8FF) in Unicode is mapped to gb18030.

• There is no mapping between (U+D800, U+DFFF) and GB18030. Attempted conversion of code
points in this range returns '?'.

• If an incoming sequence is illegal, an error or warning is returned. If an illegal sequence is used in
CONVERT(), an error is returned. Otherwise, a warning is returned.

• For consistency with utf8 and utf8mb4, UPPER is not supported for ligatures.

• Searches for ligatures also match uppercase ligatures when using the gb18030_unicode_520_ci
collation.

• If a character has more than one uppercase character, the chosen uppercase character is the one
whose lowercase is the character itself.

• The minimum multibyte length is 1 and the maximum is 4. The character set determines the length of
a sequence using the first 1 or 2 bytes.

Supported Collations

• gb18030_bin: A binary collation.

• gb18030_chinese_ci: The default collation, which supports Pinyin. Sorting of non-Chinese
characters is based on the order of the original sort key. The original sort key is GB(UPPER(ch))
if UPPER(ch) exists. Otherwise, the original sort key is GB(ch). Chinese characters are sorted
according to the Pinyin collation defined in the Unicode Common Locale Data Repository (CLDR 24).
Non-Chinese characters are sorted before Chinese characters with the exception of GB+FE39FE39,
which is the code point maximum.

• gb18030_unicode_520_ci: A Unicode collation. Use this collation if you need to ensure that
ligatures are sorted correctly.

10.2 Setting the Error Message Language
By default, mysqld produces error messages in English, but they can also be displayed in any of
several other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian,
Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak,
Spanish, or Swedish.

You can select which language the server uses for error messages using the instructions in this
section.

In MySQL 5.7, the server searches for the error message file in two locations:

• It tries to find the file in a directory constructed from two system variable values, lc_messages_dir
and lc_messages, with the latter converted to a language name. Suppose that you start the server
using this command:

shell> mysqld --lc_messages_dir=/usr/share/mysql --lc_messages=fr_FR

In this case, mysqld maps the locale fr_FR to the language french and looks for the error file in
the /usr/share/mysql/french directory.

Adding a Character Set

1268

• If the message file cannot be found in the directory constructed as just described, the server ignores
the lc_messages value and uses only the lc_messages_dir value as the location in which to
look.

The lc_messages_dir system variable has only a global value and is read only. lc_messages
has global and session values and can be modified at runtime, so the error message language can be
changed while the server is running, and individual clients each can have a different error message
language by changing their session lc_messages value to a different locale name. For example, if
the server is using the fr_FR locale for error messages, a client can execute this statement to receive
error messages in English:

mysql> SET lc_messages = 'en_US';

By default, the language files are located in the share/mysql/LANGUAGE directory under the MySQL
base directory.

For information about changing the character set for error messages (rather than the language), see
Section 10.1.6, “Character Set for Error Messages”.

You can change the content of the error messages produced by the server using the instructions in
the MySQL Internals manual, available at MySQL Internals: Error Messages. If you do change the
content of error messages, remember to repeat your changes after each upgrade to a newer version of
MySQL.

10.3 Adding a Character Set
This section discusses the procedure for adding a character set to MySQL. The proper procedure
depends on whether the character set is simple or complex:

• If the character set does not need special string collating routines for sorting and does not need
multibyte character support, it is simple.

• If the character set needs either of those features, it is complex.

For example, greek and swe7 are simple character sets, whereas big5 and czech are complex
character sets.

To use the following instructions, you must have a MySQL source distribution. In the instructions,
MYSET represents the name of the character set that you want to add.

1. Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the
existing contents in the file as a guide to adding new contents. A partial listing for the latin1
<charset> element follows:

<charset name="latin1">
 <family>Western</family>
 <description>cp1252 West European</description>
 ...
 <collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
 <flag>primary</flag>
 <flag>compiled</flag>
 </collation>
 <collation name="latin1_danish_ci" id="15" order="Danish"/>
 ...
 <collation name="latin1_bin" id="47" order="Binary">
 <flag>binary</flag>
 <flag>compiled</flag>
 </collation>
 ...
</charset>

The <charset> element must list all the collations for the character set. These must include at
least a binary collation and a default (primary) collation. The default collation is often named using

http://dev.mysql.com/doc/internals/en/error-messages.html

Adding a Character Set

1269

a suffix of general_ci (general, case insensitive). It is possible for the binary collation to be the
default collation, but usually they are different. The default collation should have a primary flag.
The binary collation should have a binary flag.

You must assign a unique ID number to each collation. The range of IDs from 1024 to 2047 is
reserved for user-defined collations. To find the maximum of the currently used collation IDs, use
this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

2. This step depends on whether you are adding a simple or complex character set. A simple
character set requires only a configuration file, whereas a complex character set requires C source
file that defines collation functions, multibyte functions, or both.

For a simple character set, create a configuration file, MYSET.xml, that describes the character
set properties. Create this file in the sql/share/charsets directory. You can use a copy of
latin1.xml as the basis for this file. The syntax for the file is very simple:

• Comments are written as ordinary XML comments (<!-- text -->).

• Words within <map> array elements are separated by arbitrary amounts of whitespace.

• Each word within <map> array elements must be a number in hexadecimal format.

• The <map> array element for the <ctype> element has 257 words. The other <map> array
elements after that have 256 words. See Section 10.3.1, “Character Definition Arrays”.

• For each collation listed in the <charset> element for the character set in Index.xml,
MYSET.xml must contain a <collation> element that defines the character ordering.

For a complex character set, create a C source file that describes the character set properties and
defines the support routines necessary to properly perform operations on the character set:

• Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-
*.c files (such as ctype-big5.c) to see what needs to be defined. The arrays in your file must
have names like ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays
for a simple character set. See Section 10.3.1, “Character Definition Arrays”.

• For each <collation> element listed in the <charset> element for the character set in
Index.xml, the ctype-MYSET.c file must provide an implementation of the collation.

• If the character set requires string collating functions, see Section 10.3.2, “String Collating
Support for Complex Character Sets”.

• If the character set requires multibyte character support, see Section 10.3.3, “Multi-Byte
Character Support for Complex Character Sets”.

3. Modify the configuration information. Use the existing configuration information as a guide to adding
information for MYSYS. The example here assumes that the character set has default and binary
collations, but more lines are needed if MYSET has additional collations.

a. Edit mysys/charset-def.c, and “register” the collations for the new character set.

Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

Add these lines to the “registration” section:

Character Definition Arrays

1270

#ifdef HAVE_CHARSET_MYSET
 add_compiled_collation(&my_charset_MYSET_general_ci);
 add_compiled_collation(&my_charset_MYSET_bin);
#endif

b. If the character set uses ctype-MYSET.c, edit strings/CMakeLists.txt and add
ctype-MYSET.c to the definition of the STRINGS_SOURCES variable.

c. Edit cmake/character_sets.cmake:

i. Add MYSET to the value of with CHARSETS_AVAILABLE in alphabetic order.

ii. Add MYSET to the value of CHARSETS_COMPLEX in alphabetic order. This is needed even
for simple character sets, or CMake will not recognize -DDEFAULT_CHARSET=MYSET.

4. Reconfigure, recompile, and test.

10.3.1 Character Definition Arrays

Each simple character set has a configuration file located in the sql/share/charsets directory.
For a character set named MYSYS, the file is named MYSET.xml. It uses <map> array elements to list
character set properties. <map> elements appear within these elements:

• <ctype> defines attributes for each character.

• <lower> and <upper> list the lowercase and uppercase characters.

• <unicode> maps 8-bit character values to Unicode values.

• <collation> elements indicate character ordering for comparisons and sorts, one element per
collation. Binary collations need no <map> element because the character codes themselves provide
the ordering.

For a complex character set as implemented in a ctype-MYSET.c file in the strings directory,
there are corresponding arrays: ctype_MYSET[], to_lower_MYSET[], and so forth. Not every
complex character set has all of the arrays. See also the existing ctype-*.c files for examples. See
the CHARSET_INFO.txt file in the strings directory for additional information.

Most of the arrays are indexed by character value and have 256 elements. The <ctype> array is
indexed by character value + 1 and has 257 elements. This is a legacy convention for handling EOF.

<ctype> array elements are bit values. Each element describes the attributes of a single character in
the character set. Each attribute is associated with a bitmask, as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

The <ctype> value for a given character should be the union of the applicable bitmask values that
describe the character. For example, 'A' is an uppercase character (_MY_U) as well as a hexadecimal
digit (_MY_X), so its ctype value should be defined like this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

The bitmask values in m_ctype.h are octal values, but the elements of the <ctype> array in
MYSET.xml should be written as hexadecimal values.

String Collating Support for Complex Character Sets

1271

The <lower> and <upper> arrays hold the lowercase and uppercase characters corresponding to
each member of the character set. For example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

Each <collation> array indicates how characters should be ordered for comparison and sorting
purposes. MySQL sorts characters based on the values of this information. In some cases, this is
the same as the <upper> array, which means that sorting is case-insensitive. For more complicated
sorting rules (for complex character sets), see the discussion of string collating in Section 10.3.2,
“String Collating Support for Complex Character Sets”.

10.3.2 String Collating Support for Complex Character Sets

For a simple character set named MYSET, sorting rules are specified in the MYSET.xml configuration
file using <map> array elements within <collation> elements. If the sorting rules for your language
are too complex to be handled with simple arrays, you must define string collating functions in the
ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the
big5, czech, gbk, sjis, and tis160 character sets. Take a look at the MY_COLLATION_HANDLER
structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory
for additional information.

10.3.3 Multi-Byte Character Support for Complex Character Sets

If you want to add support for a new character set named MYSET that includes multibyte characters,
you must use multibyte character functions in the ctype-MYSET.c source file in the strings
directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the
euc_kr, gb2312, gbk, sjis, and ujis character sets. Take a look at the MY_CHARSET_HANDLER
structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory
for additional information.

10.4 Adding a Collation to a Character Set
A collation is a set of rules that defines how to compare and sort character strings. Each collation in
MySQL belongs to a single character set. Every character set has at least one collation, and most have
two or more collations.

A collation orders characters based on weights. Each character in a character set maps to a weight.
Characters with equal weights compare as equal, and characters with unequal weights compare
according to the relative magnitude of their weights.

The WEIGHT_STRING() function can be used to see the weights for the characters in a
string. The value that it returns to indicate weights is a binary string, so it is convenient to use
HEX(WEIGHT_STRING(str)) to display the weights in printable form. The following example shows
that weights do not differ for lettercase for the letters in 'AaBb' if it is a nonbinary case-insensitive
string, but do differ if it is a binary string:

mysql> SELECT HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci));
+--+
| HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci)) |
+--+
| 41414242 |
+--+
mysql> SELECT HEX(WEIGHT_STRING(BINARY 'AaBb'));

Additional Resources

1272

+-----------------------------------+
| HEX(WEIGHT_STRING(BINARY 'AaBb')) |
+-----------------------------------+
| 41614262 |
+-----------------------------------+

MySQL supports several collation implementations, as discussed in Section 10.4.1, “Collation
Implementation Types”. Some of these can be added to MySQL without recompiling:

• Simple collations for 8-bit character sets.

• UCA-based collations for Unicode character sets.

• Binary (xxx_bin) collations.

The following sections describe how to add collations of the first two types to existing character sets. All
existing character sets already have a binary collation, so there is no need here to describe how to add
one.

Summary of the procedure for adding a new collation:

1. Choose a collation ID.

2. Add configuration information that names the collation and describes the character-ordering rules.

3. Restart the server.

4. Verify that the collation is present.

The instructions here cover only collations that can be added without recompiling MySQL. To add
a collation that does require recompiling (as implemented by means of functions in a C source file),
use the instructions in Section 10.3, “Adding a Character Set”. However, instead of adding all the
information required for a complete character set, just modify the appropriate files for an existing
character set. That is, based on what is already present for the character set's current collations, add
data structures, functions, and configuration information for the new collation.

Note

If you modify an existing collation, that may affect the ordering of rows for
indexes on columns that use the collation. In this case, rebuild any such indexes
to avoid problems such as incorrect query results. For further information, see
Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.

Additional Resources

• The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/

• The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/

10.4.1 Collation Implementation Types

MySQL implements several types of collations:

Simple collations for 8-bit character sets

This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping
from character codes to weights. latin1_swedish_ci is an example. It is a case-insensitive
collation, so the uppercase and lowercase versions of a character have the same weights and they
compare as equal.

mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.01 sec)

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr35/

Collation Implementation Types

1273

mysql> SELECT HEX(WEIGHT_STRING('a')), HEX(WEIGHT_STRING('A'));
+-------------------------+-------------------------+
| HEX(WEIGHT_STRING('a')) | HEX(WEIGHT_STRING('A')) |
+-------------------------+-------------------------+
| 41 | 41 |
+-------------------------+-------------------------+
1 row in set (0.01 sec)

mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
| 1 |
+-----------+
1 row in set (0.12 sec)

For implementation instructions, see Section 10.4.3, “Adding a Simple Collation to an 8-Bit Character
Set”.

Complex collations for 8-bit character sets

This kind of collation is implemented using functions in a C source file that define how to order
characters, as described in Section 10.3, “Adding a Character Set”.

Collations for non-Unicode multibyte character sets

For this type of collation, 8-bit (single-byte) and multibyte characters are handled differently. For 8-bit
characters, character codes map to weights in case-insensitive fashion. (For example, the single-byte
characters 'a' and 'A' both have a weight of 0x41.) For multibyte characters, there are two types of
relationship between character codes and weights:

• Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The
multibyte character 'ぢ' has a character code of 0x82C0, and the weight is also 0x82C0.

mysql> CREATE TABLE t1
 -> (c1 VARCHAR(2) CHARACTER SET sjis COLLATE sjis_japanese_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x82C0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
ぢ	82C0	82C0
+------+---------+------------------------+
3 rows in set (0.00 sec)

• Character codes map one-to-one to weights, but a code is not necessarily equal to the weight.
gbk_chinese_ci is an example of this kind of collation. The multibyte character '膰' has a
character code of 0x81B0 but a weight of 0xC286.

mysql> CREATE TABLE t1
 -> (c1 VARCHAR(2) CHARACTER SET gbk COLLATE gbk_chinese_ci);
Query OK, 0 rows affected (0.33 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x81B0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+

Collation Implementation Types

1274

| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
膰	81B0	C286
+------+---------+------------------------+
3 rows in set (0.00 sec)

For implementation instructions, see Section 10.3, “Adding a Character Set”.

Collations for Unicode multibyte character sets

Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.

Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such
collations are case insensitive and accent insensitive. utf8_general_ci is an example: 'a', 'A',
'À', and 'á' each have different character codes but all have a weight of 0x0041 and compare as
equal.

mysql> SET NAMES 'utf8' COLLATE 'utf8_general_ci';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1
 -> (c1 CHAR(1) CHARACTER SET UTF8 COLLATE utf8_general_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),('À'),('á');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	0041
A	41	0041
À	C380	0041
á	C3A1	0041
+------+---------+------------------------+
4 rows in set (0.00 sec)

UCA-based collations in MySQL have these properties:

• If a character has weights, each weight uses 2 bytes (16 bits).

• A character may have zero weights (or an empty weight). In this case, the character is ignorable.
Example: "U+0000 NULL" does not have a weight and is ignorable.

• A character may have one weight. Example: 'a' has a weight of 0x0E33.

mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.05 sec)

mysql> SELECT HEX('a'), HEX(WEIGHT_STRING('a'));
+----------+-------------------------+
| HEX('a') | HEX(WEIGHT_STRING('a')) |
+----------+-------------------------+
| 61 | 0E33 |
+----------+-------------------------+
1 row in set (0.02 sec)

• A character may have many weights. This is an expansion. Example: The German letter 'ß' (SZ
ligature, or SHARP S) has a weight of 0x0FEA0FEA.

mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.11 sec)

Choosing a Collation ID

1275

mysql> SELECT HEX('ß'), HEX(WEIGHT_STRING('ß'));
+-----------+--------------------------+
| HEX('ß') | HEX(WEIGHT_STRING('ß')) |
+-----------+--------------------------+
| C39F | 0FEA0FEA |
+-----------+--------------------------+
1 row in set (0.00 sec)

• Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in
Czech and has a weight of 0x0EE2.

mysql> SET NAMES 'utf8' COLLATE 'utf8_czech_ci';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT HEX('ch'), HEX(WEIGHT_STRING('ch'));
+-----------+--------------------------+
| HEX('ch') | HEX(WEIGHT_STRING('ch')) |
+-----------+--------------------------+
| 6368 | 0EE2 |
+-----------+--------------------------+
1 row in set (0.00 sec)

A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but
is not supported by MySQL.

For implementation instructions, for a non-UCA collation, see Section 10.3, “Adding a Character Set”.
For a UCA collation, see Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.

Miscellaneous collations

There are also a few collations that do not fall into any of the previous categories.

10.4.2 Choosing a Collation ID

Each collation must have a unique ID. To add a collation, you must choose an ID value that is not
currently used. MySQL supports two-byte collation IDs. The range of IDs from 1024 to 2047 is reserved
for user-defined collations. The collation ID that you choose will appear in these contexts:

• The ID column of the INFORMATION_SCHEMA.COLLATIONS table.

• The Id column of SHOW COLLATION output.

• The charsetnr member of the MYSQL_FIELD C API data structure.

• The number member of the MY_CHARSET_INFO data structure returned by the
mysql_get_character_set_info() C API function.

To determine the largest currently used ID, issue the following statement:

mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
+---------+
| MAX(ID) |
+---------+
| 210 |
+---------+

To display a list of all currently used IDs, issue this statement:

mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;
+-----+
| ID |
+-----+
| 1 |

Adding a Simple Collation to an 8-Bit Character Set

1276

| 2 |
| ... |
| 52 |
| 53 |
| 57 |
| 58 |
| ... |
| 98 |
| 99 |
| 128 |
| 129 |
| ... |
| 210 |
+-----+

Warning

Before MySQL 5.5, which provides for a range of user-defined collation IDs,
you must choose an ID in the range from 1 to 254. In this case, if you upgrade
MySQL, you may find that the collation ID you choose has been assigned to a
collation included in the new MySQL distribution. In this case, you will need to
choose a new value for your own collation.

In addition, before upgrading, you should save the configuration files that you
change. If you upgrade in place, the process will replace the your modified files.

10.4.3 Adding a Simple Collation to an 8-Bit Character Set

This section describes how to add a simple collation for an 8-bit character set by writing the
<collation> elements associated with a <charset> character set description in the MySQL
Index.xml file. The procedure described here does not require recompiling MySQL. The example
adds a collation named latin1_test_ci to the latin1 character set.

1. Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps
use an ID of 1024.

2. Modify the Index.xml and latin1.xml configuration files. These files will be located in the
directory named by the character_sets_dir system variable. You can check the variable value
as follows, although the path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. Find the <charset> element
for the character set to which the collation is being added, and add a <collation> element that
indicates the collation name and ID, to associate the name with the ID. For example:

<charset name="latin1">
 ...
 <collation name="latin1_test_ci" id="1024"/>
 ...
</charset>

4. In the latin1.xml configuration file, add a <collation> element that names the collation and
that contains a <map> element that defines a character code-to-weight mapping table for character
codes 0 to 255. Each value within the <map> element must be a number in hexadecimal format.

<collation name="latin1_test_ci">
<map>

Adding a UCA Collation to a Unicode Character Set

1277

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION LIKE 'latin1_test_ci';
+----------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------+---------+------+---------+----------+---------+
| latin1_test_ci | latin1 | 1024 | | | 1 |
+----------------+---------+------+---------+----------+---------+

10.4.4 Adding a UCA Collation to a Unicode Character Set

This section describes how to add a UCA collation for a Unicode character set by writing the
<collation> element within a <charset> character set description in the MySQL Index.xml file.
The procedure described here does not require recompiling MySQL. It uses a subset of the Locale
Data Markup Language (LDML) specification, which is available at http://www.unicode.org/reports/tr35/.
With this method, you need not define the entire collation. Instead, you begin with an existing “base”
collation and describe the new collation in terms of how it differs from the base collation. The following
table lists the base collations of the Unicode character sets for which UCA collations can be defined. It
is not possible to create user-defined UCA collations for utf16le; there is no utf16le_unicode_ci
collation that would serve as the basis for such collations.

Table 10.1 MySQL Character Sets Available for User-Defined UCA Collations

Character Set Base Collation

utf8 utf8_unicode_ci

ucs2 ucs2_unicode_ci

utf16 utf16_unicode_ci

utf32 utf32_unicode_ci

The following sections show how to add a collation that is defined using LDML syntax, and provide a
summary of LDML rules supported in MySQL.

10.4.4.1 Defining a UCA Collation Using LDML Syntax

To add a UCA collation for a Unicode character set without recompiling MySQL, use the
following procedure. If you are unfamiliar with the LDML rules used to describe the collation's sort
characteristics, see Section 10.4.4.2, “LDML Syntax Supported in MySQL”.

The example adds a collation named utf8_phone_ci to the utf8 character set. The collation is
designed for a scenario involving a Web application for which users post their names and phone
numbers. Phone numbers can be given in very different formats:

+7-12345-67

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

1278

+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567

The problem raised by dealing with these kinds of values is that the varying permissible formats make
searching for a specific phone number very difficult. The solution is to define a new collation that
reorders punctuation characters, making them ignorable.

1. Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps
use an ID of 1029.

2. To modify the Index.xml configuration file. This file will be located in the directory named by the
character_sets_dir system variable. You can check the variable value as follows, although the
path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. In addition, you'll need to provide
the collation ordering rules. Find the <charset> element for the character set to which the
collation is being added, and add a <collation> element that indicates the collation name and
ID, to associate the name with the ID. Within the <collation> element, provide a <rules>
element containing the ordering rules:

<charset name="utf8">
 ...
 <collation name="utf8_phone_ci" id="1029">
 <rules>
 <reset>\u0000</reset>
 <i>\u0020</i> <!-- space -->
 <i>\u0028</i> <!-- left parenthesis -->
 <i>\u0029</i> <!-- right parenthesis -->
 <i>\u002B</i> <!-- plus -->
 <i>\u002D</i> <!-- hyphen -->
 </rules>
 </collation>
 ...
</charset>

4. If you want a similar collation for other Unicode character sets, add other <collation> elements.
For example, to define ucs2_phone_ci, add a <collation> element to the <charset
name="ucs2"> element. Remember that each collation must have its own unique ID.

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION LIKE 'utf8_phone_ci';
+---------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------+---------+------+---------+----------+---------+
| utf8_phone_ci | utf8 | 1029 | | | 8 |
+---------------+---------+------+---------+----------+---------+

Now test the collation to make sure that it has the desired properties.

Create a table containing some sample phone numbers using the new collation:

mysql> CREATE TABLE phonebook (
 -> name VARCHAR(64),
 -> phone VARCHAR(64) CHARACTER SET utf8 COLLATE utf8_phone_ci

Adding a UCA Collation to a Unicode Character Set

1279

 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');
Query OK, 1 row affected (0.00 sec)

Run some queries to see whether the ignored punctuation characters are in fact ignored for sorting and
comparisons:

mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name | phone |
+-------+--------------------+
Sanja	+380 (912) 8008005
Bar	+7-912-800-80-01
Svoj	+7 912 800 80 02
Ramil	(7912) 800 80 03
Hf	+7 (912) 800 80 04
+-------+--------------------+
5 rows in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='79128008001';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

10.4.4.2 LDML Syntax Supported in MySQL

This section describes the LDML syntax that MySQL recognizes. This is a subset of the syntax
described in the LDML specification available at http://www.unicode.org/reports/tr35/, which should
be consulted for further information. MySQL recognizes a large enough subset of the syntax that, in
many cases, it is possible to download a collation definition from the Unicode Common Locale Data
Repository and paste the relevant part (that is, the part between the <rules> and </rules> tags)
into the MySQL Index.xml file. The rules described here are all supported except that character
sorting occurs only at the primary level. Rules that specify differences at secondary or higher sort levels
are recognized (and thus can be included in collation definitions) but are treated as equality at the
primary level.

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

1280

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file.
See Section 10.4.4.3, “Diagnostics During Index.xml Parsing”.

Character Representation

Characters named in LDML rules can be written literally or in \unnnn format, where nnnn is the
hexadecimal Unicode code point value. For example, A and á can be written literally or as \u0041
and \u00E1. Within hexadecimal values, the digits A through F are not case sensitive; \u00E1
and \u00e1 are equivalent. For UCA 4.0.0 collations, hexadecimal notation can be used only for
characters in the Basic Multilingual Plane, not for characters outside the BMP range of 0000 to FFFF.
For UCA 5.2.0 collations, hexadecimal notation can be used for any character.

The Index.xml file itself should be written using UTF-8 encoding.

Syntax Rules

LDML has reset rules and shift rules to specify character ordering. Orderings are given as a set of rules
that begin with a reset rule that establishes an anchor point, followed by shift rules that indicate how
characters sort relative to the anchor point.

• A <reset> rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for
subsequent shift rules to cause them to be taken in relation to a given character. Either of the
following rules resets subsequent shift rules to be taken in relation to the letter 'A':

<reset>A</reset>

<reset>\u0041</reset>

• The <p>, <s>, and <t> shift rules define primary, secondary, and tertiary differences of a character
from another character:

• Use primary differences to distinguish separate letters.

• Use secondary differences to distinguish accent variations.

• Use tertiary differences to distinguish lettercase variations.

Either of these rules specifies a primary shift rule for the 'G' character:

<p>G</p>

<p>\u0047</p>

• The <i> shift rule indicates that one character sorts identically to another. The following rules cause
'b' to sort the same as 'a':

<reset>a</reset>
<i>b</i>

• Abbreviated shift syntax specifies multiple shift rules using a single pair of tags. The following table
shows the correspondence between abbreviated syntax rules and the equivalent nonabbreviated
rules.

Table 10.2 Abbreviated Shift Syntax

Abbreviated Syntax Nonabbreviated Syntax

<pc>xyz</pc> <p>x</p><p>y</p><p>z</p>

<sc>xyz</sc> <s>x</s><s>y</s><s>z</s>

<tc>xyz</tc> <t>x</t><t>y</t><t>z</t>

Adding a UCA Collation to a Unicode Character Set

1281

Abbreviated Syntax Nonabbreviated Syntax

<ic>xyz</ic> <i>x</i><i>y</i><i>z</i>

• An expansion is a reset rule that establishes an anchor point for a multiple-character sequence.
MySQL supports expansions 2 to 6 characters long. The following rules put 'z' greater at the
primary level than the sequence of three characters 'abc':

<reset>abc</reset>
<p>z</p>

• A contraction is a shift rule that sorts a multiple-character sequence. MySQL supports contractions 2
to 6 characters long. The following rules put the sequence of three characters 'xyz' greater at the
primary level than 'a':

<reset>a</reset>
<p>xyz</p>

• Long expansions and long contractions can be used together. These rules put the sequence of three
characters 'xyz' greater at the primary level than the sequence of three characters 'abc':

<reset>abc</reset>
<p>xyz</p>

• Normal expansion syntax uses <x> plus <extend> elements to specify an expansion. The following
rules put the character 'k' greater at the secondary level than the sequence 'ch'. That is, 'k'
behaves as if it expands to a character after 'c' followed by 'h':

<reset>c</reset>
<x><s>k</s><extend>h</extend></x>

This syntax permits long sequences. These rules sort the sequence 'ccs' greater at the tertiary
level than the sequence 'cscs':

<reset>cs</reset>
<x><t>ccs</t><extend>cs</extend></x>

The LDML specification describes normal expansion syntax as “tricky.” See that specification for
details.

• Previous context syntax uses <x> plus <context> elements to specify that the context before a
character affects how it sorts. The following rules put '-' greater at the secondary level than 'a',
but only when '-' occurs after 'b':

<reset>a</reset>
<x><context>b</context><s>-</s></x>

• Previous context syntax can include the <extend> element. These rules put 'def' greater at the
primary level than 'aghi', but only when 'def' comes after 'abc':

<reset>a</reset>
<x><context>abc</context><p>def</p><extend>ghi</extend></x>

• Reset rules permit a before attribute. Normally, shift rules after a reset rule indicate characters
that sort after the reset character. Shift rules after a reset rule that has the before attribute indicate
characters that sort before the reset character. The following rules put the character 'b' immediately
before 'a' at the primary level:

Adding a UCA Collation to a Unicode Character Set

1282

<reset before="primary">a</reset>
<p>b</p>

Permissible before attribute values specify the sort level by name or the equivalent numeric value:

<reset before="primary">
<reset before="1">

<reset before="secondary">
<reset before="2">

<reset before="tertiary">
<reset before="3">

• A reset rule can name a logical reset position rather than a literal character:

<first_tertiary_ignorable/>
<last_tertiary_ignorable/>
<first_secondary_ignorable/>
<last_secondary_ignorable/>
<first_primary_ignorable/>
<last_primary_ignorable/>
<first_variable/>
<last_variable/>
<first_non_ignorable/>
<last_non_ignorable/>
<first_trailing/>
<last_trailing/>

These rules put 'z' greater at the primary level than nonignorable characters that have a Default
Unicode Collation Element Table (DUCET) entry and that are not CJK:

<reset><last_non_ignorable/></reset>
<p>z</p>

Logical positions have the code points shown in the following table.

Table 10.3 Logical Reset Position Code Points

Logical Position Unicode 4.0.0 Code Point Unicode 5.2.0 Code Point

<first_non_ignorable/> U+02D0 U+02D0

<last_non_ignorable/> U+A48C U+1342E

<first_primary_ignorable/> U+0332 U+0332

<last_primary_ignorable/> U+20EA U+101FD

<first_secondary_ignorable/> U+0000 U+0000

<last_secondary_ignorable/> U+FE73 U+FE73

<first_tertiary_ignorable/> U+0000 U+0000

<last_tertiary_ignorable/> U+FE73 U+FE73

<first_trailing/> U+0000 U+0000

<last_trailing/> U+0000 U+0000

<first_variable/> U+0009 U+0009

<last_variable/> U+2183 U+1D371

• The <collation> element permits a shift-after-method attribute that affects character weight
calculation for shift rules. The attribute has these permitted values:

• simple: Calculate character weights as for reset rules that do not have a before attribute. This is
the default if the attribute is not given.

Adding a UCA Collation to a Unicode Character Set

1283

• expand: Use expansions for shifts after reset rules.

Suppose that '0' and '1' have weights of 0E29 and 0E2A and we want to put all basic Latin letters
between '0' and '1':

<reset>0</reset>
<pc>abcdefghijklmnopqrstuvwxyz</pc>

For simple shift mode, weights are calculated as follows:

'a' has weight 0E29+1
'b' has weight 0E29+2
'c' has weight 0E29+3
...

However, there are not enough vacant positions to put 26 characters between '0' and '1'. The
result is that digits and letters are intermixed.

To solve this, use shift-after-method="expand". Then weights are calculated like this:

'a' has weight [0E29][233D+1]
'b' has weight [0E29][233D+2]
'c' has weight [0E29][233D+3]
...

233D is the UCA 4.0.0 weight for character 0xA48C, which is the last nonignorable character (a sort
of the greatest character in the collation, excluding CJK). UCA 5.2.0 is similar but uses 3ACA, for
character 0x1342E.

MySQL-Specific LDML Extensions

In MySQL 5.7, an extension to LDML rules permits the <collation> element to include an optional
version attribute in <collation> tags to indicate the UCA version on which the collation is based. If
the version attribute is omitted, its default value is 4.0.0. For example, this specification indicates a
collation that is based on UCA 5.2.0:

<collation id="nnn" name="utf8_xxx_ci" version="5.2.0">
...
</collation>

10.4.4.3 Diagnostics During Index.xml Parsing

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file:

• Unknown tags are written to the error log. For example, the following message results if a collation
definition contains a <aaa> tag:

[Warning] Buffered warning: Unknown LDML tag:
'charsets/charset/collation/rules/aaa'

• If collation initialization is not possible, the server reports an “Unknown collation” error, and also
generates warnings explaining the problems, such as in the previous example. In other cases, when
a collation description is generally correct but contains some unknown tags, the collation is initialized
and is available for use. The unknown parts are ignored, but a warning is generated in the error log.

• Problems with collations generate warnings that clients can display with SHOW WARNINGS. Suppose
that a reset rule contains an expansion longer than the maximum supported length of 6 characters:

<reset>abcdefghi</reset>

Character Set Configuration

1284

<i>x</i>

An attempt to use the collation produces warnings:

mysql> SELECT _utf8'test' COLLATE utf8_test_ci;
ERROR 1273 (HY000): Unknown collation: 'utf8_test_ci'
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Error | 1273 | Unknown collation: 'utf8_test_ci' |
| Warning | 1273 | Expansion is too long at 'abcdefghi=x' |
+---------+------+--+

10.5 Character Set Configuration
You can change the default server character set and collation with the --character-set-server
and --collation-server options when you start the server. The collation must be a legal collation
for the default character set. (Use the SHOW COLLATION statement to determine which collations are
available for each character set.) See Section 5.1.3, “Server Command Options”.

If you try to use a character set that is not compiled into your binary, you might run into the following
problems:

• Your program uses an incorrect path to determine where the character sets are stored (which is
typically the share/mysql/charsets or share/charsets directory under the MySQL installation
directory). This can be fixed by using the --character-sets-dir option when you run the
program in question. For example, to specify a directory to be used by MySQL client programs, list
it in the [client] group of your option file. The examples given here show what the setting might
look like for Unix or Windows, respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 5.7/share/charsets"

• The character set is a complex character set that cannot be loaded dynamically. In this case, you
must recompile the program with support for the character set.

For Unicode character sets, you can define collations without recompiling by using LDML notation.
See Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.

• The character set is a dynamic character set, but you do not have a configuration file for it. In this
case, you should install the configuration file for the character set from a new MySQL distribution.

• If your character set index file does not contain the name for the character set, your program displays
an error message. The file is named Index.xml and the message is:

Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file

To solve this problem, you should either get a new index file or manually add the name of any
missing character sets to the current file.

You can force client programs to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary. However, when character_set_system differs from
character_set_server or character_set_client, and you input characters manually (as

MySQL Server Time Zone Support

1285

database object identifiers, column values, or both), these may be displayed incorrectly in output from
the client or the output itself may be formatted incorrectly. In such cases, starting the mysql client with
--default-character-set=system_character_set—that is, setting the client character set to
match the system character set—should fix the problem.

For MyISAM tables, you can check the character set name and number for a table with myisamchk -
dvv tbl_name.

10.6 MySQL Server Time Zone Support
The MySQL server maintains several time zone settings:

• The system time zone. When the server starts, it attempts to determine the time zone of the host
machine and uses it to set the system_time_zone system variable. The value does not change
thereafter.

You can set the system time zone for MySQL Server at startup with the --
timezone=timezone_name option to mysqld_safe. You can also set it by setting the TZ
environment variable before you start mysqld. The permissible values for --timezone or TZ
are system dependent. Consult your operating system documentation to see what values are
acceptable.

• The server's current time zone. The global time_zone system variable indicates the time zone the
server currently is operating in. The initial value for time_zone is 'SYSTEM', which indicates that
the server time zone is the same as the system time zone.

The initial global server time zone value can be specified explicitly at startup with the --default-
time-zone=timezone option on the command line, or you can use the following line in an option
file:

default-time-zone='timezone'

If you have the SUPER privilege, you can set the global server time zone value at runtime with this
statement:

mysql> SET GLOBAL time_zone = timezone;

• Per-connection time zones. Each client that connects has its own time zone setting, given by
the session time_zone variable. Initially, the session variable takes its value from the global
time_zone variable, but the client can change its own time zone with this statement:

mysql> SET time_zone = timezone;

The current session time zone setting affects display and storage of time values that are zone-
sensitive. This includes the values displayed by functions such as NOW() or CURTIME(), and values
stored in and retrieved from TIMESTAMP columns. Values for TIMESTAMP columns are converted from
the current time zone to UTC for storage, and from UTC to the current time zone for retrieval.

The current time zone setting does not affect values displayed by functions such as
UTC_TIMESTAMP() or values in DATE, TIME, or DATETIME columns. Nor are values in those data
types stored in UTC; the time zone applies for them only when converting from TIMESTAMP values. If
you want locale-specific arithmetic for DATE, TIME, or DATETIME values, convert them to UTC, perform
the arithmetic, and then convert back.

The current values of the global and client-specific time zones can be retrieved like this:

mysql> SELECT @@global.time_zone, @@session.time_zone;

timezone values can be given in several formats, none of which are case sensitive:

Populating the Time Zone Tables

1286

• The value 'SYSTEM' indicates that the time zone should be the same as the system time zone.

• The value can be given as a string indicating an offset from UTC, such as '+10:00' or '-6:00'.

• The value can be given as a named time zone, such as 'Europe/Helsinki', 'US/Eastern',
or 'MET'. Named time zones can be used only if the time zone information tables in the mysql
database have been created and populated.

Populating the Time Zone Tables

The MySQL installation procedure creates the time zone tables in the mysql database, but does not
load them. You must do so manually using the following instructions.

Note

Loading the time zone information is not necessarily a one-time operation
because the information changes occasionally. When such changes occur,
applications that use the old rules become out of date and you may find it
necessary to reload the time zone tables to keep the information used by your
MySQL server current. See the notes at the end of this section.

If your system has its own zoneinfo database (the set of files describing time zones), you should use
the mysql_tzinfo_to_sql program for filling the time zone tables. Examples of such systems are
Linux, FreeBSD, Solaris, and OS X. One likely location for these files is the /usr/share/zoneinfo
directory. If your system does not have a zoneinfo database, you can use the downloadable package
described later in this section.

The mysql_tzinfo_to_sql program is used to load the time zone tables. On the command line,
pass the zoneinfo directory path name to mysql_tzinfo_to_sql and send the output into the mysql
program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from
them. mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or to generate leap second
information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

With this approach, you must execute a separate command to load the time zone file for each named
zone that the server needs to know about.

• If your time zone needs to account for leap seconds, initialize the leap second information like this,
where tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

• After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to
use any previously cached time zone data.

If your system is one that has no zoneinfo database (for example, Windows), you can use a package
that is available for download at the MySQL Developer Zone:

Staying Current with Time Zone Changes

1287

http://dev.mysql.com/downloads/timezones.html

Download a time zone package that contains SQL statements and unpack it, then load the package file
contents into the time zone tables:

shell> mysql -u root mysql < file_name

Then restart the server.

Warning

Do not use a downloadable package that contains MyISAM tables. MySQL
5.7.5 and up uses InnoDB for the time zone tables. Trying to replace them with
MyISAM tables will cause problems.

Warning

Do not use a downloadable package if your system has a zoneinfo database.
Use the mysql_tzinfo_to_sql utility instead. Otherwise, you may cause a
difference in datetime handling between MySQL and other applications on your
system.

For information about time zone settings in replication setup, please see Section 17.4.1, “Replication
Features and Issues”.

10.6.1 Staying Current with Time Zone Changes

When time zone rules change, applications that use the old rules become out of date. To stay current,
it is necessary to make sure that your system uses current time zone information is used. For MySQL,
there are two factors to consider in staying current:

• The operating system time affects the value that the MySQL server uses for times if its time zone
is set to SYSTEM. Make sure that your operating system is using the latest time zone information.
For most operating systems, the latest update or service pack prepares your system for the time
changes. Check the Web site for your operating system vendor for an update that addresses the
time changes.

• If you replace the system's /etc/localtime timezone file with a version that uses rules differing
from those in effect at mysqld startup, you should restart mysqld so that it uses the updated rules.
Otherwise, mysqld might not notice when the system changes its time.

• If you use named time zones with MySQL, make sure that the time zone tables in the mysql
database are up to date. If your system has its own zoneinfo database, you should reload the
MySQL time zone tables whenever the zoneinfo database is updated. For systems that do not
have their own zoneinfo database, check the MySQL Developer Zone for updates. When a new
update is available, download it and use it to replace the content of your current time zone tables.
For instructions for both methods, see Populating the Time Zone Tables. mysqld caches time zone
information that it looks up, so after updating the time zone tables, you should restart mysqld to
make sure that it does not continue to serve outdated time zone data.

If you are uncertain whether named time zones are available, for use either as the server's time zone
setting or by clients that set their own time zone, check whether your time zone tables are empty. The
following query determines whether the table that contains time zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
| 0 |

http://dev.mysql.com/downloads/timezones.html

Time Zone Leap Second Support

1288

+----------+

A count of zero indicates that the table is empty. In this case, no one can be using named time zones,
and you don't need to update the tables. A count greater than zero indicates that the table is not empty
and that its contents are available to be used for named time zone support. In this case, you should be
sure to reload your time zone tables so that anyone who uses named time zones will get correct query
results.

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time
rules, use a test like the one following. The example uses values that are appropriate for the 2007 DST
1-hour change that occurs in the United States on March 11 at 2 a.m.

The test uses these two queries:

SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');

The two time values indicate the times at which the DST change occurs, and the use of named time
zones requires that the time zone tables be used. The desired result is that both queries return the
same result (the input time, converted to the equivalent value in the 'US/Central' time zone).

Before updating the time zone tables, you would see an incorrect result like this:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 02:00:00 |
+--+

After updating the tables, you should see the correct result:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+

10.6.2 Time Zone Leap Second Support

Leap second values are returned with a time part that ends with :59:59. This means that a function
such as NOW() can return the same value for two or three consecutive seconds during the leap
second. It remains true that literal temporal values having a time part that ends with :59:60 or :59:61
are considered invalid.

If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous
results may be obtained if you use a comparison with 'YYYY-MM-DD hh:mm:ss' values. The
following example demonstrates this. It changes the local time zone to UTC so there is no difference

MySQL Server Locale Support

1289

between internal values (which are in UTC) and displayed values (which have time zone correction
applied).

mysql> CREATE TABLE t1 (
 -> a INT,
 -> ts TIMESTAMP DEFAULT NOW(),
 -> PRIMARY KEY (ts)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> -- change to UTC
mysql> SET time_zone = '+00:00';
Query OK, 0 rows affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:59'
mysql> SET timestamp = 1230767999;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:60'
mysql> SET timestamp = 1230768000;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (2);
Query OK, 1 row affected (0.00 sec)

mysql> -- values differ internally but display the same
mysql> SELECT a, ts, UNIX_TIMESTAMP(ts) FROM t1;
+------+---------------------+--------------------+
| a | ts | UNIX_TIMESTAMP(ts) |
+------+---------------------+--------------------+
| 1 | 2008-12-31 23:59:59 | 1230767999 |
| 2 | 2008-12-31 23:59:59 | 1230768000 |
+------+---------------------+--------------------+
2 rows in set (0.00 sec)

mysql> -- only the non-leap value matches
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:59';
+------+---------------------+
| a | ts |
+------+---------------------+
| 1 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

mysql> -- the leap value with seconds=60 is invalid
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:60';
Empty set, 2 warnings (0.00 sec)

To work around this, you can use a comparison based on the UTC value actually stored in column,
which has the leap second correction applied:

mysql> -- selecting using UNIX_TIMESTAMP value return leap value
mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768000;
+------+---------------------+
| a | ts |
+------+---------------------+
| 2 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

10.7 MySQL Server Locale Support
The locale indicated by the lc_time_names system variable controls the language used to display
day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(),
DAYNAME(), and MONTHNAME() functions.

MySQL Server Locale Support

1290

lc_time_names does not affect the STR_TO_DATE() or GET_FORMAT() function.

The lc_time_names value does not affect the result from FORMAT(), but this function takes an
optional third parameter that enables a locale to be specified to be used for the result number's decimal
point, thousands separator, and grouping between separators. Permissible locale values are the same
as the legal values for the lc_time_names system variable.

Locale names have language and region subtags listed by IANA (http://www.iana.org/assignments/
language-subtag-registry) such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of
your system's locale setting, but you can set the value at server startup or set the GLOBAL value if you
have the SUPER privilege. Any client can examine the value of lc_time_names or set its SESSION
value to affect the locale for its own connection.

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| Friday Fri January Jan |
+---+
1 row in set (0.00 sec)

mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| viernes | enero |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| viernes vie enero ene |
+---+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8 to the character set
indicated by the character_set_connection system variable.

http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry

MySQL Server Locale Support

1291

lc_time_names may be set to any of the following locale values. The set of locales supported by
MySQL may differ from those supported by your operating system.

ar_AE: Arabic - United Arab Emirates ar_BH: Arabic - Bahrain

ar_DZ: Arabic - Algeria ar_EG: Arabic - Egypt

ar_IN: Arabic - India ar_IQ: Arabic - Iraq

ar_JO: Arabic - Jordan ar_KW: Arabic - Kuwait

ar_LB: Arabic - Lebanon ar_LY: Arabic - Libya

ar_MA: Arabic - Morocco ar_OM: Arabic - Oman

ar_QA: Arabic - Qatar ar_SA: Arabic - Saudi Arabia

ar_SD: Arabic - Sudan ar_SY: Arabic - Syria

ar_TN: Arabic - Tunisia ar_YE: Arabic - Yemen

be_BY: Belarusian - Belarus bg_BG: Bulgarian - Bulgaria

ca_ES: Catalan - Spain cs_CZ: Czech - Czech Republic

da_DK: Danish - Denmark de_AT: German - Austria

de_BE: German - Belgium de_CH: German - Switzerland

de_DE: German - Germany de_LU: German - Luxembourg

el_GR: Greek - Greece en_AU: English - Australia

en_CA: English - Canada en_GB: English - United Kingdom

en_IN: English - India en_NZ: English - New Zealand

en_PH: English - Philippines en_US: English - United States

en_ZA: English - South Africa en_ZW: English - Zimbabwe

es_AR: Spanish - Argentina es_BO: Spanish - Bolivia

es_CL: Spanish - Chile es_CO: Spanish - Columbia

es_CR: Spanish - Costa Rica es_DO: Spanish - Dominican Republic

es_EC: Spanish - Ecuador es_ES: Spanish - Spain

es_GT: Spanish - Guatemala es_HN: Spanish - Honduras

es_MX: Spanish - Mexico es_NI: Spanish - Nicaragua

es_PA: Spanish - Panama es_PE: Spanish - Peru

es_PR: Spanish - Puerto Rico es_PY: Spanish - Paraguay

es_SV: Spanish - El Salvador es_US: Spanish - United States

es_UY: Spanish - Uruguay es_VE: Spanish - Venezuela

et_EE: Estonian - Estonia eu_ES: Basque - Basque

fi_FI: Finnish - Finland fo_FO: Faroese - Faroe Islands

fr_BE: French - Belgium fr_CA: French - Canada

fr_CH: French - Switzerland fr_FR: French - France

fr_LU: French - Luxembourg gl_ES: Galician - Spain

gu_IN: Gujarati - India he_IL: Hebrew - Israel

hi_IN: Hindi - India hr_HR: Croatian - Croatia

hu_HU: Hungarian - Hungary id_ID: Indonesian - Indonesia

is_IS: Icelandic - Iceland it_CH: Italian - Switzerland

it_IT: Italian - Italy ja_JP: Japanese - Japan

ko_KR: Korean - Republic of Korea lt_LT: Lithuanian - Lithuania

MySQL Server Locale Support

1292

lv_LV: Latvian - Latvia mk_MK: Macedonian - FYROM

mn_MN: Mongolia - Mongolian ms_MY: Malay - Malaysia

nb_NO: Norwegian(Bokmål) - Norway nl_BE: Dutch - Belgium

nl_NL: Dutch - The Netherlands no_NO: Norwegian - Norway

pl_PL: Polish - Poland pt_BR: Portugese - Brazil

pt_PT: Portugese - Portugal rm_CH: Romansh - Switzerland

ro_RO: Romanian - Romania ru_RU: Russian - Russia

ru_UA: Russian - Ukraine sk_SK: Slovak - Slovakia

sl_SI: Slovenian - Slovenia sq_AL: Albanian - Albania

sr_RS: Serbian - Yugoslavia sv_FI: Swedish - Finland

sv_SE: Swedish - Sweden ta_IN: Tamil - India

te_IN: Telugu - India th_TH: Thai - Thailand

tr_TR: Turkish - Turkey uk_UA: Ukrainian - Ukraine

ur_PK: Urdu - Pakistan vi_VN: Vietnamese - Viet Nam

zh_CN: Chinese - China zh_HK: Chinese - Hong Kong

zh_TW: Chinese - Taiwan Province of China

1293

Chapter 11 Data Types

Table of Contents
11.1 Data Type Overview ... 1294

11.1.1 Numeric Type Overview ... 1294
11.1.2 Date and Time Type Overview .. 1297
11.1.3 String Type Overview ... 1299

11.2 Numeric Types ... 1302
11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ... 1303
11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC .. 1303
11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 1303
11.2.4 Bit-Value Type - BIT ... 1304
11.2.5 Numeric Type Attributes ... 1304
11.2.6 Out-of-Range and Overflow Handling .. 1305

11.3 Date and Time Types ... 1306
11.3.1 The DATE, DATETIME, and TIMESTAMP Types ... 1307
11.3.2 The TIME Type .. 1309
11.3.3 The YEAR Type ... 1309
11.3.4 YEAR(2) Limitations and Migrating to YEAR(4) .. 1310
11.3.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME 1313
11.3.6 Fractional Seconds in Time Values ... 1316
11.3.7 Conversion Between Date and Time Types ... 1317
11.3.8 Two-Digit Years in Dates .. 1318

11.4 String Types ... 1318
11.4.1 The CHAR and VARCHAR Types ... 1318
11.4.2 The BINARY and VARBINARY Types ... 1320
11.4.3 The BLOB and TEXT Types ... 1321
11.4.4 The ENUM Type .. 1322
11.4.5 The SET Type ... 1325

11.5 Extensions for Spatial Data ... 1327
11.5.1 Spatial Data Types ... 1329
11.5.2 The OpenGIS Geometry Model ... 1329
11.5.3 Using Spatial Data ... 1335

11.6 The JSON Data Type ... 1342
11.7 Data Type Default Values ... 1353
11.8 Data Type Storage Requirements .. 1354
11.9 Choosing the Right Type for a Column .. 1357
11.10 Using Data Types from Other Database Engines .. 1357

MySQL supports a number of SQL data types in several categories: numeric types, date and time
types, string (character and byte) types, spatial types, and the JSON data type. This chapter provides
an overview of these data types, a more detailed description of the properties of the types in each
category, and a summary of the data type storage requirements. The initial overview is intentionally
brief. The more detailed descriptions later in the chapter should be consulted for additional information
about particular data types, such as the permissible formats in which you can specify values.

Data type descriptions use these conventions:

• M indicates the maximum display width for integer types. For floating-point and fixed-point types,
M is the total number of digits that can be stored (the precision). For string types, M is the maximum
length. The maximum permissible value of M depends on the data type.

• D applies to floating-point and fixed-point types and indicates the number of digits following the
decimal point (the scale). The maximum possible value is 30, but should be no greater than M−2.

Data Type Overview

1294

• fsp applies to the TIME, DATETIME, and TIMESTAMP types and represents fractional seconds
precision; that is, the number of digits following the decimal point for fractional parts of seconds. The
fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part.
If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility
with previous MySQL versions.)

• Square brackets (“[” and “]”) indicate optional parts of type definitions.

11.1 Data Type Overview

11.1.1 Numeric Type Overview

A summary of the numeric data types follows. For additional information about properties and storage
requirements of the numeric types, see Section 11.2, “Numeric Types”, and Section 11.8, “Data Type
Storage Requirements”.

M indicates the maximum display width for integer types. The maximum display width is 255. Display
width is unrelated to the range of values a type can contain, as described in Section 11.2, “Numeric
Types”. For floating-point and fixed-point types, M is the total number of digits that can be stored.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to
the column.

Numeric data types that permit the UNSIGNED attribute also permit SIGNED. However, these data types
are signed by default, so the SIGNED attribute has no effect.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

Warning

When you use subtraction between integer values where one is of type
UNSIGNED, the result is unsigned unless the NO_UNSIGNED_SUBTRACTION
SQL mode is enabled. See Section 12.10, “Cast Functions and Operators”.

• BIT[(M)]

A bit-field type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

• TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

• BOOL, BOOLEAN

These types are synonyms for TINYINT(1). A value of zero is considered false. Nonzero values are
considered true:

mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false |
+------------------------+

mysql> SELECT IF(1, 'true', 'false');
+------------------------+
| IF(1, 'true', 'false') |
+------------------------+
| true |

Numeric Type Overview

1295

+------------------------+

mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+
| true |
+------------------------+

However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:

mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true |
+--------------------------------+

mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true |
+-------------------------------+

mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+
| false |
+-------------------------------+

mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false |
+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

• SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

• MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to
16777215.

• INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0
to 4294967295.

• INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This type is a synonym for INT.

• BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The
unsigned range is 0 to 18446744073709551615.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

Some things you should be aware of with respect to BIGINT columns:

Numeric Type Overview

1296

• All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned
big integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do that,
some of the last digits in the result may be wrong because of rounding errors when converting a
BIGINT value to a DOUBLE.

MySQL can handle BIGINT in the following cases:

• When using integers to store large unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a string. In
this case, MySQL performs a string-to-number conversion that involves no intermediate double-
precision representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This
means that if you multiply two big integers (or results from functions that return integers), you may
get unexpected results when the result is larger than 9223372036854775807.

• DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

A packed “exact” fixed-point number. M is the total number of digits (the precision) and D is the
number of digits after the decimal point (the scale). The decimal point and (for negative numbers) the
“-” sign are not counted in M. If D is 0, values have no decimal point or fractional part. The maximum
number of digits (M) for DECIMAL is 65. The maximum number of supported decimals (D) is 30. If D is
omitted, the default is 0. If M is omitted, the default is 10.

UNSIGNED, if specified, disallows negative values.

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

• DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED]
[ZEROFILL], FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with
other database systems.

• FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Permissible values are -3.402823466E+38 to
-1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theoretical
limits, based on the IEEE standard. The actual range might be slightly smaller depending on your
hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A single-precision floating-point
number is accurate to approximately 7 decimal places.

UNSIGNED, if specified, disallows negative values.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are
done with double precision. See Section B.5.4.7, “Solving Problems with No Matching Rows”.

• DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Permissible values are
-1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical limits,

Date and Time Type Overview

1297

based on the IEEE standard. The actual range might be slightly smaller depending on your hardware
or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A double-precision floating-point
number is accurate to approximately 15 decimal places.

UNSIGNED, if specified, disallows negative values.

• DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED]
[ZEROFILL]

These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled,
REAL is a synonym for FLOAT rather than DOUBLE.

• FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision in bits, but MySQL uses this value only to
determine whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data
type becomes FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE
with no M or D values. The range of the resulting column is the same as for the single-precision
FLOAT or double-precision DOUBLE data types described earlier in this section.

 FLOAT(p) syntax is provided for ODBC compatibility.

11.1.2 Date and Time Type Overview

A summary of the temporal data types follows. For additional information about properties and storage
requirements of the temporal types, see Section 11.3, “Date and Time Types”, and Section 11.8,
“Data Type Storage Requirements”. For descriptions of functions that operate on temporal values, see
Section 12.7, “Date and Time Functions”.

For the DATE and DATETIME range descriptions, “supported” means that although earlier values might
work, there is no guarantee.

MySQL permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. To define a column that includes a fractional seconds part, use the
syntax type_name(fsp), where type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the
fractional seconds precision. For example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6));

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional
part. If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for
compatibility with previous MySQL versions.)

Any TIMESTAMP or DATETIME column in a table can have automatic initialization and updating
properties.

• DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE values
in 'YYYY-MM-DD' format, but permits assignment of values to DATE columns using either strings or
numbers.

• DATETIME[(fsp)]

A date and time combination. The supported range is '1000-01-01 00:00:00.000000' to
'9999-12-31 23:59:59.999999'. MySQL displays DATETIME values in 'YYYY-MM-DD
HH:MM:SS[.fraction]' format, but permits assignment of values to DATETIME columns using
either strings or numbers.

Date and Time Type Overview

1298

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision.
A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

Automatic initialization and updating to the current date and time for DATETIME columns can be
specified using DEFAULT and ON UPDATE column definition clauses, as described in Section 11.3.5,
“Automatic Initialization and Updating for TIMESTAMP and DATETIME”.

• TIMESTAMP[(fsp)]

A timestamp. The range is '1970-01-01 00:00:01.000000' UTC to '2038-01-19
03:14:07.999999' UTC. TIMESTAMP values are stored as the number of seconds since the
epoch ('1970-01-01 00:00:00' UTC). A TIMESTAMP cannot represent the value '1970-01-01
00:00:00' because that is equivalent to 0 seconds from the epoch and the value 0 is reserved for
representing '0000-00-00 00:00:00', the “zero” TIMESTAMP value.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision.
A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

The way the server handles TIMESTAMP definitions depends on the value of the
explicit_defaults_for_timestamp system variable (see Section 5.1.4, “Server System
Variables”). By default, explicit_defaults_for_timestamp is disabled and the server handles
TIMESTAMP as follows:

Unless specified otherwise, the first TIMESTAMP column in a table is defined to be automatically set
to the date and time of the most recent modification if not explicitly assigned a value. This makes
TIMESTAMP useful for recording the timestamp of an INSERT or UPDATE operation. You can also set
any TIMESTAMP column to the current date and time by assigning it a NULL value, unless it has been
defined with the NULL attribute to permit NULL values.

Automatic initialization and updating to the current date and time can be specified using DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP column definition clauses. By
default, the first TIMESTAMP column has these properties, as previously noted. However, any
TIMESTAMP column in a table can be defined to have these properties.

If explicit_defaults_for_timestamp is enabled, there is no automatic assignment of
the DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP attributes to any
TIMESTAMP column. They must be included explicitly in the column definition. Also, any TIMESTAMP
not explicitly declared as NOT NULL permits NULL values.

• TIME[(fsp)]

A time. The range is '-838:59:59.000000' to '838:59:59.000000'. MySQL displays TIME
values in 'HH:MM:SS[.fraction]' format, but permits assignment of values to TIME columns
using either strings or numbers.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision.
A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

• YEAR[(4)]

A year in four-digit format. MySQL displays YEAR values in YYYY format, but permits assignment of
values to YEAR columns using either strings or numbers. Values display as 1901 to 2155, and 0000.

Note

The YEAR(2) data type is deprecated and support for it is removed in
MySQL 5.7.5. To convert YEAR(2) columns to YEAR(4), see Section 11.3.4,
“YEAR(2) Limitations and Migrating to YEAR(4)”.

String Type Overview

1299

For additional information about YEAR display format and interpretation of input values, see
Section 11.3.3, “The YEAR Type”.

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, losing everything after the first nonnumeric character.) To work around this problem,
convert to numeric units, perform the aggregate operation, and convert back to a temporal value.
Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that
a table is created, TIMESTAMP columns are created as DATETIME columns. As
a result, such columns use DATETIME display format, have the same range of
values, and there is no automatic initialization or updating to the current date
and time. See Section 5.1.7, “Server SQL Modes”.

11.1.3 String Type Overview

A summary of the string data types follows. For additional information about properties and storage
requirements of the string types, see Section 11.4, “String Types”, and Section 11.8, “Data Type
Storage Requirements”.

In some cases, MySQL may change a string column to a type different from that given in a CREATE
TABLE or ALTER TABLE statement. See Section 13.1.14.4, “Silent Column Specification Changes”.

MySQL interprets length specifications in character column definitions in character units. This applies
to CHAR, VARCHAR, and the TEXT types.

Column definitions for many string data types can include attributes that specify the character set or
collation of the column. These attributes apply to the CHAR, VARCHAR, the TEXT types, ENUM, and SET
data types:

• The CHARACTER SET attribute specifies the character set, and the COLLATE attribute specifies a
collation for the character set. For example:

CREATE TABLE t
(
 c1 VARCHAR(20) CHARACTER SET utf8,
 c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs
);

This table definition creates a column named c1 that has a character set of utf8 with the default
collation for that character set, and a column named c2 that has a character set of latin1 and a
case-sensitive collation.

The rules for assigning the character set and collation when either or both of the CHARACTER SET
and COLLATE attributes are missing are described in Section 10.1.3.4, “Column Character Set and
Collation”.

CHARSET is a synonym for CHARACTER SET.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they
are created as declared. Suppose that you specify a table using this definition:

String Type Overview

1300

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

• The ASCII attribute is shorthand for CHARACTER SET latin1.

• The UNICODE attribute is shorthand for CHARACTER SET ucs2.

• The BINARY attribute is shorthand for specifying the binary collation of the column character set. In
this case, sorting and comparison are based on numeric character values.

Character column sorting and comparison are based on the character set assigned to the column. For
the CHAR, VARCHAR, TEXT, ENUM, and SET data types, you can declare a column with a binary collation
or the BINARY attribute to cause sorting and comparison to use the underlying character code values
rather than a lexical ordering.

Section 10.1, “Character Set Support”, provides additional information about use of character sets in
MySQL.

• [NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE
collation_name]

A fixed-length string that is always right-padded with spaces to the specified length when stored. M
represents the column length in characters. The range of M is 0 to 255. If M is omitted, the length is 1.

Note

Trailing spaces are removed when CHAR values are retrieved unless the
PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is the
standard SQL way to define that a CHAR column should use some predefined character set. MySQL
uses utf8 as this predefined character set. Section 10.1.3.6, “National Character Set”.

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

MySQL permits you to create a column of type CHAR(0). This is useful primarily when you have to
be compliant with old applications that depend on the existence of a column but that do not actually
use its value. CHAR(0) is also quite nice when you need a column that can take only two values: A
column that is defined as CHAR(0) NULL occupies only one bit and can take only the values NULL
and '' (the empty string).

• [NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE
collation_name]

A variable-length string. M represents the maximum column length in characters. The range of M
is 0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size
(65,535 bytes, which is shared among all columns) and the character set used. For example, utf8
characters can require up to three bytes per character, so a VARCHAR column that uses the utf8
character set can be declared to be a maximum of 21,844 characters. See Section C.10.4, “Limits on
Table Column Count and Row Size”.

String Type Overview

1301

MySQL stores VARCHAR values as a 1-byte or 2-byte length prefix plus data. The length prefix
indicates the number of bytes in the value. A VARCHAR column uses one length byte if values require
no more than 255 bytes, two length bytes if values may require more than 255 bytes.

Note

MySQL follows the standard SQL specification, and does not remove trailing
spaces from VARCHAR values.

VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way
to define that a VARCHAR column should use some predefined character set. MySQL uses utf8 as
this predefined character set. Section 10.1.3.6, “National Character Set”. NVARCHAR is shorthand for
NATIONAL VARCHAR.

• BINARY(M)

The BINARY type is similar to the CHAR type, but stores binary byte strings rather than nonbinary
character strings. M represents the column length in bytes.

• VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than
nonbinary character strings. M represents the maximum column length in bytes.

• TINYBLOB

A BLOB column with a maximum length of 255 (28 − 1) bytes. Each TINYBLOB value is stored using
a 1-byte length prefix that indicates the number of bytes in the value.

• TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 255 (28 − 1) characters. The effective maximum length is
less if the value contains multibyte characters. Each TINYTEXT value is stored using a 1-byte length
prefix that indicates the number of bytes in the value.

• BLOB[(M)]

A BLOB column with a maximum length of 65,535 (216 − 1) bytes. Each BLOB value is stored using a
2-byte length prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest BLOB type large enough to hold values M bytes long.

• TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 65,535 (216 − 1) characters. The effective maximum length
is less if the value contains multibyte characters. Each TEXT value is stored using a 2-byte length
prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest TEXT type large enough to hold values M characters long.

• MEDIUMBLOB

A BLOB column with a maximum length of 16,777,215 (224 − 1) bytes. Each MEDIUMBLOB value is
stored using a 3-byte length prefix that indicates the number of bytes in the value.

• MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 16,777,215 (224 − 1) characters. The effective maximum
length is less if the value contains multibyte characters. Each MEDIUMTEXT value is stored using a 3-
byte length prefix that indicates the number of bytes in the value.

Numeric Types

1302

• LONGBLOB

A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 − 1) bytes. The effective
maximum length of LONGBLOB columns depends on the configured maximum packet size in the
client/server protocol and available memory. Each LONGBLOB value is stored using a 4-byte length
prefix that indicates the number of bytes in the value.

• LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 − 1) characters. The effective
maximum length is less if the value contains multibyte characters. The effective maximum length
of LONGTEXT columns also depends on the configured maximum packet size in the client/server
protocol and available memory. Each LONGTEXT value is stored using a 4-byte length prefix that
indicates the number of bytes in the value.

• ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

An enumeration. A string object that can have only one value, chosen from the list of values
'value1', 'value2', ..., NULL or the special '' error value. ENUM values are represented
internally as integers.

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than
3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET
columns considered as a group. For more information on these limits, see Section C.10.5, “Limits
Imposed by .frm File Structure”.

• SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

A set. A string object that can have zero or more values, each of which must be chosen from the list
of values 'value1', 'value2', ... SET values are represented internally as integers.

A SET column can have a maximum of 64 distinct members. A table can have no more than 255
unique element list definitions among its ENUM and SET columns considered as a group. For more
information on this limit, see Section C.10.5, “Limits Imposed by .frm File Structure”.

11.2 Numeric Types

MySQL supports all standard SQL numeric data types. These types include the exact numeric data
types (INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric data
types (FLOAT, REAL, and DOUBLE PRECISION). The keyword INT is a synonym for INTEGER, and
the keywords DEC and FIXED are synonyms for DECIMAL. MySQL treats DOUBLE as a synonym for
DOUBLE PRECISION (a nonstandard extension). MySQL also treats REAL as a synonym for DOUBLE
PRECISION (a nonstandard variation), unless the REAL_AS_FLOAT SQL mode is enabled.

The BIT data type stores bit-field values and is supported for MyISAM, MEMORY, and InnoDB.

For information about how MySQL handles assignment of out-of-range values to columns and overflow
during expression evaluation, see Section 11.2.6, “Out-of-Range and Overflow Handling”.

For information about numeric type storage requirements, see Section 11.8, “Data Type Storage
Requirements”.

The data type used for the result of a calculation on numeric operands depends on the types of the
operands and the operations performed on them. For more information, see Section 12.6.1, “Arithmetic
Operators”.

Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT

1303

11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT

MySQL supports the SQL standard integer types INTEGER (or INT) and SMALLINT. As an extension
to the standard, MySQL also supports the integer types TINYINT, MEDIUMINT, and BIGINT. The
following table shows the required storage and range for each integer type.

Type Storage Minimum Value Maximum Value

 (Bytes) (Signed/Unsigned) (Signed/Unsigned)

TINYINT 1 -128 127

 0 255

SMALLINT 2 -32768 32767

 0 65535

MEDIUMINT 3 -8388608 8388607

 0 16777215

INT 4 -2147483648 2147483647

 0 4294967295

BIGINT 8 -9223372036854775808 9223372036854775807

 0 18446744073709551615

11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC

The DECIMAL and NUMERIC types store exact numeric data values. These types are used when it
is important to preserve exact precision, for example with monetary data. In MySQL, NUMERIC is
implemented as DECIMAL, so the following remarks about DECIMAL apply equally to NUMERIC.

MySQL stores DECIMAL values in binary format. See Section 12.21, “Precision Math”.

In a DECIMAL column declaration, the precision and scale can be (and usually is) specified; for
example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant
digits that are stored for values, and the scale represents the number of digits that can be stored
following the decimal point.

Standard SQL requires that DECIMAL(5,2) be able to store any value with five digits and two
decimals, so values that can be stored in the salary column range from -999.99 to 999.99.

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax
DECIMAL is equivalent to DECIMAL(M,0), where the implementation is permitted to decide the value
of M. MySQL supports both of these variant forms of DECIMAL syntax. The default value of M is 10.

If the scale is 0, DECIMAL values contain no decimal point or fractional part.

The maximum number of digits for DECIMAL is 65, but the actual range for a given DECIMAL column
can be constrained by the precision or scale for a given column. When such a column is assigned a
value with more digits following the decimal point than are permitted by the specified scale, the value is
converted to that scale. (The precise behavior is operating system-specific, but generally the effect is
truncation to the permissible number of digits.)

11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

The FLOAT and DOUBLE types represent approximate numeric data values. MySQL uses four bytes for
single-precision values and eight bytes for double-precision values.

Bit-Value Type - BIT

1304

For FLOAT, the SQL standard permits an optional specification of the precision (but not the range of
the exponent) in bits following the keyword FLOAT in parentheses. MySQL also supports this optional
precision specification, but the precision value is used only to determine storage size. A precision from
0 to 23 results in a 4-byte single-precision FLOAT column. A precision from 24 to 53 results in an 8-byte
double-precision DOUBLE column.

MySQL permits a nonstandard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE PRECISION(M,D).
Here, “(M,D)” means than values can be stored with up to M digits in total, of which D digits may be
after the decimal point. For example, a column defined as FLOAT(7,4) will look like -999.9999
when displayed. MySQL performs rounding when storing values, so if you insert 999.00009 into a
FLOAT(7,4) column, the approximate result is 999.0001.

Because floating-point values are approximate and not stored as exact values, attempts to treat them
as exact in comparisons may lead to problems. They are also subject to platform or implementation
dependencies. For more information, see Section B.5.4.8, “Problems with Floating-Point Values”

For maximum portability, code requiring storage of approximate numeric data values should use FLOAT
or DOUBLE PRECISION with no specification of precision or number of digits.

11.2.4 Bit-Value Type - BIT

The BIT data type is used to store bit-field values. A type of BIT(M) enables storage of M-bit values. M
can range from 1 to 64.

To specify bit values, b'value' notation can be used. value is a binary value written using zeros and
ones. For example, b'111' and b'10000000' represent 7 and 128, respectively. See Section 9.1.6,
“Bit-Field Literals”.

If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left
with zeros. For example, assigning a value of b'101' to a BIT(6) column is, in effect, the same as
assigning b'000101'.

11.2.5 Numeric Type Attributes

MySQL supports an extension for optionally specifying the display width of integer data types in
parentheses following the base keyword for the type. For example, INT(4) specifies an INT with a
display width of four digits. This optional display width may be used by applications to display integer
values having a width less than the width specified for the column by left-padding them with spaces.
(That is, this width is present in the metadata returned with result sets. Whether it is used or not is up to
the application.)

The display width does not constrain the range of values that can be stored in the column. Nor does
it prevent values wider than the column display width from being displayed correctly. For example, a
column specified as SMALLINT(3) has the usual SMALLINT range of -32768 to 32767, and values
outside the range permitted by three digits are displayed in full using more than three digits.

When used in conjunction with the optional (nonstandard) attribute ZEROFILL, the default padding of
spaces is replaced with zeros. For example, for a column declared as INT(4) ZEROFILL, a value of 5
is retrieved as 0005.

Note

The ZEROFILL attribute is ignored when a column is involved in expressions or
UNION queries.

If you store values larger than the display width in an integer column that has
the ZEROFILL attribute, you may experience problems when MySQL generates
temporary tables for some complicated joins. In these cases, MySQL assumes
that the data values fit within the column display width.

Out-of-Range and Overflow Handling

1305

All integer types can have an optional (nonstandard) attribute UNSIGNED. Unsigned type can be used
to permit only nonnegative numbers in a column or when you need a larger upper numeric range for
the column. For example, if an INT column is UNSIGNED, the size of the column's range is the same
but its endpoints shift from -2147483648 and 2147483647 up to 0 and 4294967295.

Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute
prevents negative values from being stored in the column. Unlike the integer types, the upper range of
column values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to
the column.

Integer or floating-point data types can have the additional attribute AUTO_INCREMENT. When you
insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column
is set to the next sequence value. Typically this is value+1, where value is the largest value for the
column currently in the table. AUTO_INCREMENT sequences begin with 1. (Inserting NULL to generate
AUTO_INCREMENT values requires that the column be declared NOT NULL. If the column is declared
NULL, inserting NULL stores a NULL.) When you insert any other value into an AUTO_INCREMENT
column, the column is set to that value and the sequence is reset so that the next automatically
generated value follows sequentially from the inserted value.

In MySQL 5.7, negative values for AUTO_INCREMENT columns are not supported.

11.2.6 Out-of-Range and Overflow Handling

When MySQL stores a value in a numeric column that is outside the permissible range of the column
data type, the result depends on the SQL mode in effect at the time:

• If strict SQL mode is enabled, MySQL rejects the out-of-range value with an error, and the insert
fails, in accordance with the SQL standard.

• If no restrictive modes are enabled, MySQL clips the value to the appropriate endpoint of the range
and stores the resulting value instead.

When an out-of-range value is assigned to an integer column, MySQL stores the value representing
the corresponding endpoint of the column data type range. If you store 256 into a TINYINT or
TINYINT UNSIGNED column, MySQL stores 127 or 255, respectively.

When a floating-point or fixed-point column is assigned a value that exceeds the range implied by the
specified (or default) precision and scale, MySQL stores the value representing the corresponding
endpoint of that range.

Column-assignment conversions that occur due to clipping when MySQL is not operating in strict mode
are reported as warnings for ALTER TABLE, LOAD DATA INFILE, UPDATE, and multiple-row INSERT
statements. In strict mode, these statements fail, and some or all the values will not be inserted or
changed, depending on whether the table is a transactional table and other factors. For details, see
Section 5.1.7, “Server SQL Modes”.

Overflow during numeric expression evaluation results in an error. For example, the largest signed
BIGINT value is 9223372036854775807, so the following expression produces an error:

mysql> SELECT 9223372036854775807 + 1;
ERROR 1690 (22003): BIGINT value is out of range in '(9223372036854775807 + 1)'

To enable the operation to succeed in this case, convert the value to unsigned;

mysql> SELECT CAST(9223372036854775807 AS UNSIGNED) + 1;
+---+
| CAST(9223372036854775807 AS UNSIGNED) + 1 |
+---+
| 9223372036854775808 |

Date and Time Types

1306

+---+

Whether overflow occurs depends on the range of the operands, so another way to handle the
preceding expression is to use exact-value arithmetic because DECIMAL values have a larger range
than integers:

mysql> SELECT 9223372036854775807.0 + 1;
+---------------------------+
| 9223372036854775807.0 + 1 |
+---------------------------+
| 9223372036854775808.0 |
+---------------------------+

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, an error results:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped to
the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled. If
strict SQL mode is enabled, an error occurs and the column remains unchanged.

11.3 Date and Time Types
The date and time types for representing temporal values are DATE, TIME, DATETIME, TIMESTAMP,
and YEAR. Each temporal type has a range of valid values, as well as a “zero” value that may be
used when you specify an invalid value that MySQL cannot represent. The TIMESTAMP type has
special automatic updating behavior, described later. For temporal type storage requirements, see
Section 11.8, “Data Type Storage Requirements”.

Keep in mind these general considerations when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts to
interpret a variety of formats for input values that you supply (for example, when you specify a value
to be assigned to or compared to a date or time type). For a description of the permitted formats for
date and time types, see Section 9.1.3, “Date and Time Literals”. It is expected that you supply valid
values. Unpredictable results may occur if you use values in other formats.

• Although MySQL tries to interpret values in several formats, date parts must always be given in year-
month-day order (for example, '98-09-04'), rather than in the month-day-year or day-month-year
orders commonly used elsewhere (for example, '09-04-98', '04-09-98').

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

The DATE, DATETIME, and TIMESTAMP Types

1307

See also Section 11.3.8, “Two-Digit Years in Dates”.

• Conversion of values from one temporal type to another occurs according to the rules in
Section 11.3.7, “Conversion Between Date and Time Types”.

• MySQL automatically converts a date or time value to a number if the value is used in a numeric
context and vice versa.

• By default, when MySQL encounters a value for a date or time type that is out of range or otherwise
invalid for the type, it converts the value to the “zero” value for that type. The exception is that out-of-
range TIME values are clipped to the appropriate endpoint of the TIME range.

• By setting the SQL mode to the appropriate value, you can specify more exactly what kind of dates
you want MySQL to support. (See Section 5.1.7, “Server SQL Modes”.) You can get MySQL to
accept certain dates, such as '2009-11-31', by enabling the ALLOW_INVALID_DATES SQL
mode. This is useful when you want to store a “possibly wrong” value which the user has specified
(for example, in a web form) in the database for future processing. Under this mode, MySQL verifies
only that the month is in the range from 1 to 12 and that the day is in the range from 1 to 31.

• MySQL permits you to store dates where the day or month and day are zero in a DATE or DATETIME
column. This is useful for applications that need to store birthdates for which you may not know
the exact date. In this case, you simply store the date as '2009-00-00' or '2009-01-00'. If
you store dates such as these, you should not expect to get correct results for functions such as
DATE_SUB() or DATE_ADD() that require complete dates. To disallow zero month or day parts in
dates, enable the NO_ZERO_IN_DATE mode.

• MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some
cases more convenient than using NULL values, and uses less data and index space. To disallow
'0000-00-00', enable the NO_ZERO_DATE mode.

• “Zero” date or time values used through Connector/ODBC are converted automatically to NULL
because ODBC cannot handle such values.

The following table shows the format of the “zero” value for each type. The “zero” values are special,
but you can store or refer to them explicitly using the values shown in the table. You can also do this
using the values '0' or 0, which are easier to write. For temporal types that include a date part (DATE,
DATETIME, and TIMESTAMP), use of these values produces warnings if the NO_ZERO_DATE SQL
mode is enabled.

Data Type “Zero” Value

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

11.3.1 The DATE, DATETIME, and TIMESTAMP Types

The DATE, DATETIME, and TIMESTAMP types are related. This section describes their characteristics,
how they are similar, and how they differ. MySQL recognizes DATE, DATETIME, and TIMESTAMP
values in several formats, described in Section 9.1.3, “Date and Time Literals”. For the DATE and
DATETIME range descriptions, “supported” means that although earlier values might work, there is no
guarantee.

The DATE type is used for values with a date part but no time part. MySQL retrieves and displays DATE
values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to '9999-12-31'.

The DATE, DATETIME, and TIMESTAMP Types

1308

The DATETIME type is used for values that contain both date and time parts. MySQL retrieves
and displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format. The supported range is
'1000-01-01 00:00:00' to '9999-12-31 23:59:59'.

The TIMESTAMP data type is used for values that contain both date and time parts. TIMESTAMP has a
range of '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. In particular, any fractional part in a value inserted into a DATETIME or TIMESTAMP
column is stored rather than discarded. With the fractional part included, the format for these values
is 'YYYY-MM-DD HH:MM:SS[.fraction]', the range for DATETIME values is '1000-01-01
00:00:00.000000' to '9999-12-31 23:59:59.999999', and the range for TIMESTAMP values
is '1970-01-01 00:00:01.000000' to '2038-01-19 03:14:07.999999'. The fractional
part should always be separated from the rest of the time by a decimal point; no other fractional
seconds delimiter is recognized. For information about fractional seconds support in MySQL, see
Section 11.3.6, “Fractional Seconds in Time Values”.

The TIMESTAMP and DATETIME data types offer automatic initialization and updating to the current
date and time. For more information, see Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP and DATETIME”.

MySQL converts TIMESTAMP values from the current time zone to UTC for storage, and back from
UTC to the current time zone for retrieval. (This does not occur for other types such as DATETIME.)
By default, the current time zone for each connection is the server's time. The time zone can be set
on a per-connection basis. As long as the time zone setting remains constant, you get back the same
value you store. If you store a TIMESTAMP value, and then change the time zone and retrieve the
value, the retrieved value is different from the value you stored. This occurs because the same time
zone was not used for conversion in both directions. The current time zone is available as the value of
the time_zone system variable. For more information, see Section 10.6, “MySQL Server Time Zone
Support”.

Invalid DATE, DATETIME, or TIMESTAMP values are converted to the “zero” value of the appropriate
type ('0000-00-00' or '0000-00-00 00:00:00').

Be aware of certain properties of date value interpretation in MySQL:

• MySQL permits a “relaxed” format for values specified as strings, in which any punctuation character
may be used as the delimiter between date parts or time parts. In some cases, this syntax can be
deceiving. For example, a value such as '10:11:12' might look like a time value because of the
“:” delimiter, but is interpreted as the year '2010-11-12' if used in a date context. The value
'10:45:15' is converted to '0000-00-00' because '45' is not a valid month.

The only delimiter recognized between a date and time part and a fractional seconds part is the
decimal point.

• The server requires that month and day values be valid, and not merely in the range 1 to 12 and 1
to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted
to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate
an error. To permit such dates, enable ALLOW_INVALID_DATES. See Section 5.1.7, “Server SQL
Modes”, for more information.

• MySQL does not accept TIMESTAMP values that include a zero in the day or month column or values
that are not a valid date. The sole exception to this rule is the special “zero” value '0000-00-00
00:00:00'.

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

The TIME Type

1309

See also Section 11.3.8, “Two-Digit Years in Dates”.

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that
a table is created, TIMESTAMP columns are created as DATETIME columns. As
a result, such columns use DATETIME display format, have the same range of
values, and there is no automatic initialization or updating to the current date
and time. See Section 5.1.7, “Server SQL Modes”.

11.3.2 The TIME Type

MySQL retrieves and displays TIME values in 'HH:MM:SS' format (or 'HHH:MM:SS' format for large
hours values). TIME values may range from '-838:59:59' to '838:59:59'. The hours part may
be so large because the TIME type can be used not only to represent a time of day (which must be
less than 24 hours), but also elapsed time or a time interval between two events (which may be much
greater than 24 hours, or even negative).

MySQL recognizes TIME values in several formats, some of which can include a trailing fractional
seconds part in up to microseconds (6 digits) precision. See Section 9.1.3, “Date and Time Literals”.
For information about fractional seconds support in MySQL, see Section 11.3.6, “Fractional
Seconds in Time Values”. In particular, any fractional part in a value inserted into a TIME column
is stored rather than discarded. With the fractional part included, the range for TIME values is
'-838:59:59.000000' to '838:59:59.000000'.

Be careful about assigning abbreviated values to a TIME column. MySQL interprets abbreviated TIME
values with colons as time of the day. That is, '11:12' means '11:12:00', not '00:11:12'.
MySQL interprets abbreviated values without colons using the assumption that the two rightmost digits
represent seconds (that is, as elapsed time rather than as time of day). For example, you might think of
'1112' and 1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them
as '00:11:12' (11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'.

The only delimiter recognized between a time part and a fractional seconds part is the decimal point.

By default, values that lie outside the TIME range but are otherwise valid are clipped to the
closest endpoint of the range. For example, '-850:00:00' and '850:00:00' are converted to
'-838:59:59' and '838:59:59'. Invalid TIME values are converted to '00:00:00'. Note that
because '00:00:00' is itself a valid TIME value, there is no way to tell, from a value of '00:00:00'
stored in a table, whether the original value was specified as '00:00:00' or whether it was invalid.

For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur.
See Section 5.1.7, “Server SQL Modes”.

11.3.3 The YEAR Type

The YEAR type is a 1-byte type used to represent year values. It can be declared as YEAR or YEAR(4)
and has a display width of four characters.

Note

The YEAR(2) data type is deprecated and support for it is removed in MySQL
5.7.5. To convert YEAR(2) columns to YEAR(4), see Section 11.3.4, “YEAR(2)
Limitations and Migrating to YEAR(4)”.

MySQL displays YEAR values in YYYY format, with a range of 1901 to 2155, or 0000.

You can specify input YEAR values in a variety of formats:

• As a 4-digit number in the range 1901 to 2155.

YEAR(2) Limitations and Migrating to YEAR(4)

1310

• As a 4-digit string in the range '1901' to '2155'.

• As a 1- or 2-digit number in the range 1 to 99. MySQL converts values in the ranges 1 to 69 and 70
to 99 to YEAR values in the ranges 2001 to 2069 and 1970 to 1999.

• As a 1- or 2-digit string in the range '0' to '99'. MySQL converts values in the ranges '0' to '69'
and '70' to '99' to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.

• The result of inserting a numeric 0 has a display value of 0000 and an internal value of 0000. To
insert zero and have it be interpreted as 2000, specify it as a string '0' or '00'.

• As the result of a function that returns a value that is acceptable in a YEAR context, such as NOW().

MySQL converts invalid YEAR values to 0000.

See also Section 11.3.8, “Two-Digit Years in Dates”.

11.3.4 YEAR(2) Limitations and Migrating to YEAR(4)

This section describes problems that can occur when using YEAR(2) and provides information about
converting existing YEAR(2) columns to YEAR(4).

Although the internal range of values for YEAR(4) and the deprecated YEAR(2) type is the same
(1901 to 2155, and 0000), the display width for YEAR(2) makes that type inherently ambiguous
because displayed values indicate only the last two digits of the internal values and omit the century
digits. The result can be a loss of information under certain circumstances. For this reason, before
MySQL 5.7.5, avoid using YEAR(2) in your applications and use YEAR(4) wherever you need a YEAR
data type. As of MySQL 5.7.5, support for YEAR(2) is removed and existing YEAR(2) columns must
be converted to YEAR(4) to become usable again.

YEAR(2) Limitations

Issues with the YEAR(2) data type include ambiguity of displayed values, and possible loss of
information when values are dumped and reloaded or converted to strings.

• Displayed YEAR(2) values can be ambiguous. It is possible for up to three YEAR(2) values
that have different internal values to have the same displayed value, as the following example
demonstrates:

mysql> CREATE TABLE t (y2 YEAR(2), y4 YEAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t (y2) VALUES(1912),(2012),(2112);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> UPDATE t SET y4 = y2;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> SELECT * FROM t;
+------+------+
| y2 | y4 |
+------+------+
12	1912
12	2012
12	2112
+------+------+
3 rows in set (0.00 sec)

• If you use mysqldump to dump the table created in the preceding item, the dump file represents all
y2 values using the same 2-digit representation (12). If you reload the table from the dump file, all
resulting rows have internal value 2012 and display value 12, thus losing the distinctions among
them.

YEAR(2) Limitations and Migrating to YEAR(4)

1311

• Conversion of a YEAR(2) or YEAR(4) data value to string form uses the display width of the YEAR
type. Suppose that YEAR(2) and YEAR(4) columns both contain the value 1970. Assigning each
column to a string results in a value of '70' or '1970', respectively. That is, loss of information
occurs for conversion from YEAR(2) to string.

• Values outside the range from 1970 to 2069 are stored incorrectly when inserted into a YEAR(2)
column in a CSV table. For example, inserting 2111 results in a display value of 11 but an internal
value of 2011.

To avoid these problems, use YEAR(4) rather than YEAR(2). Suggestions regarding migration
strategies appear later in this section.

Reduced/Removed YEAR(2) Support in MySQL 5.7

Before MySQL 5.7.5, support for YEAR(2) is diminished. As of MySQL 5.7.5, support for YEAR(2) is
removed.

• YEAR(2) column definitions for new tables produce warnings or errors:

• Before MySQL 5.7.5, YEAR(2) column definitions for new tables are converted (with an
ER_INVALID_YEAR_COLUMN_LENGTH warning) to YEAR(4):

mysql> CREATE TABLE t1 (y YEAR(2));
Query OK, 0 rows affected, 1 warning (0.04 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1818
Message: YEAR(2) column type is deprecated. Creating YEAR(4) column instead.
1 row in set (0.00 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `y` year(4) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

• As of MySQL 5.7.5, YEAR(2) column definitions for new tables produce an
ER_INVALID_YEAR_COLUMN_LENGTH error:

mysql> CREATE TABLE t1 (y YEAR(2));
ERROR 1818 (HY000): Supports only YEAR or YEAR(4) column.

• YEAR(2) column in existing tables remain as YEAR(2):

• Before MySQL 5.7.5, YEAR(2) is processed in queries as in older versions of MySQL.

• As of MySQL 5.7.5, YEAR(2) columns in queries produce warnings or errors.

• Several programs or statements convert YEAR(2) to YEAR(4) automatically:

• ALTER TABLE statements that result in a table rebuild.

• REPAIR TABLE (which CHECK TABLE recommends you use if it finds that a table contains
YEAR(2) columns).

• mysql_upgrade (which uses REPAIR TABLE).

• Dumping with mysqldump and reloading the dump file. Unlike the conversions performed by the
preceding three items, a dump and reload has the potential to change values.

YEAR(2) Limitations and Migrating to YEAR(4)

1312

A MySQL upgrade usually involves at least one of the last two items. However, with respect to
YEAR(2), mysql_upgrade is preferable. You should avoid using mysqldump because, as noted,
that can change values.

Migrating from YEAR(2) to YEAR(4)

To convert YEAR(2) columns to YEAR(4), you can do so manually at any time without upgrading.
Alternatively, you can upgrade to a version of MySQL with reduced or removed support for YEAR(2)
(MySQL 5.6.6 or later), then have MySQL convert YEAR(2) columns automatically. In the latter case,
avoid upgrading by dumping and reloading your data because that can change data values. In addition,
if you use replication, there are upgrade considerations you must take into account.

To convert YEAR(2) columns to YEAR(4) manually, use ALTER TABLE or REPAIR TABLE. Suppose
that a table t1 has this definition:

CREATE TABLE t1 (ycol YEAR(2) NOT NULL DEFAULT '70');

Modify the column using ALTER TABLE as follows:

ALTER TABLE t1 FORCE;

The ALTER TABLE statement converts the table without changing YEAR(2) values. If the server is
a replication master, the ALTER TABLE statement replicates to slaves and makes the corresponding
table change on each one.

Another migration method is to perform a binary upgrade: Install MySQL without dumping and
reloading your data. Then run mysql_upgrade, which uses REPAIR TABLE to convert YEAR(2)
columns to YEAR(4) without changing data values. If the server is a replication master, the REPAIR
TABLE statements replicate to slaves and make the corresponding table changes on each one, unless
you invoke mysql_upgrade with the --skip-write-binlog option.

Upgrades to replication servers usually involve upgrading slaves to a newer version of MySQL, then
upgrading the master. For example, if a master and slave both run MySQL 5.5, a typical upgrade
sequence involves upgrading the slave to 5.6, then upgrading the master to 5.6. With regard to the
different treatment of YEAR(2) as of MySQL 5.6.6, that upgrade sequence results in a problem:
Suppose that the slave has been upgraded but not yet the master. Then creating a table containing
a YEAR(2) column on the master results in a table containing a YEAR(4) column on the slave.
Consequently, these operations will have a different result on the master and slave, if you use
statement-based replication:

• Inserting numeric 0. The resulting value has an internal value of 2000 on the master but 0000 on the
slave.

• Converting YEAR(2) to string. This operation uses the display value of YEAR(2) on the master but
YEAR(4) on the slave.

To avoid such problems, modify all YEAR(2) columns on the master to YEAR(4) before upgrading.
(Use ALTER TABLE, as described previously.) Then you can upgrade normally (slave first, then
master) without introducing any YEAR(2) to YEAR(4) differences between the master and slave.

One migration method should be avoided: Do not dump your data with mysqldump and reload the
dump file after upgrading. This has the potential to change YEAR(2) values, as described previously.

A migration from YEAR(2) to YEAR(4) should also involve examining application code for the
possibility of changed behavior under conditions such as these:

• Code that expects selecting a YEAR column to produce exactly two digits.

• Code that does not account for different handling for inserts of numeric 0: Inserting 0 into YEAR(2)
or YEAR(4) results in an internal value of 2000 or 0000, respectively.

Automatic Initialization and Updating for TIMESTAMP and DATETIME

1313

11.3.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME

TIMESTAMP and DATETIME columns can be automatically initializated and updated to the current date
and time (that is, the current timestamp).

For any TIMESTAMP or DATETIME column in a table, you can assign the current timestamp as the
default value, the auto-update value, or both:

• An auto-initialized column is set to the current timestamp for inserted rows that specify no value for
the column.

• An auto-updated column is automatically updated to the current timestamp when the value of
any other column in the row is changed from its current value. An auto-updated column remains
unchanged if all other columns are set to their current values. To prevent an auto-updated column
from updating when other columns change, explicitly set it to its current value. To update an auto-
updated column even when other columns do not change, explicitly set it to the value it should have
(for example, set it to CURRENT_TIMESTAMP).

In addition, you can initialize or update any TIMESTAMP column to the current date and time by
assigning it a NULL value, unless it has been defined with the NULL attribute to permit NULL values.

To specify automatic properties, use the DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP clauses in column definitions. The order of the clauses does not
matter. If both are present in a column definition, either can occur first. Any of the synonyms
for CURRENT_TIMESTAMP have the same meaning as CURRENT_TIMESTAMP. These are
CURRENT_TIMESTAMP(), NOW(), LOCALTIME, LOCALTIME(), LOCALTIMESTAMP, and
LOCALTIMESTAMP().

Use of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP is specific
to TIMESTAMP and DATETIME. The DEFAULT clause also can be used to specify a constant
(nonautomatic) default value; for example, DEFAULT 0 or DEFAULT '2000-01-01 00:00:00'.

Note

The following examples use DEFAULT 0, a default that can produce warnings
or errors depending on whether strict SQL mode or the NO_ZERO_DATE SQL
mode is enabled. Be aware that the TRADITIONAL SQL mode includes strict
mode and NO_ZERO_DATE. See Section 5.1.7, “Server SQL Modes”.

TIMESTAMP or DATETIME column definitions can specify the current timestamp for both the default
and auto-update values, for one but not the other, or for neither. Different columns can have different
combinations of automatic properties. The following rules describe the possibilities:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP, the column
has the current timestamp for its default value and is automatically updated to the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

• With a DEFAULT clause but no ON UPDATE CURRENT_TIMESTAMP clause, the column has the
given default value and is not automatically updated to the current timestamp.

The default depends on whether the DEFAULT clause specifies CURRENT_TIMESTAMP or a constant
value. With CURRENT_TIMESTAMP, the default is the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP
);

Automatic Initialization and Updating for TIMESTAMP and DATETIME

1314

With a constant, the default is the given value. In this case, the column has no automatic properties
at all.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0,
 dt DATETIME DEFAULT 0
);

• With an ON UPDATE CURRENT_TIMESTAMP clause and a constant DEFAULT clause, the column is
automatically updated to the current timestamp and has the given constant default value.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP
);

• With an ON UPDATE CURRENT_TIMESTAMP clause but no DEFAULT clause, the column is
automatically updated to the current timestamp but does not have the current timestamp for its
default value.

The default in this case is type dependent. TIMESTAMP has a default of 0 unless defined with the
NULL attribute, in which case the default is NULL.

CREATE TABLE t1 (
 ts1 TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, -- default 0
 ts2 TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP -- default NULL
);

DATETIME has a default of NULL unless defined with the NOT NULL attribute, in which case the
default is 0.

CREATE TABLE t1 (
 dt1 DATETIME ON UPDATE CURRENT_TIMESTAMP, -- default NULL
 dt2 DATETIME NOT NULL ON UPDATE CURRENT_TIMESTAMP -- default 0
);

TIMESTAMP and DATETIME columns have no automatic properties unless they are specified explicitly,
with this exception: By default, the first TIMESTAMP column has both DEFAULT CURRENT_TIMESTAMP
and ON UPDATE CURRENT_TIMESTAMP if neither is specified explicitly. To suppress automatic
properties for the first TIMESTAMP column, use one of these strategies:

• Enable the explicit_defaults_for_timestamp system variable. If this variable is enabled,
the DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses that specify
automatic initialization and updating are available, but are not assigned to any TIMESTAMP column
unless explicitly included in the column definition.

• Alternatively, if explicit_defaults_for_timestamp is disabled (the default), do either of the
following:

• Define the column with a DEFAULT clause that specifies a constant default value.

• Specify the NULL attribute. This also causes the column to permit NULL values, which means that
you cannot assign the current timestamp by setting the column to NULL. Assigning NULL sets the
column to NULL.

Consider these table definitions:

CREATE TABLE t1 (
 ts1 TIMESTAMP DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP

Automatic Initialization and Updating for TIMESTAMP and DATETIME

1315

 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t2 (
 ts1 TIMESTAMP NULL,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t3 (
 ts1 TIMESTAMP NULL DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);

The tables have these properties:

• In each table definition, the first TIMESTAMP column has no automatic initialization or updating.

• The tables differ in how the ts1 column handles NULL values. For t1, ts1 is NOT NULL and
assigning it a value of NULL sets it to the current timestamp. For t2 and t3, ts1 permits NULL and
assigning it a value of NULL sets it to NULL.

• t2 and t3 differ in the default value for ts1. For t2, ts1 is defined to permit NULL, so the default
is also NULL in the absence of an explicit DEFAULT clause. For t3, ts1 permits NULL but has an
explicit default of 0.

If a TIMESTAMP or DATETIME column definition includes an explicit fractional seconds precision value
anywhere, the same value must be used throughout the column definition. This is permitted:

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6)
);

This is not permitted:

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP(3)
);

TIMESTAMP Initialization and the NULL Attribute

By default, TIMESTAMP columns are NOT NULL, cannot contain NULL values, and assigning NULL
assigns the current timestamp. To permit a TIMESTAMP column to contain NULL, explicitly declare
it with the NULL attribute. In this case, the default value also becomes NULL unless overridden with
a DEFAULT clause that specifies a different default value. DEFAULT NULL can be used to explicitly
specify NULL as the default value. (For a TIMESTAMP column not declared with the NULL attribute,
DEFAULT NULL is invalid.) If a TIMESTAMP column permits NULL values, assigning NULL sets it to
NULL, not to the current timestamp.

The following table contains several TIMESTAMP columns that permit NULL values:

CREATE TABLE t
(
 ts1 TIMESTAMP NULL DEFAULT NULL,
 ts2 TIMESTAMP NULL DEFAULT 0,
 ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
);

A TIMESTAMP column that permits NULL values does not take on the current timestamp at insert time
except under one of the following conditions:

• Its default value is defined as CURRENT_TIMESTAMP and no value is specified for the column

• CURRENT_TIMESTAMP or any of its synonyms such as NOW() is explicitly inserted into the column

In other words, a TIMESTAMP column defined to permit NULL values auto-initializes only if its definition
includes DEFAULT CURRENT_TIMESTAMP:

Fractional Seconds in Time Values

1316

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

If the TIMESTAMP column permits NULL values but its definition does not include DEFAULT
CURRENT_TIMESTAMP, you must explicitly insert a value corresponding to the current date and time.
Suppose that tables t1 and t2 have these definitions:

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT NULL);

To set the TIMESTAMP column in either table to the current timestamp at insert time, explicitly assign it
that value. For example:

INSERT INTO t1 VALUES (NOW());
INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);

11.3.6 Fractional Seconds in Time Values

MySQL 5.7 has fractional seconds support for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision:

• To define a column that includes a fractional seconds part, use the syntax type_name(fsp), where
type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the fractional seconds precision. For
example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6));

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional
part. If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for
compatibility with previous MySQL versions.)

• Inserting a TIME, DATE, or TIMESTAMP value with a fractional seconds part into a column of the
same type but having fewer fractional digits results in rounding, as shown in this example:

mysql> CREATE TABLE fractest(c1 TIME(2), c2 DATETIME(2), c3 TIMESTAMP(2));
Query OK, 0 rows affected (0.33 sec)

mysql> INSERT INTO fractest VALUES
 > ('17:51:04.777', '2014-09-08 17:51:04.777', '2014-09-08 17:51:04.777');
Query OK, 1 row affected (0.03 sec)

mysql> SELECT * FROM fractest;
+-------------+------------------------+------------------------+
| c1 | c2 | c3 |
+-------------+------------------------+------------------------+
| 17:51:04.78 | 2014-09-08 17:51:04.78 | 2014-09-08 17:51:04.78 |
+-------------+------------------------+------------------------+
1 row in set (0.00 sec)

No warning or error is given when such rounding occurs. This behavior follows the SQL standard,
and is not affected by the server's sql_mode setting.

• Functions that take temporal arguments accept values with fractional seconds. Return values from
temporal functions include fractional seconds as appropriate. For example, NOW() with no argument
returns the current date and time with no fractional part, but takes an optional argument from 0 to 6
to specify that the return value includes a fractional seconds part of that many digits.

• Syntax for temporal literals produces temporal values: DATE 'str', TIME 'str', and TIMESTAMP
'str', and the ODBC-syntax equivalents. The resulting value includes a trailing fractional seconds
part if specified. Previously, the temporal type keyword was ignored and these constructs produced
the string value. See Standard SQL and ODBC Date and Time Literals

Conversion Between Date and Time Types

1317

11.3.7 Conversion Between Date and Time Types

To some extent, you can convert a value from one temporal type to another. However, there may be
some alteration of the value or loss of information. In all cases, conversion between temporal types
is subject to the range of valid values for the resulting type. For example, although DATE, DATETIME,
and TIMESTAMP values all can be specified using the same set of formats, the types do not all
have the same range of values. TIMESTAMP values cannot be earlier than 1970 UTC or later than
'2038-01-19 03:14:07' UTC. This means that a date such as '1968-01-01', while valid as a
DATE or DATETIME value, is not valid as a TIMESTAMP value and is converted to 0.

Conversion of DATE values:

• Conversion to a DATETIME or TIMESTAMP value adds a time part of '00:00:00' because the
DATE value contains no time information.

• Conversion to a TIME value is not useful; the result is '00:00:00'.

Conversion of DATETIME and TIMESTAMP values:

• Conversion to a DATE value takes fractional seconds into account and rounds the time part. For
example, '1999-12-31 23:59:59.499' becomes '1999-12-31', whereas '1999-12-31
23:59:59.500' becomes '2000-01-01'.

• Conversion to a TIME value discards the date part because the TIME type contains no date
information.

For conversion of TIME values to other temporal types, the value of CURRENT_DATE() is used for the
date part. The TIME is interpreted as elapsed time (not time of day) and added to the date. This means
that the date part of the result differs from the current date if the time value is outside the range from
'00:00:00' to '23:59:59'.

Suppose that the current date is '2012-01-01'. TIME values of '12:00:00', '24:00:00',
and '-12:00:00', when converted to DATETIME or TIMESTAMP values, result in '2012-01-01
12:00:00', '2012-01-02 00:00:00', and '2011-12-31 12:00:00', respectively.

Conversion of TIME to DATE is similar but discards the time part from the result: '2012-01-01',
'2012-01-02', and '2011-12-31', respectively.

Explicit conversion can be used to override implicit conversion. For example, in comparison of DATE
and DATETIME values, the DATE value is coerced to the DATETIME type by adding a time part of
'00:00:00'. To perform the comparison by ignoring the time part of the DATETIME value instead,
use the CAST() function in the following way:

date_col = CAST(datetime_col AS DATE)

Conversion of TIME and DATETIME values to numeric form (for example, by adding +0) depends
on whether the value contains a fractional seconds part. TIME(N) or DATETIME(N) is converted to
integer when N is 0 (or omitted) and to a DECIMAL value with N decimal digits when N is greater than 0:

mysql> SELECT CURTIME(), CURTIME()+0, CURTIME(3)+0;
+-----------+-------------+--------------+
| CURTIME() | CURTIME()+0 | CURTIME(3)+0 |
+-----------+-------------+--------------+
| 09:28:00 | 92800 | 92800.887 |
+-----------+-------------+--------------+
mysql> SELECT NOW(), NOW()+0, NOW(3)+0;
+---------------------+----------------+--------------------+
| NOW() | NOW()+0 | NOW(3)+0 |
+---------------------+----------------+--------------------+
| 2012-08-15 09:28:00 | 20120815092800 | 20120815092800.889 |

Two-Digit Years in Dates

1318

+---------------------+----------------+--------------------+

11.3.8 Two-Digit Years in Dates

Date values with two-digit years are ambiguous because the century is unknown. Such values must be
interpreted into four-digit form because MySQL stores years internally using four digits.

For DATETIME, DATE, and TIMESTAMP types, MySQL interprets dates specified with ambiguous year
values using these rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

For YEAR, the rules are the same, with this exception: A numeric 00 inserted into YEAR(4) results in
0000 rather than 2000. To specify zero for YEAR(4) and have it be interpreted as 2000, specify it as a
string '0' or '00'.

Remember that these rules are only heuristics that provide reasonable guesses as to what your data
values mean. If the rules used by MySQL do not produce the values you require, you must provide
unambiguous input containing four-digit year values.

ORDER BY properly sorts YEAR values that have two-digit years.

Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a
two-digit year does not work properly with these functions. The fix in this case is to convert the YEAR to
four-digit year format.

11.4 String Types

The string types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET. This
section describes how these types work and how to use them in your queries. For string type storage
requirements, see Section 11.8, “Data Type Storage Requirements”.

11.4.1 The CHAR and VARCHAR Types

The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. They also
differ in maximum length and in whether trailing spaces are retained.

The CHAR and VARCHAR types are declared with a length that indicates the maximum number of
characters you want to store. For example, CHAR(30) can hold up to 30 characters.

The length of a CHAR column is fixed to the length that you declare when you create the table. The
length can be any value from 0 to 255. When CHAR values are stored, they are right-padded with
spaces to the specified length. When CHAR values are retrieved, trailing spaces are removed unless
the PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

Values in VARCHAR columns are variable-length strings. The length can be specified as a value from
0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535
bytes, which is shared among all columns) and the character set used. See Section C.10.4, “Limits on
Table Column Count and Row Size”.

In contrast to CHAR, VARCHAR values are stored as a 1-byte or 2-byte length prefix plus data. The
length prefix indicates the number of bytes in the value. A column uses one length byte if values
require no more than 255 bytes, two length bytes if values may require more than 255 bytes.

If strict SQL mode is not enabled and you assign a value to a CHAR or VARCHAR column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion
of the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.

The CHAR and VARCHAR Types

1319

For VARCHAR columns, trailing spaces in excess of the column length are truncated prior to insertion
and a warning is generated, regardless of the SQL mode in use. For CHAR columns, truncation of
excess trailing spaces from inserted values is performed silently regardless of the SQL mode.

VARCHAR values are not padded when they are stored. Trailing spaces are retained when values are
stored and retrieved, in conformance with standard SQL.

The following table illustrates the differences between CHAR and VARCHAR by showing the result of
storing various string values into CHAR(4) and VARCHAR(4) columns (assuming that the column uses
a single-byte character set such as latin1).

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' ' ' 4 bytes '' 1 byte

'ab' 'ab ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

The values shown as stored in the last row of the table apply only when not using strict mode; if
MySQL is running in strict mode, values that exceed the column length are not stored, and an error
results.

If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the
columns are not always the same because trailing spaces are removed from CHAR columns upon
retrieval. The following example illustrates this difference:

mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO vc VALUES ('ab ', 'ab ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab) | (ab) |
+---------------------+---------------------+
1 row in set (0.06 sec)

Values in CHAR and VARCHAR columns are sorted and compared according to the character set
collation assigned to the column.

All MySQL collations are of type PADSPACE. This means that all CHAR, VARCHAR, and TEXT values
in MySQL are compared without regard to any trailing spaces. “Comparison” in this context does not
include the LIKE pattern-matching operator, for which trailing spaces are significant. For example:

mysql> CREATE TABLE names (myname CHAR(10));
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO names VALUES ('Monty');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT myname = 'Monty', myname = 'Monty ' FROM names;
+------------------+--------------------+
| myname = 'Monty' | myname = 'Monty ' |
+------------------+--------------------+
| 1 | 1 |
+------------------+--------------------+
1 row in set (0.00 sec)

mysql> SELECT myname LIKE 'Monty', myname LIKE 'Monty ' FROM names;
+---------------------+-----------------------+

The BINARY and VARBINARY Types

1320

| myname LIKE 'Monty' | myname LIKE 'Monty ' |
+---------------------+-----------------------+
| 1 | 0 |
+---------------------+-----------------------+
1 row in set (0.00 sec)

This is true for all MySQL versions, and is not affected by the server SQL mode.

Note

For more information about MySQL character sets and collations, see
Section 10.1, “Character Set Support”. For additional information about storage
requirements, see Section 11.8, “Data Type Storage Requirements”.

For those cases where trailing pad characters are stripped or comparisons ignore them, if a column
has an index that requires unique values, inserting into the column values that differ only in number
of trailing pad characters will result in a duplicate-key error. For example, if a table contains 'a', an
attempt to store 'a ' causes a duplicate-key error.

11.4.2 The BINARY and VARBINARY Types

The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they contain binary
strings rather than nonbinary strings. That is, they contain byte strings rather than character strings.
This means that they have no character set, and sorting and comparison are based on the numeric
values of the bytes in the values.

The permissible maximum length is the same for BINARY and VARBINARY as it is for CHAR and
VARCHAR, except that the length for BINARY and VARBINARY is a length in bytes rather than in
characters.

The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BINARY
data types. For the latter types, the BINARY attribute does not cause the column to be treated as a
binary string column. Instead, it causes the binary collation for the column character set to be used,
and the column itself contains nonbinary character strings rather than binary byte strings. For example,
CHAR(5) BINARY is treated as CHAR(5) CHARACTER SET latin1 COLLATE latin1_bin,
assuming that the default character set is latin1. This differs from BINARY(5), which stores 5-
bytes binary strings that have no character set or collation. For information about differences between
nonbinary string binary collations and binary strings, see Section 10.1.7.6, “The _bin and binary
Collations”.

If strict SQL mode is not enabled and you assign a value to a BINARY or VARBINARY column that
exceeds the column's maximum length, the value is truncated to fit and a warning is generated. For
cases of truncation, you can cause an error to occur (rather than a warning) and suppress insertion of
the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.

When BINARY values are stored, they are right-padded with the pad value to the specified length. The
pad value is 0x00 (the zero byte). Values are right-padded with 0x00 on insert, and no trailing bytes
are removed on select. All bytes are significant in comparisons, including ORDER BY and DISTINCT
operations. 0x00 bytes and spaces are different in comparisons, with 0x00 < space.

Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes 'a
\0\0' when inserted. Both inserted values remain unchanged when selected.

For VARBINARY, there is no padding on insert and no bytes are stripped on select. All bytes are
significant in comparisons, including ORDER BY and DISTINCT operations. 0x00 bytes and spaces
are different in comparisons, with 0x00 < space.

For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an
index that requires unique values, inserting into the column values that differ only in number of trailing
pad bytes will result in a duplicate-key error. For example, if a table contains 'a', an attempt to store
'a\0' causes a duplicate-key error.

The BLOB and TEXT Types

1321

You should consider the preceding padding and stripping characteristics carefully if you plan to use the
BINARY data type for storing binary data and you require that the value retrieved be exactly the same
as the value stored. The following example illustrates how 0x00-padding of BINARY values affects
column value comparisons:

mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)

If the value retrieved must be the same as the value specified for storage with no padding, it might be
preferable to use VARBINARY or one of the BLOB data types instead.

11.4.3 The BLOB and TEXT Types

A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. These differ only in the maximum length of the
values they can hold. The four TEXT types are TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. These
correspond to the four BLOB types and have the same maximum lengths and storage requirements.
See Section 11.8, “Data Type Storage Requirements”.

BLOB values are treated as binary strings (byte strings). They have no character set, and sorting and
comparison are based on the numeric values of the bytes in column values. TEXT values are treated as
nonbinary strings (character strings). They have a character set, and values are sorted and compared
based on the collation of the character set.

If strict SQL mode is not enabled and you assign a value to a BLOB or TEXT column that exceeds the
column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion
of the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.

Truncation of excess trailing spaces from values to be inserted into TEXT columns always generates a
warning, regardless of the SQL mode.

For TEXT and BLOB columns, there is no padding on insert and no bytes are stripped on select.

If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if
the index requires unique values, duplicate-key errors will occur for values that differ only in the number
of trailing spaces. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-
key error. This is not true for BLOB columns.

In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as
you like. Similarly, you can regard a TEXT column as a VARCHAR column. BLOB and TEXT differ from
VARBINARY and VARCHAR in the following ways:

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and
VARCHAR, a prefix length is optional. See Section 8.3.4, “Column Indexes”.

• BLOB and TEXT columns cannot have DEFAULT values.

If you use the BINARY attribute with a TEXT data type, the column is assigned the binary collation of
the column character set.

The ENUM Type

1322

LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as
LONGVARCHAR.

Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using
them:

• Only the first max_sort_length bytes of the column are used when sorting. The default value
of max_sort_length is 1024. You can make more bytes significant in sorting or grouping by
increasing the value of max_sort_length at server startup or runtime. Any client can change the
value of its session max_sort_length variable:

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t
 -> ORDER BY comment;

• Instances of BLOB or TEXT columns in the result of a query that is processed using a temporary table
causes the server to use a table on disk rather than in memory because the MEMORY storage engine
does not support those data types (see Section 8.4.4, “Internal Temporary Table Use in MySQL”).
Use of disk incurs a performance penalty, so include BLOB or TEXT columns in the query result only
if they are really needed. For example, avoid using SELECT *, which selects all columns.

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you
actually can transmit between the client and server is determined by the amount of available memory
and the size of the communications buffers. You can change the message buffer size by changing
the value of the max_allowed_packet variable, but you must do so for both the server and your
client program. For example, both mysql and mysqldump enable you to change the client-side
max_allowed_packet value. See Section 8.12.2, “Tuning Server Parameters”, Section 4.5.1,
“mysql — The MySQL Command-Line Tool”, and Section 4.5.4, “mysqldump — A Database
Backup Program”. You may also want to compare the packet sizes and the size of the data objects
you are storing with the storage requirements, see Section 11.8, “Data Type Storage Requirements”

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast
to all other data types, for which storage is allocated once per column when the table is opened.

In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns.
You may find MySQL's string handling functions useful for working with such data. See Section 12.5,
“String Functions”. For security and other reasons, it is usually preferable to do so using application
code rather than giving application users the FILE privilege. You can discuss specifics for various
languages and platforms in the MySQL Forums (http://forums.mysql.com/).

11.4.4 The ENUM Type

An ENUM is a string object with a value chosen from a list of permitted values that are enumerated
explicitly in the column specification at table creation time. It has these advantages:

• Compact data storage in situations where a column has a limited set of possible values. The strings
you specify as input values are automatically encoded as numbers. See Section 11.8, “Data Type
Storage Requirements” for the storage requirements for ENUM types.

• Readable queries and output. The numbers are translated back to the corresponding strings in query
results.

and these potential issues to consider:

• If you make enumeration values that look like numbers, it is easy to mix up the literal values with
their internal index numbers, as explained in Enumeration Limitations.

• Using ENUM columns in ORDER BY clauses requires extra care, as explained in Enumeration Sorting.

http://forums.mysql.com/

The ENUM Type

1323

Creating and Using ENUM Columns

An enumeration value must be a quoted string literal. For example, you can create a table with an
ENUM column like this:

CREATE TABLE shirts (
 name VARCHAR(40),
 size ENUM('x-small', 'small', 'medium', 'large', 'x-large')
);
INSERT INTO shirts (name, size) VALUES ('dress shirt','large'), ('t-shirt','medium'),
 ('polo shirt','small');
SELECT name, size FROM shirts WHERE size = 'medium';
+---------+--------+
| name | size |
+---------+--------+
| t-shirt | medium |
+---------+--------+
UPDATE shirts SET size = 'small' WHERE size = 'large';
COMMIT;

Inserting 1 million rows into this table with a value of 'medium' would require 1 million bytes of
storage, as opposed to 6 million bytes if you stored the actual string 'medium' in a VARCHAR column.

Index Values for Enumeration Literals

Each enumeration value has an index:

• The elements listed in the column specification are assigned index numbers, beginning with 1.

• The index value of the empty string error value is 0. This means that you can use the following
SELECT statement to find rows into which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

• The term “index” here refers to a position within the list of enumeration values. It has nothing to do
with table indexes.

For example, a column specified as ENUM('Mercury', 'Venus', 'Earth') can have any of the
values shown here. The index of each value is also shown.

Value Index

NULL NULL

'' 0

'Mercury' 1

'Venus' 2

'Earth' 3

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than
3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET
columns considered as a group. For more information on these limits, see Section C.10.5, “Limits
Imposed by .frm File Structure”.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example,
you can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

The ENUM Type

1324

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For ENUM values, the index number is used in the calculation.

Handling of Enumeration Literals

Trailing spaces are automatically deleted from ENUM member values in the table definition when a table
is created.

When retrieved, values stored into an ENUM column are displayed using the lettercase that was used
in the column definition. Note that ENUM columns can be assigned a character set and collation. For
binary or case-sensitive collations, lettercase is taken into account when assigning values to the
column.

If you store a number into an ENUM column, the number is treated as the index into the possible values,
and the value stored is the enumeration member with that index. (However, this does not work with
LOAD DATA, which treats all input as strings.) If the numeric value is quoted, it is still interpreted as
an index if there is no matching string in the list of enumeration values. For these reasons, it is not
advisable to define an ENUM column with enumeration values that look like numbers, because this can
easily become confusing. For example, the following column has enumeration members with string
values of '0', '1', and '2', but numeric index values of 1, 2, and 3:

numbers ENUM('0','1','2')

If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store
'2', it matches an enumeration value, so it is stored as '2'. If you store '3', it does not match any
enumeration value, so it is treated as an index and becomes '2' (the value with index 3).

mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+
| numbers |
+---------+
| 1 |
| 2 |
| 2 |
+---------+

To determine all possible values for an ENUM column, use SHOW COLUMNS FROM tbl_name LIKE
'enum_col' and parse the ENUM definition in the Type column of the output.

In the C API, ENUM values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see Section 23.8.5, “C API Data Structures”.

Empty or NULL Enumeration Values

An enumeration value can also be the empty string ('') or NULL under certain circumstances:

• If you insert an invalid value into an ENUM (that is, a string not present in the list of permitted values),
the empty string is inserted instead as a special error value. This string can be distinguished from
a “normal” empty string by the fact that this string has the numeric value 0. See Index Values for
Enumeration Literals for details about the numeric indexes for the enumeration values.

If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.

• If an ENUM column is declared to permit NULL, the NULL value is a valid value for the column, and the
default value is NULL. If an ENUM column is declared NOT NULL, its default value is the first element
of the list of permitted values.

Enumeration Sorting

ENUM values are sorted based on their index numbers, which depend on the order in which the
enumeration members were listed in the column specification. For example, 'b' sorts before 'a' for

The SET Type

1325

ENUM('b', 'a'). The empty string sorts before nonempty strings, and NULL values sort before all
other enumeration values.

To prevent unexpected results when using the ORDER BY clause on an ENUM column, use one of these
techniques:

• Specify the ENUM list in alphabetic order.

• Make sure that the column is sorted lexically rather than by index number by coding ORDER BY
CAST(col AS CHAR) or ORDER BY CONCAT(col).

Enumeration Limitations

An enumeration value cannot be an expression, even one that evaluates to a string value.

For example, this CREATE TABLE statement does not work because the CONCAT function cannot be
used to construct an enumeration value:

CREATE TABLE sizes (
 size ENUM('small', CONCAT('med','ium'), 'large')
);

You also cannot employ a user variable as an enumeration value. This pair of statements do not work:

SET @mysize = 'medium';

CREATE TABLE sizes (
 size ENUM('small', @mysize, 'large')
);

We strongly recommend that you do not use numbers as enumeration values, because it does not
save on storage over the appropriate TINYINT or SMALLINT type, and it is easy to mix up the strings
and the underlying number values (which might not be the same) if you quote the ENUM values
incorrectly. If you do use a number as an enumeration value, always enclose it in quotation marks. If
the quotation marks are omitted, the number is regarded as an index. See Handling of Enumeration
Literals to see how even a quoted number could be mistakenly used as a numeric index value.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

11.4.5 The SET Type

A SET is a string object that can have zero or more values, each of which must be chosen from a list
of permitted values specified when the table is created. SET column values that consist of multiple set
members are specified with members separated by commas (“,”). A consequence of this is that SET
member values should not themselves contain commas.

For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:

''
'one'
'two'
'one,two'

A SET column can have a maximum of 64 distinct members. A table can have no more than 255
unique element list definitions among its ENUM and SET columns considered as a group. For more
information on this limit, see Section C.10.5, “Limits Imposed by .frm File Structure”.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

Trailing spaces are automatically deleted from SET member values in the table definition when a table
is created.

The SET Type

1326

When retrieved, values stored in a SET column are displayed using the lettercase that was used in the
column definition. Note that SET columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to
the first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits set
corresponding to the set members that make up the column value. For example, you can retrieve
numeric values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of the number
determine the set members in the column value. For a column specified as SET('a','b','c','d'),
the members have the following decimal and binary values.

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value
members 'a' and 'd' are selected and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are
listed in when you insert the value. It also does not matter how many times a given element is listed in
the value. When the value is retrieved later, each element in the value appears once, with elements
listed according to the order in which they were specified at table creation time. For example, suppose
that a column is specified as SET('a','b','c','d'):

mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));

If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':

mysql> INSERT INTO myset (col) VALUES
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0

Then all these values appear as 'a,d' when retrieved:

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
5 rows in set (0.04 sec)

If you set a SET column to an unsupported value, the value is ignored and a warning is issued:

mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)

Extensions for Spatial Data

1327

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+--+
1 row in set (0.04 sec)

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
6 rows in set (0.01 sec)

If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET values, the cast operation causes the numeric value to be used.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is similar,
but not the same: It finds rows where set_col contains value anywhere, even as a substring of
another set member.

The following statements also are permitted:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

The first of these statements looks for values containing the first set member. The second looks for an
exact match. Be careful with comparisons of the second type. Comparing set values to 'val1,val2'
returns different results than comparing values to 'val2,val1'. You should specify the values in the
same order they are listed in the column definition.

To determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name LIKE
set_col and parse the SET definition in the Type column of the output.

In the C API, SET values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see Section 23.8.5, “C API Data Structures”.

11.5 Extensions for Spatial Data

The Open Geospatial Consortium (OGC) is is an international consortium of more than 250 companies,
agencies, and universities participating in the development of publicly available conceptual solutions
that can be useful with all kinds of applications that manage spatial data.

The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 2: SQL option, a document that proposes several conceptual

MySQL GIS Conformance and Compatibility

1328

ways for extending an SQL RDBMS to support spatial data. This specification is available from the
OGC Web site at http://www.opengeospatial.org/standards/sfs.

Following the OGC specification, MySQL implements spatial extensions as a subset of the SQL with
Geometry Types environment. This term refers to an SQL environment that has been extended
with a set of geometry types. A geometry-valued SQL column is implemented as a column that has a
geometry type. The specification describes a set of SQL geometry types, as well as functions on those
types to create and analyze geometry values.

MySQL spatial extensions enable the generation, storage, and analysis of geographic features:

• Data types for representing spatial values

• Functions for manipulating spatial values

• Spatial indexing for improved access times to spatial columns

The data types and functions are available for MyISAM, InnoDB, and ARCHIVE tables. For indexing
spatial columns, MyISAM and InnoDB support both SPATIAL and non-SPATIAL indexes. The other
storage engines support non-SPATIAL indexes, as described in Section 13.1.11, “CREATE INDEX
Syntax”.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.

• A space. For example, town district, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

Some documents use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant
measurement of the earth. Another meaning comes from cartography, referring to the geometric
features that cartographers use to map the world.

The discussion here considers these terms synonymous: geographic feature, geospatial feature,
feature, or geometry. The term most commonly used is geometry, defined as a point or an aggregate
of points representing anything in the world that has a location.

The following material covers these topics:

• The spatial data types implemented in MySQL model

• The basis of the spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

For information about functions that operate on spatial data, see Section 12.15, “Spatial Analysis
Functions”.

MySQL GIS Conformance and Compatibility

MySQL does not implement the following GIS features:

• Additional Metadata Views

http://www.opengeospatial.org/standards/sfs

Additional Resources

1329

OpenGIS specifications propose several additional metadata views. For example, a system view
named GEOMETRY_COLUMNS contains a description of geometry columns, one row for each
geometry column in the database.

• The OpenGIS function Length() on LineString and MultiLineString should be called in
MySQL as ST_Length()

The problem is that there is an existing SQL function Length() that calculates the length of string
values, and sometimes it is not possible to distinguish whether the function is called in a textual or
spatial context.

Additional Resources

• The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 2: SQL option, a document that proposes several
conceptual ways for extending an SQL RDBMS to support spatial data. The Open Geospatial
Consortium (OGC) maintains a Web site at http://www.opengeospatial.org/. The specification is
available there at http://www.opengeospatial.org/standards/sfs. It contains additional information
relevant to the material here.

• If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss
them in the GIS forum: http://forums.mysql.com/list.php?23.

11.5.1 Spatial Data Types

MySQL has data types that correspond to OpenGIS classes. Some of these types hold single geometry
values:

• GEOMETRY

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINESTRING,
and POLYGON) restrict their values to a particular geometry type.

The other data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types
(MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, and GEOMETRYCOLLECTION) restrict collection
members to those having a particular geometry type.

MySQL spatial data types have their basis in the OpenGIS geometry model, described in
Section 11.5.2, “The OpenGIS Geometry Model”. For examples showing how to use spatial data types
in MySQL, see Section 11.5.3, “Using Spatial Data”.

11.5.2 The OpenGIS Geometry Model

The set of geometry types proposed by OGC's SQL with Geometry Types environment is based
on the OpenGIS Geometry Model. In this model, each geometric object has the following general
properties:

http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/sfs
http://forums.mysql.com/list.php?23

The OpenGIS Geometry Model

1330

• It is associated with a Spatial Reference System, which describes the coordinate space in which the
object is defined.

• It belongs to some geometry class.

11.5.2.1 The Geometry Class Hierarchy

The geometry classes define a hierarchy as follows:

• Geometry (noninstantiable)

• Point (instantiable)

• Curve (noninstantiable)

• LineString (instantiable)

• Line

• LinearRing

• Surface (noninstantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (noninstantiable)

• MultiLineString (instantiable)

• MultiSurface (noninstantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in noninstantiable classes. It is possible to create objects in
instantiable classes. All classes have properties, and instantiable classes may also have assertions
(rules that define valid class instances).

Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry
are restricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional
coordinate space. All instantiable geometry classes are defined so that valid instances of a geometry
class are topologically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses
Line and LinearRing.

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named
MultiPoint, MultiLineString, and MultiPolygon for modeling geometries corresponding
to collections of Points, LineStrings, and Polygons, respectively. MultiCurve and
MultiSurface are introduced as abstract superclasses that generalize the collection interfaces to
handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as noninstantiable
classes. They define a common set of methods for their subclasses and are included for extensibility.

The OpenGIS Geometry Model

1331

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and
MultiPolygon are instantiable classes.

11.5.2.2 Geometry Class

Geometry is the root class of the hierarchy. It is a noninstantiable class but has a number of
properties, described in the following list, that are common to all geometry values created from any of
the Geometry subclasses. Particular subclasses have their own specific properties, described later.

Geometry Properties

A geometry value has the following properties:

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

• Its SRID, or Spatial Reference Identifier. This value identifies the geometry's associated Spatial
Reference System that describes the coordinate space in which the geometry object is defined.

In MySQL, the SRID value is an integer associated with the geometry value. All calculations are
done assuming Euclidean (planar) geometry. The maximum usable SRID value is 232−1. If a larger
value is given, only the lower 32 bits are used.

• Its coordinates in its Spatial Reference System, represented as double-precision (8-byte) numbers.
All nonempty geometries include at least one pair of (X,Y) coordinates. Empty geometries contain no
coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance
between two objects may differ even when objects have the same coordinates, because the distance
on the planar coordinate system and the distance on the geodetic system (coordinates on the
Earth's surface) are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not
occupied by the geometry. The interior is the space occupied by the geometry. The boundary is the
interface between the geometry's interior and exterior.

• Its MBR (minimum bounding rectangle), or envelope. This is the bounding geometry, formed by the
minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or nonsimple. Geometry values of types (LineString, MultiPoint,
MultiLineString) are either simple or nonsimple. Each type determines its own assertions for
being simple or nonsimple.

• Whether the value is closed or not closed. Geometry values of types (LineString,
MultiString) are either closed or not closed. Each type determines its own assertions for being
closed or not closed.

• Whether the value is empty or nonempty A geometry is empty if it does not have any points.
Exterior, interior, and boundary of an empty geometry are not defined (that is, they are represented
by a NULL value). An empty geometry is defined to be always simple and has an area of 0.

• Its dimension. A geometry can have a dimension of −1, 0, 1, or 2:

• −1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with nonzero length and zero area.

The OpenGIS Geometry Model

1332

• 2 for a geometry with nonzero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon
objects have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and
MultiPolygon objects are the same as the dimensions of the elements they consist of.

11.5.2.3 Point Class

A Point is a geometry that represents a single location in coordinate space.

Point Examples

• Imagine a large-scale map of the world with many cities. A Point object could represent each city.

• On a city map, a Point object could represent a bus stop.

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

11.5.2.4 Curve Class

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular
subclasses of Curve define the type of interpolation between points. Curve is a noninstantiable class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

• A Curve is simple if it does not pass through the same point twice, with the exception that a curve
can still be simple if the start and end points are the same.

• A Curve is closed if its start point is equal to its endpoint.

• The boundary of a closed Curve is empty.

• The boundary of a nonclosed Curve consists of its two endpoints.

• A Curve that is simple and closed is a LinearRing.

11.5.2.5 LineString Class

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

The OpenGIS Geometry Model

1333

• A LineString is a LinearRing if it is both closed and simple.

11.5.2.6 Surface Class

A Surface is a two-dimensional geometry. It is a noninstantiable class. Its only instantiable subclass is
Polygon.

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single “patch”
that is associated with a single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and
interior boundaries.

11.5.2.7 Polygon Class

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior
boundary and zero or more interior boundaries, where each interior boundary defines a hole in the
Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString objects
that are both simple and closed) that make up its exterior and interior boundaries.

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a
Point, but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole
defines a connected component of the exterior.

The preceding assertions make a Polygon a simple geometry.

11.5.2.8 GeometryCollection Class

A GeometryCollection is a geometry that is a collection of one or more geometries of any class.

All the elements in a GeometryCollection must be in the same Spatial Reference System
(that is, in the same coordinate system). There are no other constraints on the elements of a
GeometryCollection, although the subclasses of GeometryCollection described in the
following sections may restrict membership. Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

• Constraints on the degree of spatial overlap between elements

11.5.2.9 MultiPoint Class

A MultiPoint is a geometry collection composed of Point elements. The points are not connected
or ordered in any way.

The OpenGIS Geometry Model

1334

MultiPoint Examples

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate values).

• The boundary of a MultiPoint is the empty set.

11.5.2.10 MultiCurve Class

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a
noninstantiable class.

MultiCurve Properties

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections between
any two elements occur at points that are on the boundaries of both elements.

• A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the “odd-
even rule”): A point is in the boundary of a MultiCurve if it is in the boundaries of an odd number of
Curve elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

11.5.2.11 MultiLineString Class

A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

11.5.2.12 MultiSurface Class

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a
noninstantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• Surfaces within a MultiSurface have no interiors that intersect.

• Surfaces within a MultiSurface have boundaries that intersect at most at a finite number of points.

11.5.2.13 MultiPolygon Class

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions

Using Spatial Data

1335

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the
previous assertion), or that touch at an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular,
closed point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The
number of connected components of the interior of a MultiPolygon is equal to the number of
Polygon values in the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the
boundaries of its Polygon elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon
element.

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.

11.5.3 Using Spatial Data

This section describes how to create tables that include spatial data type columns, and how to
manipulate spatial information.

11.5.3.1 Supported Spatial Data Formats

Two standard spatial data formats are used to represent geometry objects in queries:

• Well-Known Text (WKT) format

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB format.

There are functions available to convert between different data formats; see Section 12.15.6,
“Geometry Format Conversion Functions”.

Well-Known Text (WKT) Format

The Well-Known Text (WKT) representation of geometry values is designed for exchanging geometry
data in ASCII form. The OpenGIS specification provides a Backus-Naur grammar that specifies the
formal production rules for writing WKT values (see Section 11.5, “Extensions for Spatial Data”).

Examples of WKT representations of geometry objects:

• A Point:

POINT(15 20)

The point coordinates are specified with no separating comma. This differs from the syntax for
the SQL Point() function, which requires a comma between the coordinates. Take care to use
the syntax appropriate to the context of a given spatial operation. For example, the following
statements both extract the X-coordinate from a Point object. The first produces the object directly
using the Point() function. The second uses a WKT representation converted to a Point with
GeomFromText().

Using Spatial Data

1336

mysql> SELECT ST_X(Point(15, 20));
+---------------------+
| ST_X(POINT(15, 20)) |
+---------------------+
| 15 |
+---------------------+

mysql> SELECT ST_X(ST_GeomFromText('POINT(15 20)'));
+---------------------------------------+
| ST_X(ST_GeomFromText('POINT(15 20)')) |
+---------------------------------------+
| 15 |
+---------------------------------------+

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

The point coordinate pairs are separated by commas.

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

As of MySQL 5.7.9, spatial functions such as ST_MPointFromText() and ST_GeomFromText()
that accept WKT-format representations of MultiPoint values permit individual points within
values to be surrounded by parentheses. For example, both of the following function calls are valid,
whereas before MySQL 5.7.9 the second one produces an error:

ST_MPointFromText('MULTIPOINT (1 1, 2 2, 3 3)')
ST_MPointFromText('MULTIPOINT ((1 1), (2 2), (3 3))')

As of MySQL 5.7.9, output for MultiPoint values includes parentheses around each point. For
example:

mysql> SET @mp = 'MULTIPOINT(1 1, 2 2, 3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@mp));
+---------------------------------+
| ST_AsText(ST_GeomFromText(@mp)) |
+---------------------------------+
| MULTIPOINT((1 1),(2 2),(3 3)) |
+---------------------------------+

Before MySQL 5.7.9, output for the same value does not include parentheses around each point:

mysql> SET @mp = 'MULTIPOINT(1 1, 2 2, 3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@mp));
+---------------------------------+
| ST_AsText(ST_GeomFromText(@mp)) |
+---------------------------------+
| MULTIPOINT(1 1,2 2,3 3) |
+---------------------------------+

• A MultiLineString with two LineString values:

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:

Using Spatial Data

1337

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

Well-Known Binary (WKB) Format

The Well-Known Binary (WKB) representation of geometric values is used for exchanging geometry
data as binary streams represented by BLOB values containing geometric WKB information. This
format is defined by the OpenGIS specification (see Section 11.5, “Extensions for Spatial Data”). It is
also defined in the ISO SQL/MM Part 3: Spatial standard.

WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision numbers
(IEEE 754 format). A byte is eight bits.

For example, a WKB value that corresponds to POINT(1 1) consists of this sequence of 21 bytes,
each represented by two hex digits:

0101000000000000000000F03F000000000000F03F

The sequence consists of these components:

Byte order: 01
WKB type: 01000000
X coordinate: 000000000000F03F
Y coordinate: 000000000000F03F

Component representation is as follows:

• The byte order is either 1 or 0 to indicate little-endian or big-endian storage. The little-endian and
big-endian byte orders are also known as Network Data Representation (NDR) and External Data
Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. Values from 1 through 7 indicate
Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values have more complex data structures, as detailed in the
OpenGIS specification.

11.5.3.2 Creating Spatial Columns

MySQL provides a standard way of creating spatial columns for geometry types, for example, with
CREATE TABLE or ALTER TABLE. Spatial columns are supported for MyISAM, InnoDB, NDB, and
ARCHIVE tables. See also the notes about spatial indexes under Section 11.5.3.6, “Creating Spatial
Indexes”.

• Use the CREATE TABLE statement to create a table with a spatial column:

CREATE TABLE geom (g GEOMETRY);

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

ALTER TABLE geom ADD pt POINT;

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Using Spatial Data

1338

ALTER TABLE geom DROP pt;

11.5.3.3 Populating Spatial Columns

After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format
from either Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples
demonstrate how to insert geometry values into a table by converting WKT values to internal geometry
format:

• Perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (ST_GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

• Perform the conversion prior to the INSERT:

SET @g = ST_GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

The preceding examples use ST_GeomFromText() to create geometry values. You can also use
type-specific functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (ST_PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (ST_LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (ST_PolygonFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (ST_GeomCollFromText(@g));

A client application program that wants to use WKB representations of geometry values is responsible
for sending correctly formed WKB in queries to the server. There are several ways to satisfy this
requirement. For example:

• Inserting a POINT(1 1) value with hex literal syntax:

mysql> INSERT INTO geom VALUES
 -> (ST_GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argument
of BLOB type:

Using Spatial Data

1339

INSERT INTO geom VALUES (ST_GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

• In a C program, you can escape a binary value using mysql_real_escape_string()
and include the result in a query string that is sent to the server. See Section 23.8.7.55,
“mysql_real_escape_string()”.

11.5.3.4 Fetching Spatial Data

Geometry values stored in a table can be fetched in internal format. You can also convert them to WKT
or WKB format.

• Fetching spatial data in internal format:

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

• Fetching spatial data in WKT format:

The ST_AsText() function converts a geometry from internal format to a WKT string.

SELECT ST_AsText(g) FROM geom;

• Fetching spatial data in WKB format:

The ST_AsBinary() function converts a geometry from internal format to a BLOB containing the
WKB value.

SELECT ST_AsBinary(g) FROM geom;

11.5.3.5 Optimizing Spatial Analysis

For MyISAM and (as of MySQL 5.7.5) InnoDB tables, search operations in columns containing spatial
data can be optimized using SPATIAL indexes. The most typical operations are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting for SPATIAL indexes on spatial columns. A SPATIAL
index is built using the minimum bounding rectangle (MBR) of a geometry. For most geometries, the
MBR is a minimum rectangle that surrounds the geometries. For a horizontal or a vertical linestring, the
MBR is a rectangle degenerated into the linestring. For a point, the MBR is a rectangle degenerated
into the point.

It is also possible to create normal indexes on spatial columns. In a non-SPATIAL index, you must
declare a prefix for any spatial column except for POINT columns.

MyISAM and InnoDB support both SPATIAL and non-SPATIAL indexes. Other storage engines
support non-SPATIAL indexes, as described in Section 13.1.11, “CREATE INDEX Syntax”.

11.5.3.6 Creating Spatial Indexes

For MyISAM and (as of MySQL 5.7.5) InnoDB tables, MySQL can create spatial indexes using syntax
similar to that for creating regular indexes, but using the SPATIAL keyword. Columns in spatial indexes
must be declared NOT NULL. The following examples demonstrate how to create spatial indexes:

Using Spatial Data

1340

• With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g)) ENGINE=MyISAM;

• With ALTER TABLE:

ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

CREATE SPATIAL INDEX sp_index ON geom (g);

SPATIAL INDEX creates an R-tree index. For storage engines that support nonspatial indexing of
spatial columns, the engine creates a B-tree index. A B-tree index on spatial values is useful for exact-
value lookups, but not for range scans.

For more information on indexing spatial columns, see Section 13.1.11, “CREATE INDEX Syntax”.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

• With ALTER TABLE:

ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

DROP INDEX sp_index ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the
column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing object
ID values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g) ENGINE=MyISAM;
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

11.5.3.7 Using Spatial Indexes

The optimizer investigates whether available spatial indexes can be involved in the search for queries
that use a function such as MBRContains() or MBRWithin() in the WHERE clause. The following
query finds all objects that are in the given rectangle:

Using Spatial Data

1341

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,ST_AsText(g) FROM geom WHERE
 -> MBRContains(ST_GeomFromText(@poly),g);
+-----+---+
| fid | ST_AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
+-----+---+
20 rows in set (0.00 sec)

Use EXPLAIN to check the way this query is executed:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,ST_AsText(g) FROM geom WHERE
 -> MBRContains(ST_GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: range
possible_keys: g
 key: g
 key_len: 32
 ref: NULL
 rows: 50
 Extra: Using where
1 row in set (0.00 sec)

Check what would happen without a spatial index:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,ST_AsText(g) FROM g IGNORE INDEX (g) WHERE
 -> MBRContains(ST_GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1

The JSON Data Type

1342

 select_type: SIMPLE
 table: geom
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 32376
 Extra: Using where
1 row in set (0.00 sec)

Executing the SELECT statement without the spatial index yields the same result but causes the
execution time to rise from 0.00 seconds to 0.46 seconds:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,ST_AsText(g) FROM geom IGNORE INDEX (g) WHERE
 -> MBRContains(ST_GeomFromText(@poly),g);
+-----+---+
| fid | ST_AsText(g) |
+-----+---+
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
+-----+---+
20 rows in set (0.46 sec)

11.6 The JSON Data Type
As of MySQL 5.7.8, MySQL supports a native JSON data type that enables efficient access to data in
JSON (JavaScript Object Notation) documents. The JSON data type provides these advantages over
storing JSON-format strings in a string column:

• Automatic validation of JSON documents stored in JSON columns. Invalid documents produce an
error.

• Optimized storage format. JSON documents stored in JSON columns are converted to an internal
format that permits quick read access to document elements. When the server later must read a
JSON value stored in this binary format, the value need not be parsed from a text representation.
The binary format is structured to enable the server to look up subobjects or nested values directly
by key or array index without reading all values before or after them in the document.

Note

This discussion uses “JSON” in monotype to indicate specifically the JSON data
type and “JSON” in regular font to indicate JSON data in general.

Creating JSON Values

1343

The size of JSON documents stored in JSON columns is limited to the value of the
max_allowed_packet system variable. (While the server manipulates a JSON value internally in
memory, it can be larger; the limit applies when the server stores it.)

JSON columns cannot have a default value.

JSON columns cannot be indexed. You can work around this restriction by creating an index on a
generated column that extracts a scalar value from the JSON column. See Secondary Indexes and
Virtual Generated Columns, for a detailed example.

The following discussion covers these topics:

• Creating JSON Values

• Normalization, Merging, and Autowrapping of JSON Values

• Searching and Modifying JSON Values

• Comparison and Ordering of JSON Values

• Aggregation of JSON Values

Along with the JSON data type, a set of SQL functions is available to enable operations on JSON
values, such as creation, manipulation, and searching. The follow discussion shows examples of these
operations. For details about individual functions, see Section 12.16, “JSON Functions”.

A set of spatial functions for operating on GeoJSON values is also available. See Section 12.15.11,
“Spatial GeoJSON Functions”.

Creating JSON Values

A JSON array contains a list of values separated by commas and enclosed within [and] characters:

["abc", 10, null, true, false]

A JSON object contains a set of key/value pairs separated by commas and enclosed within { and }
characters:

{"k1": "value", "k2": 10}

As the examples illustrate, JSON arrays and objects can contain scalar values that are strings or
numbers, the JSON null literal, or the JSON boolean true or false literals. Keys in JSON objects must
be strings. Temporal (date, time, or datetime) scalar values are also permitted:

["12:18:29.000000", "2015-07-29", "2015-07-29 12:18:29.000000"]

Nesting is permitted within JSON array elements and JSON object key values:

[99, {"id": "HK500", "cost": 75.99}, ["hot", "cold"]]
{"k1": "value", "k2": [10, 20]}

You can also obtain JSON values from a number of functions supplied by MySQL for this purpose (see
Section 12.16.2, “Functions That Create JSON Values”) as well as by casting values of other types to
the JSON type using CAST(value AS JSON) (see Converting between JSON and non-JSON values).
The next several paragraphs describe how MySQL handles JSON values provided as input.

In MySQL, JSON values are written as strings. MySQL parses any string used in a context that
requires a JSON value, and produces an error if it is not valid as JSON. These contexts include
inserting a value into a column that has the JSON data type and passing an argument to a function that
expects a JSON value, as the following examples demonstrate:

Creating JSON Values

1344

• Attempting to insert a value into a JSON column succeeds if the value is a valid JSON value, but fails
if it is not:

mysql> CREATE TABLE t1 (jdoc JSON);
Query OK, 0 rows affected (0.20 sec)

mysql> INSERT INTO t1 VALUES('{"key1": "value1", "key2": "value2"}');
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO t1 VALUES('[1, 2,');
ERROR 3140 (22032) at line 2: Invalid JSON text: "Invalid value." at position 6 in value (or column) '[1, 2,'.

Positions for “at position N” in such error messages are 0-based, but should be considered rough
indications of where the problem in a value actually occurs.

• The JSON_TYPE() function expects a JSON argument and attempts to parse it into a JSON value. It
returns the value's JSON type if it is valid and produces an error otherwise:

mysql> SELECT JSON_TYPE('["a", "b", 1]');
+----------------------------+
| JSON_TYPE('["a", "b", 1]') |
+----------------------------+
| ARRAY |
+----------------------------+

mysql> SELECT JSON_TYPE('"hello"');
+----------------------+
| JSON_TYPE('"hello"') |
+----------------------+
| STRING |
+----------------------+

mysql> SELECT JSON_TYPE('hello');
ERROR 3146 (22032): Invalid data type for JSON data in argument 1
to function json_type; a JSON string or JSON type is required.

MySQL handles strings used in JSON context using the utf8mb4 character set and utf8mb4_bin
collation. Strings in other character set are converted to utf8mb4 as necessary. (For strings in the
ascii or utf8 character sets, no conversion is needed because ascii and utf8 are subsets of
utf8mb4.)

As an alternative to writing JSON values using literal strings, functions exist for composing JSON
values from component elements. JSON_ARRAY() takes a (possibly empty) list of values and returns a
JSON array containing those values:

mysql> SELECT JSON_ARRAY('a', 1, NOW());
+--+
| JSON_ARRAY('a', 1, NOW()) |
+--+
| ["a", 1, "2015-07-27 09:43:47.000000"] |
+--+

JSON_OBJECT() takes a (possibly empty) list of key/value pairs and returns a JSON object containing
those pairs:

mysql> SELECT JSON_OBJECT('key1', 1, 'key2', 'abc');
+---------------------------------------+
| JSON_OBJECT('key1', 1, 'key2', 'abc') |
+---------------------------------------+
| {"key1": 1, "key2": "abc"} |
+---------------------------------------+

JSON_MERGE() takes two or more JSON documents and returns the combined result:

Creating JSON Values

1345

mysql> SELECT JSON_MERGE('["a", 1]', '{"key": "value"}');
+--+
| JSON_MERGE('["a", 1]', '{"key": "value"}') |
+--+
| ["a", 1, {"key": "value"}] |
+--+

For information about the merging rules, see Normalization, Merging, and Autowrapping of JSON
Values.

JSON values can be assigned to user-defined variables:

mysql> SET @j = JSON_OBJECT('key', 'value');
mysql> SELECT @j;
+------------------+
| @j |
+------------------+
| {"key": "value"} |
+------------------+

However, user-defined variables cannot be of JSON data type, so although @j in the preceding
example looks like a JSON value and has the same character set and collation as a JSON value, it
does not have the JSON data type. Instead, the result from JSON_OBJECT() is converted to a string
when assigned to the variable.

Strings produced by converting JSON values have a character set of utf8mb4 and a collation of
utf8mb4_bin:

mysql> SELECT CHARSET(@j), COLLATION(@j);
+-------------+---------------+
| CHARSET(@j) | COLLATION(@j) |
+-------------+---------------+
| utf8mb4 | utf8mb4_bin |
+-------------+---------------+

Because utf8mb4_bin is a binary collation, comparison of JSON values is case sensitive.

mysql> SELECT JSON_ARRAY('x') = JSON_ARRAY('X');
+-----------------------------------+
| JSON_ARRAY('x') = JSON_ARRAY('X') |
+-----------------------------------+
| 0 |
+-----------------------------------+

Case sensitivity also applies to the JSON null, true, and false literals, which always must be
written in lowercase:

mysql> SELECT JSON_VALID('null'), JSON_VALID('Null'), JSON_VALID('NULL');
+--------------------+--------------------+--------------------+
| JSON_VALID('null') | JSON_VALID('Null') | JSON_VALID('NULL') |
+--------------------+--------------------+--------------------+
| 1 | 0 | 0 |
+--------------------+--------------------+--------------------+

mysql> SELECT CAST('null' AS JSON);
+----------------------+
| CAST('null' AS JSON) |
+----------------------+
| null |
+----------------------+
1 row in set (0.00 sec)

mysql> SELECT CAST('NULL' AS JSON);
ERROR 3141 (22032): Invalid JSON text in argument 1 to function cast_as_json:
"Invalid value." at position 0 in 'NULL'.

Normalization, Merging, and Autowrapping of JSON Values

1346

Case sensitivity of the JSON literals differs from that of the SQL NULL, TRUE, and FALSE literals, which
can be written in any lettercase:

mysql> SELECT ISNULL(null), ISNULL(Null), ISNULL(NULL);
+--------------+--------------+--------------+
| ISNULL(null) | ISNULL(Null) | ISNULL(NULL) |
+--------------+--------------+--------------+
| 1 | 1 | 1 |
+--------------+--------------+--------------+

Normalization, Merging, and Autowrapping of JSON Values

When a string is parsed and found to be a valid JSON document, it is also normalized: Members
with keys that duplicate a key found earlier in the document are discarded (even if the values differ).
The object value produced by the following JSON_OBJECT() call does not include the second key1
element because that key name occurs earlier in the value:

mysql> SELECT JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def');
+--+
| JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def') |
+--+
| {"key1": 1, "key2": "abc"} |
+--+

The normalization performed by MySQL also sorts the keys of a JSON object (for the purpose of
making lookups more efficient). The result of this ordering is subject to change and not guaranteed to
be consistent across releases. In addition, extra whitespace between keys, values, or elements in the
original document is discarded.

MySQL functions that produce JSON values (see Section 12.16.2, “Functions That Create JSON
Values”) always return normalized values.

In contexts that combine multiple arrays, the arrays are merged into a single array by concatenating
arrays named later to the end of the first array. In the following example, JSON_MERGE() merges its
arguments into a single array:

mysql> SELECT JSON_MERGE('[1, 2]', '["a", "b"]', '[true, false]');
+---+
| JSON_MERGE('[1, 2]', '["a", "b"]', '[true, false]') |
+---+
| [1, 2, "a", "b", true, false] |
+---+

Multiple objects when merged produce a single object. If multiple objects have the same key, the value
for that key in the resulting merged object is an array containing the key values:

mysql> SELECT JSON_MERGE('{"a": 1, "b": 2}', '{"c": 3, "a": 4}');
+--+
| JSON_MERGE('{"a": 1, "b": 2}', '{"c": 3, "a": 4}') |
+--+
| {"a": [1, 4], "b": 2, "c": 3} |
+--+

Nonarray values used in a context that requires an array value are autowrapped: The value is
surrounded by [and] characters to convert it to an array. In the following statement, each argument is
autowrapped as an array ([1], [2]). These are then merged to produce a single result array:

mysql> SELECT JSON_MERGE('1', '2');
+----------------------+
| JSON_MERGE('1', '2') |
+----------------------+

Searching and Modifying JSON Values

1347

| [1, 2] |
+----------------------+

Array and object values are merged by autowrapping the object as an array and merging the two
arrays:

mysql> SELECT JSON_MERGE('[10, 20]', '{"a": "x", "b": "y"}');
+--+
| JSON_MERGE('[10, 20]', '{"a": "x", "b": "y"}') |
+--+
| [10, 20, {"a": "x", "b": "y"}] |
+--+

Searching and Modifying JSON Values

A JSON path expression selects a value within a JSON document.

Path expressions are useful with functions that extract parts of or modify a JSON document, to specify
where within that document to operate. For example, the following query extracts from a JSON
document the value of the member with the name key:

mysql> SELECT JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name');
+---+
| JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name') |
+---+
| "Aztalan" |
+---+

Path syntax uses a leading $ character to represent the JSON document under consideration,
optionally followed by selectors that indicate successively more specific parts of the document:

• A period followed by a key name names the member in an object with the given key. The key name
must be specified within double quotation marks if the name without quotes is not legal within path
expressions (for example, if it contains a space).

• [N] appended to a path that selects an array names the value at position N within the array. Array
positions are integers beginning with zero.

• Paths can contain * or ** wildcards:

• .[*] evaluates to the values of all members in a JSON object.

• [*] evaluates to the values of all elements in a JSON array.

• prefix**suffix evaluates to all paths that begin with the named prefix and end with the named
suffix.

• A path that does not exist in the document (evaluates to nonexistent data) evaluates to NULL.

Let $ refer to this JSON array with three elements:

[3, {"a": [5, 6], "b": 10}, [99, 100]]

Then:

• $[0] evaluates to 3.

• $[1] evaluates to {"a": [5, 6], "b": 10}.

• $[2] evaluates to [99, 100].

• $[3] evaluates to NULL (it refers to the fourth array element, which does not exist).

Searching and Modifying JSON Values

1348

Because $[1] and $[2] evaluate to nonscalar values, they can be used as the basis for more-specific
path expressions that select nested values. Examples:

• $[1].a evaluates to [5, 6].

• $[1].a[1] evaluates to 6.

• $[1].b evaluates to 10.

• $[2][0] evaluates to 99.

As mentioned previously, path components that name keys must be quoted if the unquoted key name
is not legal in path expressions. Let $ refer to this value:

{"a fish": "shark", "a bird": "sparrow"}

The keys both contain a space and must be quoted:

• $."a fish" evaluates to shark.

• $."a bird" evaluates to sparrow.

Paths that use wildcards evaluate to an array that can contain multiple values:

mysql> SELECT JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.*');
+---+
| JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.*') |
+---+
| [1, 2, [3, 4, 5]] |
+---+
mysql> SELECT JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.c[*]');
+--+
| JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.c[*]') |
+--+
| [3, 4, 5] |
+--+

In the following example, the path $**.b evaluates to multiple paths ($.a.b and $.c.b) and
produces an array of the matching path values:

mysql> SELECT JSON_EXTRACT('{"a": {"b": 1}, "c": {"b": 2}}', '$**.b');
+---+
| JSON_EXTRACT('{"a": {"b": 1}, "c": {"b": 2}}', '$**.b') |
+---+
| [1, 2] |
+---+

In MySQL 5.7.9 and later, you can use column->path with a JSON column identifier and JSON path
expression as a synonym for JSON_EXTRACT(column, path). See Section 12.16.3, “Functions
That Search JSON Values”, for more information. See also Secondary Indexes and Virtual Generated
Columns.

Some functions take an existing JSON document, modify it in some way, and return the resulting
modified document. Path expressions indicate where in the document to make changes. For example,
the JSON_SET(), JSON_INSERT(), and JSON_REPLACE() functions each take a JSON document,
plus one or more path/value pairs that describe where to modify the document and the values to use.
The functions differ in how they handle existing and nonexisting values within the document.

Consider this document:

mysql> SET @j = '["a", {"b": [true, false]}, [10, 20]]';

JSON_SET() replaces values for paths that exist and adds values for paths that do not exist:.

Comparison and Ordering of JSON Values

1349

mysql> SELECT JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+--+
| JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+--+
| ["a", {"b": [1, false]}, [10, 20, 2]] |
+--+

In this case, the path $[1].b[0] selects an existing value (true), which is replaced with the value
following the path argument (1). The path $[2][2] does not exist, so the corresponding value (2) is
added to the value selected by $[2].

JSON_INSERT() adds new values but does not replace existing values:

mysql> SELECT JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+---+
| JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+---+
| ["a", {"b": [true, false]}, [10, 20, 2]] |
+---+

JSON_REPLACE() replaces existing values and ignores new values:

mysql> SELECT JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+--+
| JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+--+
| ["a", {"b": [1, false]}, [10, 20]] |
+--+

The path/value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

JSON_REMOVE() takes a JSON document and one or more paths that specify values to be removed
from the document. The return value is the original document minus the values selected by paths that
exist within the document:

mysql> SELECT JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]');
+---+
| JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]') |
+---+
| ["a", {"b": [true]}] |
+---+

The paths have these effects:

• $[2] matches [10, 20] and removes it.

• The first instance of $[1].b[1] matches false in the b element and removes it.

• The second instance of $[1].b[1] matches nothing: That element has already been removed, the
path no longer exists, and has no effect.

Comparison and Ordering of JSON Values

JSON values can be compared using the =, <, <=, >, >=, <>, !=, and <=> operators.

The following comparison operators and functions are not yet supported with JSON values:

• BETWEEN

• IN()

• GREATEST()

Comparison and Ordering of JSON Values

1350

• LEAST()

A workaround for the comparison operators and functions just listed is to cast JSON values to a native
MySQL numeric or string data type so they have a consistent non-JSON scalar type.

Comparison of JSON values takes place at two levels. The first level of comparison is based on the
JSON types of the compared values. If the types differ, the comparison result is determined solely
by which type has higher precedence. If the two values have the same JSON type, a second level of
comparison occurs using type-specific rules.

The following list shows the precedences of JSON types, from highest precedence to the lowest. (The
type names are those returned by the JSON_TYPE() function.) Types shown together on a line have
the same precedence. Any value having a JSON type listed earlier in the list compares greater than
any value having a JSON type listed later in the list.

BLOB
BIT
OPAQUE
DATETIME
TIME
DATE
BOOLEAN
ARRAY
OBJECT
STRING
INTEGER, DOUBLE
NULL

For JSON values of the same precedence, the comparison rules are type specific:

• BLOB

The first N bytes of the two values are compared, where N is the number of bytes in the shorter value.
If the first N bytes of the two values are identical, the shorter value is ordered before the longer value.

• BIT

Same rules as for BLOB.

• OPAQUE

Same rules as for BLOB. OPAQUE values are values that are not classified as one of the other types.

• DATETIME

A value that represents an earlier point in time is ordered before a value that represents a later
point in time. If two values originally come from the MySQL DATETIME and TIMESTAMP types,
respectively, they are equal if they represent the same point in time.

• TIME

The smaller of two time values is ordered before the larger one.

• DATE

The earlier date is ordered before the more recent date.

• ARRAY

Two JSON arrays are equal if they have the same length and values in corresponding positions in
the arrays are equal.

If the arrays are not equal, their order is determined by the elements in the first position where there
is a difference. The array with the smaller value in that position is ordered first. If all values of the

Comparison and Ordering of JSON Values

1351

shorter array are equal to the corresponding values in the longer array, the shorter array is ordered
first.

Example:

[] < ["a"] < ["ab"] < ["ab", "cd", "ef"] < ["ab", "ef"]

• BOOLEAN

The JSON false literal is less than the JSON true literal.

• OBJECT

Two JSON objects are equal if they have the same set of keys, and each key has the same value in
both objects.

Example:

{"a": 1, "b": 2} = {"b": 2, "a": 1}

The order of two objects that are not equal is unspecified but deterministic.

• STRING

Strings are ordered lexically on the first N bytes of the utf8mb4 representation of the two strings
being compared, where N is the length of the shorter string. If the first N bytes of the two strings are
identical, the shorter string is considered smaller than the longer string.

Example:

"a" < "ab" < "b" < "bc"

This ordering is equivalent to the ordering of SQL strings with collation utf8mb4_bin. Because
utf8mb4_bin is a binary collation, comparison of JSON values is case sensitive:

"A" < "a"

• INTEGER, DOUBLE

JSON values can contain exact-value numbers and approximate-value numbers. For a general
discussion of these types of numbers, see Section 9.1.2, “Number Literals”.

The rules for comparing native MySQL numeric types are discussed in Section 12.2, “Type
Conversion in Expression Evaluation”, but the rules for comparing numbers within JSON values differ
somewhat:

• In a comparison between two columns that use the native MySQL INT and DOUBLE numeric
types, respectively, it is known that all comparisons involve an integer and a double, so the integer
is converted to double for all rows. That is, exact-value numbers are converted to approximate-
value numbers.

• On the other hand, if the query compares two JSON columns containing numbers, it cannot be
known in advance whether numbers will be integer or double. To provide the most consistent
behavior across all rows, MySQL converts approximate-value numbers to exact-value
numbers. The resulting ordering is consistent and does not lose precision for the exact-value
numbers. For example, given the scalars 9223372036854775805, 9223372036854775806,
9223372036854775807 and 9.223372036854776e18, the order is such as this:

9223372036854775805 < 9223372036854775806 < 9223372036854775807

Comparison and Ordering of JSON Values

1352

< 9.223372036854776e18 = 9223372036854776000 < 9223372036854776001

Were JSON comparisons to use the non-JSON numeric comparison rules, inconsistent ordering
could occur. The usual MySQL comparison rules for numbers yield these orderings:

• Integer comparison:

9223372036854775805 < 9223372036854775806 < 9223372036854775807

(not defined for 9.223372036854776e18)

• Double comparison:

9223372036854775805 = 9223372036854775806 = 9223372036854775807 = 9.223372036854776e18

For comparison of any JSON value to SQL NULL, the result is UNKNOWN.

For comparison of JSON and non-JSON values, the non-JSON value is converted to JSON according
to the rules in the following table, then the values compared as described previously.

Converting between JSON and non-JSON values. The following table provides a summary of the
rules that MySQL follows when casting between JSON values and values of other types:

Table 11.1 JSON Conversion Rules

other type CAST(other type AS JSON) CAST(JSON AS other type)

JSON No change No change

utf8 character type
(utf8mb4, utf8,
ascii)

The string is parsed into a JSON value. The JSON value is serialized into a
utf8mb4 string.

Other character
types

Other character encodings are implicitly
converted to utf8mb4 and treated as
described for utf8 character type.

The JSON value is serialized into a
utf8mb4 string, then cast to the other
character encoding. The result may not
be meaningful.

NULL Results in a NULL value of type JSON. Not applicable.

Geometry types The geometry value is converted
into a JSON document by calling
ST_AsGeoJSON().

Illegal operation. Workaround: Pass the
result of CAST(json_val AS CHAR)
to ST_GeomFromGeoJSON().

All other types Results in a JSON document consisting
of a single scalar value.

Succeeds if the JSON document
consists of a single scalar value of the
target type and that scalar value can
be cast to the target type. Otherwise,
returns NULL and produces a warning.

ORDER BY and GROUP BY for JSON values works according to these principles:

• Ordering of scalar JSON values uses the same rules as in the preceding discussion.

• For ascending sorts, SQL NULL orders before all JSON values, including the JSON null literal; for
descending sorts, SQL NULL orders after all JSON values, including the JSON null literal.

• Sort keys for JSON values are bound by the value of the max_sort_length system variable, so
keys that differ only after the first max_sort_length bytes compare as equal.

• Sorting of nonscalar values is not currently supported and a warning occurs.

For sorting, it can be beneficial to cast a JSON scalar to some other native MySQL type. For example,
if a column named jdoc contains JSON objects having a member consisting of an id key and a
nonnegative value, use this expression to sort by id values:

Aggregation of JSON Values

1353

ORDER BY CAST(JSON_EXTRACT(jdoc, '$.id') AS UNSIGNED)

If there happens to be a generated column defined to use the same expression as in the ORDER BY,
the MySQL optimizer recognizes that and considers using the index for the query execution plan. See
Section 8.3.9, “Optimizer Use of Generated Column Indexes”.

Aggregation of JSON Values

For aggregation of JSON values, SQL NULL values are ignored as for other data types.
Non-NULL values are converted to a numeric type and aggregated, except for MIN(), MAX(), and
GROUP_CONCAT(). The conversion to number should produce a meaningful result for JSON values
that are numeric scalars, although (depending on the values) truncation and loss of precision may
occur. Conversion to number of other JSON values may not produce a meaningful result.

11.7 Data Type Default Values

The DEFAULT value clause in a data type specification indicates a default value for a column. With
one exception, the default value must be a constant; it cannot be a function or an expression. This
means, for example, that you cannot set the default for a date column to be the value of a function
such as NOW() or CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as
the default for TIMESTAMP and DATETIME columns. See Section 11.3.5, “Automatic Initialization and
Updating for TIMESTAMP and DATETIME”.

BLOB, TEXT, GEOMETRY, and JSON columns cannot be assigned a default value.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as
follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.

If the column cannot take NULL as the value, MySQL defines the column with no explicit DEFAULT
clause. Exception: If the column is defined as part of a PRIMARY KEY but not explicitly as NOT NULL,
MySQL creates it as a NOT NULL column (because PRIMARY KEY columns must be NOT NULL).
Before MySQL 5.7.3, the column is also assigned a DEFAULT clause using the implicit default value. To
prevent this, include an explicit NOT NULL in the definition of any PRIMARY KEY column.

For data entry into a NOT NULL column that has no explicit DEFAULT clause, if an INSERT or REPLACE
statement includes no value for the column, or an UPDATE statement sets the column to NULL, MySQL
handles the column according to the SQL mode in effect at the time:

• If strict SQL mode is enabled, an error occurs for transactional tables and the statement is rolled
back. For nontransactional tables, an error occurs, but if this happens for the second or subsequent
row of a multiple-row statement, the preceding rows will have been inserted.

• If strict mode is not enabled, MySQL sets the column to the implicit default value for the column data
type.

Suppose that a table t is defined as follows:

CREATE TABLE t (i INT NOT NULL);

In this case, i has no explicit default, so in strict mode each of the following statements produce an
error and no row is inserted. When not using strict mode, only the third statement produces an error;
the implicit default is inserted for the first two statements, but the third fails because DEFAULT(i)
cannot produce a value:

INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);

Data Type Storage Requirements

1354

INSERT INTO t VALUES(DEFAULT(i));

See Section 5.1.7, “Server SQL Modes”.

For a given table, you can use the SHOW CREATE TABLE statement to see which columns have an
explicit DEFAULT clause.

Implicit defaults are defined as follows:

• For numeric types, the default is 0, with the exception that for integer or floating-point types declared
with the AUTO_INCREMENT attribute, the default is the next value in the sequence.

• For date and time types other than TIMESTAMP, the default is the appropriate “zero” value
for the type. This is also true for TIMESTAMP if the explicit_defaults_for_timestamp
system variable is enabled (see Section 5.1.4, “Server System Variables”). Otherwise, for the first
TIMESTAMP column in a table, the default value is the current date and time. See Section 11.3, “Date
and Time Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default is the
first enumeration value.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

11.8 Data Type Storage Requirements

The storage requirements for table data on disk depend on several factors. Different storage engines
represent data types and store raw data differently. Table data might be compressed, either for a
column or an entire row, complicating the calculation of storage requirements for a table or column.

Despite differences in storage layout on disk, the internal MySQL APIs that communicate and
exchange information about table rows use a consistent data structure that applies across all storage
engines.

This section includes guidelines and information for the storage requirements for each data type
supported by MySQL, including the internal format and size for storage engines that use a fixed-size
representation for data types. Information is listed by category or storage engine.

The internal representation of a table has a maximum row size of 65,535 bytes, even if the storage
engine is capable of supporting larger rows. This figure excludes BLOB or TEXT columns, which
contribute only 9 to 12 bytes toward this size. For BLOB and TEXT data, the information is stored
internally in a different area of memory than the row buffer. Different storage engines handle the
allocation and storage of this data in different ways, according to the method they use for handling
the corresponding types. For more information, see Chapter 15, Alternative Storage Engines, and
Section C.10.4, “Limits on Table Column Count and Row Size”.

Storage Requirements for InnoDB Tables

See Section 14.2.7.7, “Physical Row Structure” for information about storage requirements for InnoDB
tables.

Storage Requirements for Numeric Types

Data Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

Storage Requirements for Date and Time Types

1355

Data Type Storage Required

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) Varies; see following discussion

BIT(M) approximately (M+7)/8 bytes

Values for DECIMAL (and NUMERIC) columns are represented using a binary format that packs nine
decimal (base 10) digits into four bytes. Storage for the integer and fractional parts of each value are
determined separately. Each multiple of nine digits requires four bytes, and the “leftover” digits require
some fraction of four bytes. The storage required for excess digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

Storage Requirements for Date and Time Types

For TIME, DATETIME, and TIMESTAMP columns, the storage required for tables created before MySQL
5.6.4 differs from tables created from 5.6.4 on. This is due to a change in 5.6.4 that permits these types
to have a fractional part, which requires from 0 to 3 bytes.

Data Type Storage Required Before MySQL
5.6.4

Storage Required as of MySQL 5.6.4

YEAR 1 byte 1 byte

DATE 3 bytes 3 bytes

TIME 3 bytes 3 bytes + fractional seconds storage

DATETIME 8 bytes 5 bytes + fractional seconds storage

TIMESTAMP 4 bytes 4 bytes + fractional seconds storage

As of MySQL 5.6.4, storage for YEAR and DATE remains unchanged. However, TIME, DATETIME, and
TIMESTAMP are represented differently. DATETIME is packed more efficiently, requiring 5 rather than 8
bytes for the nonfractional part, and all three parts have a fractional part that requires from 0 to 3 bytes,
depending on the fractional seconds precision of stored values.

Fractional Seconds Precision Storage Required

0 0 bytes

1, 2 1 byte

3, 4 2 bytes

Storage Requirements for String Types

1356

Fractional Seconds Precision Storage Required

5, 6 3 bytes

For example, TIME(0), TIME(2), TIME(4), and TIME(6) use 3, 4, 5, and 6 bytes, respectively.
TIME and TIME(0) are equivalent and require the same storage.

For details about internal representation of temporal values, see MySQL Internals: Important
Algorithms and Structures.

Storage Requirements for String Types

In the following table, M represents the declared column length in characters for nonbinary string types
and bytes for binary string types. L represents the actual length in bytes of a given string value.

Data Type Storage Required

CHAR(M) M × w bytes, 0 <= M <= 255, where w is the number of bytes
required for the maximum-length character in the character
set. See Section 14.2.7.7, “Physical Row Structure” for
information about CHAR data type storage requirements for
InnoDB tables.

BINARY(M) M bytes, 0 <= M <= 255

VARCHAR(M), VARBINARY(M) L + 1 bytes if column values require 0 − 255 bytes, L + 2
bytes if values may require more than 255 bytes

TINYBLOB, TINYTEXT L + 1 bytes, where L < 28

BLOB, TEXT L + 2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L + 3 bytes, where L < 224

LONGBLOB, LONGTEXT L + 4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of enumeration
values (65,535 values maximum)

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of set
members (64 members maximum)

Variable-length string types are stored using a length prefix plus data. The length prefix requires from
one to four bytes depending on the data type, and the value of the prefix is L (the byte length of the
string). For example, storage for a MEDIUMTEXT value requires L bytes to store the value plus three
bytes to store the length of the value.

To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value,
you must take into account the character set used for that column and whether the value contains
multibyte characters. In particular, when using the utf8 (or utf8mb4) Unicode character set, you must
keep in mind that not all characters use the same number of bytes and can require up to three (four)
bytes per character. For a breakdown of the storage used for different categories of utf8 or utf8mb4
characters, see Section 10.1.10, “Unicode Support”.

VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage
requirements depend on these factors:

• The actual length of the column value

• The column's maximum possible length

• The character set used for the column, because some character sets contain multibyte characters

For example, a VARCHAR(255) column can hold a string with a maximum length of 255 characters.
Assuming that the column uses the latin1 character set (one byte per character), the actual storage

http://dev.mysql.com/doc/internals/en/algorithms.html
http://dev.mysql.com/doc/internals/en/algorithms.html

Choosing the Right Type for a Column

1357

required is the length of the string (L), plus one byte to record the length of the string. For the string
'abcd', L is 4 and the storage requirement is five bytes. If the same column is instead declared to use
the ucs2 double-byte character set, the storage requirement is 10 bytes: The length of 'abcd' is eight
bytes and the column requires two bytes to store lengths because the maximum length is greater than
255 (up to 510 bytes).

The effective maximum number of bytes that can be stored in a VARCHAR or VARBINARY column is
subject to the maximum row size of 65,535 bytes, which is shared among all columns. For a VARCHAR
column that stores multibyte characters, the effective maximum number of characters is less. For
example, utf8 characters can require up to three bytes per character, so a VARCHAR column that uses
the utf8 character set can be declared to be a maximum of 21,844 characters. See Section C.10.4,
“Limits on Table Column Count and Row Size”.

The size of an ENUM object is determined by the number of different enumeration values. One byte is
used for enumerations with up to 255 possible values. Two bytes are used for enumerations having
between 256 and 65,535 possible values. See Section 11.4.4, “The ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N, the
object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64
members. See Section 11.4.5, “The SET Type”.

11.9 Choosing the Right Type for a Column
For optimum storage, you should try to use the most precise type in all cases. For example, if an
integer column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the best
type. Of the types that represent all the required values, this type uses the least amount of storage.

All basic calculations (+, -, *, and /) with DECIMAL columns are done with precision of 65 decimal
(base 10) digits. See Section 11.1.1, “Numeric Type Overview”.

If accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good
enough. For high precision, you can always convert to a fixed-point type stored in a BIGINT. This
enables you to do all calculations with 64-bit integers and then convert results back to floating-point
values as necessary.

PROCEDURE ANALYSE can be used to obtain suggestions for optimal column data types. For more
information, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”.

11.10 Using Data Types from Other Database Engines
To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data
types as shown in the following table. These mappings make it easier to import table definitions from
other database systems into MySQL.

Other Vendor Type MySQL Type

BOOL TINYINT

BOOLEAN TINYINT

CHARACTER VARYING(M) VARCHAR(M)

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

Using Data Types from Other Database Engines

1358

Other Vendor Type MySQL Type

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Data type mapping occurs at table creation time, after which the original type specifications are
discarded. If you create a table with types used by other vendors and then issue a DESCRIBE
tbl_name statement, MySQL reports the table structure using the equivalent MySQL types. For
example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
a	tinyint(1)	YES		NULL	
b	double	YES		NULL	
c	mediumtext	YES		NULL	
d	decimal(10,0)	YES		NULL	
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

1359

Chapter 12 Functions and Operators

Table of Contents
12.1 Function and Operator Reference .. 1361
12.2 Type Conversion in Expression Evaluation ... 1373
12.3 Operators ... 1375

12.3.1 Operator Precedence ... 1376
12.3.2 Comparison Functions and Operators .. 1377
12.3.3 Logical Operators ... 1383
12.3.4 Assignment Operators .. 1385

12.4 Control Flow Functions .. 1386
12.5 String Functions .. 1388

12.5.1 String Comparison Functions .. 1403
12.5.2 Regular Expressions .. 1407

12.6 Numeric Functions and Operators .. 1412
12.6.1 Arithmetic Operators ... 1413
12.6.2 Mathematical Functions .. 1415

12.7 Date and Time Functions .. 1424
12.8 What Calendar Is Used By MySQL? .. 1445
12.9 Full-Text Search Functions .. 1446

12.9.1 Natural Language Full-Text Searches .. 1447
12.9.2 Boolean Full-Text Searches .. 1450
12.9.3 Full-Text Searches with Query Expansion .. 1455
12.9.4 Full-Text Stopwords .. 1456
12.9.5 Full-Text Restrictions .. 1461
12.9.6 Fine-Tuning MySQL Full-Text Search .. 1462
12.9.7 Adding a Collation for Full-Text Indexing .. 1465
12.9.8 ngram Full-Text Parser ... 1466
12.9.9 MeCab Full-Text Parser Plugin ... 1469

12.10 Cast Functions and Operators ... 1473
12.11 XML Functions .. 1476
12.12 Bit Functions and Operators .. 1487
12.13 Encryption and Compression Functions .. 1488
12.14 Information Functions .. 1497
12.15 Spatial Analysis Functions ... 1507

12.15.1 Spatial Function Reference ... 1507
12.15.2 Argument Handling by Spatial Functions .. 1511
12.15.3 Functions That Create Geometry Values from WKT Values 1512
12.15.4 Functions That Create Geometry Values from WKB Values 1515
12.15.5 MySQL-Specific Functions That Create Geometry Values 1517
12.15.6 Geometry Format Conversion Functions .. 1518
12.15.7 Geometry Property Functions .. 1519
12.15.8 Spatial Operator Functions .. 1528
12.15.9 Functions That Test Spatial Relations Between Geometry Objects 1531
12.15.10 Spatial Geohash Functions ... 1536
12.15.11 Spatial GeoJSON Functions .. 1538
12.15.12 Spatial Convenience Functions .. 1539

12.16 JSON Functions .. 1542
12.16.1 JSON Function Reference .. 1542
12.16.2 Functions That Create JSON Values ... 1543
12.16.3 Functions That Search JSON Values ... 1544
12.16.4 Functions That Modify JSON Values ... 1551
12.16.5 Functions That Return JSON Value Attributes .. 1556
12.16.6 JSON Path Syntax ... 1559

12.17 Functions Used with Global Transaction IDs ... 1560

1360

12.18 MySQL Enterprise Encryption Functions ... 1562
12.18.1 Enterprise Encryption Installation ... 1562
12.18.2 Enterprise Encryption Usage and Examples ... 1563
12.18.3 Enterprise Encryption Function Reference .. 1564
12.18.4 Enterprise Encryption Function Descriptions ... 1565

12.19 Miscellaneous Functions .. 1568
12.20 Functions and Modifiers for Use with GROUP BY Clauses .. 1578

12.20.1 GROUP BY (Aggregate) Functions .. 1578
12.20.2 GROUP BY Modifiers ... 1582
12.20.3 MySQL Handling of GROUP BY ... 1585
12.20.4 Detection of Functional Dependence ... 1588

12.21 Precision Math .. 1591
12.21.1 Types of Numeric Values .. 1591
12.21.2 DECIMAL Data Type Characteristics ... 1592
12.21.3 Expression Handling ... 1593
12.21.4 Rounding Behavior ... 1594
12.21.5 Precision Math Examples .. 1595

Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING
clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement,
or in SET statements. Expressions can be written using literal values, column values, NULL, built-in
functions, stored functions, user-defined functions, and operators. This chapter describes the functions
and operators that are permitted for writing expressions in MySQL. Instructions for writing stored
functions and user-defined functions are given in Section 19.2, “Using Stored Routines (Procedures
and Functions)”, and Section 24.4, “Adding New Functions to MySQL”. See Section 9.2.4, “Function
Name Parsing and Resolution”, for the rules describing how the server interprets references to different
kinds of functions.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the
documentation for a particular function or operator.

Note

By default, there must be no whitespace between a function name and the
parenthesis following it. This helps the MySQL parser distinguish between
function calls and references to tables or columns that happen to have the same
name as a function. However, spaces around function arguments are permitted.

You can tell the MySQL server to accept spaces after function names by starting it with the --sql-
mode=IGNORE_SPACE option. (See Section 5.1.7, “Server SQL Modes”.) Individual client programs
can request this behavior by using the CLIENT_IGNORE_SPACE option for mysql_real_connect().
In either case, all function names become reserved words.

For the sake of brevity, most examples in this chapter display the output from the mysql program in
abbreviated form. Rather than showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);
 -> 2

Function and Operator Reference

1361

12.1 Function and Operator Reference

Table 12.1 Functions/Operators

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

AND, && Logical AND

ANY_VALUE() Suppress ONLY_FULL_GROUP_BY value rejection

Area() (deprecated 5.7.6) Return Polygon or MultiPolygon area

AsBinary(), AsWKB() (deprecated
5.7.6)

Convert from internal geometry format to WKB

ASCII() Return numeric value of left-most character

ASIN() Return the arc sine

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

AsText(), AsWKT() (deprecated
5.7.6)

Convert from internal geometry format to WKT

ASYMMETRIC_DECRYPT() Decrypt ciphertext using private or public key

ASYMMETRIC_DERIVE() Derive symmetric key from asymmetric keys

ASYMMETRIC_ENCRYPT() Encrypt cleartext using private or public key

ASYMMETRIC_SIGN() Generate signature from digest

ASYMMETRIC_VERIFY() Verify that signature matches digest

ATAN2(), ATAN() Return the arc tangent of the two arguments

ATAN() Return the arc tangent

AVG() Return the average value of the argument

BENCHMARK() Repeatedly execute an expression

BETWEEN ... AND ... Check whether a value is within a range of values

BIN() Return a string containing binary representation of a number

BINARY Cast a string to a binary string

BIT_AND() Return bitwise AND

BIT_COUNT() Return the number of bits that are set

BIT_LENGTH() Return length of argument in bits

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

& Bitwise AND

~ Bitwise inversion

| Bitwise OR

^ Bitwise XOR

Function and Operator Reference

1362

Name Description

Buffer() (deprecated 5.7.6) Return geometry of points within given distance from
geometry

CASE Case operator

CAST() Cast a value as a certain type

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

Centroid() (deprecated 5.7.6) Return centroid as a point

CHAR_LENGTH() Return number of characters in argument

CHAR() Return the character for each integer passed

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CHARSET() Return the character set of the argument

COALESCE() Return the first non-NULL argument

COERCIBILITY() Return the collation coercibility value of the string argument

COLLATION() Return the collation of the string argument

COMPRESS() Return result as a binary string

CONCAT_WS() Return concatenate with separator

CONCAT() Return concatenated string

CONNECTION_ID() Return the connection ID (thread ID) for the connection

Contains() (deprecated 5.7.6) Whether MBR of one geometry contains MBR of another

CONV() Convert numbers between different number bases

CONVERT_TZ() Convert from one timezone to another

CONVERT() Cast a value as a certain type

ConvexHull() (deprecated 5.7.6) Return convex hull of geometry

COS() Return the cosine

COT() Return the cotangent

COUNT(DISTINCT) Return the count of a number of different values

COUNT() Return a count of the number of rows returned

CRC32() Compute a cyclic redundancy check value

CREATE_ASYMMETRIC_PRIV_KEY() Create private key

CREATE_ASYMMETRIC_PUB_KEY() Create public key

CREATE_DH_PARAMETERS() Generate shared DH secret

CREATE_DIGEST() Generate digest from string

Crosses() (deprecated 5.7.6) Whether one geometry crosses another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

CURTIME() Return the current time

DATABASE() Return the default (current) database name

Function and Operator Reference

1363

Name Description

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATE() Extract the date part of a date or datetime expression

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

DECODE() Decodes a string encrypted using ENCODE()

DEFAULT() Return the default value for a table column

DEGREES() Convert radians to degrees

DES_DECRYPT() (deprecated 5.7.6) Decrypt a string

DES_ENCRYPT() (deprecated 5.7.6) Encrypt a string

Dimension() (deprecated 5.7.6) Dimension of geometry

Disjoint() (deprecated 5.7.6) Whether MBRs of two geometries are disjoint

Distance() (deprecated 5.7.6) The distance of one geometry from another

DIV Integer division

/ Division operator

ELT() Return string at index number

ENCODE() Encode a string

ENCRYPT() (deprecated 5.7.6) Encrypt a string

EndPoint() (deprecated 5.7.6) End Point of LineString

Envelope() (deprecated 5.7.6) Return MBR of geometry

<=> NULL-safe equal to operator

= Equal operator

Equals() (deprecated 5.7.6) Whether MBRs of two geometries are equal

EXP() Raise to the power of

EXPORT_SET() Return a string such that for every bit set in the value bits,
you get an on string and for every unset bit, you get an off
string

ExteriorRing() (deprecated 5.7.6) Return exterior ring of Polygon

EXTRACT() Extract part of a date

ExtractValue() Extracts a value from an XML string using XPath notation

FIELD() Return the index (position) of the first argument in the
subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the
second argument

FLOOR() Return the largest integer value not greater than the
argument

Function and Operator Reference

1364

Name Description

FORMAT() Return a number formatted to specified number of decimal
places

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that
would be returned were there no LIMIT clause

FROM_BASE64() Decode to a base-64 string and return result

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format UNIX timestamp as a date

GeomCollFromText(),
GeometryCollectionFromText()
(deprecated 5.7.6)

Return geometry collection from WKT

GeomCollFromWKB(),
GeometryCollectionFromWKB()
(deprecated 5.7.6)

Return geometry collection from WKB

GeometryCollection() Construct geometry collection from geometries

GeometryN() (deprecated 5.7.6) Return N-th geometry from geometry collection

GeometryType() (deprecated 5.7.6) Return name of geometry type

GeomFromText(),
GeometryFromText() (deprecated
5.7.6)

Return geometry from WKT

GeomFromWKB(),
GeometryFromWKB() (deprecated
5.7.6)

Return geometry from WKB

GET_FORMAT() Return a date format string

GET_LOCK() Get a named lock

GLength() (deprecated 5.7.6) Return length of LineString

>= Greater than or equal operator

> Greater than operator

GREATEST() Return the largest argument

GROUP_CONCAT() Return a concatenated string

GTID_SUBSET() Return true if all GTIDs in subset are also in set; otherwise
false.

GTID_SUBTRACT() Return all GTIDs in set that are not in subset.

HEX() Return a hexadecimal representation of a decimal or string
value

HOUR() Extract the hour

IF() If/else construct

IFNULL() Null if/else construct

IN() Check whether a value is within a set of values

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

INET6_ATON() Return the numeric value of an IPv6 address

INET6_NTOA() Return the IPv6 address from a numeric value

INSERT() Insert a substring at the specified position up to the specified
number of characters

Function and Operator Reference

1365

Name Description

INSTR() Return the index of the first occurrence of substring

InteriorRingN() (deprecated 5.7.6) Return N-th interior ring of Polygon

Intersects() (deprecated 5.7.6) Whether MBRs of two geometries intersect

INTERVAL() Return the index of the argument that is less than the first
argument

IS_FREE_LOCK() Checks whether the named lock is free

IS_IPV4_COMPAT() Return true if argument is an IPv4-compatible address

IS_IPV4_MAPPED() Return true if argument is an IPv4-mapped address

IS_IPV4() Return true if argument is an IPv4 address

IS_IPV6() Return true if argument is an IPv6 address

IS NOT NULL NOT NULL value test

IS NOT Test a value against a boolean

IS NULL NULL value test

IS_USED_LOCK() Checks whether the named lock is in use. Return connection
identifier if true.

IS Test a value against a boolean

IsClosed() (deprecated 5.7.6) Whether a geometry is closed and simple

IsEmpty() (deprecated 5.7.6) Placeholder function

ISNULL() Test whether the argument is NULL

IsSimple() (deprecated 5.7.6) Whether a geometry is simple

JSON_APPEND() Append data to JSON document

JSON_ARRAY_APPEND() Append data to JSON document

JSON_ARRAY_INSERT() Insert into JSON array

JSON_ARRAY() Create JSON array

-> Return value from JSON column after evaluating path

JSON_CONTAINS_PATH() Whether JSON document contains any data at path

JSON_CONTAINS() Whether JSON document contains specific object at path

JSON_DEPTH() Maximum depth of JSON document

JSON_EXTRACT() Return data from JSON document

JSON_INSERT() Insert data into JSON document

JSON_KEYS() Array of keys from JSON document

JSON_LENGTH() Number of elements in JSON document

JSON_MERGE() Merge JSON documents

JSON_OBJECT() Create JSON object

JSON_QUOTE() Quote JSON document

JSON_REMOVE() Remove data from JSON document

JSON_REPLACE() Replace values in JSON document

JSON_SEARCH() Path to value within JSON document

JSON_SET() Insert data into JSON document

JSON_TYPE() Type of JSON value

JSON_UNQUOTE() Unquote JSON value

Function and Operator Reference

1366

Name Description

JSON_VALID() Whether JSON value is valid

LAST_DAY Return the last day of the month for the argument

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

LCASE() Synonym for LOWER()

LEAST() Return the smallest argument

<< Left shift

LEFT() Return the leftmost number of characters as specified

LENGTH() Return the length of a string in bytes

<= Less than or equal operator

< Less than operator

LIKE Simple pattern matching

LineFromText(),
LineStringFromText() (deprecated
5.7.6)

Construct LineString from WKT

LineFromWKB(),
LineStringFromWKB() (deprecated
5.7.6)

Construct LineString from WKB

LineString() Construct LineString from Point values

LN() Return the natural logarithm of the argument

LOAD_FILE() Load the named file

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

LOCATE() Return the position of the first occurrence of substring

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified
string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the
corresponding bit in bits set

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to
the specified position

MATCH [1446] Perform full-text search

MAX() Return the maximum value

MBRContains() Whether MBR of one geometry contains MBR of another

MBRCoveredBy() Whether one MBR is covered by another

MBRCovers() Whether one MBR covers another

MBRDisjoint() Whether MBRs of two geometries are disjoint

Function and Operator Reference

1367

Name Description

MBREqual() (deprecated 5.7.6) Whether MBRs of two geometries are equal

MBREquals() Whether MBRs of two geometries are equal

MBRIntersects() Whether MBRs of two geometries intersect

MBROverlaps() Whether MBRs of two geometries overlap

MBRTouches() Whether MBRs of two geometries touch

MBRWithin() Whether MBR of one geometry is within MBR of another

MD5() Calculate MD5 checksum

MICROSECOND() Return the microseconds from argument

MID() Return a substring starting from the specified position

MIN() Return the minimum value

- Minus operator

MINUTE() Return the minute from the argument

MLineFromText(),
MultiLineStringFromText()
(deprecated 5.7.6)

Construct MultiLineString from WKT

MLineFromWKB(),
MultiLineStringFromWKB()
(deprecated 5.7.6)

Construct MultiLineString from WKB

MOD() Return the remainder

%, MOD Modulo operator

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

MPointFromText(),
MultiPointFromText() (deprecated
5.7.6)

Construct MultiPoint from WKT

MPointFromWKB(),
MultiPointFromWKB() (deprecated
5.7.6)

Construct MultiPoint from WKB

MPolyFromText(),
MultiPolygonFromText()
(deprecated 5.7.6)

Construct MultiPolygon from WKT

MPolyFromWKB(),
MultiPolygonFromWKB()
(deprecated 5.7.6)

Construct MultiPolygon from WKB

MultiLineString() Contruct MultiLineString from LineString values

MultiPoint() Construct MultiPoint from Point values

MultiPolygon() Construct MultiPolygon from Polygon values

NAME_CONST() Causes the column to have the given name

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

NOT, ! Negates value

Function and Operator Reference

1368

Name Description

NOW() Return the current date and time

NULLIF() Return NULL if expr1 = expr2

NumGeometries() (deprecated 5.7.6) Return number of geometries in geometry collection

NumInteriorRings() (deprecated
5.7.6)

Return number of interior rings in Polygon

NumPoints() (deprecated 5.7.6) Return number of points in LineString

OCT() Return a string containing octal representation of a number

OCTET_LENGTH() Synonym for LENGTH()

OLD_PASSWORD() Return the value of the pre-4.1 implementation of
PASSWORD

||, OR Logical OR

ORD() Return character code for leftmost character of the argument

Overlaps() (deprecated 5.7.6) Whether MBRs of two geometries overlap

PASSWORD() (deprecated 5.7.6) Calculate and return a password string

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

PI() Return the value of pi

+ Addition operator

Point() Construct Point from coordinates

PointFromText() (deprecated 5.7.6) Construct Point from WKT

PointFromWKB() (deprecated 5.7.6) Construct Point from WKB

PointN() (deprecated 5.7.6) Return N-th point from LineString

PolyFromText(),
PolygonFromText() (deprecated
5.7.6)

Construct Polygon from WKT

PolyFromWKB(),
PolygonFromWKB() (deprecated
5.7.6)

Construct Polygon from WKB

Polygon() Construct Polygon from LineString arguments

POSITION() Synonym for LOCATE()

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

PROCEDURE ANALYSE() Analyze the results of a query

QUARTER() Return the quarter from a date argument

QUOTE() Escape the argument for use in an SQL statement

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

RANDOM_BYTES() Return a random byte vector

REGEXP Pattern matching using regular expressions

RELEASE_ALL_LOCKS() Releases all current named locks

RELEASE_LOCK() Releases the named lock

REPEAT() Repeat a string the specified number of times

Function and Operator Reference

1369

Name Description

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

>> Right shift

RIGHT() Return the specified rightmost number of characters

RLIKE Synonym for REGEXP

ROUND() Round the argument

ROW_COUNT() The number of rows updated

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SCHEMA() Synonym for DATABASE()

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

SESSION_USER() Synonym for USER()

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SHA2() Calculate an SHA-2 checksum

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SLEEP() Sleep for a number of seconds

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

SQRT() Return the square root of the argument

SRID() (deprecated 5.7.6) Return spatial reference system ID for geometry

ST_Area() Return Polygon or MultiPolygon area

ST_AsBinary(), ST_AsWKB() Convert from internal geometry format to WKB

ST_AsGeoJSON() Generate GeoJSON object from geometry

ST_AsText(), ST_AsWKT() Convert from internal geometry format to WKT

ST_Buffer_Strategy() Produce strategy option for ST_Buffer()

ST_Buffer() Return geometry of points within given distance from
geometry

ST_Centroid() Return centroid as a point

ST_Contains() Whether one geometry contains another

ST_ConvexHull() Return convex hull of geometry

ST_Crosses() Whether one geometry crosses another

ST_Difference() Return point set difference of two geometries

ST_Dimension() Dimension of geometry

ST_Disjoint() Whether one geometry is disjoint from another

ST_Distance_Sphere() Minimum distance on earth between two geometries

ST_Distance() The distance of one geometry from another

ST_EndPoint() End Point of LineString

ST_Envelope() Return MBR of geometry

Function and Operator Reference

1370

Name Description

ST_Equals() Whether one geometry is equal to another

ST_ExteriorRing() Return exterior ring of Polygon

ST_GeoHash() Produce a geohash value

ST_GeomCollFromText(),
ST_GeometryCollectionFromText(),
ST_GeomCollFromTxt()

Return geometry collection from WKT

ST_GeomCollFromWKB(),
ST_GeometryCollectionFromWKB()

Return geometry collection from WKB

ST_GeometryN() Return N-th geometry from geometry collection

ST_GeometryType() Return name of geometry type

ST_GeomFromGeoJSON() Generate geometry from GeoJSON object

ST_GeomFromText(),
ST_GeometryFromText()

Return geometry from WKT

ST_GeomFromWKB(),
ST_GeometryFromWKB()

Return geometry from WKB

ST_InteriorRingN() Return N-th interior ring of Polygon

ST_Intersection() Return point set intersection of two geometries

ST_Intersects() Whether one geometry intersects another

ST_IsClosed() Whether a geometry is closed and simple

ST_IsEmpty() Placeholder function

ST_IsSimple() Whether a geometry is simple

ST_IsValid() Whether a geometry is valid

ST_LatFromGeoHash() Return latitude from geohash value

ST_Length() Return length of LineString

ST_LineFromText() Construct LineString from WKT

ST_LineFromWKB(),
ST_LineStringFromWKB()

Construct LineString from WKB

ST_LongFromGeoHash() Return longitude from geohash value

ST_MakeEnvelope() Rectangle around two points

ST_MLineFromText(),
ST_MultiLineStringFromText()

Construct MultiLineString from WKT

ST_MLineFromWKB(),
ST_MultiLineStringFromWKB()

Construct MultiLineString from WKB

ST_MPointFromText(),
ST_MultiPointFromText()

Construct MultiPoint from WKT

ST_MPointFromWKB(),
ST_MultiPointFromWKB()

Construct MultiPoint from WKB

ST_MPolyFromText(),
ST_MultiPolygonFromText()

Construct MultiPolygon from WKT

ST_MPolyFromWKB(),
ST_MultiPolygonFromWKB()

Construct MultiPolygon from WKB

ST_NumGeometries() Return number of geometries in geometry collection

ST_NumInteriorRing(),
ST_NumInteriorRings()

Return number of interior rings in Polygon

Function and Operator Reference

1371

Name Description

ST_NumPoints() Return number of points in LineString

ST_Overlaps() Whether one geometry overlaps another

ST_PointFromGeoHash() Convert geohash value to POINT value

ST_PointFromText() Construct Point from WKT

ST_PointFromWKB() Construct Point from WKB

ST_PointN() Return N-th point from LineString

ST_PolyFromText(),
ST_PolygonFromText()

Construct Polygon from WKT

ST_PolyFromWKB(),
ST_PolygonFromWKB()

Construct Polygon from WKB

ST_Simplify() Return simplified geometry

ST_SRID() Return spatial reference system ID for geometry

ST_StartPoint() Start Point of LineString

ST_SymDifference() Return point set symmetric difference of two geometries

ST_Touches() Whether one geometry touches another

ST_Union() Return point set union of two geometries

ST_Validate() Return validated geometry

ST_Within() Whether one geometry is within another

ST_X() Return X coordinate of Point

ST_Y() Return Y coordinate of Point

StartPoint() (deprecated 5.7.6) Start Point of LineString

STD() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

STDDEV() Return the population standard deviation

STR_TO_DATE() Convert a string to a date

STRCMP() Compare two strings

SUBDATE() Synonym for DATE_SUB() when invoked with three
arguments

SUBSTR() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number
of occurrences of the delimiter

SUBSTRING() Return the substring as specified

SUBTIME() Subtract times

SUM() Return the sum

SYSDATE() Return the time at which the function executes

SYSTEM_USER() Synonym for USER()

TAN() Return the tangent of the argument

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIME() Extract the time portion of the expression passed

TIMEDIFF() Subtract time

Function and Operator Reference

1372

Name Description

* Multiplication operator

TIMESTAMP() With a single argument, this function returns the date or
datetime expression; with two arguments, the sum of the
arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_BASE64() Return the argument converted to a base-64 string

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted to seconds
since Year 0

Touches() (deprecated 5.7.6) Whether one geometry touches another

TRIM() Remove leading and trailing spaces

TRUNCATE() Truncate to specified number of decimal places

UCASE() Synonym for UPPER()

- Change the sign of the argument

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string before compression

UNHEX() Return a string containing hex representation of a number

UNIX_TIMESTAMP() Return a UNIX timestamp

UpdateXML() Return replaced XML fragment

UPPER() Convert to uppercase

USER() The user name and host name provided by the client

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

UUID_SHORT() Return an integer-valued universal identifier

UUID() Return a Universal Unique Identifier (UUID)

VALIDATE_PASSWORD_STRENGTH() Determine strength of password

VALUES() Defines the values to be used during an INSERT

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

VERSION() Return a string that indicates the MySQL server version

WAIT_FOR_EXECUTED_GTID_SET() Wait until the given GTIDs have executed on slave.

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Wait until the given GTIDs have executed on slave.

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

WEIGHT_STRING() Return the weight string for a string

Within() (deprecated 5.7.6) Whether MBR of one geometry is within MBR of another

X() (deprecated 5.7.6) Return X coordinate of Point

XOR Logical XOR

Type Conversion in Expression Evaluation

1373

Name Description

Y() (deprecated 5.7.6) Return Y coordinate of Point

YEAR() Return the year

YEARWEEK() Return the year and week

12.2 Type Conversion in Expression Evaluation
When an operator is used with operands of different types, type conversion occurs to make the
operands compatible. Some conversions occur implicitly. For example, MySQL automatically converts
numbers to strings as necessary, and vice versa.

mysql> SELECT 1+'1';
 -> 2
mysql> SELECT CONCAT(2,' test');
 -> '2 test'

It is also possible to convert a number to a string explicitly using the CAST() function. Conversion
occurs implicitly with the CONCAT() function because it expects string arguments.

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
 -> 38.8, '38.8'
mysql> SELECT 38.8, CONCAT(38.8);
 -> 38.8, '38.8'

See later in this section for information about the character set of implicit number-to-string conversions,
and for modified rules that apply to CREATE TABLE ... SELECT statements.

The following rules describe how conversion occurs for comparison operations:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe
<=> equality comparison operator. For NULL <=> NULL, the result is true. No conversion is needed.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

• If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a
constant, the constant is converted to a timestamp before the comparison is performed. This is done
to be more ODBC-friendly. Note that this is not done for the arguments to IN()! To be safe, always
use complete datetime, date, or time strings when doing comparisons. For example, to achieve best
results when using BETWEEN with date or time values, use CAST() to explicitly convert the values to
the desired data type.

A single-row subquery from a table or tables is not considered a constant. For example, if a subquery
returns an integer to be compared to a DATETIME value, the comparison is done as two integers.
The integer is not converted to a temporal value. To compare the operands as DATETIME values,
use CAST() to explicitly convert the subquery value to DATETIME.

• If one of the arguments is a decimal value, comparison depends on the other argument. The
arguments are compared as decimal values if the other argument is a decimal or integer value, or as
floating-point values if the other argument is a floating-point value.

• In all other cases, the arguments are compared as floating-point (real) numbers.

For information about conversion of values from one temporal type to another, see Section 11.3.7,
“Conversion Between Date and Time Types”.

Comparison of JSON values takes place at two levels. The first level of comparison is based on the
JSON types of the compared values. If the types differ, the comparison result is determined solely

Type Conversion in Expression Evaluation

1374

by which type has higher precedence. If the two values have the same JSON type, a second level
of comparison occurs using type-specific rules. For comparison of JSON and non-JSON values, the
non-JSON value is converted to JSON and the values compared as JSON values. For details, see
Comparison and Ordering of JSON Values.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';
 -> 0
mysql> SELECT 7 > '6x';
 -> 1
mysql> SELECT 0 > 'x6';
 -> 0
mysql> SELECT 0 = 'x6';
 -> 1

For comparisons of a string column with a number, MySQL cannot use an index on the column to
look up the value quickly. If str_col is an indexed string column, the index cannot be used when
performing the lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1, such as
'1', ' 1', or '1a'.

Comparisons that use floating-point numbers (or values that are converted to floating-point
numbers) are approximate because such numbers are inexact. This might lead to results that appear
inconsistent:

mysql> SELECT '18015376320243458' = 18015376320243458;
 -> 1
mysql> SELECT '18015376320243459' = 18015376320243459;
 -> 0

Such results can occur because the values are converted to floating-point numbers, which have only
53 bits of precision and are subject to rounding:

mysql> SELECT '18015376320243459'+0.0;
 -> 1.8015376320243e+16

Furthermore, the conversion from string to floating-point and from integer to floating-point do not
necessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas
the string is converted digit by digit in an operation that involves floating-point multiplications.

The results shown will vary on different systems, and can be affected by factors such as computer
architecture or the compiler version or optimization level. One way to avoid such problems is to use
CAST() so that a value is not converted implicitly to a float-point number:

mysql> SELECT CAST('18015376320243459' AS UNSIGNED) = 18015376320243459;
 -> 1

For more information about floating-point comparisons, see Section B.5.4.8, “Problems with Floating-
Point Values”.

The server includes dtoa, a conversion library that provides the basis for improved conversion
between string or DECIMAL values and approximate-value (FLOAT/DOUBLE) numbers:

• Consistent conversion results across platforms, which eliminates, for example, Unix versus Windows
conversion differences.

• Accurate representation of values in cases where results previously did not provide sufficient
precision, such as for values close to IEEE limits.

Operators

1375

• Conversion of numbers to string format with the best possible precision. The precision of dtoa is
always the same or better than that of the standard C library functions.

Because the conversions produced by this library differ in some cases from non-dtoa results,
the potential exists for incompatibilities in applications that rely on previous results. For example,
applications that depend on a specific exact result from previous conversions might need adjustment to
accommodate additional precision.

The dtoa library provides conversions with the following properties. D represents a value with a
DECIMAL or string representation, and F represents a floating-point number in native binary (IEEE)
format.

• F -> D conversion is done with the best possible precision, returning D as the shortest string that
yields F when read back in and rounded to the nearest value in native binary format as specified by
IEEE.

• D -> F conversion is done such that F is the nearest native binary number to the input decimal string
D.

These properties imply that F -> D -> F conversions are lossless unless F is -inf, +inf, or NaN. The
latter values are not supported because the SQL standard defines them as invalid values for FLOAT or
DOUBLE.

For D -> F -> D conversions, a sufficient condition for losslessness is that D uses 15 or fewer digits of
precision, is not a denormal value, -inf, +inf, or NaN. In some cases, the conversion is lossless even
if D has more than 15 digits of precision, but this is not always the case.

Implicit conversion of a numeric or temporal value to string produces a value that has a character
set and collation determined by the character_set_connection and collation_connection
system variables. (These variables commonly are set with SET NAMES. For information about
connection character sets, see Section 10.1.4, “Connection Character Sets and Collations”.)

This means that such a conversion results in a character (nonbinary) string (a CHAR, VARCHAR, or
LONGTEXT value), except in the case that the connection character set is set to binary. In that case,
the conversion result is a binary string (a BINARY, VARBINARY, or LONGBLOB value).

For integer expressions, the preceding remarks about expression evaluation apply somewhat
differently for expression assignment; for example, in a statement such as this:

CREATE TABLE t SELECT integer_expr;

In this case, the table in the column resulting from the expression has type INT or BIGINT depending
on the length of the integer expression. If the maximum length of the expression does not fit in an INT,
BIGINT is used instead. The length is taken from the max_length value of the SELECT result set
metadata (see Section 23.8.5, “C API Data Structures”). This means that you can force a BIGINT
rather than INT by use of a sufficiently long expression:

CREATE TABLE t SELECT 000000000000000000000;

12.3 Operators
Table 12.2 Operators

Name Description

AND, && Logical AND

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

BETWEEN ... AND ... Check whether a value is within a range of values

Operator Precedence

1376

Name Description

BINARY Cast a string to a binary string

& Bitwise AND

~ Bitwise inversion

| Bitwise OR

^ Bitwise XOR

CASE Case operator

DIV Integer division

/ Division operator

<=> NULL-safe equal to operator

= Equal operator

>= Greater than or equal operator

> Greater than operator

IS NOT NULL NOT NULL value test

IS NOT Test a value against a boolean

IS NULL NULL value test

IS Test a value against a boolean

-> Return value from JSON column after evaluating path

<< Left shift

<= Less than or equal operator

< Less than operator

LIKE Simple pattern matching

- Minus operator

%, MOD Modulo operator

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

NOT, ! Negates value

||, OR Logical OR

+ Addition operator

REGEXP Pattern matching using regular expressions

>> Right shift

RLIKE Synonym for REGEXP

SOUNDS LIKE Compare sounds

* Multiplication operator

- Change the sign of the argument

XOR Logical XOR

12.3.1 Operator Precedence

Operator precedences are shown in the following list, from highest precedence to the lowest. Operators
that are shown together on a line have the same precedence.

Comparison Functions and Operators

1377

INTERVAL
BINARY, COLLATE
!
- (unary minus), ~ (unary bit inversion)
^
*, /, DIV, %, MOD
-, +
<<, >>
&
|
= (comparison), <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN
BETWEEN, CASE, WHEN, THEN, ELSE
NOT
AND, &&
XOR
OR, ||
= (assignment), :=

The precedence of = depends on whether it is used as a comparison operator (=) or as an assignment
operator (=). When used as a comparison operator, it has the same precedence as <=>, >=, >,
<=, <, <>, !=, IS, LIKE, REGEXP, and IN. When used as an assignment operator, it has the same
precedence as :=. Section 13.7.4, “SET Syntax”, and Section 9.4, “User-Defined Variables”, explain
how MySQL determines which interpretation of = should apply.

For operators that occur at the same precedence level within an expression, evaluation proceeds left to
right, with the exception that assignments evaluate right to left.

The meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 5.1.7, “Server SQL Modes”.

The precedence of operators determines the order of evaluation of terms in an expression. To override
this order and group terms explicitly, use parentheses. For example:

mysql> SELECT 1+2*3;
 -> 7
mysql> SELECT (1+2)*3;
 -> 9

12.3.2 Comparison Functions and Operators
Table 12.3 Comparison Operators

Name Description

BETWEEN ... AND ... Check whether a value is within a range of values

COALESCE() Return the first non-NULL argument

<=> NULL-safe equal to operator

= Equal operator

>= Greater than or equal operator

> Greater than operator

GREATEST() Return the largest argument

IN() Check whether a value is within a set of values

INTERVAL() Return the index of the argument that is less than the first
argument

Comparison Functions and Operators

1378

Name Description

IS NOT NULL NOT NULL value test

IS NOT Test a value against a boolean

IS NULL NULL value test

IS Test a value against a boolean

ISNULL() Test whether the argument is NULL

LEAST() Return the smallest argument

<= Less than or equal operator

< Less than operator

LIKE Simple pattern matching

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for
both numbers and strings. Strings are automatically converted to numbers and numbers to strings as
necessary.

The following relational comparison operators can be used to compare not only scalar operands, but
row operands:

= > < >= <= <> !=

The descriptions for those operators later in this section detail how they work with row operands. For
additional examples of row comparisons in the context of row subqueries, see Section 13.2.10.5, “Row
Subqueries”.

Some of the functions in this section return values other than 1 (TRUE), 0 (FALSE), or NULL. For
example, LEAST() and GREATEST(). However, the value they return is based on comparison
operations performed according to the rules described in Section 12.2, “Type Conversion in Expression
Evaluation”.

To convert a value to a specific type for comparison purposes, you can use the CAST() function.
String values can be converted to a different character set using CONVERT(). See Section 12.10, “Cast
Functions and Operators”.

By default, string comparisons are not case sensitive and use the current character set. The default is
latin1 (cp1252 West European), which also works well for English.

• =

Equal:

mysql> SELECT 1 = 0;
 -> 0
mysql> SELECT '0' = 0;
 -> 1
mysql> SELECT '0.0' = 0;
 -> 1
mysql> SELECT '0.01' = 0;
 -> 0
mysql> SELECT '.01' = 0.01;
 -> 1

Comparison Functions and Operators

1379

For row comparisons, (a, b) = (x, y) is equivalent to:

(a = x) AND (b = y)

• <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1
rather than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.

The <=> operator is equivalent to the standard SQL IS NOT DISTINCT FROM operator.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
 -> 1, 1, 0
mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
 -> 1, NULL, NULL

For row comparisons, (a, b) <=> (x, y) is equivalent to:

(a <=> x) AND (b <=> y)

• <>, !=

Not equal:

mysql> SELECT '.01' <> '0.01';
 -> 1
mysql> SELECT .01 <> '0.01';
 -> 0
mysql> SELECT 'zapp' <> 'zappp';
 -> 1

For row comparisons, (a, b) <> (x, y) and (a, b) != (x, y) are equivalent to:

(a <> x) OR (b <> y)

• <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
 -> 1

For row comparisons, (a, b) <= (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b <= y))

• <

Less than:

mysql> SELECT 2 < 2;
 -> 0

For row comparisons, (a, b) < (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b < y))

• >=

Comparison Functions and Operators

1380

Greater than or equal:

mysql> SELECT 2 >= 2;
 -> 1

For row comparisons, (a, b) >= (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b >= y))

• >

Greater than:

mysql> SELECT 2 > 2;
 -> 0

For row comparisons, (a, b) > (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b > y))

• IS boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
 -> 1, 1, 1

• IS NOT boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
 -> 1, 1, 0

• IS NULL

Tests whether a value is NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
 -> 0, 0, 1

 To work well with ODBC programs, MySQL supports the following extra features when using IS
NULL:

• If sql_auto_is_null variable is set to 1, then after a statement that successfully inserts an
automatically generated AUTO_INCREMENT value, you can find that value by issuing a statement
of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert,
see Section 12.14, “Information Functions”. If no AUTO_INCREMENT value was successfully
inserted, the SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison can be
disabled by setting sql_auto_is_null = 0. See Section 5.1.4, “Server System Variables”.

Comparison Functions and Operators

1381

The default value of sql_auto_is_null is 0.

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the special date
'0000-00-00' by using a statement like this:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC does not support a
'0000-00-00' date value.

See Obtaining Auto-Increment Values, and the description for the FLAG_AUTO_IS_NULL option at
Connector/ODBC Connection Parameters.

• IS NOT NULL

Tests whether a value is not NULL.

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
 -> 1, 1, 0

• expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1,
otherwise it returns 0. This is equivalent to the expression (min <= expr AND expr <= max) if
all the arguments are of the same type. Otherwise type conversion takes place according to the rules
described in Section 12.2, “Type Conversion in Expression Evaluation”, but applied to all the three
arguments.

mysql> SELECT 2 BETWEEN 1 AND 3, 2 BETWEEN 3 and 1;
 -> 1, 0
mysql> SELECT 1 BETWEEN 2 AND 3;
 -> 0
mysql> SELECT 'b' BETWEEN 'a' AND 'c';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND '3';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND 'x-3';
 -> 0

For best results when using BETWEEN with date or time values, use CAST() to explicitly convert
the values to the desired data type. Examples: If you compare a DATETIME to two DATE values,
convert the DATE values to DATETIME values. If you use a string constant such as '2001-1-1' in a
comparison to a DATE, cast the string to a DATE.

• expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

• COALESCE(value,...)

Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.

mysql> SELECT COALESCE(NULL,1);
 -> 1
mysql> SELECT COALESCE(NULL,NULL,NULL);
 -> NULL

• GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments are
compared using the same rules as for LEAST().

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-connection-parameters.html

Comparison Functions and Operators

1382

mysql> SELECT GREATEST(2,0);
 -> 2
mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
 -> 767.0
mysql> SELECT GREATEST('B','A','C');
 -> 'C'

GREATEST() returns NULL if any argument is NULL.

• expr IN (value,...)

Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are
constants, they are evaluated according to the type of expr and sorted. The search for the item then
is done using a binary search. This means IN is very quick if the IN value list consists entirely of
constants. Otherwise, type conversion takes place according to the rules described in Section 12.2,
“Type Conversion in Expression Evaluation”, but applied to all the arguments.

mysql> SELECT 2 IN (0,3,5,7);
 -> 0
mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
 -> 1

IN can be used to compare row constructors:

mysql> SELECT (3,4) IN ((1,2), (3,4));
 -> 1
mysql> SELECT (3,4) IN ((1,2), (3,5));
 -> 0

You should never mix quoted and unquoted values in an IN list because the comparison rules for
quoted values (such as strings) and unquoted values (such as numbers) differ. Mixing types may
therefore lead to inconsistent results. For example, do not write an IN expression like this:

SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');

Instead, write it like this:

SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');

The number of values in the IN list is only limited by the max_allowed_packet value.

To comply with the SQL standard, IN returns NULL not only if the expression on the left hand side is
NULL, but also if no match is found in the list and one of the expressions in the list is NULL.

IN() syntax can also be used to write certain types of subqueries. See Section 13.2.10.3,
“Subqueries with ANY, IN, or SOME”.

• expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).

• ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
 -> 0
mysql> SELECT ISNULL(1/0);
 -> 1

Logical Operators

1383

ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL
using = always yields false.)

The ISNULL() function shares some special behaviors with the IS NULL comparison operator. See
the description of IS NULL.

• INTERVAL(N,N1,N2,N3,...)

Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as integers. It
is required that N1 < N2 < N3 < ... < Nn for this function to work correctly. This is because a binary
search is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
 -> 3
mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
 -> 2
mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
 -> 0

• LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are
compared using the following rules:

• If any argument is NULL, the result is NULL. No comparison is needed.

• If the return value is used in an INTEGER context or all arguments are integer-valued, they are
compared as integers.

• If the return value is used in a REAL context or all arguments are real-valued, they are compared
as reals.

• If the arguments comprise a mix of numbers and strings, they are compared as numbers.

• If any argument is a nonbinary (character) string, the arguments are compared as nonbinary
strings.

• In all other cases, the arguments are compared as binary strings.

mysql> SELECT LEAST(2,0);
 -> 0
mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
 -> 3.0
mysql> SELECT LEAST('B','A','C');
 -> 'A'

Note that the preceding conversion rules can produce strange results in some borderline cases:

mysql> SELECT CAST(LEAST(3600, 9223372036854775808.0) AS SIGNED);
 -> -9223372036854775808

This happens because MySQL reads 9223372036854775808.0 in an integer context. The integer
representation is not good enough to hold the value, so it wraps to a signed integer.

12.3.3 Logical Operators

Table 12.4 Logical Operators

Name Description

AND, && Logical AND

Logical Operators

1384

Name Description

NOT, ! Negates value

||, OR Logical OR

XOR Logical XOR

In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are
implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL database
servers, although some servers may return any nonzero value for TRUE.

MySQL evaluates any nonzero, non-NULL value to TRUE. For example, the following statements all
assess to TRUE:

mysql> SELECT 10 IS TRUE;
-> 1
mysql> SELECT -10 IS TRUE;
-> 1
mysql> SELECT 'string' IS NOT NULL;
-> 1

• NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is nonzero, and NOT NULL
returns NULL.

mysql> SELECT NOT 10;
 -> 0
mysql> SELECT NOT 0;
 -> 1
mysql> SELECT NOT NULL;
 -> NULL
mysql> SELECT ! (1+1);
 -> 0
mysql> SELECT ! 1+1;
 -> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

• AND, &&

Logical AND. Evaluates to 1 if all operands are nonzero and not NULL, to 0 if one or more operands
are 0, otherwise NULL is returned.

mysql> SELECT 1 AND 1;
 -> 1
mysql> SELECT 1 AND 0;
 -> 0
mysql> SELECT 1 AND NULL;
 -> NULL
mysql> SELECT 0 AND NULL;
 -> 0
mysql> SELECT NULL AND 0;
 -> 0

• OR, ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is nonzero, and 0
otherwise. With a NULL operand, the result is 1 if the other operand is nonzero, and NULL otherwise.
If both operands are NULL, the result is NULL.

mysql> SELECT 1 OR 1;
 -> 1
mysql> SELECT 1 OR 0;

Assignment Operators

1385

 -> 1
mysql> SELECT 0 OR 0;
 -> 0
mysql> SELECT 0 OR NULL;
 -> NULL
mysql> SELECT 1 OR NULL;
 -> 1

• XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an
odd number of operands is nonzero, otherwise 0 is returned.

mysql> SELECT 1 XOR 1;
 -> 0
mysql> SELECT 1 XOR 0;
 -> 1
mysql> SELECT 1 XOR NULL;
 -> NULL
mysql> SELECT 1 XOR 1 XOR 1;
 -> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

12.3.4 Assignment Operators
Table 12.5 Assignment Operators

Name Description

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

• :=

Assignment operator. Causes the user variable on the left hand side of the operator to take on the
value to its right. The value on the right hand side may be a literal value, another variable storing a
value, or any legal expression that yields a scalar value, including the result of a query (provided that
this value is a scalar value). You can perform multiple assignments in the same SET statement. You
can perform multiple assignments in the same statement-

Unlike =, the := operator is never interpreted as a comparison operator. This means you can use :=
in any valid SQL statement (not just in SET statements) to assign a value to a variable.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

mysql> SELECT @var1:=COUNT(*) FROM t1;
 -> 4
mysql> SELECT @var1;
 -> 4

You can make value assignments using := in other statements besides SELECT, such as UPDATE,
as shown here:

mysql> SELECT @var1;

Control Flow Functions

1386

 -> 4
mysql> SELECT * FROM t1;
 -> 1, 3, 5, 7

mysql> UPDATE t1 SET c1 = 2 WHERE c1 = @var1:= 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT @var1;
 -> 1
mysql> SELECT * FROM t1;
 -> 2, 3, 5, 7

While it is also possible both to set and to read the value of the same variable in a single SQL
statement using the := operator, this is not recommended. Section 9.4, “User-Defined Variables”,
explains why you should avoid doing this.

• =

This operator is used to perform value assignments in two cases, described in the next two
paragraphs.

Within a SET statement, = is treated as an assignment operator that causes the user variable on the
left hand side of the operator to take on the value to its right. (In other words, when used in a SET
statement, = is treated identically to :=.) The value on the right hand side may be a literal value,
another variable storing a value, or any legal expression that yields a scalar value, including the
result of a query (provided that this value is a scalar value). You can perform multiple assignments in
the same SET statement.

In the SET clause of an UPDATE statement, = also acts as an assignment operator; in this case,
however, it causes the column named on the left hand side of the operator to assume the value
given to the right, provided any WHERE conditions that are part of the UPDATE are met. You can make
multiple assignments in the same SET clause of an UPDATE statement.

In any other context, = is treated as a comparison operator.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

For more information, see Section 13.7.4, “SET Syntax”, Section 13.2.11, “UPDATE Syntax”, and
Section 13.2.10, “Subquery Syntax”.

12.4 Control Flow Functions
Table 12.6 Flow Control Operators

Name Description

CASE Case operator

IF() If/else construct

IFNULL() Null if/else construct

NULLIF() Return NULL if expr1 = expr2

• CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN
result ...] [ELSE result] END

Control Flow Functions

1387

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...] [ELSE
result] END

The first version returns the result where value=compare_value. The second version returns
the result for the first condition that is true. If there was no matching result value, the result after
ELSE is returned, or NULL if there is no ELSE part.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
 -> WHEN 2 THEN 'two' ELSE 'more' END;
 -> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;
 -> 'true'
mysql> SELECT CASE BINARY 'B'
 -> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
 -> NULL

The return type of a CASE expression is the compatible aggregated type of all return values, but
also depends on the context in which it is used. If used in a string context, the result is returned as a
string. If used in a numeric context, the result is returned as a decimal, real, or integer value.

Note

The syntax of the CASE expression shown here differs slightly from that of the
SQL CASE statement described in Section 13.6.5.1, “CASE Syntax”, for use
inside stored programs. The CASE statement cannot have an ELSE NULL
clause, and it is terminated with END CASE instead of END.

• IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2; otherwise it
returns expr3. IF() returns a numeric or string value, depending on the context in which it is used.

mysql> SELECT IF(1>2,2,3);
 -> 3
mysql> SELECT IF(1<2,'yes','no');
 -> 'yes'
mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
 -> 'no'

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type of
the non-NULL expression.

The default return type of IF() (which may matter when it is stored into a temporary table) is
calculated as follows.

Expression Return Value

expr2 or expr3 returns a string string

expr2 or expr3 returns a floating-point value floating-point

expr2 or expr3 returns an integer integer

If expr2 and expr3 are both strings, the result is case sensitive if either string is case sensitive.

Note

There is also an IF statement, which differs from the IF() function described
here. See Section 13.6.5.2, “IF Syntax”.

• IFNULL(expr1,expr2)

String Functions

1388

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2. IFNULL() returns a
numeric or string value, depending on the context in which it is used.

mysql> SELECT IFNULL(1,0);
 -> 1
mysql> SELECT IFNULL(NULL,10);
 -> 10
mysql> SELECT IFNULL(1/0,10);
 -> 10
mysql> SELECT IFNULL(1/0,'yes');
 -> 'yes'

The default result value of IFNULL(expr1,expr2) is the more “general” of the two expressions, in
the order STRING, REAL, or INTEGER. Consider the case of a table based on expressions or where
MySQL must internally store a value returned by IFNULL() in a temporary table:

mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;
mysql> DESCRIBE tmp;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| test | varbinary(4) | NO | | | |
+-------+--------------+------+-----+---------+-------+

In this example, the type of the test column is VARBINARY(4).

• NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN
expr1 = expr2 THEN NULL ELSE expr1 END.

mysql> SELECT NULLIF(1,1);
 -> NULL
mysql> SELECT NULLIF(1,2);
 -> 1

Note that MySQL evaluates expr1 twice if the arguments are not equal.

12.5 String Functions

Table 12.7 String Operators

Name Description

ASCII() Return numeric value of left-most character

BIN() Return a string containing binary representation of a number

BIT_LENGTH() Return length of argument in bits

CHAR_LENGTH() Return number of characters in argument

CHAR() Return the character for each integer passed

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CONCAT_WS() Return concatenate with separator

CONCAT() Return concatenated string

ELT() Return string at index number

EXPORT_SET() Return a string such that for every bit set in the value bits,
you get an on string and for every unset bit, you get an off
string

String Functions

1389

Name Description

FIELD() Return the index (position) of the first argument in the
subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the
second argument

FORMAT() Return a number formatted to specified number of decimal
places

FROM_BASE64() Decode to a base-64 string and return result

HEX() Return a hexadecimal representation of a decimal or string
value

INSERT() Insert a substring at the specified position up to the specified
number of characters

INSTR() Return the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT() Return the leftmost number of characters as specified

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

LOAD_FILE() Load the named file

LOCATE() Return the position of the first occurrence of substring

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified
string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the
corresponding bit in bits set

MATCH [1446] Perform full-text search

MID() Return a substring starting from the specified position

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCT() Return a string containing octal representation of a number

OCTET_LENGTH() Synonym for LENGTH()

ORD() Return character code for leftmost character of the argument

POSITION() Synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Pattern matching using regular expressions

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

RLIKE Synonym for REGEXP

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

String Functions

1390

Name Description

SPACE() Return a string of the specified number of spaces

STRCMP() Compare two strings

SUBSTR() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number
of occurrences of the delimiter

SUBSTRING() Return the substring as specified

TO_BASE64() Return the argument converted to a base-64 string

TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() Return a string containing hex representation of a number

UPPER() Convert to uppercase

WEIGHT_STRING() Return the weight string for a string

String-valued functions return NULL if the length of the result would be greater than the value of the
max_allowed_packet system variable. See Section 8.12.2, “Tuning Server Parameters”.

For functions that operate on string positions, the first position is numbered 1.

For functions that take length arguments, noninteger arguments are rounded to the nearest integer.

• ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty
string. Returns NULL if str is NULL. ASCII() works for 8-bit characters.

mysql> SELECT ASCII('2');
 -> 50
mysql> SELECT ASCII(2);
 -> 50
mysql> SELECT ASCII('dx');
 -> 100

See also the ORD() function.

• BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number.
This is equivalent to CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
 -> '1100'

• BIT_LENGTH(str)

Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
 -> 32

• CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters
given by the code values of those integers. NULL values are skipped.

mysql> SELECT CHAR(77,121,83,81,'76');

String Functions

1391

 -> 'MySQL'
mysql> SELECT CHAR(77,77.3,'77.3');
 -> 'MMM'

CHAR() arguments larger than 255 are converted into multiple result bytes. For example,
CHAR(256) is equivalent to CHAR(1,0), and CHAR(256*256) is equivalent to CHAR(1,0,0):

mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+
| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100 | 0100 |
+----------------+----------------+
mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000 | 010000 |
+------------------+--------------------+

By default, CHAR() returns a binary string. To produce a string in a given character set, use the
optional USING clause:

mysql> SELECT CHARSET(CHAR(X'65')), CHARSET(CHAR(X'65' USING utf8));
+----------------------+---------------------------------+
| CHARSET(CHAR(X'65')) | CHARSET(CHAR(X'65' USING utf8)) |
+----------------------+---------------------------------+
| binary | utf8 |
+----------------------+---------------------------------+

If USING is given and the result string is illegal for the given character set, a warning is issued. Also,
if strict SQL mode is enabled, the result from CHAR() becomes NULL.

• CHAR_LENGTH(str)

Returns the length of the string str, measured in characters. A multibyte character counts as a
single character. This means that for a string containing five 2-byte characters, LENGTH() returns
10, whereas CHAR_LENGTH() returns 5.

• CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

• CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments.
If all arguments are nonbinary strings, the result is a nonbinary string. If the arguments include
any binary strings, the result is a binary string. A numeric argument is converted to its equivalent
nonbinary string form.

CONCAT() returns NULL if any argument is NULL.

mysql> SELECT CONCAT('My', 'S', 'QL');
 -> 'MySQL'
mysql> SELECT CONCAT('My', NULL, 'QL');
 -> NULL
mysql> SELECT CONCAT(14.3);
 -> '14.3'

For quoted strings, concatenation can be performed by placing the strings next to each other:

mysql> SELECT 'My' 'S' 'QL';
 -> 'MySQL'

String Functions

1392

• CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first
argument is the separator for the rest of the arguments. The separator is added between the strings
to be concatenated. The separator can be a string, as can the rest of the arguments. If the separator
is NULL, the result is NULL.

mysql> SELECT CONCAT_WS(',','First name','Second name','Last Name');
 -> 'First name,Second name,Last Name'
mysql> SELECT CONCAT_WS(',','First name',NULL,'Last Name');
 -> 'First name,Last Name'

CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the
separator argument.

• ELT(N,str1,str2,str3,...)

ELT() returns the Nth element of the list of strings: str1 if N = 1, str2 if N = 2, and so on. Returns
NULL if N is less than 1 or greater than the number of arguments. ELT() is the complement of
FIELD().

mysql> SELECT ELT(1, 'ej', 'Heja', 'hej', 'foo');
 -> 'ej'
mysql> SELECT ELT(4, 'ej', 'Heja', 'hej', 'foo');
 -> 'foo'

• EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every
bit not set in the value, you get an off string. Bits in bits are examined from right to left (from
low-order to high-order bits). Strings are added to the result from left to right, separated by the
separator string (the default being the comma character “,”). The number of bits examined is
given by number_of_bits, which has a default of 64 if not specified. number_of_bits is silently
clipped to 64 if larger than 64. It is treated as an unsigned integer, so a value of −1 is effectively the
same as 64.

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
 -> 'Y,N,Y,N'
mysql> SELECT EXPORT_SET(6,'1','0',',',10);
 -> '0,1,1,0,0,0,0,0,0,0'

• FIELD(str,str1,str2,str3,...)

Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.

If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are
numbers, they are compared as numbers. Otherwise, the arguments are compared as double.

If str is NULL, the return value is 0 because NULL fails equality comparison with any value.
FIELD() is the complement of ELT().

mysql> SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo');
 -> 2
mysql> SELECT FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo');
 -> 0

• FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of N
substrings. A string list is a string composed of substrings separated by “,” characters. If the first
argument is a constant string and the second is a column of type SET, the FIND_IN_SET() function

String Functions

1393

is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty
string. Returns NULL if either argument is NULL. This function does not work properly if the first
argument contains a comma (“,”) character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');
 -> 2

• FORMAT(X,D[,locale])

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. If D is 0, the result has no decimal point or fractional part.

The optional third parameter enables a locale to be specified to be used for the result number's
decimal point, thousands separator, and grouping between separators. Permissible locale values are
the same as the legal values for the lc_time_names system variable (see Section 10.7, “MySQL
Server Locale Support”). If no locale is specified, the default is 'en_US'.

mysql> SELECT FORMAT(12332.123456, 4);
 -> '12,332.1235'
mysql> SELECT FORMAT(12332.1,4);
 -> '12,332.1000'
mysql> SELECT FORMAT(12332.2,0);
 -> '12,332'
mysql> SELECT FORMAT(12332.2,2,'de_DE');
 -> '12.332,20'

• FROM_BASE64(str)

Takes a string encoded with the base-64 encoded rules used by TO_BASE64() and returns the
decoded result as a binary string. The result is NULL if the argument is NULL or not a valid base-64
string. See the description of TO_BASE64() for details about the encoding and decoding rules.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
 -> 'JWJj', 'abc'

• HEX(str), HEX(N)

For a string argument str, HEX() returns a hexadecimal string representation of str where each
byte of each character in str is converted to two hexadecimal digits. (Multibyte characters therefore
become more than two digits.) The inverse of this operation is performed by the UNHEX() function.

For a numeric argument N, HEX() returns a hexadecimal string representation of the value of N
treated as a longlong (BIGINT) number. This is equivalent to CONV(N,10,16). The inverse of this
operation is performed by CONV(HEX(N),16,10).

mysql> SELECT X'616263', HEX('abc'), UNHEX(HEX('abc'));
 -> 'abc', 616263, 'abc'
mysql> SELECT HEX(255), CONV(HEX(255),16,10);
 -> 'FF', 255

• INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long
replaced by the string newstr. Returns the original string if pos is not within the length of the string.
Replaces the rest of the string from position pos if len is not within the length of the rest of the
string. Returns NULL if any argument is NULL.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
 -> 'QuWhattic'
mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
 -> 'Quadratic'

String Functions

1394

mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
 -> 'QuWhat'

This function is multibyte safe.

• INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as
the two-argument form of LOCATE(), except that the order of the arguments is reversed.

mysql> SELECT INSTR('foobarbar', 'bar');
 -> 4
mysql> SELECT INSTR('xbar', 'foobar');
 -> 0

This function is multibyte safe, and is case sensitive only if at least one argument is a binary string.

• LCASE(str)

LCASE() is a synonym for LOWER().

In MySQL 5.7, LCASE() used in a view is rewritten as LOWER() when storing the view's definition.
(Bug #12844279)

• LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT LEFT('foobarbar', 5);
 -> 'fooba'

This function is multibyte safe.

• LENGTH(str)

Returns the length of the string str, measured in bytes. A multibyte character counts as multiple
bytes. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas
CHAR_LENGTH() returns 5.

mysql> SELECT LENGTH('text');
 -> 4

Note

The Length() OpenGIS spatial function is named ST_Length() in MySQL.

• LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located
on the server host, you must specify the full path name to the file, and you must have the FILE
privilege. The file must be readable by all and its size less than max_allowed_packet bytes. If the
secure_file_priv system variable is set to a nonempty directory name, the file to be loaded must
be located in that directory.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied,
the function returns NULL.

The character_set_filesystem system variable controls interpretation of file names that are
given as literal strings.

mysql> UPDATE t

String Functions

1395

 SET blob_col=LOAD_FILE('/tmp/picture')
 WHERE id=1;

• LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The
second syntax returns the position of the first occurrence of substring substr in string str, starting
at position pos. Returns 0 if substr is not in str.

mysql> SELECT LOCATE('bar', 'foobarbar');
 -> 4
mysql> SELECT LOCATE('xbar', 'foobar');
 -> 0
mysql> SELECT LOCATE('bar', 'foobarbar', 5);
 -> 7

This function is multibyte safe, and is case-sensitive only if at least one argument is a binary string.

• LOWER(str)

Returns the string str with all characters changed to lowercase according to the current character
set mapping. The default is latin1 (cp1252 West European).

mysql> SELECT LOWER('QUADRATICALLY');
 -> 'quadratically'

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY,
BLOB). To perform lettercase conversion, convert the string to a nonbinary string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

For Unicode character sets, LOWER() and UPPER() work accounting to Unicode Collation Algorithm
(UCA) 5.2.0 for xxx_unicode_520_ci collations and for language-specific collations that are
derived from them. For other Unicode collations, LOWER() and UPPER() work accounting to
Unicode Collation Algorithm (UCA) 4.0.0. See Section 10.1.14.1, “Unicode Character Sets”.

This function is multibyte safe.

In previous versions of MySQL, LOWER() used within a view was rewritten as LCASE() when storing
the view's definition. In MySQL 5.7, LOWER() is never rewritten in such cases, but LCASE() used
within views is instead rewritten as LOWER(). (Bug #12844279)

• LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
 -> '??hi'
mysql> SELECT LPAD('hi',1,'??');
 -> 'h'

• LTRIM(str)

Returns the string str with leading space characters removed.

String Functions

1396

mysql> SELECT LTRIM(' barbar');
 -> 'barbar'

This function is multibyte safe.

• MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by “,” characters) consisting of the
strings that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so
on. NULL values in str1, str2, ... are not appended to the result.

mysql> SELECT MAKE_SET(1,'a','b','c');
 -> 'a'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
 -> 'hello,world'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
 -> 'hello'
mysql> SELECT MAKE_SET(0,'a','b','c');
 -> ''

• MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

• OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This
is equivalent to CONV(N,10,8). Returns NULL if N is NULL.

mysql> SELECT OCT(12);
 -> '14'

• OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

• ORD(str)

If the leftmost character of the string str is a multibyte character, returns the code for that character,
calculated from the numeric values of its constituent bytes using this formula:

 (1st byte code)
+ (2nd byte code * 256)
+ (3rd byte code * 2562) ...

If the leftmost character is not a multibyte character, ORD() returns the same value as the ASCII()
function.

mysql> SELECT ORD('2');
 -> 50

• POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

• QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL
statement. The string is returned enclosed by single quotation marks and with each instance of
backslash (“\”), single quote (“'”), ASCII NUL, and Control+Z preceded by a backslash. If the
argument is NULL, the return value is the word “NULL” without enclosing single quotation marks.

String Functions

1397

mysql> SELECT QUOTE('Don\'t!');
 -> 'Don\'t!'
mysql> SELECT QUOTE(NULL);
 -> NULL

For comparison, see the quoting rules for literal strings and within the C API in Section 9.1.1, “String
Literals”, and Section 23.8.7.55, “mysql_real_escape_string()”.

• REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns
an empty string. Returns NULL if str or count are NULL.

mysql> SELECT REPEAT('MySQL', 3);
 -> 'MySQLMySQLMySQL'

• REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str.
REPLACE() performs a case-sensitive match when searching for from_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

This function is multibyte safe.

• REVERSE(str)

Returns the string str with the order of the characters reversed.

mysql> SELECT REVERSE('abc');
 -> 'cba'

This function is multibyte safe.

• RIGHT(str,len)

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT RIGHT('foobarbar', 4);
 -> 'rbar'

This function is multibyte safe.

• RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT RPAD('hi',5,'?');
 -> 'hi???'
mysql> SELECT RPAD('hi',1,'?');
 -> 'h'

This function is multibyte safe.

• RTRIM(str)

Returns the string str with trailing space characters removed.

String Functions

1398

mysql> SELECT RTRIM('barbar ');
 -> 'barbar'

This function is multibyte safe.

• SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have identical
soundex strings. A standard soundex string is four characters long, but the SOUNDEX() function
returns an arbitrarily long string. You can use SUBSTRING() on the result to get a standard soundex
string. All nonalphabetic characters in str are ignored. All international alphabetic characters outside
the A-Z range are treated as vowels.

Important

When using SOUNDEX(), you should be aware of the following limitations:

• This function, as currently implemented, is intended to work well with strings that are in the English
language only. Strings in other languages may not produce reliable results.

• This function is not guaranteed to provide consistent results with strings that use multibyte
character sets, including utf-8.

We hope to remove these limitations in a future release. See Bug #22638 for more information.

mysql> SELECT SOUNDEX('Hello');
 -> 'H400'
mysql> SELECT SOUNDEX('Quadratically');
 -> 'Q36324'

Note

This function implements the original Soundex algorithm, not the more
popular enhanced version (also described by D. Knuth). The difference is
that original version discards vowels first and duplicates second, whereas the
enhanced version discards duplicates first and vowels second.

• expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

• SPACE(N)

Returns a string consisting of N space characters.

mysql> SELECT SPACE(6);
 -> ' '

• SUBSTR(str,pos), SUBSTR(str FROM pos), SUBSTR(str,pos,len), SUBSTR(str FROM
pos FOR len)

SUBSTR() is a synonym for SUBSTRING().

• SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len),
SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at position pos.
The forms with a len argument return a substring len characters long from string str, starting at
position pos. The forms that use FROM are standard SQL syntax. It is also possible to use a negative
value for pos. In this case, the beginning of the substring is pos characters from the end of the

String Functions

1399

string, rather than the beginning. A negative value may be used for pos in any of the forms of this
function.

For all forms of SUBSTRING(), the position of the first character in the string from which the
substring is to be extracted is reckoned as 1.

mysql> SELECT SUBSTRING('Quadratically',5);
 -> 'ratically'
mysql> SELECT SUBSTRING('foobarbar' FROM 4);
 -> 'barbar'
mysql> SELECT SUBSTRING('Quadratically',5,6);
 -> 'ratica'
mysql> SELECT SUBSTRING('Sakila', -3);
 -> 'ila'
mysql> SELECT SUBSTRING('Sakila', -5, 3);
 -> 'aki'
mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
 -> 'ki'

This function is multibyte safe.

If len is less than 1, the result is the empty string.

• SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count
is positive, everything to the left of the final delimiter (counting from the left) is returned. If count
is negative, everything to the right of the final delimiter (counting from the right) is returned.
SUBSTRING_INDEX() performs a case-sensitive match when searching for delim.

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
 -> 'www.mysql'
mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
 -> 'mysql.com'

This function is multibyte safe.

• TO_BASE64(str)

Converts the string argument to base-64 encoded form and returns the result as a character string
with the connection character set and collation. If the argument is not a string, it is converted to a
string before conversion takes place. The result is NULL if the argument is NULL. Base-64 encoded
strings can be decoded using the FROM_BASE64() function.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
 -> 'JWJj', 'abc'

Different base-64 encoding schemes exist. These are the encoding and decoding rules used by
TO_BASE64() and FROM_BASE64():

• The encoding for alphabet value 62 is '+'.

• The encoding for alphabet value 63 is '/'.

• Encoded output consists of groups of 4 printable characters. Each 3 bytes of the input data are
encoded using 4 characters. If the last group is incomplete, it is padded with '=' characters to a
length of 4.

• A newline is added after each 76 characters of encoded output to divide long output into multiple
lines.

• Decoding recognizes and ignores newline, carriage return, tab, and space.

String Functions

1400

• TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM]
str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH,
LEADING, or TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces
are removed.

mysql> SELECT TRIM(' bar ');
 -> 'bar'
mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
 -> 'barxxx'
mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
 -> 'bar'
mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
 -> 'barx'

This function is multibyte safe.

• UCASE(str)

UCASE() is a synonym for UPPER().

In MySQL 5.7, UCASE() used in a view is rewritten as UPPER() when storing the view's definition.
(Bug #12844279)

• UNHEX(str)

For a string argument str, UNHEX(str) interprets each pair of characters in the argument as a
hexadecimal number and converts it to the byte represented by the number. The return value is a
binary string.

mysql> SELECT UNHEX('4D7953514C');
 -> 'MySQL'
mysql> SELECT X'4D7953514C';
 -> 'MySQL'
mysql> SELECT UNHEX(HEX('string'));
 -> 'string'
mysql> SELECT HEX(UNHEX('1267'));
 -> '1267'

The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a'
.. 'f'. If the argument contains any nonhexadecimal digits, the result is NULL:

mysql> SELECT UNHEX('GG');
+-------------+
| UNHEX('GG') |
+-------------+
| NULL |
+-------------+

A NULL result can occur if the argument to UNHEX() is a BINARY column, because values are
padded with 0x00 bytes when stored but those bytes are not stripped on retrieval. For example,
'41' is stored into a CHAR(3) column as '41 ' and retrieved as '41' (with the trailing pad
space stripped), so UNHEX() for the column value returns 'A'. By contrast '41' is stored into
a BINARY(3) column as '41\0' and retrieved as '41\0' (with the trailing pad 0x00 byte not
stripped). '\0' is not a legal hexadecimal digit, so UNHEX() for the column value returns NULL.

For a numeric argument N, the inverse of HEX(N) is not performed by UNHEX(). Use
CONV(HEX(N),16,10) instead. See the description of HEX().

• UPPER(str)

String Functions

1401

Returns the string str with all characters changed to uppercase according to the current character
set mapping. The default is latin1 (cp1252 West European).

mysql> SELECT UPPER('Hej');
 -> 'HEJ'

See the description of LOWER() for information that also applies to UPPER(). This included
information about how to perform lettercase conversion of binary strings (BINARY, VARBINARY,
BLOB) for which these functions are ineffective, and information about case folding for Unicode
character sets.

This function is multibyte safe.

In previous versions of MySQL, UPPER() used within a view was rewritten as UCASE() when storing
the view's definition. In MySQL 5.7, UPPER() is never rewritten in such cases, but UCASE() used
within views is instead rewritten as UPPER(). (Bug #12844279)

• WEIGHT_STRING(str [AS {CHAR|BINARY}(N)] [LEVEL levels] [flags])

levels: N [ASC|DESC|REVERSE] [, N [ASC|DESC|REVERSE]] ...

This function returns the weight string for the input string. The return value is a binary string that
represents the sorting and comparison value of the string. It has these properties:

• If WEIGHT_STRING(str1) = WEIGHT_STRING(str2), then str1 = str2 (str1 and str2 are
considered equal)

• If WEIGHT_STRING(str1) < WEIGHT_STRING(str2), then str1 < str2 (str1 sorts before
str2)

WEIGHT_STRING() can be used for testing and debugging of collations, especially if you are adding
a new collation. See Section 10.4, “Adding a Collation to a Character Set”.

The input string, str, is a string expression. If the input is a nonbinary (character) string such as a
CHAR, VARCHAR, or TEXT value, the return value contains the collation weights for the string. If the
input is a binary (byte) string such as a BINARY, VARBINARY, or BLOB value, the return value is the
same as the input (the weight for each byte in a binary string is the byte value). If the input is NULL,
WEIGHT_STRING() returns NULL.

Examples:

mysql> SET @s = _latin1 'AB' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+

mysql> SET @s = _latin1 'ab' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 4142 |
+------+---------+------------------------+

mysql> SET @s = CAST('AB' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+

String Functions

1402

| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+

mysql> SET @s = CAST('ab' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 6162 |
+------+---------+------------------------+

The preceding examples use HEX() to display the WEIGHT_STRING() result. Because the result
is a binary value, HEX() can be especially useful when the result contains nonprinting values, to
display it in printable form:

mysql> SET @s = CONVERT(X'C39F' USING utf8) COLLATE utf8_czech_ci;
mysql> SELECT HEX(WEIGHT_STRING(@s));
+------------------------+
| HEX(WEIGHT_STRING(@s)) |
+------------------------+
| 0FEA0FEA |
+------------------------+

For non-NULL return values, the data type of the value is VARBINARY if its length is within the
maximum length for VARBINARY, otherwise the data type is BLOB.

The AS clause may be given to cast the input string to a nonbinary or binary string and to force it to a
given length:

• AS CHAR(N) casts the string to a nonbinary string and pads it on the right with spaces to a length
of N characters. N must be at least 1. If N is less than the length of the input string, the string is
truncated to N characters. No warning occurs for truncation.

• AS BINARY(N) is similar but casts the string to a binary string, N is measured in bytes (not
characters), and padding uses 0x00 bytes (not spaces).

mysql> SELECT HEX(WEIGHT_STRING('ab' AS CHAR(4)));
+-------------------------------------+
| HEX(WEIGHT_STRING('ab' AS CHAR(4))) |
+-------------------------------------+
| 41422020 |
+-------------------------------------+

mysql> SELECT HEX(WEIGHT_STRING('ab' AS BINARY(4)));
+---------------------------------------+
| HEX(WEIGHT_STRING('ab' AS BINARY(4))) |
+---------------------------------------+
| 61620000 |
+---------------------------------------+

The LEVEL clause may be given to specify that the return value should contain weights for specific
collation levels.

The levels specifier following the LEVEL keyword may be given either as a list of one or more
integers separated by commas, or as a range of two integers separated by a dash. Whitespace
around the punctuation characters does not matter.

Examples:

LEVEL 1

String Comparison Functions

1403

LEVEL 2, 3, 5
LEVEL 1-3

Any level less than 1 is treated as 1. Any level greater than the maximum for the input string collation
is treated as maximum for the collation. The maximum varies per collation, but is never greater than
6.

In a list of levels, levels must be given in increasing order. In a range of levels, if the second number
is less than the first, it is treated as the first number (for example, 4-2 is the same as 4-4).

If the LEVEL clause is omitted, MySQL assumes LEVEL 1 - max, where max is the maximum level
for the collation.

If LEVEL is specified using list syntax (not range syntax), any level number can be followed by these
modifiers:

• ASC: Return the weights without modification. This is the default.

• DESC: Return bitwise-inverted weights (for example, 0x78f0 DESC = 0x870f).

• REVERSE: Return the weights in reverse order (that is,the weights for the reversed string, with the
first character last and the last first).

Examples:

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1));
+--------------------------------------+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1)) |
+--------------------------------------+
| 007FFF |
+--------------------------------------+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC)) |
+---+
| FF8000 |
+---+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE));
+--+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE)) |
+--+
| FF7F00 |
+--+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE)) |
+---+
| 0080FF |
+---+

The flags clause currently is unused.

12.5.1 String Comparison Functions
Table 12.8 String Comparison Operators

Name Description

LIKE Simple pattern matching

NOT LIKE Negation of simple pattern matching

String Comparison Functions

1404

Name Description

STRCMP() Compare two strings

If a string function is given a binary string as an argument, the resulting string is also a binary string. A
number converted to a string is treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case sensitive, the comparison is performed in
case-sensitive fashion.

• expr LIKE pat [ESCAPE 'escape_char']

Pattern matching using a SQL pattern. Returns 1 (TRUE) or 0 (FALSE). If either expr or pat is
NULL, the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column.

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results
different from the = comparison operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+---+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+---+
| 0 |
+---+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
| 1 |
+--------------------------------------+

In particular, trailing spaces are significant, which is not true for CHAR or VARCHAR comparisons
performed with the = operator:

mysql> SELECT 'a' = 'a ', 'a' LIKE 'a ';
+------------+---------------+
| 'a' = 'a ' | 'a' LIKE 'a ' |
+------------+---------------+
| 1 | 0 |
+------------+---------------+
1 row in set (0.00 sec)

With LIKE you can use the following two wildcard characters in the pattern:

• % matches any number of characters, even zero characters.

• _ matches exactly one character.

mysql> SELECT 'David!' LIKE 'David_';
 -> 1
mysql> SELECT 'David!' LIKE '%D%v%';
 -> 1

To test for literal instances of a wildcard character, precede it by the escape character. If you do not
specify the ESCAPE character, “\” is assumed.

• \% matches one “%” character.

• _ matches one “_” character.

String Comparison Functions

1405

mysql> SELECT 'David!' LIKE 'David_';
 -> 0
mysql> SELECT 'David_' LIKE 'David_';
 -> 1

To specify a different escape character, use the ESCAPE clause:

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
 -> 1

The escape sequence should be empty or one character long. The expression must evaluate as a
constant at execution time. If the NO_BACKSLASH_ESCAPES SQL mode is enabled, the sequence
cannot be empty.

The following two statements illustrate that string comparisons are not case sensitive unless one of
the operands is a case sensitive (uses a case-sensitive collation or is a binary string):

mysql> SELECT 'abc' LIKE 'ABC';
 -> 1
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_general_cs;
 -> 0
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_bin;
 -> 0
mysql> SELECT 'abc' LIKE BINARY 'ABC';
 -> 0

As an extension to standard SQL, MySQL permits LIKE on numeric expressions.

mysql> SELECT 10 LIKE '1%';
 -> 1

Note

Because MySQL uses C escape syntax in strings (for example, “\n” to
represent a newline character), you must double any “\” that you use in LIKE
strings. For example, to search for “\n”, specify it as “\\n”. To search for “\”,
specify it as “\\\\”; this is because the backslashes are stripped once by the
parser and again when the pattern match is made, leaving a single backslash
to be matched against.

Exception: At the end of the pattern string, backslash can be specified as
“\\”. At the end of the string, backslash stands for itself because there is
nothing following to escape. Suppose that a table contains the following
values:

mysql> SELECT filename FROM t1;
+--------------+
| filename |
+--------------+
| C: |
| C:\ |
| C:\Programs |
| C:\Programs\ |
+--------------+

To test for values that end with backslash, you can match the values using
either of the following patterns:

mysql> SELECT filename, filename LIKE '%\\' FROM t1;
+--------------+---------------------+
| filename | filename LIKE '%\\' |
+--------------+---------------------+

String Comparison Functions

1406

C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+---------------------+

mysql> SELECT filename, filename LIKE '%\\\\' FROM t1;
+--------------+-----------------------+
| filename | filename LIKE '%\\\\' |
+--------------+-----------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+-----------------------+

• expr NOT LIKE pat [ESCAPE 'escape_char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

Note

Aggregate queries involving NOT LIKE comparisons with columns containing
NULL may yield unexpected results. For example, consider the following table
and data:

CREATE TABLE foo (bar VARCHAR(10));

INSERT INTO foo VALUES (NULL), (NULL);

The query SELECT COUNT(*) FROM foo WHERE bar LIKE '%baz%';
returns 0. You might assume that SELECT COUNT(*) FROM foo WHERE
bar NOT LIKE '%baz%'; would return 2. However, this is not the case:
The second query returns 0. This is because NULL NOT LIKE expr always
returns NULL, regardless of the value of expr. The same is true for aggregate
queries involving NULL and comparisons using NOT RLIKE or NOT REGEXP.
In such cases, you must test explicitly for NOT NULL using OR (and not AND),
as shown here:

SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%' OR bar IS NULL;

• STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second
according to the current sort order, and 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
 -> -1
mysql> SELECT STRCMP('text2', 'text');
 -> 1
mysql> SELECT STRCMP('text', 'text');
 -> 0

STRCMP() performs the comparison using the collation of the arguments.

mysql> SET @s1 = _latin1 'x' COLLATE latin1_general_ci;
mysql> SET @s2 = _latin1 'X' COLLATE latin1_general_ci;
mysql> SET @s3 = _latin1 'x' COLLATE latin1_general_cs;
mysql> SET @s4 = _latin1 'X' COLLATE latin1_general_cs;
mysql> SELECT STRCMP(@s1, @s2), STRCMP(@s3, @s4);
+------------------+------------------+
| STRCMP(@s1, @s2) | STRCMP(@s3, @s4) |
+------------------+------------------+
| 0 | 1 |

Regular Expressions

1407

+------------------+------------------+

If the collations are incompatible, one of the arguments must be converted to be compatible with the
other. See Section 10.1.7.5, “Collation of Expressions”.

mysql> SELECT STRCMP(@s1, @s3);
ERROR 1267 (HY000): Illegal mix of collations (latin1_general_ci,IMPLICIT)
and (latin1_general_cs,IMPLICIT) for operation 'strcmp'
mysql> SELECT STRCMP(@s1, @s3 COLLATE latin1_general_ci);
+--+
| STRCMP(@s1, @s3 COLLATE latin1_general_ci) |
+--+
| 0 |
+--+

12.5.2 Regular Expressions
Table 12.9 String Regular Expression Operators

Name Description

NOT REGEXP Negation of REGEXP

REGEXP Pattern matching using regular expressions

RLIKE Synonym for REGEXP

A regular expression is a powerful way of specifying a pattern for a complex search.

MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conformance
with POSIX 1003.2. MySQL uses the extended version to support pattern-matching operations
performed with the REGEXP operator in SQL statements.

This section summarizes, with examples, the special characters and constructs that can be used in
MySQL for REGEXP operations. It does not contain all the details that can be found in Henry Spencer's
regex(7) manual page. That manual page is included in MySQL source distributions, in the regex.7
file under the regex directory. See also Section 3.3.4.7, “Pattern Matching”.

Regular Expression Operators

• expr NOT REGEXP pat, expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).

• expr REGEXP pat, expr RLIKE pat

Performs a pattern match of a string expression expr against a pattern pat. The pattern can be an
extended regular expression, the syntax for which is discussed later in this section. Returns 1 if expr
matches pat; otherwise it returns 0. If either expr or pat is NULL, the result is NULL. RLIKE is a
synonym for REGEXP, provided for mSQL compatibility.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column.

Note

Because MySQL uses the C escape syntax in strings (for example, “\n” to
represent the newline character), you must double any “\” that you use in
your REGEXP strings.

REGEXP is not case sensitive, except when used with binary strings.

mysql> SELECT 'Monty!' REGEXP '.*';
 -> 1

Regular Expressions

1408

mysql> SELECT 'new*\n*line' REGEXP 'new*.*line';
 -> 1
mysql> SELECT 'a' REGEXP 'A', 'a' REGEXP BINARY 'A';
 -> 1 0
mysql> SELECT 'a' REGEXP '^[a-d]';
 -> 1

REGEXP and RLIKE use the character set and collations of the arguments when deciding the type
of a character and performing the comparison. If the arguments have different character sets or
collations, coercibility rules apply as described in Section 10.1.7.5, “Collation of Expressions”.

Warning

The REGEXP and RLIKE operators work in byte-wise fashion, so they are not
multibyte safe and may produce unexpected results with multibyte character
sets. In addition, these operators compare characters by their byte values
and accented characters may not compare as equal even if a given collation
treats them as equal.

Syntax of Regular Expressions

A regular expression describes a set of strings. The simplest regular expression is one that has no
special characters in it. For example, the regular expression hello matches hello and nothing else.

Nontrivial regular expressions use certain special constructs so that they can match more than one
string. For example, the regular expression hello|word matches either the string hello or the string
word.

As a more complex example, the regular expression B[an]*s matches any of the strings Bananas,
Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any number of a
or n characters in between.

A regular expression for the REGEXP operator may use any of the following special characters and
constructs:

• ^

Match the beginning of a string.

mysql> SELECT 'fo\nfo' REGEXP '^fo$'; -> 0
mysql> SELECT 'fofo' REGEXP '^fo'; -> 1

• $

Match the end of a string.

mysql> SELECT 'fo\no' REGEXP '^fo\no$'; -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$'; -> 0

• .

Match any character (including carriage return and newline).

mysql> SELECT 'fofo' REGEXP '^f.*$'; -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$'; -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n'; -> 1

Regular Expressions

1409

mysql> SELECT 'Bn' REGEXP '^Ba*n'; -> 1

• a+

Match any sequence of one or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba+n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n'; -> 0

• a?

Match either zero or one a character.

mysql> SELECT 'Bn' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Baan' REGEXP '^Ba?n'; -> 0

• de|abc

Match either of the sequences de or abc.

mysql> SELECT 'pi' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'axe' REGEXP 'pi|apa'; -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$'; -> 0

• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT 'pi' REGEXP '^(pi)*$'; -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$'; -> 0
mysql> SELECT 'pipi' REGEXP '^(pi)*$'; -> 1

• {1}, {2,3}

{n} or {m,n} notation provides a more general way of writing regular expressions that match many
occurrences of the previous atom (or “piece”) of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of
a. a{m,n} matches m through n instances of a, inclusive.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive. If both m and n are
given, m must be less than or equal to n.

mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e'; -> 0
mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e'; -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e'; -> 1

Regular Expressions

1410

• [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between two
other characters forms a range that matches all characters from the first character to the second.
For example, [0-9] matches any decimal digit. To include a literal] character, it must immediately
follow the opening bracket [. To include a literal - character, it must be written first or last. Any
character that does not have a defined special meaning inside a [] pair matches only itself.

mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$'; -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$'; -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$'; -> 1
mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$'; -> 0

• [.characters.]

Within a bracket expression (written using [and]), matches the sequence of characters of that
collating element. characters is either a single character or a character name like newline. The
following table lists the permissible character names.

The following table shows the permissible character names and the characters that they match. For
characters given as numeric values, the values are represented in octal.

Name Character Name Character

NUL 0 SOH 001

STX 002 ETX 003

EOT 004 ENQ 005

ACK 006 BEL 007

alert 007 BS 010

backspace '\b' HT 011

tab '\t' LF 012

newline '\n' VT 013

vertical-tab '\v' FF 014

form-feed '\f' CR 015

carriage-return '\r' SO 016

SI 017 DLE 020

DC1 021 DC2 022

DC3 023 DC4 024

NAK 025 SYN 026

ETB 027 CAN 030

EM 031 SUB 032

ESC 033 IS4 034

FS 034 IS3 035

GS 035 IS2 036

RS 036 IS1 037

US 037 space ' '

exclamation-mark '!' quotation-mark '"'

number-sign '#' dollar-sign '$'

Regular Expressions

1411

Name Character Name Character

percent-sign '%' ampersand '&'

apostrophe '\'' left-parenthesis '('

right-parenthesis ')' asterisk '*'

plus-sign '+' comma ','

hyphen '-' hyphen-minus '-'

period '.' full-stop '.'

slash '/' solidus '/'

zero '0' one '1'

two '2' three '3'

four '4' five '5'

six '6' seven '7'

eight '8' nine '9'

colon ':' semicolon ';'

less-than-sign '<' equals-sign '='

greater-than-sign '>' question-mark '?'

commercial-at '@' left-square-
bracket

'['

backslash '\\' reverse-solidus '\\'

right-square-
bracket

']' circumflex '^'

circumflex-accent '^' underscore '_'

low-line '_' grave-accent '`'

left-brace '{' left-curly-
bracket

'{'

vertical-line '|' right-brace '}'

right-curly-
bracket

'}' tilde '~'

DEL 177

mysql> SELECT '~' REGEXP '[[.~.]]'; -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]'; -> 1

• [=character_class=]

Within a bracket expression (written using [and]), [=character_class=] represents an
equivalence class. It matches all characters with the same collation value, including itself. For
example, if o and (+) are the members of an equivalence class, [[=o=]], [[=(+)=]], and
[o(+)] are all synonymous. An equivalence class may not be used as an endpoint of a range.

• [:character_class:]

Within a bracket expression (written using [and]), [:character_class:] represents a
character class that matches all characters belonging to that class. The following table lists the
standard class names. These names stand for the character classes defined in the ctype(3)
manual page. A particular locale may provide other class names. A character class may not be used
as an endpoint of a range.

Numeric Functions and Operators

1412

Character Class
Name

Meaning

alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

digit Digit characters

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+'; -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+'; -> 0

• [[:<:]], [[:>:]]

These markers stand for word boundaries. They match the beginning and end of words, respectively.
A word is a sequence of word characters that is not preceded by or followed by word characters. A
word character is an alphanumeric character in the alnum class or an underscore (_).

mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]'; -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]'; -> 0

To use a literal instance of a special character in a regular expression, precede it by two backslash (\)
characters. The MySQL parser interprets one of the backslashes, and the regular expression library
interprets the other. For example, to match the string 1+2 that contains the special + character, only
the last of the following regular expressions is the correct one:

mysql> SELECT '1+2' REGEXP '1+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\\+2'; -> 1

12.6 Numeric Functions and Operators

Table 12.10 Numeric Functions and Operators

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN2(), ATAN() Return the arc tangent of the two arguments

ATAN() Return the arc tangent

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

Arithmetic Operators

1413

Name Description

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

DIV Integer division

/ Division operator

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOG() Return the natural logarithm of the first argument

- Minus operator

MOD() Return the remainder

%, MOD Modulo operator

PI() Return the value of pi

+ Addition operator

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

* Multiplication operator

TRUNCATE() Truncate to specified number of decimal places

- Change the sign of the argument

12.6.1 Arithmetic Operators

Table 12.11 Arithmetic Operators

Name Description

DIV Integer division

/ Division operator

- Minus operator

%, MOD Modulo operator

+ Addition operator

* Multiplication operator

- Change the sign of the argument

Arithmetic Operators

1414

The usual arithmetic operators are available. The result is determined according to the following rules:

• In the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both operands are
integers.

• If both operands are integers and any of them are unsigned, the result is an unsigned integer. For
subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is signed even if
any operand is unsigned.

• If any of the operands of a +, -, /, *, % is a real or string value, the precision of the result is the
precision of the operand with the maximum precision.

• In division performed with /, the scale of the result when using two exact-value operands is the scale
of the first operand plus the value of the div_precision_increment system variable (which is
4 by default). For example, the result of the expression 5.05 / 0.014 has a scale of six decimal
places (360.714286).

These rules are applied for each operation, such that nested calculations imply the precision of each
component. Hence, (14620 / 9432456) / (24250 / 9432456), resolves first to (0.0014) /
(0.0026), with the final result having 8 decimal places (0.60288653).

Because of these rules and the way they are applied, care should be taken to ensure that components
and subcomponents of a calculation use the appropriate level of precision. See Section 12.10, “Cast
Functions and Operators”.

For information about handling of overflow in numeric expression evaluation, see Section 11.2.6, “Out-
of-Range and Overflow Handling”.

Arithmetic operators apply to numbers. For other types of values, alternative operations may be
available. For example, to add date values, use DATE_ADD(); see Section 12.7, “Date and Time
Functions”.

• +

Addition:

mysql> SELECT 3+5;
 -> 8

• -

Subtraction:

mysql> SELECT 3-5;
 -> -2

• -

Unary minus. This operator changes the sign of the operand.

mysql> SELECT - 2;
 -> -2

Note

If this operator is used with a BIGINT, the return value is also a BIGINT. This
means that you should avoid using - on integers that may have the value of
−263.

• *

Multiplication:

Mathematical Functions

1415

mysql> SELECT 3*5;
 -> 15
mysql> SELECT 18014398509481984*18014398509481984.0;
 -> 324518553658426726783156020576256.0
mysql> SELECT 18014398509481984*18014398509481984;
 -> out-of-range error

The last expression produces an error because the result of the integer multiplication exceeds the
64-bit range of BIGINT calculations. (See Section 11.2, “Numeric Types”.)

• /

Division:

mysql> SELECT 3/5;
 -> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);
 -> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result is
converted to an integer.

• DIV

Integer division. Similar to FLOOR(), but is safe with BIGINT values.

If either operand has a noninteger type, the operands are converted to DECIMAL and divided using
DECIMAL arithmetic before converting the result to BIGINT. If the result exceeds BIGINT range, an
error occurs.

mysql> SELECT 5 DIV 2;
 -> 2

• N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M. For more information, see the description
for the MOD() function in Section 12.6.2, “Mathematical Functions”.

12.6.2 Mathematical Functions
Table 12.12 Mathematical Functions

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN2(), ATAN() Return the arc tangent of the two arguments

ATAN() Return the arc tangent

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

Mathematical Functions

1416

Name Description

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOG() Return the natural logarithm of the first argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

All mathematical functions return NULL in the event of an error.

• ABS(X)

Returns the absolute value of X.

mysql> SELECT ABS(2);
 -> 2
mysql> SELECT ABS(-32);
 -> 32

This function is safe to use with BIGINT values.

• ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the range
-1 to 1.

mysql> SELECT ACOS(1);
 -> 0
mysql> SELECT ACOS(1.0001);
 -> NULL
mysql> SELECT ACOS(0);
 -> 1.5707963267949

• ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1
to 1.

Mathematical Functions

1417

mysql> SELECT ASIN(0.2);
 -> 0.20135792079033
mysql> SELECT ASIN('foo');

+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+---+

• ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.

mysql> SELECT ATAN(2);
 -> 1.1071487177941
mysql> SELECT ATAN(-2);
 -> -1.1071487177941

• ATAN(Y,X), ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y /
X, except that the signs of both arguments are used to determine the quadrant of the result.

mysql> SELECT ATAN(-2,2);
 -> -0.78539816339745
mysql> SELECT ATAN2(PI(),0);
 -> 1.5707963267949

• CEIL(X)

CEIL() is a synonym for CEILING().

• CEILING(X)

Returns the smallest integer value not less than X.

mysql> SELECT CEILING(1.23);
 -> 2
mysql> SELECT CEILING(-1.23);
 -> -1

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number
N, converted from base from_base to base to_base. Returns NULL if any argument is NULL. The
argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum
base is 2 and the maximum base is 36. If to_base is a negative number, N is regarded as a signed
number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

mysql> SELECT CONV('a',16,2);

Mathematical Functions

1418

 -> '1010'
mysql> SELECT CONV('6E',18,8);
 -> '172'
mysql> SELECT CONV(-17,10,-18);
 -> '-H'
mysql> SELECT CONV(10+'10'+'10'+X'0a',10,10);
 -> '40'

• COS(X)

Returns the cosine of X, where X is given in radians.

mysql> SELECT COS(PI());
 -> -1

• COT(X)

Returns the cotangent of X.

mysql> SELECT COT(12);
 -> -1.5726734063977
mysql> SELECT COT(0);
 -> NULL

• CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL if
the argument is NULL. The argument is expected to be a string and (if possible) is treated as one if it
is not.

mysql> SELECT CRC32('MySQL');
 -> 3259397556
mysql> SELECT CRC32('mysql');
 -> 2501908538

• DEGREES(X)

Returns the argument X, converted from radians to degrees.

mysql> SELECT DEGREES(PI());
 -> 180
mysql> SELECT DEGREES(PI() / 2);
 -> 90

• EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X. The inverse of this
function is LOG() (using a single argument only) or LN().

mysql> SELECT EXP(2);
 -> 7.3890560989307
mysql> SELECT EXP(-2);
 -> 0.13533528323661
mysql> SELECT EXP(0);
 -> 1

• FLOOR(X)

Returns the largest integer value not greater than X.

mysql> SELECT FLOOR(1.23);
 -> 1
mysql> SELECT FLOOR(-1.23);

Mathematical Functions

1419

 -> -2

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. For details, see Section 12.5, “String Functions”.

• HEX(N_or_S)

This function can be used to obtain a hexadecimal representation of a decimal number or a
string; the manner in which it does so varies according to the argument's type. See this function's
description in Section 12.5, “String Functions”, for details.

• LN(X)

Returns the natural logarithm of X; that is, the base-e logarithm of X. If X is less than or equal to
0.0E0, the function returns NULL and (as of MySQL 5.7.4) a warning “Invalid argument for logarithm”
is reported.

mysql> SELECT LN(2);
 -> 0.69314718055995
mysql> SELECT LN(-2);
 -> NULL

This function is synonymous with LOG(X). The inverse of this function is the EXP() function.

• LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X. If X is less than or
equal to 0.0E0, the function returns NULL and (as of MySQL 5.7.4) a warning “Invalid argument for
logarithm” is reported.

The inverse of this function (when called with a single argument) is the EXP() function.

mysql> SELECT LOG(2);
 -> 0.69314718055995
mysql> SELECT LOG(-2);
 -> NULL

If called with two parameters, this function returns the logarithm of X to the base B. If X is less than or
equal to 0, or if B is less than or equal to 1, then NULL is returned.

mysql> SELECT LOG(2,65536);
 -> 16
mysql> SELECT LOG(10,100);
 -> 2
mysql> SELECT LOG(1,100);
 -> NULL

LOG(B,X) is equivalent to LOG(X) / LOG(B).

• LOG2(X)

Returns the base-2 logarithm of X. If X is less than or equal to 0.0E0, the function returns NULL and
(as of MySQL 5.7.4) a warning “Invalid argument for logarithm” is reported.

mysql> SELECT LOG2(65536);
 -> 16
mysql> SELECT LOG2(-100);

Mathematical Functions

1420

 -> NULL

LOG2() is useful for finding out how many bits a number requires for storage. This function is
equivalent to the expression LOG(X) / LOG(2).

• LOG10(X)

Returns the base-10 logarithm of X. If X is less than or equal to 0.0E0, the function returns NULL and
(as of MySQL 5.7.4) a warning “Invalid argument for logarithm” is reported.

mysql> SELECT LOG10(2);
 -> 0.30102999566398
mysql> SELECT LOG10(100);
 -> 2
mysql> SELECT LOG10(-100);
 -> NULL

LOG10(X) is equivalent to LOG(10,X).

• MOD(N,M), N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M.

mysql> SELECT MOD(234, 10);
 -> 4
mysql> SELECT 253 % 7;
 -> 1
mysql> SELECT MOD(29,9);
 -> 2
mysql> SELECT 29 MOD 9;
 -> 2

This function is safe to use with BIGINT values.

MOD() also works on values that have a fractional part and returns the exact remainder after
division:

mysql> SELECT MOD(34.5,3);
 -> 1.5

MOD(N,0) returns NULL.

• PI()

Returns the value of π (pi). The default number of decimal places displayed is seven, but MySQL
uses the full double-precision value internally.

mysql> SELECT PI();
 -> 3.141593
mysql> SELECT PI()+0.000000000000000000;
 -> 3.141592653589793116

• POW(X,Y)

Returns the value of X raised to the power of Y.

mysql> SELECT POW(2,2);
 -> 4
mysql> SELECT POW(2,-2);
 -> 0.25

• POWER(X,Y)

Mathematical Functions

1421

This is a synonym for POW().

• RADIANS(X)

Returns the argument X, converted from degrees to radians. (Note that π radians equals 180
degrees.)

mysql> SELECT RADIANS(90);
 -> 1.5707963267949

• RAND(), RAND(N)

Returns a random floating-point value v in the range 0 <= v < 1.0. If a constant integer argument N
is specified, it is used as the seed value, which produces a repeatable sequence of column values.
In the following example, note that the sequences of values produced by RAND(3) is the same both
places where it occurs.

mysql> CREATE TABLE t (i INT);
Query OK, 0 rows affected (0.42 sec)

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.61914388706828
2	0.93845168309142
3	0.83482678498591
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.35877890638893
2	0.28941420772058
3	0.37073435016976
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.01 sec)

With a constant initializer, the seed is initialized once when the statement is compiled, prior to
execution. If a nonconstant initializer (such as a column name) is used as the argument, the seed

Mathematical Functions

1422

is initialized with the value for each invocation of RAND(). (One implication of this is that for equal
argument values, RAND() will return the same value each time.)

To obtain a random integer R in the range i <= R < j, use the expression FLOOR(i + RAND() *
(j − i)). For example, to obtain a random integer in the range the range 7 <= R < 12, you could
use the following statement:

SELECT FLOOR(7 + (RAND() * 5));

RAND() in a WHERE clause is re-evaluated every time the WHERE is executed.

You cannot use a column with RAND() values in an ORDER BY clause, because ORDER BY would
evaluate the column multiple times. However, you can retrieve rows in random order like this:

mysql> SELECT * FROM tbl_name ORDER BY RAND();

ORDER BY RAND() combined with LIMIT is useful for selecting a random sample from a set of
rows:

mysql> SELECT * FROM table1, table2 WHERE a=b AND c<d -> ORDER BY RAND() LIMIT 1000;

RAND() is not meant to be a perfect random generator. It is a fast way to generate random numbers
on demand that is portable between platforms for the same MySQL version.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT. (Bug #49222)

• ROUND(X), ROUND(X,D)

Rounds the argument X to D decimal places. The rounding algorithm depends on the data type of
X. D defaults to 0 if not specified. D can be negative to cause D digits left of the decimal point of the
value X to become zero.

mysql> SELECT ROUND(-1.23);
 -> -1
mysql> SELECT ROUND(-1.58);
 -> -2
mysql> SELECT ROUND(1.58);
 -> 2
mysql> SELECT ROUND(1.298, 1);
 -> 1.3
mysql> SELECT ROUND(1.298, 0);
 -> 1
mysql> SELECT ROUND(23.298, -1);
 -> 20

The return type is the same type as that of the first argument (assuming that it is integer, double, or
decimal). This means that for an integer argument, the result is an integer (no decimal places):

mysql> SELECT ROUND(150.000,2), ROUND(150,2);
+------------------+--------------+
| ROUND(150.000,2) | ROUND(150,2) |
+------------------+--------------+
| 150.00 | 150 |
+------------------+--------------+

ROUND() uses the following rules depending on the type of the first argument:

• For exact-value numbers, ROUND() uses the “round half away from zero” or “round toward
nearest” rule: A value with a fractional part of .5 or greater is rounded up to the next integer if
positive or down to the next integer if negative. (In other words, it is rounded away from zero.) A

Mathematical Functions

1423

value with a fractional part less than .5 is rounded down to the next integer if positive or up to the
next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this
means that ROUND() uses the "round to nearest even" rule: A value with any fractional part is
rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For more information, see Section 12.21, “Precision Math”.

• SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or
positive.

mysql> SELECT SIGN(-32);
 -> -1
mysql> SELECT SIGN(0);
 -> 0
mysql> SELECT SIGN(234);
 -> 1

• SIN(X)

Returns the sine of X, where X is given in radians.

mysql> SELECT SIN(PI());
 -> 1.2246063538224e-16
mysql> SELECT ROUND(SIN(PI()));
 -> 0

• SQRT(X)

Returns the square root of a nonnegative number X.

mysql> SELECT SQRT(4);
 -> 2
mysql> SELECT SQRT(20);
 -> 4.4721359549996
mysql> SELECT SQRT(-16);
 -> NULL

• TAN(X)

Returns the tangent of X, where X is given in radians.

mysql> SELECT TAN(PI());
 -> -1.2246063538224e-16
mysql> SELECT TAN(PI()+1);
 -> 1.5574077246549

• TRUNCATE(X,D)

Date and Time Functions

1424

Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or
fractional part. D can be negative to cause D digits left of the decimal point of the value X to become
zero.

mysql> SELECT TRUNCATE(1.223,1);
 -> 1.2
mysql> SELECT TRUNCATE(1.999,1);
 -> 1.9
mysql> SELECT TRUNCATE(1.999,0);
 -> 1
mysql> SELECT TRUNCATE(-1.999,1);
 -> -1.9
mysql> SELECT TRUNCATE(122,-2);
 -> 100
mysql> SELECT TRUNCATE(10.28*100,0);
 -> 1028

All numbers are rounded toward zero.

12.7 Date and Time Functions

This section describes the functions that can be used to manipulate temporal values. See Section 11.3,
“Date and Time Types”, for a description of the range of values each date and time type has and the
valid formats in which values may be specified.

Table 12.13 Date/Time Functions

Name Description

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

CONVERT_TZ() Convert from one timezone to another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURTIME() Return the current time

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATE() Extract the date part of a date or datetime expression

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT() Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format UNIX timestamp as a date

GET_FORMAT() Return a date format string

Date and Time Functions

1425

Name Description

HOUR() Extract the hour

LAST_DAY Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

STR_TO_DATE() Convert a string to a date

SUBDATE() Synonym for DATE_SUB() when invoked with three
arguments

SUBTIME() Subtract times

SYSDATE() Return the time at which the function executes

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIME() Extract the time portion of the expression passed

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument, this function returns the date or
datetime expression; with two arguments, the sum of the
arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted to seconds
since Year 0

UNIX_TIMESTAMP() Return a UNIX timestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

YEAR() Return the year

Date and Time Functions

1426

Name Description

YEARWEEK() Return the year and week

Here is an example that uses date functions. The following query selects all rows with a date_col
value from within the last 30 days:

mysql> SELECT something FROM tbl_name
 -> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

The query also selects rows with dates that lie in the future.

Functions that expect date values usually accept datetime values and ignore the time part. Functions
that expect time values usually accept datetime values and ignore the date part.

Functions that return the current date or time each are evaluated only once per query at the start of
query execution. This means that multiple references to a function such as NOW() within a single query
always produce the same result. (For our purposes, a single query also includes a call to a stored
program (stored routine, trigger, or event) and all subprograms called by that program.) This principle
also applies to CURDATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to
any of their synonyms.

The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and FROM_UNIXTIME()
functions return values in the connection's current time zone, which is available as the value of the
time_zone system variable. In addition, UNIX_TIMESTAMP() assumes that its argument is a
datetime value in the current time zone. See Section 10.6, “MySQL Server Time Zone Support”.

Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00',
whereas others cannot. Functions that extract parts of dates typically work with incomplete dates and
thus can return 0 when you might otherwise expect a nonzero value. For example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
 -> 0, 0

Other functions expect complete dates and return NULL for incomplete dates. These include functions
that perform date arithmetic or that map parts of dates to names. For example:

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
 -> NULL
mysql> SELECT DAYNAME('2006-05-00');
 -> NULL

Several functions are more strict when passed a DATE() function value as their argument and reject
incomplete dates with a day part of zero. These functions are affected: CONVERT_TZ(), DATE_ADD(),
DATE_SUB(), DAYOFYEAR(), LAST_DAY() (permits a day part of zero), TIMESTAMPDIFF(),
TO_DAYS(), TO_SECONDS(), WEEK(), WEEKDAY(), WEEKOFYEAR(), YEARWEEK().

Fractional seconds for TIME, DATETIME, and TIMESTAMP values are supported, with up to
microsecond precision. Functions that take temporal arguments accept values with fractional seconds.
Return values from temporal functions include fractional seconds as appropriate.

• ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for
DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For information on
the INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'
mysql> SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'

Date and Time Functions

1427

When invoked with the days form of the second argument, MySQL treats it as an integer number of
days to be added to expr.

mysql> SELECT ADDDATE('2008-01-02', 31);
 -> '2008-02-02'

• ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression,
and expr2 is a time expression.

mysql> SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');
 -> '2008-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');
 -> '03:00:01.999997'

• CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time
zone given by to_tz and returns the resulting value. Time zones are specified as described in
Section 10.6, “MySQL Server Time Zone Support”. This function returns NULL if the arguments are
invalid.

If the value falls out of the supported range of the TIMESTAMP type when converted from from_tz
to UTC, no conversion occurs. The TIMESTAMP range is described in Section 11.1.2, “Date and
Time Type Overview”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
 -> '2004-01-01 13:00:00'
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
 -> '2004-01-01 22:00:00'

Note

To use named time zones such as 'MET' or 'Europe/Moscow', the time
zone tables must be properly set up. See Section 10.6, “MySQL Server Time
Zone Support”, for instructions.

• CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether
the function is used in a string or numeric context.

mysql> SELECT CURDATE();
 -> '2008-06-13'
mysql> SELECT CURDATE() + 0;
 -> 20080613

• CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

• CURRENT_TIME, CURRENT_TIME([fsp])

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

• CURRENT_TIMESTAMP, CURRENT_TIMESTAMP([fsp])

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

• CURTIME([fsp])

Date and Time Functions

1428

Returns the current time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the
function is used in a string or numeric context. The value is expressed in the current time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT CURTIME();
 -> '23:50:26'
mysql> SELECT CURTIME() + 0;
 -> 235026.000000

• DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
 -> '2003-12-31'

• DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 − expr2 expressed as a value in days from one date to the other.
expr1 and expr2 are date or date-and-time expressions. Only the date parts of the values are used
in the calculation.

mysql> SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');
 -> 1
mysql> SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');
 -> -31

• DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. The date argument specifies the starting date or datetime
value. expr is an expression specifying the interval value to be added or subtracted from the starting
date. expr is a string; it may start with a “-” for negative intervals. unit is a keyword indicating the
units in which the expression should be interpreted.

The INTERVAL keyword and the unit specifier are not case sensitive.

The following table shows the expected form of the expr argument for each unit value.

unit Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES:SECONDS.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS:MINUTES:SECONDS.MICROSECONDS'

Date and Time Functions

1429

unit Value Expected expr Format

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS
HOURS:MINUTES:SECONDS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

The return value depends on the arguments:

• DATETIME if the first argument is a DATETIME (or TIMESTAMP) value, or if the first argument is a
DATE and the unit value uses HOURS, MINUTES, or SECONDS.

• String otherwise.

To ensure that the result is DATETIME, you can use CAST() to convert the first argument to
DATETIME.

MySQL permits any punctuation delimiter in the expr format. Those shown in the table are the
suggested delimiters. If the date argument is a DATE value and your calculations involve only YEAR,
MONTH, and DAY parts (that is, no time parts), the result is a DATE value. Otherwise, the result is a
DATETIME value.

Date arithmetic also can be performed using INTERVAL together with the + or - operator:

date + INTERVAL expr unit
date - INTERVAL expr unit

INTERVAL expr unit is permitted on either side of the + operator if the expression on the other
side is a date or datetime value. For the - operator, INTERVAL expr unit is permitted only on the
right side, because it makes no sense to subtract a date or datetime value from an interval.

mysql> SELECT '2008-12-31 23:59:59' + INTERVAL 1 SECOND;
 -> '2009-01-01 00:00:00'
mysql> SELECT INTERVAL 1 DAY + '2008-12-31';
 -> '2009-01-01'
mysql> SELECT '2005-01-01' - INTERVAL 1 SECOND;
 -> '2004-12-31 23:59:59'
mysql> SELECT DATE_ADD('2000-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2001-01-01 00:00:00'
mysql> SELECT DATE_ADD('2010-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2011-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2005-01-01 00:00:00',
 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2004-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);
 -> '1993-01-01 00:00:01.000001'

Date and Time Functions

1430

If you specify an interval value that is too short (does not include all the interval parts that would
be expected from the unit keyword), MySQL assumes that you have left out the leftmost parts
of the interval value. For example, if you specify a unit of DAY_SECOND, the value of expr is
expected to have days, hours, minutes, and seconds parts. If you specify a value like '1:10',
MySQL assumes that the days and hours parts are missing and the value represents minutes and
seconds. In other words, '1:10' DAY_SECOND is interpreted in such a way that it is equivalent to
'1:10' MINUTE_SECOND. This is analogous to the way that MySQL interprets TIME values as
representing elapsed time rather than as a time of day.

Because expr is treated as a string, be careful if you specify a nonstring value with INTERVAL. For
example, with an interval specifier of HOUR_MINUTE, 6/4 evaluates to 1.5000 and is treated as 1
hour, 5000 minutes:

mysql> SELECT 6/4;
 -> 1.5000
mysql> SELECT DATE_ADD('2009-01-01', INTERVAL 6/4 HOUR_MINUTE);
 -> '2009-01-04 12:20:00'

To ensure interpretation of the interval value as you expect, a CAST() operation may be used. To
treat 6/4 as 1 hour, 5 minutes, cast it to a DECIMAL value with a single fractional digit:

mysql> SELECT CAST(6/4 AS DECIMAL(3,1));
 -> 1.5
mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
 -> INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);
 -> '1970-01-01 13:05:00'

If you add to or subtract from a date value something that contains a time part, the result is
automatically converted to a datetime value:

mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 DAY);
 -> '2013-01-02'
mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 HOUR);
 -> '2013-01-01 01:00:00'

If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the
maximum day for the new month, the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('2009-01-30', INTERVAL 1 MONTH);
 -> '2009-02-28'

Date arithmetic operations require complete dates and do not work with incomplete dates such as
'2006-07-00' or badly malformed dates:

mysql> SELECT DATE_ADD('2006-07-00', INTERVAL 1 DAY);
 -> NULL
mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
 -> NULL

• DATE_FORMAT(date,format)

Formats the date value according to the format string.

The following specifiers may be used in the format string. The “%” character is required before
format specifier characters.

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

Date and Time Functions

1431

Specifier Description

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, …)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the week; WEEK() mode 0

%u Week (00..53), where Monday is the first day of the week; WEEK() mode 1

%V Week (01..53), where Sunday is the first day of the week; WEEK() mode 2;
used with %X

%v Week (01..53), where Monday is the first day of the week; WEEK() mode 3;
used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four
digits; used with %V

%x Year for the week, where Monday is the first day of the week, numeric, four
digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal “%” character

%x x, for any “x” not listed above

Ranges for the month and day specifiers begin with zero due to the fact that MySQL permits the
storing of incomplete dates such as '2014-00-00'.

The language used for day and month names and abbreviations is controlled by the value of the
lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

For the %U, %u, %V, and %v specifiers, see the description of the WEEK() function for information
about the mode values. The mode affects how week numbering occurs.

Date and Time Functions

1432

DATE_FORMAT() returns a string with a character set and collation given by
character_set_connection and collation_connection so that it can return month and
weekday names containing non-ASCII characters.

mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
 -> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
 -> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
 -> '%D %y %a %d %m %b %j');
 -> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
 -> '%H %k %I %r %T %S %w');
 -> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
 -> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
 -> '00'

• DATE_SUB(date,INTERVAL expr unit)

See the description for DATE_ADD().

• DAY(date)

DAY() is a synonym for DAYOFMONTH().

• DAYNAME(date)

Returns the name of the weekday for date. The language used for the name is controlled by the
value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

mysql> SELECT DAYNAME('2007-02-03');
 -> 'Saturday'

• DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31, or 0 for dates such as '0000-00-00'
or '2008-00-00' that have a zero day part.

mysql> SELECT DAYOFMONTH('2007-02-03');
 -> 3

• DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, …, 7 = Saturday). These index
values correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('2007-02-03');
 -> 7

• DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('2007-02-03');
 -> 34

• EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(),
but extracts parts from the date rather than performing date arithmetic.

Date and Time Functions

1433

mysql> SELECT EXTRACT(YEAR FROM '2009-07-02');
 -> 2009
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2009-07-02 01:02:03');
 -> 200907
mysql> SELECT EXTRACT(DAY_MINUTE FROM '2009-07-02 01:02:03');
 -> 20102
mysql> SELECT EXTRACT(MICROSECOND
 -> FROM '2003-01-02 10:30:00.000123');
 -> 123

• FROM_DAYS(N)

Given a day number N, returns a DATE value.

mysql> SELECT FROM_DAYS(730669);
 -> '2007-07-03'

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the
advent of the Gregorian calendar (1582). See Section 12.8, “What Calendar Is Used By MySQL?”.

• FROM_UNIXTIME(unix_timestamp), FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD
HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or
numeric context. The value is expressed in the current time zone. unix_timestamp is an internal
timestamp value such as is produced by the UNIX_TIMESTAMP() function.

If format is given, the result is formatted according to the format string, which is used the same
way as listed in the entry for the DATE_FORMAT() function.

mysql> SELECT FROM_UNIXTIME(1447430881);
 -> '2015-11-13 10:08:01'
mysql> SELECT FROM_UNIXTIME(1447430881) + 0;
 -> 20151113100801
mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
 -> '%Y %D %M %h:%i:%s %x');
 -> '2015 13th November 10:08:01 2015'

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP
values and Unix timestamp values, the conversion is lossy because the mapping is not one-to-one in
both directions. For details, see the description of the UNIX_TIMESTAMP() function.

• GET_FORMAT({DATE|TIME|DATETIME}, {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})

Returns a format string. This function is useful in combination with the DATE_FORMAT() and the
STR_TO_DATE() functions.

The possible values for the first and second arguments result in several possible format strings (for
the specifiers used, see the table in the DATE_FORMAT() function description). ISO format refers to
ISO 9075, not ISO 8601.

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

Date and Time Functions

1434

Function Call Result

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function
returns the same values as for DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
 -> '03.10.2003'
mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
 -> '2003-10-31'

• HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However,
the range of TIME values actually is much larger, so HOUR can return values greater than 23.

mysql> SELECT HOUR('10:05:03');
 -> 10
mysql> SELECT HOUR('272:59:59');
 -> 272

• LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month.
Returns NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');
 -> '2003-02-28'
mysql> SELECT LAST_DAY('2004-02-05');
 -> '2004-02-29'
mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
 -> '2004-01-31'
mysql> SELECT LAST_DAY('2003-03-32');
 -> NULL

• LOCALTIME, LOCALTIME([fsp])

LOCALTIME and LOCALTIME() are synonyms for NOW().

• LOCALTIMESTAMP, LOCALTIMESTAMP([fsp])

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

• MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result
is NULL.

mysql> SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);
 -> '2011-01-31', '2011-02-01'

Date and Time Functions

1435

mysql> SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);
 -> '2011-12-31', '2014-12-31'
mysql> SELECT MAKEDATE(2011,0);
 -> NULL

• MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.

The second argument can have a fractional part.

mysql> SELECT MAKETIME(12,15,30);
 -> '12:15:30'

• MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from
0 to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');
 -> 123456
mysql> SELECT MICROSECOND('2009-12-31 23:59:59.000010');
 -> 10

• MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('2008-02-03 10:05:03');
 -> 5

• MONTH(date)

Returns the month for date, in the range 1 to 12 for January to December, or 0 for dates such as
'0000-00-00' or '2008-00-00' that have a zero month part.

mysql> SELECT MONTH('2008-02-03');
 -> 2

• MONTHNAME(date)

Returns the full name of the month for date. The language used for the name is controlled by the
value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

mysql> SELECT MONTHNAME('2008-02-03');
 -> 'February'

• NOW([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS
format, depending on whether the function is used in a string or numeric context. The value is
expressed in the current time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT NOW();
 -> '2007-12-15 23:50:26'
mysql> SELECT NOW() + 0;
 -> 20071215235026.000000

Date and Time Functions

1436

NOW() returns a constant time that indicates the time at which the statement began to execute.
(Within a stored function or trigger, NOW() returns the time at which the function or triggering
statement began to execute.) This differs from the behavior for SYSDATE(), which returns the exact
time at which it executes.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by
SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations
of SYSDATE(). Setting the timestamp to a nonzero value causes each subsequent invocation of
NOW() to return that value. Setting the timestamp to zero cancels this effect so that NOW() once
again returns the current date and time.

See the description for SYSDATE() for additional information about the differences between the two
functions.

• PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM.
Note that the period argument P is not a date value.

mysql> SELECT PERIOD_ADD(200801,2);
 -> 200803

• PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM
or YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysql> SELECT PERIOD_DIFF(200802,200703);
 -> 11

• QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysql> SELECT QUARTER('2008-04-01');
 -> 2

• SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql> SELECT SECOND('10:05:03');
 -> 3

• SEC_TO_TIME(seconds)

Date and Time Functions

1437

Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The
range of the result is constrained to that of the TIME data type. A warning occurs if the argument
corresponds to a value outside that range.

mysql> SELECT SEC_TO_TIME(2378);
 -> '00:39:38'
mysql> SELECT SEC_TO_TIME(2378) + 0;
 -> 3938

• STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string
format. STR_TO_DATE() returns a DATETIME value if the format string contains both date and
time parts, or a DATE or TIME value if the string contains only date or time parts. If the date, time,
or datetime value extracted from str is illegal, STR_TO_DATE() returns NULL and produces a
warning.

The server scans str attempting to match format to it. The format string can contain literal
characters and format specifiers beginning with %. Literal characters in format must match literally
in str. Format specifiers in format must match a date or time part in str. For the specifiers that
can be used in format, see the DATE_FORMAT() function description.

mysql> SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');
 -> '2013-05-01'
mysql> SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');
 -> '2013-05-01'

Scanning starts at the beginning of str and fails if format is found not to match. Extra characters at
the end of str are ignored.

mysql> SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');
 -> '09:30:17'
mysql> SELECT STR_TO_DATE('a09:30:17','%h:%i:%s');
 -> NULL
mysql> SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');
 -> '09:30:17'

Unspecified date or time parts have a value of 0, so incompletely specified values in str produce a
result with some or all parts set to 0:

mysql> SELECT STR_TO_DATE('abc','abc');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('9','%m');
 -> '0000-09-00'
mysql> SELECT STR_TO_DATE('9','%s');
 -> '00:00:09'

Range checking on the parts of date values is as described in Section 11.3.1, “The DATE,
DATETIME, and TIMESTAMP Types”. This means, for example, that “zero” dates or dates with part
values of 0 are permitted unless the SQL mode is set to disallow such values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
 -> '2004-04-31'

Note

You cannot use format "%X%V" to convert a year-week string to a date
because the combination of a year and week does not uniquely identify a year

Date and Time Functions

1438

and month if the week crosses a month boundary. To convert a year-week to
a date, you should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
 -> '2004-10-18'

• SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym
for DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for
DATE_ADD().

mysql> SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'
mysql> SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'

The second form enables the use of an integer value for days. In such cases, it is interpreted as the
number of days to be subtracted from the date or datetime expression expr.

mysql> SELECT SUBDATE('2008-01-02 12:00:00', 31);
 -> '2007-12-02 12:00:00'

• SUBTIME(expr1,expr2)

SUBTIME() returns expr1 − expr2 expressed as a value in the same format as expr1. expr1 is a
time or datetime expression, and expr2 is a time expression.

mysql> SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');
 -> '2007-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
 -> '-00:59:59.999999'

• SYSDATE([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS
format, depending on whether the function is used in a string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits. Before 5.6.4, any argument is ignored.

SYSDATE() returns the time at which it executes. This differs from the behavior for NOW(), which
returns a constant time that indicates the time at which the statement began to execute. (Within a
stored function or trigger, NOW() returns the time at which the function or triggering statement began
to execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

Date and Time Functions

1439

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by
SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations of
SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected
by SET TIMESTAMP, it is nondeterministic and therefore unsafe for replication if statement-based
binary logging is used. If that is a problem, you can use row-based logging.

Alternatively, you can use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This works if the option is used on both the master and the slave.

The nondeterministic nature of SYSDATE() also means that indexes cannot be used for evaluating
expressions that refer to it.

• TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

mysql> SELECT TIME('2003-12-31 01:02:03');
 -> '01:02:03'
mysql> SELECT TIME('2003-12-31 01:02:03.000123');
 -> '01:02:03.000123'

• TIMEDIFF(expr1,expr2)

TIMEDIFF() returns expr1 − expr2 expressed as a time value. expr1 and expr2 are time or
date-and-time expressions, but both must be of the same type.

The result returned by TIMEDIFF() is limited to the range allowed for TIME values. Alternatively,
you can use either of the functions TIMESTAMPDIFF() and UNIX_TIMESTAMP(), both of which
return integers.

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
 -> '2000:01:01 00:00:00.000001');
 -> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('2008-12-31 23:59:59.000001',
 -> '2008-12-30 01:01:01.000002');
 -> '46:58:57.999999'

• TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime
value. With two arguments, it adds the time expression expr2 to the date or datetime expression
expr1 and returns the result as a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
 -> '2003-12-31 00:00:00'
mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
 -> '2004-01-01 00:00:00'

• TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The
unit for interval is given by the unit argument, which should be one of the following values:
MICROSECOND (microseconds), SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_.
For example, DAY and SQL_TSI_DAY both are legal.

Date and Time Functions

1440

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
 -> '2003-01-02 00:01:00'
mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
 -> '2003-01-09'

• TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns datetime_expr2 − datetime_expr1, where datetime_expr1 and datetime_expr2
are date or datetime expressions. One expression may be a date and the other a datetime; a date
value is treated as a datetime having the time part '00:00:00' where necessary. The unit for the
result (an integer) is given by the unit argument. The legal values for unit are the same as those
listed in the description of the TIMESTAMPADD() function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
 -> 3
mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
 -> -1
mysql> SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');
 -> 128885

Note

The order of the date or datetime arguments for this function is the opposite
of that used with the TIMESTAMP() function when invoked with 2 arguments.

• TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers
only for hours, minutes, seconds, and microseconds. Other specifiers produce a NULL value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers
produce a value larger than the usual range of 0..23. The other hour format specifiers produce the
hour value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
 -> '100 100 04 04 4'

• TIME_TO_SEC(time)

Returns the time argument, converted to seconds.

mysql> SELECT TIME_TO_SEC('22:23:00');
 -> 80580
mysql> SELECT TIME_TO_SEC('00:39:38');
 -> 2378

• TO_DAYS(date)

Given a date date, returns a day number (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
 -> 728779
mysql> SELECT TO_DAYS('2007-10-07');
 -> 733321

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar
(1582), because it does not take into account the days that were lost when the calendar was
changed. For dates before 1582 (and possibly a later year in other locales), results from this function
are not reliable. See Section 12.8, “What Calendar Is Used By MySQL?”, for details.

Date and Time Functions

1441

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in
Section 11.3, “Date and Time Types”. For example, '2008-10-07' and '08-10-07' are seen as
identical dates:

mysql> SELECT TO_DAYS('2008-10-07'), TO_DAYS('08-10-07');
 -> 733687, 733687

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered
invalid. This means that, for '0000-00-00' and '0000-01-01', TO_DAYS() returns the values
shown here:

mysql> SELECT TO_DAYS('0000-00-00');
+-----------------------+
| to_days('0000-00-00') |
+-----------------------+
| NULL |
+-----------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_DAYS('0000-01-01');
+-----------------------+
| to_days('0000-01-01') |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• TO_SECONDS(expr)

Given a date or datetime expr, returns the number of seconds since the year 0. If expr is not a valid
date or datetime value, returns NULL.

mysql> SELECT TO_SECONDS(950501);
 -> 62966505600
mysql> SELECT TO_SECONDS('2009-11-29');
 -> 63426672000
mysql> SELECT TO_SECONDS('2009-11-29 13:43:32');
 -> 63426721412
mysql> SELECT TO_SECONDS(NOW());
 -> 63426721458

Like TO_DAYS(), TO_SECONDS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582), because it does not take into account the days that were lost when the
calendar was changed. For dates before 1582 (and possibly a later year in other locales), results
from this function are not reliable. See Section 12.8, “What Calendar Is Used By MySQL?”, for
details.

Like TO_DAYS(), TO_SECONDS(), converts two-digit year values in dates to four-digit form using the
rules in Section 11.3, “Date and Time Types”.

Date and Time Functions

1442

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered
invalid. This means that, for '0000-00-00' and '0000-01-01', TO_SECONDS() returns the
values shown here:

mysql> SELECT TO_SECONDS('0000-00-00');
+--------------------------+
| TO_SECONDS('0000-00-00') |
+--------------------------+
| NULL |
+--------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_SECONDS('0000-01-01');
+--------------------------+
| TO_SECONDS('0000-01-01') |
+--------------------------+
| 86400 |
+--------------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00'
UTC). The return value is an integer if no argument is given or the argument does not include a
fractional seconds part, or DECIMAL if an argument is given that includes a fractional seconds part.

If UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as
seconds since '1970-01-01 00:00:00' UTC. date may be a DATE string, a DATETIME string,
a TIMESTAMP, or a number in the format YYMMDD or YYYYMMDD, optionally including a fractional
seconds part. The server interprets date as a value in the current time zone and converts it to an
internal value in UTC. Clients can set their time zone as described in Section 10.6, “MySQL Server
Time Zone Support”.

mysql> SELECT UNIX_TIMESTAMP();
 -> 1447431666
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19');
 -> 1447431619
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19.012');
 -> 1447431619.012

When UNIX_TIMESTAMP() is used on a TIMESTAMP column, the function returns the internal
timestamp value directly, with no implicit “string-to-Unix-timestamp” conversion. If you pass an out-of-
range date to UNIX_TIMESTAMP(), it returns 0.

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP
values and Unix timestamp values, the conversion is lossy because the mapping is not one-to-
one in both directions. For example, due to conventions for local time zone changes, it is possible
for two UNIX_TIMESTAMP() to map two TIMESTAMP values to the same Unix timestamp value.
FROM_UNIXTIME() will map that value back to only one of the original TIMESTAMP values. Here is
an example, using TIMESTAMP values in the CET time zone:

Date and Time Functions

1443

mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast the result to signed
integers. See Section 12.10, “Cast Functions and Operators”.

• UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on
whether the function is used in a string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
 -> '2003-08-14', 20030814

• UTC_TIME, UTC_TIME([fsp])

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether
the function is used in a string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
 -> '18:07:53', 180753.000000

• UTC_TIMESTAMP, UTC_TIMESTAMP([fsp])

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
 -> '2003-08-14 18:08:04', 20030814180804.000000

• WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() enables you
to specify whether the week starts on Sunday or Monday and whether the return value should
be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the
default_week_format system variable is used. See Section 5.1.4, “Server System Variables”.

The following table describes how the mode argument works.

Date and Time Functions

1444

Mode First day of week Range Week 1 is the first week …

0 Sunday 0-53 with a Sunday in this year

1 Monday 0-53 with 4 or more days this year

2 Sunday 1-53 with a Sunday in this year

3 Monday 1-53 with 4 or more days this year

4 Sunday 0-53 with 4 or more days this year

5 Monday 0-53 with a Monday in this year

6 Sunday 1-53 with 4 or more days this year

7 Monday 1-53 with a Monday in this year

For mode values with a meaning of “with 4 or more days this year,” weeks are numbered according
to ISO 8601:1988:

• If the week containing January 1 has 4 or more days in the new year, it is week 1.

• Otherwise, it is the last week of the previous year, and the next week is week 1.

mysql> SELECT WEEK('2008-02-20');
 -> 7
mysql> SELECT WEEK('2008-02-20',0);
 -> 7
mysql> SELECT WEEK('2008-02-20',1);
 -> 8
mysql> SELECT WEEK('2008-12-31',1);
 -> 53

Note that if a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2, 3,
6, or 7 as the optional mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
 -> 2000, 0

One might argue that WEEK() should return 52 because the given date actually occurs in the 52nd
week of 1999. WEEK() returns 0 instead so that the return value is “the week number in the given
year.” This makes use of the WEEK() function reliable when combined with other functions that
extract a date part from a date.

If you prefer a result evaluated with respect to the year that contains the first day of the week for the
given date, use 0, 2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
 -> 52

Alternatively, use the YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
 -> 199952
mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
 -> '52'

• WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, … 6 = Sunday).

mysql> SELECT WEEKDAY('2008-02-03 22:23:00');
 -> 6

What Calendar Is Used By MySQL?

1445

mysql> SELECT WEEKDAY('2007-11-06');
 -> 1

• WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a
compatibility function that is equivalent to WEEK(date,3).

mysql> SELECT WEEKOFYEAR('2008-02-20');
 -> 8

• YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.

mysql> SELECT YEAR('1987-01-01');
 -> 1987

• YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The year in the result may be different from the year in the date
argument for the first and the last week of the year.

The mode argument works exactly like the mode argument to WEEK(). For the single-argument
syntax, a mode value of 0 is used. Unlike WEEK(), the value of default_week_format does not
influence YEARWEEK().

mysql> SELECT YEARWEEK('1987-01-01');
 -> 198652

Note that the week number is different from what the WEEK() function would return (0) for optional
arguments 0 or 1, as WEEK() then returns the week in the context of the given year.

12.8 What Calendar Is Used By MySQL?
MySQL uses what is known as a proleptic Gregorian calendar.

Every country that has switched from the Julian to the Gregorian calendar has had to discard at least
ten days during the switch. To see how this works, consider the month of October 1582, when the first
Julian-to-Gregorian switch occurred.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any
dates before the cutover are Julian, and any dates following the cutover are Gregorian. Dates during a
cutover are nonexistent.

A calendar applied to dates when it was not actually in use is called proleptic. Thus, if we assume there
was never a cutover and Gregorian rules always rule, we have a proleptic Gregorian calendar. This
is what is used by MySQL, as is required by standard SQL. For this reason, dates prior to the cutover
stored as MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It
is important to realize that the cutover did not occur at the same time in all countries, and that the
later it happened, the more days were lost. For example, in Great Britain, it took place in 1752, when
Wednesday September 2 was followed by Thursday September 14. Russia remained on the Julian
calendar until 1918, losing 13 days in the process, and what is popularly referred to as its “October
Revolution” occurred in November according to the Gregorian calendar.

Full-Text Search Functions

1446

12.9 Full-Text Search Functions
MATCH (col1,col2,...) AGAINST (expr [search_modifier]) [1446]

search_modifier:
 {
 IN NATURAL LANGUAGE MODE
 | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
 | IN BOOLEAN MODE
 | WITH QUERY EXPANSION
 }

MySQL has support for full-text indexing and searching:

• A full-text index in MySQL is an index of type FULLTEXT.

• Full-text indexes can be used only with InnoDB or MyISAM tables, and can be created only for CHAR,
VARCHAR, or TEXT columns.

• As of MySQL 5.7.6, MySQL provides a built-in full-text ngram parser that supports Chinese,
Japanese, and Korean (CJK), and an installable MeCab full-text parser plugin for Japanese. Parsing
differences are outlined in Section 12.9.8, “ngram Full-Text Parser”, and Section 12.9.9, “MeCab
Full-Text Parser Plugin”.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created,
or added later using ALTER TABLE or CREATE INDEX.

• For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and
then create the index after that, than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() ... AGAINST [1446] syntax. MATCH() [1446] takes
a comma-separated list that names the columns to be searched. AGAINST takes a string to search
for, and an optional modifier that indicates what type of search to perform. The search string must
be a string value that is constant during query evaluation. This rules out, for example, a table column
because that can differ for each row.

There are three types of full-text searches:

• A natural language search interprets the search string as a phrase in natural human language (a
phrase in free text). There are no special operators. The stopword list applies. For more information
about stopword lists, see Section 12.9.4, “Full-Text Stopwords”.

Full-text searches are natural language searches if the IN NATURAL LANGUAGE MODE modifier is
given or if no modifier is given. For more information, see Section 12.9.1, “Natural Language Full-
Text Searches”.

• A boolean search interprets the search string using the rules of a special query language. The string
contains the words to search for. It can also contain operators that specify requirements such that a
word must be present or absent in matching rows, or that it should be weighted higher or lower than
usual. Certain common words (stopwords) are omitted from the search index and do not match if
present in the search string. The IN BOOLEAN MODE modifier specifies a boolean search. For more
information, see Section 12.9.2, “Boolean Full-Text Searches”.

• A query expansion search is a modification of a natural language search. The search string is used
to perform a natural language search. Then words from the most relevant rows returned by the
search are added to the search string and the search is done again. The query returns the rows
from the second search. The IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION or
WITH QUERY EXPANSION modifier specifies a query expansion search. For more information, see
Section 12.9.3, “Full-Text Searches with Query Expansion”.

For information about FULLTEXT query performance, see Section 8.3.4, “Column Indexes”.

Natural Language Full-Text Searches

1447

For more information about InnoDB FULLTEXT indexes, see Section 14.2.7.3, “InnoDB FULLTEXT
Indexes”.

Constraints on full-text searching are listed in Section 12.9.5, “Full-Text Restrictions”.

The myisam_ftdump utility dumps the contents of a MyISAM full-text index. This may be helpful
for debugging full-text queries. See Section 4.6.2, “myisam_ftdump — Display Full-Text Index
information”.

12.9.1 Natural Language Full-Text Searches

By default or with the IN NATURAL LANGUAGE MODE modifier, the MATCH() [1446] function performs
a natural language search for a string against a text collection. A collection is a set of one or more
columns included in a FULLTEXT index. The search string is given as the argument to AGAINST(). For
each row in the table, MATCH() [1446] returns a relevance value; that is, a similarity measure between
the search string and the text in that row in the columns named in the MATCH() [1446] list.

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we will show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');
Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

By default, the search is performed in case-insensitive fashion. To perform a case-sensitive full-text
search, use a binary collation for the indexed columns. For example, a column that uses the latin1
character set of can be assigned a collation of latin1_bin to make it case sensitive for full-text
searches.

When MATCH() [1446] is used in a WHERE clause, as in the example shown earlier, the rows returned
are automatically sorted with the highest relevance first. Relevance values are nonnegative floating-
point numbers. Zero relevance means no similarity. Relevance is computed based on the number of
words in the row, the number of unique words in that row, the total number of words in the collection,
and the number of documents (rows) that contain a particular word.

To simply count matches, you could use a query like this:

mysql> SELECT COUNT(*) FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----------+
| COUNT(*) |
+----------+

Natural Language Full-Text Searches

1448

| 2 |
+----------+
1 row in set (0.00 sec)

You might find it quicker to rewrite the query as follows:

mysql> SELECT
 COUNT(IF(MATCH (title,body) AGAINST ('database' IN NATURAL LANGUAGE MODE), 1, NULL))
 AS count
 FROM articles;
+-------+
| count |
+-------+
| 2 |
+-------+
1 row in set (0.03 sec)

The first query does some extra work (sorting the results by relevance) but also can use an index
lookup based on the WHERE clause. The index lookup might make the first query faster if the search
matches few rows. The second query performs a full table scan, which might be faster than the index
lookup if the search term was present in most rows.

For natural-language full-text searches, the columns named in the MATCH() [1446] function must be
the same columns included in some FULLTEXT index in your table. For the preceding query, note that
the columns named in the MATCH() [1446] function (title and body) are the same as those named
in the definition of the article table's FULLTEXT index. To search the title or body separately, you
would create separate FULLTEXT indexes for each column.

You can also perform a boolean search or a search with query expansion. These search types are
described in Section 12.9.2, “Boolean Full-Text Searches”, and Section 12.9.3, “Full-Text Searches
with Query Expansion”.

A full-text search that uses an index can name columns only from a single table in the MATCH() [1446]
clause because an index cannot span multiple tables. For MyISAM tables, a boolean search can be
done in the absence of an index (albeit more slowly), in which case it is possible to name columns from
multiple tables.

The preceding example is a basic illustration that shows how to use the MATCH() [1446] function
where rows are returned in order of decreasing relevance. The next example shows how to retrieve the
relevance values explicitly. Returned rows are not ordered because the SELECT statement includes
neither WHERE nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body)
 AGAINST ('Tutorial' IN NATURAL LANGUAGE MODE) AS score
 FROM articles;
+----+---------------------+
| id | score |
+----+---------------------+
1	0.22764469683170319
2	0
3	0.22764469683170319
4	0
5	0
6	0
+----+---------------------+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the
rows in order of decreasing relevance. To achieve this result, specify MATCH() [1446] twice: once
in the SELECT list and once in the WHERE clause. This causes no additional overhead, because the
MySQL optimizer notices that the two MATCH() [1446] calls are identical and invokes the full-text
search code only once.

mysql> SELECT id, body, MATCH (title,body) AGAINST

Natural Language Full-Text Searches

1449

 ('Security implications of running MySQL as root'
 IN NATURAL LANGUAGE MODE) AS score
 FROM articles WHERE MATCH (title,body) AGAINST
 ('Security implications of running MySQL as root'
 IN NATURAL LANGUAGE MODE);
+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
| 6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits,
and underscores) as a word. That sequence may also contain apostrophes (“'”), but not more than one
in a row. This means that aaa'bbb is regarded as one word, but aaa''bbb is regarded as two words.
Apostrophes at the beginning or the end of a word are stripped by the FULLTEXT parser; 'aaa'bbb'
would be parsed as aaa'bbb.

The built-in FULLTEXT parser determines where words start and end by looking for certain delimiter
characters; for example, “ ” (space), “,” (comma), and “.” (period). If words are not separated by
delimiters (as in, for example, Chinese), the built-in FULLTEXT parser cannot determine where a word
begins or ends. To be able to add words or other indexed terms in such languages to a FULLTEXT
index that uses the built-in FULLTEXT parser, you must preprocess them so that they are separated
by some arbitrary delimiter such as “"”. Alternatively, as of MySQL 5.7.6, you can create FULLTEXT
indexes using the ngram parser plugin (for Chinese, Japanese, or Korean) or the MeCab parser plugin
(for Japanese).

It is possible to write a plugin that replaces the built-in full-text parser. For details, see Section 24.2,
“The MySQL Plugin API”. For example parser plugin source code, see the plugin/fulltext
directory of a MySQL source distribution.

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found
by full-text searches is three characters for InnoDB search indexes, or four characters for
MyISAM. You can control the cutoff by setting a configuration option before creating the
index: innodb_ft_min_token_size configuration option for InnoDB search indexes, or
ft_min_word_len for MyISAM.

Note

This behaviour does not apply to FULLTEXT indexes that use the
ngram parser. For the ngram parser, token length is defined by the
ngram_token_size option.

• Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so
common that it is considered to have zero semantic value. There is a built-in stopword list, but it
can be overridden by a user-defined list. The stopword lists and related configuration options are
different for InnoDB search indexes and MyISAM ones. Stopword processing is controlled by the
configuration options innodb_ft_enable_stopword, innodb_ft_server_stopword_table,
and innodb_ft_user_stopword_table for InnoDB search indexes, and ft_stopword_file
for MyISAM ones.

See Section 12.9.4, “Full-Text Stopwords” to view default stopword lists and how to change them. The
default minimum word length can be changed as described in Section 12.9.6, “Fine-Tuning MySQL
Full-Text Search”.

Every correct word in the collection and in the query is weighted according to its significance in the
collection or query. Thus, a word that is present in many documents has a lower weight, because it has
lower semantic value in this particular collection. Conversely, if the word is rare, it receives a higher
weight. The weights of the words are combined to compute the relevance of the row. This technique
works best with large collections.

Boolean Full-Text Searches

1450

MyISAM Limitation

For very small tables, word distribution does not adequately reflect their
semantic value, and this model may sometimes produce bizarre results for
search indexes on MyISAM tables. For example, although the word “MySQL” is
present in every row of the articles table shown earlier, a search for the word
in a MyISAM search index produces no results:

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('MySQL' IN NATURAL LANGUAGE MODE);
Empty set (0.00 sec)

The search result is empty because the word “MySQL” is present in at least
50% of the rows, and so is effectively treated as a stopword. This filtering
technique is more suitable for large data sets, where you might not want the
result set to return every second row from a 1GB table, than for small data sets
where it might cause poor results for popular terms.

The 50% threshold can surprise you when you first try full-text searching to see
how it works, and makes InnoDB tables more suited to experimentation with
full-text searches. If you create a MyISAM table and insert only one or two rows
of text into it, every word in the text occurs in at least 50% of the rows. As a
result, no search returns any results until the table contains more rows. Users
who need to bypass the 50% limitation can build search indexes on InnoDB
tables, or use the boolean search mode explained in Section 12.9.2, “Boolean
Full-Text Searches”.

12.9.2 Boolean Full-Text Searches

MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier. With this
modifier, certain characters have special meaning at the beginning or end of words in the search
string. In the following query, the + and - operators indicate that a word must be present or absent,
respectively, for a match to occur. Thus, the query retrieves all the rows that contain the word “MySQL”
but that do not contain the word “YourSQL”:

mysql> SELECT * FROM articles WHERE MATCH (title,body)
 AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);
+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
1	MySQL Tutorial	DBMS stands for DataBase ...
2	How To Use MySQL Well	After you went through a ...
3	Optimizing MySQL	In this tutorial we will show ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
6	MySQL Security	When configured properly, MySQL ...
+----+-----------------------+-------------------------------------+

Note

In implementing this feature, MySQL uses what is sometimes referred to as
implied Boolean logic, in which

• + stands for AND

• - stands for NOT

• [no operator] implies OR

Boolean full-text searches have these characteristics:

• They do not automatically sort rows in order of decreasing relevance.

Boolean Full-Text Searches

1451

• InnoDB tables require a FULLTEXT index on all columns of the MATCH() [1446] expression to
perform boolean queries. Boolean queries against a MyISAM search index can work even without a
FULLTEXT index, although a search executed in this fashion would be quite slow.

• The minimum and maximum word length full-text parameters apply to FULLTEXT indexes created
using the built-in FULLTEXT parser and MeCab parser plugin. innodb_ft_min_token_size and
innodb_ft_max_token_size are used for InnoDB search indexes. ft_min_word_len and
ft_max_word_len are used for MyISAM search indexes.

Minimum and maximum word length full-text parameters do not apply to FULLTEXT indexes created
using the ngram parser. ngram token size is defined by the ngram_token_size option.

• The stopword list applies, controlled by innodb_ft_enable_stopword,
innodb_ft_server_stopword_table, and innodb_ft_user_stopword_table for InnoDB
search indexes, and ft_stopword_file for MyISAM ones.

• InnoDB full-text search does not support the use of multiple operators on a single search word, as
in this example: '++apple'. Use of multiple operators on a single search word returns a syntax
error to standard out. MyISAM full-text search will successfully process the same search ignoring all
operators except for the operator immediately adjacent to the search word.

• InnoDB full-text search only supports leading plus or minus signs. For example, InnoDB supports
'+apple' but does not support 'apple+'. Specifying a trailing plus or minus sign causes InnoDB
to report a syntax error.

• InnoDB full-text search does not support the use of a leading plus sign with wildcard ('+*'), a plus
and minus sign combination ('+-'), or leading a plus and minus sign combination ('+-apple').
These invalid queries return a syntax error.

• InnoDB full-text search does not support the use of the @ symbol in boolean full-text searches. The @
symbol is reserved for use by the @distance proximity search operator.

• They do not use the 50% threshold that applies to MyISAM search indexes.

The boolean full-text search capability supports the following operators:

• +

A leading or trailing plus sign indicates that this word must be present in each row that is returned.
InnoDB only supports leading plus signs.

• -

A leading or trailing minus sign indicates that this word must not be present in any of the rows that
are returned. InnoDB only supports leading minus signs.

Note: The - operator acts only to exclude rows that are otherwise matched by other search terms.
Thus, a boolean-mode search that contains only terms preceded by - returns an empty result. It
does not return “all rows except those containing any of the excluded terms.”

• (no operator)

By default (when neither + nor - is specified), the word is optional, but the rows that contain it
are rated higher. This mimics the behavior of MATCH() ... AGAINST() [1446] without the IN
BOOLEAN MODE modifier.

• @distance

This operator works on InnoDB tables only. It tests whether two or more words all start within
a specified distance from each other, measured in words. Specify the search words within a
double-quoted string immediately before the @distance operator, for example, MATCH(col1)
AGAINST('"word1 word2 word3" @8' IN BOOLEAN MODE)

Boolean Full-Text Searches

1452

• > <

These two operators are used to change a word's contribution to the relevance value that is assigned
to a row. The > operator increases the contribution and the < operator decreases it. See the example
following this list.

• ()

Parentheses group words into subexpressions. Parenthesized groups can be nested.

• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to
be negative. This is useful for marking “noise” words. A row containing such a word is rated lower
than others, but is not excluded altogether, as it would be with the - operator.

• *

The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it is
appended to the word to be affected. Words match if they begin with the word preceding the *
operator.

If a word is specified with the truncation operator, it is not stripped from a boolean query,
even if it is too short or a stopword. Whether a word is too short is determined from the
innodb_ft_min_token_size setting for InnoDB tables, or ft_min_word_len for MyISAM
tables. These options are not applicable to FULLTEXT indexes that use the ngram parser.

The wildcarded word is considered as a prefix that must be present at the start of one or more words.
If the minimum word length is 4, a search for '+word +the*' could return fewer rows than a
search for '+word +the', because the second query ignores the too-short search term the.

• "

A phrase that is enclosed within double quote (“"”) characters matches only rows that contain the
phrase literally, as it was typed. The full-text engine splits the phrase into words and performs a
search in the FULLTEXT index for the words. Nonword characters need not be matched exactly:
Phrase searching requires only that matches contain exactly the same words as the phrase and in
the same order. For example, "test phrase" matches "test, phrase".

If the phrase contains no words that are in the index, the result is empty. The words might not be in
the index because of a combination of factors: if they do not exist in the text, are stopwords, or are
shorter than the minimum length of indexed words.

The following examples demonstrate some search strings that use boolean full-text operators:

• 'apple banana'

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.

• '+apple -macintosh'

Find rows that contain the word “apple” but not “macintosh”.

• '+apple ~macintosh'

Boolean Full-Text Searches

1453

Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it
lower than if row does not. This is “softer” than a search for '+apple -macintosh', for which the
presence of “macintosh” causes the row not to be returned at all.

• '+apple +(>turnover <strudel)'

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but
rank “apple turnover” higher than “apple strudel”.

• 'apple*'

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.

• '"some words"'

Find rows that contain the exact phrase “some words” (for example, rows that contain “some words
of wisdom” but not “some noise words”). Note that the “"” characters that enclose the phrase are
operator characters that delimit the phrase. They are not the quotation marks that enclose the search
string itself.

Relevancy Rankings for InnoDB Boolean Mode Search

InnoDB full-text search is modeled on the Sphinx full-text search engine, and the algorithms used are
based on BM25 and TF-IDF ranking algorithms. For these reasons, relevancy rankings for InnoDB
boolean full-text search may differ from MyISAM relevancy rankings.

InnoDB uses a variation of the “term frequency-inverse document frequency” (TF-IDF) weighting
system to rank a document's relevance for a given full-text search query. The TF-IDF weighting is
based on how frequently a word appears in a document, offset by how frequently the word appears in
all documents in the collection. In other words, the more frequently a word appears in a document, and
the less frequently the word appears in the document collection, the higher the document is ranked.

How Relevancy Ranking is Calculated

The term frequency (TF) value is the number of times that a word appears in a document. The
inverse document frequency (IDF) value of a word is calculated using the following formula, where
total_records is the number of records in the collection, and matching_records is the number of
records that the search term appears in.

${IDF} = log10(${total_records} / ${matching_records})

When a document contains a word multiple times, the IDF value is multiplied by the TF value:

${TF} * ${IDF}

Using the TF and IDF values, the relevancy ranking for a document is calculated using this formula:

${rank} = ${TF} * ${IDF} * ${IDF}

The formula is demonstrated in the following examples.

Relevancy Ranking for a Single Word Search

This example demonstrates the relevancy ranking calculation for a single-word search.

mysql> CREATE TABLE articles (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
title VARCHAR(200),
body TEXT,
FULLTEXT (title,body)
) ENGINE=InnoDB;

http://sphinxsearch.com/
http://en.wikipedia.org/wiki/Okapi_BM25
http://en.wikipedia.org/wiki/TF-IDF

Boolean Full-Text Searches

1454

Query OK, 0 rows affected (1.04 sec)

mysql> INSERT INTO articles (title,body) VALUES
('MySQL Tutorial','This database tutorial ...'),
("How To Use MySQL",'After you went through a ...'),
('Optimizing Your Database','In this database tutorial ...'),
('MySQL vs. YourSQL','When comparing databases ...'),
('MySQL Security','When configured properly, MySQL ...'),
('Database, Database, Database','database database database'),
('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
('MySQL Full-Text Indexes', 'MySQL fulltext indexes use a ..');
Query OK, 8 rows affected (0.06 sec)
Records: 8 Duplicates: 0 Warnings: 0

mysql> SELECT id, title, body, MATCH (title,body) AGAINST ('database' IN BOOLEAN MODE)
AS score FROM articles ORDER BY score DESC;
+----+------------------------------+-------------------------------------+---------------------+
| id | title | body | score |
+----+------------------------------+-------------------------------------+---------------------+
6	Database, Database, Database	database database database	1.0886961221694946
3	Optimizing Your Database	In this database tutorial ...	0.36289870738983154
1	MySQL Tutorial	This database tutorial ...	0.18144935369491577
2	How To Use MySQL	After you went through a ...	0
4	MySQL vs. YourSQL	When comparing databases ...	0
5	MySQL Security	When configured properly, MySQL ...	0
7	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...	0
8	MySQL Full-Text Indexes	MySQL fulltext indexes use a ..	0
+----+------------------------------+-------------------------------------+---------------------+
8 rows in set (0.00 sec)

There are 8 records in total, with 3 that match the “database” search term. The first record (id 6)
contains the search term 6 times and has a relevancy ranking of 1.0886961221694946. This ranking
value is calculated using a TF value of 6 (the “database” search term appears 6 times in record id 6)
and an IDF value of 0.42596873216370745, which is calculated as follows (where 8 is the total number
of records and 3 is the number of records that the search term appears in):

${IDF} = log10(8 / 3) = 0.42596873216370745

The TF and IDF values are then entered into the ranking formula:

${rank} = ${TF} * ${IDF} * ${IDF}

Performing the calculation in the MySQL command-line client returns a ranking value of
1.088696164686938.

mysql> SELECT 6*log10(8/3)*log10(8/3);
+-------------------------+
| 6*log10(8/3)*log10(8/3) |
+-------------------------+
| 1.088696164686938 |
+-------------------------+
1 row in set (0.00 sec)

Note

You may notice a slight difference in the ranking values returned by the
SELECT ... MATCH ... AGAINST statement and the MySQL command-line
client (1.0886961221694946 versus 1.088696164686938). The difference
is due to how the casts between integers and floats/doubles are performed
internally by InnoDB (along with related precision and rounding decisions), and
how they are performed elsewhere, such as in the MySQL command-line client
or other types of calculators.

Relevancy Ranking for a Multiple Word Search

This example demonstrates the relevancy ranking calculation for a multiple-word full-text search based
on the articles table and data used in the previous example.

Full-Text Searches with Query Expansion

1455

If you search on more than one word, the relevancy ranking value is a sum of the relevancy ranking
value for each word, as shown in this formula:

${rank} = ${TF} * ${IDF} * ${IDF} + ${TF} * ${IDF} * ${IDF}

Performing a search on two terms ('mysql tutorial') returns the following results:

mysql> SELECT id, title, body, MATCH (title,body) AGAINST ('mysql tutorial' IN BOOLEAN MODE)
 AS score FROM articles ORDER BY score DESC;
+----+------------------------------+-------------------------------------+----------------------+
| id | title | body | score |
+----+------------------------------+-------------------------------------+----------------------+
1	MySQL Tutorial	This database tutorial ...	0.7405621409416199
3	Optimizing Your Database	In this database tutorial ...	0.3624762296676636
5	MySQL Security	When configured properly, MySQL ...	0.031219376251101494
8	MySQL Full-Text Indexes	MySQL fulltext indexes use a ..	0.031219376251101494
2	How To Use MySQL	After you went through a ...	0.015609688125550747
4	MySQL vs. YourSQL	When comparing databases ...	0.015609688125550747
7	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...	0.015609688125550747
6	Database, Database, Database	database database database	0
+----+------------------------------+-------------------------------------+----------------------+
8 rows in set (0.00 sec)

In the first record (id 8), 'mysql' appears once and 'tutorial' appears twice. There are six matching
records for 'mysql' and two matching records for 'tutorial'. The MySQL command-line client returns the
expected ranking value when inserting these values into the ranking formula for a multiple word search:

mysql> SELECT (1*log10(8/6)*log10(8/6)) + (2*log10(8/2)*log10(8/2));
+---+
| (1*log10(8/6)*log10(8/6)) + (2*log10(8/2)*log10(8/2)) |
+---+
| 0.7405621541938003 |
+---+
1 row in set (0.00 sec)

Note

The slight difference in the ranking values returned by the SELECT ...
MATCH ... AGAINST statement and the MySQL command-line client is
explained in the preceding example.

12.9.3 Full-Text Searches with Query Expansion

Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This
is generally useful when a search phrase is too short, which often means that the user is relying on
implied knowledge that the full-text search engine lacks. For example, a user searching for “database”
may really mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match
“databases” and should be returned, too. This is implied knowledge.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH
QUERY EXPANSION or IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION following the
search phrase. It works by performing the search twice, where the search phrase for the second search
is the original search phrase concatenated with the few most highly relevant documents from the first
search. Thus, if one of these documents contains the word “databases” and the word “MySQL”, the
second search finds the documents that contain the word “MySQL” even if they do not contain the word
“database”. The following example shows this difference:

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |

Full-Text Stopwords

1456

+----+-------------------+--+
2 rows in set (0.00 sec)

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' WITH QUERY EXPANSION);
+----+-----------------------+--+
| id | title | body |
+----+-----------------------+--+
5	MySQL vs. YourSQL	In the following database comparison ...
1	MySQL Tutorial	DBMS stands for DataBase ...
3	Optimizing MySQL	In this tutorial we will show ...
6	MySQL Security	When configured properly, MySQL ...
2	How To Use MySQL Well	After you went through a ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
+----+-----------------------+--+
6 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a user is not
sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses” finds only “Maigret and
the Reluctant Witnesses” without query expansion. A search with query expansion finds all books with
the word “Maigret” on the second pass.

Note

Because blind query expansion tends to increase noise significantly by returning
nonrelevant documents, use it only when a search phrase is short.

12.9.4 Full-Text Stopwords

The stopword list is loaded and searched for full-text queries using the server character set and
collation (the values of the character_set_server and collation_server system variables).
False hits or misses might occur for stopword lookups if the stopword file or columns used for full-text
indexing or searches have a character set or collation different from character_set_server or
collation_server.

Case sensitivity of stopword lookups depends on the server collation. For example, lookups are case
insensitive if the collation is latin1_swedish_ci, whereas lookups are case sensitive if the collation
is latin1_general_cs or latin1_bin.

Stopwords for InnoDB Search Indexes

InnoDB has a relatively short list of default stopwords, because documents from technical, literary,
and other sources often use short words as keywords or in significant phrases. For example, you might
search for “to be or not to be” and expect to get a sensible result, rather than having all those words
ignored.

To see the default InnoDB stopword list, query the
INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD table.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD;
+-------+
| value |
+-------+
| a |
| about |
| an |
| are |
| as |
| at |
| be |
| by |
| com |
| de |
| en |

Full-Text Stopwords

1457

| for |
| from |
| how |
| i |
| in |
| is |
| it |
| la |
| of |
| on |
| or |
| that |
| the |
| this |
| to |
| was |
| what |
| when |
| where |
| who |
| will |
| with |
| und |
| the |
| www |
+-------+
36 rows in set (0.00 sec)

To define your own stopword list for all InnoDB tables, define a table with the same structure as
the INNODB_FT_DEFAULT_STOPWORD table, populate it with stopwords, and set the value of the
innodb_ft_server_stopword_table option to a value in the form db_name/table_name before
creating the full-text index. The stopword table must have a single VARCHAR column named value.
The following example demonstrates creating and configuring a new global stopword table for InnoDB.

-- Create a new stopword table

mysql> CREATE TABLE my_stopwords(value VARCHAR(30)) ENGINE = INNODB;
Query OK, 0 rows affected (0.01 sec)

-- Insert stopwords (for simplicity, a single stopword is used in this example)

mysql> INSERT INTO my_stopwords(value) VALUES ('Ishmael');
Query OK, 1 row affected (0.00 sec)

-- Create the table

mysql> CREATE TABLE opening_lines (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
opening_line TEXT(500),
author VARCHAR(200),
title VARCHAR(200)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.01 sec)

-- Insert data into the table

mysql> INSERT INTO opening_lines(opening_line,author,title) VALUES
('Call me Ishmael.','Herman Melville','Moby-Dick'),
('A screaming comes across the sky.','Thomas Pynchon','Gravity\'s Rainbow'),
('I am an invisible man.','Ralph Ellison','Invisible Man'),
('Where now? Who now? When now?','Samuel Beckett','The Unnamable'),
('It was love at first sight.','Joseph Heller','Catch-22'),
('All this happened, more or less.','Kurt Vonnegut','Slaughterhouse-Five'),
('Mrs. Dalloway said she would buy the flowers herself.','Virginia Woolf','Mrs. Dalloway'),
('It was a pleasure to burn.','Ray Bradbury','Fahrenheit 451');
Query OK, 8 rows affected (0.00 sec)
Records: 8 Duplicates: 0 Warnings: 0

-- Set the innodb_ft_server_stopword_table option to the new stopword table

mysql> SET GLOBAL innodb_ft_server_stopword_table = 'test/my_stopwords';

Full-Text Stopwords

1458

Query OK, 0 rows affected (0.00 sec)

-- Create the full-text index (which rebuilds the table if no FTS_DOC_ID column is defined)

mysql> CREATE FULLTEXT INDEX idx ON opening_lines(opening_line);
Query OK, 0 rows affected, 1 warning (1.17 sec)
Records: 0 Duplicates: 0 Warnings: 1

Verify that the specified stopword ('Ishmael') does not appear by querying the words in
INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE.

Note

By default, words less than 3 characters in length or greater than 84
characters in length do not appear in an InnoDB full-text search index.
Maximum and minimum word length values are configurable using the
innodb_ft_max_token_size and innodb_ft_min_token_size
variables. This default behavior does not apply to the ngram parser plugin.
ngram token size is defined by the ngram_token_size option.

mysql> SET GLOBAL innodb_ft_aux_table='test/opening_lines';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT word FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 15;
+-----------+
| word |
+-----------+
| across |
| all |
| burn |
| buy |
| call |
| comes |
| dalloway |
| first |
| flowers |
| happened |
| herself |
| invisible |
| less |
| love |
| man |
+-----------+
15 rows in set (0.00 sec)

To create stopword lists on a table-by-table basis, create other stopword tables and use the
innodb_ft_user_stopword_table option to specify the stopword table that you want to use before
you create the full-text index.

Stopwords for MyISAM Search Indexes

The stopword file is loaded and searched using latin1 if character_set_server is ucs2, utf16,
utf16le, or utf32.

 To override the default stopword list for MyISAM tables, set the ft_stopword_file system
variable. (See Section 5.1.4, “Server System Variables”.) The variable value should be the path name
of the file containing the stopword list, or the empty string to disable stopword filtering. The server looks
for the file in the data directory unless an absolute path name is given to specify a different directory.
After changing the value of this variable or the contents of the stopword file, restart the server and
rebuild your FULLTEXT indexes.

The stopword list is free-form, separating stopwords with any nonalphanumeric character such as
newline, space, or comma. Exceptions are the underscore character (“_”) and a single apostrophe
(“'”) which are treated as part of a word. The character set of the stopword list is the server's default
character set; see Section 10.1.3.1, “Server Character Set and Collation”.

Full-Text Stopwords

1459

The following table shows the default list of stopwords for MyISAM search indexes. In a MySQL source
distribution, you can find this list in the storage/myisam/ft_static.c file.

a's able about above according

accordingly across actually after afterwards

again against ain't all allow

allows almost alone along already

also although always am among

amongst an and another any

anybody anyhow anyone anything anyway

anyways anywhere apart appear appreciate

appropriate are aren't around as

aside ask asking associated at

available away awfully be became

because become becomes becoming been

before beforehand behind being believe

below beside besides best better

between beyond both brief but

by c'mon c's came can

can't cannot cant cause causes

certain certainly changes clearly co

com come comes concerning consequently

consider considering contain containing contains

corresponding could couldn't course currently

definitely described despite did didn't

different do does doesn't doing

don't done down downwards during

each edu eg eight either

else elsewhere enough entirely especially

et etc even ever every

everybody everyone everything everywhere ex

exactly example except far few

fifth first five followed following

follows for former formerly forth

four from further furthermore get

gets getting given gives go

goes going gone got gotten

greetings had hadn't happens hardly

has hasn't have haven't having

he he's hello help hence

her here here's hereafter hereby

herein hereupon hers herself hi

him himself his hither hopefully

Full-Text Stopwords

1460

how howbeit however i'd i'll

i'm i've ie if ignored

immediate in inasmuch inc indeed

indicate indicated indicates inner insofar

instead into inward is isn't

it it'd it'll it's its

itself just keep keeps kept

know known knows last lately

later latter latterly least less

lest let let's like liked

likely little look looking looks

ltd mainly many may maybe

me mean meanwhile merely might

more moreover most mostly much

must my myself name namely

nd near nearly necessary need

needs neither never nevertheless new

next nine no nobody non

none noone nor normally not

nothing novel now nowhere obviously

of off often oh ok

okay old on once one

ones only onto or other

others otherwise ought our ours

ourselves out outside over overall

own particular particularly per perhaps

placed please plus possible presumably

probably provides que quite qv

rather rd re really reasonably

regarding regardless regards relatively respectively

right said same saw say

saying says second secondly see

seeing seem seemed seeming seems

seen self selves sensible sent

serious seriously seven several shall

she should shouldn't since six

so some somebody somehow someone

something sometime sometimes somewhat somewhere

soon sorry specified specify specifying

still sub such sup sure

t's take taken tell tends

th than thank thanks thanx

Full-Text Restrictions

1461

that that's thats the their

theirs them themselves then thence

there there's thereafter thereby therefore

therein theres thereupon these they

they'd they'll they're they've think

third this thorough thoroughly those

though three through throughout thru

thus to together too took

toward towards tried tries truly

try trying twice two un

under unfortunately unless unlikely until

unto up upon us use

used useful uses using usually

value various very via viz

vs want wants was wasn't

way we we'd we'll we're

we've welcome well went were

weren't what what's whatever when

whence whenever where where's whereafter

whereas whereby wherein whereupon wherever

whether which while whither who

who's whoever whole whom whose

why will willing wish with

within without won't wonder would

wouldn't yes yet you you'd

you'll you're you've your yours

yourself yourselves zero

12.9.5 Full-Text Restrictions

• Full-text searches are supported for InnoDB and MyISAM tables only.

• Full-text searches are not supported for partitioned tables. See Section 18.6, “Restrictions and
Limitations on Partitioning”.

• Full-text searches can be used with most multibyte character sets. The exception is that for Unicode,
the utf8 character set can be used, but not the ucs2 character set. Although FULLTEXT indexes on
ucs2 columns cannot be used, you can perform IN BOOLEAN MODE searches on a ucs2 column
that has no such index.

The remarks for utf8 also apply to utf8mb4, and the remarks for ucs2 also apply to utf16,
utf16le, and utf32.

• Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore,
the built-in full-text parser cannot determine where words begin and end in these and other such
languages.

Fine-Tuning MySQL Full-Text Search

1462

In MySQL 5.7.6, a character-based ngram full-text parser that supports Chinese, Japanese, and
Korean (CJK), and a word-based MeCab parser plugin that supports Japanese are provided for use
with InnoDB and MySIAM tables.

• Although the use of multiple character sets within a single table is supported, all columns in a
FULLTEXT index must use the same character set and collation.

• The MATCH() [1446] column list must match exactly the column list in some FULLTEXT index
definition for the table, unless this MATCH() [1446] is IN BOOLEAN MODE on a MyISAM table. For
MyISAM tables, boolean-mode searches can be done on nonindexed columns, although they are
likely to be slow.

• The argument to AGAINST() must be a string value that is constant during query evaluation. This
rules out, for example, a table column because that can differ for each row.

• Index hints are more limited for FULLTEXT searches than for non-FULLTEXT searches. See
Section 8.9.4, “Index Hints”.

• For InnoDB, all DML operations (INSERT, UPDATE, DELETE) involving columns with full-text indexes
are processed at transaction commit time. For example, for an INSERT operation, an inserted string
is tokenized and decomposed into individual words. The individual words are then added to full-text
index tables when the transaction is committed. As a result, full-text searches only return committed
data.

• The '%' character is not a supported wildcard character for full-text searches.

12.9.6 Fine-Tuning MySQL Full-Text Search

MySQL's full-text search capability has few user-tunable parameters. You can exert more control over
full-text searching behavior if you have a MySQL source distribution because some changes require
source code modifications. See Section 2.9, “Installing MySQL from Source”.

Full-text search is carefully tuned for effectiveness. Modifying the default behavior in most cases can
actually decrease effectiveness. Do not alter the MySQL sources unless you know what you are doing.

Most full-text variables described in this section must be set at server startup time. A server restart is
required to change them; they cannot be modified while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for
doing so are given later in this section.

Configuring Minimum and Maximum Word Length

The minimum and maximum lengths of words to be indexed are defined by the
innodb_ft_min_token_size and innodb_ft_max_token_size for InnoDB search indexes, and
ft_min_word_len and ft_max_word_len for MyISAM ones.

Note

Minimum and maximum word length full-text parameters do not apply to
FULLTEXT indexes created using the ngram parser. ngram token size is defined
by the ngram_token_size option.

After changing any of these options, rebuild your FULLTEXT indexes for the change to take effect. For
example, to make two-character words searchable, you could put the following lines in an option file:

[mysqld]
innodb_ft_min_token_size=2
ft_min_word_len=2

Fine-Tuning MySQL Full-Text Search

1463

Then restart the server and rebuild your FULLTEXT indexes. For MyISAM tables, note the remarks
regarding myisamchk in the instructions that follow for rebuilding MyISAM full-text indexes.

Configuring the Natural Language Search Threshold

For MyISAM search indexes, the 50% threshold for natural language searches is determined by the
particular weighting scheme chosen. To disable it, look for the following line in storage/myisam/
ftdefs.h:

#define GWS_IN_USE GWS_PROB

Change that line to this:

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case.

Note

By making this change, you severely decrease MySQL's ability to provide
adequate relevance values for the MATCH() [1446] function. If you really
need to search for such common words, it would be better to search using IN
BOOLEAN MODE instead, which does not observe the 50% threshold.

Modifying Boolean Full-Text Search Operators

To change the operators used for boolean full-text searches on MyISAM tables, set the
ft_boolean_syntax system variable. (InnoDB does not have an equivalent setting.) This variable
can be changed while the server is running, but you must have the SUPER privilege to do so. No
rebuilding of indexes is necessary in this case. See Section 5.1.4, “Server System Variables”, which
describes the rules governing how to set this variable.

Character Set Modifications

For the built-in full-text parser, you can change the set of characters that are considered word
characters in several ways, as described in the following list. After making the modification, rebuild
the indexes for each table that contains any FULLTEXT indexes. Suppose that you want to treat the
hyphen character ('-') as a word character. Use one of these methods:

• Modify the MySQL source: In storage/innobase/handler/ha_innodb.cc (for InnoDB),
or in storage/myisam/ftdefs.h (for MyISAM), see the true_word_char() and
misc_word_char() macros. Add '-' to one of those macros and recompile MySQL.

• Modify a character set file: This requires no recompilation. The true_word_char() macro uses
a “character type” table to distinguish letters and numbers from other characters. . You can edit the
contents of the <ctype><map> array in one of the character set XML files to specify that '-' is
a “letter.” Then use the given character set for your FULLTEXT indexes. For information about the
<ctype><map> array format, see Section 10.3.1, “Character Definition Arrays”.

• Add a new collation for the character set used by the indexed columns, and alter the columns to use
that collation. For general information about adding collations, see Section 10.4, “Adding a Collation
to a Character Set”. For an example specific to full-text indexing, see Section 12.9.7, “Adding a
Collation for Full-Text Indexing”.

Rebuilding InnoDB Full-Text Indexes

If you modify full-text variables that affect indexing (innodb_ft_min_token_size,
innodb_ft_max_token_size, innodb_ft_server_stopword_table,

Fine-Tuning MySQL Full-Text Search

1464

innodb_ft_user_stopword_table, innodb_ft_enable_stopword, ngram_token_size
you must rebuild your FULLTEXT indexes after making the changes. Modifying the
innodb_ft_min_token_size, innodb_ft_max_token_size, or ngram_token_size variables,
which cannot be set dynamically, require restarting the server and rebuilding the indexes.

To rebuild the FULLTEXT indexes for an InnoDB table, use ALTER TABLE with the DROP INDEX and
ADD INDEX options to drop and re-create each index.

Optimizing InnoDB Full-Text Indexes

Running OPTIMIZE TABLE on a table with a full-text index rebuilds the full-text index, removing
deleted Document IDs and consolidating multiple entries for the same word, where possible.

To optimize a full-text index, enable innodb_optimize_fulltext_only and run OPTIMIZE
TABLE.

mysql> set GLOBAL innodb_optimize_fulltext_only=ON;
Query OK, 0 rows affected (0.01 sec)

mysql> OPTIMIZE TABLE opening_lines;
+--------------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------------+----------+----------+----------+
| test.opening_lines | optimize | status | OK |
+--------------------+----------+----------+----------+
1 row in set (0.01 sec)

To avoid lengthy rebuild times for full-text indexes on large tables, you can use the
innodb_ft_num_word_optimize option to perform the optimization in stages. The
innodb_ft_num_word_optimize option defines the number of words that are optimized each time
OPTIMIZE TABLE is run. The default setting is 2000, which means that 2000 words are optimized
each time OPTIMIZE TABLE is run. Subsequent OPTIMIZE TABLE operations continue from where
the preceding OPTIMIZE TABLE operation ended.

Rebuilding MyISAM Full-Text Indexes

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len, or
ft_stopword_file), or if you change the stopword file itself, you must rebuild your FULLTEXT
indexes after making the changes and restarting the server.

To rebuild the FULLTEXT indexes for a MyISAM table, it is sufficient to do a QUICK repair operation:

mysql> REPAIR TABLE tbl_name QUICK;

Alternatively, use ALTER TABLE as just described. In some cases, this may be faster than a repair
operation.

Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for
the table may yield incorrect results, and modifications to the table will cause the server to see the table
as corrupt and in need of repair.

If you use myisamchk to perform an operation that modifies MyISAM table indexes (such as repair
or analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum
word length, maximum word length, and stopword file unless you specify otherwise. This can result in
queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or stopword file values used by the server, specify the same ft_min_word_len, ft_max_word_len,
and ft_stopword_file values for myisamchk that you use for mysqld. For example, if you have
set the minimum word length to 3, you can repair a table with myisamchk like this:

Adding a Collation for Full-Text Indexing

1465

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, place each
one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk for MyISAM table index modification is to use the REPAIR TABLE,
ANALYZE TABLE, OPTIMIZE TABLE, or ALTER TABLE statements. These statements are performed
by the server, which knows the proper full-text parameter values to use.

12.9.7 Adding a Collation for Full-Text Indexing

This section describes how to add a new collation for full-text searches using the built-in full-text parser.
The sample collation is like latin1_swedish_ci but treats the '-' character as a letter rather than
as a punctuation character so that it can be indexed as a word character. General information about
adding collations is given in Section 10.4, “Adding a Collation to a Character Set”; it is assumed that
you have read it and are familiar with the files involved.

To add a collation for full-text indexing, use this procedure:

1. Add a collation to the Index.xml file. The collation ID must be unused, so choose a value different
from 1000 if that ID is already taken on your system.

<charset name="latin1">
...
<collation name="latin1_fulltext_ci" id="1000"/>
</charset>

2. Declare the sort order for the collation in the latin1.xml file. In this case, the order can be copied
from latin1_swedish_ci:

<collation name="latin1_fulltext_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D D7 D8 55 55 55 59 59 DE DF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D F7 D8 55 55 55 59 59 DE FF
</map>
</collation>

3. Modify the ctype array in latin1.xml. Change the value corresponding to 0x2D (which is the
code for the '-' character) from 10 (punctuation) to 01 (small letter). In the following array, this is
the element in the fourth row down, third value from the end.

ngram Full-Text Parser

1466

<ctype>
<map>
00
20 20 20 20 20 20 20 20 20 28 28 28 28 28 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
48 10 10 10 10 10 10 10 10 10 10 10 10 01 10 10
84 84 84 84 84 84 84 84 84 84 10 10 10 10 10 10
10 81 81 81 81 81 81 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 10 10 10 10 10
10 82 82 82 82 82 82 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 10 10 10 10 20
10 00 10 02 10 10 10 10 10 10 01 10 01 00 01 00
00 10 10 10 10 10 10 10 10 10 02 10 02 00 02 01
48 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 02
02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 10 02 02 02 02 02 02 02 02
</map>
</ctype>

4. Restart the server.

5. To employ the new collation, include it in the definition of columns that are to use it:

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.13 sec)

mysql> CREATE TABLE t1 (
 a TEXT CHARACTER SET latin1 COLLATE latin1_fulltext_ci,
 FULLTEXT INDEX(a)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.47 sec)

6. Test the collation to verify that hyphen is considered as a word character:

mysql> INSERT INTO t1 VALUEs ('----'),('....'),('abcd');
Query OK, 3 rows affected (0.22 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1 WHERE MATCH a AGAINST ('----' IN BOOLEAN MODE);
+------+
| a |
+------+
| ---- |
+------+
1 row in set (0.00 sec)

12.9.8 ngram Full-Text Parser

The built-in MySQL full-text parser uses the white space between words as a delimiter to determine
where words begin and end, which is a limitation when working with ideographic languages that do not
use word delimiters. To address this limitation, MySQL provides an ngram full-text parser that supports
Chinese, Japanese, and Korean (CJK). The ngram full-text parser is supported for use with InnoDB
and MyISAM.

Note

MySQL also provides a MeCab full-text parser plugin for Japanese, which
tokenizes documents into meaningful words. For more information, see
Section 12.9.9, “MeCab Full-Text Parser Plugin”.

An ngram is a contiguous sequence of n characters from a given sequence of text. The ngram parser
tokenizes a sequence of text into a contiguous sequence of n characters. For example, you can
tokenize “abcd” for different values of n using the ngram full-text parser.

ngram Full-Text Parser

1467

n=1: 'a', 'b', 'c', 'd'
n=2: 'ab', 'bc', 'cd'
n=3: 'abc', 'bcd'
n=4: 'abcd'

The ngram full-text parser, introduced in MySQL 5.7.6, is a built-in server plugin. As with other built-in
server plugins, it is automatically loaded when the server is started.

The full-text search syntax described in Section 12.9, “Full-Text Search Functions” applies to
the ngram parser plugin. Differences in parsing behaviour are described in this section. Full-
text-related configuration options, except for minimum and maximum word length options
(innodb_ft_min_token_size, innodb_ft_max_token_size, ft_min_word_len,
ft_max_word_len) are also applicable.

Configuring ngram Token Size

The ngram parser has a default ngram token size of 2 (bigram). For example, with a token size of 2,
the ngram parser parses the string “abc def” into four tokens: “ab”, “bc”, “de” and “ef”.

ngram token size is configurable using the ngram_token_size configuration option, which has a
minimum value of 1 and maximum value of 10.

Typically, ngram_token_size is set to the size of the largest token that you want to search for.
If you only intend to search for single characters, set ngram_token_size to 1. A smaller token
size produces a smaller full-text search index, and faster searches. If you need to search for words
comprised of more than one character, set ngram_token_size accordingly. For example, “Happy
Birthday” is “生日高興” in simplified Chinese, where “Happy” is “高興”, and “Birthday” is “生日”. To
search on two-character words such as these, set ngram_token_size to a value of 2 or higher.

As a read-only variable, ngram_token_size may only be set as part of a startup string or in a
configuration file:

• Startup string:

mysqld --ngram_token_size=2

• Configuration file:

[mysqld]
ngram_token_size=2

Note

The following minimum and maximum word length configuration
options are ignored for FULLTEXT indexes that use the ngram parser:
innodb_ft_min_token_size, innodb_ft_max_token_size,
ft_min_word_len, and ft_max_word_len.

Creating a FULLTEXT Index that Uses the ngram Parser

To create a FULLTEXT index that uses the ngram parser, specify WITH PARSER ngram with CREATE
TABLE, ALTER TABLE, or CREATE INDEX.

The following example demonstrates creating a table with an ngram FULLTEXT index,
inserting sample data (Simplified Chinese text), and viewing tokenized data in the
INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE table.

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,

ngram Full-Text Parser

1468

 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body) WITH PARSER ngram
) ENGINE=InnoDB CHARACTER SET utf8mb4;

mysql> SET NAMES utf8mb4;

INSERT INTO articles (title,body) VALUES
 ('数据库管理','在本教程中我将向你展示如何管理数据库'),

 ('数据库应用开发','学习开发数据库应用程序');

mysql> SET GLOBAL innodb_ft_aux_table="test/articles";

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE ORDER BY doc_id, position;

To add a FULLTEXT index to an existing table, you can use ALTER TABLE or CREATE INDEX. For
example:

CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT
) ENGINE=InnoDB CHARACTER SET utf8;

ALTER TABLE articles ADD FULLTEXT INDEX ft_index (title,body) WITH PARSER ngram;

Or:

CREATE FULLTEXT INDEX ft_index ON articles (title,body) WITH PARSER ngram;

ngram Parser Space Handling

The ngram parser eliminates spaces when parsing. For example:

• “ab cd” is parsed to “ab”, “cd”

• “a bc” is parsed to “bc”

ngram Parser Stopword Handling

The built-in MySQL full-text parser compares words to entries in the stopword list. If a word is
equal to an entry in the stopword list, the word is excluded from the index. For the ngram parser,
stopword handling is performed differently. Instead of excluding tokens that are equal to entries in
the stopword list, the ngram parser excludes tokens that contain stopwords. For example, assuming
ngram_token_size=2, a document that contains “a,b” is parsed to “a,” and “,b”. If a comma (“,”) is
defined as a stopword, both “a,” and “,b” are excluded from the index because they contain a comma.

By default, the ngram parser uses the default stopword list, which contains a list of English stopwords.
For a stopword list applicable to Chinese, Japanese, or Korean, you must create your own. For
information about creating a stopword list, see Section 12.9.4, “Full-Text Stopwords”.

Stopwords greater in length than ngram_token_size are ignored.

ngram Parser Term Search

For natural language mode search, the search term is converted to a union of ngram terms. For
example, the string “abc” (assuming ngram_token_size=2) is converted to “ab bc”. Given two
documents, one containing “ab” and the other containing “abc”, the search term “ab bc” matches both
documents.

For boolean mode search, the search term is converted to an ngram phrase search. For example, the
string 'abc' (assuming ngram_token_size=2) is converted to '“ab bc”'. Given two documents, one

MeCab Full-Text Parser Plugin

1469

containing 'ab' and the other containing 'abc', the search phrase '“ab bc”' only matches the document
containing 'abc'.

ngram Parser Wildcard Search

Because an ngram FULLTEXT index contains only ngrams, and does not contain information about the
beginning of terms, wildcard searches may return unexpected results. The following behaviors apply to
wildcard searches using ngram FULLTEXT search indexes:

• If the prefix term of a wildcard search is shorter than ngram token size, the query returns all
indexed rows that contain ngram tokens starting with the prefix term. For example, assuming
ngram_token_size=2, a search on “a*” returns all rows starting with “a”.

• If the prefix term of a wildcard search is longer than ngram token size, the prefix term is
converted to an ngram phrase and the wildcard operator is ignored. For example, assuming
ngram_token_size=2, an “abc*” wildcard search is converted to “ab bc”.

ngram Parser Phrase Search

Phrase searches are converted to ngram phrase searches. For example, The search phrase “abc” is
converted to “ab bc”, which returns documents containing “abc” and “ab bc”.

The search phrase “abc def” is converted to “ab bc de ef”, which returns documents containing “abc
def” and “ab bc de ef”. A document that contains “abcdef” is not returned.

12.9.9 MeCab Full-Text Parser Plugin

The built-in MySQL full-text parser uses the white space between words as a delimiter to determine
where words begin and end, which is a limitation when working with ideographic languages that do not
use word delimiters. To address this limitation for Japanese, MySQL provides a MeCab full-text parser
plugin. The MeCab full-text parser plugin is supported for use with InnoDB and MyISAM.

Note

MySQL also provides an ngram full-text parser plugin that supports Japanese.
For more information, see Section 12.9.8, “ngram Full-Text Parser”.

The MeCab full-text parser plugin, introduced in MySQL 5.7.6, is a full-text parser plugin for
Japanese that tokenizes a sequence of text into meaningful words. For example, MeCab tokenizes
“データベース管理” (“Database Management”) into “データベース” (“Database”) and “管理”
(“Management”). By comparison, the ngram full-text parser tokenizes text into a contiguous sequence
of n characters, where n represents a number between 1 and 10.

In addition to tokenizing text into meaningful words, MeCab indexes are typically smaller than ngram
indexes, and MeCab full-text searches are generally faster. One drawback is that it may take longer for
the MeCab full-text parser to tokenize documents, compared to the ngram full-text parser.

The full-text search syntax described in Section 12.9, “Full-Text Search Functions” applies to the
MeCab parser plugin. Differences in parsing behaviour are described in this section. Full-text related
configuration options are also applicable.

For additional information about the MeCab parser, refer to the MeCab Documentation on the Google
Developers site.

Installing the MeCab Parser Plugin

The MeCab parser plugin requires mecab and mecab-ipadic, which are both included in MySQL
binary installations.

http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html
https://code.google.com/
https://code.google.com/

MeCab Full-Text Parser Plugin

1470

On Unix-like platforms, libmecab.so is statically linked in libpluginmecab.so, which is located
in the MySQL plugin directory. On Windows, libmecab.dll is found in the MySQL bin directory.
mecab-ipadic is located in MYSQL_HOME/lib/mecab.

If you do not want use the MeCab distribution provided with MySQL binaries, you can install mecab
and mecab-ipadic using a native package management utility (on Fedora, Debian, and Ubuntu), or
you can build mecab and mecab-ipadic from source. For information about installing mecab and
mecab-ipadic using a native package management utility, see Installing MeCab From a Binary
Distribution (Optional). If you want to build mecab and mecab-ipadic from source, see Building
MeCab From Source (Optional).

To install and configure the MeCab parser plugin, perform the following steps:

1. In the MySQL configuration file, set the mecab_rc_file configuration option to the location of the
mecabrc configuration file, which is the configuration file for MeCab. If you are using the MeCab
package distributed with MySQL, the mecabrc file is located in MYSQL_HOME/lib/mecab/etc/.

[mysqld]
loose-mecab-rc-file=MYSQL_HOME/lib/mecab/etc/mecabrc

The loose prefix is an option modifier. The mecab_rc_file option is not recognized by MySQL
until the MeCaB parser plugin is installed but it must be set before attempting to install the MeCaB
parser plugin. The loose prefix allows you restart MySQL without encountering an error due to an
unrecognized variable.

If you use your own MeCab installation, or build MeCab from source, the location of the mecabrc
configuration file may differ.

For information about the MySQL configuration file and its location, see Section 4.2.6, “Using
Option Files”.

2. Also in the MySQL configuration file, set the minimum token size to 1 or 2, which are the values
recommended for use with the MeCab parser. For InnoDB tables, minimum token size is defined
by the innodb_ft_min_token_size configuration option, which has a default value of 3. For
MyISAM tables, minimum token size is defined by ft_min_word_len, which has a default value of
4.

[mysqld]
innodb_ft_min_token_size=1

3. Modify the mecabrc configuration file to specify the dictionary you want to use. The mecab-
ipadic package distributed with MySQL binaries includes three dictionaries (ipadic_euc-jp,
ipadic_sjis, and ipadic_utf-8). The mecabrc configuration file packaged with MySQL
contains and entry similar to the following:

dicdir = /path/to/mysql/lib/mecab/lib/mecab/dic/ipadic_euc-jp

To use the ipadic_utf-8 dictionary, for example, modify the entry as follows:

dicdir=MYSQL_HOME/lib/mecab/dic/ipadic_utf-8

If you are using your own MeCab installation or have built MeCab from source, the default dicdir
entry in the mecabrc file will differ, as will the dictionaries and their location.

Note

After the MeCab parser plugin is installed, you can use the
mecab_charset status variable to view the character set used with
MeCab. The three MeCab dictionaries provided with the MySQL binary
support the following character sets.

• The ipadic_euc-jp dictionary supports the ujis and eucjpms
character sets.

MeCab Full-Text Parser Plugin

1471

• The ipadic_sjis dictionary supports the sjis and cp932 character
sets. cp932 support was added in MySQL 5.7.7.

• The ipadic_utf-8 dictionary supports the utf8 and utf8mb4
character sets. utf8mb4 support was added in MySQL 5.7.7.

mecab_charset only reports the first supported character set. For
example, the ipadic_utf-8 dictionary supports both utf8 and utf8mb4.
mecab_charset always reports utf8 when this dictionary is in use.

4. Restart MySQL.

5. Install the MeCab parser plugin:

The MeCab parser plugin is installed using INSTALL PLUGIN syntax. The plugin name is mecab,
and the shared library name is libpluginmecab.so. For additional information about installing
plugins, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.

INSTALL PLUGIN mecab SONAME 'libpluginmecab.so';

Once installed, the MeCab parser plugin loads at every normal MySQL restart.

6. Verify that the MeCab parser plugin is loaded using the SHOW PLUGINS statement.

mysql> SHOW PLUGINS;

A mecab plugin should appear in the list of plugins.

Creating a FULLTEXT Index that uses the MeCab Parser

To create a FULLTEXT index that uses the mecab parser, specify WITH PARSER ngram with CREATE
TABLE, ALTER TABLE, or CREATE INDEX.

This example demonstrates creating a table with a mecab FULLTEXT index, inserting sample data, and
viewing tokenized data in the INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE table:

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body) WITH PARSER mecab
) ENGINE=InnoDB CHARACTER SET utf8;

mysql> SET NAMES utf8;

mysql> INSERT INTO articles (title,body) VALUES
 ('データベース管理','このチュートリアルでは、私はどのようにデータベースを管理する方法を紹介します'),

 ('データベースアプリケーション開発','データベースアプリケーションを開発することを学ぶ');

mysql> SET GLOBAL innodb_ft_aux_table="test/articles";

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE ORDER BY doc_id, position;

To add a FULLTEXT index to an existing table, you can use ALTER TABLE or CREATE INDEX. For
example:

CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT
) ENGINE=InnoDB CHARACTER SET utf8;

ALTER TABLE articles ADD FULLTEXT INDEX ft_index (title,body) WITH PARSER mecab;

MeCab Full-Text Parser Plugin

1472

Or:

CREATE FULLTEXT INDEX ft_index ON articles (title,body) WITH PARSER mecab;

MeCab Parser Space Handling

The MeCab parser uses spaces as separators in query strings. For example, the MeCab parser
tokenizes 'データベース管理' as 'データベース' and '管理'.

MeCab Parser Stopword Handling

By default, the MeCab parser uses the default stopword list, which contains a short list of English
stopwords. For a stopword list applicable to Japanese, you must create your own. For information
about creating stopword lists, see Section 12.9.4, “Full-Text Stopwords”.

MeCab Parser Term Search

For natural language mode search, the search term is converted to a union of tokens. For example,
'データベース管理' is converted to 'データベース 管理' .

SELECT COUNT(*) FROM articles WHERE MATCH(title,body) AGAINST('データベース管理' IN NATURAL LANGUAGE MODE);

For boolean mode search, the search term is converted to a search phrase. For example,
'データベース管理' is converted to '"データベース 管理"'.

SELECT COUNT(*) FROM articles WHERE MATCH(title,body) AGAINST('データベース管理' IN BOOLEAN MODE);

MeCab Parser Wildcard Search

Wildcard search terms are not tokenized. A search on 'データベース管理*' is performed on the prefix,
'データベース管理'.

SELECT COUNT(*) FROM articles WHERE MATCH(title,body) AGAINST('データベース*' IN BOOLEAN MODE);

MeCab Parser Phrase Search

Phrases are tokenized. For example, "データベース管理" is tokenized as "データベース 管理".

SELECT COUNT(*) FROM articles WHERE MATCH(title,body) AGAINST('"データベース管理"' IN BOOLEAN MODE);

Installing MeCab From a Binary Distribution (Optional)

Installing mecab and mecab-ipadic from a binary distribution using a native package management
utility is only necessary if you do not want to the use the distributions packaged with the MySQL binary.
For example, on Fedora, you can use Yum to perform the installation:

yum mecab-devel

On Debian or Ubuntu, you can perform an APT installation:

apt-get install mecab
apt-get install mecab-ipadic

Installing MeCab From Source (Optional)

The mecab and mecab-ipadic packages distributed with the MySQL binary are recommended but if
you want to build mecab and mecab-ipadic from source, basic installation steps are provided below.
For additional information, refer to the MeCab documentation.

Cast Functions and Operators

1473

1. Download the tar.gz packages for mecab and mecab-ipadic from https://code.google.com/
p/mecab/downloads/list. As of January, 2015, the latest available packages are
mecab-0.996.tar.gz and mecab-ipadic-2.7.0-20070801.tar.gz.

2. Install mecab:

tar zxfv mecab-0.996.tar
cd mecab-0.996
./configure
make
make check
su
make install

3. Install mecab-ipadic:

tar zxfv mecab-ipadic-2.7.0-20070801.tar
cd mecab-ipadic-2.7.0-20070801
./configure
make
su
make install

4. Compile MySQL using the WITH_MECAB CMake option. Set the WITH_MECAB option to system if
you have installed mecab and mecab-ipadic to the default location.

-DWITH_MECAB=system

If you defined a custom installation directory, set WITH_MECAB to the custom directory. For
example:

-DWITH_MECAB=/path/to/mecab

12.10 Cast Functions and Operators

Table 12.14 Cast Functions

Name Description

BINARY Cast a string to a binary string

CAST() Cast a value as a certain type

CONVERT() Cast a value as a certain type

• BINARY

The BINARY operator casts the string following it to a binary string. This is an easy way to force a
column comparison to be done byte by byte rather than character by character. This causes the
comparison to be case sensitive even if the column is not defined as BINARY or BLOB. BINARY also
causes trailing spaces to be significant.

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT BINARY 'a' = 'A';
 -> 0
mysql> SELECT 'a' = 'a ';
 -> 1
mysql> SELECT BINARY 'a' = 'a ';
 -> 0

In a comparison, BINARY affects the entire operation; it can be given before either operand with the
same result.

BINARY str is shorthand for CAST(str AS BINARY).

https://code.google.com/p/mecab/downloads/list
https://code.google.com/p/mecab/downloads/list

Cast Functions and Operators

1474

Note that in some contexts, if you cast an indexed column to BINARY, MySQL is not able to use the
index efficiently.

• CAST(expr AS type)

The CAST() function takes an expression of any type and produces a result value of a specified
type, similar to CONVERT(). See the description of CONVERT() for more information.

• CONVERT(expr,type), CONVERT(expr USING transcoding_name)

The CONVERT() and CAST() functions take an expression of any type and produce a result value of
a specified type.

CAST() and CONVERT(... USING ...) are standard SQL syntax. The non-USING form of
CONVERT() is ODBC syntax.

CONVERT() with USING converts data between different character sets. In MySQL, transcoding
names are the same as the corresponding character set names. For example, this statement
converts the string 'abc' in the default character set to the corresponding string in the utf8
character set:

SELECT CONVERT('abc' USING utf8);

The type for the result can be one of the following values:

• BINARY[(N)]

• CHAR[(N)]

• DATE

• DATETIME

• DECIMAL[(M[,D])]

• JSON (added in MySQL 5.7.8)

• SIGNED [INTEGER]

• TIME

• UNSIGNED [INTEGER]

BINARY produces a string with the BINARY data type. See Section 11.4.2, “The BINARY and
VARBINARY Types” for a description of how this affects comparisons. If the optional length N is
given, BINARY(N) causes the cast to use no more than N bytes of the argument. Values shorter
than N bytes are padded with 0x00 bytes to a length of N.

CHAR(N) causes the cast to use no more than N characters of the argument.

JSON returns a JSON value. For details on the rules for conversion of values between JSON and
other types, see Comparison and Ordering of JSON Values.

Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because
binary strings have no character set, and thus no concept of lettercase. To perform a case-insensitive
comparison, use the CONVERT() function to convert the value to a nonbinary string. Comparisons of
the result use the string collation. For example, if the character set of the result has a case-insensitive
collation, a LIKE operation is not case sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) FROM tbl_name;

Cast Functions and Operators

1475

To use a different character set, substitute its name for latin1 in the preceding statement. To specify
a particular collation for the converted string, use a COLLATE clause following the CONVERT() call, as
described in Section 10.1.9.2, “CONVERT() and CAST()”. For example, to use latin1_german1_ci:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) COLLATE latin1_german1_ci
 FROM tbl_name;

CONVERT() can be used more generally for comparing strings that are represented in different
character sets.

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY, BLOB).
To perform lettercase conversion, convert the string to a nonbinary string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

The cast functions are useful when you want to create a column with a specific type in a CREATE
TABLE ... SELECT statement:

CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE);

The functions also can be useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM
columns occurs using the internal numeric values. Casting the values to CHAR results in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST(str AS BINARY) is the same thing as BINARY str. CAST(expr AS CHAR) treats the
expression as a string with the default character set.

CAST() also changes the result if you use it as part of a more complex expression such as
CONCAT('Date: ',CAST(NOW() AS DATE)).

You should not use CAST() to extract data in different formats but instead use string functions like
LEFT() or EXTRACT(). See Section 12.7, “Date and Time Functions”.

To cast a string to a numeric value in numeric context, you normally do not have to do anything other
than to use the string value as though it were a number:

mysql> SELECT 1+'1';
 -> 2

If you use a string in an arithmetic operation, it is converted to a floating-point number during
expression evaluation.

If you use a number in string context, the number automatically is converted to a string:

mysql> SELECT CONCAT('hello you ',2);
 -> 'hello you 2'

For information about implicit conversion of numbers to strings, see Section 12.2, “Type Conversion in
Expression Evaluation”.

MySQL supports arithmetic with both signed and unsigned 64-bit values. If you are using numeric
operators (such as + or -) and one of the operands is an unsigned integer, the result is unsigned by

XML Functions

1476

default (see Section 12.6.1, “Arithmetic Operators”). You can override this by using the SIGNED or
UNSIGNED cast operator to cast a value to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT CAST(1-2 AS UNSIGNED);
 -> 18446744073709551615
mysql> SELECT CAST(CAST(1-2 AS UNSIGNED) AS SIGNED);
 -> -1

If either operand is a floating-point value, the result is a floating-point value and is not affected by the
preceding rule. (In this context, DECIMAL column values are regarded as floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
 -> -1.0

The SQL mode affects the result of conversion operations. Examples:

• If you convert a “zero” date string to a date, CONVERT() and CAST() return NULL and produce a
warning when the NO_ZERO_DATE SQL mode is enabled.

• For integer subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the subtraction
result is signed even if any operand is unsigned.

For more information, see Section 5.1.7, “Server SQL Modes”.

12.11 XML Functions

Table 12.15 XML Functions

Name Description

ExtractValue() Extracts a value from an XML string using XPath notation

UpdateXML() Return replaced XML fragment

This section discusses XML and related functionality in MySQL.

Note

It is possible to obtain XML-formatted output from MySQL in the mysql and
mysqldump clients by invoking them with the --xml option. See Section 4.5.1,
“mysql — The MySQL Command-Line Tool”, and Section 4.5.4, “mysqldump
— A Database Backup Program”.

Two functions providing basic XPath 1.0 (XML Path Language, version 1.0) capabilities are available.
Some basic information about XPath syntax and usage is provided later in this section; however, an
in-depth discussion of these topics is beyond the scope of this Manual, and you should refer to the
XML Path Language (XPath) 1.0 standard for definitive information. A useful resource for those new
to XPath or who desire a refresher in the basics is the Zvon.org XPath Tutorial, which is available in
several languages.

Note

These functions remain under development. We continue to improve these and
other aspects of XML and XPath functionality in MySQL 5.7 and onwards. You
may discuss these, ask questions about them, and obtain help from other users
with them in the MySQL XML User Forum.

XPath expressions used with these functions support user variables and local stored program
variables. User variables are weakly checked; variables local to stored programs are strongly checked
(see also Bug #26518):

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/
http://forums.mysql.com/list.php?44

XML Functions

1477

• User variables (weak checking). Variables using the syntax $@variable_name (that is,
user variables) are not checked. No warnings or errors are issued by the server if a variable
has the wrong type or has previously not been assigned a value. This also means the user is
fully responsible for any typographical errors, since no warnings will be given if (for example)
$@myvariable is used where $@myvariable was intended.

Example:

mysql> SET @xml = '<a>XY';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @i =1, @j = 2;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @i, ExtractValue(@xml, '//b[$@i]');
+------+--------------------------------+
| @i | ExtractValue(@xml, '//b[$@i]') |
+------+--------------------------------+
| 1 | X |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @j, ExtractValue(@xml, '//b[$@j]');
+------+--------------------------------+
| @j | ExtractValue(@xml, '//b[$@j]') |
+------+--------------------------------+
| 2 | Y |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @k, ExtractValue(@xml, '//b[$@k]');
+------+--------------------------------+
| @k | ExtractValue(@xml, '//b[$@k]') |
+------+--------------------------------+
| NULL | |
+------+--------------------------------+
1 row in set (0.00 sec)

• Variables in stored programs (strong checking). Variables using the syntax $variable_name
can be declared and used with these functions when they are called inside stored programs. Such
variables are local to the stored program in which they are defined, and are strongly checked for type
and value.

Example:

mysql> DELIMITER |

mysql> CREATE PROCEDURE myproc ()
 -> BEGIN
 -> DECLARE i INT DEFAULT 1;
 -> DECLARE xml VARCHAR(25) DEFAULT '<a>X<a>Y<a>Z';
 ->
 -> WHILE i < 4 DO
 -> SELECT xml, i, ExtractValue(xml, '//a[$i]');
 -> SET i = i+1;
 -> END WHILE;
 -> END |
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

mysql> CALL myproc();
+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 1 | X |
+--------------------------+---+------------------------------+
1 row in set (0.00 sec)

XML Functions

1478

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 2 | Y |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 3 | Z |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

Parameters. Variables used in XPath expressions inside stored routines that are passed in as
parameters are also subject to strong checking.

Expressions containing user variables or variables local to stored programs must otherwise (except
for notation) conform to the rules for XPath expressions containing variables as given in the XPath 1.0
specification.

Note

A user variable used to store an XPath expression is treated as an empty
string. Because of this, it is not possible to store an XPath expression as a user
variable. (Bug #32911)

• ExtractValue(xml_frag, xpath_expr)

ExtractValue() takes two string arguments, a fragment of XML markup xml_frag and an XPath
expression xpath_expr (also known as a locator); it returns the text (CDATA) of the first text node
which is a child of the elements or elements matched by the XPath expression.

Using this function is the equivalent of performing a match using the xpath_expr after appending
/text(). In other words, ExtractValue('<a>Sakila', '/a/b') and
ExtractValue('<a>Sakila', '/a/b/text()') produce the same result.

If multiple matches are found, the content of the first child text node of each matching element is
returned (in the order matched) as a single, space-delimited string.

If no matching text node is found for the expression (including the implicit /text())—for whatever
reason, as long as xpath_expr is valid, and xml_frag consists of elements which are properly
nested and closed—an empty string is returned. No distinction is made between a match on an
empty element and no match at all. This is by design.

If you need to determine whether no matching element was found in xml_frag or such an element
was found but contained no child text nodes, you should test the result of an expression that uses
the XPath count() function. For example, both of these statements return an empty string, as
shown here:

mysql> SELECT ExtractValue('<a>', '/a/b');
+-------------------------------------+
| ExtractValue('<a>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><c/>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+

XML Functions

1479

1 row in set (0.00 sec)

However, you can determine whether there was actually a matching element using the following:

mysql> SELECT ExtractValue('<a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a>', 'count(/a/b)') |
+-------------------------------------+
| 1 |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><c/>', 'count(/a/b)') |
+-------------------------------------+
| 0 |
+-------------------------------------+
1 row in set (0.01 sec)

Important

ExtractValue() returns only CDATA, and does not return any tags that
might be contained within a matching tag, nor any of their content (see the
result returned as val1 in the following example).

mysql> SELECT
 -> ExtractValue('<a>cccddd', '/a') AS val1,
 -> ExtractValue('<a>cccddd', '/a/b') AS val2,
 -> ExtractValue('<a>cccddd', '//b') AS val3,
 -> ExtractValue('<a>cccddd', '/b') AS val4,
 -> ExtractValue('<a>cccdddeee', '//b') AS val5;

+------+------+------+------+---------+
| val1 | val2 | val3 | val4 | val5 |
+------+------+------+------+---------+
| ccc | ddd | ddd | | ddd eee |
+------+------+------+------+---------+

This function uses the current SQL collation for making comparisons with contains(), performing
the same collation aggregation as other string functions (such as CONCAT()), in taking into account
the collation coercibility of their arguments; see Section 10.1.7.5, “Collation of Expressions”, for an
explanation of the rules governing this behavior.

(Previously, binary—that is, case-sensitive—comparison was always used.)

NULL is returned if xml_frag contains elements which are not properly nested or closed, and a
warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');

XML Functions

1480

+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

• UpdateXML(xml_target, xpath_expr, new_xml)

This function replaces a single portion of a given fragment of XML markup xml_target with a new
XML fragment new_xml, and then returns the changed XML. The portion of xml_target that is
replaced matches an XPath expression xpath_expr supplied by the user.

If no expression matching xpath_expr is found, or if multiple matches are found, the function
returns the original xml_target XML fragment. All three arguments should be strings.

mysql> SELECT
 -> UpdateXML('<a>ccc<d></d>', '/a', '<e>fff</e>') AS val1,
 -> UpdateXML('<a>ccc<d></d>', '/b', '<e>fff</e>') AS val2,
 -> UpdateXML('<a>ccc<d></d>', '//b', '<e>fff</e>') AS val3,
 -> UpdateXML('<a>ccc<d></d>', '/a/d', '<e>fff</e>') AS val4,
 -> UpdateXML('<a><d></d>ccc<d></d>', '/a/d', '<e>fff</e>') AS val5
 -> \G

*************************** 1. row ***************************
val1: <e>fff</e>
val2: <a>ccc<d></d>
val3: <a><e>fff</e><d></d>
val4: <a>ccc<e>fff</e>
val5: <a><d></d>ccc<d></d>

Note

A discussion in depth of XPath syntax and usage are beyond the scope of
this Manual. Please see the XML Path Language (XPath) 1.0 specification
for definitive information. A useful resource for those new to XPath or who
are wishing a refresher in the basics is the Zvon.org XPath Tutorial, which is
available in several languages.

Descriptions and examples of some basic XPath expressions follow:

• /tag

Matches <tag/> if and only if <tag/> is the root element.

Example: /a has a match in <a> because it matches the outermost (root) tag. It does
not match the inner a element in <a/> because in this instance it is the child of another
element.

• /tag1/tag2

Matches <tag2/> if and only if it is a child of <tag1/>, and <tag1/> is the root element.

Example: /a/b matches the b element in the XML fragment <a> because it is a child of
the root element a. It does not have a match in <a/> because in this case, b is the root
element (and hence the child of no other element). Nor does the XPath expression have a match in
<a><c></c>; here, b is a descendant of a, but not actually a child of a.

This construct is extendable to three or more elements. For example, the XPath expression /a/b/c
matches the c element in the fragment <a><c/>.

• //tag

Matches any instance of <tag>.

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/

XML Functions

1481

Example: //a matches the a element in any of the following: <a><c/>; <c><a><b/
>; <c><a/></c>.

// can be combined with /. For example, //a/b matches the b element in either of the fragments
<a> or <a><c/>

Note

//tag is the equivalent of /descendant-or-self::*/tag. A common
error is to confuse this with /descendant-or-self::tag, although the
latter expression can actually lead to very different results, as can be seen
here:

mysql> SET @xml = '<a><c>w</c>x<d>y</d>z';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @xml;
+---+
| @xml |
+---+
| <a><c>w</c>x<d>y</d>z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[1]');
+------------------------------+
| ExtractValue(@xml, '//b[1]') |
+------------------------------+
| x z |
+------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[2]');
+------------------------------+
| ExtractValue(@xml, '//b[2]') |
+------------------------------+
| |
+------------------------------+
1 row in set (0.01 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[1]') |
+---+
| x z |
+---+
1 row in set (0.06 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[2]') |
+---+
| |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[1]') |
+---+
| z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[2]') |

XML Functions

1482

+---+
| x |
+---+
1 row in set (0.00 sec)

• The * operator acts as a “wildcard” that matches any element. For example, the expression /*/b
matches the b element in either of the XML fragments <a> or <c></c>. However,
the expression does not produce a match in the fragment <a/> because b must be a child
of some other element. The wildcard may be used in any position: The expression /*/b/* will
match any child of a b element that is itself not the root element.

• You can match any of several locators using the | (UNION) operator. For example, the expression
//b|//c matches all b and c elements in the XML target.

• It is also possible to match an element based on the value of one or more of its attributes. This done
using the syntax tag[@attribute="value"]. For example, the expression //b[@id="idB"]
matches the second b element in the fragment <a><b id="idA"/><c/><b id="idB"/></
a>. To match against any element having attribute="value", use the XPath expression //
*[attribute="value"].

To filter multiple attribute values, simply use multiple attribute-comparison clauses in succession.
For example, the expression //b[@c="x"][@d="y"] matches the element <b c="x" d="y"/>
occurring anywhere in a given XML fragment.

To find elements for which the same attribute matches any of several values, you can use multiple
locators joined by the | operator. For example, to match all b elements whose c attributes have
either of the values 23 or 17, use the expression //b[@c="23"]|//b[@c="17"]. You can also
use the logical or operator for this purpose: //b[@c="23" or @c="17"].

Note

The difference between or and | is that or joins conditions, while | joins
result sets.

XPath Limitations. The XPath syntax supported by these functions is currently subject to the
following limitations:

• Nodeset-to-nodeset comparison (such as '/a/b[@c=@d]') is not supported.

• All of the standard XPath comparison operators are supported. (Bug #22823)

• Relative locator expressions are resolved in the context of the root node. For example, consider the
following query and result:

mysql> SELECT ExtractValue(
 -> '<a><b c="1">X<b c="2">Y',
 -> 'a/b'
 ->) AS result;
+--------+
| result |
+--------+
| X Y |
+--------+
1 row in set (0.03 sec)

In this case, the locator a/b resolves to /a/b.

Relative locators are also supported within predicates. In the following example, d[../@c="1"] is
resolved as /a/b[@c="1"]/d:

mysql> SELECT ExtractValue(
 -> '<a>
 -> <b c="1"><d>X</d>

XML Functions

1483

 -> <b c="2"><d>X</d>
 -> ',
 -> 'a/b/d[../@c="1"]')
 -> AS result;
+--------+
| result |
+--------+
| X |
+--------+
1 row in set (0.00 sec)

• Locators prefixed with expressions that evaluate as scalar values—including variable references,
literals, numbers, and scalar function calls—are not permitted, and their use results in an error.

• The :: operator is not supported in combination with node types such as the following:

• axis::comment()

• axis::text()

• axis::processing-instructions()

• axis::node()

However, name tests (such as axis::name and axis::*) are supported, as shown in these
examples:

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::b');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::b') |
+---+
| x |
+---+
1 row in set (0.02 sec)

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::*');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::*') |
+---+
| x y |
+---+
1 row in set (0.01 sec)

• “Up-and-down” navigation is not supported in cases where the path would lead “above” the root
element. That is, you cannot use expressions which match on descendants of ancestors of a given
element, where one or more of the ancestors of the current element is also an ancestor of the root
element (see Bug #16321).

• The following XPath functions are not supported, or have known issues as indicated:

• id()

• lang()

• local-name()

• name()

• namespace-uri()

• normalize-space()

• starts-with()

• string()

XML Functions

1484

• substring-after()

• substring-before()

• translate()

• The following axes are not supported:

• following-sibling

• following

• preceding-sibling

• preceding

XPath expressions passed as arguments to ExtractValue() and UpdateXML() may contain
the colon character (“:”) in element selectors, which enables their use with markup employing XML
namespaces notation. For example:

mysql> SET @xml = '<a>111<b:c>222<d>333</d><e:f>444</e:f></b:c>';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//e:f');
+-----------------------------+
| ExtractValue(@xml, '//e:f') |
+-----------------------------+
| 444 |
+-----------------------------+
1 row in set (0.00 sec)

mysql> SELECT UpdateXML(@xml, '//b:c', '<g:h>555</g:h>');
+--+
| UpdateXML(@xml, '//b:c', '<g:h>555</g:h>') |
+--+
| <a>111<g:h>555</g:h> |
+--+
1 row in set (0.00 sec)

This is similar in some respects to what is permitted by Apache Xalan and some other parsers, and
is much simpler than requiring namespace declarations or the use of the namespace-uri() and
local-name() functions.

Error handling. For both ExtractValue() and UpdateXML(), the XPath locator used must be
valid and the XML to be searched must consist of elements which are properly nested and closed. If
the locator is invalid, an error is generated:

mysql> SELECT ExtractValue('<a>c', '/&a');
ERROR 1105 (HY000): XPATH syntax error: '&a'

If xml_frag does not consist of elements which are properly nested and closed, NULL is returned and
a warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************

http://xalan.apache.org/

XML Functions

1485

 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

Important

The replacement XML used as the third argument to UpdateXML() is not
checked to determine whether it consists solely of elements which are properly
nested and closed.

XPath Injection. code injection occurs when malicious code is introduced into the system to gain
unauthorized access to privileges and data. It is based on exploiting assumptions made by developers
about the type and content of data input from users. XPath is no exception in this regard.

A common scenario in which this can happen is the case of application which handles authorization
by matching the combination of a login name and password with those found in an XML file, using an
XPath expression like this one:

//user[login/text()='neapolitan' and password/text()='1c3cr34m']/attribute::id

This is the XPath equivalent of an SQL statement like this one:

SELECT id FROM users WHERE login='neapolitan' AND password='1c3cr34m';

A PHP application employing XPath might handle the login process like this:

<?php

 $file = "users.xml";

 $login = $POST["login"];
 $password = $POST["password"];

 $xpath = "//user[login/text()=$login and password/text()=$password]/attribute::id";

 if(file_exists($file))
 {
 $xml = simplexml_load_file($file);

 if($result = $xml->xpath($xpath))
 echo "You are now logged in as user $result[0].";
 else
 echo "Invalid login name or password.";
 }
 else
 exit("Failed to open $file.");

?>

No checks are performed on the input. This means that a malevolent user can “short-circuit” the test
by entering ' or 1=1 for both the login name and password, resulting in $xpath being evaluated as
shown here:

//user[login/text()='' or 1=1 and password/text()='' or 1=1]/attribute::id

XML Functions

1486

Since the expression inside the square brackets always evaluates as true, it is effectively the same as
this one, which matches the id attribute of every user element in the XML document:

//user/attribute::id

One way in which this particular attack can be circumvented is simply by quoting the variable names to
be interpolated in the definition of $xpath, forcing the values passed from a Web form to be converted
to strings:

$xpath = "//user[login/text()='$login' and password/text()='$password']/attribute::id";

This is the same strategy that is often recommended for preventing SQL injection attacks. In general,
the practices you should follow for preventing XPath injection attacks are the same as for preventing
SQL injection:

• Never accepted untested data from users in your application.

• Check all user-submitted data for type; reject or convert data that is of the wrong type

• Test numeric data for out of range values; truncate, round, or reject values that are out of range. Test
strings for illegal characters and either strip them out or reject input containing them.

• Do not output explicit error messages that might provide an unauthorized user with clues that could
be used to compromise the system; log these to a file or database table instead.

Just as SQL injection attacks can be used to obtain information about database schemas, so can
XPath injection be used to traverse XML files to uncover their structure, as discussed in Amit Klein's
paper Blind XPath Injection (PDF file, 46KB).

It is also important to check the output being sent back to the client. Consider what can happen when
we use the MySQL ExtractValue() function:

mysql> SELECT ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->) AS id;
+-------------------------------+
| id |
+-------------------------------+
| 00327 13579 02403 42354 28570 |
+-------------------------------+
1 row in set (0.01 sec)

Because ExtractValue() returns multiple matches as a single space-delimited string, this injection
attack provides every valid ID contained within users.xml to the user as a single row of output. As an
extra safeguard, you should also test output before returning it to the user. Here is a simple example:

mysql> SELECT @id = ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT IF(
 -> INSTR(@id, ' ') = 0,
 -> @id,
 -> 'Unable to retrieve user ID')
 -> AS singleID;
+----------------------------+
| singleID |
+----------------------------+
| Unable to retrieve user ID |
+----------------------------+
1 row in set (0.00 sec)

http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf

Bit Functions and Operators

1487

In general, the guidelines for returning data to users securely are the same as for accepting user input.
These can be summed up as:

• Always test outgoing data for type and permissible values.

• Never permit unauthorized users to view error messages that might provide information about the
application that could be used to exploit it.

12.12 Bit Functions and Operators
Table 12.16 Bit Functions and Operators

Name Description

BIT_COUNT() Return the number of bits that are set

& Bitwise AND

~ Bitwise inversion

| Bitwise OR

^ Bitwise XOR

<< Left shift

>> Right shift

MySQL uses BIGINT (64-bit) arithmetic for bit operations, so these operators have a maximum range
of 64 bits.

• |

Bitwise OR:

mysql> SELECT 29 | 15;
 -> 31

The result is an unsigned 64-bit integer.

• &

Bitwise AND:

mysql> SELECT 29 & 15;
 -> 13

The result is an unsigned 64-bit integer.

• ^

Bitwise XOR:

mysql> SELECT 1 ^ 1;
 -> 0
mysql> SELECT 1 ^ 0;
 -> 1
mysql> SELECT 11 ^ 3;
 -> 8

The result is an unsigned 64-bit integer.

• <<

Shifts a longlong (BIGINT) number to the left.

Encryption and Compression Functions

1488

mysql> SELECT 1 << 2;
 -> 4

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift
count is greater or equal to the width of an unsigned 64-bit number, the result is zero.

• >>

Shifts a longlong (BIGINT) number to the right.

mysql> SELECT 4 >> 2;
 -> 1

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift
count is greater or equal to the width of an unsigned 64-bit number, the result is zero.

• ~

Invert all bits.

mysql> SELECT 5 & ~1;
 -> 4

The result is an unsigned 64-bit integer.

• BIT_COUNT(N)

Returns the number of bits that are set in the argument N.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
 -> 4, 3

12.13 Encryption and Compression Functions
Table 12.17 Encryption Functions

Name Description

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

COMPRESS() Return result as a binary string

DECODE() Decodes a string encrypted using ENCODE()

DES_DECRYPT() (deprecated 5.7.6) Decrypt a string

DES_ENCRYPT() (deprecated 5.7.6) Encrypt a string

ENCODE() Encode a string

ENCRYPT() (deprecated 5.7.6) Encrypt a string

MD5() Calculate MD5 checksum

OLD_PASSWORD() Return the value of the pre-4.1 implementation of
PASSWORD

PASSWORD() (deprecated 5.7.6) Calculate and return a password string

RANDOM_BYTES() Return a random byte vector

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SHA2() Calculate an SHA-2 checksum

UNCOMPRESS() Uncompress a string compressed

Encryption and Compression Functions

1489

Name Description

UNCOMPRESSED_LENGTH() Return the length of a string before compression

VALIDATE_PASSWORD_STRENGTH() Determine strength of password

Many encryption and compression functions return strings for which the result might contain arbitrary
byte values. If you want to store these results, use a column with a VARBINARY or BLOB binary string
data type. This will avoid potential problems with trailing space removal or character set conversion that
would change data values, such as may occur if you use a nonbinary string data type (CHAR, VARCHAR,
TEXT).

Some encryption functions return strings of ASCII characters: MD5(), OLD_PASSWORD(),
PASSWORD(), SHA(), SHA1(), SHA2(). In MySQL 5.7, their return value is a nonbinary string
that has a character set and collation determined by the character_set_connection and
collation_connection system variables.

For versions in which functions such as MD5() or SHA1() return a string of hex digits as a binary
string, the return value cannot be converted to uppercase or compared in case-insensitive fashion as
is. You must convert the value to a nonbinary string. See the discussion of binary string conversion in
Section 12.10, “Cast Functions and Operators”.

If an application stores values from a function such as MD5() or SHA1() that returns a string of hex
digits, more efficient storage and comparisons can be obtained by converting the hex representation to
binary using UNHEX() and storing the result in a BINARY(N) column. Each pair of hex digits requires
one byte in binary form, so the value of N depends on the length of the hex string. N is 16 for an MD5()
value and 20 for a SHA1() value. For SHA2(), N ranges from 28 to 32 depending on the argument
specifying the desired bit length of the result.

The size penalty for storing the hex string in a CHAR column is at least two times, up to eight times if
the value is stored in a column that uses the utf8 character set (where each character uses 4 bytes).
Storing the string also results in slower comparisons because of the larger values and the need to take
character set collation rules into account.

Suppose that an application stores MD5() string values in a CHAR(32) column:

CREATE TABLE md5_tbl (md5_val CHAR(32), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(MD5('abcdef'), ...);

To convert hex strings to more compact form, modify the application to use UNHEX() and
BINARY(16) instead as follows:

CREATE TABLE md5_tbl (md5_val BINARY(16), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(UNHEX(MD5('abcdef')), ...);

Applications should be prepared to handle the very rare case that a hashing function produces the
same value for two different input values. One way to make collisions detectable is to make the hash
column a primary key.

Note

Exploits for the MD5 and SHA-1 algorithms have become known. You may wish
to consider using one of the other encryption functions described in this section
instead, such as SHA2().

Caution

Passwords or other sensitive values supplied as arguments to encryption
functions are sent in cleartext to the MySQL server unless an SSL connection
is used. Also, such values will appear in any MySQL logs to which they are
written. To avoid these types of exposure, applications can encrypt sensitive
values on the client side before sending them to the server. The same

Encryption and Compression Functions

1490

considerations apply to encryption keys. To avoid exposing these, applications
can use stored procedures to encrypt and decrypt values on the server side.

• AES_DECRYPT(crypt_str,key_str[,init_vector])

This function decrypts data using the official AES (Advanced Encryption Standard) algorithm. For
more information, see the description of AES_ENCRYPT().

The optional initialization vector argument, init_vector, is available as of MySQL 5.7.4. As of
that version, statements that use AES_DECRYPT() are unsafe for statement-based replication and
cannot be stored in the query cache.

• AES_ENCRYPT(str,key_str[,init_vector])

AES_ENCRYPT() and AES_DECRYPT() implement encryption and decryption of data using the
official AES (Advanced Encryption Standard) algorithm, previously known as “Rijndael.” The AES
standard permits various key lengths. By default these functions implement AES with a 128-bit key
length. As of MySQL 5.7.4, key lengths of 196 or 256 bits can be used, as described later. The key
length is a trade off between performance and security.

AES_ENCRYPT() encrypts the string str using the key string key_str and returns a binary string
containing the encrypted output. AES_DECRYPT() decrypts the encrypted string crypt_str using
the key string key_str and returns the original cleartext string. If either function argument is NULL,
the function returns NULL.

The str and crypt_str arguments can be any length, and padding is automatically added to
str so it is a multiple of a block as required by block-based algorithms such as AES. This padding
is automatically removed by the AES_DECRYPT() function. The length of crypt_str can be
calculated using this formula:

16 * (trunc(string_length / 16) + 1)

For a key length of 128 bits, the most secure way to pass a key to the key_str argument is to
create a truly random 128-bit value and pass it as a binary value. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text',UNHEX('F3229A0B371ED2D9441B830D21A390C3')));

A passphrase can be used to generate an AES key by hashing the passphrase. For example:

INSERT INTO t VALUES (1,AES_ENCRYPT('text', SHA2('My secret passphrase',512)));

Do not pass a password or passphrase directly to crypt_str, hash it first. Previous versions of this
documentation suggested the former approach, but it is no longer recommended as the examples
shown here are more secure.

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it is possible
for AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input data or the key is
invalid.

As of MySQL 5.7.4, AES_ENCRYPT() and AES_DECRYPT() permit control of the block encryption
mode and take an optional init_vector initialization vector argument:

• The block_encryption_mode system variable controls the mode for block-based encryption
algorithms. Its default value is aes-128-ecb, which signifies encryption using a key length of 128
bits and ECB mode. For a description of the permitted values of this variable, see Section 5.1.4,
“Server System Variables”.

Encryption and Compression Functions

1491

• The optional init_vector argument provides an initialization vector for block encryption modes
that require it.

For modes that require the optional init_vector argument, it must be 16 bytes or longer (bytes in
excess of 16 are ignored). An error occurs if init_vector is missing.

For modes that do not require init_vector, it is ignored and a warning is generated if it is
specified.

A random string of bytes to use for the initialization vector can be produced by calling
RANDOM_BYTES(16). For encryption modes that require an initialization vector, the same vector
must be used for encryption and decryption.

mysql> SET block_encryption_mode = 'aes-256-cbc';
mysql> SET @key_str = SHA2('My secret passphrase',512);
mysql> SET @init_vector = RANDOM_BYTES(16);
mysql> SET @crypt_str = AES_ENCRYPT('text',@key_str,@init_vector);
mysql> SELECT AES_DECRYPT(@crypt_str,@key_str,@init_vector);
+---+
| AES_DECRYPT(@crypt_str,@key_str,@init_vector) |
+---+
| text |
+---+

The following table lists each permitted block encryption mode, the SSL libraries that support it, and
whether the initialization vector argument is required.

Block Encryption Mode SSL Libraries that Support
Mode

Initialization Vector Required

ECB OpenSSL, yaSSL No

CBC OpenSSL, yaSSL Yes

CFB1 OpenSSL Yes

CFB8 OpenSSL Yes

CFB128 OpenSSL Yes

OFB OpenSSL Yes

As of MySQL 5.7.4, statements that use AES_ENCRYPT() or AES_DECRYPT() are unsafe for
statement-based replication and cannot be stored in the query cache.

• COMPRESS(string_to_compress)

Compresses a string and returns the result as a binary string. This function requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return value is always NULL.
The compressed string can be uncompressed with UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
 -> 21
mysql> SELECT LENGTH(COMPRESS(''));
 -> 0
mysql> SELECT LENGTH(COMPRESS('a'));
 -> 13
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
 -> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

Encryption and Compression Functions

1492

• Nonempty strings are stored as a 4-byte length of the uncompressed string (low byte first),
followed by the compressed string. If the string ends with space, an extra “.” character is added
to avoid problems with endspace trimming should the result be stored in a CHAR or VARCHAR
column. (However, use of nonbinary string data types such as CHAR or VARCHAR to store
compressed strings is not recommended anyway because character set conversion may occur.
Use a VARBINARY or BLOB binary string column instead.)

• DECODE(crypt_str,pass_str)

DECODE() decrypts the encrypted string crypt_str using pass_str as the password.
crypt_str should be a string returned from ENCODE().

Note

The ENCODE() and DECODE() functions are deprecated in MySQL 5.7,
will be removed in a future MySQL release, and should no longer be used.
Consider using AES_ENCRYPT() and AES_DECRYPT() instead.

• DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). If an error occurs, this function returns NULL.

This function works only if MySQL has been configured with SSL support. See Section 6.3.12, “Using
Secure Connections”.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted string
to determine the DES key number that was used to encrypt the original string, and then reads the
key from the DES key file to decrypt the message. For this to work, the user must have the SUPER
privilege. The key file can be specified with the --des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the
message.

If the crypt_str argument does not appear to be an encrypted string, MySQL returns the given
crypt_str.

Note

The DES_ENCRYPT() and DES_DECRYPT() functions are deprecated as
of MySQL 5.7.6, will be removed in a future MySQL release, and should no
longer be used. Consider using AES_ENCRYPT() and AES_DECRYPT()
instead.

• DES_ENCRYPT(str[,{key_num|key_str}])

Encrypts the string with the given key using the Triple-DES algorithm.

This function works only if MySQL has been configured with SSL support. See Section 6.3.12, “Using
Secure Connections”.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one was
given. With no argument, the first key from the DES key file is used. With a key_num argument, the
given key number (0 to 9) from the DES key file is used. With a key_str argument, the given key
string is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num). If an error
occurs, DES_ENCRYPT() returns NULL.

Encryption and Compression Functions

1493

The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num
is 127.

The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any
order. des_key_str is the string that is used to encrypt the message. There should be at least one
space between the number and the key. The first key is the default key that is used if you do not
specify any key argument to DES_ENCRYPT().

You can tell MySQL to read new key values from the key file with the FLUSH DES_KEY_FILE
statement. This requires the RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the
existence of encrypted column values, without giving the end user the right to decrypt those values.

Note

The DES_ENCRYPT() and DES_DECRYPT() functions are deprecated as
of MySQL 5.7.6, will be removed in a future MySQL release, and should no
longer be used. Consider using AES_ENCRYPT() and AES_DECRYPT()
instead.

mysql> SELECT customer_address FROM customer_table
 > WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

• ENCODE(str,pass_str)

ENCODE() encrypts str using pass_str as the password. The result is a binary string of the same
length as str. To decrypt the result, use DECODE().

Note

The ENCODE() and DECODE() functions are deprecated in MySQL 5.7, will
be removed in a future MySQL release, and should no longer be used.

If you still need to use ENCODE(), a salt value must be used with it to reduce risk. For example:

ENCODE('cleartext', CONCAT('my_random_salt','my_secret_password'))

A new random salt value must be used whenever a password is updated.

• ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call and returns a binary string. The salt argument
must be a string with at least two characters or the result will be NULL. If no salt argument is given,
a random value is used.

Encryption and Compression Functions

1494

Note

The ENCRYPT() function is deprecated as of MySQL 5.7.6, will be removed
in a future MySQL release, and should no longer be used. Consider using
AES_ENCRYPT() instead.

mysql> SELECT ENCRYPT('hello');
 -> 'VxuFAJXVARROc'

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This behavior
is determined by the implementation of the underlying crypt() system call.

The use of ENCRYPT() with the ucs2, utf16, utf16le, or utf32 multibyte character sets is not
recommended because the system call expects a string terminated by a zero byte.

If crypt() is not available on your system (as is the case with Windows), ENCRYPT() always
returns NULL.

• MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a string of 32 hex digits,
or NULL if the argument was NULL. The return value can, for example, be used as a hash key. See
the notes at the beginning of this section about storing hash values efficiently.

The return value is a nonbinary string in the connection character set.

mysql> SELECT MD5('testing');
 -> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

See the note regarding the MD5 algorithm at the beginning this section.

• OLD_PASSWORD(str)

OLD_PASSWORD() was added when the implementation of PASSWORD() was changed in MySQL
4.1 to improve security. OLD_PASSWORD() returns the value of the pre-4.1 implementation
of PASSWORD() as a string, and is intended to permit you to reset passwords for any pre-4.1
clients that need to connect to your version MySQL 5.7 server without locking them out. See
Section 6.1.2.4, “Password Hashing in MySQL”.

The return value is a nonbinary string in the connection character set.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them is removed
in MySQL 5.7.5. Consequently, OLD_PASSWORD() is deprecated and is
removed in MySQL 5.7.5.

• PASSWORD(str)

Note

This function is deprecated as of MySQL 5.7.6 and will be removed in a future
MySQL release.

Returns a hashed password string calculated from the cleartext password str. The return value is
a nonbinary string in the connection character set, or NULL if the argument is NULL. This function is

Encryption and Compression Functions

1495

the SQL interface to the algorithm used by the server to encrypt MySQL passwords for storage in the
mysql.user grant table.

The old_passwords system variable controls the password hashing method used by the
PASSWORD() function. It also influences password hashing performed by CREATE USER and GRANT
statements that specify a password using an IDENTIFIED BY clause.

The following table shows the permitted values of old_passwords, the password hashing method
for each value, and which authentication plugins use passwords hashed with each method.

Value Password Hashing Method Associated Authentication Plugin

0 MySQL 4.1 native hashing mysql_native_password

1 Pre-4.1 (“old”) hashing mysql_old_password

2 SHA-256 hashing sha256_password

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should
be avoided. Pre-4.1 passwords are deprecated and support for them is
removed in MySQL 5.7.5. Consequently, old_passwords=1, which causes
PASSWORD() to generate pre-4.1 password hashes, is not permitted as of
5.7.5. For account upgrade instructions, see Section 6.3.9.3, “Migrating Away
from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The
latter function is not affected by the value of old_passwords.

mysql> SET old_passwords = 0;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+---+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+---+------------------------+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 | 6f8c114b58f2ce9e |
+---+------------------------+

mysql> SET old_passwords = 1;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+--------------------+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+--------------------+------------------------+
| 6f8c114b58f2ce9e | 6f8c114b58f2ce9e |
+--------------------+------------------------+

SHA-256 password hashing (old_passwords=2) uses a random salt value, which makes the result
from PASSWORD() nondeterministic. Consequently, statements that use this function are not safe for
statement-based replication and cannot be stored in the query cache.

 Encryption performed by PASSWORD() is one-way (not reversible). It is not the same type of
encryption used for Unix passwords; for that, use ENCRYPT().

Note

PASSWORD() is used by the authentication system in MySQL Server; you
should not use it in your own applications. For that purpose, consider MD5()
or SHA2() instead. Also see RFC 2195, section 2 (Challenge-Response
Authentication Mechanism (CRAM)), for more information about handling
passwords and authentication securely in your applications.

http://www.faqs.org/rfcs/rfc2195.html
http://www.faqs.org/rfcs/rfc2195.html

Encryption and Compression Functions

1496

Caution

Under some circumstances, statements that invoke PASSWORD() may
be recorded in server logs or on the client side in a history file such as
~/.mysql_history, which means that cleartext passwords may be read
by anyone having read access to that information. For information about the
conditions under which this occurs for the server logs and how to control it,
see Section 6.1.2.3, “Passwords and Logging”. For similar information about
client-side logging, see Section 4.5.1.3, “mysql Logging”.

• RANDOM_BYTES(len)

This function returns a binary string of len random bytes generated using the random number
generator of the SSL library (OpenSSL or yaSSL). Permitted values of len range from 1 to 1024. For
values outside that range, RANDOM_BYTES() generates a warning and returns NULL.

RANDOM_BYTES() can be used to provide the initialization vector for the AES_DECRYPT() and
AES_ENCRYPT() functions. For use in that context, len must be at least 16. Larger values are
permitted, but bytes in excess of 16 are ignored.

RANDOM_BYTES() generates a random value, which makes its result nondeterministic.
Consequently, statements that use this function are unsafe for statement-based replication and
cannot be stored in the query cache.

This function is available as of MySQL 5.7.4.

• SHA1(str), SHA(str)

Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash
Algorithm). The value is returned as a string of 40 hex digits, or NULL if the argument was NULL.
One of the possible uses for this function is as a hash key. See the notes at the beginning of this
section about storing hash values efficiently. You can also use SHA1() as a cryptographic function
for storing passwords. SHA() is synonymous with SHA1().

The return value is a nonbinary string in the connection character set.

mysql> SELECT SHA1('abc');
 -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the
note regarding the MD5 and SHA-1 algorithms at the beginning this section.

• SHA2(str, hash_length)

Calculates the SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The
first argument is the cleartext string to be hashed. The second argument indicates the desired bit
length of the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256).
If either argument is NULL or the hash length is not one of the permitted values, the return value is
NULL. Otherwise, the function result is a hash value containing the desired number of bits. See the
notes at the beginning of this section about storing hash values efficiently.

The return value is a nonbinary string in the connection character set.

mysql> SELECT SHA2('abc', 224);
 -> '23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7'

This function works only if MySQL has been configured with SSL support. See Section 6.3.12, “Using
Secure Connections”.

Information Functions

1497

SHA2() can be considered cryptographically more secure than MD5() or SHA1().

• UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a
compressed value, the result is NULL. This function requires MySQL to have been compiled with a
compression library such as zlib. Otherwise, the return value is always NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
 -> 'any string'
mysql> SELECT UNCOMPRESS('any string');
 -> NULL

• UNCOMPRESSED_LENGTH(compressed_string)

Returns the length that the compressed string had before being compressed.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
 -> 30

• VALIDATE_PASSWORD_STRENGTH(str)

Given an argument representing a cleartext password, this function returns an integer to indicate
how strong the password is. The return value ranges from 0 (weak) to 100 (strong).

The password is subjected to increasingly strict tests and the return value reflects which tests were
satisfied, as shown in the following table.

Password Test Return Value

Length < 4 0

Length ≥ 4 and < validate_password_length 25

Satisfies policy 1 (LOW) 50

Satisfies policy 2 (MEDIUM) 75

Satisfies policy 3 (STRONG) 100

Password assessment by VALIDATE_PASSWORD_STRENGTH() is done by the
validate_password plugin. If that plugin is not installed, the function always returns 0. For
information about installing the validate_password plugin, see Section 6.1.2.5, “The Password
Validation Plugin”. To examine or configure the parameters that affect password testing, check or set
the system variables implemented by validate_password plugin. See Password Validation Plugin
Options and Variables.

12.14 Information Functions
Table 12.18 Information Functions

Name Description

BENCHMARK() Repeatedly execute an expression

CHARSET() Return the character set of the argument

COERCIBILITY() Return the collation coercibility value of the string argument

COLLATION() Return the collation of the string argument

CONNECTION_ID() Return the connection ID (thread ID) for the connection

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

DATABASE() Return the default (current) database name

Information Functions

1498

Name Description

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that
would be returned were there no LIMIT clause

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

ROW_COUNT() The number of rows updated

SCHEMA() Synonym for DATABASE()

SESSION_USER() Synonym for USER()

SYSTEM_USER() Synonym for USER()

USER() The user name and host name provided by the client

VERSION() Return a string that indicates the MySQL server version

• BENCHMARK(count,expr)

The BENCHMARK() function executes the expression expr repeatedly count times. It may be used
to time how quickly MySQL processes the expression. The result value is always 0. The intended
use is from within the mysql client, which reports query execution times:

mysql> SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));
+--+
| BENCHMARK(1000000,ENCODE('hello','goodbye')) |
+--+
| 0 |
+--+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable
to execute BENCHMARK() several times, and to interpret the result with regard to how heavily loaded
the server machine is.

BENCHMARK() is intended for measuring the runtime performance of scalar expressions, which has
some significant implications for the way that you use it and interpret the results:

• Only scalar expressions can be used. Although the expression can be a subquery, it must return a
single column and at most a single row. For example, BENCHMARK(10, (SELECT * FROM t))
will fail if the table t has more than one column or more than one row.

• Executing a SELECT expr statement N times differs from executing SELECT BENCHMARK(N,
expr) in terms of the amount of overhead involved. The two have very different execution profiles
and you should not expect them to take the same amount of time. The former involves the parser,
optimizer, table locking, and runtime evaluation N times each. The latter involves only runtime
evaluation N times, and all the other components just once. Memory structures already allocated
are reused, and runtime optimizations such as local caching of results already evaluated for
aggregate functions can alter the results. Use of BENCHMARK() thus measures performance of the
runtime component by giving more weight to that component and removing the “noise” introduced
by the network, parser, optimizer, and so forth.

• CHARSET(str)

Returns the character set of the string argument.

mysql> SELECT CHARSET('abc');
 -> 'latin1'
mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
 -> 'utf8'
mysql> SELECT CHARSET(USER());
 -> 'utf8'

• COERCIBILITY(str)

Information Functions

1499

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
 -> 0
mysql> SELECT COERCIBILITY(USER());
 -> 3
mysql> SELECT COERCIBILITY('abc');
 -> 4

The return values have the meanings shown in the following table. Lower values have higher
precedence.

Coercibility Meaning Example

0 Explicit
collation

Value with COLLATE clause

1 No collation Concatenation of strings with different collations

2 Implicit
collation

Column value, stored routine parameter or local variable

3 System
constant

USER() return value

4 Coercible Literal string

5 Ignorable NULL or an expression derived from NULL

• COLLATION(str)

Returns the collation of the string argument.

mysql> SELECT COLLATION('abc');
 -> 'latin1_swedish_ci'
mysql> SELECT COLLATION(_utf8'abc');
 -> 'utf8_general_ci'

• CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique
among the set of currently connected clients.

The value returned by CONNECTION_ID() is the same type of value as displayed in the ID column
of the INFORMATION_SCHEMA.PROCESSLIST table, the Id column of SHOW PROCESSLIST output,
and the PROCESSLIST_ID column of the Performance Schema threads table.

mysql> SELECT CONNECTION_ID();
 -> 23786

• CURRENT_USER, CURRENT_USER()

Returns the user name and host name combination for the MySQL account that the server used to
authenticate the current client. This account determines your access privileges. The return value is a
string in the utf8 character set.

The value of CURRENT_USER() can differ from the value of USER().

mysql> SELECT USER();
 -> 'davida@localhost'
mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();

Information Functions

1500

 -> '@localhost'

The example illustrates that although the client specified a user name of davida (as indicated by the
value of the USER() function), the server authenticated the client using an anonymous user account
(as seen by the empty user name part of the CURRENT_USER() value). One way this might occur is
that there is no account listed in the grant tables for davida.

Within a stored program or view, CURRENT_USER() returns the account for the user who defined
the object (as given by its DEFINER value) unless defined with the SQL SECURITY INVOKER
characteristic. In the latter case, CURRENT_USER() returns the object's invoker.

Triggers and events have no option to define the SQL SECURITY characteristic, so for these objects,
CURRENT_USER() returns the account for the user who defined the object. To return the invoker,
use USER() or SESSION_USER().

The following statements support use of the CURRENT_USER() function to take the place of the
name of (and, possibly, a host for) an affected user or a definer; in such cases, CURRENT_USER() is
expanded where and as needed:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

For information about the implications that this expansion of CURRENT_USER() has for replication in
different releases of MySQL 5.7, see Section 17.4.1.8, “Replication of CURRENT_USER()”.

• DATABASE()

Returns the default (current) database name as a string in the utf8 character set. If there is no
default database, DATABASE() returns NULL. Within a stored routine, the default database is the
database that the routine is associated with, which is not necessarily the same as the database that
is the default in the calling context.

mysql> SELECT DATABASE();
 -> 'test'

If there is no default database, DATABASE() returns NULL.

• FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to
the client. In some cases, it is desirable to know how many rows the statement would have returned

Information Functions

1501

without the LIMIT, but without running the statement again. To obtain this row count, include
a SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke FOUND_ROWS()
afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
 -> WHERE id > 100 LIMIT 10;
mysql> SELECT FOUND_ROWS();

The second SELECT returns a number indicating how many rows the first SELECT would have
returned had it been written without the LIMIT clause.

In the absence of the SQL_CALC_FOUND_ROWS option in the most recent successful SELECT
statement, FOUND_ROWS() returns the number of rows in the result set returned by that statement. If
the statement includes a LIMIT clause, FOUND_ROWS() returns the number of rows up to the limit.
For example, FOUND_ROWS() returns 10 or 60, respectively, if the statement includes LIMIT 10 or
LIMIT 50, 10.

The row count available through FOUND_ROWS() is transient and not intended to be available past
the statement following the SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to the
value later, save it:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;
mysql> SET @rows = FOUND_ROWS();

If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are in
the full result set. However, this is faster than running the query again without LIMIT, because the
result set need not be sent to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to restrict
the number of rows that a query returns, but also determine the number of rows in the full result
set without running the query again. An example is a Web script that presents a paged display
containing links to the pages that show other sections of a search result. Using FOUND_ROWS()
enables you to determine how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION statements
than for simple SELECT statements, because LIMIT may occur at multiple places in a UNION. It may
be applied to individual SELECT statements in the UNION, or global to the UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that would
be returned without a global LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS with UNION
are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is used,
duplicate removal occurs and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the number
of rows in the temporary table that is created to process the UNION.

Beyond the cases described here, the behavior of FOUND_ROWS() is undefined (for example, its
value following a SELECT statement that fails with an error).

Important

FOUND_ROWS() is not replicated reliably using statement-based replication.
This function is automatically replicated using row-based replication.

• LAST_INSERT_ID(), LAST_INSERT_ID(expr)

Information Functions

1502

With no argument, LAST_INSERT_ID() returns a BIGINT UNSIGNED (64-bit) value representing
the first automatically generated value successfully inserted for an AUTO_INCREMENT column as a
result of the most recently executed INSERT statement. The value of LAST_INSERT_ID() remains
unchanged if no rows are successfully inserted.

With an argument, LAST_INSERT_ID() returns an unsigned integer.

For example, after inserting a row that generates an AUTO_INCREMENT value, you can get the value
like this:

mysql> SELECT LAST_INSERT_ID();
 -> 195

The currently executing statement does not affect the value of LAST_INSERT_ID().
Suppose that you generate an AUTO_INCREMENT value with one statement, and then refer to
LAST_INSERT_ID() in a multiple-row INSERT statement that inserts rows into a table with its own
AUTO_INCREMENT column. The value of LAST_INSERT_ID() will remain stable in the second
statement; its value for the second and later rows is not affected by the earlier row insertions.
(However, if you mix references to LAST_INSERT_ID() and LAST_INSERT_ID(expr), the effect
is undefined.)

If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For
transactional tables, if the statement is rolled back due to an error, the value of LAST_INSERT_ID()
is left undefined. For manual ROLLBACK, the value of LAST_INSERT_ID() is not restored to that
before the transaction; it remains as it was at the point of the ROLLBACK.

Prior to MySQL 5.7.3, this function was not replicated correctly if replication filtering rules were in
use. (Bug #17234370, Bug #69861)

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects. The effect of a stored routine or trigger upon the value of LAST_INSERT_ID() that
is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements will not see a changed value.

The ID that was generated is maintained in the server on a per-connection basis. This means that
the value returned by the function to a given client is the first AUTO_INCREMENT value generated for
most recent statement affecting an AUTO_INCREMENT column by that client. This value cannot be
affected by other clients, even if they generate AUTO_INCREMENT values of their own. This behavior
ensures that each client can retrieve its own ID without concern for the activity of other clients, and
without the need for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a row
to a non-“magic” value (that is, a value that is not NULL and not 0).

Important

If you insert multiple rows using a single INSERT statement,
LAST_INSERT_ID() returns the value generated for the first inserted row
only. The reason for this is to make it possible to reproduce easily the same
INSERT statement against some other server.

For example:

Information Functions

1503

mysql> USE test;
Database changed
mysql> CREATE TABLE t (
 -> id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> name VARCHAR(10) NOT NULL
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO t VALUES (NULL, 'Bob');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
+----+------+
1 row in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+
1 row in set (0.00 sec)

mysql> INSERT INTO t VALUES
 -> (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
1	Bob
2	Mary
3	Jane
4	Lisa
+----+------+
4 rows in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 2 |
+------------------+
1 row in set (0.00 sec)

Although the second INSERT statement inserted three new rows into t, the ID generated for the first
of these rows was 2, and it is this value that is returned by LAST_INSERT_ID() for the following
SELECT statement.

If you use INSERT IGNORE and the row is ignored, the LAST_INSERT_ID() remains unchanged
from the current value (or 0 is returned if the connection has not yet performed a successful INSERT)
and, for non-transactional tables, the AUTO_INCREMENT counter is not incremented. For InnoDB
tables, the AUTO_INCREMENT counter is incremented if innodb_autoinc_lock_mode is set to 1
or 2, as demonstrated in the following example:

mysql> USE test;
Database changed

mysql> SELECT @@innodb_autoinc_lock_mode;
+----------------------------+
| @@innodb_autoinc_lock_mode |
+----------------------------+

Information Functions

1504

| 1 |
+----------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE `t` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`val` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
Query OK, 0 rows affected (0.02 sec)

-- Insert two rows

mysql> INSERT INTO t (val) VALUES (1),(2);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

-- With auto_increment_offset=1, the inserted rows
-- result in an AUTO_INCREMENT value of 3

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `val` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

-- LAST_INSERT_ID() returns the first automatically generated
-- value that is successfully inserted for the AUTO_INCREMENT column

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+
1 row in set (0.00 sec)

-- The attempted insertion of duplicate rows fail but errors are ignored

mysql> INSERT IGNORE INTO t (val) VALUES (1),(2);
Query OK, 0 rows affected (0.00 sec)
Records: 2 Duplicates: 2 Warnings: 0

-- With innodb_autoinc_lock_mode=1, the AUTO_INCREMENT counter
-- is incremented for the ignored rows

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `val` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=MyISAM AUTO_INCREMENT=5 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

-- The LAST_INSERT_ID is unchanged becuase the previous insert was unsuccessful

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+
1 row in set (0.00 sec)

Information Functions

1505

See Section 14.5.5, “AUTO_INCREMENT Handling in InnoDB” for more information.

 If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by
the function and is remembered as the next value to be returned by LAST_INSERT_ID(). This can
be used to simulate sequences:

1. Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

2. Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that
value. The mysql_insert_id() C API function can also be used to get the value. See
Section 23.8.7.38, “mysql_insert_id()”.

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the
function this way is that the ID value is maintained in the server as the last automatically generated
value. It is multi-user safe because multiple clients can issue the UPDATE statement and get their
own sequence value with the SELECT statement (or mysql_insert_id()), without affecting or
being affected by other clients that generate their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you
cannot use the C API function to retrieve the value for LAST_INSERT_ID(expr) after executing
other SQL statements like SELECT or SET.

• ROW_COUNT()

ROW_COUNT() returns a value as follows:

• DDL statements: 0. This applies to statements such as CREATE TABLE or DROP TABLE.

• DML statements other than SELECT: The number of affected rows. This applies to statements
such as UPDATE, INSERT, or DELETE (as before), but now also to statements such as ALTER
TABLE and LOAD DATA INFILE.

• SELECT: -1 if the statement returns a result set, or the number of rows “affected” if it does not. For
example, for SELECT * FROM t1, ROW_COUNT() returns -1. For SELECT * FROM t1 INTO
OUTFILE 'file_name', ROW_COUNT() returns the number of rows written to the file.

• SIGNAL statements: 0.

For UPDATE statements, the affected-rows value by default is the number of rows actually changed.
If you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to
mysqld, the affected-rows value is the number of rows “found”; that is, matched by the WHERE
clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if
the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its
current values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if
an existing row is set to its current values.

Information Functions

1506

The ROW_COUNT() value is similar to the value from the mysql_affected_rows() C API function
and the row count that the mysql client displays following statement execution.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)

Important

ROW_COUNT() is not replicated reliably using statement-based replication.
This function is automatically replicated using row-based replication.

• SCHEMA()

This function is a synonym for DATABASE().

• SESSION_USER()

SESSION_USER() is a synonym for USER().

• SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

• USER()

Returns the current MySQL user name and host name as a string in the utf8 character set.

mysql> SELECT USER();
 -> 'davida@localhost'

The value indicates the user name you specified when connecting to the server, and the client host
from which you connected. The value can be different from that of CURRENT_USER().

• VERSION()

Returns a string that indicates the MySQL server version. The string uses the utf8 character set.
The value might have a suffix in addition to the version number. See the description of the version
system variable in Section 5.1.4, “Server System Variables”.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

mysql> SELECT VERSION();

Spatial Analysis Functions

1507

 -> '5.7.11-standard'

12.15 Spatial Analysis Functions
MySQL provides functions to perform various operations on spatial data. These functions can be
grouped into several major categories according to the type of operation they perform:

• Functions that create geometries in various formats (WKT, WKB, internal)

• Functions that convert geometries between formats

• Functions that access qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

For general background about MySQL support for using spatial data, see Section 11.5, “Extensions for
Spatial Data”.

12.15.1 Spatial Function Reference

The following table lists each spatial function and provides a short description of each one.

Table 12.19 Spatial Functions

Name Description

Area() (deprecated 5.7.6) Return Polygon or MultiPolygon area

AsBinary(), AsWKB() (deprecated
5.7.6)

Convert from internal geometry format to WKB

AsText(), AsWKT() (deprecated
5.7.6)

Convert from internal geometry format to WKT

Buffer() (deprecated 5.7.6) Return geometry of points within given distance from
geometry

Centroid() (deprecated 5.7.6) Return centroid as a point

Contains() (deprecated 5.7.6) Whether MBR of one geometry contains MBR of another

ConvexHull() (deprecated 5.7.6) Return convex hull of geometry

Crosses() (deprecated 5.7.6) Whether one geometry crosses another

Dimension() (deprecated 5.7.6) Dimension of geometry

Disjoint() (deprecated 5.7.6) Whether MBRs of two geometries are disjoint

Distance() (deprecated 5.7.6) The distance of one geometry from another

EndPoint() (deprecated 5.7.6) End Point of LineString

Envelope() (deprecated 5.7.6) Return MBR of geometry

Equals() (deprecated 5.7.6) Whether MBRs of two geometries are equal

ExteriorRing() (deprecated 5.7.6) Return exterior ring of Polygon

GeomCollFromText(),
GeometryCollectionFromText()
(deprecated 5.7.6)

Return geometry collection from WKT

GeomCollFromWKB(),
GeometryCollectionFromWKB()
(deprecated 5.7.6)

Return geometry collection from WKB

GeometryCollection() Construct geometry collection from geometries

GeometryN() (deprecated 5.7.6) Return N-th geometry from geometry collection

Spatial Function Reference

1508

Name Description

GeometryType() (deprecated 5.7.6) Return name of geometry type

GeomFromText(),
GeometryFromText() (deprecated
5.7.6)

Return geometry from WKT

GeomFromWKB(),
GeometryFromWKB() (deprecated
5.7.6)

Return geometry from WKB

GLength() (deprecated 5.7.6) Return length of LineString

InteriorRingN() (deprecated 5.7.6) Return N-th interior ring of Polygon

Intersects() (deprecated 5.7.6) Whether MBRs of two geometries intersect

IsClosed() (deprecated 5.7.6) Whether a geometry is closed and simple

IsEmpty() (deprecated 5.7.6) Placeholder function

IsSimple() (deprecated 5.7.6) Whether a geometry is simple

LineFromText(),
LineStringFromText() (deprecated
5.7.6)

Construct LineString from WKT

LineFromWKB(),
LineStringFromWKB() (deprecated
5.7.6)

Construct LineString from WKB

LineString() Construct LineString from Point values

MBRContains() Whether MBR of one geometry contains MBR of another

MBRCoveredBy() Whether one MBR is covered by another

MBRCovers() Whether one MBR covers another

MBRDisjoint() Whether MBRs of two geometries are disjoint

MBREqual() (deprecated 5.7.6) Whether MBRs of two geometries are equal

MBREquals() Whether MBRs of two geometries are equal

MBRIntersects() Whether MBRs of two geometries intersect

MBROverlaps() Whether MBRs of two geometries overlap

MBRTouches() Whether MBRs of two geometries touch

MBRWithin() Whether MBR of one geometry is within MBR of another

MLineFromText(),
MultiLineStringFromText()
(deprecated 5.7.6)

Construct MultiLineString from WKT

MLineFromWKB(),
MultiLineStringFromWKB()
(deprecated 5.7.6)

Construct MultiLineString from WKB

MPointFromText(),
MultiPointFromText() (deprecated
5.7.6)

Construct MultiPoint from WKT

MPointFromWKB(),
MultiPointFromWKB() (deprecated
5.7.6)

Construct MultiPoint from WKB

MPolyFromText(),
MultiPolygonFromText()
(deprecated 5.7.6)

Construct MultiPolygon from WKT

Spatial Function Reference

1509

Name Description

MPolyFromWKB(),
MultiPolygonFromWKB()
(deprecated 5.7.6)

Construct MultiPolygon from WKB

MultiLineString() Contruct MultiLineString from LineString values

MultiPoint() Construct MultiPoint from Point values

MultiPolygon() Construct MultiPolygon from Polygon values

NumGeometries() (deprecated 5.7.6) Return number of geometries in geometry collection

NumInteriorRings() (deprecated
5.7.6)

Return number of interior rings in Polygon

NumPoints() (deprecated 5.7.6) Return number of points in LineString

Overlaps() (deprecated 5.7.6) Whether MBRs of two geometries overlap

Point() Construct Point from coordinates

PointFromText() (deprecated 5.7.6) Construct Point from WKT

PointFromWKB() (deprecated 5.7.6) Construct Point from WKB

PointN() (deprecated 5.7.6) Return N-th point from LineString

PolyFromText(),
PolygonFromText() (deprecated
5.7.6)

Construct Polygon from WKT

PolyFromWKB(),
PolygonFromWKB() (deprecated
5.7.6)

Construct Polygon from WKB

Polygon() Construct Polygon from LineString arguments

SRID() (deprecated 5.7.6) Return spatial reference system ID for geometry

ST_Area() Return Polygon or MultiPolygon area

ST_AsBinary(), ST_AsWKB() Convert from internal geometry format to WKB

ST_AsGeoJSON() Generate GeoJSON object from geometry

ST_AsText(), ST_AsWKT() Convert from internal geometry format to WKT

ST_Buffer_Strategy() Produce strategy option for ST_Buffer()

ST_Buffer() Return geometry of points within given distance from
geometry

ST_Centroid() Return centroid as a point

ST_Contains() Whether one geometry contains another

ST_ConvexHull() Return convex hull of geometry

ST_Crosses() Whether one geometry crosses another

ST_Difference() Return point set difference of two geometries

ST_Dimension() Dimension of geometry

ST_Disjoint() Whether one geometry is disjoint from another

ST_Distance_Sphere() Minimum distance on earth between two geometries

ST_Distance() The distance of one geometry from another

ST_EndPoint() End Point of LineString

ST_Envelope() Return MBR of geometry

ST_Equals() Whether one geometry is equal to another

ST_ExteriorRing() Return exterior ring of Polygon

Spatial Function Reference

1510

Name Description

ST_GeoHash() Produce a geohash value

ST_GeomCollFromText(),
ST_GeometryCollectionFromText(),
ST_GeomCollFromTxt()

Return geometry collection from WKT

ST_GeomCollFromWKB(),
ST_GeometryCollectionFromWKB()

Return geometry collection from WKB

ST_GeometryN() Return N-th geometry from geometry collection

ST_GeometryType() Return name of geometry type

ST_GeomFromGeoJSON() Generate geometry from GeoJSON object

ST_GeomFromText(),
ST_GeometryFromText()

Return geometry from WKT

ST_GeomFromWKB(),
ST_GeometryFromWKB()

Return geometry from WKB

ST_InteriorRingN() Return N-th interior ring of Polygon

ST_Intersection() Return point set intersection of two geometries

ST_Intersects() Whether one geometry intersects another

ST_IsClosed() Whether a geometry is closed and simple

ST_IsEmpty() Placeholder function

ST_IsSimple() Whether a geometry is simple

ST_IsValid() Whether a geometry is valid

ST_LatFromGeoHash() Return latitude from geohash value

ST_Length() Return length of LineString

ST_LineFromText() Construct LineString from WKT

ST_LineFromWKB(),
ST_LineStringFromWKB()

Construct LineString from WKB

ST_LongFromGeoHash() Return longitude from geohash value

ST_MakeEnvelope() Rectangle around two points

ST_MLineFromText(),
ST_MultiLineStringFromText()

Construct MultiLineString from WKT

ST_MLineFromWKB(),
ST_MultiLineStringFromWKB()

Construct MultiLineString from WKB

ST_MPointFromText(),
ST_MultiPointFromText()

Construct MultiPoint from WKT

ST_MPointFromWKB(),
ST_MultiPointFromWKB()

Construct MultiPoint from WKB

ST_MPolyFromText(),
ST_MultiPolygonFromText()

Construct MultiPolygon from WKT

ST_MPolyFromWKB(),
ST_MultiPolygonFromWKB()

Construct MultiPolygon from WKB

ST_NumGeometries() Return number of geometries in geometry collection

ST_NumInteriorRing(),
ST_NumInteriorRings()

Return number of interior rings in Polygon

ST_NumPoints() Return number of points in LineString

ST_Overlaps() Whether one geometry overlaps another

Argument Handling by Spatial Functions

1511

Name Description

ST_PointFromGeoHash() Convert geohash value to POINT value

ST_PointFromText() Construct Point from WKT

ST_PointFromWKB() Construct Point from WKB

ST_PointN() Return N-th point from LineString

ST_PolyFromText(),
ST_PolygonFromText()

Construct Polygon from WKT

ST_PolyFromWKB(),
ST_PolygonFromWKB()

Construct Polygon from WKB

ST_Simplify() Return simplified geometry

ST_SRID() Return spatial reference system ID for geometry

ST_StartPoint() Start Point of LineString

ST_SymDifference() Return point set symmetric difference of two geometries

ST_Touches() Whether one geometry touches another

ST_Union() Return point set union of two geometries

ST_Validate() Return validated geometry

ST_Within() Whether one geometry is within another

ST_X() Return X coordinate of Point

ST_Y() Return Y coordinate of Point

StartPoint() (deprecated 5.7.6) Start Point of LineString

Touches() (deprecated 5.7.6) Whether one geometry touches another

Within() (deprecated 5.7.6) Whether MBR of one geometry is within MBR of another

X() (deprecated 5.7.6) Return X coordinate of Point

Y() (deprecated 5.7.6) Return Y coordinate of Point

12.15.2 Argument Handling by Spatial Functions

Spatial values, or geometries, have the properties described at Section 11.5.2.2, “Geometry Class”.
The following discussion lists general spatial function argument-handling characteristics. Specific
functions or groups of functions may have additional argument-handling characteristics, as discussed
in the sections where those function descriptions occur.

Spatial functions are defined only for valid geometry values. If an invalid geometry is passed to a
spatial function, the result is undefined.

The Spatial Reference Identifier (SRID) of a geometry identifies the coordinate space in which the
geometry is defined. In MySQL, the SRID value is an integer associated with the geometry value.
However, all calculations are done assuming SRID 0, representing cartesian (planar) coordinates,
regardless of the actual SRID value. In the future, calculations may use the specified SRID values. To
ensure SRID 0 behavior, create geometries using SRID 0. SRID 0 is the default for new geometries if
no SRID is specified.

The maximum usable SRID value is 232−1. If a larger value is given, only the lower 32 bits are used.

Geometry values produced by any spatial function inherit the SRID of the geometry arguments.

As of MySQL 5.7.5, spatial functions that take multiple geometry arguments require those
arguments to have the same SRID value (that is, same in the lower 32 bits). Assuming that the
SRIDs are equal, spatial functions do nothing with them after performing the equality check;
geometry values are implicitly handled using cartesian coordinates. If a spatial function returns

Functions That Create Geometry Values from WKT Values

1512

ER_GIS_DIFFERENT_SRIDS, it means that the geometry arguments did not all have the same SRID.
You must modify them to have the same SRID.

As of MySQL 5.7.5, spatial functions return an ER_GIS_INVALID_DATA error if passed an invalid
geometry argument.

In MySQL 5.7.5 to 5.7.8, if an input polygon has an open ring, the ring is stored as a closed ring by
adding its first point to the point sequence. However, the Open Geospatial Consortium guidelines
require that input polygons already be closed, so as of MySQL 5.7.9, unclosed polygons are rejected
as invalid rather than being closed (just as before 5.7.5).

As of MySQL 5.7.5, empty geometry-collection handling is improved. An empty WKT input geometry
collection may be specified as 'GEOMETRYCOLLECTION()'. This is also the output WKT resulting
from a spatial operation that produces an empty geometry collection. Before 5.7.5, empty geometry
collections are returned as NULL.

As of MySQL 5.7.5, during parsing of a nested geometry collection, the collection is flattened and its
basic components are used in various GIS operations to compute results. This provides additional
flexibility to users because it is unnecessary to be concerned about the uniqueness of geometry data.
Nested geometry collections may be produced from nested GIS function calls without having to be
explicitly flattened first.

12.15.3 Functions That Create Geometry Values from WKT Values

These functions take as arguments a Well-Known Text (WKT) representation and, optionally, a spatial
reference system identifier (SRID). They return the corresponding geometry.

ST_GeomFromText() accepts a WKT value of any geometry type as its first argument. Other
functions provide type-specific construction functions for construction of geometry values of each
geometry type.

For a description of WKT format, see Well-Known Text (WKT) Format.

• GeomCollFromText(wkt[,srid]), GeometryCollectionFromText(wkt[,srid])

ST_GeomCollFromText(), ST_GeometryCollectionFromText(), ST_GeomCollFromTxt(),
GeomCollFromText(), and GeometryCollectionFromText() are synonyms. For more
information, see the description of ST_GeomCollFromText().

GeomCollFromText() and GeometryCollectionFromText() are deprecated as of MySQL
5.7.6 and will be removed in a future MySQL release. Use ST_GeomCollFromText() and
ST_GeometryCollectionFromText() instead.

• GeomFromText(wkt[,srid]), GeometryFromText(wkt[,srid])

ST_GeomFromText(), ST_GeometryFromText(), GeomFromText(), and
GeometryFromText() are synonyms. For more information, see the description of
ST_GeomFromText().

GeomFromText() and GeometryFromText() are deprecated as of MySQL 5.7.6 and will be
removed in a future MySQL release. Use ST_GeomFromText() and ST_GeometryFromText()
instead.

• LineFromText(wkt[,srid]), LineStringFromText(wkt[,srid])

ST_LineFromText(), ST_LineStringFromText(), LineFromText(), and
LineStringFromText() are synonyms. For more information, see the description of
ST_LineFromText().

LineFromText() and LineStringFromText() are deprecated as of MySQL 5.7.6 and will be
removed in a future MySQL release. Use ST_LineFromText() and ST_LineStringFromText()
instead.

Functions That Create Geometry Values from WKT Values

1513

• MLineFromText(wkt[,srid]), MultiLineStringFromText(wkt[,srid])

ST_MLineFromText(), ST_MultiLineStringFromText(), MLineFromText(), and
MultiLineStringFromText() are synonyms. For more information, see the description of
ST_MLineFromText().

MLineFromText() and MultiLineStringFromText() are deprecated as of MySQL
5.7.6 and will be removed in a future MySQL release. Use ST_MLineFromText() and
ST_MultiLineStringFromText() instead.

• MPointFromText(wkt[,srid]), MultiPointFromText(wkt[,srid])

ST_MPointFromText(), ST_MultiPointFromText(), MPointFromText(), and
MultiPointFromText() are synonyms. For more information, see the description of
ST_MPointFromText().

MPointFromText() and MultiPointFromText() are deprecated as of MySQL
5.7.6 and will be removed in a future MySQL release. Use ST_MPointFromText() and
ST_MultiPointFromText() instead.

• MPolyFromText(wkt[,srid]), MultiPolygonFromText(wkt[,srid])

ST_MPolyFromText(), ST_MultiPolygonFromText(), MPolyFromText(), and
MultiPolygonFromText() are synonyms. For more information, see the description of
ST_MPolyFromText().

MPolyFromText() and MultiPolygonFromText() are deprecated as of MySQL
5.7.6 and will be removed in a future MySQL release. Use ST_MPolyFromText() and
ST_MultiPolygonFromText() instead.

• PointFromText(wkt[,srid])

ST_PointFromText() and PointFromText() are synonyms. For more information, see the
description of ST_PointFromText().

PointFromText() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL
release. Use ST_PointFromText() instead.

• PolyFromText(wkt[,srid]), PolygonFromText(wkt[,srid])

ST_PolyFromText(), ST_PolygonFromText(), PolyFromText(), and PolygonFromText()
are synonyms. For more information, see the description of ST_PolyFromText().

PolyFromText() and PolygonFromText() are deprecated as of MySQL 5.7.6 and will be
removed in a future MySQL release. Use ST_PolyFromText() and ST_PolygonFromText()
instead.

• ST_GeomCollFromText(wkt[,srid]), ST_GeometryCollectionFromText(wkt[,srid]),
ST_GeomCollFromTxt(wkt[,srid])

Constructs a GeometryCollection value using its WKT representation and SRID.

mysql> SET @g = "MULTILINESTRING((10 10, 11 11), (9 9, 10 10))";
mysql> SELECT ST_AsText(ST_GeomCollFromText(@g));
+--+
| ST_AsText(ST_GeomCollFromText(@g)) |
+--+
| MULTILINESTRING((10 10,11 11),(9 9,10 10)) |
+--+

Functions That Create Geometry Values from WKT Values

1514

ST_GeomCollFromText(), ST_GeometryCollectionFromText(), ST_GeomCollFromTxt(),
GeomCollFromText(), and GeometryCollectionFromText() are synonyms.
ST_GeomCollFromTxt() was added in MySQL 5.7.6.

• ST_GeomFromText(wkt[,srid]), ST_GeometryFromText(wkt[,srid])

Constructs a geometry value of any type using its WKT representation and SRID.

ST_GeomFromText(), ST_GeometryFromText(), GeomFromText(), and
GeometryFromText() are synonyms.

• ST_LineFromText(wkt[,srid]), ST_LineStringFromText(wkt[,srid])

Constructs a LineString value using its WKT representation and SRID.

ST_LineFromText(), ST_LineStringFromText(), LineFromText(), and
LineStringFromText() are synonyms.

• ST_MLineFromText(wkt[,srid]), ST_MultiLineStringFromText(wkt[,srid])

Constructs a MultiLineString value using its WKT representation and SRID.

ST_MLineFromText(), ST_MultiLineStringFromText(), MLineFromText(), and
MultiLineStringFromText() are synonyms.

ST_MLineFromText() and ST_MultiLineStringFromText() were added in MySQL 5.7.6.

• ST_MPointFromText(wkt[,srid]), ST_MultiPointFromText(wkt[,srid])

Constructs a MultiPoint value using its WKT representation and SRID.

As of MySQL 5.7.9, spatial functions such as ST_MPointFromText() and ST_GeomFromText()
that accept WKT-format representations of MultiPoint values permit individual points within
values to be surrounded by parentheses. For example, both of the following function calls are valid,
whereas before MySQL 5.7.9 the second one produces an error:

ST_MPointFromText('MULTIPOINT (1 1, 2 2, 3 3)')
ST_MPointFromText('MULTIPOINT ((1 1), (2 2), (3 3))')

ST_MPointFromText(), ST_MultiPointFromText(), MPointFromText(), and
MultiPointFromText() are synonyms.

ST_MPointFromText() and ST_MultiPointFromText() were added in MySQL 5.7.6.

• ST_MPolyFromText(wkt[,srid]), ST_MultiPolygonFromText(wkt[,srid])

Constructs a MultiPolygon value using its WKT representation and SRID.

ST_MPolyFromText(), ST_MultiPolygonFromText(), MPolyFromText(), and
MultiPolygonFromText() are synonyms.

ST_MPolyFromText() and ST_MultiPolygonFromText() were added in MySQL 5.7.6.

• ST_PointFromText(wkt[,srid])

Constructs a Point value using its WKT representation and SRID.

ST_PointFromText() and PointFromText() are synonyms.

• ST_PolyFromText(wkt[,srid]), ST_PolygonFromText(wkt[,srid])

Constructs a Polygon value using its WKT representation and SRID.

Functions That Create Geometry Values from WKB Values

1515

ST_PolyFromText(), ST_PolygonFromText(), PolyFromText(), and PolygonFromText()
are synonyms.

12.15.4 Functions That Create Geometry Values from WKB Values

These functions take as arguments a BLOB containing a Well-Known Binary (WKB) representation and,
optionally, a spatial reference system identifier (SRID). They return the corresponding geometry.

These functions also accept geometry objects for compatibility with the return value of the functions
in Section 12.15.5, “MySQL-Specific Functions That Create Geometry Values”. Thus, those functions
may be used to provide the first argument to the functions in this section.

ST_GeomFromWKB() accepts a WKB value of any geometry type as its first argument. Other functions
provide type-specific construction functions for construction of geometry values of each geometry type.

For a description of WKB format, see Well-Known Binary (WKB) Format.

• GeomCollFromWKB(wkb[,srid]), GeometryCollectionFromWKB(wkb[,srid])

ST_GeomCollFromWKB(), ST_GeometryCollectionFromWKB(), GeomCollFromWKB(), and
GeometryCollectionFromWKB() are synonyms. For more information, see the description of
ST_GeomCollFromWKB().

GeomCollFromWKB() and GeometryCollectionFromWKB() are deprecated as of MySQL
5.7.6 and will be removed in a future MySQL release. Use ST_GeomCollFromWKB() and
ST_GeometryCollectionFromWKB() instead.

• GeomFromWKB(wkb[,srid]), GeometryFromWKB(wkb[,srid])

ST_GeomFromWKB(), ST_GeometryFromWKB(), GeomFromWKB(), and GeometryFromWKB()
are synonyms. For more information, see the description of ST_GeomFromWKB().

GeomFromWKB() and GeometryFromWKB() are deprecated as of MySQL 5.7.6 and will be
removed in a future MySQL release. Use ST_GeomFromWKB() and ST_GeometryFromWKB()
instead.

• LineFromWKB(wkb[,srid]), LineStringFromWKB(wkb[,srid])

ST_LineFromWKB(), ST_LineStringFromWKB(), LineFromWKB(), and
LineStringFromWKB() are synonyms. For more information, see the description of
ST_LineFromWKB().

LineFromWKB() and LineStringFromWKB() are deprecated as of MySQL 5.7.6 and will be
removed in a future MySQL release. Use ST_LineFromWKB() and ST_LineStringFromWKB()
instead.

• MLineFromWKB(wkb[,srid]), MultiLineStringFromWKB(wkb[,srid])

ST_MLineFromWKB(), ST_MultiLineStringFromWKB(), MLineFromWKB(), and
MultiLineStringFromWKB() are synonyms. For more information, see the description of
ST_MLineFromWKB().

MLineFromWKB() and MultiLineStringFromWKB() are deprecated as of MySQL
5.7.6 and will be removed in a future MySQL release. Use ST_MLineFromWKB() and
ST_MultiLineStringFromWKB() instead.

• MPointFromWKB(wkb[,srid]), MultiPointFromWKB(wkb[,srid])

ST_MPointFromWKB(), ST_MultiPointFromWKB(), MPointFromWKB(), and
MultiPointFromWKB() are synonyms. For more information, see the description of
ST_MPointFromWKB().

Functions That Create Geometry Values from WKB Values

1516

MPointFromWKB() and MultiPointFromWKB() are deprecated as of MySQL 5.7.6 and will be
removed in a future MySQL release. Use ST_MPointFromWKB() and ST_MultiPointFromWKB()
instead.

• MPolyFromWKB(wkb[,srid]), MultiPolygonFromWKB(wkb[,srid])

ST_MPolyFromWKB(), ST_MultiPolygonFromWKB(), MPolyFromWKB(), and
MultiPolygonFromWKB() are synonyms. For more information, see the description of
ST_MPolyFromWKB().

MPolyFromWKB() and MultiPolygonFromWKB() are deprecated as of MySQL
5.7.6 and will be removed in a future MySQL release. Use ST_MPolyFromWKB() and
ST_MultiPolygonFromWKB() instead.

• PointFromWKB(wkb[,srid])

ST_PointFromWKB() and PointFromWKB() are synonyms. For more information, see the
description of ST_PointFromWKB().

PointFromWKB() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.
Use ST_PointFromWKB() instead.

• PolyFromWKB(wkb[,srid]), PolygonFromWKB(wkb[,srid])

ST_PolyFromWKB(), ST_PolygonFromWKB(), PolyFromWKB(), and PolygonFromWKB() are
synonyms. For more information, see the description of ST_PolyFromWKB().

PolyFromWKB() and PolygonFromWKB() are deprecated as of MySQL 5.7.6 and will be removed
in a future MySQL release. Use ST_PolyFromWKB() and ST_PolygonFromWKB() instead.

• ST_GeomCollFromWKB(wkb[,srid]), ST_GeometryCollectionFromWKB(wkb[,srid])

Constructs a GeometryCollection value using its WKB representation and SRID.

ST_GeomCollFromWKB(), ST_GeometryCollectionFromWKB(), GeomCollFromWKB(), and
GeometryCollectionFromWKB() are synonyms.

• ST_GeomFromWKB(wkb[,srid]), ST_GeometryFromWKB(wkb[,srid])

Constructs a geometry value of any type using its WKB representation and SRID.

ST_GeomFromWKB(), ST_GeometryFromWKB(), GeomFromWKB(), and GeometryFromWKB()
are synonyms.

• ST_LineFromWKB(wkb[,srid]), ST_LineStringFromWKB(wkb[,srid])

Constructs a LineString value using its WKB representation and SRID.

ST_LineFromWKB(), ST_LineStringFromWKB(), LineFromWKB(), and
LineStringFromWKB() are synonyms.

• ST_MLineFromWKB(wkb[,srid]), ST_MultiLineStringFromWKB(wkb[,srid])

Constructs a MultiLineString value using its WKB representation and SRID.

ST_MLineFromWKB(), ST_MultiLineStringFromWKB(), MLineFromWKB(), and
MultiLineStringFromWKB() are synonyms.

ST_MLineFromWKB() and ST_MultiLineStringFromWKB() were added in MySQL 5.7.6.

• ST_MPointFromWKB(wkb[,srid]), ST_MultiPointFromWKB(wkb[,srid])

MySQL-Specific Functions That Create Geometry Values

1517

Constructs a MultiPoint value using its WKB representation and SRID.

ST_MPointFromWKB(), ST_MultiPointFromWKB(), MPointFromWKB(), and
MultiPointFromWKB() are synonyms.

ST_MPointFromWKB() and ST_MultiPointFromWKB() were added in MySQL 5.7.6.

• ST_MPolyFromWKB(wkb[,srid]), ST_MultiPolygonFromWKB(wkb[,srid])

Constructs a MultiPolygon value using its WKB representation and SRID.

ST_MPolyFromWKB(), ST_MultiPolygonFromWKB(), MPolyFromWKB(), and
MultiPolygonFromWKB() are synonyms.

ST_MPolyFromWKB() and ST_MultiPolygonFromWKB() were added in MySQL 5.7.6.

• ST_PointFromWKB(wkb[,srid])

Constructs a Point value using its WKB representation and SRID.

ST_PointFromWKB() and PointFromWKB() are synonyms.

• ST_PolyFromWKB(wkb[,srid]), ST_PolygonFromWKB(wkb[,srid])

Constructs a Polygon value using its WKB representation and SRID.

ST_PolyFromWKB(), ST_PolygonFromWKB(), PolyFromWKB(), and PolygonFromWKB() are
synonyms.

12.15.5 MySQL-Specific Functions That Create Geometry Values

MySQL provides a set of useful nonstandard functions for creating geometry values. The functions
described in this section are MySQL extensions to the OpenGIS specification.

These functions produce geometry objects from either WKB values or geometry objects as arguments.
If any argument is not a proper WKB or geometry representation of the proper object type, the return
value is NULL.

For example, you can insert the geometry return value from Point() directly into a POINT column:

INSERT INTO t1 (pt_col) VALUES(Point(1,2));

• GeometryCollection(g1,g2,...)

Constructs a GeometryCollection.

As of MySQL 5.7.5, GeometryCollection() returns all the proper geometries contained in the
argument even if a nonsupported geometry is present. Before 5.7.5, if the argument contains a
nonsupported geometry, the return value is NULL.

As of MySQL 5.7.8, GeometryCollection() with no arguments is permitted as a way to create an
empty geometry.

• LineString(pt1,pt2,...)

Constructs a LineString value from a number of Point or WKB Point arguments. If the number
of arguments is less than two, the return value is NULL.

• MultiLineString(ls1,ls2,...)

Constructs a MultiLineString value using LineString or WKB LineString arguments.

Geometry Format Conversion Functions

1518

• MultiPoint(pt1,pt2,...)

Constructs a MultiPoint value using Point or WKB Point arguments.

• MultiPolygon(poly1,poly2,...)

Constructs a MultiPolygon value from a set of Polygon or WKB Polygon arguments.

• Point(x,y)

Constructs a Point using its coordinates.

• Polygon(ls1,ls2,...)

Constructs a Polygon value from a number of LineString or WKB LineString arguments. If
any argument does not represent a LinearRing (that is, not a closed and simple LineString),
the return value is NULL.

12.15.6 Geometry Format Conversion Functions

MySQL supports the functions listed in this section for converting geometry values from internal
geometry format to WKT or WKB format.

In addition, there are functions to convert a string from WKT or WKB format to internal geometry
format. See Section 12.15.3, “Functions That Create Geometry Values from WKT Values”, and
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”.

• AsBinary(g), AsWKB(g)

ST_AsBinary(), ST_AsWKB(), AsBinary(), and AsWKB() are synonyms. For more information,
see the description of ST_AsBinary().

AsBinary() and AsWKB() are deprecated as of MySQL 5.7.6 and will be removed in a future
MySQL release. Use ST_AsBinary() and ST_AsWKB() instead.

• AsText(g), AsWKT(g)

ST_AsText(), ST_AsWKT(), AsText(), and AsWKT() are synonyms. For more information, see
the description of ST_AsText().

AsText() and AsWKT() are deprecated as of MySQL 5.7.6 and will be removed in a future MySQL
release. Use ST_AsText() and ST_AsWKT() instead.

• ST_AsBinary(g), ST_AsWKB(g)

Converts a value in internal geometry format to its WKB representation and returns the binary result.

SELECT ST_AsBinary(g) FROM geom;

ST_AsBinary(), ST_AsWKB(), AsBinary(), and AsWKB() are synonyms.

• ST_AsText(g), ST_AsWKT(g)

Converts a value in internal geometry format to its WKT representation and returns the string result.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@g));
+--------------------------------+
| ST_AsText(ST_GeomFromText(@g)) |
+--------------------------------+
| LINESTRING(1 1,2 2,3 3) |

Geometry Property Functions

1519

+--------------------------------+

ST_AsText(), ST_AsWKT(), AsText(), and AsWKT() are synonyms.

As of MySQL 5.7.9, output for MultiPoint values includes parentheses around each point. For
example:

mysql> SET @mp = 'MULTIPOINT(1 1, 2 2, 3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@mp));
+---------------------------------+
| ST_AsText(ST_GeomFromText(@mp)) |
+---------------------------------+
| MULTIPOINT((1 1),(2 2),(3 3)) |
+---------------------------------+

Before MySQL 5.7.9, output for the same value does not include parentheses around each point:

mysql> SET @mp = 'MULTIPOINT(1 1, 2 2, 3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@mp));
+---------------------------------+
| ST_AsText(ST_GeomFromText(@mp)) |
+---------------------------------+
| MULTIPOINT(1 1,2 2,3 3) |
+---------------------------------+

12.15.7 Geometry Property Functions

Each function that belongs to this group takes a geometry value as its argument and returns some
quantitative or qualitative property of the geometry. Some functions restrict their argument type. Such
functions return NULL if the argument is of an incorrect geometry type. For example, the ST_Area()
polygon function returns NULL if the object type is neither Polygon nor MultiPolygon.

12.15.7.1 General Geometry Property Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any
type.

• Dimension(g)

ST_Dimension() and Dimension() are synonyms. For more information, see the description of
ST_Dimension().

Dimension() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.
Use ST_Dimension() instead.

• Envelope(g)

ST_Envelope() and Envelope() are synonyms. For more information, see the description of
ST_Envelope().

Envelope() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_Envelope() instead.

• GeometryType(g)

ST_GeometryType() and GeometryType() are synonyms. For more information, see the
description of ST_GeometryType().

GeometryType() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.
Use ST_GeometryType() instead.

• IsEmpty(g)

Geometry Property Functions

1520

ST_IsEmpty() and IsEmpty() are synonyms. For more information, see the description of
ST_IsEmpty().

IsEmpty() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_IsEmpty() instead.

• IsSimple(g)

ST_IsSimple() and IsSimple() are synonyms. For more information, see the description of
ST_IsSimple().

IsSimple() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_IsSimple() instead.

• SRID(g)

ST_SRID() and SRID() are synonyms. For more information, see the description of ST_SRID().

SRID() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_SRID() instead.

• ST_Dimension(g)

Returns the inherent dimension of the geometry value g. The result can be −1, 0, 1, or 2. The
meaning of these values is given in Section 11.5.2.2, “Geometry Class”.

mysql> SELECT ST_Dimension(ST_GeomFromText('LineString(1 1,2 2)'));
+--+
| ST_Dimension(ST_GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |
+--+

ST_Dimension() and Dimension() are synonyms.

• ST_Envelope(g)

Returns the minimum bounding rectangle (MBR) for the geometry value g. The result is returned as
a Polygon value that is defined by the corner points of the bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

mysql> SELECT ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,2 2)')));
+--+
| ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,2 2)'))) |
+--+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+--+

As of MySQL 5.7.6, if the argument is a point or a vertical or horizontal line segment,
ST_Envelope() returns the point or the line segment as its MBR rather than returning an invalid
polygon:

mysql> SELECT ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,1 2)')));
+--+
| ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,1 2)'))) |
+--+
| LINESTRING(1 1,1 2) |
+--+

ST_Envelope() and Envelope() are synonyms.

Geometry Property Functions

1521

• ST_GeometryType(g)

Returns a binary string indicating the name of the geometry type of which the geometry instance g is
a member. The name corresponds to one of the instantiable Geometry subclasses.

mysql> SELECT ST_GeometryType(ST_GeomFromText('POINT(1 1)'));
+--+
| ST_GeometryType(ST_GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+

ST_GeometryType() and GeometryType() are synonyms.

• ST_IsEmpty(g)

This function is a placeholder that returns 0 for any valid geometry value, 1 for any invalid geometry
value or NULL.

MySQL does not support GIS EMPTY values such as POINT EMPTY.

ST_IsEmpty() and IsEmpty() are synonyms.

• ST_IsSimple(g)

Returns 1 if the geometry value g has no anomalous geometric points, such as self-intersection or
self-tangency. ST_IsSimple() returns 0 if the argument is not simple, and NULL if it is NULL.

The description of each instantiable geometric class given earlier in the chapter includes the specific
conditions that cause an instance of that class to be classified as not simple. (See Section 11.5.2.1,
“The Geometry Class Hierarchy”.)

ST_IsSimple() and IsSimple() are synonyms.

• ST_SRID(g)

Returns an integer indicating the Spatial Reference System ID for the geometry value g.

In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are
done assuming Euclidean (planar) geometry.

mysql> SELECT ST_SRID(ST_GeomFromText('LineString(1 1,2 2)',101));
+---+
| ST_SRID(ST_GeomFromText('LineString(1 1,2 2)',101)) |
+---+
| 101 |
+---+

ST_SRID() and SRID() are synonyms.

12.15.7.2 Point Property Functions

A Point consists of X and Y coordinates, which may be obtained using the following functions:

• ST_X(p)

Returns the X-coordinate value for the Point object p as a double-precision number.

mysql> SELECT ST_X(POINT(56.7, 53.34));
+--------------------------+
| ST_X(POINT(56.7, 53.34)) |
+--------------------------+
| 56.7 |

Geometry Property Functions

1522

+--------------------------+

ST_X() and X() are synonyms.

• ST_Y(p)

Returns the Y-coordinate value for the Point object p as a double-precision number.

mysql> SELECT ST_Y(POINT(56.7, 53.34));
+--------------------------+
| ST_Y(POINT(56.7, 53.34)) |
+--------------------------+
| 53.34 |
+--------------------------+

ST_Y() and Y() are synonyms.

• X(p)

ST_X() and X() are synonyms. For more information, see the description of ST_X().

X() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use ST_X()
instead.

• Y(p)

ST_Y() and Y() are synonyms. For more information, see the description of ST_Y().

Y() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use ST_Y()
instead.

12.15.7.3 LineString and MultiLineString Property Functions

A LineString consists of Point values. You can extract particular points of a LineString, count
the number of points that it contains, or obtain its length.

Some functions in this section also work for MultiLineString values.

• EndPoint(ls)

ST_EndPoint() and EndPoint() are synonyms. For more information, see the description of
ST_EndPoint().

EndPoint() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_EndPoint() instead.

• GLength(ls)

GLength() is a nonstandard name. It corresponds to the OpenGIS ST_Length() function. (There
is an existing SQL function Length() that calculates the length of string values.)

GLength() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_Length() instead.

• IsClosed(ls)

ST_IsClosed() and IsClosed() are synonyms. For more information, see the description of
ST_IsClosed().

IsClosed() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_IsClosed() instead.

• NumPoints(ls)

Geometry Property Functions

1523

ST_NumPoints() and NumPoints() are synonyms. For more information, see the description of
ST_NumPoints().

NumPoints() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.
Use ST_NumPoints() instead.

• PointN(ls,N)

ST_PointN() and PointN() are synonyms. For more information, see the description of
ST_PointN().

PointN() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_PointN() instead.

• ST_EndPoint(ls)

Returns the Point that is the endpoint of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_EndPoint(ST_GeomFromText(@ls)));
+--+
| ST_AsText(ST_EndPoint(ST_GeomFromText(@ls))) |
+--+
| POINT(3 3) |
+--+

ST_EndPoint() and EndPoint() are synonyms.

• ST_IsClosed(ls)

For a LineString value ls, ST_IsClosed() returns 1 if ls is closed (that is, its
ST_StartPoint() and ST_EndPoint() values are the same).

For a MultiLineString value ls, ST_IsClosed() returns 1 if ls is closed (that is, the
ST_StartPoint() and ST_EndPoint() values are the same for each LineString in ls).

ST_IsClosed() returns 0 if ls is not closed, and NULL if ls is NULL.

mysql> SET @ls1 = 'LineString(1 1,2 2,3 3,2 2)';
mysql> SET @ls2 = 'LineString(1 1,2 2,3 3,1 1)';

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls1));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls1)) |
+------------------------------------+
| 0 |
+------------------------------------+

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls2));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls2)) |
+------------------------------------+
| 1 |
+------------------------------------+

mysql> SET @ls3 = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls3));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls3)) |
+------------------------------------+
| 0 |
+------------------------------------+

Geometry Property Functions

1524

ST_IsClosed() and IsClosed() are synonyms.

• ST_Length(ls)

Returns a double-precision number indicating the length of the LineString or MultiLineString
value ls in its associated spatial reference. The length of a MultiLineString value is equal to the
sum of the lengths of its elements.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_Length(ST_GeomFromText(@ls));
+---------------------------------+
| ST_Length(ST_GeomFromText(@ls)) |
+---------------------------------+
| 2.8284271247461903 |
+---------------------------------+

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT ST_Length(ST_GeomFromText(@mls));
+----------------------------------+
| ST_Length(ST_GeomFromText(@mls)) |
+----------------------------------+
| 4.242640687119286 |
+----------------------------------+

ST_Length() was added in MySQL 5.7.6. It should be used in preference to GLength(), which
has a nonstandard name.

• ST_NumPoints(ls)

Returns the number of Point objects in the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_NumPoints(ST_GeomFromText(@ls));
+------------------------------------+
| ST_NumPoints(ST_GeomFromText(@ls)) |
+------------------------------------+
| 3 |
+------------------------------------+

ST_NumPoints() and NumPoints() are synonyms.

• ST_PointN(ls,N)

Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_PointN(ST_GeomFromText(@ls),2));
+--+
| ST_AsText(ST_PointN(ST_GeomFromText(@ls),2)) |
+--+
| POINT(2 2) |
+--+

ST_PointN() and PointN() are synonyms.

• ST_StartPoint(ls)

Returns the Point that is the start point of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_StartPoint(ST_GeomFromText(@ls)));
+--+
| ST_AsText(ST_StartPoint(ST_GeomFromText(@ls))) |
+--+

Geometry Property Functions

1525

| POINT(1 1) |
+--+

ST_StartPoint() and StartPoint() are synonyms.

• StartPoint(ls)

ST_StartPoint() and StartPoint() are synonyms. For more information, see the description
of ST_StartPoint().

StartPoint() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.
Use ST_StartPoint() instead.

12.15.7.4 Polygon and MultiPolygon Property Functions

These functions return properties of Polygon or MultiPolygon values.

• Area(poly)

ST_Area() and Area() are synonyms. For more information, see the description of ST_Area().

Area() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_Area() instead.

• Centroid(mpoly)

ST_Centroid() and Centroid() are synonyms. For more information, see the description of
ST_Centroid().

Centroid() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_Centroid() instead.

• ExteriorRing(poly)

ST_ExteriorRing() and ExteriorRing() are synonyms. For more information, see the
description of ST_ExteriorRing().

ExteriorRing() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.
Use ST_ExteriorRing() instead.

• InteriorRingN(poly,N)

ST_InteriorRingN() and InteriorRingN() are synonyms. For more information, see the
description of ST_InteriorRingN().

InteriorRingN() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL
release. Use ST_InteriorRingN() instead.

• NumInteriorRings(poly)

ST_NumInteriorRings() and NumInteriorRings() are synonyms. For more information, see
the description of ST_NumInteriorRings().

NumInteriorRings() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL
release. Use ST_NumInteriorRings() instead.

• ST_Area(poly)

Returns a double-precision number indicating the area of the argument, as measured in its spatial
reference system. For arguments of dimension 0 or 1, the result is 0.

Additionally, as of MySQL 5.7.5: The result is the sum of the area values of all components for a
geometry collection. If a geometry collection is empty, its area is returned as 0.

Geometry Property Functions

1526

mysql> SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT ST_Area(ST_GeomFromText(@poly));
+---------------------------------+
| ST_Area(ST_GeomFromText(@poly)) |
+---------------------------------+
| 4 |
+---------------------------------+

mysql> SET @mpoly =
 -> 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT ST_Area(ST_GeomFromText(@mpoly));
+----------------------------------+
| ST_Area(ST_GeomFromText(@mpoly)) |
+----------------------------------+
| 8 |
+----------------------------------+

ST_Area() and Area() are synonyms.

• ST_Centroid(mpoly)

Returns the mathematical centroid for the MultiPolygon value mpoly as a Point. The result is
not guaranteed to be on the MultiPolygon.

As of MySQL 5.7.5, this function processes geometry collections by computing the centroid point
for components of highest dimension in the collection. Such components are extracted and made
into a single MultiPolygon, MultiLineString, or MultiPoint for centroid computation. If the
argument is an empty geometry collection, the return value is NULL.

mysql> SET @poly =
 -> ST_GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7,5 5))');
mysql> SELECT ST_GeometryType(@poly),ST_AsText(ST_Centroid(@poly));
+------------------------+--+
| ST_GeometryType(@poly) | ST_AsText(ST_Centroid(@poly)) |
+------------------------+--+
| POLYGON | POINT(4.958333333333333 4.958333333333333) |
+------------------------+--+

ST_Centroid() and Centroid() are synonyms.

• ST_ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_AsText(ST_ExteriorRing(ST_GeomFromText(@poly)));
+--+
| ST_AsText(ST_ExteriorRing(ST_GeomFromText(@poly))) |
+--+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+--+

ST_ExteriorRing() and ExteriorRing() are synonyms.

• ST_InteriorRingN(poly,N)

Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered
beginning with 1.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_AsText(ST_InteriorRingN(ST_GeomFromText(@poly),1));
+---+

Geometry Property Functions

1527

| ST_AsText(ST_InteriorRingN(ST_GeomFromText(@poly),1)) |
+---+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+---+

ST_InteriorRingN() and InteriorRingN() are synonyms.

• ST_NumInteriorRing(poly), ST_NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_NumInteriorRings(ST_GeomFromText(@poly));
+---+
| ST_NumInteriorRings(ST_GeomFromText(@poly)) |
+---+
| 1 |
+---+

ST_NumInteriorRing(), ST_NumInteriorRings(), and NumInteriorRings() are
synonyms. ST_NumInteriorRing() was added in MySQL 5.7.8.

12.15.7.5 GeometryCollection Property Functions

These functions return properties of GeometryCollection values.

• GeometryN(gc,N)

ST_GeometryN() and GeometryN() are synonyms. For more information, see the description of
ST_GeometryN().

GeometryN() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.
Use ST_GeometryN() instead.

• NumGeometries(gc)

ST_NumGeometries() and NumGeometries() are synonyms. For more information, see the
description of ST_NumGeometries().

NumGeometries() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL
release. Use ST_NumGeometries() instead.

• ST_GeometryN(gc,N)

Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered
beginning with 1.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT ST_AsText(ST_GeometryN(ST_GeomFromText(@gc),1));
+---+
| ST_AsText(ST_GeometryN(ST_GeomFromText(@gc),1)) |
+---+
| POINT(1 1) |
+---+

ST_GeometryN() and GeometryN() are synonyms.

• ST_NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';

Spatial Operator Functions

1528

mysql> SELECT ST_NumGeometries(ST_GeomFromText(@gc));
+--+
| ST_NumGeometries(ST_GeomFromText(@gc)) |
+--+
| 2 |
+--+

ST_NumGeometries() and NumGeometries() are synonyms.

12.15.8 Spatial Operator Functions

OpenGIS proposes a number of functions that can produce geometries. They are designed to
implement spatial operators.

As of MySQL 5.7.5, these functions support all argument type combinations except those that are
inapplicable according to the Open Geospatial Consortium specification.

• Buffer(g,d[,strategy1[,strategy2[,strategy3]]])

ST_Buffer() and Buffer() are synonyms. For more information, see the description of
ST_Buffer().

Buffer() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_Buffer() instead.

• ConvexHull(g)

ST_ConvexHull() and ConvexHull() are synonyms. For more information, see the description
of ST_ConvexHull().

ConvexHull() was added in MySQL 5.7.5.

ConvexHull() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.
Use ST_ConvexHull() instead.

• ST_Buffer(g,d[,strategy1[,strategy2[,strategy3]]])

Returns a geometry that represents all points whose distance from the geometry value g is less than
or equal to a distance of d, or NULL if any argument is NULL. The SRID of the geometry argument
must be 0 because ST_Buffer() supports only the cartesian coordinate system. For an invalid
geometry argument, an ER_GIS_INVALID_DATA error occurs.

If the geometry argument is empty, ST_Buffer() returns an empty geometry.

If the distance is 0, ST_Buffer() returns the geometry argument unchanged:

mysql> SET @pt = ST_GeomFromText('POINT(0 0)');
mysql> SELECT ST_AsText(ST_Buffer(@pt, 0));
+------------------------------+
| ST_AsText(ST_Buffer(@pt, 0)) |
+------------------------------+
| POINT(0 0) |
+------------------------------+

ST_Buffer() supports negative distances for Polygon and MultiPolygon values, and for
geometry collections containing Polygon or MultiPolygon values. The result may be an empty
geometry. An ER_WRONG_ARGUMENTS error occurs for ST_Buffer() with a negative distance for
Point, MultiPoint, LineString, and MultiLineString values, and for geometry collections
not containing any Polygon or MultiPolygon values.

As of MySQL 5.7.7, ST_Buffer() permits up to three optional strategy arguments following the
distance argument. Strategies influence buffer computation. These arguments are byte string values
produced by the ST_Buffer_Strategy() function, to be used for point, join, and end strategies:

Spatial Operator Functions

1529

• Point strategies apply to Point and MultiPoint geometries. If no point strategy is specified, the
default is ST_Buffer_Strategy('point_circle', 32).

• Join strategies apply to LineString, MultiLineString, Polygon, and
MultiPolygon geometries. If no join strategy is specified, the default is
ST_Buffer_Strategy('join_round', 32).

• End strategies apply to LineString and MultiLineString geometries. If no end strategy is
specified, the default is ST_Buffer_Strategy('end_round', 32).

Up to one strategy of each type may be specified, and they may be given in any order. If multiple
strategies of a given type are specified, an ER_WRONG_ARGUMENTS error occurs.

mysql> SET @pt = ST_GeomFromText('POINT(0 0)');
mysql> SET @pt_strategy = ST_Buffer_Strategy('point_square');
mysql> SELECT ST_AsText(ST_Buffer(@pt, 2, @pt_strategy));
+--+
| ST_AsText(ST_Buffer(@pt, 2, @pt_strategy)) |
+--+
| POLYGON((-2 -2,2 -2,2 2,-2 2,-2 -2)) |
+--+

mysql> SET @ls = ST_GeomFromText('LINESTRING(0 0,0 5,5 5)');
mysql> SET @end_strategy = ST_Buffer_Strategy('end_flat');
mysql> SET @join_strategy = ST_Buffer_Strategy('join_round', 10);
mysql> SELECT ST_AsText(ST_Buffer(@ls, 5, @end_strategy, @join_strategy))
+---+
| ST_AsText(ST_Buffer(@ls, 5, @end_strategy, @join_strategy)) |
+---+
| POLYGON((5 5,5 10,0 10,-3.5355339059327373 8.535533905932738, |
| -5 5,-5 0,0 0,5 0,5 5)) |
+---+

ST_Buffer() and Buffer() are synonyms.

• ST_Buffer_Strategy(strategy[,points_per_circle])

This function returns a strategy byte string for use with ST_Buffer() to influence buffer
computation. The result is NULL if any argument is NULL. If any argument is invalid, an
ER_WRONG_ARGUMENTS error occurs.

Information about strategies is available at Boost.org.

The first argument must be a string indicating a strategy option:

• For point strategies, permitted values are 'point_circle' and 'point_square'.

• For join strategies, permitted values are 'join_round' and 'join_miter'.

• For end strategies, permitted values are 'end_round' and 'end_flat'.

If the first argument is 'point_circle', 'join_round', 'join_miter', or 'end_round',
the points_per_circle argument must be given as a positive numeric value. The maximum
points_per_circle value is the value of the max_points_in_geometry system variable as
of MySQL 5.7.8, 65,536 before that. If the first argument is 'point_square' or 'end_flat', the
points_per_circle argument must not be given or an ER_WRONG_ARGUMENTS error occurs.

For examples, see the description of ST_Buffer().

This function was added in MySQL 5.7.7.

• ST_ConvexHull(g)

http://www.boost.org

Spatial Operator Functions

1530

Returns a geometry that represents the convex hull of the geometry value g.

This function computes a geometry's convex hull by first checking whether its vertex points are
colinear. The function returns a linear hull if so, a polygon hull otherwise. This function processes
geometry collections by extracting all vertex points of all components of the collection, creating a
MultiPoint value from them, and computing its convex hull. If the argument is an empty geometry
collection, the return value is NULL.

mysql> SET @g = 'MULTIPOINT(5 0,25 0,15 10,15 25)';
mysql> SELECT ST_AsText(ST_ConvexHull(ST_GeomFromText(@g)));
+---+
| ST_AsText(ST_ConvexHull(ST_GeomFromText(@g))) |
+---+
| POLYGON((5 0,25 0,15 25,5 0)) |
+---+

ST_ConvexHull() and ConvexHull() are synonyms.

ST_ConvexHull() was added in MySQL 5.7.5.

• ST_Difference(g1, g2)

Returns a geometry that represents the point set difference of the geometry values g1 and g2.

mysql> SET @g1 = POINT(1,1), @g2 = POINT(2,2);
mysql> SELECT ST_AsText(ST_Difference(@g1, @g2));
+------------------------------------+
| ST_AsText(ST_Difference(@g1, @g2)) |
+------------------------------------+
| POINT(1 1) |
+------------------------------------+

• ST_Intersection(g1, g2)

Returns a geometry that represents the point set intersection of the geometry values g1 and g2.

mysql> SET @g1 = ST_GeomFromText('LineString(1 1, 3 3)');
mysql> SET @g2 = ST_GeomFromText('LineString(1 3, 3 1)');
mysql> SELECT ST_AsText(ST_Intersection(@g1, @g2));
+--------------------------------------+
| ST_AsText(ST_Intersection(@g1, @g2)) |
+--------------------------------------+
| POINT(2 2) |
+--------------------------------------+

• ST_SymDifference(g1, g2)

Returns a geometry that represents the point set symmetric difference of the geometry values g1
and g2, which is defined as:

g1 symdifference g2 := (g1 union g2) difference (g1 intersection g2)

Or, in function call notation:

ST_SymDifference(g1, g2) = ST_Difference(ST_Union(g1, g2), ST_Intersection(g1, g2))

mysql> SET @g1 = POINT(1,1), @g2 = POINT(2,2);
mysql> SELECT ST_AsText(ST_SymDifference(@g1, @g2));
+---+
| ST_AsText(ST_SymDifference(@g1, @g2)) |
+---+

Functions That Test Spatial Relations Between Geometry Objects

1531

| GEOMETRYCOLLECTION(POINT(1 1),POINT(2 2)) |
+---+

• ST_Union(g1, g2)

Returns a geometry that represents the point set union of the geometry values g1 and g2.

mysql> SET @g1 = ST_GeomFromText('LineString(1 1, 3 3)');
mysql> SET @g2 = ST_GeomFromText('LineString(1 3, 3 1)');
mysql> SELECT ST_AsText(ST_Union(@g1, @g2));
+--------------------------------------+
| ST_AsText(ST_Union(@g1, @g2)) |
+--------------------------------------+
| MULTILINESTRING((1 1,3 3),(1 3,3 1)) |
+--------------------------------------+

In addition, Section 12.15.7, “Geometry Property Functions”, discusses several functions that construct
new geometries from existing ones. See that section for descriptions of these functions:

• ST_Envelope(g)

• ST_StartPoint(ls)

• ST_EndPoint(ls)

• ST_PointN(ls,N)

• ST_ExteriorRing(poly)

• ST_InteriorRingN(poly,N)

• ST_GeometryN(gc,N)

12.15.9 Functions That Test Spatial Relations Between Geometry Objects

The functions described in this section take two geometries as arguments and return a qualitative or
quantitative relation between them.

MySQL implements two sets of functions using function names defined by the OpenGIS specification.
One set tests the relationship between two geometry values using precise object shapes, the other set
uses object minimum bounding rectangles (MBRs).

There is also a MySQL-specific set of MBR-based functions available to test the relationship between
two geometry values.

12.15.9.1 Spatial Relation Functions That Use Object Shapes

The OpenGIS specification defines the following functions. They test the relationship between two
geometry values g1 and g2, using precise object shapes. The return values 1 and 0 indicate true and
false, respectively, except for ST_Distance() and Distance(), which return distance values.

As of MySQL 5.7.5, these functions support all argument type combinations except those that are
inapplicable according to the Open Geospatial Consortium specification. They return false if called with
an inapplicable geometry argument type combination. For example, ST_Overlaps() returns false if
called with geometries of different dimensions.

• Crosses(g1,g2)

ST_Crosses() and Crosses() are synonyms. For more information, see the description of
ST_Crosses().

Crosses() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_Crosses() instead.

• Distance(g1,g2)

Functions That Test Spatial Relations Between Geometry Objects

1532

ST_Distance() and Distance() are synonyms. For more information, see the description of
ST_Distance().

Distance() was added in MySQL 5.7.5.

Distance() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_Distance() instead.

• ST_Contains(g1,g2)

Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as
ST_Within().

• ST_Crosses(g1,g2)

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2
is a Point or a MultiPoint. Otherwise, returns 0.

As of MySQL 5.7.5, this function returns 0 if called with an inapplicable geometry argument type
combination. For example, it returns 0 if the first argument is a Polygon or MultiPolygon and/or
the second argument is a Point or MultiPoint.

The term spatially crosses denotes a spatial relation between two given geometries that has the
following properties:

• The two geometries intersect

• Their intersection results in a geometry that has a dimension that is one less than the maximum
dimension of the two given geometries

• Their intersection is not equal to either of the two given geometries

ST_Crosses() and Crosses() are synonyms.

• ST_Disjoint(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

• ST_Distance(g1,g2)

Returns the distance between g1 and g2.

As of MySQL 5.7.5, this function processes geometry collections by returning the shortest distance
among all combinations of the components of the two geometry arguments. If either argument is an
empty geometry collection, the return value is NULL.

As of MySQL 5.7.6, if an intermediate or final result produces NaN or a negative number, this
function produces a ER_GIS_INVALID_DATA error.

mysql> SET @g1 = POINT(1,1), @g2 = POINT(2,2);
mysql> SELECT ST_Distance(@g1, @g2);
+-----------------------+
| ST_Distance(@g1, @g2) |
+-----------------------+
| 1.4142135623730951 |
+-----------------------+

ST_Distance() and Distance() are synonyms.

• ST_Equals(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

Functions That Test Spatial Relations Between Geometry Objects

1533

mysql> SET @g1 = POINT(1,1), @g2 = POINT(2,2);
mysql> SELECT ST_Equals(@g1, @g1), ST_Equals(@g1, @g2);
+---------------------+---------------------+
| ST_Equals(@g1, @g1) | ST_Equals(@g1, @g2) |
+---------------------+---------------------+
| 1 | 0 |
+---------------------+---------------------+

• ST_Intersects(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

• ST_Overlaps(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially overlaps g2. The term spatially overlaps is used if two
geometries intersect and their intersection results in a geometry of the same dimension but not equal
to either of the given geometries.

As of MySQL 5.7.5, this function returns 0 if called with an inapplicable geometry argument type
combination. For example, it returns 0 if called with geometries of different dimensions or any
argument is a Point.

• ST_Touches(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially touches g2. Two geometries spatially touch if the
interiors of the geometries do not intersect, but the boundary of one of the geometries intersects
either the boundary or the interior of the other.

As of MySQL 5.7.5, this function returns 0 if called with an inapplicable geometry argument type
combination. For example, it returns 0 if either of the arguments is a Point or MultiPoint.

ST_Touches() and Touches() are synonyms.

• ST_Within(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as
ST_Contains().

• Touches(g1,g2)

ST_Touches() and Touches() are synonyms. For more information, see the description of
ST_Touches().

Touches() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
ST_Touches() instead.

12.15.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)

The OpenGIS specification defines the following functions that test the relationship between two
geometry values g1 and g2. The MySQL implementation uses minimum bounding rectangles, so these
functions return the same result as the corresponding MBR-based functions. The return values 1 and 0
indicate true and false, respectively.

These functions support all argument type combinations except those that are inapplicable according to
the Open Geospatial Consortium specification.

• Contains(g1,g2)

MBRContains() and Contains() are synonyms. For more information, see the description of
MBRContains().

Functions That Test Spatial Relations Between Geometry Objects

1534

Contains() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
MBRContains() instead.

• Disjoint(g1,g2)

MBRDisjoint() and Disjoint() are synonyms. For more information, see the description of
MBRDisjoint().

Disjoint() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
MBRDisjoint() instead.

• Equals(g1,g2)

MBREquals() and Equals() are synonyms. For more information, see the description of
MBREquals().

Equals() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
MBREquals() instead.

• Intersects(g1,g2)

MBRIntersects() and Intersects() are synonyms. For more information, see the description
of MBRIntersects().

Intersects() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release.
Use MBRIntersects() instead.

• Overlaps(g1,g2)

MBROverlaps() and Overlaps() are synonyms. For more information, see the description of
MBROverlaps().

Overlaps() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
MBROverlaps() instead.

• Within(g1,g2)

MBRWithin() and Within() are synonyms. For more information, see the description of
MBRWithin().

Within() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
MBRWithin() instead.

12.15.9.3 MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)

MySQL provides several MySQL-specific functions that test relations between minimum bounding
rectangles of two geometries g1 and g2. The return values 1 and 0 indicate true and false,
respectively.

• MBRContains(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 contains the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRWithin().

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = ST_GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRWithin(@g2,@g1);
+----------------------+--------------------+
| MBRContains(@g1,@g2) | MBRWithin(@g2,@g1) |
+----------------------+--------------------+
| 1 | 1 |

Functions That Test Spatial Relations Between Geometry Objects

1535

+----------------------+--------------------+

MBRContains() and Contains() are synonyms.

• MBRCoveredBy(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 is covered by the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRCovers().

MBRCoveredBy() and MBRCovers() handle their arguments and return a value as follows:

• Return NULL if either argument is NULL or an empty geometry

• Return ER_GIS_INVALID_DATA if either argument is not a valid geometry byte string (SRID plus
WKB value)

• Otherwise, return non-NULL

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = ST_GeomFromText('Point(1 1)');
mysql> SELECT MBRCovers(@g1,@g2), MBRCoveredby(@g1,@g2);
+--------------------+-----------------------+
| MBRCovers(@g1,@g2) | MBRCoveredby(@g1,@g2) |
+--------------------+-----------------------+
| 1 | 0 |
+--------------------+-----------------------+
mysql> SELECT MBRCovers(@g2,@g1), MBRCoveredby(@g2,@g1);
+--------------------+-----------------------+
| MBRCovers(@g2,@g1) | MBRCoveredby(@g2,@g1) |
+--------------------+-----------------------+
| 0 | 1 |
+--------------------+-----------------------+

• MBRCovers(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 covers the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRCoveredBy(). See the
description of MBRCoveredBy() for examples and information about argument handling.

• MBRDisjoint(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 are disjoint (do not intersect).

MBRDisjoint() and Disjoint() are synonyms.

• MBREqual(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 are the same.

MBREqual() is deprecated as of MySQL 5.7.6 and will be removed in a future MySQL release. Use
MBREquals() instead.

• MBREquals(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 are the same.

MBREquals(), MBREqual(), and Equals() are synonyms.

This function was added in MySQL 5.7.6.

• MBRIntersects(g1,g2)

Spatial Geohash Functions

1536

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 intersect.

MBRIntersects() and Intersects() are synonyms.

• MBROverlaps(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 overlap. The term spatially overlaps is used if two geometries intersect and their intersection
results in a geometry of the same dimension but not equal to either of the given geometries.

MBROverlaps() and Overlaps() are synonyms.

• MBRTouches(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 touch. Two geometries spatially touch if the interiors of the geometries do not intersect, but the
boundary of one of the geometries intersects either the boundary or the interior of the other.

• MBRWithin(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 is within the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRContains().

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

MBRWithin() and Within() are synonyms.

12.15.10 Spatial Geohash Functions

Geohash is a system for encoding latitude and longitude coordinates of arbitrary precision
into a text string. Geohash values are strings that contain only characters chosen from
"0123456789bcdefghjkmnpqrstuvwxyz".

The functions in this section enable manipulation of geohash values, which provides applications the
capabilities of importing and exporting geohash data, and of indexing and searching geohash values.

• ST_GeoHash(longitude, latitude, max_length), ST_GeoHash(point, max_length)

Returns a geohash string in the connection character set and collation. The result is NULL if any
argument is NULL. An error occurs if any argument is invalid.

For the first syntax, the longitude must be a number in the range [−180, 180], and the latitude
must be a number in the range [−90, 90]. For the second syntax, a POINT value is required, where
the X and Y coordinates are in the valid ranges for longitude and latitude, respectively.

The resulting string is no longer than max_length characters, which has an upper limit of 100.
The string might be shorter than max_length characters because the algorithm that creates the
geohash value continues until it has created a string that is either an exact representation of the
location or max_length characters, whichever comes first.

This function was added in MySQL 5.7.5.

mysql> SELECT ST_GeoHash(180,0,10), ST_GeoHash(-180,-90,15);

Spatial Geohash Functions

1537

+----------------------+-------------------------+
| ST_GeoHash(180,0,10) | ST_GeoHash(-180,-90,15) |
+----------------------+-------------------------+
| xbpbpbpbpb | 000000000000000 |
+----------------------+-------------------------+

• ST_LatFromGeoHash(geohash_str)

Returns the latitude from a geohash string value, as a DOUBLE value in the range [−90, 90]. The
result is NULL if any argument is NULL. An error occurs if the argument is invalid.

The ST_LatFromGeoHash() decoding function reads no more than 433 characters from
the geohash_str argument. That represents the upper limit on information in the internal
representation of coordinate values. Characters past the 433rd are ignored, even if they are
otherwise illegal and produce an error.

This function was added in MySQL 5.7.5.

mysql> SELECT ST_LatFromGeoHash(ST_GeoHash(45,-20,10));
+--+
| ST_LatFromGeoHash(ST_GeoHash(45,-20,10)) |
+--+
| -20 |
+--+

• ST_LongFromGeoHash(geohash_str)

Returns the longitude from a geohash string value, as a DOUBLE value in the range [−180, 180]. The
result is NULL if any argument is NULL. An error occurs if the argument is invalid.

The remarks in the description of ST_LatFromGeoHash() regarding the maximum number of
characters processed from the geohash_str argument also apply to ST_LongFromGeoHash().

This function was added in MySQL 5.7.5.

mysql> SELECT ST_LongFromGeoHash(ST_GeoHash(45,-20,10));
+---+
| ST_LongFromGeoHash(ST_GeoHash(45,-20,10)) |
+---+
| 45 |
+---+

• ST_PointFromGeoHash(geohash_str, srid)

Returns a POINT value containing the decoded geohash value, given a geohash string value. The
X and Y coordinates of the point are the longitude in the range [-180, 180] and the latitude in the
range [-90, 90], respectively. The srid value is an unsigned 32-bit integer. The result is NULL if any
argument is NULL. An error occurs if any argument is invalid.

The remarks in the description of ST_LatFromGeoHash() regarding the maximum number of
characters processed from the geohash_str argument also apply to ST_PointFromGeoHash().

This function was added in MySQL 5.7.5.

mysql> SET @gh = ST_GeoHash(45,-20,10);
mysql> SELECT ST_AsText(ST_PointFromGeoHash(@gh,0));
+---------------------------------------+
| ST_AsText(ST_PointFromGeoHash(@gh,0)) |
+---------------------------------------+
| POINT(45 -20) |
+---------------------------------------+

Spatial GeoJSON Functions

1538

12.15.11 Spatial GeoJSON Functions

This section describes functions for converting between GeoJSON documents and spatial values.
GeoJSON is an open standard for encoding geometric/geographical features. For more information,
see http://geojson.org. The functions discussed here follow GeoJSON specification revision 1.0.

GeoJSON supports the same geometric/geographic data types that MySQL supports. Feature and
FeatureCollection objects are not supported, except that geometry objects are extracted from them.
CRS support is limited to values that identify an SRID.

MySQL also supports a native JSON data type and a set of SQL functions to enable operations on
JSON values. For more information, see Section 11.6, “The JSON Data Type”, and Section 12.16,
“JSON Functions”.

• ST_AsGeoJSON(g [, max_dec_digits [, options]])

Generates a GeoJSON object from the geometry g. The object string has the connection character
set and collation.

max_dec_digits, if specified, limits the number of decimal digits for coordinates and causes
rounding of output. If not specified, this argument defaults to its maximum value of 232 − 1. The
minimum is 0.

options, if specified, is a bitmask. The following table shows the permitted flag values. If the
geometry argument has an SRID of 0, no CRS object is produced even for those flag values that
request one.

Flag
Value

Meaning

0 No options. This is the default if options is not specified.

1 Add a bounding box to the output.

2 Add a short-format CRS URN to the output. The default format is a short format
(EPSG:srid).

4 Add a long-format CRS URN (urn:ogc:def:crs:EPSG::srid). This flag overrides
flag 2. For example, option values of 5 and 7 mean the same (add a bounding box and a
long-format CRS URN).

If any argument is NULL, the return value is NULL. If any non-NULL argument is invalid, an error
occurs.

mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2);
+---+
| ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2) |
+---+
| {"type": "Point", "coordinates": [11.11, 12.22]} |
+---+

This function was added in MySQL 5.7.5.

• ST_GeomFromGeoJSON(str [, options [, srid]])

Parses a string str representing a GeoJSON object and returns a geometry.

options, if given, describes how to handle GeoJSON documents that contain geometries with
coordinate dimensions higher than 2. The following table shows the permitted options values.

http://geojson.org

Spatial Convenience Functions

1539

Option
Value

Meaning

1 Reject the document and produce an error. This is the default if options is not specified.

2, 3, 4 Accept the document and strip off the coordinates for higher coordinate dimensions.

options values of 2, 3, and 4 currently produce the same effect. If geometries with coordinate
dimensions higher than 2 are supported in the future, these values will produce different effects.

The srid argument, if given, must be a 32-bit unsigned integer. If not given, the geometry return
value has an SRID of 4326.

GeoJSON geometry, feature, and feature collection objects may have a crs property. The parsing
function parses named CRS URNs in the urn:ogc:def:crs:EPSG::srid and EPSG:srid
namespaces, but not CRSs given as link objects. Also, urn:ogc:def:crs:OGC:1.3:CRS84 is
recognized as SRID 4326. If an object has a CRS that is not understood, an error occurs, with the
exception that if the optional srid argument is given, any CRS is ignored even if it is invalid.

As specified in the GeoJSON specification, parsing is case sensitive for the type member of the
GeoJSON input (Point, LineString, and so forth). The specification is silent regarding case
sensitivity for other parsing, which in MySQL is not case sensitive.

If any argument is NULL, the return value is NULL. If any non-NULL argument is invalid, an error
occurs.

This example shows the parsing result for a simple GeoJSON object:

mysql> SET @json = '{ "type": "Point", "coordinates": [102.0, 0.0]}';
mysql> SELECT ST_AsText(ST_GeomFromGeoJSON(@json));
+--------------------------------------+
| ST_AsText(ST_GeomFromGeoJSON(@json)) |
+--------------------------------------+
| POINT(102 0) |
+--------------------------------------+

This function was added in MySQL 5.7.5.

12.15.12 Spatial Convenience Functions

The functions in this section provide convenience operations on geometry values.

• ST_Distance_Sphere(g1, g2 [, radius])

Returns the mimimum spherical distance between two points and/or multipoints on a sphere, in
meters, or NULL if any geometry argument is NULL or empty.

Calculations use a spherical earth and a configurable radius. The optional radius argument should
be given in meters. If omitted, the default radius is 6,370,986 meters. An ER_WRONG_ARGUMENTS
error occurs if the radius argument is present but not positive.

The geometry arguments should consist of points that specify (longitude, latitude) coordinate values:

• Longitude and latitude are the first and second coordinates of the point, respectively.

• Both coordinates are in degrees.

• Longitude values must be in the range (-180, 180]. Positive values are east of the prime meridian.

• Latitude values must be in the range [-90, 90]. Positive values are north of the equator.

Spatial Convenience Functions

1540

Supported argument combinations are (Point, Point), (Point, MultiPoint), and (MultiPoint,
Point). An ER_GIS_UNSUPPORTED_ARGUMENT error occurs for other combinations.

An ER_GIS_INVALID_DATA error occurs if any geometry argument is not a valid geometry byte
string.

mysql> SET @pt1 = ST_GeomFromText('POINT(0 0)');
mysql> SET @pt2 = ST_GeomFromText('POINT(180 0)');
mysql> SELECT ST_Distance_Sphere(@pt1, @pt2);
+--------------------------------+
| ST_Distance_Sphere(@pt1, @pt2) |
+--------------------------------+
| 20015042.813723423 |
+--------------------------------+

This function was added in MySQL 5.7.6.

• ST_IsValid(g)

Checks whether a geometry is valid, as defined by the OGC specification. ST_IsValid() returns
1 if the argument is a valid geometry byte string and is geometrically valid, 0 if the argument is not a
valid geometry byte string or is not geometrically valid, NULL if the argument is NULL.

The only valid empty geometry is represented in the form of an empty geometry collection value.
ST_IsValid() returns 1 in this case.

ST_IsValid() works only for the cartesian coordinate system and requires a geometry argument
with an SRID of 0. An ER_WRONG_ARGUMENTS error occurs otherwise.

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0)');
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 0, 1 1)');
mysql> SELECT ST_IsValid(@ls1);
+------------------+
| ST_IsValid(@ls1) |
+------------------+
| 0 |
+------------------+
mysql> SELECT ST_IsValid(@ls2);
+------------------+
| ST_IsValid(@ls2) |
+------------------+
| 1 |
+------------------+

This function was added in MySQL 5.7.6.

• ST_MakeEnvelope(pt1, pt2)

Returns the rectangle that forms the envelope around two points. The returned geometry is a Point,
LineString, or Polygon, or NULL if any argument is NULL.

Calculations are done using the cartesian coordinate system rather than on a sphere, spheroid, or on
earth.

Given two points pt1 and pt2, ST_MakeEnvelope() creates the result geometry on an abstract
plane like this:

• If pt1 and pt2 are equal, the result is the point pt1.

• Otherwise, if (pt1, pt2) is a vertical or horizontal line segment, the result is the line segment
(pt1, pt2).

• Otherwise, the result is a polygon using pt1 and pt2 as diagonal points.

Spatial Convenience Functions

1541

The result geometry has an SRID of 0.

ST_MakeEnvelope() requires Point geometry arguments with an SRID of 0. An
ER_WRONG_ARGUMENTS error occurs otherwise.

An ER_GIS_INVALID_DATA occurs if any argument is not a valid geometry byte string, or if any
coordinate value of the two points is infinite (that is, NaN).

mysql> SET @pt1 = ST_GeomFromText('POINT(0 0)');
mysql> SET @pt2 = ST_GeomFromText('POINT(1 1)');
mysql> SELECT ST_AsText(ST_MakeEnvelope(@pt1, @pt2));
+--+
| ST_AsText(ST_MakeEnvelope(@pt1, @pt2)) |
+--+
| POLYGON((0 0,1 0,1 1,0 1,0 0)) |
+--+

This function was added in MySQL 5.7.6.

• ST_Simplify(g, max_distance)

Simplifies a geometry using the Douglas-Peucker algorithm and returns a simplified value of the
same type, or NULL if any argument is NULL.

The geometry may be any geometry type, although the Douglas-Peucker algorithm may not actually
process every type. A geometry collection is processed by giving its components one by one to the
simplification algorithm, and the returned geometries are put into a geometry collection as result.

The max_distance argument is the distance (in units of the input coordinates) of a vertex to other
segments to be removed. Vertices within this distance of the simplified linestring are removed. An
ER_WRONG_ARGUMENTS error occurs if the max_distance argument is not positive, or is NaN.

According to Boost.Geometry, geometries might become invalid as a result of the simplification
process, and the process might create self-intersections. If you want to check the validity of the
result, pass it to ST_IsValid().

An ER_GIS_INVALID_DATA error occurs if the geometry argument is not a valid geometry byte
string.

mysql> SET @g = ST_GeomFromText('LINESTRING(0 0,0 1,1 1,1 2,2 2,2 3,3 3)');
mysql> SELECT ST_AsText(ST_Simplify(@g, 0.5));
+---------------------------------+
| ST_AsText(ST_Simplify(@g, 0.5)) |
+---------------------------------+
| LINESTRING(0 0,0 1,1 1,2 3,3 3) |
+---------------------------------+
mysql> SELECT ST_AsText(ST_Simplify(@g, 1.0));
+---------------------------------+
| ST_AsText(ST_Simplify(@g, 1.0)) |
+---------------------------------+
| LINESTRING(0 0,3 3) |
+---------------------------------+
mysql> SELECT ST_AsText(ST_Simplify(@g));

This function was added in MySQL 5.7.6.

• ST_Validate(g)

Validates a geometry according to the OGC specification. ST_Validate() returns the geometry
if it is a valid geometry byte string and is geometrically valid, NULL if the argument is not a valid
geometry byte string or is not geometrically valid or is NULL.

JSON Functions

1542

A geometry can be a valid geometry byte string (WKB value plus SRID) but geometrically invalid. For
example, this polygon is geometrically invalid: POLYGON((0 0, 0 0, 0 0, 0 0, 0 0))

ST_Validate() can be used to filter out invalid geometry data, although at a cost. For applications
that require more precise results not tainted by invalid data, this penalty may be worthwhile.

If the geometry argument is valid, it is returned as is, except that if an input Polygon or
MultiPolygon has clockwise rings, those rings are reversed before checking for validity. If the
geometry is valid, the value with the reversed rings is returned.

The only valid empty geometry is represented in the form of an empty geometry collection value.
ST_Validate() returns it directly without further checks in this case.

ST_Validate() works only for the cartesian coordinate system and requires a geometry argument
with an SRID of 0. An ER_WRONG_ARGUMENTS error occurs otherwise.

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0)');
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 0, 1 1)');
mysql> SELECT ST_AsText(ST_Validate(@ls1));
+------------------------------+
| ST_AsText(ST_Validate(@ls1)) |
+------------------------------+
| NULL |
+------------------------------+
mysql> SELECT ST_AsText(ST_Validate(@ls2));
+------------------------------+
| ST_AsText(ST_Validate(@ls2)) |
+------------------------------+
| LINESTRING(0 0,1 1) |
+------------------------------+

This function was added in MySQL 5.7.6.

12.16 JSON Functions
The functions described in this section perform operations on JSON values. For discussion of the JSON
data type and additional examples showing how to use these functions, see Section 11.6, “The JSON
Data Type”.

For functions that take a JSON argument, an error occurs if the argument is not a valid JSON value.

Unless otherwise indicated, the JSON functions were added in MySQL 5.7.8.

A set of spatial functions for operating on GeoJSON values is also available. See Section 12.15.11,
“Spatial GeoJSON Functions”.

12.16.1 JSON Function Reference
Table 12.20 JSON Functions

Name Description

JSON_APPEND() Append data to JSON document

JSON_ARRAY_APPEND() Append data to JSON document

JSON_ARRAY_INSERT() Insert into JSON array

JSON_ARRAY() Create JSON array

-> Return value from JSON column after evaluating path

JSON_CONTAINS_PATH() Whether JSON document contains any data at path

JSON_CONTAINS() Whether JSON document contains specific object at path

JSON_DEPTH() Maximum depth of JSON document

Functions That Create JSON Values

1543

Name Description

JSON_EXTRACT() Return data from JSON document

JSON_INSERT() Insert data into JSON document

JSON_KEYS() Array of keys from JSON document

JSON_LENGTH() Number of elements in JSON document

JSON_MERGE() Merge JSON documents

JSON_OBJECT() Create JSON object

JSON_QUOTE() Quote JSON document

JSON_REMOVE() Remove data from JSON document

JSON_REPLACE() Replace values in JSON document

JSON_SEARCH() Path to value within JSON document

JSON_SET() Insert data into JSON document

JSON_TYPE() Type of JSON value

JSON_UNQUOTE() Unquote JSON value

JSON_VALID() Whether JSON value is valid

12.16.2 Functions That Create JSON Values

The functions in this section compose JSON values from component elements.

• JSON_ARRAY([val[, val] ...])

Evaluates a (possibly empty) list of values and returns a JSON array containing those values.

mysql> SELECT JSON_ARRAY(1, "abc", NULL, TRUE, CURTIME());
+---+
| JSON_ARRAY(1, "abc", NULL, TRUE, CURTIME()) |
+---+
| [1, "abc", null, true, "11:30:24.000000"] |
+---+

• JSON_OBJECT([key, val[, key, val] ...])

Evaluates a (possibly empty) list of key/value pairs and returns a JSON object containing those pairs.
An error occurs if any key name is NULL or the number of arguments is odd.

mysql> SELECT JSON_OBJECT('id', 87, 'name', 'carrot');
+---+
| JSON_OBJECT('id', 87, 'name', 'carrot') |
+---+
| {"id": 87, "name": "carrot"} |
+---+

• JSON_QUOTE(json_val)

Quotes a string as a JSON value by wrapping it with double quote characters and escaping interior
quote and other characters, then returning the result as a utf8mb4 string. Returns NULL if the
argument is NULL.

This function is typically used to produce a valid JSON string literal for inclusion within a JSON
document.

Certain special characters are escaped with backslashes per the escape sequences shown in
Table 12.21, “JSON_UNQUOTE() Special Character Escape Sequences”.

Functions That Search JSON Values

1544

mysql> SELECT JSON_QUOTE('null'), JSON_QUOTE('"null"');
+--------------------+----------------------+
| JSON_QUOTE('null') | JSON_QUOTE('"null"') |
+--------------------+----------------------+
| "null" | "\"null\"" |
+--------------------+----------------------+
mysql> SELECT JSON_QUOTE('[1, 2, 3]');
+-------------------------+
| JSON_QUOTE('[1, 2, 3]') |
+-------------------------+
| "[1, 2, 3]" |
+-------------------------+

You can also obtain JSON values by casting values of other types to the JSON type using
CAST(value AS JSON); see Converting between JSON and non-JSON values, for more information.

12.16.3 Functions That Search JSON Values

The functions in this section perform search operations on JSON values to extract data from them,
report whether data exists at a location within them, or report the path to data within them.

• JSON_CONTAINS(json_doc, val[, path])

Returns 0 or 1 to indicate whether a specific value is contained in a target JSON document, or, if a
path argument is given, at a specific path within the target document. Returns NULL if any argument
is NULL or the path argument does not identify a section of the target document. An error occurs if
either document argument is not a valid JSON document or the path argument is not a valid path
expression or contains a * or ** wildcard.

To check only whether any data exists at the path, use JSON_CONTAINS_PATH() instead.

The following rules define containment:

• A candidate scalar is contained in a target scalar if and only if they are comparable and are equal.
Two scalar values are comparable if they have the same JSON_TYPE() types, with the exception
that values of types INTEGER and DECIMAL are also comparable to each other.

• A candidate array is contained in a target array if and only if every element in the candidate is
contained in some element of the target.

• A candidate nonarray is contained in a target array if and only if the candidate is contained in some
element of the target.

• A candidate object is contained in a target object if and only if for each key in the candidate there
is a key with the same name in the target and the value associated with the candidate key is
contained in the value associated with the target key.

Otherwise, the candidate value is not contained in the target document.

mysql> SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}';
mysql> SET @j2 = '1';
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.a');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.a') |
+-------------------------------+
| 1 |
+-------------------------------+
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.b');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.b') |
+-------------------------------+
| 0 |
+-------------------------------+

mysql> SET @j2 = '{"d": 4}';

Functions That Search JSON Values

1545

mysql> SELECT JSON_CONTAINS(@j, @j2, '$.a');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.a') |
+-------------------------------+
| 0 |
+-------------------------------+
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.c');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.c') |
+-------------------------------+
| 1 |
+-------------------------------+

• JSON_CONTAINS_PATH(json_doc, one_or_all, path[, path] ...)

Returns 0 or 1 to indicate whether a JSON document contains data at a given path or paths. Returns
NULL if any argument is NULL. An error occurs if the json_doc argument is not a valid JSON
document, any path argument is not a valid path expression, or one_or_all is not 'one' or
'all'.

To check for a specific value at a path, use JSON_CONTAINS() instead.

The return value is 0 if no specified path exists within the document. Otherwise, the return value
depends on the one_or_all argument:

• 'one': 1 if at least one path exists within the document, 0 otherwise.

• 'all': 1 if all paths exist within the document, 0 otherwise.

mysql> SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}';
mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.a', '$.e');
+---+
| JSON_CONTAINS_PATH(@j, 'one', '$.a', '$.e') |
+---+
| 1 |
+---+
mysql> SELECT JSON_CONTAINS_PATH(@j, 'all', '$.a', '$.e');
+---+
| JSON_CONTAINS_PATH(@j, 'all', '$.a', '$.e') |
+---+
| 0 |
+---+
mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.c.d');
+--+
| JSON_CONTAINS_PATH(@j, 'one', '$.c.d') |
+--+
| 1 |
+--+
mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.a.d');
+--+
| JSON_CONTAINS_PATH(@j, 'one', '$.a.d') |
+--+
| 0 |
+--+

• JSON_EXTRACT(json_doc, path[, path] ...)

Returns data from a JSON document, selected from the parts of the document matched by the path
arguments. Returns NULL if any argument is NULL or no paths locate a value in the document. An
error occurs if the json_doc argument is not a valid JSON document or any path argument is not a
valid path expression.

The return value consists of all values matched by the path arguments. If it is possible that those
arguments could return multiple values, the matched values are autowrapped as an array, in the
order corresponding to the paths that produced them. Otherwise, the return value is the single
matched value.

Functions That Search JSON Values

1546

mysql> SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]');
+--+
| JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]') |
+--+
| 20 |
+--+
mysql> SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]', '$[0]');
+--+
| JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]', '$[0]') |
+--+
| [20, 10] |
+--+
mysql> SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[2][*]');
+---+
| JSON_EXTRACT('[10, 20, [30, 40]]', '$[2][*]') |
+---+
| [30, 40] |
+---+

MySQL 5.7.9 and later supports the -> operator as shorthand for this function as used with 2
arguments where the left hand side is a JSON column identifier (not an expression) and the right
hand side is the JSON path to be matched within the column.

• column->path

In MySQL 5.7.9 and later, the -> operator serves as an alias for the JSON_EXTRACT() function
when used with two arguments, a column identiefer on the left and a JSON path on the right that is
evaluated against the JSON document (the column value). You can use such expressions in place of
column identifiers wherever they occur in SQL statements.

The two SELECT statements shown here produce the same output:

mysql> SELECT c, JSON_EXTRACT(c, "$.id"), g
 > FROM jemp
 > WHERE JSON_EXTRACT(c, "$.id") > 1
 > ORDER BY JSON_EXTRACT(c, "$.name");
+-------------------------------+-----------+------+
| c | c->"$.id" | g |
+-------------------------------+-----------+------+
{"id": "3", "name": "Barney"}	"3"	3
{"id": "4", "name": "Betty"}	"4"	4
{"id": "2", "name": "Wilma"}	"2"	2
+-------------------------------+-----------+------+
3 rows in set (0.00 sec)

mysql> SELECT c, c->"$.id", g
 > FROM jemp
 > WHERE c->"$.id" > 1
 > ORDER BY c->"$.name";
+-------------------------------+-----------+------+
| c | c->"$.id" | g |
+-------------------------------+-----------+------+
{"id": "3", "name": "Barney"}	"3"	3
{"id": "4", "name": "Betty"}	"4"	4
{"id": "2", "name": "Wilma"}	"2"	2
+-------------------------------+-----------+------+
3 rows in set (0.00 sec)

This functionality is not limited to SELECT, as shown here:

mysql> ALTER TABLE jemp ADD COLUMN n INT;
Query OK, 0 rows affected (0.68 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> UPDATE jemp SET n=1 WHERE c->"$.id" = "4";
Query OK, 1 row affected (0.04 sec)

Functions That Search JSON Values

1547

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT c, c->"$.id", g, n
 > FROM jemp
 > WHERE JSON_EXTRACT(c, "$.id") > 1
 > ORDER BY c->"$.name";
+-------------------------------+-----------+------+------+
| c | c->"$.id" | g | n |
+-------------------------------+-----------+------+------+
{"id": "3", "name": "Barney"}	"3"	3	NULL
{"id": "4", "name": "Betty"}	"4"	4	1
{"id": "2", "name": "Wilma"}	"2"	2	NULL
+-------------------------------+-----------+------+------+
3 rows in set (0.00 sec)

mysql> DELETE FROM jemp WHERE c->"$.id" = "4";
Query OK, 1 row affected (0.04 sec)

mysql> SELECT c, c->"$.id", g, n
 > FROM jemp
 > WHERE JSON_EXTRACT(c, "$.id") > 1
 > ORDER BY c->"$.name";
+-------------------------------+-----------+------+------+
| c | c->"$.id" | g | n |
+-------------------------------+-----------+------+------+
| {"id": "3", "name": "Barney"} | "3" | 3 | NULL |
| {"id": "2", "name": "Wilma"} | "2" | 2 | NULL |
+-------------------------------+-----------+------+------+
2 rows in set (0.00 sec)

(See Section 8.3.9, “Optimizer Use of Generated Column Indexes”, for the statements used to create
and populate the table just shown.)

This also works with JSON array values, as shown here:

mysql> CREATE TABLE tj10 (a JSON, b INT);
Query OK, 0 rows affected (0.26 sec)

mysql> INSERT INTO tj10
 > VALUES ("[3,10,5,17,44]", 33), ("[3,10,5,17,[22,44,66]]", 0);
Query OK, 1 row affected (0.04 sec)

mysql> SELECT a->"$[4]" FROM tj10;
+--------------+
| a->"$[4]" |
+--------------+
| 44 |
| [22, 44, 66] |
+--------------+
2 rows in set (0.00 sec)

mysql> SELECT * FROM tj10 WHERE a->"$[0]" = 3;
+------------------------------+------+
| a | b |
+------------------------------+------+
| [3, 10, 5, 17, 44] | 33 |
| [3, 10, 5, 17, [22, 44, 66]] | 0 |
+------------------------------+------+
2 rows in set (0.00 sec)

Nested arrays are supported. An expression using -> evaluates as NULL if no matching key is found
in the target JSON document, as shown here:

mysql> SELECT * FROM tj10 WHERE a->"$[4][1]" IS NOT NULL;
+------------------------------+------+
| a | b |
+------------------------------+------+
| [3, 10, 5, 17, [22, 44, 66]] | 0 |
+------------------------------+------+

Functions That Search JSON Values

1548

mysql> SELECT a->"$[4][1]" FROM tj10;
+--------------+
| a->"$[4][1]" |
+--------------+
| NULL |
| 44 |
+--------------+
2 rows in set (0.00 sec)

This is the same behavior as seen in such cases when using JSON_EXTRACT():

mysql> SELECT JSON_EXTRACT(a, "$[4][1]") FROM tj10;
+----------------------------+
| JSON_EXTRACT(a, "$[4][1]") |
+----------------------------+
| NULL |
| 44 |
+----------------------------+
2 rows in set (0.00 sec)

• JSON_KEYS(json_doc[, path])

Returns the keys from the top-level value of a JSON object as a JSON array, or, if a path argument
is given, the top-level keys from the selected path. Returns NULL if any argument is NULL, the
json_doc argument is not an object, or path, if given, does not locate an object. An error occurs
if the json_doc argument is not a valid JSON document or the path argument is not a valid path
expression or contains a * or ** wildcard.

The result array is empty if the selected object is empty. If the top-level value has nested subobjects,
the return value does not include keys from those subobjects.

mysql> SELECT JSON_KEYS('{"a": 1, "b": {"c": 30}}');
+---------------------------------------+
| JSON_KEYS('{"a": 1, "b": {"c": 30}}') |
+---------------------------------------+
| ["a", "b"] |
+---------------------------------------+
mysql> SELECT JSON_KEYS('{"a": 1, "b": {"c": 30}}', '$.b');
+--+
| JSON_KEYS('{"a": 1, "b": {"c": 30}}', '$.b') |
+--+
| ["c"] |
+--+

• JSON_SEARCH(json_doc, one_or_all, search_str[, escape_char[, path] ...])

Returns the path to the given string within a JSON document. Returns NULL if any of the json_doc,
search_str, or path arguments are NULL; no path exists within the document; or search_str
is not found. An error occurs if the json_doc argument is not a valid JSON document, any path
argument is not a valid path expression, one_or_all is not 'one' or 'all', or escape_char is
not a constant expression.

The one_or_all argument affects the search as follows:

• 'one': The search terminates after the first match and returns one path string. It is undefined
which match is considered first.

• 'all': The search returns all matching path strings such that no duplicate paths are included. If
there are multiple strings, they are autowrapped as an array. The order of the array elements is
undefined.

Functions That Search JSON Values

1549

Within the search_str search string argument, the % and _ characters work as for the LIKE
operator: % matches any number of characters (including zero characters), and _ matches exactly
one character.

To specify a literal % or _ character in the search string, precede it by the escape character. The
default is \ if the escape_char argument is missing or NULL. Otherwise, escape_char must be a
constant that is empty or one character.

For more information about matching and escape character behavior, see the description of LIKE
in Section 12.5.1, “String Comparison Functions”. For escape character handling, a difference from
the LIKE behavior is that the escape character for JSON_SEARCH() must evaluate to a constant
at compile time, not just at execution time. For example, if JSON_SEARCH() is used in a prepared
statement and the escape_char argument is supplied using a ? parameter, the parameter value
might be constant at execution time, but is not at compile time.

mysql> SET @j = '["abc", [{"k": "10"}, "def"], {"x":"abc"}, {"y":"bcd"}]';

mysql> SELECT JSON_SEARCH(@j, 'one', 'abc');
+-------------------------------+
| JSON_SEARCH(@j, 'one', 'abc') |
+-------------------------------+
| "$[0]" |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', 'abc');
+-------------------------------+
| JSON_SEARCH(@j, 'all', 'abc') |
+-------------------------------+
| ["$[0]", "$[2].x"] |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', 'ghi');
+-------------------------------+
| JSON_SEARCH(@j, 'all', 'ghi') |
+-------------------------------+
| NULL |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '10');
+------------------------------+
| JSON_SEARCH(@j, 'all', '10') |
+------------------------------+
| "$[1][0].k" |
+------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[*]');
+--+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[*]') |
+--+
| "$[1][0].k" |
+--+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$**.k');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$**.k') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[*][0].k');

Functions That Search JSON Values

1550

+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[*][0].k') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[1]');
+--+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[1]') |
+--+
| "$[1][0].k" |
+--+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[1][0]');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[1][0]') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', 'abc', NULL, '$[2]');
+---+
| JSON_SEARCH(@j, 'all', 'abc', NULL, '$[2]') |
+---+
| "$[2].x" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%a%');
+-------------------------------+
| JSON_SEARCH(@j, 'all', '%a%') |
+-------------------------------+
| ["$[0]", "$[2].x"] |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%');
+-------------------------------+
| JSON_SEARCH(@j, 'all', '%b%') |
+-------------------------------+
| ["$[0]", "$[2].x", "$[3].y"] |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[0]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', NULL, '$[0]') |
+---+
| "$[0]" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[2]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', NULL, '$[2]') |
+---+
| "$[2].x" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[1]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', NULL, '$[1]') |
+---+
| NULL |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', '', '$[1]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', '', '$[1]') |
+---+
| NULL |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', '', '$[3]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', '', '$[3]') |

Functions That Modify JSON Values

1551

+---+
| "$[3].y" |
+---+

For more information about the JSON path syntax supported by MySQL, including rules governing
the wildcard operators * and **, see Section 12.16.6, “JSON Path Syntax”.

12.16.4 Functions That Modify JSON Values

The functions in this section modify JSON values and return the result.

• JSON_APPEND(json_doc, path, val[, path, val] ...)

Appends values to the end of the indicated arrays within a JSON document and returns the result.
This function was renamed to JSON_ARRAY_APPEND() in MySQL 5.7.9.

• JSON_ARRAY_APPEND(json_doc, path, val[, path, val] ...)

Appends values to the end of the indicated arrays within a JSON document and returns the result.
Returns NULL if any argument is NULL. An error occurs if the json_doc argument is not a valid
JSON document or any path argument is not a valid path expression or contains a * or ** wildcard.

The path/value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

If a path selects a scalar or object value, that value is autowrapped within an array and the new value
is added to that array. Pairs for which the path does not identify any value in the JSON document are
ignored.

mysql> SET @j = '["a", ["b", "c"], "d"]';
mysql> SELECT JSON_ARRAY_APPEND(@j, '$[1]', 1);
+----------------------------------+
| JSON_ARRAY_APPEND(@j, '$[1]', 1) |
+----------------------------------+
| ["a", ["b", "c", 1], "d"] |
+----------------------------------+
mysql> SELECT JSON_ARRAY_APPEND(@j, '$[0]', 2);
+----------------------------------+
| JSON_ARRAY_APPEND(@j, '$[0]', 2) |
+----------------------------------+
| [["a", 2], ["b", "c"], "d"] |
+----------------------------------+
mysql> SELECT JSON_ARRAY_APPEND(@j, '$[1][0]', 3);
+-------------------------------------+
| JSON_ARRAY_APPEND(@j, '$[1][0]', 3) |
+-------------------------------------+
| ["a", [["b", 3], "c"], "d"] |
+-------------------------------------+

mysql> SET @j = '{"a": 1, "b": [2, 3], "c": 4}';
mysql> SELECT JSON_ARRAY_APPEND(@j, '$.b', 'x');
+------------------------------------+
| JSON_ARRAY_APPEND(@j, '$.b', 'x') |
+------------------------------------+
| {"a": 1, "b": [2, 3, "x"], "c": 4} |
+------------------------------------+
mysql> SELECT JSON_ARRAY_APPEND(@j, '$.c', 'y');
+--------------------------------------+
| JSON_ARRAY_APPEND(@j, '$.c', 'y') |
+--------------------------------------+
| {"a": 1, "b": [2, 3], "c": [4, "y"]} |
+--------------------------------------+

mysql> SET @j = '{"a": 1}';
mysql> SELECT JSON_ARRAY_APPEND(@j, '$', 'z');
+---------------------------------+
| JSON_ARRAY_APPEND(@j, '$', 'z') |

Functions That Modify JSON Values

1552

+---------------------------------+
| [{"a": 1}, "z"] |
+---------------------------------+

• JSON_ARRAY_INSERT(json_doc, path, val[, path, val] ...)

Updates a JSON document, inserting into an array within the document and returning the modified
document. Returns NULL if any argument is NULL. An error occurs if the json_doc argument is not
a valid JSON document or any path argument is not a valid path expression or contains a * or **
wildcard or does not end with an array element identifier.

The path/value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

Pairs for which the path does not identify any array in the JSON document are ignored. If a path
identifies an array element, the corresponding value is inserted at that element position, shifting any
following values to the right. If a path identifies an array position past the end of an array, the value is
inserted at the end of the array.

mysql> SET @j = '["a", {"b": [1, 2]}, [3, 4]]';
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[1]', 'x');
+------------------------------------+
| JSON_ARRAY_INSERT(@j, '$[1]', 'x') |
+------------------------------------+
| ["a", "x", {"b": [1, 2]}, [3, 4]] |
+------------------------------------+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[100]', 'x');
+--------------------------------------+
| JSON_ARRAY_INSERT(@j, '$[100]', 'x') |
+--------------------------------------+
| ["a", {"b": [1, 2]}, [3, 4], "x"] |
+--------------------------------------+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[1].b[0]', 'x');
+---+
| JSON_ARRAY_INSERT(@j, '$[1].b[0]', 'x') |
+---+
| ["a", {"b": ["x", 1, 2]}, [3, 4]] |
+---+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[2][1]', 'y');
+---------------------------------------+
| JSON_ARRAY_INSERT(@j, '$[2][1]', 'y') |
+---------------------------------------+
| ["a", {"b": [1, 2]}, [3, "y", 4]] |
+---------------------------------------+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[0]', 'x', '$[2][1]', 'y');
+--+
| JSON_ARRAY_INSERT(@j, '$[0]', 'x', '$[2][1]', 'y') |
+--+
| ["x", "a", {"b": [1, 2]}, [3, 4]] |
+--+

Earlier modifications affect the positions of the following elements in the array, so subsequent paths
in the same JSON_ARRAY_INSERT() call should take this into account. In the final example, the
second path inserts nothing because the path no longer matches anything after the first insert.

• JSON_INSERT(json_doc, path, val[, path, val] ...)

Inserts data into a JSON document and returns the result. Returns NULL if any argument is NULL. An
error occurs if the json_doc argument is not a valid JSON document or any path argument is not a
valid path expression or contains a * or ** wildcard.

The path/value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

Functions That Modify JSON Values

1553

A path/value pair for an existing path in the document is ignored and does not overwrite the existing
document value. A path/value pair for a nonexisting path in the document adds the value to the
document if the path identifies one of these types of values:

• A member not present in an existing object. The member is added to the object and associated
with the new value.

• A position past the end of an existing array. The array is extended with the new value. If the
existing value is not an array, it is autowrapped as an array, then extended with the new value.

Otherwise, a path/value pair for a nonexisting path in the document is ignored and has no effect.

For a comparison of JSON_INSERT(), JSON_REPLACE(), and JSON_SET(), see the discussion of
JSON_SET().

mysql> SET @j = '{ "a": 1, "b": [2, 3]}';
mysql> SELECT JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]');
+--+
| JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]') |
+--+
| {"a": 1, "b": [2, 3], "c": "[true, false]"} |
+--+

• JSON_MERGE(json_doc, json_doc[, json_doc] ...)

Merges two or more JSON documents and returns the merged result. Returns NULL if any argument
is NULL. An error occurs if any argument is not a valid JSON document.

Merging takes place according to the following rules. For additional information, see Normalization,
Merging, and Autowrapping of JSON Values.

• Adjacent arrays are merged to a single array.

• Adjacent objects are merged to a single object.

• A scalar value is autowrapped as an array and merged as an array.

• An adjacent array and object are merged by autowrapping the object as an array and merging the
two arrays.

mysql> SELECT JSON_MERGE('[1, 2]', '[true, false]');
+---------------------------------------+
| JSON_MERGE('[1, 2]', '[true, false]') |
+---------------------------------------+
| [1, 2, true, false] |
+---------------------------------------+
mysql> SELECT JSON_MERGE('{"name": "x"}', '{"id": 47}');
+---+
| JSON_MERGE('{"name": "x"}', '{"id": 47}') |
+---+
| {"id": 47, "name": "x"} |
+---+
mysql> SELECT JSON_MERGE('1', 'true');
+-------------------------+
| JSON_MERGE('1', 'true') |
+-------------------------+
| [1, true] |
+-------------------------+
mysql> SELECT JSON_MERGE('[1, 2]', '{"id": 47}');
+------------------------------------+
| JSON_MERGE('[1, 2]', '{"id": 47}') |
+------------------------------------+
| [1, 2, {"id": 47}] |
+------------------------------------+

Functions That Modify JSON Values

1554

• JSON_REMOVE(json_doc, path[, path] ...)

Removes data from a JSON document and returns the result. Returns NULL if any argument is
NULL. An error occurs if the json_doc argument is not a valid JSON document or any path
argument is not a valid path expression or is $ or contains a * or ** wildcard.

The path arguments are evaluated left to right. The document produced by evaluating one path
becomes the new value against which the next path is evaluated.

It is not an error if the element to be removed does not exist in the document; in that case, the path
does not affect the document.

mysql> SET @j = '["a", ["b", "c"], "d"]';
mysql> SELECT JSON_REMOVE(@j, '$[1]');
+-------------------------+
| JSON_REMOVE(@j, '$[1]') |
+-------------------------+
| ["a", "d"] |
+-------------------------+

• JSON_REPLACE(json_doc, path, val[, path, val] ...)

Replaces existing values in a JSON document and returns the result. Returns NULL if any argument
is NULL. An error occurs if the json_doc argument is not a valid JSON document or any path
argument is not a valid path expression or contains a * or ** wildcard.

The path/value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

A path/value pair for an existing path in the document overwrites the existing document value with
the new value. A path/value pair for a nonexisting path in the document is ignored and has no effect.

For a comparison of JSON_INSERT(), JSON_REPLACE(), and JSON_SET(), see the discussion of
JSON_SET().

mysql> SET @j = '{ "a": 1, "b": [2, 3]}';
mysql> SELECT JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]') |
+---+
| {"a": 10, "b": [2, 3]} |
+---+

• JSON_SET(json_doc, path, val[, path, val] ...)

Inserts or updates data in a JSON document and returns the result. Returns NULL if any argument is
NULL or path, if given, does not locate an object. An error occurs if the json_doc argument is not
a valid JSON document or the path argument is not a valid path expression or contains a * or **
wildcard.

The path/value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

A path/value pair for an existing path in the document overwrites the existing document value
with the new value. A path/value pair for a nonexisting path in the document adds the value to the
document if the path identifies one of these types of values:

• A member not present in an existing object. The member is added to the object and associated
with the new value.

• A position past the end of an existing array. The array is extended with the new value. If the
existing value is not an array, it is autowrapped as an array, then extended with the new value.

Functions That Modify JSON Values

1555

Otherwise, a path/value pair for a nonexisting path in the document is ignored and has no effect.

The JSON_SET(), JSON_INSERT(), and JSON_REPLACE() functions are related:

• JSON_SET() replaces existing values and adds nonexisting values.

• JSON_INSERT() inserts values without replacing existing values.

• JSON_REPLACE() replaces only existing values.

The following examples illustrate these differences, using one path that does exist in the document
($.a) and another that does not exist ($.c):

mysql> SET @j = '{ "a": 1, "b": [2, 3]}';
mysql> SELECT JSON_SET(@j, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_SET(@j, '$.a', 10, '$.c', '[true, false]') |
+---+
| {"a": 10, "b": [2, 3], "c": "[true, false]"} |
+---+
mysql> SELECT JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]');
+--+
| JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]') |
+--+
| {"a": 1, "b": [2, 3], "c": "[true, false]"} |
+--+
mysql> SELECT JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]') |
+---+
| {"a": 10, "b": [2, 3]} |
+---+

• JSON_UNQUOTE(val)

Unquotes JSON value and returns the result as a utf8mb4 string. Returns NULL if the argument is
NULL. An error occurs if the value starts and ends with double quotes but is not a valid JSON string
literal.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES
SQL mode is enabled. Each of these sequences begins with a backslash (\), known as the escape
character. MySQL recognizes the escape sequences shown in Table 12.21, “JSON_UNQUOTE()
Special Character Escape Sequences”. For all other escape sequences, backslash is ignored. That
is, the escaped character is interpreted as if it was not escaped. For example, \x is just x. These
sequences are case sensitive. For example, \b is interpreted as a backspace, but \B is interpreted
as B.

Table 12.21 JSON_UNQUOTE() Special Character Escape Sequences

Escape
Sequence

Character Represented by Sequence

\" A double quote (") character

\b A backspace character

\f A formfeed character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character

\\ A backslash (\) character

\uXXXX UTF-8 bytes for Unicode value XXXX

Functions That Return JSON Value Attributes

1556

Two simple examples of the use of this function are shown here:

mysql> SET @j = '"abc"';
mysql> SELECT @j, JSON_UNQUOTE(@j);
+-------+------------------+
| @j | JSON_UNQUOTE(@j) |
+-------+------------------+
| "abc" | abc |
+-------+------------------+
mysql> SET @j = '[1, 2, 3]';
mysql> SELECT @j, JSON_UNQUOTE(@j);
+-----------+------------------+
| @j | JSON_UNQUOTE(@j) |
+-----------+------------------+
| [1, 2, 3] | [1, 2, 3] |
+-----------+------------------+

The following set of examples shows how JSON_UNQUOTE handles escapes with
NO_BACKSLASH_ESCAPES disabled and enabled:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+

mysql> SELECT JSON_UNQUOTE('"\\t\\u0032"');
+------------------------------+
| JSON_UNQUOTE('"\\t\\u0032"') |
+------------------------------+
| 2 |
+------------------------------+

mysql> SET @@sql_mode = 'NO_BACKSLASH_ESCAPES';
mysql> SELECT JSON_UNQUOTE('"\\t\\u0032"');
+------------------------------+
| JSON_UNQUOTE('"\\t\\u0032"') |
+------------------------------+
| \t\u0032 |
+------------------------------+

mysql> SELECT JSON_UNQUOTE('"\t\u0032"');
+----------------------------+
| JSON_UNQUOTE('"\t\u0032"') |
+----------------------------+
| 2 |
+----------------------------+

12.16.5 Functions That Return JSON Value Attributes

The functions in this section return attributes of JSON values.

• JSON_DEPTH(json_doc)

Returns the maximum depth of a JSON document. Returns NULL if the argument is NULL. An error
occurs if the argument is not a valid JSON document.

An empty array, empty object, or scalar value has depth 1. A nonempty array containing only
elements of depth 1 or nonempty object containing only member values of depth 1 has depth 2.
Otherwise, a JSON document has depth greater than 2.

mysql> SELECT JSON_DEPTH('{}'), JSON_DEPTH('[]'), JSON_DEPTH('true');
+------------------+------------------+--------------------+
| JSON_DEPTH('{}') | JSON_DEPTH('[]') | JSON_DEPTH('true') |

Functions That Return JSON Value Attributes

1557

+------------------+------------------+--------------------+
| 1 | 1 | 1 |
+------------------+------------------+--------------------+
mysql> SELECT JSON_DEPTH('[10, 20]'), JSON_DEPTH('[[], {}]');
+------------------------+------------------------+
| JSON_DEPTH('[10, 20]') | JSON_DEPTH('[[], {}]') |
+------------------------+------------------------+
| 2 | 2 |
+------------------------+------------------------+
mysql> SELECT JSON_DEPTH('[10, {"a": 20}]');
+-------------------------------+
| JSON_DEPTH('[10, {"a": 20}]') |
+-------------------------------+
| 3 |
+-------------------------------+

• JSON_LENGTH(json_doc[, path])

Returns the length of JSON document, or, if a path argument is given, the length of the value within
the document identified by the path. Returns NULL if any argument is NULL or the path argument
does not identify a value in the document. An error occurs if the json_doc argument is not a valid
JSON document or the path argument is not a valid path expression or contains a * or ** wildcard.

The length of a document is determined as follows:

• The length of a scalar is 1.

• The length of an array is the number of array elements.

• The length of an object is the number of object members.

• The length does not count the length of nested arrays or objects.

mysql> SELECT JSON_LENGTH('[1, 2, {"a": 3}]');
+---------------------------------+
| JSON_LENGTH('[1, 2, {"a": 3}]') |
+---------------------------------+
| 3 |
+---------------------------------+
mysql> SELECT JSON_LENGTH('{"a": 1, "b": {"c": 30}}');
+---+
| JSON_LENGTH('{"a": 1, "b": {"c": 30}}') |
+---+
| 2 |
+---+
mysql> SELECT JSON_LENGTH('{"a": 1, "b": {"c": 30}}', '$.b');
+--+
| JSON_LENGTH('{"a": 1, "b": {"c": 30}}', '$.b') |
+--+
| 1 |
+--+

• JSON_TYPE(json_val)

Returns a utf8mb4 string indicating the type of a JSON value:

mysql> SET @j = '{"a": [10, true]}';
mysql> SELECT JSON_TYPE(@j);
+---------------+
| JSON_TYPE(@j) |
+---------------+
| OBJECT |
+---------------+
mysql> SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a'));
+------------------------------------+
| JSON_TYPE(JSON_EXTRACT(@j, '$.a')) |
+------------------------------------+

Functions That Return JSON Value Attributes

1558

| ARRAY |
+------------------------------------+
mysql> SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a[0]'));
+---------------------------------------+
| JSON_TYPE(JSON_EXTRACT(@j, '$.a[0]')) |
+---------------------------------------+
| INTEGER |
+---------------------------------------+
mysql> SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a[1]'));
+---------------------------------------+
| JSON_TYPE(JSON_EXTRACT(@j, '$.a[1]')) |
+---------------------------------------+
| BOOLEAN |
+---------------------------------------+

JSON_TYPE() returns NULL if the argument is NULL:

mysql> SELECT JSON_TYPE(NULL);
+-----------------+
| JSON_TYPE(NULL) |
+-----------------+
| NULL |
+-----------------+

An error occurs if the argument is not a valid JSON value:

mysql> SELECT JSON_TYPE(1);
ERROR 3146 (22032): Invalid data type for JSON data in argument 1
to function json_type; a JSON string or JSON type is required.

For a non-NULL, non-error result, the following list describes the possible JSON_TYPE() return
values:

• Purely JSON types:

• OBJECT: JSON objects

• ARRAY: JSON arrays

• BOOLEAN: The JSON true and false literals

• NULL: The JSON null literal

• Numeric types:

• INTEGER: MySQL TINYINT, SMALLINT, MEDIUMINT and INT and BIGINT scalars

• DOUBLE: MySQL DOUBLE FLOAT scalars

• DECIMAL: MySQL DECIMAL and NUMERIC scalars

• Temporal types:

• DATETIME: MySQL DATETIME and TIMESTAMP scalars

• DATE: MySQL DATE scalars

• TIME: MySQL TIME scalars

• String types:

• STRING: MySQL utf8 character type scalars: CHAR, VARCHAR, TEXT, ENUM, and SET

• Binary types:

JSON Path Syntax

1559

• BLOB: MySQL binary type scalars: BINARY, VARBINARY, BLOB

• BIT: MySQL BIT scalars

• All other types:

• OPAQUE (raw bits)

• JSON_VALID(val)

Returns 0 or 1 to indicate whether a value is a valid JSON document. Returns NULL if the argument
is NULL.

mysql> SELECT JSON_VALID('{"a": 1}');
+------------------------+
| JSON_VALID('{"a": 1}') |
+------------------------+
| 1 |
+------------------------+
mysql> SELECT JSON_VALID('hello'), JSON_VALID('"hello"');
+---------------------+-----------------------+
| JSON_VALID('hello') | JSON_VALID('"hello"') |
+---------------------+-----------------------+
| 0 | 1 |
+---------------------+-----------------------+

12.16.6 JSON Path Syntax

Many of the functions described in previous sections require a path expression in order to identify
a specific element in a JSON document. A path consists of the path's scope followed by one or
more path legs. For paths used in MySQL JSON functions, the scope is always the document
being searched or otherwise operated on, represented by a leading $ character. Path legs are
separated by period characters (.). Cells in arrays are represented by [N], where N is a non-negative
integer. Names of keys must be double-quoted strings or valid ECMAScript identifiers (see http://
www.ecma-international.org/ecma-262/5.1/#sec-7.6). Path expressions, like JSON text,
should be encoded using the ascii, utf8, or utf8mb4 character sets. Other character encodings are
implicitly coerced to utf8mb4. The complete syntax is shown here:

pathExpression:
 scope[(pathLeg)*]

pathLeg:
 member | arrayLocation | doubleAsterisk

member:
 period (keyName | asterisk)

arrayLocation:
 leftBracket (nonNegativeInteger | asterisk) rightBracket

keyName:
 ESIdentifier | doubleQuotedString

doubleAsterisk:
 '**'

period:
 '.'

asterisk:
 '*'

leftBracket:
 '['

Functions Used with Global Transaction IDs

1560

rightBracket:
 ']'

As noted previously, in MySQL, the scope of the path is always the document being operated on,
represented as $. You can use '$' as a synonynm for the document in JSON path expressions.

Note

Some implementations support column references for scopes of JSON paths;
currently, MySQL does not support these.

The wildcard * and ** tokens are used as follows:

• .* represents the values of all members in the object.

• [*] represents the values of all cells in the array.

• [prefix]**suffix represents all paths beginning with prefix and ending with suffix. prefix
is optional, while suffix is required; in other words, a path may not end in **.

In addition, a path may not contain the sequence ***.

For path syntax examples, see the descriptions of the various JSON fuinctions that take paths as
arguments, such as JSON_CONTAINS_PATH() and JSON_REPLACE(). For examples which include
the use of the * and ** wildcards, see the description of the JSON_SEARCH() function.

12.17 Functions Used with Global Transaction IDs

The functions described in this section are used with GTID-based replication. It is important to keep in
mind that all of these functions take string representations of GTID sets as arguments—as such, the
GTID sets must always be quoted when used with them. See GTID Sets for more information.

The union of two GTID sets is simply their representations as strings, joined together with an
interposed comma. In other words, you can define a very simple function for obtaining the union of two
GTID sets, similar to that created here:

CREATE FUNCTION GTID_UNION(g1 TEXT, g2 TEXT)
 RETURNS TEXT DETERMINISTIC
 RETURN CONCAT(g1,',',g2);

For more information about GTIDs and how these GTID functions are used in practice, see
Section 17.1.3, “Replication with Global Transaction Identifiers”.

Table 12.22 GTID Functions

Name Description

GTID_SUBSET() Return true if all GTIDs in subset are also in set; otherwise
false.

GTID_SUBTRACT() Return all GTIDs in set that are not in subset.

WAIT_FOR_EXECUTED_GTID_SET() Wait until the given GTIDs have executed on slave.

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Wait until the given GTIDs have executed on slave.

• GTID_SUBSET(subset,set)

Given two sets of global transaction IDs subset and set, returns true if all GTIDs in subset are
also in set. Returns false otherwise.

The GTID sets used with this function are represented as strings, as shown in the following
examples:

Functions Used with Global Transaction IDs

1561

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 0
1 row in set (0.00 sec)

• GTID_SUBTRACT(set,subset)

Given two sets of global transaction IDs subset and set, returns only those GTIDs from set that
are not in subset.

All GTID sets used with this function are represented as strings and must be quoted, as shown in
these examples:

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:22-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:26-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:21-22:25-57
1 row in set (0.01 sec)

• WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(gtid_set[, timeout][,channel])

Wait until the slave SQL thread has executed all of the transactions whose global transaction
identifiers are contained in gtid_set (see Section 17.1.3.1, “GTID Concepts”, for a definition of
“GTID sets”), or until timeout seconds have elapsed, whichever occurs first. timeout is optional;
the default timeout is 0 seconds, in which case the function waits until all of the transactions in the
GTID set have been executed.

For more information, see Section 17.1.3, “Replication with Global Transaction Identifiers”.

GTID sets used with this function are represented as strings and so must be quoted as shown in the
following example:

mysql> SELECT WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS('3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5');
 -> 5

MySQL Enterprise Encryption Functions

1562

The return value is the number of transactional events that were executed. If GTID-based replication
is not active (that is, if the value of the gtid_mode variable is OFF), then this value is undefined and
thus WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() returns NULL. If the slave is not running then
this function also returns NULL.

The channel option, added in MySQL 5.7.6, enables you to choose which replication channel the
function applies to. If no channel is set and no channels other than the default replication channel
exist, the function applies to the default replication channel as found in versions of MySQL prior to
5.7.6. If you are using multiple replication channels you must specify a channel as otherwise it is
not known which replication channel the function should act on. See Section 17.2.3, “Replication
Channels” for more information on replication channels.

• WAIT_FOR_EXECUTED_GTID_SET(gtid_set[, timeout])

Introduced in MySQL 5.7.5, WAIT_FOR_EXECUTED_GTID_SET() is similar to
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() in that it waits until a server has
executed all of the transactions whose global transaction identifiers are contained in
gtid_set, or until timeout seconds have elapsed, whichever occurs first. Unlike
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), WAIT_FOR_EXECUTED_GTID_SET() does not take
into account whether the slave is running or not, and an error is returned if GTID-based replication is
not enabled.

In addition, WAIT_FOR_EXECUTED_GTID_SET() returns only the state of the query, where 0
represents success, 1 represents timeout, and any other failures return the error message.

12.18 MySQL Enterprise Encryption Functions
Note

MySQL Enterprise Encryption is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, http://
www.mysql.com/products/.

As of MySQL 5.7.9, MySQL Enterprise Edition includes a set of encryption functions based on
the OpenSSL library that expose OpenSSL capabilities at the SQL level. These functions enable
Enterprise applications to perform the following operations:

• Implement added data protection using public-key asymmetric cryptography

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

Enterprise Encryption supports the RSA, DSA, and DH cryptographic algorithms.

Enterprise Encryption is supplied as a user-defined function (UDF) library, from which individual
functions can be installed individually.

12.18.1 Enterprise Encryption Installation

Enterprise Encryption functions are located in a user-defined function (UDF) library file installed in
the plugin directory (the directory named by the plugin_dir system variable). The UDF library base
name is openssl_udf and the suffix is platform dependent. For example, the file name on Linux or
Windows is openssl_udf.so or openssl_udf.dll, respectively.

To install functions from the library file, use the CREATE FUNCTION statement. To load all functions
from the library, use this set of statements (adjust the file name suffix as necessary):

http://www.mysql.com/products/
http://www.mysql.com/products/

Enterprise Encryption Usage and Examples

1563

CREATE FUNCTION asymmetric_decrypt RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_derive RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_encrypt RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_sign RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_verify RETURNS INTEGER
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_asymmetric_priv_key RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_asymmetric_pub_key RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_dh_parameters RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_digest RETURNS STRING
 SONAME 'openssl_udf.so';

Once installed, UDFs remain installed across server restarts. To unload UDFs, use the DROP
FUNCTION statement. For example, to unload the key-generation functions, do this:

DROP FUNCTION create_asymmetric_priv_key;
DROP FUNCTION create_asymmetric_pub_key;

In the CREATE FUNCTION and DROP FUNCTION statements, the function names must be specified in
lowercase. This differs from their use at function invocation time, for which you can use any lettercase.

The CREATE FUNCTION and DROP FUNCTION statements require the INSERT and DROP privilege,
respectively, for the mysql database.

12.18.2 Enterprise Encryption Usage and Examples

To use Enterprise Encryption in applications, invoke the functions that are appropriate for the
operations you wish to perform. This section demonstrates how to carry out some representative tasks.

Task: Create a private/public key pair using RSA encryption.

-- Encryption algorithm; can be 'DSA' or 'DH' instead
SET @algo = 'RSA';
-- Minimum key length in bits; make larger for stronger keys
SET @key_len = 1024;

-- Create private key
SET @priv = CREATE_ASYMMETRIC_PRIV_KEY(@algo, @key_len);
-- Derive corresponding public key from private key, using same algorithm
SET @pub = CREATE_ASYMMETRIC_PUB_KEY(@algo, @priv);

Now you can use the key pair to encrypt and decrypt data, sign and verify data, or generate symmetric
keys.

Task: Use the private key to encrypt data and the public key to decrypt it. This requires that the
members of the key pair be RSA keys.

SET @ciphertext = ASYMMETRIC_ENCRYPT(@algo, 'My secret text', @priv);
SET @cleartext = ASYMMETRIC_DECRYPT(@algo, @ciphertext, @pub);

Conversely, you can encrypt using the public key and decrypt using the private key.

SET @ciphertext = ASYMMETRIC_ENCRYPT(@algo, 'My secret text', @pub);
SET @cleartext = ASYMMETRIC_DECRYPT(@algo, @ciphertext, @priv);

In either case, the algorithm specified for the encryption and decryption functions must match that used
to generate the keys.

Enterprise Encryption Function Reference

1564

Task: Generate a digest from a string.

-- Digest type; can be 'SHA256', 'SHA384', or 'SHA512' instead
SET @dig_type = 'SHA224';

-- Generate digest string
SET @dig = CREATE_DIGEST(@dig_type, 'My text to digest');

Task: Use the digest with a key pair to sign data, then verify that the signature matches the digest.

-- Encryption algorithm; could be 'DSA' instead; keys must
-- have been created using same algorithm
SET @algo = 'RSA';

-- Generate signature for digest and verify signature against digest
SET @sig = ASYMMETRIC_SIGN(@algo, @dig, @priv, @dig_type);
-- Verify signature against digest
SET @verf = ASYMMETRIC_VERIFY(@algo, @dig, @sig, @pub, @dig_type);

Task: Create a symmetric key. This requires DH private/public keys as inputs, created using a shared
symmetric secret. Create the secret by passing the key length to CREATE_DH_PARAMETERS(), then
pass the secret as the “key length” to CREATE_ASYMMETRIC_PRIV_KEY().

-- Generate DH shared symmetric secret
SET @dhp = CREATE_DH_PARAMETERS(1024);
-- Generate DH key pairs
SET @algo = 'DH';
SET @priv1 = CREATE_ASYMMETRIC_PRIV_KEY(@algo, @dhp);
SET @pub1 = CREATE_ASYMMETRIC_PUB_KEY(@algo, @priv1);
SET @priv2 = CREATE_ASYMMETRIC_PRIV_KEY(@algo, @dhp);
SET @pub2 = CREATE_ASYMMETRIC_PUB_KEY(@algo, @priv2);

-- Generate symmetric key using public key of first party,
-- private key of second party
SET @sym1 = ASYMMETRIC_DERIVE(@pub1, @priv2);

-- Or use public key of second party, private key of first party
SET @sym2 = ASYMMETRIC_DERIVE(@pub2, @priv1);

Key string values can be created at runtime and stored into a variable or table using SET, SELECT, or
INSERT:

SET @priv1 = CREATE_ASYMMETRIC_PRIV_KEY('RSA', 1024);
SELECT CREATE_ASYMMETRIC_PRIV_KEY('RSA', 1024) INTO @priv2;
INSERT INTO t (key_col) VALUES(CREATE_ASYMMETRIC_PRIV_KEY('RSA', 1024));

Key string values stored in files can be read using the LOAD_FILE() function by users who have the
FILE privilege.

Digest and signature strings can be handled similarly.

12.18.3 Enterprise Encryption Function Reference

Table 12.23 MySQL Enterprise Encryption Functions

Name Description

ASYMMETRIC_DECRYPT() Decrypt ciphertext using private or public key

ASYMMETRIC_DERIVE() Derive symmetric key from asymmetric keys

ASYMMETRIC_ENCRYPT() Encrypt cleartext using private or public key

ASYMMETRIC_SIGN() Generate signature from digest

ASYMMETRIC_VERIFY() Verify that signature matches digest

Enterprise Encryption Function Descriptions

1565

Name Description

CREATE_ASYMMETRIC_PRIV_KEY() Create private key

CREATE_ASYMMETRIC_PUB_KEY() Create public key

CREATE_DH_PARAMETERS() Generate shared DH secret

CREATE_DIGEST() Generate digest from string

12.18.4 Enterprise Encryption Function Descriptions

Enterprise Encryption functions have these general characteristics:

• For arguments of the wrong type or an incorrect number of arguments, each function returns an
error.

• If the arguments are not suitable to permit a function to perform the requested operation, it returns
NULL or 0 as appropriate. This occurs, for example, if a function does not support a specified
algorithm, a key length is too short or long, or a string expected to be a key string in PEM format is
not a valid key.

• The underlying SSL library takes care of randomness initialization.

Several of the functions take an encryption algorithm argument. The following table summarizes the
supported algorithms by function.

Table 12.24 Supported Algorithms by Function

Function Supported Algorithms

ASYMMETRIC_DECRYPT() RSA

ASYMMETRIC_DERIVE() DH

ASYMMETRIC_ENCRYPT() RSA

ASYMMETRIC_SIGN() RSA, DSA

ASYMMETRIC_VERIFY() RSA, DSA

CREATE_ASYMMETRIC_PRIV_KEY() RSA, DSA, DH

CREATE_ASYMMETRIC_PUB_KEY() RSA, DSA, DH

Note

Although you can create keys using any of the RSA, DSA, or DH encryption
algorithms, other functions that take key arguments might accept only
certain types of keys. For example, ASYMMETRIC_ENCRYPT() and
ASYMMETRIC_DECRYPT() accept only RSA keys.

The following descriptions describe the calling sequences for Enterprise Encryption functions.
For additional examples and discussion, see Section 12.18.2, “Enterprise Encryption Usage and
Examples”.

• ASYMMETRIC_DECRYPT(algorithm, crypt_str, key_str)

Decrypts an encrypted string using the given algorithm and key string, and returns the resulting
cleartext as a binary string. If decryption fails, the result is NULL.

key_str must be a valid key string in PEM format. For successful decryption, it must be
the public or private key string corresponding to the private or public key string used with
ASYMMETRIC_ENCRYPT() to produce the encrypted string. algorithm indicates the encryption
algorithm used to create the key.

Supported algorithm values: 'RSA'

Enterprise Encryption Function Descriptions

1566

For a usage example, see the description of ASYMMETRIC_ENCRYPT().

• ASYMMETRIC_DERIVE(pub_key_str, priv_key_str)

Derives a symmetric key using the private key of one party and the public key of another, and returns
the resulting key as a binary string. If key derivation fails, the result is NULL.

pub_key_str and priv_key_str must be valid key strings in PEM format. They must be created
using the DH algorithm.

Suppose that you have two pairs of public and private keys:

SET @dhp = CREATE_DH_PARAMETERS(1024);
SET @priv1 = CREATE_ASYMMETRIC_PRIV_KEY('DH', @dhp);
SET @pub1 = CREATE_ASYMMETRIC_PUB_KEY('DH', @priv1);
SET @priv2 = CREATE_ASYMMETRIC_PRIV_KEY('DH', @dhp);
SET @pub2 = CREATE_ASYMMETRIC_PUB_KEY('DH', @priv2);

Suppose further that you use the private key from one pair and the public key from the other pair to
create a symmetric key string. Then this symmetric key identity relationship holds:

ASYMMETRIC_DERIVE(@pub1, @priv2) = ASYMMETRIC_DERIVE(@pub2, @priv1)

• ASYMMETRIC_ENCRYPT(algorithm, str, key_str)

Encrypts a string using the given algorithm and key string, and returns the resulting ciphertext as a
binary string. If encryption fails, the result is NULL.

The str length cannot be greater than the key_str length − 11, in bytes

key_str must be a valid key string in PEM format. algorithm indicates the encryption algorithm
used to create the key.

Supported algorithm values: 'RSA'

To encrypt a string, pass a private or public key string to ASYMMETRIC_ENCRYPT(). To recover the
original unencrypted string, pass the encrypted string to ASYMMETRIC_DECRYPT(), along with the
public or private key string correponding to the private or public key string used for encryption.

-- Generate private/public key pair
SET @priv = CREATE_ASYMMETRIC_PRIV_KEY('RSA', 1024);
SET @pub = CREATE_ASYMMETRIC_PUB_KEY('RSA', @priv);

-- Encrypt using private key, decrypt using public key
SET @ciphertext = ASYMMETRIC_ENCRYPT('RSA', 'The quick brown fox', @priv);
SET @cleartext = ASYMMETRIC_DECRYPT('RSA', @ciphertext, @pub);

-- Encrypt using public key, decrypt using private key
SET @ciphertext = ASYMMETRIC_ENCRYPT('RSA', 'The quick brown fox', @pub);
SET @cleartext = ASYMMETRIC_DECRYPT('RSA', @ciphertext, @priv);

Suppose that:

SET @s = a string to be encrypted
SET @priv = a valid private RSA key string in PEM format
SET @pub = the corresponding public RSA key string in PEM format

Then these identity relationships hold:

ASYMMETRIC_DECRYPT('RSA', ASYMMETRIC_ENCRYPT('RSA', @s, @priv), @pub) = @s
ASYMMETRIC_DECRYPT('RSA', ASYMMETRIC_ENCRYPT('RSA', @s, @pub), @priv) = @s

Enterprise Encryption Function Descriptions

1567

• ASYMMETRIC_SIGN(algorithm, digest_str, priv_key_str, digest_type)

Signs a digest string using a private key string, and returns the signature as a binary string. If signing
fails, the result is NULL.

digest_str is the digest string. It can be generated by calling CREATE_DIGEST(). digest_type
indicates the digest algorithm used to generate the digest string.

priv_key_str is the private key string to use for signing the digest string. It must be a valid key
string in PEM format. algorithm indicates the encryption algorithm used to create the key.

Supported algorithm values: 'RSA', 'DSA'

Supported digest_type values: 'SHA224', 'SHA256', 'SHA384', 'SHA512'

For a usage example, see the description of ASYMMETRIC_VERIFY().

• ASYMMETRIC_VERIFY(algorithm, digest_str, sig_str, pub_key_str,
digest_type)

Verifies whether the signature string matches the digest string, and returns 1 or 0 to indicate whether
verification succeeded or failed.

digest_str is the digest string. It can be generated by calling CREATE_DIGEST(). digest_type
indicates the digest algorithm used to generate the digest string.

sig_str is the signature string. It can be generated by calling ASYMMETRIC_SIGN().

pub_key_str is the public key string of the signer. It corresponds to the private key passed to
ASYMMETRIC_SIGN() to generate the signature string and must be a valid key string in PEM format.
algorithm indicates the encryption algorithm used to create the key.

Supported algorithm values: 'RSA', 'DSA'

Supported digest_type values: 'SHA224', 'SHA256', 'SHA384', 'SHA512'

-- Set the encryption algorithm and digest type
SET @algo = 'RSA';
SET @dig_type = 'SHA224';

-- Create private/public key pair
SET @priv = CREATE_ASYMMETRIC_PRIV_KEY(@algo, 1024);
SET @pub = CREATE_ASYMMETRIC_PUB_KEY(@algo, @priv);

-- Generate digest from string
SET @dig = CREATE_DIGEST(@dig_type, 'The quick brown fox');

-- Generate signature for digest and verify signature against digest
SET @sig = ASYMMETRIC_SIGN(@algo, @dig, @priv, @dig_type);
SET @verf = ASYMMETRIC_VERIFY(@algo, @dig, @sig, @pub, @dig_type);

• CREATE_ASYMMETRIC_PRIV_KEY(algorithm, {key_len|dh_secret})

Creates a private key using the given algorithm and key length or DH secret, and returns the key as
a binary string in PEM format. If key generation fails, the result is NULL.

Supported algorithm values: 'RSA', 'DSA', 'DH'

Supported key_len values: The minimum key length in bits is 1024. The maximum key length
depends on the algorithm: 16,384 for RSA and 10,000 for DSA. These lengths are constraints
imposed by OpenSSL.

Miscellaneous Functions

1568

For DH keys, pass a shared DH secret instead of a key length. To create the secret, pass the key
length to CREATE_DH_PARAMETERS().

This example creates a 2,048-bit DSA private key, then derives a public key from the private key:

SET @priv = CREATE_ASYMMETRIC_PRIV_KEY('DSA', 2048);
SET @pub = CREATE_ASYMMETRIC_PUB_KEY('DSA', @priv);

For an example showing DH key generation, see the description of ASYMMETRIC_DERIVE().

Some general considerations in choosing key lengths and encryption algorithms:

• The strength of encryption for private and public keys increases with the key size, but the time for
key generation increases as well.

• Generation of DH keys takes much longer than RSA or RSA keys.

• Asymmetric encryption functions are slower than symmetric functions. If performance is an
important factor and the functions are to be used very frequently, you are better off using
symmetric encryption. For example, consider using AES_ENCRYPT() and AES_DECRYPT().

• CREATE_ASYMMETRIC_PUB_KEY(algorithm, priv_key_str)

Derives a public key from the given private key using the given algorithm, and returns the key as a
binary string in PEM format. If key derivation fails, the result is NULL.

priv_key_str must be a valid key string in PEM format. algorithm indicates the encryption
algorithm used to create the key.

Supported algorithm values: 'RSA', 'DSA', 'DH'

For a usage example, see the description of CREATE_ASYMMETRIC_PRIV_KEY().

• CREATE_DH_PARAMETERS(key_len)

Creates a shared secret for generating a DH private/public key pair and returns a binary string that
can be passed to CREATE_ASYMMETRIC_PRIV_KEY(). If secret generation fails, the result is null.

Supported key_len values: The minimum and maximum key lengths in bits are 1024 and 10,000.
These lengths are constraints imposed by OpenSSL.

For an example showing how to use the return value for generating symmetric keys, see the
description of ASYMMETRIC_DERIVE().

SET @dhp = CREATE_DH_PARAMETERS(1024);

• CREATE_DIGEST(digest_type, str)

Creates a digest from the given string using the given digest type, and returns the digest as a binary
string. If digest generation fails, the result is NULL.

Supported digest_type values: 'SHA224', 'SHA256', 'SHA384', 'SHA512'

SET @dig = CREATE_DIGEST('SHA512', The quick brown fox');

The resulting digest string is suitable for use with ASYMMETRIC_SIGN() and
ASYMMETRIC_VERIFY().

12.19 Miscellaneous Functions

Miscellaneous Functions

1569

Table 12.25 Miscellaneous Functions

Name Description

ANY_VALUE() Suppress ONLY_FULL_GROUP_BY value rejection

DEFAULT() Return the default value for a table column

GET_LOCK() Get a named lock

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

INET6_ATON() Return the numeric value of an IPv6 address

INET6_NTOA() Return the IPv6 address from a numeric value

IS_FREE_LOCK() Checks whether the named lock is free

IS_IPV4_COMPAT() Return true if argument is an IPv4-compatible address

IS_IPV4_MAPPED() Return true if argument is an IPv4-mapped address

IS_IPV4() Return true if argument is an IPv4 address

IS_IPV6() Return true if argument is an IPv6 address

IS_USED_LOCK() Checks whether the named lock is in use. Return connection
identifier if true.

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to
the specified position

NAME_CONST() Causes the column to have the given name

RAND() Return a random floating-point value

RELEASE_ALL_LOCKS() Releases all current named locks

RELEASE_LOCK() Releases the named lock

SLEEP() Sleep for a number of seconds

UUID_SHORT() Return an integer-valued universal identifier

UUID() Return a Universal Unique Identifier (UUID)

VALUES() Defines the values to be used during an INSERT

• ANY_VALUE(arg)

This function is useful for GROUP BY queries when the ONLY_FULL_GROUP_BY SQL mode is
enabled, for cases when MySQL rejects a query that you know is valid for reasons that MySQL
cannot determine. The function return value and type are the same as the return value and type of its
argument, but the function result is not checked for the ONLY_FULL_GROUP_BY SQL mode.

For example, if name is a nonindexed column, the following query fails with ONLY_FULL_GROUP_BY
enabled:

mysql> SELECT name, address, MAX(age) FROM t GROUP BY name;
ERROR 1055 (42000): Expression #2 of SELECT list is not in GROUP
BY clause and contains nonaggregated column 'mydb.t.address' which
is not functionally dependent on columns in GROUP BY clause; this
is incompatible with sql_mode=only_full_group_by

The failure occurs because address is a nonaggregated column that is neither named among
GROUP BY columns nor functionally dependent on them. As a result, the address value for rows
within each name group is nondeterministic. There are multiple ways to cause MySQL to accept the
query:

Miscellaneous Functions

1570

• Alter the table to make name a primary key or a unique NOT NULL column. This enables MySQL
to determine that address is functionally dependent on name; that is, address is uniquely
determined by name. (This technique is inapplicable if NULL must be permitted as a valid name
value.)

• Use ANY_VALUE() to refer to address:

SELECT name, ANY_VALUE(address), MAX(age) FROM t GROUP BY name;

In this case, MySQL ignores the nondeterminism of address values within each name group and
accepts the query. This may be useful if you simply do not care which value of a nonaggregated
column is chosen for each group. ANY_VALUE() is not an aggregate function, unlike functions
such as SUM() or COUNT(). It simply acts to suppress the test for nondeterminism.

• Disable ONLY_FULL_GROUP_BY. This is equivalent to using ANY_VALUE() with
ONLY_FULL_GROUP_BY enabled, as described in the previous item.

ANY_VALUE() is also useful if functional dependence exists between columns but MySQL cannot
determine it. The following query is valid because age is functionally dependent on the grouping
column age-1, but MySQL cannot tell that and rejects the query with ONLY_FULL_GROUP_BY
enabled:

SELECT age FROM t GROUP BY age-1;

To cause MySQL to accept the query, use ANY_VALUE():

SELECT ANY_VALUE(age) FROM t GROUP BY age-1;

ANY_VALUE() can be used for queries that refer to aggregate functions in the absence of a GROUP
BY clause:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'mydb.t.name'; this
is incompatible with sql_mode=only_full_group_by

Without GROUP BY, there is a single group and it is indeterminate which name value to choose for
the group. ANY_VALUE() tells MySQL to accept the query:

SELECT ANY_VALUE(name), MAX(age) FROM t;

It may be that, due to some property of a given data set, you know that a selected nonaggregated
column is effectively functionally dependent on a GROUP BY column. For example, an application
may enforce uniqueness of one column with respect to another. In this case, using ANY_VALUE()
for the effectively functionally dependent column may make sense.

For additional discussion, see Section 12.20.3, “MySQL Handling of GROUP BY”.

• DEFAULT(col_name)

Returns the default value for a table column. An error results if the column has no default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;

• FORMAT(X,D)

Miscellaneous Functions

1571

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. For details, see Section 12.5, “String Functions”.

• GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds. A
negative timeout value means infinite timeout. The lock is exclusive. While held by one session,
other sessions cannot obtain a lock of the same name.

Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for example, because
another client has previously locked the name), or NULL if an error occurred (such as running out of
memory or the thread was killed with mysqladmin kill).

A lock obtained with GET_LOCK() is released explicitly by executing RELEASE_LOCK() or implicitly
when your session terminates (either normally or abnormally). Lock release may also occur with
another call to GET_LOCK():

• Before 5.7.5, only a single simultaneous lock can be acquired and GET_LOCK() releases any
existing lock.

• In MySQL 5.7.5, GET_LOCK() was reimplemented using the metadata locking (MDL) subsystem
and its capabilities were extended. Multiple simultaneous locks can be acquired and GET_LOCK()
does not release any existing locks. It is even possible for a given session to acquire multiple
locks for the same name. Other sessions cannot acquire a lock with that name until the acquiring
session releases all its locks for the name.

As a result of the MDL reimplementation, locks acquired with GET_LOCK() appear in the
Performance Schema metadata_locks table. The OBJECT_TYPE column says USER LEVEL
LOCK and the OBJECT_NAME column indicates the lock name. Also, the capability of acquiring
multiple locks introduces the possibility of deadlock among clients. When this happens, the server
chooses a caller and terminates its lock-acquisition request with an ER_USER_LOCK_DEADLOCK
error. This error does not cause transactions to roll back.

The difference in lock acquisition behavior as of MySQL 5.7.5 can be seen by the following example.
Suppose that you execute these statements:

SELECT GET_LOCK('lock1',10);
SELECT GET_LOCK('lock2',10);
SELECT RELEASE_LOCK('lock2');
SELECT RELEASE_LOCK('lock1');

In MySQL 5.7.5 or later, the second GET_LOCK() acquires a second lock and both
RELEASE_LOCK() calls return 1 (success). Before MySQL 5.7.5, the second GET_LOCK() releases
the first lock ('lock1') and the second RELEASE_LOCK() returns NULL (failure) because there is
no 'lock1' to release.

MySQL 5.7.5 and later enforces a maximum length on lock names of 64 characters. Previously, no
limit was enforced.

Locks obtained with GET_LOCK() are not released when transactions commit or roll back.

GET_LOCK() can be used to implement application locks or to simulate record locks. Names are
locked on a server-wide basis. If a name has been locked within one session, GET_LOCK() blocks
any request by another session for a lock with the same name. This enables clients that agree on a
given lock name to use the name to perform cooperative advisory locking. But be aware that it also
enables a client that is not among the set of cooperating clients to lock a name, either inadvertently
or deliberately, and thus prevent any of the cooperating clients from locking that name. One way to
reduce the likelihood of this is to use lock names that are database-specific or application-specific.
For example, use lock names of the form db_name.str or app_name.str.

Miscellaneous Functions

1572

If multiple clients are waiting for a lock, the order in which they will acquire it is undefined.
Applications should not assume that clients will acquire the lock in the same order that they issued
the lock requests.

GET_LOCK() is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

Caution

With the capability of acquiring multiple named locks in MySQL 5.7.5, it
is possible for a single statement to acquire a large number of locks. For
example:

INSERT INTO ... SELECT GET_LOCK(t1.col_name) FROM t1;

These types of statements may have certain adverse effects. For example, if
the statement fails part way through and rolls back, locks acquired up to the
point of failure will still exist. If the intent is for there to be a correspondence
between rows inserted and locks acquired, that intent will not be satisfied.
Also, if it is important that locks are granted in a certain order, be aware that
result set order may differ depending on which execution plan the optimizer
chooses. For these reasons, it may be best to limit applications to a single
lock-acquisition call per statement.

A different locking interface is available as either a plugin service or a set of user-defined functions.
This interface provides lock namespaces and distinct read and write locks, unlike the interface
provided by GET_LOCK() and related functions. For details, see Section 24.3.1, “The Locking
Service”.

• INET_ATON(expr)

Given the dotted-quad representation of an IPv4 network address as a string, returns an integer
that represents the numeric value of the address in network byte order (big endian). INET_ATON()
returns NULL if it does not understand its argument.

mysql> SELECT INET_ATON('10.0.5.9');
 -> 167773449

For this example, the return value is calculated as 10×2563 + 0×2562 + 5×256 + 9.

INET_ATON() may or may not return a non-NULL result for short-form IP addresses (such as
'127.1' as a representation of '127.0.0.1'). Because of this, INET_ATON()a should not be
used for such addresses.

Note

To store values generated by INET_ATON(), use an INT UNSIGNED
column rather than INT, which is signed. If you use a signed column, values
corresponding to IP addresses for which the first octet is greater than 127
cannot be stored correctly. See Section 11.2.6, “Out-of-Range and Overflow
Handling”.

• INET_NTOA(expr)

Given a numeric IPv4 network address in network byte order, returns the dotted-quad string
representation of the address as a nonbinary string in the connection character set. INET_NTOA()
returns NULL if it does not understand its argument.

Miscellaneous Functions

1573

mysql> SELECT INET_NTOA(167773449);
 -> '10.0.5.9'

• INET6_ATON(expr)

Given an IPv6 or IPv4 network address as a string, returns a binary string that represents the
numeric value of the address in network byte order (big endian). Because numeric-format IPv6
addresses require more bytes than the largest integer type, the representation returned by this
function has the VARBINARY data type: VARBINARY(16) for IPv6 addresses and VARBINARY(4)
for IPv4 addresses. If the argument is not a valid address, INET6_ATON() returns NULL.

The following examples use HEX() to display the INET6_ATON() result in printable form:

mysql> SELECT HEX(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'FDFE0000000000005A55CAFFFEFA9089'
mysql> SELECT HEX(INET6_ATON('10.0.5.9'));
 -> '0A000509'

INET6_ATON() observes several constraints on valid arguments. These are given in the following
list along with examples.

• A trailing zone ID is not permitted, as in fe80::3%1 or fe80::3%eth0.

• A trailing network mask is not permitted, as in 2001:45f:3:ba::/64 or 192.168.1.0/24.

• For values representing IPv4 addresses, only classless addresses are supported. Classful
addresses such as 192.168.1 are rejected. A trailing port number is not permitted, as in
192.168.1.2:8080. Hexadecimal numbers in address components are not permitted,
as in 192.0xa0.1.2. Octal numbers are not supported: 192.168.010.1 is treated as
192.168.10.1, not 192.168.8.1. These IPv4 constraints also apply to IPv6 addresses that
have IPv4 address parts, such as IPv4-compatible or IPv4-mapped addresses.

To convert an IPv4 address expr represented in numeric form as an INT value to an IPv6 address
represented in numeric form as a VARBINARY value, use this expression:

INET6_ATON(INET_NTOA(expr))

For example:

mysql> SELECT HEX(INET6_ATON(INET_NTOA(167773449)));
 -> '0A000509'

• INET6_NTOA(expr)

Given an IPv6 or IPv4 network address represented in numeric form as a binary string, returns the
string representation of the address as a nonbinary string in the connection character set. If the
argument is not a valid address, INET6_NTOA() returns NULL.

INET6_NTOA() has these properties:

• It does not use operating system functions to perform conversions, thus the output string is
platform independent.

• The return string has a maximum length of 39 (4 x 8 + 7). Given this statement:

CREATE TABLE t AS SELECT INET6_NTOA(expr) AS c1;

The resulting table would have this definition:

Miscellaneous Functions

1574

CREATE TABLE t (c1 VARCHAR(39) CHARACTER SET utf8 DEFAULT NULL);

• The return string uses lowercase letters for IPv6 addresses.

mysql> SELECT INET6_NTOA(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(INET6_ATON('10.0.5.9'));
 -> '10.0.5.9'

mysql> SELECT INET6_NTOA(UNHEX('FDFE0000000000005A55CAFFFEFA9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(UNHEX('0A000509'));
 -> '10.0.5.9'

• IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free
(no one is using the lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect
argument).

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• IS_IPV4(expr)

Returns 1 if the argument is a valid IPv4 address specified as a string, 0 otherwise.

mysql> SELECT IS_IPV4('10.0.5.9'), IS_IPV4('10.0.5.256');
 -> 1, 0

For a given argument, if IS_IPV4() returns 1, INET_ATON() (and INET6_ATON()) will return
non-NULL. The converse statement is not true: In some cases, INET_ATON() returns non-NULL
when IS_IPV4() returns 0.

As implied by the preceding remarks, IS_IPV4() is more strict than INET_ATON() about what
constitutes a valid IPv4 address, so it may be useful for applications that need to perform strong
checks against invalid values. Alternatively, use INET6_ATON() to convert IPv4 addresses to
internal form and check for a NULL result (which indicates an invalid address). INET6_ATON() is
equally strong as IS_IPV4() about checking IPv4 addresses.

• IS_IPV4_COMPAT(expr)

This function takes an IPv6 address represented in numeric form as a binary string, as returned by
INET6_ATON(). It returns 1 if the argument is a valid IPv4-compatible IPv6 address, 0 otherwise.
IPv4-compatible addresses have the form ::ipv4_address.

mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::10.0.5.9'));
 -> 1
mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::ffff:10.0.5.9'));
 -> 0

The IPv4 part of an IPv4-compatible address can also be represented using hexadecimal notation.
For example, 192.168.0.1 has this raw hexadecimal value:

mysql> SELECT HEX(INET6_ATON('192.168.0.1'));
 -> 'C0A80001'

Expressed in IPv4-compatible form, ::192.168.0.1 is equivalent to ::c0a8:0001 or (without
leading zeros) ::c0a8:1

mysql> SELECT

Miscellaneous Functions

1575

 -> IS_IPV4_COMPAT(INET6_ATON('::192.168.0.1')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:0001')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:1'));
 -> 1, 1, 1

• IS_IPV4_MAPPED(expr)

This function takes an IPv6 address represented in numeric form as a binary string, as returned by
INET6_ATON(). It returns 1 if the argument is a valid IPv4-mapped IPv6 address, 0 otherwise. IPv4-
mapped addresses have the form ::ffff:ipv4_address.

mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::10.0.5.9'));
 -> 0
mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::ffff:10.0.5.9'));
 -> 1

As with IS_IPV4_COMPAT() the IPv4 part of an IPv4-mapped address can also be represented
using hexadecimal notation:

mysql> SELECT
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:192.168.0.1')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:0001')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:1'));
 -> 1, 1, 1

• IS_IPV6(expr)

Returns 1 if the argument is a valid IPv6 address specified as a string, 0 otherwise. This function
does not consider IPv4 addresses to be valid IPv6 addresses.

mysql> SELECT IS_IPV6('10.0.5.9'), IS_IPV6('::1');
 -> 0, 1

For a given argument, if IS_IPV6() returns 1, INET6_ATON() will return non-NULL.

• IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection
identifier of the client session that holds the lock. Otherwise, it returns NULL.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• MASTER_POS_WAIT(log_name,log_pos[,timeout][,channel_name])

This function is useful for control of master/slave synchronization. It blocks until the slave has read
and applied all updates up to the specified position in the master log. The return value is the number
of log events the slave had to wait for to advance to the specified position. The function returns NULL
if the slave SQL thread is not started, the slave's master information is not initialized, the arguments
are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the slave SQL
thread stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If the slave is past
the specified position, the function returns immediately.

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have
elapsed. timeout must be greater than 0; a zero or negative timeout means no timeout.

The optional channel added in MySQL 5.7.6 enables you to choose which replication channel the
function applies to. See Section 17.2.3, “Replication Channels” for more information.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

Miscellaneous Functions

1576

• NAME_CONST(name,value)

Returns the given value. When used to produce a result set column, NAME_CONST() causes the
column to have the given name. The arguments should be constants.

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

This function is for internal use only. The server uses it when writing statements from stored
programs that contain references to local program variables, as described in Section 19.7, “Binary
Logging of Stored Programs”, You might see this function in the output from mysqlbinlog.

For your applications, you can obtain exactly the same result as in the example just shown by using
simple aliasing, like this:

mysql> SELECT 14 AS myname;
+--------+
| myname |
+--------+
| 14 |
+--------+
1 row in set (0.00 sec)

See Section 13.2.9, “SELECT Syntax”, for more information about column aliases.

• RELEASE_ALL_LOCKS()

Releases all named locks held by the current session and returns the number of locks released (0 if
there were none)

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

This function was added in MySQL 5.7.5.

• RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the
lock was released, 0 if the lock was not established by this thread (in which case the lock is not
released), and NULL if the named lock did not exist. The lock does not exist if it was never obtained
by a call to GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 13.2.3, “DO Syntax”.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• SLEEP(duration)

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. If
SLEEP() is interrupted, it returns 1. The duration may have a fractional part. If the argument is NULL
or negative, SLEEP() produces a warning, or an error in strict SQL mode.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• UUID()

Miscellaneous Functions

1577

Returns a Universal Unique Identifier (UUID) generated according to “DCE 1.1: Remote Procedure
Call” (Appendix A) CAE (Common Applications Environment) Specifications published by The Open
Group in October 1997 (Document Number C706, http://www.opengroup.org/public/pubs/catalog/
c706.htm).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID()
are expected to generate two different values, even if these calls are performed on two separate
computers that are not connected to each other.

A UUID is a 128-bit number represented by a utf8 string of five hexadecimal numbers in
aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee format:

• The first three numbers are generated from a timestamp.

• The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity
(for example, due to daylight saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number
is substituted if the latter is not available (for example, because the host computer has no Ethernet
card, or we do not know how to find the hardware address of an interface on your operating
system). In this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should
have very low probability.

The MAC address of an interface is taken into account only on FreeBSD and Linux. On other
operating systems, MySQL uses a randomly generated 48-bit number.

mysql> SELECT UUID();
 -> '6ccd780c-baba-1026-9564-0040f4311e29'

Warning

Although UUID() values are intended to be unique, they are not necessarily
unguessable or unpredictable. If unpredictability is required, UUID values
should be generated some other way.

Note

UUID() does not work with statement-based replication.

• UUID_SHORT()

Returns a “short” universal identifier as a 64-bit unsigned integer (rather than a string-form 128-bit
identifier as returned by the UUID() function).

The value of UUID_SHORT() is guaranteed to be unique if the following conditions hold:

• The server_id of the current host is unique among your set of master and slave servers

• server_id is between 0 and 255

• You do not set back your system time for your server between mysqld restarts

• You do not invoke UUID_SHORT() on average more than 16 million times per second between
mysqld restarts

The UUID_SHORT() return value is constructed this way:

 (server_id & 255) << 56
+ (server_startup_time_in_seconds << 24)

http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.opengroup.org/public/pubs/catalog/c706.htm

Functions and Modifiers for Use with GROUP BY Clauses

1578

+ incremented_variable++;

mysql> SELECT UUID_SHORT();
 -> 92395783831158784

Note that UUID_SHORT() does not work with statement-based replication.

• VALUES(col_name)

In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the
VALUES(col_name) function in the UPDATE clause to refer to column values from the INSERT
portion of the statement. In other words, VALUES(col_name) in the UPDATE clause refers to the
value of col_name that would be inserted, had no duplicate-key conflict occurred. This function
is especially useful in multiple-row inserts. The VALUES() function is meaningful only in the
ON DUPLICATE KEY UPDATE clause of INSERT statements and returns NULL otherwise. See
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
 -> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

12.20 Functions and Modifiers for Use with GROUP BY Clauses

12.20.1 GROUP BY (Aggregate) Functions

Table 12.26 Aggregate (GROUP BY) Functions

Name Description

AVG() Return the average value of the argument

BIT_AND() Return bitwise AND

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

COUNT(DISTINCT) Return the count of a number of different values

COUNT() Return a count of the number of rows returned

GROUP_CONCAT() Return a concatenated string

MAX() Return the maximum value

MIN() Return the minimum value

STD() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

STDDEV() Return the population standard deviation

SUM() Return the sum

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

This section describes group (aggregate) functions that operate on sets of values. Unless otherwise
stated, group functions ignore NULL values.

If you use a group function in a statement containing no GROUP BY clause, it is equivalent to grouping
on all rows. For more information, see Section 12.20.3, “MySQL Handling of GROUP BY”.

GROUP BY (Aggregate) Functions

1579

For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The
SUM() and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL),
and a DOUBLE value for approximate-value arguments (FLOAT or DOUBLE).

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, losing everything after the first nonnumeric character.) To work around this problem,
convert to numeric units, perform the aggregate operation, and convert back to a temporal value.
Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number
if necessary. For SET or ENUM values, the cast operation causes the underlying numeric value to be
used.

• AVG([DISTINCT] expr)

Returns the average value of expr. The DISTINCT option can be used to return the average of the
distinct values of expr.

AVG() returns NULL if there were no matching rows.

mysql> SELECT student_name, AVG(test_score)
 -> FROM student
 -> GROUP BY student_name;

• BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 18446744073709551615 if there were no matching rows. (This is the value of
an unsigned BIGINT value with all bits set to 1.)

• BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 0 if there were no matching rows.

• BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 0 if there were no matching rows.

• COUNT(expr)

Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT
statement. The result is a BIGINT value.

COUNT() returns 0 if there were no matching rows.

mysql> SELECT student.student_name,COUNT(*)
 -> FROM student,course
 -> WHERE student.student_id=course.student_id
 -> GROUP BY student_name;

GROUP BY (Aggregate) Functions

1580

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether or
not they contain NULL values.

COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table, no other
columns are retrieved, and there is no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimization applies only to MyISAM tables only, because an exact row count is stored for
this storage engine and can be accessed very quickly. For transactional storage engines such as
InnoDB, storing an exact row count is more problematic because multiple transactions may be
occurring, each of which may affect the count.

• COUNT(DISTINCT expr,[expr...])

Returns a count of the number of rows with different non-NULL expr values.

COUNT(DISTINCT) returns 0 if there were no matching rows.

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can obtain the number of distinct expression combinations that do not contain
NULL by giving a list of expressions. In standard SQL, you would have to do a concatenation of all
expressions inside COUNT(DISTINCT ...).

• GROUP_CONCAT(expr)

This function returns a string result with the concatenated non-NULL values from a group. It returns
NULL if there are no non-NULL values. The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
 [ORDER BY {unsigned_integer | col_name | expr}
 [ASC | DESC] [,col_name ...]]
 [SEPARATOR str_val])

mysql> SELECT student_name,
 -> GROUP_CONCAT(test_score)
 -> FROM student
 -> GROUP BY student_name;

Or:

mysql> SELECT student_name,
 -> GROUP_CONCAT(DISTINCT test_score
 -> ORDER BY test_score DESC SEPARATOR ' ')
 -> FROM student
 -> GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. To eliminate duplicate
values, use the DISTINCT clause. To sort values in the result, use the ORDER BY clause. To sort in
reverse order, add the DESC (descending) keyword to the name of the column you are sorting by in
the ORDER BY clause. The default is ascending order; this may be specified explicitly using the ASC
keyword. The default separator between values in a group is comma (“,”). To specify a separator
explicitly, use SEPARATOR followed by the string literal value that should be inserted between group
values. To eliminate the separator altogether, specify SEPARATOR ''.

The result is truncated to the maximum length that is given by the group_concat_max_len system
variable, which has a default value of 1024. The value can be set higher, although the effective
maximum length of the return value is constrained by the value of max_allowed_packet. The

GROUP BY (Aggregate) Functions

1581

syntax to change the value of group_concat_max_len at runtime is as follows, where val is an
unsigned integer:

SET [GLOBAL | SESSION] group_concat_max_len = val;

The return value is a nonbinary or binary string, depending on whether the arguments are nonbinary
or binary strings. The result type is TEXT or BLOB unless group_concat_max_len is less than or
equal to 512, in which case the result type is VARCHAR or VARBINARY.

See also CONCAT() and CONCAT_WS(): Section 12.5, “String Functions”.

• MAX([DISTINCT] expr)

Returns the maximum value of expr. MAX() may take a string argument; in such cases, it returns
the maximum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword
can be used to find the maximum of the distinct values of expr, however, this produces the same
result as omitting DISTINCT.

MAX() returns NULL if there were no matching rows.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 -> FROM student
 -> GROUP BY student_name;

For MAX(), MySQL currently compares ENUM and SET columns by their string value rather than
by the string's relative position in the set. This differs from how ORDER BY compares them. This is
expected to be rectified in a future MySQL release.

• MIN([DISTINCT] expr)

Returns the minimum value of expr. MIN() may take a string argument; in such cases, it returns the
minimum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can
be used to find the minimum of the distinct values of expr, however, this produces the same result
as omitting DISTINCT.

MIN() returns NULL if there were no matching rows.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 -> FROM student
 -> GROUP BY student_name;

For MIN(), MySQL currently compares ENUM and SET columns by their string value rather than
by the string's relative position in the set. This differs from how ORDER BY compares them. This is
expected to be rectified in a future MySQL release.

• STD(expr)

Returns the population standard deviation of expr. This is an extension to standard SQL. The
standard SQL function STDDEV_POP() can be used instead.

This function returns NULL if there were no matching rows.

• STDDEV(expr)

Returns the population standard deviation of expr. This function is provided for compatibility with
Oracle. The standard SQL function STDDEV_POP() can be used instead.

This function returns NULL if there were no matching rows.

• STDDEV_POP(expr)

GROUP BY Modifiers

1582

Returns the population standard deviation of expr (the square root of VAR_POP()). You can also
use STD() or STDDEV(), which are equivalent but not standard SQL.

STDDEV_POP() returns NULL if there were no matching rows.

• STDDEV_SAMP(expr)

Returns the sample standard deviation of expr (the square root of VAR_SAMP().

STDDEV_SAMP() returns NULL if there were no matching rows.

• SUM([DISTINCT] expr)

Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT
keyword can be used to sum only the distinct values of expr.

SUM() returns NULL if there were no matching rows.

• VAR_POP(expr)

Returns the population standard variance of expr. It considers rows as the whole population, not as
a sample, so it has the number of rows as the denominator. You can also use VARIANCE(), which is
equivalent but is not standard SQL.

VAR_POP() returns NULL if there were no matching rows.

• VAR_SAMP(expr)

Returns the sample variance of expr. That is, the denominator is the number of rows minus one.

VAR_SAMP() returns NULL if there were no matching rows.

• VARIANCE(expr)

Returns the population standard variance of expr. This is an extension to standard SQL. The
standard SQL function VAR_POP() can be used instead.

VARIANCE() returns NULL if there were no matching rows.

12.20.2 GROUP BY Modifiers

The GROUP BY clause permits a WITH ROLLUP modifier that causes extra rows to be added to
the summary output. These rows represent higher-level (or super-aggregate) summary operations.
ROLLUP thus enables you to answer questions at multiple levels of analysis with a single query. It can
be used, for example, to provide support for OLAP (Online Analytical Processing) operations.

Suppose that a table named sales has year, country, product, and profit columns for
recording sales profitability:

CREATE TABLE sales
(
 year INT NOT NULL,
 country VARCHAR(20) NOT NULL,
 product VARCHAR(32) NOT NULL,
 profit INT
);

The table's contents can be summarized per year with a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+

GROUP BY Modifiers

1583

| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+

This output shows the total profit for each year, but if you also want to determine the total profit
summed over all years, you must add up the individual values yourself or run an additional query.

Or you can use ROLLUP, which provides both levels of analysis with a single query. Adding a WITH
ROLLUP modifier to the GROUP BY clause causes the query to produce another row that shows the
grand total over all year values:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
2000	4525
2001	3010
NULL	7535
+------+-------------+

The grand total super-aggregate line is identified by the value NULL in the year column.

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each
time there is a “break” (change in value) in any but the last grouping column, the query produces an
extra super-aggregate summary row.

For example, without ROLLUP, a summary on the sales table based on year, country, and
product might look like this:

mysql> SELECT year, country, product, SUM(profit)
 -> FROM sales
 -> GROUP BY year, country, product;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	India	Calculator	150
2000	India	Computer	1200
2000	USA	Calculator	75
2000	USA	Computer	1500
2001	Finland	Phone	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
+------+---------+------------+-------------+

The output indicates summary values only at the year/country/product level of analysis. When ROLLUP
is added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit)
 -> FROM sales
 -> GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	NULL	1350
2000	USA	Calculator	75
2000	USA	Computer	1500

GROUP BY Modifiers

1584

2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	Phone	10
2001	Finland	NULL	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	NULL	3000
2001	NULL	NULL	3010
NULL	NULL	NULL	7535
+------+---------+------------+-------------+

For this query, adding ROLLUP causes the output to include summary information at four levels of
analysis, not just one. Here is how to interpret the ROLLUP output:

• Following each set of product rows for a given year and country, an extra summary row is produced
showing the total for all products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra summary row is produced showing the total for
all countries and products. These rows have the country and products columns set to NULL.

• Finally, following all other rows, an extra summary row is produced showing the grand total for all
years, countries, and products. This row has the year, country, and products columns set to
NULL.

Other Considerations When using ROLLUP

The following items list some behaviors specific to the MySQL implementation of ROLLUP.

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other words,
ROLLUP and ORDER BY are mutually exclusive. However, you still have some control over sort order.
GROUP BY in MySQL implicitly sorts results, and you can use explicit ASC and DESC keywords with
columns named in the GROUP BY list to specify sort order for individual columns. (The higher-level
summary rows added by ROLLUP still appear after the rows from which they are calculated, regardless
of the sort order.)

Implicit GROUP BY sorting in MySQL 5.7 is deprecated. To achieve a specific sort order of grouped
results, it is preferable to use an explicit ORDER BY clause. You can work around the restriction
that prevents using ROLLUP with ORDER BY by placing the ROLLUP clause within a subquery. For
example:

mysql> SELECT * FROM (SELECT year, country, SUM(profit) FROM sales GROUP BY year WITH ROLLUP)
 -> derived_t1 ORDER BY year;

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after
ROLLUP, so the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit)
 -> FROM sales
 -> GROUP BY year, country, product WITH ROLLUP
 -> LIMIT 5;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
+------+---------+------------+-------------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because you have
less context for understanding the super-aggregate rows.

MySQL Handling of GROUP BY

1585

The NULL indicators in each super-aggregate row are produced when the row is sent to the client.
The server looks at the columns named in the GROUP BY clause following the leftmost one that has
changed value. For any column in the result set with a name that is a lexical match to any of those
names, its value is set to NULL. (If you specify grouping columns by column number, the server
identifies which columns to set to NULL by number.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late
stage in query processing, you cannot test them as NULL values within the query itself. For example,
you cannot add HAVING product IS NULL to the query to eliminate from the output all but the
super-aggregate rows.

On the other hand, the NULL values do appear as NULL on the client side and can be tested as such
using any MySQL client programming interface.

MySQL permits a column that does not appear in the GROUP BY list to be named in the select list.
In this case, the server is free to choose any value from this nonaggregated column in summary
rows, and this includes the extra rows added by WITH ROLLUP. For example, in the following query,
country is a nonaggregated column that does not appear in the GROUP BY list and values chosen for
this column are indeterminate:

mysql> SELECT year, country, SUM(profit)
 -> FROM sales GROUP BY year WITH ROLLUP;
+------+---------+-------------+
| year | country | SUM(profit) |
+------+---------+-------------+
2000	India	4525
2001	USA	3010
NULL	USA	7535
+------+---------+-------------+

This behavior occurs if the ONLY_FULL_GROUP_BY SQL mode is not enabled. If that mode is enabled,
the server rejects the query as illegal because country is not listed in the GROUP BY clause. For more
information about nonaggregated columns and GROUP BY, see Section 12.20.3, “MySQL Handling of
GROUP BY”.

12.20.3 MySQL Handling of GROUP BY

SQL92 and earlier does not permit queries for which the select list, HAVING condition, or ORDER BY list
refer to nonaggregated columns that are neither named in the GROUP BY clause nor are functionally
dependent on (uniquely determined by) GROUP BY columns. For example, this query is illegal in
standard SQL92 because the nonaggregated name column in the select list does not appear in the
GROUP BY:

SELECT o.custid, c.name, MAX(o.payment)
 FROM orders AS o, customers AS c
 WHERE o.custid = c.custid
 GROUP BY o.custid;

For the query to be legal in SQL92, the name column must be omitted from the select list or named in
the GROUP BY clause.

SQL99 and later permits such nonaggregates per optional feature T301 if they are functionally
dependent on GROUP BY columns: If such a relationship exists between name and custid, the query
is legal. This would be the case, for example, were custid a primary key of customers.

MySQL 5.7.5 and up implements detection of functional dependence. If the ONLY_FULL_GROUP_BY
SQL mode is enabled (which it is by default), MySQL rejects queries for which the select list, HAVING
condition, or ORDER BY list refer to nonaggregated columns that are neither named in the GROUP
BY clause nor are functionally dependent on them. (Before 5.7.5, MySQL does not detect functional
dependency and ONLY_FULL_GROUP_BY is not enabled by default. For a description of pre-5.7.5
behavior, see the MySQL 5.6 Reference Manual.)

http://dev.mysql.com/doc/refman/5.6/en/sql-mode.html

MySQL Handling of GROUP BY

1586

If ONLY_FULL_GROUP_BY is disabled, a MySQL extension to the standard SQL use of GROUP BY
permits the select list, HAVING condition, or ORDER BY list to refer to nonaggregated columns even if
the columns are not functionally dependent on GROUP BY columns. This causes MySQL to accept the
preceding query. In this case, the server is free to choose any value from each group, so unless they
are the same, the values chosen are indeterminate, which is probably not what you want. Furthermore,
the selection of values from each group cannot be influenced by adding an ORDER BY clause. Result
set sorting occurs after values have been chosen, and ORDER BY does not affect which value within
each group the server chooses. Disabling ONLY_FULL_GROUP_BY is useful primarily when you know
that, due to some property of the data, all values in each nonaggregated column not named in the
GROUP BY are the same for each group.

You can achieve the same effect without disabling ONLY_FULL_GROUP_BY by using ANY_VALUE() to
refer to the nonaggregated column.

The following discussion demonstrates functional dependence, the error message MySQL produces
when functional dependence is absent, and ways of causing MySQL to accept a query in the absence
of functional dependence.

This query might be invalid with ONLY_FULL_GROUP_BY enabled because the nonaggregated
address column in the select list is not named in the GROUP BY clause:

SELECT name, address, MAX(age) FROM t GROUP BY name;

The query is valid if name is a primary key of t or is a unique NOT NULL column. In such cases,
MySQL recognizes that the selected column is functionally dependent on a grouping column. For
example, if name is a primary key, its value determines the value of address because each group has
only one value of the primary key and thus only one row. As a result, there is no randomness in the
choice of address value in a group and no need to reject the query.

The query is invalid if name is not a primary key of t or a unique NOT NULL column. In this case, no
functional dependency can be inferred and an error occurs:

mysql> SELECT name, address, MAX(age) FROM t GROUP BY name;
ERROR 1055 (42000): Expression #2 of SELECT list is not in GROUP
BY clause and contains nonaggregated column 'mydb.t.address' which
is not functionally dependent on columns in GROUP BY clause; this
is incompatible with sql_mode=only_full_group_by

If you know that, for a given data set, each name value in fact uniquely determines the address value,
address is effectively functionally dependent on name. To tell MySQL to accept the query, you can
use the ANY_VALUE() function:

SELECT name, ANY_VALUE(address), MAX(age) FROM t GROUP BY name;

Alternatively, disable ONLY_FULL_GROUP_BY.

The preceding example is quite simple, however. In particular, it is unlikely you would group on a
single primary key column because every group would contain only one row. For addtional examples
demonstrating functional dependence in more complex queries, see Section 12.20.4, “Detection of
Functional Dependence”.

If a query has aggregate functions and no GROUP BY clause, it cannot have nonaggregated columns in
the select list, HAVING condition, or ORDER BY list with ONLY_FULL_GROUP_BY enabled:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'mydb.t.name'; this
is incompatible with sql_mode=only_full_group_by

MySQL Handling of GROUP BY

1587

Without GROUP BY, there is a single group and it is indeterminate which name value to choose for the
group. Here, too, ANY_VALUE() can be used, if it is immaterial which name value MySQL chooses:

SELECT ANY_VALUE(name), MAX(age) FROM t;

In MySQL 5.7.5 and up, ONLY_FULL_GROUP_BY also affects handling of queries that use DISTINCT
and ORDER BY. Consider the case of a table t with three columns c1, c2, and c3 that contains these
rows:

c1 c2 c3
1 2 A
3 4 B
1 2 C

Suppose that we execute the following query, expecting the results to be ordered by c3:

SELECT DISTINCT c1, c2 FROM t ORDER BY c3;

To order the result, duplicates must be eliminated first. But to do so, should we keep the first row or
the third? This arbitrary choice influences the retained value of c3, which in turn influences ordering
and makes it arbitrary as well. To prevent this problem, a query that has DISTINCT and ORDER BY is
rejected as invalid if any ORDER BY expression does not satisfy at least one of these conditions:

• The expression is equal to one in the select list

• All columns referenced by the expression and belonging to the query's selected tables are elements
of the select list

Another MySQL extension to standard SQL permits references in the HAVING clause to aliased
expressions in the select list. For example, the following query returns name values that occur only
once in table orders:

SELECT name, COUNT(name) FROM orders
 GROUP BY name
 HAVING COUNT(name) = 1;

The MySQL extension permits the use of an alias in the HAVING clause for the aggregated column:

SELECT name, COUNT(name) AS c FROM orders
 GROUP BY name
 HAVING c = 1;

Note

Before MySQL 5.7.5, enabling ONLY_FULL_GROUP_BY disables this extension,
thus requiring the HAVING clause to be written using unaliased expressions.

Standard SQL does not permit expressions in GROUP BY clauses, so a statement such as this is
invalid:

SELECT id, FLOOR(value/100)
 FROM tbl_name
 GROUP BY id, FLOOR(value/100);

MySQL extends standard SQL to permit expressions in GROUP BY clauses and considers the
preceding statement valid.

Standard SQL also does not permit aliases in GROUP BY clauses. MySQL extends standard SQL to
permit aliases, so another way to write the query is as follows:

Detection of Functional Dependence

1588

SELECT id, FLOOR(value/100) AS val
 FROM tbl_name
 GROUP BY id, val;

In some cases, you can use MIN() and MAX() to obtain a specific column value even if it is not
unique. If the sort column contains integers no larger than 6 digits, the following query gives the value
of column from the row containing the smallest sort value:

SUBSTR(MIN(CONCAT(LPAD(sort,6,'0'),column)),7)

See Section 3.6.4, “The Rows Holding the Group-wise Maximum of a Certain Column”.

12.20.4 Detection of Functional Dependence

The following discussion provides several examples of the ways in which MySQL detects functional
dependencies. The examples use this notation:

{X} -> {Y}

Understand this as “X uniquely determines Y,” which also means that Y is functionally dependent on X.

The examples use the world database, which can be downloaded from the MySQL Documentation
page. You can find details on how to install the database on the same page.

Functional Dependencies Derived from Keys

The following query selects, for each country, a count of spoken languages:

SELECT co.Name, COUNT(*)
FROM CountryLanguage cl, Country co
WHERE cl.CountryCode = co.Code
GROUP BY co.Code;

co.Code is a primary key of co, so all columns of co are functionally dependent on it, as expressed
using this notation:

{co.Code} -> {co.*}

Thus, co.name is functionally dependent on GROUP BY columns and the query is valid.

A UNIQUE index over a NOT NULL column could be used instead of a primary key and the same
functional dependence would apply. (This is not true for a UNIQUE index that permits NULL values
because it permits multiple NULL values and in that case uniqueness is lost.)

Functional Dependencies Derived from Multiple-Column Keys and from Equalities

This query selects, for each country, a list of all spoken languages and how many people speak them:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population / 100.0 AS SpokenBy
FROM CountryLanguage cl, Country co
WHERE cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

The pair (cl.CountryCode, cl.Language) is a two-column composite primary key of cl, so that
column pair uniquely determines all columns of cl:

{cl.CountryCode, cl.Language} -> {cl.*}

http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/index-other.html

Detection of Functional Dependence

1589

Moreover, because of the equality in the WHERE clause:

{cl.CountryCode} -> {co.Code}

And, because co.Code is primary key of co:

{co.Code} -> {co.*}

“Uniquely determines” relationships are transitive, therefore:

{cl.CountryCode, cl.Language} -> {cl.*,co.*}

As a result, the query is valid.

As with the previous example, a UNIQUE key over NOT NULL columns could be used instead of a
primary key.

An INNER JOIN condition can be used instead of WHERE. The same functional dependencies apply:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population/100.0 AS SpokenBy
FROM CountryLanguage cl INNER JOIN Country co
ON cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

Functional Dependency Special Cases

Whereas an equality test in a WHERE condition or INNER JOIN condition is symmetric, an equality test
in an outer join condition is not, because tables play different roles.

Assume that referential integrity has been accidentally broken and there exists a row of
CountryLanguage without a corresponding row in Country. Consider the same query as in the
previous example, but with a LEFT JOIN:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population/100.0 AS SpokenBy
FROM CountryLanguage cl LEFT JOIN Country co
ON cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

For a given value of cl.CountryCode, the value of co.Code in the join result is either found in a
matching row (determined by cl.CountryCode) or is NULL-complemented if there is no match (also
determined by cl.CountryCode). In each case, this relationship applies:

{cl.CountryCode} -> {co.Code}

cl.CountryCode is itself functionally dependent on {cl.CountryCode, cl.Language} which is a
primary key.

If in the join result co.Code is NULL-complemented, co.Name is as well. If co.Code is not NULL-
complemented, then because co.Code is a primary key, it determines co.Name. Therefore, in all
cases:

{co.Code} -> {co.Name}

Which yields:

{cl.CountryCode, cl.Language} -> {cl.*,co.*}

Detection of Functional Dependence

1590

As a result, the query is valid.

However, suppose that the tables are swapped, as in this query:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population/100.0 AS SpokenBy
FROM Country co LEFT JOIN CountryLanguage cl
ON cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

Now this relationship does not apply:

{cl.CountryCode, cl.Language} -> {cl.*,co.*}

Indeed, all NULL-complemented rows made for cl will be put into a single group (they have both
GROUP BY columns equal to NULL), and inside this group the value of co.Name can vary. The query is
invalid and MySQL rejects it.

Functional dependence in outer joins is thus linked to whether determinant columns belong to the left
or right side of the LEFT JOIN. Determination of functional dependence becomes more complex if
there are nested outer joins or the join condition does not consist entirely of equality comparisons.

Functional Dependencies and Views

Suppose that a view on countries produces their code, their name in uppercase, and how many
different official languages they have:

CREATE VIEW Country2 AS
SELECT co.Code, UPPER(co.Name) AS UpperName,
COUNT(cl.Language) AS OfficialLanguages
FROM Country AS co JOIN CountryLanguage AS cl
ON cl.CountryCode = co.Code
WHERE cl.isOfficial = 'T'
GROUP BY co.Code;

This definition is valid because:

{co.Code} -> {co.*}

In the view result, the first selected column is co.Code, which is also the group column and thus
determines all other selected expressions:

{Country2.Code} -> {Country2.*}

MySQL understands this and uses this information, as described following.

This query displays countries, how many different official languages they have, and how many cities
they have, by joining the view with the City table:

SELECT co2.Code, co2.UpperName, co2.OfficialLanguages,
COUNT(*) AS Cities
FROM Country2 AS co2 JOIN City ci
ON ci.CountryCode = co2.Code
GROUP BY co2.Code;

This query is valid because, as seen previously:

{co2.Code} -> {co2.*}

MySQL is able to discover a functional dependency in the result of a view and use that to validate a
query which uses the view. The same would be true if Country2 were a derived table, as in:

Precision Math

1591

SELECT co2.Code, co2.UpperName, co2.OfficialLanguages,
COUNT(*) AS Cities
FROM
(
 SELECT co.Code, UPPER(co.Name) AS UpperName,
 COUNT(cl.Language) AS OfficialLanguages
 FROM Country AS co JOIN CountryLanguage AS cl
 ON cl.CountryCode=co.Code
 WHERE cl.isOfficial='T'
 GROUP BY co.Code
) AS co2
JOIN City ci ON ci.CountryCode = co2.Code
GROUP BY co2.Code;

Combinations of Functional Dependencies

MySQL is able to combine all of the preceding types of functional dependencies (key based, equality
based, view based) to validate more complex queries.

12.21 Precision Math
MySQL 5.7 provides support for precision math: numeric value handling that results in extremely
accurate results and a high degree control over invalid values. Precision math is based on these two
features:

• SQL modes that control how strict the server is about accepting or rejecting invalid data.

• The MySQL library for fixed-point arithmetic.

These features have several implications for numeric operations and provide a high degree of
compliance with standard SQL:

• Precise calculations: For exact-value numbers, calculations do not introduce floating-point errors.
Instead, exact precision is used. For example, MySQL treats a number such as .0001 as an exact
value rather than as an approximation, and summing it 10,000 times produces a result of exactly 1,
not a value that is merely “close” to 1.

• Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its
argument, not on environmental factors such as how the underlying C library works.

• Platform independence: Operations on exact numeric values are the same across different
platforms such as Windows and Unix.

• Control over handling of invalid values: Overflow and division by zero are detectable and can be
treated as errors. For example, you can treat a value that is too large for a column as an error rather
than having the value truncated to lie within the range of the column's data type. Similarly, you can
treat division by zero as an error rather than as an operation that produces a result of NULL. The
choice of which approach to take is determined by the setting of the server SQL mode.

The following discussion covers several aspects of how precision math works, including possible
incompatibilities with older applications. At the end, some examples are given that demonstrate how
MySQL handles numeric operations precisely. For information about controlling the SQL mode, see
Section 5.1.7, “Server SQL Modes”.

12.21.1 Types of Numeric Values

The scope of precision math for exact-value operations includes the exact-value data types (integer
and DECIMAL types) and exact-value numeric literals. Approximate-value data types and numeric
literals are handled as floating-point numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed.
Examples: 1, .2, 3.4, -5, -6.78, +9.10.

DECIMAL Data Type Characteristics

1592

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-
point) number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In
MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

12.21.2 DECIMAL Data Type Characteristics

This section discusses the characteristics of the DECIMAL data type (and its synonyms) in MySQL 5.7,
with particular regard to the following topics:

• Maximum number of digits

• Storage format

• Storage requirements

• The nonstandard MySQL extension to the upper range of DECIMAL columns

The declaration syntax for a DECIMAL column is DECIMAL(M,D). The ranges of values for the
arguments in MySQL 5.7 are as follows:

• M is the maximum number of digits (the precision). It has a range of 1 to 65.

• D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and
must be no larger than M.

The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65
digits. This limit of 65 digits of precision also applies to exact-value numeric literals, so the maximum
range of such literals differs from before.

Values for DECIMAL columns in MySQL 5.7 are stored using a binary format that packs nine decimal
digits into 4 bytes. The storage requirements for the integer and fractional parts of each value are
determined separately. Each multiple of nine digits requires 4 bytes, and any remaining digits left over
require some fraction of 4 bytes. The storage required for remaining digits is given by the following
table.

Leftover Digits Number of Bytes

0 0

1–2 1

3–4 2

5–6 3

7–9 4

For example, a DECIMAL(18,9) column has nine digits on either side of the decimal point, so the
integer part and the fractional part each require 4 bytes. A DECIMAL(20,6) column has fourteen
integer digits and six fractional digits. The integer digits require four bytes for nine of the digits and 3
bytes for the remaining five digits. The six fractional digits require 3 bytes.

DECIMAL columns in MySQL 5.7 do not store a leading + character or - character or leading 0 digits. If
you insert +0003.1 into a DECIMAL(5,1) column, it is stored as 3.1. For negative numbers, a literal
- character is not stored.

Expression Handling

1593

DECIMAL columns in MySQL 5.7 do not permit values larger than the range implied by the column
definition. For example, a DECIMAL(3,0) column supports a range of -999 to 999. A DECIMAL(M,D)
column permits at most M - D digits to the left of the decimal point.

The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For
DECIMAL(M,D), the standard requires a precision of at least M digits but permits more. In MySQL,
DECIMAL(M,D) and NUMERIC(M,D) are the same, and both have a precision of exactly M digits.

For a full explanation of the internal format of DECIMAL values, see the file strings/decimal.c in a
MySQL source distribution. The format is explained (with an example) in the decimal2bin() function.

12.21.3 Expression Handling

With precision math, exact-value numbers are used as given whenever possible. For example,
numbers in comparisons are used exactly as given without a change in value. In strict SQL mode,
for INSERT into a column with an exact data type (DECIMAL or integer), a number is inserted with its
exact value if it is within the column range. When retrieved, the value should be the same as what was
inserted. (If strict SQL mode is not enabled, truncation for INSERT is permissible.)

Handling of a numeric expression depends on what kind of values the expression contains:

• If any approximate values are present, the expression is approximate and is evaluated using floating-
point arithmetic.

• If no approximate values are present, the expression contains only exact values. If any exact value
contains a fractional part (a value following the decimal point), the expression is evaluated using
DECIMAL exact arithmetic and has a precision of 65 digits. The term “exact” is subject to the limits of
what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal notation
as .333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to exactly
1.0.

• Otherwise, the expression contains only integer values. The expression is exact and is evaluated
using integer arithmetic and has a precision the same as BIGINT (64 bits).

If a numeric expression contains any strings, they are converted to double-precision floating-point
values and the expression is approximate.

Inserts into numeric columns are affected by the SQL mode, which is controlled by the sql_mode
system variable. (See Section 5.1.7, “Server SQL Modes”.) The following discussion mentions
strict mode (selected by the STRICT_ALL_TABLES or STRICT_TRANS_TABLES mode values) and
ERROR_FOR_DIVISION_BY_ZERO. To turn on all restrictions, you can simply use TRADITIONAL
mode, which includes both strict mode values and ERROR_FOR_DIVISION_BY_ZERO:

mysql> SET sql_mode='TRADITIONAL';

If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact value
if it is within the column range.

If the value has too many digits in the fractional part, rounding occurs and a warning is generated.
Rounding is done as described in Section 12.21.4, “Rounding Behavior”.

If the value has too many digits in the integer part, it is too large and is handled as follows:

• If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is
generated.

• If strict mode is enabled, an overflow error occurs.

Underflow is not detected, so underflow handling is undefined.

Rounding Behavior

1594

For inserts of strings into numeric columns, conversion from string to number is handled as follows if
the string has nonnumeric contents:

• A string that does not begin with a number cannot be used as a number and produces an error in
strict mode, or a warning otherwise. This includes the empty string.

• A string that begins with a number can be converted, but the trailing nonnumeric portion is truncated.
If the truncated portion contains anything other than spaces, this produces an error in strict mode, or
a warning otherwise.

By default, division by zero produces a result of NULL and no warning. By setting the SQL mode
appropriately, division by zero can be restricted.

With the ERROR_FOR_DIVISION_BY_ZERO SQL mode enabled, MySQL handles division by zero
differently:

• If strict mode is not enabled, a warning occurs.

• If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error
occurs.

In other words, inserts and updates involving expressions that perform division by zero can be treated
as errors, but this requires ERROR_FOR_DIVISION_BY_ZERO in addition to strict mode.

Suppose that we have this statement:

INSERT INTO t SET i = 1/0;

This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes.

sql_mode Value Result

'' (Default) No warning, no error; i is set to NULL.

strict No warning, no error; i is set to NULL.

ERROR_FOR_DIVISION_BY_ZERO Warning, no error; i is set to NULL.

strict,ERROR_FOR_DIVISION_BY_ZERO Error condition; no row is inserted.

12.21.4 Rounding Behavior

This section discusses precision math rounding for the ROUND() function and for inserts into columns
with exact-value types (DECIMAL and integer).

The ROUND() function rounds differently depending on whether its argument is exact or approximate:

• For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of .5
or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other
words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded down to
the next integer if positive or up to the next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means
that ROUND() uses the “round to nearest even” rule: A value with any fractional part is rounded to the
nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+

Precision Math Examples

1595

| 3 | 2 |
+------------+--------------+

For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round
half away from zero,” regardless of whether the value to be inserted is exact or approximate:

mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 2

mysql> SELECT d FROM t;
+------+
| d |
+------+
| 3 |
| 3 |
+------+

12.21.5 Precision Math Examples

This section provides some examples that show precision math query results in MySQL 5.7. These
examples demonstrate the principles described in Section 12.21.3, “Expression Handling”, and
Section 12.21.4, “Rounding Behavior”.

Example 1. Numbers are used with their exact value as given when possible:

mysql> SELECT (.1 + .2) = .3;
+----------------+
| (.1 + .2) = .3 |
+----------------+
| 1 |
+----------------+

For floating-point values, results are inexact:

mysql> SELECT (.1E0 + .2E0) = .3E0;
+----------------------+
| (.1E0 + .2E0) = .3E0 |
+----------------------+
| 0 |
+----------------------+

Another way to see the difference in exact and approximate value handling is to add a small number
to a sum many times. Consider the following stored procedure, which adds .0001 to a variable 1,000
times.

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 0;
 DECLARE d DECIMAL(10,4) DEFAULT 0;
 DECLARE f FLOAT DEFAULT 0;
 WHILE i < 10000 DO
 SET d = d + .0001;
 SET f = f + .0001E0;
 SET i = i + 1;
 END WHILE;
 SELECT d, f;
END;

The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The
floating-point calculation introduces small errors:

Precision Math Examples

1596

+--------+------------------+
| d | f |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+

Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two
numbers X1 and X2 that have scale S1 and S2, the scale of the result is S1 + S2:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001 |
+-----------+

Example 3. Rounding behavior for exact-value numbers is well-defined:

Rounding behavior (for example, with the ROUND() function) is independent of the implementation of
the underlying C library, which means that results are consistent from platform to platform.

• Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the
“round half away from zero” rule. Values with a fractional part of .5 or greater are rounded away from
zero to the nearest integer, as shown here:

mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+
| 3 | -3 |
+------------+-------------+

• Rounding for floating-point values uses the C library, which on many systems uses the “round to
nearest even” rule. Values with any fractional part on such systems are rounded to the nearest even
integer:

mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
| 2 | -2 |
+--------------+---------------+

Example 4. In strict mode, inserting a value that is out of range for a column causes an error, rather
than truncation to a legal value.

When MySQL is not running in strict mode, truncation to a legal value occurs:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| 127 |
+------+
1 row in set (0.00 sec)

Precision Math Examples

1597

However, an error occurs if strict mode is in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1

mysql> SELECT i FROM t;
Empty set (0.00 sec)

Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes an
error, not a result of NULL.

In nonstrict mode, division by zero has a result of NULL:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| NULL |
+------+
1 row in set (0.03 sec)

However, division by zero is an error if the proper SQL modes are in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0

mysql> SELECT i FROM t;
Empty set (0.01 sec)

Example 6. Exact-value literals are evaluated as exact values.

Approximate-value literals are evaluated using floating point, but exact-value literals are handled as
DECIMAL:

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------------------+------+-----+---------+-------+
| a | decimal(2,1) unsigned | NO | | 0.0 | |
| b | double | NO | | 0 | |
+-------+-----------------------+------+-----+---------+-------+

Precision Math Examples

1598

2 rows in set (0.01 sec)

Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an
exact numeric type, with a scale at least that of the argument.

Consider these statements:

mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);
mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;

The result is a double only for the floating-point argument. For exact type arguments, the result is also
an exact type:

mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
AVG(i)	decimal(14,4)	YES		NULL	
AVG(d)	decimal(14,4)	YES		NULL	
AVG(f)	double	YES		NULL	
+--------+---------------+------+-----+---------+-------+

The result is a double only for the floating-point argument. For exact type arguments, the result is also
an exact type.

1599

Chapter 13 SQL Statement Syntax

Table of Contents
13.1 Data Definition Statements .. 1600

13.1.1 ALTER DATABASE Syntax ... 1600
13.1.2 ALTER EVENT Syntax ... 1601
13.1.3 ALTER FUNCTION Syntax ... 1603
13.1.4 ALTER PROCEDURE Syntax ... 1603
13.1.5 ALTER SERVER Syntax ... 1603
13.1.6 ALTER TABLE Syntax .. 1604
13.1.7 ALTER VIEW Syntax .. 1622
13.1.8 CREATE DATABASE Syntax .. 1622
13.1.9 CREATE EVENT Syntax .. 1623
13.1.10 CREATE FUNCTION Syntax ... 1627
13.1.11 CREATE INDEX Syntax ... 1628
13.1.12 CREATE PROCEDURE and CREATE FUNCTION Syntax 1631
13.1.13 CREATE SERVER Syntax .. 1636
13.1.14 CREATE TABLE Syntax ... 1637
13.1.15 CREATE TABLESPACE Syntax .. 1671
13.1.16 CREATE TRIGGER Syntax ... 1673
13.1.17 CREATE VIEW Syntax ... 1676
13.1.18 DROP DATABASE Syntax .. 1680
13.1.19 DROP EVENT Syntax .. 1681
13.1.20 DROP FUNCTION Syntax .. 1681
13.1.21 DROP INDEX Syntax ... 1681
13.1.22 DROP PROCEDURE and DROP FUNCTION Syntax ... 1682
13.1.23 DROP SERVER Syntax .. 1682
13.1.24 DROP TABLE Syntax ... 1682
13.1.25 DROP TABLESPACE Syntax .. 1683
13.1.26 DROP TRIGGER Syntax .. 1684
13.1.27 DROP VIEW Syntax ... 1684
13.1.28 RENAME TABLE Syntax .. 1685
13.1.29 TRUNCATE TABLE Syntax ... 1686

13.2 Data Manipulation Statements ... 1687
13.2.1 CALL Syntax .. 1687
13.2.2 DELETE Syntax ... 1689
13.2.3 DO Syntax ... 1693
13.2.4 HANDLER Syntax .. 1693
13.2.5 INSERT Syntax .. 1695
13.2.6 LOAD DATA INFILE Syntax .. 1702
13.2.7 LOAD XML Syntax ... 1711
13.2.8 REPLACE Syntax .. 1718
13.2.9 SELECT Syntax ... 1721
13.2.10 Subquery Syntax .. 1738
13.2.11 UPDATE Syntax ... 1749

13.3 MySQL Transactional and Locking Statements ... 1752
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax 1752
13.3.2 Statements That Cannot Be Rolled Back ... 1755
13.3.3 Statements That Cause an Implicit Commit .. 1755
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax 1756
13.3.5 LOCK TABLES and UNLOCK TABLES Syntax .. 1756
13.3.6 SET TRANSACTION Syntax ... 1762
13.3.7 XA Transactions ... 1765

13.4 Replication Statements .. 1768
13.4.1 SQL Statements for Controlling Master Servers ... 1768

Data Definition Statements

1600

13.4.2 SQL Statements for Controlling Slave Servers ... 1771
13.4.3 SQL Statements for Controlling Group Replication ... 1785

13.5 SQL Syntax for Prepared Statements .. 1786
13.5.1 PREPARE Syntax .. 1789
13.5.2 EXECUTE Syntax .. 1790
13.5.3 DEALLOCATE PREPARE Syntax ... 1790

13.6 MySQL Compound-Statement Syntax .. 1790
13.6.1 BEGIN ... END Compound-Statement Syntax ... 1790
13.6.2 Statement Label Syntax .. 1791
13.6.3 DECLARE Syntax .. 1792
13.6.4 Variables in Stored Programs ... 1792
13.6.5 Flow Control Statements ... 1794
13.6.6 Cursors .. 1798
13.6.7 Condition Handling ... 1799

13.7 Database Administration Statements .. 1826
13.7.1 Account Management Statements ... 1826
13.7.2 Table Maintenance Statements ... 1855
13.7.3 Plugin and User-Defined Function Statements ... 1864
13.7.4 SET Syntax ... 1867
13.7.5 SHOW Syntax .. 1870
13.7.6 Other Administrative Statements ... 1913

13.8 MySQL Utility Statements .. 1922
13.8.1 DESCRIBE Syntax ... 1922
13.8.2 EXPLAIN Syntax .. 1922
13.8.3 HELP Syntax ... 1924
13.8.4 USE Syntax ... 1926

This chapter describes the syntax for the SQL statements supported by MySQL.

13.1 Data Definition Statements

13.1.1 ALTER DATABASE Syntax

ALTER {DATABASE | SCHEMA} [db_name]
 alter_specification ...
ALTER {DATABASE | SCHEMA} db_name
 UPGRADE DATA DIRECTORY NAME

alter_specification:
 [DEFAULT] CHARACTER SET [=] charset_name
 | [DEFAULT] COLLATE [=] collation_name

ALTER DATABASE enables you to change the overall characteristics of a database. These
characteristics are stored in the db.opt file in the database directory. To use ALTER DATABASE, you
need the ALTER privilege on the database. ALTER SCHEMA is a synonym for ALTER DATABASE.

The database name can be omitted from the first syntax, in which case the statement applies to the
default database.

National Language Characteristics

The CHARACTER SET clause changes the default database character set. The COLLATE clause
changes the default database collation. Section 10.1, “Character Set Support”, discusses character set
and collation names.

You can see what character sets and collations are available using, respectively, the SHOW
CHARACTER SET and SHOW COLLATION statements. See Section 13.7.5.3, “SHOW CHARACTER
SET Syntax”, and Section 13.7.5.4, “SHOW COLLATION Syntax”, for more information.

ALTER EVENT Syntax

1601

If you change the default character set or collation for a database, stored routines that use the
database defaults must be dropped and recreated so that they use the new defaults. (In a stored
routine, variables with character data types use the database defaults if the character set or collation
are not specified explicitly. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION
Syntax”.)

Upgrading from Versions Older than MySQL 5.1

The syntax that includes the UPGRADE DATA DIRECTORY NAME clause updates the name of the
directory associated with the database to use the encoding implemented in MySQL 5.1 for mapping
database names to database directory names (see Section 9.2.3, “Mapping of Identifiers to File
Names”). This clause is for use under these conditions:

• It is intended when upgrading MySQL to 5.1 or later from older versions.

• It is intended to update a database directory name to the current encoding format if the name
contains special characters that need encoding.

• The statement is used by mysqlcheck (as invoked by mysql_upgrade).

For example, if a database in MySQL 5.0 has the name a-b-c, the name contains instances of
the - (dash) character. In MySQL 5.0, the database directory is also named a-b-c, which is not
necessarily safe for all file systems. In MySQL 5.1 and later, the same database name is encoded as
a@002db@002dc to produce a file system-neutral directory name.

When a MySQL installation is upgraded to MySQL 5.1 or later from an older version,the server displays
a name such as a-b-c (which is in the old format) as #mysql50#a-b-c, and you must refer to the
name using the #mysql50# prefix. Use UPGRADE DATA DIRECTORY NAME in this case to explicitly
tell the server to re-encode the database directory name to the current encoding format:

ALTER DATABASE `#mysql50#a-b-c` UPGRADE DATA DIRECTORY NAME;

After executing this statement, you can refer to the database as a-b-c without the special #mysql50#
prefix.

Note

The UPGRADE DATA DIRECTORY NAME clause is deprecated in MySQL 5.7.6
and will be removed in a future version of MySQL. If it is necessary to convert
MySQL 5.0 database or table names, a workaround is to upgrade a MySQL 5.0
installation to MySQL 5.1 before upgrading to a more recent release.

13.1.2 ALTER EVENT Syntax

ALTER
 [DEFINER = { user | CURRENT_USER }]
 EVENT event_name
 [ON SCHEDULE schedule]
 [ON COMPLETION [NOT] PRESERVE]
 [RENAME TO new_event_name]
 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'comment']
 [DO event_body]

The ALTER EVENT statement changes one or more of the characteristics of an existing event
without the need to drop and recreate it. The syntax for each of the DEFINER, ON SCHEDULE, ON
COMPLETION, COMMENT, ENABLE / DISABLE, and DO clauses is exactly the same as when used with
CREATE EVENT. (See Section 13.1.9, “CREATE EVENT Syntax”.)

Any user can alter an event defined on a database for which that user has the EVENT privilege. When
a user executes a successful ALTER EVENT statement, that user becomes the definer for the affected
event.

ALTER EVENT Syntax

1602

ALTER EVENT works only with an existing event:

mysql> ALTER EVENT no_such_event
 > ON SCHEDULE
 > EVERY '2:3' DAY_HOUR;
ERROR 1517 (HY000): Unknown event 'no_such_event'

In each of the following examples, assume that the event named myevent is defined as shown here:

CREATE EVENT myevent
 ON SCHEDULE
 EVERY 6 HOUR
 COMMENT 'A sample comment.'
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The following statement changes the schedule for myevent from once every six hours starting
immediately to once every twelve hours, starting four hours from the time the statement is run:

ALTER EVENT myevent
 ON SCHEDULE
 EVERY 12 HOUR
 STARTS CURRENT_TIMESTAMP + INTERVAL 4 HOUR;

It is possible to change multiple characteristics of an event in a single statement. This example
changes the SQL statement executed by myevent to one that deletes all records from mytable; it
also changes the schedule for the event such that it executes once, one day after this ALTER EVENT
statement is run.

ALTER EVENT myevent
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO
 TRUNCATE TABLE myschema.mytable;

Specify the options in an ALTER EVENT statement only for those characteristics that you want to
change; omitted options keep their existing values. This includes any default values for CREATE
EVENT such as ENABLE.

To disable myevent, use this ALTER EVENT statement:

ALTER EVENT myevent
 DISABLE;

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables
to obtain any of the timestamp or interval values which it contains. You cannot use stored routines
or user-defined functions in such expressions, and you cannot use any table references; however, you
can use SELECT FROM DUAL. This is true for both ALTER EVENT and CREATE EVENT statements.
References to stored routines, user-defined functions, and tables in such cases are specifically not
permitted, and fail with an error (see Bug #22830).

Although an ALTER EVENT statement that contains another ALTER EVENT statement in its DO clause
appears to succeed, when the server attempts to execute the resulting scheduled event, the execution
fails with an error.

To rename an event, use the ALTER EVENT statement's RENAME TO clause. This statement renames
the event myevent to yourevent:

ALTER EVENT myevent
 RENAME TO yourevent;

ALTER FUNCTION Syntax

1603

You can also move an event to a different database using ALTER EVENT ... RENAME TO ... and
db_name.event_name notation, as shown here:

ALTER EVENT olddb.myevent
 RENAME TO newdb.myevent;

To execute the previous statement, the user executing it must have the EVENT privilege on both the
olddb and newdb databases.

Note

There is no RENAME EVENT statement.

The value DISABLE ON SLAVE is used on a replication slave instead of ENABLE or DISABLE to
indicate an event that was created on the master and replicated to the slave, but that is not executed
on the slave. Normally, DISABLE ON SLAVE is set automatically as required; however, there are
some circumstances under which you may want or need to change it manually. See Section 17.4.1.12,
“Replication of Invoked Features”, for more information.

13.1.3 ALTER FUNCTION Syntax

ALTER FUNCTION func_name [characteristic ...]

characteristic:
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }

This statement can be used to change the characteristics of a stored function. More than one change
may be specified in an ALTER FUNCTION statement. However, you cannot change the parameters or
body of a stored function using this statement; to make such changes, you must drop and re-create the
function using DROP FUNCTION and CREATE FUNCTION.

You must have the ALTER ROUTINE privilege for the function. (That privilege is granted automatically
to the function creator.) If binary logging is enabled, the ALTER FUNCTION statement might also
require the SUPER privilege, as described in Section 19.7, “Binary Logging of Stored Programs”.

13.1.4 ALTER PROCEDURE Syntax

ALTER PROCEDURE proc_name [characteristic ...]

characteristic:
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }

This statement can be used to change the characteristics of a stored procedure. More than one change
may be specified in an ALTER PROCEDURE statement. However, you cannot change the parameters or
body of a stored procedure using this statement; to make such changes, you must drop and re-create
the procedure using DROP PROCEDURE and CREATE PROCEDURE.

You must have the ALTER ROUTINE privilege for the procedure. By default, that privilege is
granted automatically to the procedure creator. This behavior can be changed by disabling the
automatic_sp_privileges system variable. See Section 19.2.2, “Stored Routines and MySQL
Privileges”.

13.1.5 ALTER SERVER Syntax

ALTER TABLE Syntax

1604

ALTER SERVER server_name
 OPTIONS (option [, option] ...)

Alters the server information for server_name, adjusting any of the options permitted in the CREATE
SERVER statement. The corresponding fields in the mysql.servers table are updated accordingly.
This statement requires the SUPER privilege.

For example, to update the USER option:

ALTER SERVER s OPTIONS (USER 'sally');

ALTER SERVER does not cause an automatic commit.

In MySQL 5.7, ALTER SERVER is not written to the binary log, regardless of the logging format that is
in use.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

13.1.6 ALTER TABLE Syntax

ALTER [IGNORE] TABLE tbl_name
 [alter_specification [, alter_specification] ...]
 [partition_options]

alter_specification:
 table_options
 | ADD [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ADD [COLUMN] (col_name column_definition,...)
 | ADD {INDEX|KEY} [index_name]
 [index_type] (index_col_name,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (index_col_name,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]]
 UNIQUE [INDEX|KEY] [index_name]
 [index_type] (index_col_name,...) [index_option] ...
 | ADD FULLTEXT [INDEX|KEY] [index_name]
 (index_col_name,...) [index_option] ...
 | ADD SPATIAL [INDEX|KEY] [index_name]
 (index_col_name,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]]
 FOREIGN KEY [index_name] (index_col_name,...)
 reference_definition
 | ALGORITHM [=] {DEFAULT|INPLACE|COPY}
 | ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}
 | CHANGE [COLUMN] old_col_name new_col_name column_definition
 [FIRST|AFTER col_name]
 | LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}
 | MODIFY [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | DROP [COLUMN] col_name
 | DROP PRIMARY KEY
 | DROP {INDEX|KEY} index_name
 | DROP FOREIGN KEY fk_symbol
 | DISABLE KEYS
 | ENABLE KEYS
 | RENAME [TO|AS] new_tbl_name
 | RENAME {INDEX|KEY} old_index_name TO new_index_name
 | ORDER BY col_name [, col_name] ...
 | CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
 | [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]
 | DISCARD TABLESPACE
 | IMPORT TABLESPACE
 | FORCE
 | {WITHOUT|WITH} VALIDATION
 | ADD PARTITION (partition_definition)

ALTER TABLE Syntax

1605

 | DROP PARTITION partition_names
 | DISCARD PARTITION {partition_names | ALL} TABLESPACE
 | IMPORT PARTITION {partition_names | ALL} TABLESPACE
 | TRUNCATE PARTITION {partition_names | ALL}
 | COALESCE PARTITION number
 | REORGANIZE PARTITION partition_names INTO (partition_definitions)
 | EXCHANGE PARTITION partition_name WITH TABLE tbl_name [{WITH|WITHOUT} VALIDATION]
 | ANALYZE PARTITION {partition_names | ALL}
 | CHECK PARTITION {partition_names | ALL}
 | OPTIMIZE PARTITION {partition_names | ALL}
 | REBUILD PARTITION {partition_names | ALL}
 | REPAIR PARTITION {partition_names | ALL}
 | REMOVE PARTITIONING
 | UPGRADE PARTITIONING

index_col_name:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'

table_options:
 table_option [[,] table_option] ... (see CREATE TABLE options)

partition_options:
 (see CREATE TABLE options)

ALTER TABLE changes the structure of a table. For example, you can add or delete columns, create
or destroy indexes, change the type of existing columns, or rename columns or the table itself. You can
also change characteristics such as the storage engine used for the table or the table comment.

Following the table name, specify the alterations to be made. If none are given, ALTER TABLE does
nothing.

The syntax for many of the permissible alterations is similar to clauses of the CREATE TABLE
statement. See Section 13.1.14, “CREATE TABLE Syntax”, for more information.

table_options signifies table options of the kind that can be used in the CREATE TABLE statement,
such as ENGINE, AUTO_INCREMENT, AVG_ROW_LENGTH, MAX_ROWS, or ROW_FORMAT. For a list of
all table options and a description of each, see Section 13.1.14, “CREATE TABLE Syntax”. However,
ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

partition_options signifies options that can be used with partitioned tables for repartitioning,
for adding, dropping, discarding, importing, merging, and splitting partitions, and for performing
partitioning maintenance. It is possible for an ALTER TABLE statement to contain a PARTITION BY
or REMOVE PARTITIONING clause in an addition to other alter specifications, but the PARTITION
BY or REMOVE PARTITIONING clause must be specified last after any other specifications. The
ADD PARTITION, DROP PARTITION, DISCARD PARTITION, IMPORT PARTITION, COALESCE
PARTITION, REORGANIZE PARTITION, EXCHANGE PARTITION, ANALYZE PARTITION, CHECK
PARTITION, and REPAIR PARTITION options cannot be combined with other alter specifications in
a single ALTER TABLE, since the options just listed act on individual partitions. For more information
about partition options, see Section 13.1.14, “CREATE TABLE Syntax”, and Section 13.1.6.1, “ALTER
TABLE Partition Operations”. For information about and examples of ALTER TABLE ... EXCHANGE
PARTITION statements, see Section 18.3.3, “Exchanging Partitions and Subpartitions with Tables”.

Prior to MySQL 5.7.6, partitioned InnoDB tables used the generic ha_partition partitioning handler
employed by MyISAM and other storage engines not supplying their own partitioning handlers; in
MySQL 5.7.6 and later, such tables are created using the InnoDB storage engine's own (or “native”)
partitioning handler. Beginning with MySQL 5.7.9, you can upgrade an InnoDB table that was created

ALTER TABLE Syntax

1606

in MySQL 5.7.6 or earlier (that is, created using ha_partition) to the InnoDB native partition
handler using ALTER TABLE ... UPGRADE PARTITIONING. (Bug #76734, Bug #20727344) This
version of ALTER TABLE does not accept any other options and can be used only on a single table at
a time.

Note

You can also use mysql_upgrade in MySQL 5.7.9 or later to upgrade older
partitioned InnoDB tables to the native partitioning handler.

Some operations may result in warnings if attempted on a table for which the storage engine does not
support the operation. These warnings can be displayed with SHOW WARNINGS. See Section 13.7.5.40,
“SHOW WARNINGS Syntax”.

For information on troubleshooting ALTER TABLE, see Section B.5.6.1, “Problems with ALTER
TABLE”.

Storage, Performance, and Concurrency Considerations

In most cases, ALTER TABLE makes a temporary copy of the original table. MySQL waits for other
operations that are modifying the table, then proceeds. It incorporates the alteration into the copy,
deletes the original table, and renames the new one. While ALTER TABLE is executing, the original
table is readable by other sessions (with the exception noted shortly). Updates and writes to the table
that begin after the ALTER TABLE operation begins are stalled until the new table is ready, then are
automatically redirected to the new table without any failed updates. The temporary copy of the original
table is created in the database directory of the new table. This can differ from the database directory
of the original table for ALTER TABLE operations that rename the table to a different database.

The exception referred to earlier is that ALTER TABLE blocks reads (not just writes) at the point where
it is ready to install a new version of the table .frm file, discard the old file, and clear outdated table
structures from the table and table definition caches. At this point, it must acquire an exclusive lock. To
do so, it waits for current readers to finish, and blocks new reads (and writes).

For MyISAM tables, you can speed up index re-creation (the slowest part of the alteration process) by
setting the myisam_sort_buffer_size system variable to a high value.

For some operations, an in-place ALTER TABLE is possible that does not require a temporary table:

• For ALTER TABLE tbl_name RENAME TO new_tbl_name without any other options, MySQL
simply renames any files that correspond to the table tbl_name without making a copy. (You can
also use the RENAME TABLE statement to rename tables. See Section 13.1.28, “RENAME TABLE
Syntax”.) Any privileges granted specifically for the renamed table are not migrated to the new name.
They must be changed manually.

• Alterations that modify only table metadata and not table data are immediate because the server only
needs to alter the table .frm file, not touch table contents. The following changes are fast alterations
that can be made this way:

• Renaming a column.

• Changing the default value of a column.

• Changing the definition of an ENUM or SET column by adding new enumeration or set members
to the end of the list of valid member values, as long as the storage size of the data type does
not change. For example, adding a member to a SET column that has 8 members changes the
required storage per value from 1 byte to 2 bytes; this will require a table copy. Adding members in
the middle of the list causes renumbering of existing members, which requires a table copy.

• ALTER TABLE with DISCARD ... PARTITION ... TABLESPACE or IMPORT ...
PARTITION ... TABLESPACE do not create any temporary tables or temporary partition files.

ALTER TABLE Syntax

1607

ALTER TABLE with ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REBUILD
PARTITION, or REORGANIZE PARTITION does not create any temporary tables (except when used
with NDB tables); however, these operations can and do create temporary partition files.

ADD or DROP operations for RANGE or LIST partitions are immediate operations or nearly so. ADD or
COALESCE operations for HASH or KEY partitions copy data between all partitions, unless LINEAR
HASH or LINEAR KEY was used; this is effectively the same as creating a new table, although the
ADD or COALESCE operation is performed partition by partition. REORGANIZE operations copy only
changed partitions and do not touch unchanged ones.

• Renaming an index.

• Adding or dropping an index, for InnoDB.

You can force an ALTER TABLE operation that would otherwise not require a table copy to use the
temporary table method (as supported in MySQL 5.0) by setting the old_alter_table system
variable to ON, or specifying ALGORITHM=COPY as one of the alter_specification clauses. If
there is a conflict between the old_alter_table setting and an ALGORITHM clause with a value
other than DEFAULT, the ALGORITHM clause takes precedence. (ALGORITHM = DEFAULT is the same
a specifying no ALGORITHM clause at all.)

Specifying ALGORITHM=INPLACE makes the operation use the in-place technique for clauses and
storage engines that support it, and fail with an error otherwise, thus avoiding a lengthy table copy
if you try altering a table that uses a different storage engine than you expect. See Section 14.10,
“InnoDB and Online DDL” for information about online DDL for InnoDB tables.

As of MySQL 5.7.4, ALTER TABLE upgrades MySQL 5.5 temporal columns to 5.6 format for ADD
COLUMN, CHANGE COLUMN, MODIFY COLUMN, ADD INDEX, and FORCE operations. This conversion
cannot be done using the INPLACE algorithm because the table must be rebuilt, so specifying
ALGORITHM=INPLACE in these cases results in an error. Specify ALGORITHM=COPY if necessary.

Starting with MySQL 5.7.6, an ALTER TABLE operation on a multicolumn index used to partition a
table by KEY cannot be performed online when the operation would change the order of the columns. In
such cases, you must use a copying ALTER TABLE instead. (Bug #17896265)

You can control the level of concurrent reading and writing of the table while it is being altered, using
the LOCK clause. Specifying a non-default value for this clause lets you require a certain amount of
concurrent access or exclusivity during the alter operation, and halts the operation if the requested
degree of locking is not available. The parameters for the LOCK clause are:

•
LOCK = DEFAULT

Maximum level of concurrency for the given ALGORITHM clause (if any) and ALTER TABLE
operation: Permit concurrent reads and writes if supported. If not, permit concurrent reads if
supported. If not, enforce exclusive access.

•
LOCK = NONE

If supported, permit concurrent reads and writes. Otherwise, return an error message.

•
LOCK = SHARED

If supported, permit concurrent reads but block writes. Note that writes will be blocked even if
concurrent writes are supported by the storage engine for the given ALGORITHM clause (if any) and
ALTER TABLE operation. If concurrent reads are not supported, return an error message.

•
LOCK = EXCLUSIVE

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

ALTER TABLE Syntax

1608

Enforce exclusive access. This will be done even if concurrent reads/writes are supported by the
storage engine for the given ALGORITHM clause (if any) and ALTER TABLE operation.

The WITHOUT VALIDATION and WITH VALIDATION clauses affect whether ALTER TABLE
performs an in-place operation for VIRTUAL generated column modifications. See ALTER TABLE and
Generated Columns.

You can also use ALTER TABLE tbl_name FORCE to perform a “null” alter operation that rebuilds
the table. Previously the FORCE option was recognized but ignored. As of MySQL 5.7.4, online DDL
support is provided for the FORCE option. For more information, see Section 14.10.1, “Overview of
Online DDL”.

Usage Notes

• To use ALTER TABLE, you need ALTER, CREATE, and INSERT privileges for the table. Renaming a
table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new table.

• IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if there are
duplicates on unique keys in the new table or if warnings occur when strict mode is enabled. If
IGNORE is not specified, the copy is aborted and rolled back if duplicate-key errors occur. If IGNORE
is specified, only one row is used of rows with duplicates on a unique key. The other conflicting rows
are deleted. Incorrect values are truncated to the closest matching acceptable value.

As of MySQL 5.7.4, the IGNORE clause for ALTER TABLE is removed and its use produces an error.

• table_option signifies a table option of the kind that can be used in the CREATE TABLE
statement, such as ENGINE, AUTO_INCREMENT, AVG_ROW_LENGTH, MAX_ROWS, ROW_FORMAT, and
TABLESPACE. For a list of all table options and a description of each, see Section 13.1.14, “CREATE
TABLE Syntax”. However, ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY
table options.

• For example, to convert a table to be an InnoDB table, use this statement:

ALTER TABLE t1 ENGINE = InnoDB;

See Section 14.5.4, “Converting Tables from MyISAM to InnoDB” for considerations when
switching tables to the InnoDB storage engine.

When you specify an ENGINE clause, ALTER TABLE rebuilds the table. This is true even if the
table already has the specified storage engine.

Running ALTER TABLE tbl_name ENGINE=INNODB on an existing InnoDB table performs a
“null” ALTER TABLE operation, which can be used to defragment an InnoDB table, as described
in Section 14.9.4, “Defragmenting a Table”. Running ALTER TABLE tbl_name FORCE on an
InnoDB table performs the same function.

As of MySQL 5.7.4, both ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE
tbl_name FORCE use online DDL (ALGORITHM=COPY). For more information, see
Section 14.10.1, “Overview of Online DDL”.

The outcome of attempting to change a table's storage engine is affected by whether the desired
storage engine is available and the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as
described in Section 5.1.7, “Server SQL Modes”.

To prevent inadvertent loss of data, ALTER TABLE cannot be used to change the storage engine
of a table to MERGE or BLACKHOLE.

• To change the value of the AUTO_INCREMENT counter to be used for new rows, do this:

ALTER TABLE Syntax

1609

ALTER TABLE t2 AUTO_INCREMENT = value;

You cannot reset the counter to a value less than or equal to the value that is currently in use. For
both InnoDB and MyISAM, if the value is less than or equal to the maximum value currently in the
AUTO_INCREMENT column, the value is reset to the current maximum AUTO_INCREMENT column
value plus one.

• As of MySQL 5.7.6, you can use ALTER TABLE with the TABLESPACE option to move non-
partitioned InnoDB tables between existing general tablespaces, a file-per-table tablespaces, and
the system tablespace. See Moving Non-Partitioned Tables Between Tablespaces Using ALTER
TABLE.

For partitioned tables, ALTER TABLE tbl_name TABLESPACE [=] tablespace_name only
modifies the table's default tablespace. It does not move partitions from one tablespace to another.
To move table partitions, you must move each partition using an ALTER TABLE tbl_name
REORGANIZE PARTITION statement. See Moving Table Partitions Between Tablespaces Using
ALTER TABLE.

ALTER TABLE ... TABLESPACE operations always cause a full table rebuild, even if the
TABLESPACE attribute has not changed from its previous value.

ALTER TABLE ... TABLESPACE syntax does not support moving a table from a temporary
tablespace to a persistent tablespace.

The DATA DIRECTORY clause, which is supported with CREATE TABLE ... TABLESPACE, is
not supported with ALTER TABLE ... TABLESPACE, and is ignored if specified.

For more information about the capabilities and limitations of the TABLESPACE option, see CREATE
TABLE.

• You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE
statement, separated by commas. This is a MySQL extension to standard SQL, which permits only
one of each clause per ALTER TABLE statement. For example, to drop multiple columns in a single
statement, do this:

ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• CHANGE col_name, DROP col_name, and DROP INDEX are MySQL extensions to standard SQL.

• The word COLUMN is optional and can be omitted.

• column_definition clauses use the same syntax for ADD and CHANGE as for CREATE TABLE.
See Section 13.1.14, “CREATE TABLE Syntax”.

• You can rename a column using a CHANGE old_col_name new_col_name
column_definition clause. To do so, specify the old and new column names and the definition
that the column currently has. For example, to rename an INTEGER column from a to b, you can do
this:

ALTER TABLE t1 CHANGE a b INTEGER;

To change a column's type but not the name, CHANGE syntax still requires an old and new column
name, even if they are the same. For example:

ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;

You can also use MODIFY to change a column's type without renaming it:

ALTER TABLE t1 MODIFY b BIGINT NOT NULL;

ALTER TABLE Syntax

1610

MODIFY is an extension to ALTER TABLE for Oracle compatibility.

When you use CHANGE or MODIFY, column_definition must include the data type and all
attributes that should apply to the new column, other than index attributes such as PRIMARY KEY
or UNIQUE. Attributes present in the original definition but not specified for the new definition are not
carried forward. Suppose that a column col1 is defined as INT UNSIGNED DEFAULT 1 COMMENT
'my column' and you modify the column as follows:

ALTER TABLE t1 MODIFY col1 BIGINT;

The resulting column will be defined as BIGINT, but will not include the attributes UNSIGNED
DEFAULT 1 COMMENT 'my column'. To retain them, the statement should be:

ALTER TABLE t1 MODIFY col1 BIGINT UNSIGNED DEFAULT 1 COMMENT 'my column';

• When you change a data type using CHANGE or MODIFY, MySQL tries to convert existing column
values to the new type as well as possible.

Warning

This conversion may result in alteration of data. For example, if you shorten
a string column, values may be truncated. To prevent the operation from
succeeding if conversions to the new data type would result in loss of data,
enable strict SQL mode before using ALTER TABLE (see Section 5.1.7,
“Server SQL Modes”).

• To add a column at a specific position within a table row, use FIRST or AFTER col_name. The
default is to add the column last. You can also use FIRST and AFTER in CHANGE or MODIFY
operations to reorder columns within a table.

• ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a
column or remove the old default value, respectively. If the old default is removed and the column
can be NULL, the new default is NULL. If the column cannot be NULL, MySQL assigns a default value
as described in Section 11.7, “Data Type Default Values”.

• DROP INDEX removes an index. This is a MySQL extension to standard SQL. See
Section 13.1.21, “DROP INDEX Syntax”. If you are unsure of the index name, use SHOW INDEX
FROM tbl_name.

• If columns are dropped from a table, the columns are also removed from any index of which they
are a part. If all columns that make up an index are dropped, the index is dropped as well. If you use
CHANGE or MODIFY to shorten a column for which an index exists on the column, and the resulting
column length is less than the index length, MySQL shortens the index automatically.

• If a table contains only one column, the column cannot be dropped. If what you intend is to remove
the table, use DROP TABLE instead.

• DROP PRIMARY KEY drops the primary key. If there is no primary key, an error occurs. For
information about the performance characteristics of primary keys, especially for InnoDB tables, see
Section 8.3.2, “Using Primary Keys”.

If you add a UNIQUE INDEX or PRIMARY KEY to a table, MySQL stores it before any nonunique
index to permit detection of duplicate keys as early as possible.

• Some storage engines permit you to specify an index type when creating an index. The syntax for
the index_type specifier is USING type_name. For details about USING, see Section 13.1.11,
“CREATE INDEX Syntax”. The preferred position is after the column list. Support for use of the
option before the column list will be removed in a future MySQL release.

ALTER TABLE Syntax

1611

index_option values specify additional options for an index. USING is one such option. For details
about permissible index_option values, see Section 13.1.11, “CREATE INDEX Syntax”.

• RENAME INDEX old_index_name TO new_index_name renames an index. This is a MySQL
extension to standard SQL. The content of the table remains unchanged. old_index_name
must be the name of an existing index in the table that is not dropped by the same ALTER TABLE
statement. new_index_name is the new index name, which cannot duplicate the name of an index
in the resulting table after changes have been applied. Neither index name can be PRIMARY.

• After an ALTER TABLE statement, it may be necessary to run ANALYZE TABLE to update index
cardinality information. See Section 13.7.5.22, “SHOW INDEX Syntax”.

• ORDER BY enables you to create the new table with the rows in a specific order. This option is
useful primarily when you know that you are mostly to query the rows in a certain order most of
the time. By using this option after major changes to the table, you might be able to get higher
performance. In some cases, it might make sorting easier for MySQL if the table is in order by the
column that you want to order it by later.

Note

The table does not remain in the specified order after inserts and deletes.

ORDER BY syntax permits one or more column names to be specified for sorting, each of which
optionally can be followed by ASC or DESC to indicate ascending or descending sort order,
respectively. The default is ascending order. Only column names are permitted as sort criteria;
arbitrary expressions are not permitted. This clause should be given last after any other clauses.

ORDER BY does not make sense for InnoDB tables because InnoDB always orders table rows
according to the clustered index.

Note

When used on a partitioned table, ALTER TABLE ... ORDER BY orders
rows within each partition only.

• If you use ALTER TABLE on a MyISAM table, all nonunique indexes are created in a separate
batch (as for REPAIR TABLE). This should make ALTER TABLE much faster when you have many
indexes.

For MyISAM tables, key updating can be controlled explicitly. Use ALTER TABLE ... DISABLE
KEYS to tell MySQL to stop updating nonunique indexes. Then use ALTER TABLE ... ENABLE
KEYS to re-create missing indexes. MyISAM does this with a special algorithm that is much faster
than inserting keys one by one, so disabling keys before performing bulk insert operations should
give a considerable speedup. Using ALTER TABLE ... DISABLE KEYS requires the INDEX
privilege in addition to the privileges mentioned earlier.

While the nonunique indexes are disabled, they are ignored for statements such as SELECT and
EXPLAIN that otherwise would use them.

• In MySQL 5.7, the server prohibits changes to foreign key columns that have the potential to cause
loss of referential integrity. It also prohibits changes to the data type of such columns that may be
unsafe. For example, changing VARCHAR(20) to VARCHAR(30) is permitted, but changing it to
VARCHAR(1024) is not because that alters the number of length bytes required to store individual
values. A workaround is to use ALTER TABLE ... DROP FOREIGN KEY before changing the
column definition and ALTER TABLE ... ADD FOREIGN KEY afterward.

• The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB storage engine,
which implements ADD [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (...)
REFERENCES ... (...). See Section 14.5.6, “InnoDB and FOREIGN KEY Constraints”. For other
storage engines, the clauses are parsed but ignored. The CHECK clause is parsed but ignored by

ALTER TABLE Syntax

1612

all storage engines. See Section 13.1.14, “CREATE TABLE Syntax”. The reason for accepting but
ignoring syntax clauses is for compatibility, to make it easier to port code from other SQL servers,
and to run applications that create tables with references. See Section 1.8.2, “MySQL Differences
from Standard SQL”.

For ALTER TABLE, unlike CREATE TABLE, ADD FOREIGN KEY ignores index_name if given and
uses an automatically generated foreign key name. As a workaround, include the CONSTRAINT
clause to specify the foreign key name:

ADD CONSTRAINT name FOREIGN KEY (....) ...

Important

The inline REFERENCES specifications where the references are defined
as part of the column specification are silently ignored. MySQL only
accepts REFERENCES clauses defined as part of a separate FOREIGN KEY
specification.

Note

Partitioned InnoDB tables do not support foreign keys. See Section 18.6.2,
“Partitioning Limitations Relating to Storage Engines”, for more information.

• MySQL supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

For more information, see Section 14.5.6, “InnoDB and FOREIGN KEY Constraints”.

• Prior to MySQL 5.6.6, adding and dropping a foreign key in the same ALTER TABLE statement may
be problematic in some cases and is therefore unsupported. Separate statements should be used for
each operation. As of MySQL 5.6.6, adding and dropping a foreign key in the same ALTER TABLE
statement is supported for ALTER TABLE ... ALGORITHM=INPLACE but remains unsupported for
ALTER TABLE ... ALGORITHM=COPY.

• For an InnoDB table that is created with its own file-per-table tablespace in an .ibd file, that file
can be discarded and imported. To discard the .ibd file, use this statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

This deletes the current file-per-table .ibd file, so be sure that you have a backup first. Attempting to
modify the table contents while the tablespace file is discarded results in an error. You can perform
the DDL operations listed in Section 14.10, “InnoDB and Online DDL” while the tablespace file is
discarded.

To import the backup .ibd file back into the table, copy it into the database directory, and then issue
this statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

The tablespace file need not necessarily have been created on the server into which it is imported
later. In MySQL 5.7, importing a tablespace file from another server works if the both servers have
GA (General Availablility) status and their versions are within the same series. Otherwise, the file
must have been created on the server into which it is imported.

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data.

ALTER TABLE Syntax

1613

ALTER TABLE ... DISCARD TABLESPACE and ALTER
TABLE ...IMPORT TABLESPACE are not supported for tables that belong to
a general tablespace.

See Section 14.4.4, “InnoDB File-Per-Table Tablespaces”.

• To change the table default character set and all character columns (CHAR, VARCHAR, TEXT) to a
new character set, use a statement like this:

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name;

The statement also changes the collation of all character columns. If you specify no COLLATE clause
to indicate which collation to use, the statement uses default collation for the character set. If this
collation is inappropriate for the intended table use (for example, if it would change from a case-
sensitive collation to a case-insensitive collation), specify a collation explicitly.

For a column that has a data type of VARCHAR or one of the TEXT types, CONVERT TO CHARACTER
SET will change the data type as necessary to ensure that the new column is long enough to store
as many characters as the original column. For example, a TEXT column has two length bytes,
which store the byte-length of values in the column, up to a maximum of 65,535. For a latin1 TEXT
column, each character requires a single byte, so the column can store up to 65,535 characters. If
the column is converted to utf8, each character might require up to three bytes, for a maximum
possible length of 3 × 65,535 = 196,605 bytes. That length will not fit in a TEXT column's length
bytes, so MySQL will convert the data type to MEDIUMTEXT, which is the smallest string type for
which the length bytes can record a value of 196,605. Similarly, a VARCHAR column might be
converted to MEDIUMTEXT.

To avoid data type changes of the type just described, do not use CONVERT TO CHARACTER SET.
Instead, use MODIFY to change individual columns. For example:

ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M) CHARACTER SET utf8;

If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT columns are
converted to their corresponding binary string types (BINARY, VARBINARY, BLOB). This means that
the columns no longer will have a character set and a subsequent CONVERT TO operation will not
apply to them.

If charset_name is DEFAULT, the database character set is used.

Warning

The CONVERT TO operation converts column values between the character
sets. This is not what you want if you have a column in one character set
(like latin1) but the stored values actually use some other, incompatible
character set (like utf8). In this case, you have to do the following for each
such column:

ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or
from BLOB columns.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

ALTER TABLE Syntax

1614

The word DEFAULT is optional. The default character set is the character set that is used if you
do not specify the character set for columns that you add to a table later (for example, with ALTER
TABLE ... ADD column).

When foreign_key_checks is enabled, which is the default setting, character set conversion is
not permitted on tables that include a character string column used in a foreign key constraint. The
workaround is to disable foreign_key_checks before performing the character set conversion.
You must perform the conversion on both tables involved in the foreign key constraint before re-
enabling foreign_key_checks. If you re-enable foreign_key_checks after converting only one
of the tables, an ON DELETE CASCADE or ON UPDATE CASCADE operation could corrupt data in the
referencing table due to implicit conversion that occurs during these operations (Bug #45290, Bug
#74816).

With the mysql_info() C API function, you can find out how many rows were copied by ALTER
TABLE, and (when IGNORE is used) how many rows were deleted due to duplication of unique key
values. See Section 23.8.7.36, “mysql_info()”.

ALTER TABLE and Generated Columns

ALTER TABLE operations permitted for generated columns are ADD, MODIFY, and CHANGE.

• Generated columns can be added.

• The data type and expression of generated columns can be modified.

• Generated columns can be renamed or dropped, if no other column refers to them.

• Virtual generated columns cannot be altered to stored generated columns, or vice versa. To work
around this, drop the column, then add it with the new definition.

• Nongenerated columns can be altered to stored but not virtual generated columns.

• Stored but not virtual generated columns can be altered to nongenerated columns. The stored
generated values become the values of the nongenerated column.

• ADD COLUMN is not an in-place operation for stored columns (done without using a temporary table)
because the expression must be evaluated by the server. For stored columns, indexing changes are
done in place, and expression changes are not done in place. Changes to column comments are
done in place.

• ADD COLUMN and DROP COLUMN are in-place operations for virtual columns. However, adding or
dropping a virtual column cannot be performed in combination with other ALTER TABLE operations.

• As of MySQL 5.7.8, InnoDB supports secondary indexes on virtual generated columns. Adding
or dropping a secondary index on a virtual generated column is an in-place operation. For more
information, see Secondary Indexes and Virtual Generated Columns.

• When a VIRTUAL generated column is added to a table or modified, it is not ensured that data being
calculated by the generated column expression will not be out of range for the column. This can
lead to inconsistent data being returned and unexpectedly failed statements. As of MySQL 5.7.9, to
permit control over whether validation occurs for such columns, ALTER TABLE supports WITHOUT
VALIDATION and WITH VALIDATION clauses:

• With WITHOUT VALIDATION (the default if neither clause is specified), an in-place operation is
performed (if possible), data integrity is not checked, and the statement finishes more quickly.
However, later reads from the table might report warnings or errors for the column if values are out
of range.

• With WITH VALIDATION, ALTER TABLE copies the table. If an out-of-range or any other error
occurs, the statement fails. Because a table copy is performed, the statement takes longer.

ALTER TABLE Syntax

1615

WITHOUT VALIDATION and WITH VALIDATION are permitted only with ADD COLUMN, CHANGE
COLUMN, and MODIFY COLUMN operations. An ER_WRONG_USAGE error occurs otherwise.

• As of MySQL 5.7.10, if expression evaluation causes truncation or provides incorrect input to a
function, the ALTER TABLE statement terminates with an error and the DDL operation is rejected.

13.1.6.1 ALTER TABLE Partition Operations

Partitioning-related clauses for ALTER TABLE can be used with partitioned tables for repartitioning, for
adding, dropping, discarding, importing, merging, and splitting partitions, and for performing partitioning
maintenance.

• Simply using a partition_options clause with ALTER TABLE on a partitioned table repartitions
the table according to the partitioning scheme defined by the partition_options. This clause
always begins with PARTITION BY, and follows the same syntax and other rules as apply to the
partition_options clause for CREATE TABLE (see Section 13.1.14, “CREATE TABLE Syntax”,
for more detailed information), and can also be used to partition an existing table that is not already
partitioned. For example, consider a (nonpartitioned) table defined as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
);

This table can be partitioned by HASH, using the id column as the partitioning key, into 8 partitions
by means of this statement:

ALTER TABLE t1
 PARTITION BY HASH(id)
 PARTITIONS 8;

MySQL 5.7.1 and later supports an ALGORITHM option with [SUB]PARTITION BY [LINEAR]
KEY. ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1 when
computing the placement of rows in partitions; ALGORITHM=2 means that the server employs the
key-hashing functions implemented and used by default for new KEY partitioned tables in MySQL
5.5 and later. (Partitioned tables created with the key-hashing functions employed in MySQL 5.5
and later cannot be used by a MySQL 5.1 server.) Not specifying the option has the same effect
as using ALGORITHM=2. This option is intended for use chiefly when upgrading or downgrading
[LINEAR] KEY partitioned tables between MySQL 5.1 and later MySQL versions, or for creating
tables partitioned by KEY or LINEAR KEY on a MySQL 5.5 or later server which can be used on a
MySQL 5.1 server.

To upgrade a KEY partitioned table that was created in MySQL 5.1, first execute SHOW CREATE
TABLE and note the exact columns and number of partitions shown. Now execute an ALTER TABLE
statement using exactly the same column list and number of partitions as in the CREATE TABLE
statement, while adding ALGORITHM=2 immediately following the PARTITION BY keywords. (You
should also include the LINEAR keyword if it was used for the original table definition.) An example
from a session in the mysql client is shown here:

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
 Table: p
Create Table: CREATE TABLE `p` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `cd` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)

ALTER TABLE Syntax

1616

mysql> ALTER TABLE p PARTITION BY LINEAR KEY ALGORITHM=2 (id) PARTITIONS 32;
Query OK, 0 rows affected (5.34 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
 Table: p
Create Table: CREATE TABLE `p` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `cd` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)

Downgrading a table created using the default key-hashing used in MySQL 5.5 and later to enable
its use by a MySQL 5.1 server is similar, except in this case you should use ALGORITHM=1 to force
the table's partitions to be rebuilt using the MySQL 5.1 key-hashing functions. It is recommended that
you not do this except when necessary for compatibility with a MySQL 5.1 server, as the improved
KEY hashing functions used by default in MySQL 5.5 and later provide fixes for a number of issues
found in the older implementation.

Note

A table upgraded by means of ALTER TABLE ... PARTITION BY
ALGORITHM=2 [LINEAR] KEY ... can no longer be used by a MySQL 5.1
server. (Such a table would need to be downgraded with ALTER TABLE ...
PARTITION BY ALGORITHM=1 [LINEAR] KEY ... before it could be
used again by a MySQL 5.1 server.)

The table that results from using an ALTER TABLE ... PARTITION BY statement must follow
the same rules as one created using CREATE TABLE ... PARTITION BY. This includes the rules
governing the relationship between any unique keys (including any primary key) that the table might
have, and the column or columns used in the partitioning expression, as discussed in Section 18.6.1,
“Partitioning Keys, Primary Keys, and Unique Keys”. The CREATE TABLE ... PARTITION BY
rules for specifying the number of partitions also apply to ALTER TABLE ... PARTITION BY.

The partition_definition clause for ALTER TABLE ADD PARTITION supports the same
options as the clause of the same name for the CREATE TABLE statement. (See Section 13.1.14,
“CREATE TABLE Syntax”, for the syntax and description.) Suppose that you have the partitioned
table created as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999)
);

You can add a new partition p3 to this table for storing values less than 2002 as follows:

ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));

ADD PARTITION can also be used with the TABLESPACE clause to add a new partition to an
existing general tablespace, to a file-per-table tablespace, or to the system tablespace.

ALTER TABLE t1 ADD PARTITION (PARTITION p4 VALUES LESS THAN (2015) TABLESPACE = `ts1`);

ALTER TABLE Syntax

1617

ALTER TABLE t1 ADD PARTITION (PARTITION p4 VALUES LESS THAN (2015) TABLESPACE = `innodb_file_per_table`);

ALTER TABLE t1 ADD PARTITION (PARTITION p4 VALUES LESS THAN (2015) TABLESPACE = `innodb_system`);

Note

If the TABLESPACE = tablespace_name option is not defined, the ALTER
TABLE ... ADD PARTITION operation adds the partition to the table's
default tablespace, which can be specified at the table level during CREATE
TABLE or ALTER TABLE.

DROP PARTITION can be used to drop one or more RANGE or LIST partitions. This statement
cannot be used with HASH or KEY partitions; instead, use COALESCE PARTITION (see below). Any
data that was stored in the dropped partitions named in the partition_names list is discarded.
For example, given the table t1 defined previously, you can drop the partitions named p0 and p1 as
shown here:

ALTER TABLE t1 DROP PARTITION p0, p1;

ADD PARTITION and DROP PARTITION do not currently support IF [NOT] EXISTS.

In MySQL 5.7.4, DISCARD PARTITION ... TABLESPACE and IMPORT PARTITION ...
TABLESPACE options extend the Transportable Tablespace feature to individual InnoDB table
partitions. Each InnoDB table partition has its own tablespace file (.idb file). The Transportable
Tablespace feature makes it easy to copy the tablespaces from a running MySQL server instance to
another running instance, or to perform a restore on the same instance. Both options take a comma-
separated list of one or more partition names. For example:

ALTER TABLE t1 DISCARD PARTITION p2, p3 TABLESPACE;

ALTER TABLE t1 IMPORT PARTITION p2, p3 TABLESPACE;

When running DISCARD PARTITION ... TABLESPACE and IMPORT PARTITION ...
TABLESPACE on subpartitioned tables, both partition and subpartition names are allowed. When a
partition name is specified, subpartitions of that partition are included.

As of MySQL 5.7.4, the Transportable Tablespace feature also supports copying or restoring
partitioned InnoDB tables (all partitions at once). For addition information about the Transportable
Tablespace feature, see Section 14.4.6, “Copying File-Per-Table Tablespaces to Another Server”.
For usage examples, see Section 14.4.6.1, “Transportable Tablespace Examples”.

Renames of partitioned table are supported. You can rename individual partitions indirectly using
ALTER TABLE ... REORGANIZE PARTITION; however, this operation makes a copy of the
partition's data..

In MySQL 5.7, it is possible to delete rows from selected partitions using the TRUNCATE PARTITION
option. This option takes a comma-separated list of one or more partition names. For example,
consider the table t1 as defined here:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2003),
 PARTITION p4 VALUES LESS THAN (2007)

ALTER TABLE Syntax

1618

);

To delete all rows from partition p0, you can use the following statement:

ALTER TABLE t1 TRUNCATE PARTITION p0;

The statement just shown has the same effect as the following DELETE statement:

DELETE FROM t1 WHERE year_col < 1991;

When truncating multiple partitions, the partitions do not have to be contiguous: This can greatly
simplify delete operations on partitioned tables that would otherwise require very complex WHERE
conditions if done with DELETE statements. For example, this statement deletes all rows from
partitions p1 and p3:

ALTER TABLE t1 TRUNCATE PARTITION p1, p3;

An equivalent DELETE statement is shown here:

DELETE FROM t1 WHERE
 (year_col >= 1991 AND year_col < 1995)
 OR
 (year_col >= 2003 AND year_col < 2007);

You can also use the ALL keyword in place of the list of partition names; in this case, the statement
acts on all partitions in the table.

TRUNCATE PARTITION merely deletes rows; it does not alter the definition of the table itself, or of
any of its partitions.

Note

Prior to MySQL 5.7.2, TRUNCATE PARTITION did not work with subpartitions
(Bug #14028340, Bug #65184).

You can verify that the rows were dropped by checking the INFORMATION_SCHEMA.PARTITIONS
table, using a query such as this one:

SELECT PARTITION_NAME, TABLE_ROWS
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME = 't1';

TRUNCATE PARTITION is supported only for partitioned tables that use the MyISAM, InnoDB, or
MEMORY storage engine. It also works on BLACKHOLE tables (but has no effect). It is not supported
for ARCHIVE tables.

COALESCE PARTITION can be used with a table that is partitioned by HASH or KEY to reduce
the number of partitions by number. Suppose that you have created table t2 using the following
definition:

CREATE TABLE t2 (
 name VARCHAR (30),
 started DATE
)
PARTITION BY HASH(YEAR(started))
PARTITIONS 6;

You can reduce the number of partitions used by t2 from 6 to 4 using the following statement:

ALTER TABLE Syntax

1619

ALTER TABLE t2 COALESCE PARTITION 2;

The data contained in the last number partitions will be merged into the remaining partitions. In this
case, partitions 4 and 5 will be merged into the first 4 partitions (the partitions numbered 0, 1, 2, and
3).

To change some but not all the partitions used by a partitioned table, you can use REORGANIZE
PARTITION. This statement can be used in several ways:

• To merge a set of partitions into a single partition. This can be done by naming several partitions in
the partition_names list and supplying a single definition for partition_definition.

• To split an existing partition into several partitions. You can accomplish this by naming a single
partition for partition_names and providing multiple partition_definitions.

• To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value
lists for a subset of partitions defined using VALUES IN.

• To move a partition from one tablespace to another. For an example, see Moving Table Partitions
Between Tablespaces Using ALTER TABLE.

Note

For partitions that have not been explicitly named, MySQL automatically
provides the default names p0, p1, p2, and so on. The same is true with
regard to subpartitions.

For more detailed information about and examples of ALTER TABLE ... REORGANIZE
PARTITION statements, see Section 18.3.1, “Management of RANGE and LIST Partitions”.

• In MySQL 5.7, it is possible to exchange a table partition or subpartition with a table using the ALTER
TABLE ... EXCHANGE PARTITION statement—that is, to move any existing rows in the partition
or subpartition to the nonpartitioned table, and any existing rows in the nonpartitioned table to the
table partition or subpartition.

For usage information and examples, see Section 18.3.3, “Exchanging Partitions and Subpartitions
with Tables”.

• Several additional options provide partition maintenance and repair functionality analogous to that
implemented for nonpartitioned tables by statements such as CHECK TABLE and REPAIR TABLE
(which are also supported for partitioned tables; see Section 13.7.2, “Table Maintenance Statements”
for more information). These include ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE
PARTITION, REBUILD PARTITION, and REPAIR PARTITION. Each of these options takes a
partition_names clause consisting of one or more names of partitions, separated by commas.
The partitions must already exist in the table to be altered. You can also use the ALL keyword in
place of partition_names, in which case the statement acts on all partitions in the table. For more
information and examples, see Section 18.3.4, “Maintenance of Partitions”.

Some MySQL storage engines, such as InnoDB, do not support per-partition optimization. For a
partitioned table using such a storage engine, ALTER TABLE ... OPTIMIZE PARTITION causes
the entire table to rebuilt and analyzed, and an appropriate warning to be issued. (Bug #11751825,
Bug #42822)

To work around this problem, use the statements ALTER TABLE ... REBUILD PARTITION and
ALTER TABLE ... ANALYZE PARTITION instead.

The ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR
PARTITION options are not permitted for tables which are not partitioned.

ALTER TABLE Syntax

1620

• REMOVE PARTITIONING enables you to remove a table's partitioning without otherwise affecting the
table or its data. This option can be combined with other ALTER TABLE options such as those used
to add, drop, or rename columns or indexes.

• Using the ENGINE option with ALTER TABLE changes the storage engine used by the table without
affecting the partitioning.

In MySQL 5.7, when ALTER TABLE ... EXCHANGE PARTITION or ALTER TABLE ... TRUNCATE
PARTITION is run against a partitioned table that uses MyISAM (or another storage engine that makes
use of table-level locking), only those partitions that are actually read from are locked. (This does not
apply to partitioned tables using a storage enginethat employs row-level locking, such as InnoDB.) See
Section 18.6.4, “Partitioning and Locking”.

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications.

The ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION,
ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION options cannot be combined
with other alter specifications in a single ALTER TABLE, since the options just listed act on individual
partitions. For more information, see Section 13.1.6.1, “ALTER TABLE Partition Operations”.

Only a single instance of any one of the following options can be used in a given ALTER TABLE
statement: PARTITION BY, ADD PARTITION, DROP PARTITION, TRUNCATE PARTITION,
EXCHANGE PARTITION, REORGANIZE PARTITION, or COALESCE PARTITION, ANALYZE
PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, REBUILD PARTITION, REMOVE
PARTITIONING.

For example, the following two statements are invalid:

ALTER TABLE t1 ANALYZE PARTITION p1, ANALYZE PARTITION p2;

ALTER TABLE t1 ANALYZE PARTITION p1, CHECK PARTITION p2;

In the first case, you can analyze partitions p1 and p2 of table t1 concurrently using a single statement
with a single ANALYZE PARTITION option that lists both of the partitions to be analyzed, like this:

ALTER TABLE t1 ANALYZE PARTITION p1, p2;

In the second case, it is not possible to perform ANALYZE and CHECK operations on different partitions
of the same table concurrently. Instead, you must issue two separate statements, like this:

ALTER TABLE t1 ANALYZE PARTITION p1;
ALTER TABLE t1 CHECK PARTITION p2;

Prior to MySQL 5.7.2, ANALYZE, CHECK, OPTIMIZE, REPAIR, and TRUNCATE operations were not
supported for subpartitions. (Bug #14028340, Bug #65184)

REBUILD operations are currently unsupported for subpartitions. In MySQL 5.7.2, 5.7.3, and 5.7.4, the
REBUILD keyword was accepted with subpartition names as valid syntax in ALTER TABLE statements,
even though it had no effect. In MySQL 5.7.5, REBUILD is expressly disallowed with subpartitions, and
causes ALTER TABLE to fail with an error if so used. (Bug #19075411, Bug #73130)

CHECK PARTITION and REPAIR PARTITION operations fail when the partition to be checked or
repaired contains any duplicate key errors.

MySQL 5.7.2 and 5.7.3 allowed alternative behavior that could be invoked using ALTER IGNORE
TABLE with the corresponding options (Bug #16900947), which caused the statement to behave as
follows:

ALTER TABLE Syntax

1621

• ALTER IGNORE TABLE ... REPAIR PARTITION removed from the partition all rows that could
not be moved due to the presence of duplicate keys.

• ALTER IGNORE TABLE ... CHECK PARTITION wrote out the contents of all columns in the
partitioning expression for each row in the partition in which a duplicate key violation was found.

This is no longer possible in MySQL 5.7.4 and later, where the IGNORE keyword is no longer allowed
(see ALTER IGNORE TABLE).

For more information about these statements, see Section 18.3.4, “Maintenance of Partitions”.

13.1.6.2 ALTER TABLE Examples

Begin with a table t1 that is created as shown here:

CREATE TABLE t1 (a INTEGER,b CHAR(10));

To rename the table from t1 to t2:

ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to
change column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

ALTER TABLE t2 ADD d TIMESTAMP;

To add an index on column d and a UNIQUE index on column a:

ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);

To remove column c:

ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
 ADD PRIMARY KEY (c);

We indexed c (as a PRIMARY KEY) because AUTO_INCREMENT columns must be indexed, and we
declare c as NOT NULL because primary key columns cannot be NULL.

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers
automatically. For MyISAM tables, you can set the first sequence number by executing SET
INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table option.
See Section 5.1.4, “Server System Variables”.

With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not
affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT column,
the numbers are resequenced beginning with 1.

When replication is used, adding an AUTO_INCREMENT column to a table might not produce the
same ordering of the rows on the slave and the master. This occurs because the order in which the
rows are numbered depends on the specific storage engine used for the table and the order in which

ALTER VIEW Syntax

1622

the rows were inserted. If it is important to have the same order on the master and slave, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to the table t1, the following statements produce a new table t2 identical to
t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

This set of statements will also produce a new table t2 identical to t1, with the addition of an
AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, all columns of t1
must be referenced in the ORDER BY clause.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

DROP TABLE t1;
ALTER TABLE t2 RENAME t1;

13.1.7 ALTER VIEW Syntax

ALTER
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = { user | CURRENT_USER }]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of a view, which must exist. The syntax is similar to that for
CREATE VIEW and the effect is the same as for CREATE OR REPLACE VIEW. See Section 13.1.17,
“CREATE VIEW Syntax”. This statement requires the CREATE VIEW and DROP privileges for the view,
and some privilege for each column referred to in the SELECT statement. ALTER VIEW is permitted
only to the definer or users with the SUPER privilege.

13.1.8 CREATE DATABASE Syntax

CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name
 [create_specification] ...

create_specification:
 [DEFAULT] CHARACTER SET [=] charset_name
 | [DEFAULT] COLLATE [=] collation_name

CREATE DATABASE creates a database with the given name. To use this statement, you need the
CREATE privilege for the database. CREATE SCHEMA is a synonym for CREATE DATABASE.

An error occurs if the database exists and you did not specify IF NOT EXISTS.

In MySQL 5.7, CREATE DATABASE is not permitted within a session that has an active LOCK TABLES
statement.

CREATE EVENT Syntax

1623

create_specification options specify database characteristics. Database characteristics are
stored in the db.opt file in the database directory. The CHARACTER SET clause specifies the default
database character set. The COLLATE clause specifies the default database collation. Section 10.1,
“Character Set Support”, discusses character set and collation names.

A database in MySQL is implemented as a directory containing files that correspond to tables in
the database. Because there are no tables in a database when it is initially created, the CREATE
DATABASE statement creates only a directory under the MySQL data directory and the db.opt file.
Rules for permissible database names are given in Section 9.2, “Schema Object Names”. If a database
name contains special characters, the name for the database directory contains encoded versions of
those characters as described in Section 9.2.3, “Mapping of Identifiers to File Names”.

If you manually create a directory under the data directory (for example, with mkdir), the server
considers it a database directory and it shows up in the output of SHOW DATABASES.

You can also use the mysqladmin program to create databases. See Section 4.5.2, “mysqladmin —
Client for Administering a MySQL Server”.

13.1.9 CREATE EVENT Syntax

CREATE
 [DEFINER = { user | CURRENT_USER }]
 EVENT
 [IF NOT EXISTS]
 event_name
 ON SCHEDULE schedule
 [ON COMPLETION [NOT] PRESERVE]
 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'comment']
 DO event_body;

schedule:
 AT timestamp [+ INTERVAL interval] ...
 | EVERY interval
 [STARTS timestamp [+ INTERVAL interval] ...]
 [ENDS timestamp [+ INTERVAL interval] ...]

interval:
 quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |
 WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
 DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

This statement creates and schedules a new event. The event will not run unless the Event Scheduler
is enabled. For information about checking Event Scheduler status and enabling it if necessary, see
Section 19.4.2, “Event Scheduler Configuration”.

CREATE EVENT requires the EVENT privilege for the schema in which the event is to be created. It
might also require the SUPER privilege, depending on the DEFINER value, as described later in this
section.

The minimum requirements for a valid CREATE EVENT statement are as follows:

• The keywords CREATE EVENT plus an event name, which uniquely identifies the event in a database
schema.

• An ON SCHEDULE clause, which determines when and how often the event executes.

• A DO clause, which contains the SQL statement to be executed by an event.

This is an example of a minimal CREATE EVENT statement:

CREATE EVENT myevent
 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR

CREATE EVENT Syntax

1624

 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The previous statement creates an event named myevent. This event executes once—one
hour following its creation—by running an SQL statement that increments the value of the
myschema.mytable table's mycol column by 1.

The event_name must be a valid MySQL identifier with a maximum length of 64 characters. Event
names are not case sensitive, so you cannot have two events named myevent and MyEvent in the
same schema. In general, the rules governing event names are the same as those for names of stored
routines. See Section 9.2, “Schema Object Names”.

An event is associated with a schema. If no schema is indicated as part of event_name, the default
(current) schema is assumed. To create an event in a specific schema, qualify the event name with a
schema using schema_name.event_name syntax.

The DEFINER clause specifies the MySQL account to be used when checking access privileges
at event execution time. If a user value is given, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER,
or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE EVENT
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only permitted user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not exist, a warning is generated.

• Although it is possible to create an event with a nonexistent DEFINER account, an error occurs at
event execution time if the account does not exist.

For more information about event security, see Section 19.6, “Access Control for Stored Programs and
Views”.

Within an event, the CURRENT_USER() function returns the account used to check privileges at event
execution time, which is the DEFINER user. For information about user auditing within events, see
Section 6.3.16, “SQL-Based MySQL Account Activity Auditing”.

IF NOT EXISTS has the same meaning for CREATE EVENT as for CREATE TABLE: If an event
named event_name already exists in the same schema, no action is taken, and no error results.
(However, a warning is generated in such cases.)

The ON SCHEDULE clause determines when, how often, and for how long the event_body defined for
the event repeats. This clause takes one of two forms:

• AT timestamp is used for a one-time event. It specifies that the event executes one time only
at the date and time given by timestamp, which must include both the date and time, or must be
an expression that resolves to a datetime value. You may use a value of either the DATETIME or
TIMESTAMP type for this purpose. If the date is in the past, a warning occurs, as shown here:

mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2006-02-10 23:59:01 |
+---------------------+
1 row in set (0.04 sec)

mysql> CREATE EVENT e_totals
 -> ON SCHEDULE AT '2006-02-10 23:59:00'
 -> DO INSERT INTO test.totals VALUES (NOW());

CREATE EVENT Syntax

1625

Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1588
Message: Event execution time is in the past and ON COMPLETION NOT
 PRESERVE is set. The event was dropped immediately after
 creation.

CREATE EVENT statements which are themselves invalid—for whatever reason—fail with an error.

You may use CURRENT_TIMESTAMP to specify the current date and time. In such a case, the event
acts as soon as it is created.

To create an event which occurs at some point in the future relative to the current date and time—
such as that expressed by the phrase “three weeks from now”—you can use the optional clause
+ INTERVAL interval. The interval portion consists of two parts, a quantity and a unit of
time, and follows the same syntax rules that govern intervals used in the DATE_ADD() function (see
Section 12.7, “Date and Time Functions”. The units keywords are also the same, except that you
cannot use any units involving microseconds when defining an event. With some interval types,
complex time units may be used. For example, “two minutes and ten seconds” can be expressed as
+ INTERVAL '2:10' MINUTE_SECOND.

You can also combine intervals. For example, AT CURRENT_TIMESTAMP + INTERVAL 3 WEEK
+ INTERVAL 2 DAY is equivalent to “three weeks and two days from now”. Each portion of such a
clause must begin with + INTERVAL.

• To repeat actions at a regular interval, use an EVERY clause. The EVERY keyword is followed by an
interval as described in the previous discussion of the AT keyword. (+ INTERVAL is not used
with EVERY.) For example, EVERY 6 WEEK means “every six weeks”.

Although + INTERVAL clauses are not permitted in an EVERY clause, you can use the same
complex time units permitted in a + INTERVAL.

An EVERY clause may contain an optional STARTS clause. STARTS is followed by a timestamp
value that indicates when the action should begin repeating, and may also use + INTERVAL
interval to specify an amount of time “from now”. For example, EVERY 3 MONTH STARTS
CURRENT_TIMESTAMP + INTERVAL 1 WEEK means “every three months, beginning one
week from now”. Similarly, you can express “every two weeks, beginning six hours and fifteen
minutes from now” as EVERY 2 WEEK STARTS CURRENT_TIMESTAMP + INTERVAL '6:15'
HOUR_MINUTE. Not specifying STARTS is the same as using STARTS CURRENT_TIMESTAMP—that
is, the action specified for the event begins repeating immediately upon creation of the event.

An EVERY clause may contain an optional ENDS clause. The ENDS keyword is followed by a
timestamp value that tells MySQL when the event should stop repeating. You may also use +
INTERVAL interval with ENDS; for instance, EVERY 12 HOUR STARTS CURRENT_TIMESTAMP
+ INTERVAL 30 MINUTE ENDS CURRENT_TIMESTAMP + INTERVAL 4 WEEK is equivalent to
“every twelve hours, beginning thirty minutes from now, and ending four weeks from now”. Not using
ENDS means that the event continues executing indefinitely.

ENDS supports the same syntax for complex time units as STARTS does.

You may use STARTS, ENDS, both, or neither in an EVERY clause.

If a repeating event does not terminate within its scheduling interval, the result may be multiple
instances of the event executing simultaneously. If this is undesirable, you should institute a
mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK()
function, or row or table locking.

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables
to obtain any of the timestamp or interval values which it contains. You may not use stored

CREATE EVENT Syntax

1626

functions or user-defined functions in such expressions, nor may you use any table references;
however, you may use SELECT FROM DUAL. This is true for both CREATE EVENT and ALTER EVENT
statements. References to stored functions, user-defined functions, and tables in such cases are
specifically not permitted, and fail with an error (see Bug #22830).

Times in the ON SCHEDULE clause are interpreted using the current session time_zone value. This
becomes the event time zone; that is, the time zone that is used for event scheduling and is in effect
within the event as it executes. These times are converted to UTC and stored along with the event time
zone in the mysql.event table. This enables event execution to proceed as defined regardless of any
subsequent changes to the server time zone or daylight saving time effects. For additional information
about representation of event times, see Section 19.4.4, “Event Metadata”. See also Section 13.7.5.18,
“SHOW EVENTS Syntax”, and Section 20.7, “The INFORMATION_SCHEMA EVENTS Table”.

Normally, once an event has expired, it is immediately dropped. You can override this behavior by
specifying ON COMPLETION PRESERVE. Using ON COMPLETION NOT PRESERVE merely makes the
default nonpersistent behavior explicit.

You can create an event but prevent it from being active using the DISABLE keyword. Alternatively,
you can use ENABLE to make explicit the default status, which is active. This is most useful in
conjunction with ALTER EVENT (see Section 13.1.2, “ALTER EVENT Syntax”).

A third value may also appear in place of ENABLE or DISABLE; DISABLE ON SLAVE is set for the
status of an event on a replication slave to indicate that the event was created on the master and
replicated to the slave, but is not executed on the slave. See Section 17.4.1.12, “Replication of Invoked
Features”.

You may supply a comment for an event using a COMMENT clause. comment may be any string of up
to 64 characters that you wish to use for describing the event. The comment text, being a string literal,
must be surrounded by quotation marks.

The DO clause specifies an action carried by the event, and consists of an SQL statement. Nearly
any valid MySQL statement that can be used in a stored routine can also be used as the action
statement for a scheduled event. (See Section C.1, “Restrictions on Stored Programs”.) For example,
the following event e_hourly deletes all rows from the sessions table once per hour, where this
table is part of the site_activity schema:

CREATE EVENT e_hourly
 ON SCHEDULE
 EVERY 1 HOUR
 COMMENT 'Clears out sessions table each hour.'
 DO
 DELETE FROM site_activity.sessions;

MySQL stores the sql_mode system variable setting in effect when an event is created or altered, and
always executes the event with this setting in force, regardless of the current server SQL mode when
the event begins executing.

A CREATE EVENT statement that contains an ALTER EVENT statement in its DO clause appears to
succeed; however, when the server attempts to execute the resulting scheduled event, the execution
fails with an error.

Note

Statements such as SELECT or SHOW that merely return a result set have no
effect when used in an event; the output from these is not sent to the MySQL
Monitor, nor is it stored anywhere. However, you can use statements such as
SELECT ... INTO and INSERT INTO ... SELECT that store a result. (See
the next example in this section for an instance of the latter.)

The schema to which an event belongs is the default schema for table references in the DO clause. Any
references to tables in other schemas must be qualified with the proper schema name.

CREATE FUNCTION Syntax

1627

As with stored routines, you can use compound-statement syntax in the DO clause by using the BEGIN
and END keywords, as shown here:

delimiter |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

delimiter ;

This example uses the delimiter command to change the statement delimiter. See Section 19.1,
“Defining Stored Programs”.

More complex compound statements, such as those used in stored routines, are possible in an event.
This example uses local variables, an error handler, and a flow control construct:

delimiter |

CREATE EVENT e
 ON SCHEDULE
 EVERY 5 SECOND
 DO
 BEGIN
 DECLARE v INTEGER;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;

 SET v = 0;

 WHILE v < 5 DO
 INSERT INTO t1 VALUES (0);
 UPDATE t2 SET s1 = s1 + 1;
 SET v = v + 1;
 END WHILE;
 END |

delimiter ;

There is no way to pass parameters directly to or from events; however, it is possible to invoke a stored
routine with parameters within an event:

CREATE EVENT e_call_myproc
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO CALL myproc(5, 27);

If an event's definer has the SUPER privilege, the event can read and write global variables. As granting
this privilege entails a potential for abuse, extreme care must be taken in doing so.

Generally, any statements that are valid in stored routines may be used for action statements
executed by events. For more information about statements permissible within stored routines, see
Section 19.2.1, “Stored Routine Syntax”. You can create an event as part of a stored routine, but an
event cannot be created by another event.

13.1.10 CREATE FUNCTION Syntax

The CREATE FUNCTION statement is used to create stored functions and user-defined functions
(UDFs):

CREATE INDEX Syntax

1628

• For information about creating stored functions, see Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”.

• For information about creating user-defined functions, see Section 13.7.3.1, “CREATE FUNCTION
Syntax for User-Defined Functions”.

13.1.11 CREATE INDEX Syntax

CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
 [index_type]
 ON tbl_name (index_col_name,...)
 [index_option]
 [algorithm_option | lock_option] ...

index_col_name:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'

algorithm_option:
 ALGORITHM [=] {DEFAULT|INPLACE|COPY}

lock_option:
 LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 13.1.6,
“ALTER TABLE Syntax”. CREATE INDEX cannot be used to create a PRIMARY KEY; use ALTER
TABLE instead. For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE.
See Section 13.1.14, “CREATE TABLE Syntax”. This guideline is especially important for InnoDB
tables, where the primary key determines the physical layout of rows in the data file. CREATE INDEX
enables you to add indexes to existing tables.

A column list of the form (col1,col2,...) creates a multiple-column index. Index key values are
formed by concatenating the values of the given columns.

Indexes can be created that use only the leading part of column values, using col_name(length)
syntax to specify an index prefix length:

• Prefixes can be specified for CHAR, VARCHAR, BINARY, and VARBINARY columns.

• BLOB and TEXT columns also can be indexed, but a prefix length must be given.

• Prefix lengths are given in characters for nonbinary string types and in bytes for binary string
types. That is, index entries consist of the first length characters of each column value for CHAR,
VARCHAR, and TEXT columns, and the first length bytes of each column value for BINARY,
VARBINARY, and BLOB columns.

• For spatial columns, prefix values cannot be given, as described later in this section.

The statement shown here creates an index using the first 10 characters of the name column:

CREATE INDEX part_of_name ON customer (name(10));

If names in the column usually differ in the first 10 characters, this index should not be much slower
than an index created from the entire name column. Also, using column prefixes for indexes can make

CREATE INDEX Syntax

1629

the index file much smaller, which could save a lot of disk space and might also speed up INSERT
operations.

Prefix support and lengths of prefixes (where supported) are storage engine dependent. For example,
a prefix can be up to 767 bytes long for InnoDB tables or 3072 bytes if the innodb_large_prefix
option is enabled. For MyISAM tables, the prefix limit is 1000 bytes.

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE
INDEX statements is interpreted as number of characters for nonbinary data
types (CHAR, VARCHAR, TEXT). Take this into account when specifying a prefix
length for a column that uses a multibyte character set.

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs
if you try to add a new row with a key value that matches an existing row. For all engines, a UNIQUE
index permits multiple NULL values for columns that can contain NULL. If you specify a prefix value for
a column in a UNIQUE index, the column values must be unique within the prefix.

FULLTEXT indexes are supported only for InnoDB and MyISAM tables and can include only CHAR,
VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix indexing
is not supported and any prefix length is ignored if specified. See Section 12.9, “Full-Text Search
Functions”, for details of operation.

The MyISAM, InnoDB, NDB, and ARCHIVE storage engines support spatial columns such as (POINT
and GEOMETRY. (Section 11.5, “Extensions for Spatial Data”, describes the spatial data types.)
However, support for spatial column indexing varies among engines. Spatial and nonspatial indexes
are available according to the following rules.

Spatial indexes (created using SPATIAL INDEX) have these characteristics:

• Available only for MyISAM and (as of MySQL 5.7.5) InnoDB tables. Specifying SPATIAL INDEX for
other storage engines results in an error.

• Indexed columns must be NOT NULL.

• In MySQL 5.7, column prefix lengths are prohibited. The full width of each column is indexed.

Characteristics of nonspatial indexes (created with INDEX, UNIQUE, or PRIMARY KEY):

• Permitted for any storage engine that supports spatial columns except ARCHIVE.

• Columns can be NULL unless the index is a primary key.

• For each spatial column in a non-SPATIAL index except POINT columns, a column prefix length
must be specified. (This is the same requirement as for indexed BLOB columns.) The prefix length is
given in bytes.

• The index type for a non-SPATIAL index depends on the storage engine. Currently, B-tree is used.

In MySQL 5.7:

• You can add an index on a column that can have NULL values only if you are using the InnoDB,
MyISAM, or MEMORY storage engine.

• You can add an index on a BLOB or TEXT column only if you are using the InnoDB or MyISAM
storage engine.

• When the innodb_stats_persistent setting is enabled, run the ANALYZE TABLE statement for
an InnoDB table after creating an index on that table.

As of MySQL 5.7.8, InnoDB supports secondary indexes on virtual columns. For more information, see
Secondary Indexes and Virtual Generated Columns.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

CREATE INDEX Syntax

1630

An index_col_name specification can end with ASC or DESC. These keywords are permitted for
future extensions for specifying ascending or descending index value storage. Currently, they are
parsed but ignored; index values are always stored in ascending order.

Following the index column list, index options can be given. An index_option value can be any of
the following:

• KEY_BLOCK_SIZE [=] value

Optionally specifies the size in bytes to use for index key blocks. The value is treated as a hint; a
different size could be used if necessary.

Note

KEY_BLOCK_SIZE is only supported at the table level for InnoDB. See
Section 13.1.14, “CREATE TABLE Syntax”.

• index_type

Some storage engines permit you to specify an index type when creating an index. The permissible
index type values supported by different storage engines are shown in the following table. Where
multiple index types are listed, the first one is the default when no index type specifier is given.

Storage Engine Permissible Index Types

InnoDB BTREE

MyISAM BTREE

MEMORY/HEAP HASH, BTREE

NDB HASH, BTREE (see note in text)

Example:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index ON lookup (id) USING BTREE;

The index_type clause cannot be used together with SPATIAL INDEX.

If you specify an index type that is not valid for a given storage engine, but there is another index
type available that the engine can use without affecting query results, the engine uses the available
type. The parser recognizes RTREE as a type name, but currently this cannot be specified for any
storage engine.

Use of this option before the ON tbl_name clause is deprecated; support for use of the option in
this position will be removed in a future MySQL release. If an index_type option is given in both
the earlier and later positions, the final option applies.

TYPE type_name is recognized as a synonym for USING type_name. However, USING is the
preferred form.

• WITH PARSER parser_name

This option can be used only with FULLTEXT indexes. It associates a parser plugin with the index
if full-text indexing and searching operations need special handling. Prior to MySQL 5.7.3, only
MyISAM supported full-text parser plugins. As of MySQL 5.7.3, both InnoDB and MyISAM support
full-text parser plugins. See Section 24.2.3.2, “Full-Text Parser Plugins” and Section 24.2.4.4,
“Writing Full-Text Parser Plugins” for more information.

• COMMENT 'string'

Index definitions can include an optional comment of up to 1024 characters.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

CREATE PROCEDURE and CREATE FUNCTION Syntax

1631

As of MySQL 5.7.6, the MERGE_THRESHOLD for index pages can be configured for individual
indexes using the index_option COMMENT clause of the CREATE INDEX statement. For example:

CREATE TABLE t1 (id INT);
CREATE INDEX id_index ON t1 (id) COMMENT 'MERGE_THRESHOLD=40';

If the page-full percentage for an index page falls below the MERGE_THRESHOLD value when a
row is deleted or when a row is shortened by an update operation, InnoDB attempts to merge the
index page with a neighboring index page. The default MERGE_THRESHOLD value is 50, which is the
previously hardcoded value.

MERGE_THRESHOLD can also be defined at the index level and table level using CREATE TABLE
and ALTER TABLE statements. For more information, see Section 14.3.12, “Configuring the Merge
Threshold for Index Pages”.

ALGORITHM and LOCK clauses may be given. These influence the table copying method and level
of concurrency for reading and writing the table while its indexes are being modified. They have the
same meaning as for the ALTER TABLE statement. For more information, see Section 13.1.6, “ALTER
TABLE Syntax”

13.1.12 CREATE PROCEDURE and CREATE FUNCTION Syntax

CREATE
 [DEFINER = { user | CURRENT_USER }]
 PROCEDURE sp_name ([proc_parameter[,...]])
 [characteristic ...] routine_body

CREATE
 [DEFINER = { user | CURRENT_USER }]
 FUNCTION sp_name ([func_parameter[,...]])
 RETURNS type
 [characteristic ...] routine_body

proc_parameter:
 [IN | OUT | INOUT] param_name type

func_parameter:
 param_name type

type:
 Any valid MySQL data type

characteristic:
 COMMENT 'string'
 | LANGUAGE SQL
 | [NOT] DETERMINISTIC
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }

routine_body:
 Valid SQL routine statement

These statements create stored routines. By default, a routine is associated with the default database.
To associate the routine explicitly with a given database, specify the name as db_name.sp_name
when you create it.

The CREATE FUNCTION statement is also used in MySQL to support UDFs (user-defined functions).
See Section 24.4, “Adding New Functions to MySQL”. A UDF can be regarded as an external stored
function. Stored functions share their namespace with UDFs. See Section 9.2.4, “Function Name
Parsing and Resolution”, for the rules describing how the server interprets references to different kinds
of functions.

To invoke a stored procedure, use the CALL statement (see Section 13.2.1, “CALL Syntax”). To invoke
a stored function, refer to it in an expression. The function returns a value during expression evaluation.

CREATE PROCEDURE and CREATE FUNCTION Syntax

1632

CREATE PROCEDURE and CREATE FUNCTION require the CREATE ROUTINE privilege. They might
also require the SUPER privilege, depending on the DEFINER value, as described later in this section.
If binary logging is enabled, CREATE FUNCTION might require the SUPER privilege, as described in
Section 19.7, “Binary Logging of Stored Programs”.

By default, MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine
creator. This behavior can be changed by disabling the automatic_sp_privileges system
variable. See Section 19.2.2, “Stored Routines and MySQL Privileges”.

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking
access privileges at routine execution time, as described later in this section.

If the routine name is the same as the name of a built-in SQL function, a syntax error occurs unless you
use a space between the name and the following parenthesis when defining the routine or invoking it
later. For this reason, avoid using the names of existing SQL functions for your own stored routines.

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always
permissible to have spaces after a stored routine name, regardless of whether IGNORE_SPACE is
enabled.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an
empty parameter list of () should be used. Parameter names are not case sensitive.

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword
OUT or INOUT before the parameter name.

Note

Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE.
For a FUNCTION, parameters are always regarded as IN parameters.

An IN parameter passes a value into a procedure. The procedure might modify the value, but the
modification is not visible to the caller when the procedure returns. An OUT parameter passes a value
from the procedure back to the caller. Its initial value is NULL within the procedure, and its value is
visible to the caller when the procedure returns. An INOUT parameter is initialized by the caller, can
be modified by the procedure, and any change made by the procedure is visible to the caller when the
procedure returns.

For each OUT or INOUT parameter, pass a user-defined variable in the CALL statement that invokes
the procedure so that you can obtain its value when the procedure returns. If you are calling the
procedure from within another stored procedure or function, you can also pass a routine parameter or
local routine variable as an IN or INOUT parameter.

Routine parameters cannot be referenced in statements prepared within the routine; see Section C.1,
“Restrictions on Stored Programs”.

The following example shows a simple stored procedure that uses an OUT parameter:

mysql> delimiter //

mysql> CREATE PROCEDURE simpleproc (OUT param1 INT)
 -> BEGIN
 -> SELECT COUNT(*) INTO param1 FROM t;
 -> END//
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL simpleproc(@a);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @a;
+------+
| @a |

CREATE PROCEDURE and CREATE FUNCTION Syntax

1633

+------+
| 3 |
+------+
1 row in set (0.00 sec)

The example uses the mysql client delimiter command to change the statement delimiter from ; to
// while the procedure is being defined. This enables the ; delimiter used in the procedure body to be
passed through to the server rather than being interpreted by mysql itself. See Section 19.1, “Defining
Stored Programs”.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates
the return type of the function, and the function body must contain a RETURN value statement. If
the RETURN statement returns a value of a different type, the value is coerced to the proper type.
For example, if a function specifies an ENUM or SET value in the RETURNS clause, but the RETURN
statement returns an integer, the value returned from the function is the string for the corresponding
ENUM member of set of SET members.

The following example function takes a parameter, performs an operation using an SQL function, and
returns the result. In this case, it is unnecessary to use delimiter because the function definition
contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

Parameter types and function return types can be declared to use any valid data type. The COLLATE
attribute can be used if preceded by the CHARACTER SET attribute.

The routine_body consists of a valid SQL routine statement. This can be a simple statement
such as SELECT or INSERT, or a compound statement written using BEGIN and END. Compound
statements can contain declarations, loops, and other control structure statements. The syntax for
these statements is described in Section 13.6, “MySQL Compound-Statement Syntax”.

MySQL permits routines to contain DDL statements, such as CREATE and DROP. MySQL also permits
stored procedures (but not stored functions) to contain SQL transaction statements such as COMMIT.
Stored functions may not contain statements that perform explicit or implicit commit or rollback. Support
for these statements is not required by the SQL standard, which states that each DBMS vendor may
decide whether to permit them.

Statements that return a result set can be used within a stored procedure but not within a stored
function. This prohibition includes SELECT statements that do not have an INTO var_list clause
and other statements such as SHOW, EXPLAIN, and CHECK TABLE. For statements that can be
determined at function definition time to return a result set, a Not allowed to return a result
set from a function error occurs (ER_SP_NO_RETSET). For statements that can be determined
only at runtime to return a result set, a PROCEDURE %s can't return a result set in the
given context error occurs (ER_SP_BADSELECT).

USE statements within stored routines are not permitted. When a routine is invoked, an implicit USE
db_name is performed (and undone when the routine terminates). The causes the routine to have the
given default database while it executes. References to objects in databases other than the routine
default database should be qualified with the appropriate database name.

For additional information about statements that are not permitted in stored routines, see Section C.1,
“Restrictions on Stored Programs”.

CREATE PROCEDURE and CREATE FUNCTION Syntax

1634

For information about invoking stored procedures from within programs written in a language that has a
MySQL interface, see Section 13.2.1, “CALL Syntax”.

MySQL stores the sql_mode system variable setting in effect when a routine is created or altered, and
always executes the routine with this setting in force, regardless of the current server SQL mode when
the routine begins executing.

The switch from the SQL mode of the invoker to that of the routine occurs after evaluation of arguments
and assignment of the resulting values to routine parameters. If you define a routine in strict SQL mode
but invoke it in nonstrict mode, assignment of arguments to routine parameters does not take place in
strict mode. If you require that expressions passed to a routine be assigned in strict SQL mode, you
should invoke the routine with strict mode in effect.

The COMMENT characteristic is a MySQL extension, and may be used to describe the stored routine.
This information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION
statements.

The LANGUAGE characteristic indicates the language in which the routine is written. The server ignores
this characteristic; only SQL routines are supported.

A routine is considered “deterministic” if it always produces the same result for the same input
parameters, and “not deterministic” otherwise. If neither DETERMINISTIC nor NOT DETERMINISTIC
is given in the routine definition, the default is NOT DETERMINISTIC. To declare that a function is
deterministic, you must specify DETERMINISTIC explicitly.

Assessment of the nature of a routine is based on the “honesty” of the creator: MySQL does not
check that a routine declared DETERMINISTIC is free of statements that produce nondeterministic
results. However, misdeclaring a routine might affect results or affect performance. Declaring
a nondeterministic routine as DETERMINISTIC might lead to unexpected results by causing
the optimizer to make incorrect execution plan choices. Declaring a deterministic routine as
NONDETERMINISTIC might diminish performance by causing available optimizations not to be used.

If binary logging is enabled, the DETERMINISTIC characteristic affects which routine definitions
MySQL accepts. See Section 19.7, “Binary Logging of Stored Programs”.

A routine that contains the NOW() function (or its synonyms) or RAND() is nondeterministic, but it might
still be replication-safe. For NOW(), the binary log includes the timestamp and replicates correctly.
RAND() also replicates correctly as long as it is called only a single time during the execution of a
routine. (You can consider the routine execution timestamp and random number seed as implicit inputs
that are identical on the master and slave.)

Several characteristics provide information about the nature of data use by the routine. In MySQL,
these characteristics are advisory only. The server does not use them to constrain what kinds of
statements a routine will be permitted to execute.

• CONTAINS SQL indicates that the routine does not contain statements that read or write data. This
is the default if none of these characteristics is given explicitly. Examples of such statements are SET
@x = 1 or DO RELEASE_LOCK('abc'), which execute but neither read nor write data.

• NO SQL indicates that the routine contains no SQL statements.

• READS SQL DATA indicates that the routine contains statements that read data (for example,
SELECT), but not statements that write data.

• MODIFIES SQL DATA indicates that the routine contains statements that may write data (for
example, INSERT or DELETE).

The SQL SECURITY characteristic can be DEFINER or INVOKER to specify the security context; that is,
whether the routine executes using the privileges of the account named in the routine DEFINER clause
or the user who invokes it. This account must have permission to access the database with which
the routine is associated. The default value is DEFINER. The user who invokes the routine must have

CREATE PROCEDURE and CREATE FUNCTION Syntax

1635

the EXECUTE privilege for it, as must the DEFINER account if the routine executes in definer security
context.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at
routine execution time for routines that have the SQL SECURITY DEFINER characteristic.

If a user value is given for the DEFINER clause, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER, or
CURRENT_USER(). The default DEFINER value is the user who executes the CREATE PROCEDURE or
CREATE FUNCTION statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only permitted user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not exist, a warning is generated.

• Although it is possible to create a routine with a nonexistent DEFINER account, an error occurs at
routine execution time if the SQL SECURITY value is DEFINER but the definer account does not
exist.

For more information about stored routine security, see Section 19.6, “Access Control for Stored
Programs and Views”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic,
CURRENT_USER returns the routine's DEFINER value. For information about user auditing within stored
routines, see Section 6.3.16, “SQL-Based MySQL Account Activity Auditing”.

Consider the following procedure, which displays a count of the number of MySQL accounts listed in
the mysql.user table:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure is assigned a DEFINER account of 'admin'@'localhost' no matter which user
defines it. It executes with the privileges of that account no matter which user invokes it (because the
default security characteristic is DEFINER). The procedure succeeds or fails depending on whether
invoker has the EXECUTE privilege for it and 'admin'@'localhost' has the SELECT privilege for the
mysql.user table.

Now suppose that the procedure is defined with the SQL SECURITY INVOKER characteristic:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
SQL SECURITY INVOKER
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure still has a DEFINER of 'admin'@'localhost', but in this case, it executes with
the privileges of the invoking user. Thus, the procedure succeeds or fails depending on whether the
invoker has the EXECUTE privilege for it and the SELECT privilege for the mysql.user table.

The server handles the data type of a routine parameter, local routine variable created with DECLARE,
or function return value as follows:

• Assignments are checked for data type mismatches and overflow. Conversion and overflow
problems result in warnings, or errors in strict SQL mode.

CREATE SERVER Syntax

1636

• Only scalar values can be assigned. For example, a statement such as SET x = (SELECT 1, 2)
is invalid.

• For character data types, if there is a CHARACTER SET attribute in the declaration, the specified
character set and its default collation is used. If the COLLATE attribute is also present, that collation is
used rather than the default collation.

If CHARACTER SET and COLLATE attributes are not present, the database character set and
collation in effect at routine creation time are used. To avoid having the server use the database
character set and collation, provide explicit CHARACTER SET and COLLATE attributes for character
data parameters.

If you change the database default character set or collation, stored routines that use the database
defaults must be dropped and recreated so that they use the new defaults.

The database character set and collation are given by the value of the character_set_database
and collation_database system variables. For more information, see Section 10.1.3.2,
“Database Character Set and Collation”.

13.1.13 CREATE SERVER Syntax

CREATE SERVER server_name
 FOREIGN DATA WRAPPER wrapper_name
 OPTIONS (option [, option] ...)

option:
 { HOST character-literal
 | DATABASE character-literal
 | USER character-literal
 | PASSWORD character-literal
 | SOCKET character-literal
 | OWNER character-literal
 | PORT numeric-literal }

This statement creates the definition of a server for use with the FEDERATED storage engine. The
CREATE SERVER statement creates a new row in the servers table in the mysql database. This
statement requires the SUPER privilege.

The server_name should be a unique reference to the server. Server definitions are global within
the scope of the server, it is not possible to qualify the server definition to a specific database.
server_name has a maximum length of 64 characters (names longer than 64 characters are silently
truncated), and is case insensitive. You may specify the name as a quoted string.

The wrapper_name should be mysql, and may be quoted with single quotation marks. Other values
for wrapper_name are not currently supported.

For each option you must specify either a character literal or numeric literal. Character literals are
UTF-8, support a maximum length of 64 characters and default to a blank (empty) string. String literals
are silently truncated to 64 characters. Numeric literals must be a number between 0 and 9999, default
value is 0.

Note

The OWNER option is currently not applied, and has no effect on the ownership
or operation of the server connection that is created.

The CREATE SERVER statement creates an entry in the mysql.servers table that can later be used
with the CREATE TABLE statement when creating a FEDERATED table. The options that you specify will
be used to populate the columns in the mysql.servers table. The table columns are Server_name,
Host, Db, Username, Password, Port and Socket.

For example:

CREATE TABLE Syntax

1637

CREATE SERVER s
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');

Be sure to specify all options necessary to establish a connection to the server. The user name, host
name, and database name are mandatory. Other options might be required as well, such as password.

The data stored in the table can be used when creating a connection to a FEDERATED table:

CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';

For more information, see Section 15.8, “The FEDERATED Storage Engine”.

CREATE SERVER causes an automatic commit.

In MySQL 5.7, CREATE SERVER is not written to the binary log, regardless of the logging format that is
in use.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

13.1.14 CREATE TABLE Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 (create_definition,...)
 [table_options]
 [partition_options]

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 [(create_definition,...)]
 [table_options]
 [partition_options]
 select_statement

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 { LIKE old_tbl_name | (LIKE old_tbl_name) }

create_definition:
 col_name column_definition
 | [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)
 [index_option] ...
 | {INDEX|KEY} [index_name] [index_type] (index_col_name,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY]
 [index_name] [index_type] (index_col_name,...)
 [index_option] ...
 | {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name] (index_col_name,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (index_col_name,...) reference_definition
 | CHECK (expr)

column_definition:
 data_type [NOT NULL | NULL] [DEFAULT default_value]
 [AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
 [COMMENT 'string']
 [COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}]
 [reference_definition]
 | data_type [GENERATED ALWAYS] AS (expression)
 [VIRTUAL | STORED] [UNIQUE [KEY]] [COMMENT comment]
 [NOT NULL | NULL] [[PRIMARY] KEY]

data_type:
 BIT[(length)]
 | TINYINT[(length)] [UNSIGNED] [ZEROFILL]
 | SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
 | MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
 | INT[(length)] [UNSIGNED] [ZEROFILL]
 | INTEGER[(length)] [UNSIGNED] [ZEROFILL]

CREATE TABLE Syntax

1638

 | BIGINT[(length)] [UNSIGNED] [ZEROFILL]
 | REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
 | DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
 | FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
 | DECIMAL[(length[,decimals])] [UNSIGNED] [ZEROFILL]
 | NUMERIC[(length[,decimals])] [UNSIGNED] [ZEROFILL]
 | DATE
 | TIME[(fsp)]
 | TIMESTAMP[(fsp)]
 | DATETIME[(fsp)]
 | YEAR
 | CHAR[(length)] [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | VARCHAR(length) [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | BINARY[(length)]
 | VARBINARY(length)
 | TINYBLOB
 | BLOB
 | MEDIUMBLOB
 | LONGBLOB
 | TINYTEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | TEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | MEDIUMTEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | LONGTEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | ENUM(value1,value2,value3,...)
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | SET(value1,value2,value3,...)
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | JSON
 | spatial_type

index_col_name:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'

reference_definition:
 REFERENCES tbl_name (index_col_name,...)
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION

table_options:
 table_option [[,] table_option] ...

table_option:
 ENGINE [=] engine_name
 | AUTO_INCREMENT [=] value
 | AVG_ROW_LENGTH [=] value
 | [DEFAULT] CHARACTER SET [=] charset_name
 | CHECKSUM [=] {0 | 1}
 | [DEFAULT] COLLATE [=] collation_name
 | COMMENT [=] 'string'
 | COMPRESSION [=] { ZLIB | LZ4 | NONE }
 | CONNECTION [=] 'connect_string'
 | DATA DIRECTORY [=] 'absolute path to directory'
 | DELAY_KEY_WRITE [=] {0 | 1}

CREATE TABLE Syntax

1639

 | INDEX DIRECTORY [=] 'absolute path to directory'
 | INSERT_METHOD [=] { NO | FIRST | LAST }
 | KEY_BLOCK_SIZE [=] value
 | MAX_ROWS [=] value
 | MIN_ROWS [=] value
 | PACK_KEYS [=] {0 | 1 | DEFAULT}
 | PASSWORD [=] 'string'
 | ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
 | STATS_AUTO_RECALC [=] {DEFAULT|0|1}
 | STATS_PERSISTENT [=] {DEFAULT|0|1}
 | STATS_SAMPLE_PAGES [=] value
 | TABLESPACE tablespace_name
 | UNION [=] (tbl_name[,tbl_name]...)

partition_options:
 PARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1|2}] (column_list)
 | RANGE{(expr) | COLUMNS(column_list)}
 | LIST{(expr) | COLUMNS(column_list)} }
 [PARTITIONS num]
 [SUBPARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1|2}] (column_list) }
 [SUBPARTITIONS num]
]
 [(partition_definition [, partition_definition] ...)]

partition_definition:
 PARTITION partition_name
 [VALUES
 {LESS THAN {(expr | value_list) | MAXVALUE}
 |
 IN (value_list)}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'comment_text']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]
 [(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:
 SUBPARTITION logical_name
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'comment_text']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]

select_statement:
 [IGNORE | REPLACE] [AS] SELECT ... (Some valid select statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the
table.

Rules for permissible table names are given in Section 9.2, “Schema Object Names”. By default, the
table is created in the default database, using the InnoDB storage engine. An error occurs if the table
exists, if there is no default database, or if the database does not exist.

The table name can be specified as db_name.tbl_name to create the table in a specific database.
This works regardless of whether there is a default database, assuming that the database exists.
If you use quoted identifiers, quote the database and table names separately. For example, write
`mydb`.`mytbl`, not `mydb.mytbl`.

CREATE TABLE Syntax

1640

Cloning or Copying a Table

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

For more information, see Section 13.1.14.1, “CREATE TABLE ... LIKE Syntax”.

To create one table from another, add a SELECT statement at the end of the CREATE TABLE
statement:

CREATE TABLE new_tbl SELECT * FROM orig_tbl;

For more information, see Section 13.1.14.2, “CREATE TABLE ... SELECT Syntax”.

Temporary Tables

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only to the
current session, and is dropped automatically when the session is closed. This means that two different
sessions can use the same temporary table name without conflicting with each other or with an existing
non-TEMPORARY table of the same name. (The existing table is hidden until the temporary table is
dropped.) To create temporary tables, you must have the CREATE TEMPORARY TABLES privilege.

Note

CREATE TABLE does not automatically commit the current active transaction if
you use the TEMPORARY keyword.

Note

TEMPORARY tables have a very loose relationship with databases (schemas).
Dropping a database does not automatically drop any TEMPORARY tables
created within that database. Also, you can create a TEMPORARY table in a
nonexistent database if you qualify the table name with the database name in
the CREATE TABLE statement. In this case, all subsequent references to the
table must be qualified with the database name.

Existing Table with Same Name

The keywords IF NOT EXISTS prevent an error from occurring if the table exists. However, there is
no verification that the existing table has a structure identical to that indicated by the CREATE TABLE
statement.

Physical Representation

MySQL represents each table by an .frm table format (definition) file in the database directory. The
storage engine for the table might create other files as well.

For InnoDB tables, the file storage is controlled by the innodb_file_per_table configuration
option. When this option is turned off, all InnoDB tables and indexes are stored in the system
tablespace, represented by one or more .ibd files. For each InnoDB table created when this option is
turned on, the table data and all associated indexes are stored in a .ibd file located inside the database
directory.

For MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table
tbl_name, there are three disk files.

File Purpose

tbl_name.frm Table format (definition) file

CREATE TABLE Syntax

1641

File Purpose

tbl_name.MYD Data file

tbl_name.MYI Index file

Chapter 15, Alternative Storage Engines, describes what files each storage engine creates to represent
tables. If a table name contains special characters, the names for the table files contain encoded
versions of those characters as described in Section 9.2.3, “Mapping of Identifiers to File Names”.

Data Types and Attributes for Columns

data_type represents the data type in a column definition. spatial_type represents a spatial
data type. The data type syntax shown is representative only. For a full description of the syntax
available for specifying column data types, as well as information about the properties of each type,
see Chapter 11, Data Types, and Section 11.5, “Extensions for Spatial Data”. Beginning with MySQL
5.7.8, a JSON data type is also supported for table columns; see Section 11.6, “The JSON Data Type”,
for more information.

Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer and floating-
point types. DEFAULT does not apply to the BLOB, TEXT, GEOMETRY, and JSON types.

• If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been
specified.

• An integer or floating-point column can have the additional attribute AUTO_INCREMENT. When you
insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column
is set to the next sequence value. Typically this is value+1, where value is the largest value for the
column currently in the table. AUTO_INCREMENT sequences begin with 1.

To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. See Section 12.14, “Information Functions”,
and Section 23.8.7.38, “mysql_insert_id()”.

If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT
columns as 0 without generating a new sequence value. See Section 5.1.7, “Server SQL Modes”.

Note

There can be only one AUTO_INCREMENT column per table, it must be
indexed, and it cannot have a DEFAULT value. An AUTO_INCREMENT column
works properly only if it contains only positive values. Inserting a negative
number is regarded as inserting a very large positive number. This is done to
avoid precision problems when numbers “wrap” over from positive to negative
and also to ensure that you do not accidentally get an AUTO_INCREMENT
column that contains 0.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column
key. See Section 3.6.9, “Using AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT
value for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

This method requires that sql_auto_is_null variable is not set to 0. See Section 5.1.4, “Server
System Variables”.

For information about InnoDB and AUTO_INCREMENT, see Section 14.5.5, “AUTO_INCREMENT
Handling in InnoDB”. For information about AUTO_INCREMENT and MySQL Replication, see
Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

CREATE TABLE Syntax

1642

• Character data types (CHAR, VARCHAR, TEXT) can include CHARACTER SET and COLLATE attributes
to specify the character set and collation for the column. For details, see Section 10.1, “Character
Set Support”. CHARSET is a synonym for CHARACTER SET. Example:

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

MySQL 5.7 interprets length specifications in character column definitions in characters. Lengths for
BINARY and VARBINARY are in bytes.

• The DEFAULT clause specifies a default value for a column. With one exception, the default
value must be a constant; it cannot be a function or an expression. This means, for example,
that you cannot set the default for a date column to be the value of a function such as NOW() or
CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the default for a
TIMESTAMP or DATETIME column. See Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP and DATETIME”.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as
described in Section 11.7, “Data Type Default Values”.

BLOB, TEXT, and JSON columns cannot be assigned a default value.

If the NO_ZERO_DATE or NO_ZERO_IN_DATE SQL mode is enabled and a date-valued default is
not correct according to that mode, CREATE TABLE produces a warning if strict SQL mode is not
enabled and an error if strict mode is enabled. For example, with NO_ZERO_IN_DATE enabled, c1
DATE DEFAULT '2010-00-00' produces a warning.

• A comment for a column can be specified with the COMMENT option, up to 1024 characters long. The
comment is displayed by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements.

• COLUMN_FORMAT is used by MySQL Cluster to determine a column's storage format. This option
currently has no effect on columns of tables using storage engines other than NDB. In MySQL 5.7
and later, COLUMN_FORMAT is silently ignored.

• KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as just
KEY when given in a column definition. This was implemented for compatibility with other database
systems.

• A UNIQUE index creates a constraint such that all values in the index must be distinct. An error
occurs if you try to add a new row with a key value that matches an existing row. For all engines, a
UNIQUE index permits multiple NULL values for columns that can contain NULL.

• A PRIMARY KEY is a unique index where all key columns must be defined as NOT NULL. If they are
not explicitly declared as NOT NULL, MySQL declares them so implicitly (and silently). A table can
have only one PRIMARY KEY. The name of a PRIMARY KEY is always PRIMARY, which thus cannot
be used as the name for any other kind of index.

If you do not have a PRIMARY KEY and an application asks for the PRIMARY KEY in your tables,
MySQL returns the first UNIQUE index that has no NULL columns as the PRIMARY KEY.

In InnoDB tables, keep the PRIMARY KEY short to minimize storage overhead for secondary
indexes. Each secondary index entry contains a copy of the primary key columns for the
corresponding row. (See Section 14.2.7, “InnoDB Table and Index Structures”.)

• In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the
nonunique indexes. This helps the MySQL optimizer to prioritize which index to use and also more
quickly to detect duplicated UNIQUE keys.

• A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column
index using the PRIMARY KEY key attribute in a column specification. Doing so only marks that
single column as primary. You must use a separate PRIMARY KEY(index_col_name, ...)
clause.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

CREATE TABLE Syntax

1643

• If a PRIMARY KEY or UNIQUE index consists of only one column that has an integer type, you can
also refer to the column as _rowid in SELECT statements.

• In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a
name, the index is assigned the same name as the first indexed column, with an optional suffix
(_2, _3, ...) to make it unique. You can see index names for a table using SHOW INDEX FROM
tbl_name. See Section 13.7.5.22, “SHOW INDEX Syntax”.

• Some storage engines permit you to specify an index type when creating an index. The syntax for
the index_type specifier is USING type_name.

Example:

CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

The preferred position for USING is after the index column list. It can be given before the column list,
but support for use of the option in that position is deprecated and will be removed in a future MySQL
release.

index_option values specify additional options for an index. USING is one such option. The WITH
PARSER option can only be used with FULLTEXT indexes. It associates a parser plugin with the
index if full-text indexing and searching operations need special handling. Prior to MySQL 5.7.3, only
MyISAM supported full-text parser plugins. As of MySQL 5.7.3, both InnoDB and MyISAM support
full-text parser plugins. If you have a MyISAM table with an associated full-text parser plugin, you can
convert the table to InnoDB using ALTER TABLE.

For more information about permissible index_option values, see Section 13.1.11, “CREATE
INDEX Syntax”. For more information about indexes, see Section 8.3.1, “How MySQL Uses
Indexes”.

• In MySQL 5.7, only the InnoDB, MyISAM, and MEMORY storage engines support indexes on
columns that can have NULL values. In other cases, you must declare indexed columns as NOT
NULL or an error results.

• For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the
leading part of column values, using col_name(length) syntax to specify an index prefix length.
BLOB and TEXT columns also can be indexed, but a prefix length must be given. Prefix lengths are
given in characters for nonbinary string types and in bytes for binary string types. That is, index
entries consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT
columns, and the first length bytes of each column value for BINARY, VARBINARY, and BLOB
columns. Indexing only a prefix of column values like this can make the index file much smaller. See
Section 8.3.4, “Column Indexes”.

Only the InnoDB and MyISAM storage engines support indexing on BLOB and TEXT columns. For
example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 767 bytes long for InnoDB tables or 3072 bytes if the
innodb_large_prefix option is enabled. For MyISAM tables, the prefix limit is 1000 bytes.

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE
TABLE statements is interpreted as number of characters for nonbinary data
types (CHAR, VARCHAR, TEXT). Take this into account when specifying a
prefix length for a column that uses a multibyte character set.

CREATE TABLE Syntax

1644

• An index_col_name specification can end with ASC or DESC. These keywords are permitted for
future extensions for specifying ascending or descending index value storage. Currently, they are
parsed but ignored; index values are always stored in ascending order.

• When you use ORDER BY or GROUP BY on a column in a SELECT, the server sorts values using only
the initial number of bytes indicated by the max_sort_length system variable.

• You can create special FULLTEXT indexes, which are used for full-text searches. Only the InnoDB
and MyISAM storage engines support FULLTEXT indexes. They can be created only from CHAR,
VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix
indexing is not supported and any prefix length is ignored if specified. See Section 12.9, “Full-
Text Search Functions”, for details of operation. A WITH PARSER clause can be specified as an
index_option value to associate a parser plugin with the index if full-text indexing and searching
operations need special handling. This clause is valid only for FULLTEXT indexes. Prior to MySQL
5.7.3, only MyISAM supported full-text parser plugins. As of MySQL 5.7.3, both InnoDB and
MyISAM support full-text parser plugins. See Section 24.2.3.2, “Full-Text Parser Plugins” and
Section 24.2.4.4, “Writing Full-Text Parser Plugins” for more information.

• You can create SPATIAL indexes on spatial data types. Spatial types are supported only for MyISAM
and (as of MySQL 5.7.5) InnoDB tables, and indexed columns must be declared as NOT NULL. See
Section 11.5, “Extensions for Spatial Data”.

• JSON columns cannot be indexed. You can work around this restriction by creating an index on a
generated column that extracts a scalar value from the JSON column. See Secondary Indexes and
Virtual Generated Columns, for a detailed example.

• In MySQL 5.7, index definitions can include an optional comment of up to 1024 characters.

• InnoDB tables support checking of foreign key constraints. The columns of the referenced table
must always be explicitly named. Both ON DELETE and ON UPDATE actions on foreign keys. For
more detailed information and examples, see Section 13.1.14.3, “Using FOREIGN KEY Constraints”.
For information specific to foreign keys in InnoDB, see Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”.

For other storage engines, MySQL Server parses and ignores the FOREIGN KEY and REFERENCES
syntax in CREATE TABLE statements. The CHECK clause is parsed but ignored by all storage
engines. See Section 1.8.2.3, “Foreign Key Differences”.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no
storage engine, including InnoDB, recognizes or enforces the MATCH clause
used in referential integrity constraint definitions. Use of an explicit MATCH
clause will not have the specified effect, and also causes ON DELETE and ON
UPDATE clauses to be ignored. For these reasons, specifying MATCH should
be avoided.

The MATCH clause in the SQL standard controls how NULL values in a
composite (multiple-column) foreign key are handled when comparing to a
primary key. InnoDB essentially implements the semantics defined by MATCH
SIMPLE, which permit a foreign key to be all or partially NULL. In that case,
the (child table) row containing such a foreign key is permitted to be inserted,
and does not match any row in the referenced (parent) table. It is possible to
implement other semantics using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance. However, InnoDB does not enforce any requirement that the
referenced columns be declared UNIQUE or NOT NULL. The handling of
foreign key references to nonunique keys or keys that contain NULL values is
not well defined for operations such as UPDATE or DELETE CASCADE. You

CREATE TABLE Syntax

1645

are advised to use foreign keys that reference only keys that are both UNIQUE
(or PRIMARY) and NOT NULL.

MySQL parses but ignores “inline REFERENCES specifications” (as defined
in the SQL standard) where the references are defined as part of the column
specification. MySQL accepts REFERENCES clauses only when specified as
part of a separate FOREIGN KEY specification.

Note

Partitioned tables employing the InnoDB storage engine do not support
foreign keys. See Section 18.6, “Restrictions and Limitations on Partitioning”,
for more information.

• There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given
table and depends on the factors discussed in Section C.10.4, “Limits on Table Column Count and
Row Size”.

CREATE TABLE and Generated Columns

As of MySQL 5.7.6, CREATE TABLE supports the specification of generated columns. Values of a
generated column are computed from an expression included in the column definition.

The following simple example shows a table that stores the lengths of the sides of right triangles in the
sidea and sideb columns, and computes the length of the hypotenuse in sidec (the square root of
the sums of the squares of the other sides):

CREATE TABLE triangle (
 sidea DOUBLE,
 sideb DOUBLE,
 sidec DOUBLE AS (SQRT(sidea * sidea + sideb * sideb))
);
INSERT INTO triangle (sidea, sideb) VALUES(1,1),(3,4),(6,8);

Selecting from the table yields this result:

mysql> SELECT * FROM triangle;
+-------+-------+--------------------+
| sidea | sideb | sidec |
+-------+-------+--------------------+
1	1	1.4142135623730951
3	4	5
6	8	10
+-------+-------+--------------------+

Any application that uses the triangle table has access to the hypotenuse values without having to
specify the expression that calculates them.

Generated column definitions have this syntax:

col_name data_type [GENERATED ALWAYS] AS (expression)
 [VIRTUAL | STORED] [UNIQUE [KEY]] [COMMENT comment]
 [[NOT] NULL] [[PRIMARY] KEY]

AS (expression) indicates that the column is generated and defines the expression used to
compute column values. AS may be preceded by GENERATED ALWAYS to make the generated nature
of the column more explicit. Constructs that are permitted or prohibited in the expression are discussed
later.

The VIRTUAL or STORED keyword indicates how column values are stored, which has implications for
column use:

CREATE TABLE Syntax

1646

• VIRTUAL: Column values are not stored, but are evaluated when rows are read, immediately after
any BEFORE triggers. A virtual column takes no storage.

Prior to MySQL 5.7.8, virtual columns cannot be indexed. As of MySQL 5.7.8, InnoDB supports
secondary indexes on virtual columns. See Secondary Indexes and Virtual Generated Columns.

• STORED: Column values are evaluated and stored when rows are inserted or updated. A stored
column does require storage space and can be indexed.

The default is VIRTUAL if neither keyword is specified.

It is permitted to mix VIRTUAL and STORED columns within a table.

Other attributes may be given to indicate whether the column is indexed or can be NULL, or provide
a comment. (Note that the order of these attributes differs from their order in nongenerated column
definitions.)

Generated column expressions must adhere to the following rules. An error occurs if an expression
contains disallowed constructs.

• Literals, deterministic built-in functions, and operators are permitted. A function is deterministic
if, given the same data in tables, multiple invocations produce the same result, independently
of the connected user. Examples of functions that fail this definition: CONNECTION_ID(),
CURRENT_USER(), NOW().

• Subqueries, parameters, variables, stored functions, and user-defined functions are not permitted.

• A generated column definition can refer to other generated columns, but only those occurring earlier
in the table definition. A generated column definition can refer to any base (nongenerated) column in
the table whether its definition occurs earlier or later.

• The AUTO_INCREMENT attribute cannot be used in a generated column definition.

• An AUTO_INCREMENT column cannot be used as a base column in a generated column definition.

• As of MySQL 5.7.10, if expression evaluation causes truncation or provides incorrect input to a
function, the CREATE TABLE statement terminates with an error and the DDL operation is rejected.

If the expression evaluates to a data type that differs from the declared column type, coercion to the
declared type occurs according to the usual MySQL type-conversion rules. See Section 12.2, “Type
Conversion in Expression Evaluation”.

Note

If any component of the expression depends on the SQL mode, different results
may occur for different uses of the table unless the SQL mode is the same
during all uses.

For CREATE TABLE ... LIKE, the destination table preserves generated column information from
the original table.

For CREATE TABLE ... SELECT, the destination table does not preserve information about whether
columns in the selected-from table are generated columns. The SELECT part of the statement cannot
assign values to generated columns in the destination table.

Partitioning by generated columns is permitted. See Creating Partitioned Tables.

Foreign keys on a STORED generated column cannot use ON DELETE SET NULL, ON UPDATE SET
NULL, or ON UPDATE CASCADE.

A VIRTUAL generated column cannot be referenced as a part of a foreign key constraint.

CREATE TABLE Syntax

1647

Triggers cannot use NEW.col_name or use OLD.col_name to refer to generated columns.

For INSERT, REPLACE, and UPDATE, if a generated column is inserted into, replaced, or updated
explicitly, the only permitted value is DEFAULT.

A generated column in a view is considered updatable because it is possible to assign to it. However, if
such a column is updated explicitly, the only permitted value is DEFAULT.

Generated columns have several use cases, such as these:

• Virtual generated columns can be used as a way to simplify and unify queries. A complicated
condition can be defined as a generated column and referred to from multiple queries on the table to
ensure that all of them use exactly the same condition.

• Stored generated columns can be used as a materialized cache for complicated conditions that are
costly to calculate on the fly.

• Generated columns can simulate functional indexes: Use a stored column to define a functional
expression and index it. This can be useful for working with columns of types that cannot be indexed
directly, such as JSON columns; see Secondary Indexes and Virtual Generated Columns for a
detailed example.

The disadvantage of such an approach is that values are stored twice; once as the value of the
generated column and once in the index.

• If a generated column is indexed, the optimizer recognizes query expressions that match the column
definition and uses indexes from the column as appropriate during query execution, even if a query
does not refer to the column directly by name. For details, see Section 8.3.9, “Optimizer Use of
Generated Column Indexes”.

Example:

Suppose that a table t1 contains first_name and last_name columns and that applications
frequently construct the full name using an expression like this:

SELECT CONCAT(first_name,' ',last_name) AS full_name FROM t1;

One way to avoid writing out the expression is to create a view v1 on t1, which simplifies applications
by enabling them to select full_name directly without using an expression:

CREATE VIEW v1 AS
SELECT *, CONCAT(first_name,' ',last_name) AS full_name FROM t1;

SELECT full_name FROM v1;

A generated column also enables applications to select full_name directly without the need to define
a view:

CREATE TABLE t1 (
 first_name VARCHAR(10),
 last_name VARCHAR(10),
 full_name VARCHAR(255) AS (CONCAT(first_name,' ',last_name))
);

SELECT full_name FROM t1;

Secondary Indexes and Virtual Generated Columns

As of MySQL 5.7.8, InnoDB supports secondary indexes on virtual generated columns. Other index
types are not supported.

CREATE TABLE Syntax

1648

A secondary index may be created on one or more virtual columns or on a combination of virtual
columns and non-virtual generated columns. Secondary indexes on virtual columns may be defined as
UNIQUE.

When a secondary index is created on a virtual generated column, generated column values are
materialized in the records of the index. If the index is a covering index (one that includes all the
columns retrieved by a query), generated column values are retrieved from materialized values in the
index structure instead of computed “on the fly”.

There are additional write costs to consider when using a secondary index on a virtual column due to
computation performed when materializing virtual column values in secondary index records during
INSERT and UPDATE operations. Even with additional write costs, secondary indexes on virtual
columns may be preferable to STORED generated columns, which are materialized in the clustered
index, resulting in larger tables that require more disk space and memory. If a secondary index is not
defined on a virtual column, there are additional costs for reads, as virtual column values must be
computed each time the column's row is examined.

Values of an indexed virtual column are MVCC-logged to avoid unnecessary recomputation of
generated column values during rollback or during a purge operation. The data length of logged values
is limited by the index key limit of 767 bytes for COMPACT and REDUNDANT row formats, and 3072 bytes
for DYNAMIC and COMPRESSED row formats.

Adding or dropping a secondary index on a virtual column is an in-place operation.

A secondary index on a virtual column cannot be used as the index for a foreign key.

Secondary indexes are not supported on virtual columns that have a base column that is referenced
in a foreign key constraint and uses ON DELETE CASCADE, ON DELETE SET NULL, ON UPDATE
CASCADE, or ON UPDATE SET NULL.

As noted elsewhere, JSON columns cannot be indexed directly. To create an index that references
such a column indirectly, you can define a generated column that extracts the information that should
be indexed, then create an index on the generated column, as shown in this example:

mysql> CREATE TABLE jemp (
 -> c JSON,
 -> g INT GENERATED ALWAYS AS (JSON_EXTRACT(c, '$.id')),
 -> INDEX i (g)
 ->);
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO jemp (c) VALUES
 > ('{"id": "1", "name": "Fred"}'), ('{"id": "2", "name": "Wilma"}'),
 > ('{"id": "3", "name": "Barney"}'), ('{"id": "4", "name": "Betty"}');
Query OK, 4 rows affected (0.04 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT JSON_UNQUOTE(JSON_EXTRACT(c, '$.name')) AS name
 > FROM jemp WHERE g > 2;
+--------+
| name |
+--------+
| Barney |
| Betty |
+--------+
2 rows in set (0.00 sec)

mysql> EXPLAIN SELECT JSON_UNQUOTE(JSON_EXTRACT(c, '$.name')) AS name
 > FROM jemp WHERE g > 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: jemp
 partitions: NULL
 type: range

CREATE TABLE Syntax

1649

possible_keys: i
 key: i
 key_len: 5
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select json_unquote(json_extract(`test`.`jemp`.`c`,'$.name'))
AS `name` from `test`.`jemp` where (`test`.`jemp`.`g` > 2)
1 row in set (0.00 sec)

(We have wrapped the output from the last statement in this example to fit the viewing area. See
Section 8.3.9, “Optimizer Use of Generated Column Indexes”, for the statements used to create and
populate the table just shown.)

In MySQL 5.7.9 and later, you can use -> as shorthand for JSON_EXTRACT() to access a value by
path from a JSON column value. See Searching and Modifying JSON Values, for information about the
JSON path syntax supported by MySQL.

When you use EXPLAIN on a statement containing one or more expressions that use the -> operator,
they are translated into the equivalent expressions using JSON_EXTRACT() instead, as shown here in
the output from SHOW WARNINGS immediately following this EXPLAIN statement:

mysql> EXPLAIN SELECT c->"$.name"
 > FROM jemp WHERE g > 2\G ORDER BY c->"$.name"
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: jemp
 partitions: NULL
 type: range
possible_keys: i
 key: i
 key_len: 5
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select json_extract(`test`.`jemp`.`c`,'$.name') AS
`c->"$.name"` from `test`.`jemp` where (`test`.`jemp`.`g` > 2) order by
json_extract(`test`.`jemp`.`c`,'$.name')
1 row in set (0.00 sec)

See the descriptions for the -> operator and JSON_EXTRACT() function (Section 12.16.3, “Functions
That Search JSON Values”) for additional information and examples.

This technique also can be used to provide indexes that indirectly reference columns of other types that
cannot be indexed directly, such as GEOMETRY columns.

Storage Engines

The ENGINE table option specifies the storage engine for the table, using one of the names shown in
the following table. The engine name can be unquoted or quoted. The quoted name 'DEFAULT' is
recognized but ignored.

CREATE TABLE Syntax

1650

Storage Engine Description

InnoDB Transaction-safe tables with row locking and foreign keys. The default
storage engine for new tables. See Chapter 14, The InnoDB Storage
Engine, and in particular Section 14.1.1, “InnoDB as the Default MySQL
Storage Engine” if you have MySQL experience but are new to InnoDB.

MyISAM The binary portable storage engine that is primarily used for read-only or
read-mostly workloads. See Section 15.2, “The MyISAM Storage Engine”.

MEMORY The data for this storage engine is stored only in memory. See
Section 15.3, “The MEMORY Storage Engine”.

CSV Tables that store rows in comma-separated values format. See
Section 15.4, “The CSV Storage Engine”.

ARCHIVE The archiving storage engine. See Section 15.5, “The ARCHIVE Storage
Engine”.

EXAMPLE An example engine. See Section 15.9, “The EXAMPLE Storage Engine”.

FEDERATED Storage engine that accesses remote tables. See Section 15.8, “The
FEDERATED Storage Engine”.

HEAP This is a synonym for MEMORY.

MERGE A collection of MyISAM tables used as one table. Also known as
MRG_MyISAM. See Section 15.7, “The MERGE Storage Engine”.

If a storage engine is specified that is not available, MySQL uses the default engine instead. Normally,
this is MyISAM. For example, if a table definition includes the ENGINE=INNODB option but the MySQL
server does not support INNODB tables, the table is created as a MyISAM table. This makes it possible
to have a replication setup where you have transactional tables on the master but tables created on the
slave are nontransactional (to get more speed). In MySQL 5.7, a warning occurs if the storage engine
specification is not honored.

Engine substitution can be controlled by the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as
described in Section 5.1.7, “Server SQL Modes”.

Note

The older TYPE option that was synonymous with ENGINE was removed in
MySQL 5.5. When upgrading to MySQL 5.5 or later, you must convert existing
applications that rely on TYPE to use ENGINE instead.

Optimizing Performance

The other table options are used to optimize the behavior of the table. In most cases, you do not have
to specify any of them. These options apply to all storage engines unless otherwise indicated. Options
that do not apply to a given storage engine may be accepted and remembered as part of the table
definition. Such options then apply if you later use ALTER TABLE to convert the table to use a different
storage engine.

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. In MySQL 5.7, this works for MyISAM, MEMORY,
InnoDB, and ARCHIVE tables. To set the first auto-increment value for engines that do not support
the AUTO_INCREMENT table option, insert a “dummy” row with a value one less than the desired
value after creating the table, and then delete the dummy row.

For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you can
also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value.
The value cannot be set lower than the maximum value currently in the column.

• AVG_ROW_LENGTH

CREATE TABLE Syntax

1651

An approximation of the average row length for your table. You need to set this only for large tables
with variable-size rows.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and
AVG_ROW_LENGTH options to decide how big the resulting table is. If you don't specify either option,
the maximum size for MyISAM data and index files is 256TB by default. (If your operating system
does not support files that large, table sizes are constrained by the file size limit.) If you want to
keep down the pointer sizes to make the index smaller and faster and you don't really need big files,
you can decrease the default pointer size by setting the myisam_data_pointer_size system
variable. (See Section 5.1.4, “Server System Variables”.) If you want all your tables to be able
to grow above the default limit and are willing to have your tables slightly slower and larger than
necessary, you can increase the default pointer size by setting this variable. Setting the value to 7
permits table sizes up to 65,536TB.

• [DEFAULT] CHARACTER SET

Specify a default character set for the table. CHARSET is a synonym for CHARACTER SET. If the
character set name is DEFAULT, the database character set is used.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that
MySQL updates automatically as the table changes). This makes the table a little slower to update,
but also makes it easier to find corrupted tables. The CHECKSUM TABLE statement reports the
checksum. (MyISAM only.)

• [DEFAULT] COLLATE

Specify a default collation for the table.

• COMMENT

A comment for the table, up to 2048 characters long.

As of MySQL 5.7.6, the MERGE_THRESHOLD for index pages can be configured for a table's
indexes using the table_option COMMENT clause of the CREATE TABLE statement. For example:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
) COMMENT='MERGE_THRESHOLD=45';

If the page-full percentage for an index page falls below the MERGE_THRESHOLD value when a
row is deleted or when a row is shortened by an update operation, InnoDB attempts to merge the
index page with a neighboring index page. The default MERGE_THRESHOLD value is 50, which is the
previously hardcoded value.

MERGE_THRESHOLD can also be defined for a table's indexes using the ALTER TABLE
table_option COMMENT clause. MERGE_THRESHOLD can be defined for individual indexes using
CREATE INDEX, or by using the index_option COMMENT clause with CREATE TABLE or ALTER
TABLE. For more information, see Section 14.3.12, “Configuring the Merge Threshold for Index
Pages”.

• COMPRESSION

The compression algorithm used for page level compression for InnoDB tables. Supported values
include Zlib, LZ4, and None. The COMPRESSION attribute was introduced with the transparent
page compression feature in MySQL 5.7.8. Page compression is only supported with InnoDB tables
that reside in file_per_table tablespaces, and is only available on Linux and Windows platforms that
support sparse files and hole punching. For more information, see Section 14.6.2, “InnoDB Page
Compression”.

CREATE TABLE Syntax

1652

• CONNECTION

The connection string for a FEDERATED table.

Note

Older versions of MySQL used a COMMENT option for the connection string.

• DATA DIRECTORY, INDEX DIRECTORY

For InnoDB, the DATA DIRECTORY='directory' option allows you to create InnoDB file-per-
table tablespaces outside the MySQL data directory. Within the directory that you specify, MySQL
creates a subdirectory corresponding to the database name, and within that a .ibd file for the table.
The innodb_file_per_table configuration option must be enabled to use the DATA DIRECTORY
option with InnoDB. The full directory path must be specified. See Section 14.4.5, “Creating a File-
Per-Table Tablespace Outside the Data Directory” for more information.

When creating MyISAM tables, you can use the DATA DIRECTORY='directory' clause, the
INDEX DIRECTORY='directory' clause, or both. They specify where to put a MyISAM table's
data file and index file, respectively. Unlike InnoDB tables, MySQL does not create subdirectories
that correspond to the database name when creating a MyISAM table with a DATA DIRECTORY or
INDEX DIRECTORY option. Files are created in the directory that is specified.

Important

Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored
for partitioned tables. (Bug #32091)

These options work only when you are not using the --skip-symbolic-links option. Your
operating system must also have a working, thread-safe realpath() call. See Section 8.12.4.2,
“Using Symbolic Links for MyISAM Tables on Unix”, for more complete information.

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the
database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The
same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this
behavior, start the server with the --keep_files_on_create option, in which case MyISAM will
not overwrite existing files and returns an error instead.

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified
directory.

Important

You cannot use path names that contain the MySQL data directory with DATA
DIRECTORY or INDEX DIRECTORY. This includes partitioned tables and
individual table partitions. (See Bug #32167.)

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. See the
description of the delay_key_write system variable in Section 5.1.4, “Server System Variables”.
(MyISAM only.)

• INSERT_METHOD

If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table into
which the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only. Use a
value of FIRST or LAST to have inserts go to the first or last table, or a value of NO to prevent inserts.
See Section 15.7, “The MERGE Storage Engine”.

CREATE TABLE Syntax

1653

• KEY_BLOCK_SIZE

For compressed InnoDB tables, optionally specifies the size in kilobytes to use for pages. Possible
KEY_BLOCK_SIZE values include 0, 1, 2, 4, 8, and 16. The KEY_BLOCK_SIZE value is treated as
a hint; a different size could be used by InnoDB if necessary. A value of 0 represents the default
compressed page size, which is half of the innodb_page_size value. The KEY_BLOCK_SIZE can
only be less than or equal to the innodb_page_size value. If you specify a value greater than the
innodb_page_size value, the value is ignored, a warning is issued, and KEY_BLOCK_SIZE is
set to half of the innodb_page_size value. If innodb_strict_mode=ON, specifying an invalid
KEY_BLOCK_SIZE value returns an error. See Section 14.6, “InnoDB Table and Page Compression”
for usage details.

Note

Support for 32k and 64k pages sizes was added in MySQL 5.7.6 but these
page sizes are not supported with ROW_FORMAT=COMPRESSED. For more
information, refer to the innodb_page_size documentation.

Individual index definitions can specify a KEY_BLOCK_SIZE value of their own to override the table
value.

Note

Oracle recommends enabling innodb_strict_mode when using the
KEY_BLOCK_SIZE clause for InnoDB tables.

• MAX_ROWS

The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint
to the storage engine that the table must be able to store at least this many rows.

The maximum MAX_ROWS value is 4294967295; larger values are truncated to this limit.

• MIN_ROWS

The minimum number of rows you plan to store in the table. The MEMORY storage engine uses this
option as a hint about memory use.

• PACK_KEYS

PACK_KEYS takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller
indexes. This usually makes updates slower and reads faster. Setting the option to 0 disables all
packing of keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR, VARCHAR,
BINARY, or VARBINARY columns.

If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use
PACK_KEYS=1, numbers are packed as well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same for
the next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve
compression.

This means that if you have many equal keys on two consecutive rows, all following “same” keys
usually only take two bytes (including the pointer to the row). Compare this to the ordinary case
where the following keys takes storage_size_for_key + pointer_size (where the pointer
size is usually 4). Conversely, you get a significant benefit from prefix compression only if you have
many numbers that are the same. If all keys are totally different, you use one byte more per key, if

CREATE TABLE Syntax

1654

the key is not a key that can have NULL values. (In this case, the packed key length is stored in the
same byte that is used to mark if a key is NULL.)

• PASSWORD

This option is unused. If you have a need to scramble your .frm files and make them unusable to
any other MySQL server, please contact our sales department.

• ROW_FORMAT

Defines the physical format in which the rows are stored. The choices differ depending on the
storage engine used for the table.

For InnoDB tables:

• In MySQL 5.7.8 and earlier, rows are stored in COMPACT format by default. As of MySQL 5.7.9,
the default row format is defined by innodb_default_row_format, which has a default setting
of DYNAMIC. The default row format is used when the ROW_FORMAT option is not defined or when
ROW_FORMAT=DEFAULT is used.

If the ROW_FORMAT option is not defined, or if ROW_FORMAT=DEFAULT is used, operations
that rebuild a table also silently change the row format of the table to the default defined by
innodb_default_row_format. For more information, see Section 14.8.2, “Specifying the Row
Format for a Table”.

• For more efficient InnoDB storage of data types, especially BLOB types, use the DYNAMIC. See
Section 14.8.3, “DYNAMIC and COMPRESSED Row Formats” for requirements associated with
the DYNAMIC row format.

• To enable compression for InnoDB tables, specify ROW_FORMAT=COMPRESSED. See Section 14.6,
“InnoDB Table and Page Compression” for requirements associated with the COMPRESSED row
format.

• The row format used in older versions of MySQL can still be requested by specifying the
REDUNDANT row format.

• When you specify a non-default ROW_FORMAT clause, consider also enabling the
innodb_strict_mode configuration option.

• ROW_FORMAT=FIXED is not supported. If ROW_FORMAT=FIXED is specified while
innodb_strict_mode is disabled, InnoDB issues a warning and assumes
ROW_FORMAT=COMPACT. If ROW_FORMAT=FIXED is specified while innodb_strict_mode is
enabled, which is the default as of MySQL 5.7.7, InnoDB returns an error.

• For additional information about InnoDB row formats, see Section 14.8, “InnoDB Row Storage and
Row Formats”.

For MyISAM tables, the option value can be FIXED or DYNAMIC for static or variable-length row
format. myisampack sets the type to COMPRESSED. See Section 15.2.3, “MyISAM Table Storage
Formats”.

Note

When executing a CREATE TABLE statement, if you specify a row format that
is not supported by the storage engine that is used for the table, the table
is created using that storage engine's default row format. The information
reported in this column in response to SHOW TABLE STATUS is the actual
row format used. This may differ from the value in the Create_options
column because the original CREATE TABLE definition is retained during
creation.

CREATE TABLE Syntax

1655

• STATS_AUTO_RECALC

Specifies whether to automatically recalculate persistent statistics for an InnoDB table. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_auto_recalc configuration option. The value 1 causes statistics to be
recalculated when 10% of the data in the table has changed. The value 0 prevents automatic
recalculation for this table; with this setting, issue an ANALYZE TABLE statement to recalculate the
statistics after making substantial changes to the table. For more information about the persistent
statistics feature, see Section 14.3.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• STATS_PERSISTENT

Specifies whether to enable persistent statistics for an InnoDB table. The value DEFAULT causes
the persistent statistics setting for the table to be determined by the innodb_stats_persistent
configuration option. The value 1 enables persistent statistics for the table, while the value 0
turns off this feature. After enabling persistent statistics through a CREATE TABLE or ALTER
TABLE statement, issue an ANALYZE TABLE statement to calculate the statistics, after loading
representative data into the table. For more information about the persistent statistics feature, see
Section 14.3.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• STATS_SAMPLE_PAGES

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. For more information, see Section 14.3.11.1,
“Configuring Persistent Optimizer Statistics Parameters”.

• TABLESPACE

The TABLESPACE option may be used to create a table in an existing general tablespace, a file-per-
table tablespace, or the system tablespace.

CREATE TABLE tbl_name ... TABLESPACE [=] tablespace_name

For information about general tablespaces, see Section 14.4.9, “InnoDB General Tablespaces”.

The tablespace_name is a case-sensitive identifier. It may be quoted or unquoted. The forward
slash character (“/”) is not permitted. Names beginning with “innodb_” are reserved for special use.

The TABLESPACE option may be used to assign InnoDB table partitions or subpartitions to a general
tablespace, a separate file-per-table tablespace, or the system tablespace. TABLESPACE option
support for table partitions and subpartitions was added in MySQL 5.7.8. All partitions must belong to
the same storage engine.

A tablespace specified at the table level becomes the default tablespace for new partitions and
subpartitions. The default tablespace may be overridden by specifying a tablespace at the partition
or subpartition level in a CREATE TABLE or ALTER TABLE statement. The following example shows
tablespaces defined at the table level and partition level.

mysql> CREATE TABLE t1 (a INT NOT NULL, PRIMARY KEY (a))
 -> ENGINE=InnoDB TABLESPACE ts1
 -> PARTITION BY RANGE (a) PARTITIONS 3 (
 -> PARTITION P1 VALUES LESS THAN (2),
 -> PARTITION P2 VALUES LESS THAN (4) TABLESPACE ts2,
 -> PARTITION P3 VALUES LESS THAN (6) TABLESPACE ts3);

For more information about the TABLESPACE option and partitioning, see Section 14.4.9, “InnoDB
General Tablespaces”

To create a table in the system tablespace, specify innodb_system as the tablespace name.

CREATE TABLE tbl_name ... TABLESPACE [=] innodb_system

CREATE TABLE Syntax

1656

Using the TABLESPACE [=] innodb_system option, you can place a table of any uncompressed
row format in the system tablespace regardless of the innodb_file_per_table setting. For
example, you can add a table with ROW_FORMAT=DYNAMIC to the system tablespace using the
TABLESPACE [=] innodb_system option.

To create a table in a file-per-table tablespace, specify innodb_file_per_table as the
tablespace name.

CREATE TABLE tbl_name ... TABLESPACE [=] innodb_file_per_table

Note

If innodb_file_per_table is enabled, you need not specify
TABLESPACE=innodb_file_per_table to create an InnoDB file-per-table
tablespace. InnoDB tables are created in file-per-table tablespaces by default
when innodb_file_per_table is enabled.

The DATA DIRECTORY clause is permitted with CREATE TABLE ...
TABLESPACE=innodb_file_per_table but is otherwise not supported for use in combination
with the TABLESPACE option.

The TABLESPACE option is supported with ALTER TABLE and ALTER TABLE ... REORGANIZE
PARTITION statements, which can be used to move tables and partitions from one tablespace to
another, respectively. For more information, see Section 14.4.9, “InnoDB General Tablespaces”.

• UNION

UNION is used when you want to access a collection of identical MyISAM tables as one. This works
only with MERGE tables. See Section 15.7, “The MERGE Storage Engine”.

You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.

Note

Formerly, all tables used had to be in the same database as the MERGE table
itself. This restriction no longer applies.

Creating Partitioned Tables

partition_options can be used to control partitioning of the table created with CREATE TABLE.

Important

Not all options shown in the syntax for partition_options at the beginning
of this section are available for all partitioning types. Please see the listings
for the following individual types for information specific to each type, and see
Chapter 18, Partitioning, for more complete information about the workings
of and uses for partitioning in MySQL, as well as additional examples of table
creation and other statements relating to MySQL partitioning.

If used, a partition_options clause begins with PARTITION BY. This clause contains the function
that is used to determine the partition; the function returns an integer value ranging from 1 to num,
where num is the number of partitions. (The maximum number of user-defined partitions which a table
may contain is 1024; the number of subpartitions—discussed later in this section—is included in this
maximum.) The choices that are available for this function in MySQL 5.7 are shown in the following list:

• HASH(expr): Hashes one or more columns to create a key for placing and locating rows. expr is
an expression using one or more table columns. This can be any valid MySQL expression (including
MySQL functions) that yields a single integer value. For example, these are both valid CREATE
TABLE statements using PARTITION BY HASH:

CREATE TABLE Syntax

1657

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
 PARTITION BY HASH(col1);

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
 PARTITION BY HASH (YEAR(col3));

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY HASH.

PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is, the
modulus). For examples and additional information, see Section 18.2.4, “HASH Partitioning”.

The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the partition
in which a row is stored is calculated as the result of one or more logical AND operations. For
discussion and examples of linear hashing, see Section 18.2.4.1, “LINEAR HASH Partitioning”.

• KEY(column_list): This is similar to HASH, except that MySQL supplies the hashing function
so as to guarantee an even data distribution. The column_list argument is simply a list of 1 or
more table columns (maximum: 16). This example shows a simple table partitioned by key, with 4
partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY KEY(col3)
 PARTITIONS 4;

For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR
keyword. This has the same effect as with tables that are partitioned by HASH. That is, the partition
number is found using the & operator rather than the modulus (see Section 18.2.4.1, “LINEAR
HASH Partitioning”, and Section 18.2.5, “KEY Partitioning”, for details). This example uses linear
partitioning by key to distribute data between 5 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR KEY(col3)
 PARTITIONS 5;

The ALGORITHM={1|2} option is supported with [SUB]PARTITION BY [LINEAR] KEY beginning
with MySQL 5.7.1. ALGORITHM=1 causes the server to use the same key-hashing functions as
MySQL 5.1; ALGORITHM=2 means that the server employs the key-hashing functions implemented
and used by default for new KEY partitioned tables in MySQL 5.5 and later. (Partitioned tables
created with the key-hashing functions employed in MySQL 5.5 and later cannot be used by a
MySQL 5.1 server.) Not specifying the option has the same effect as using ALGORITHM=2. This
option is intended for use chiefly when upgrading or downgrading [LINEAR] KEY partitioned
tables between MySQL 5.1 and later MySQL versions, or for creating tables partitioned by KEY or
LINEAR KEY on a MySQL 5.5 or later server which can be used on a MySQL 5.1 server. For more
information, see Section 13.1.6.1, “ALTER TABLE Partition Operations”.

mysqldump in MySQL 5.7 (and later) writes this option encased in versioned comments, like this:

CREATE TABLE t1 (a INT)
/*!50100 PARTITION BY KEY */ /*!50611 ALGORITHM = 1 */ /*!50100 ()
 PARTITIONS 3 */

This causes MySQL 5.6.10 and earlier servers to ignore the option, which would otherwise cause
a syntax error in those versions. If you plan to load a dump made on a MySQL 5.7 server where
you use tables that are partitioned or subpartitioned by KEY into a MySQL 5.6 server previous to
version 5.6.11, be sure to consult Changes Affecting Upgrades to MySQL 5.6, before proceeding.
(The information found there also applies if you are loading a dump containing KEY partitioned or
subpartitioned tables made from a MySQL 5.7—actually 5.6.11 or later—server into a MySQL 5.5.30
or earlier server.)

http://dev.mysql.com/doc/refman/5.6/en/upgrading-from-previous-series.html

CREATE TABLE Syntax

1658

Also in MySQL 5.6.11 and later, ALGORITHM=1 is shown when necessary in the output of SHOW
CREATE TABLE using versioned comments in the same manner as mysqldump. ALGORITHM=2 is
always omitted from SHOW CREATE TABLE output, even if this option was specified when creating
the original table.

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY KEY.

• RANGE(expr): In this case, expr shows a range of values using a set of VALUES LESS THAN
operators. When using range partitioning, you must define at least one partition using VALUES LESS
THAN. You cannot use VALUES IN with range partitioning.

Note

For tables partitioned by RANGE, VALUES LESS THAN must be used with
either an integer literal value or an expression that evaluates to a single
integer value. In MySQL 5.7, you can overcome this limitation in a table that
is defined using PARTITION BY RANGE COLUMNS, as described later in this
section.

Suppose that you have a table that you wish to partition on a column containing year values,
according to the following scheme.

Partition Number: Years Range:

0 1990 and earlier

1 1991 to 1994

2 1995 to 1998

3 1999 to 2002

4 2003 to 2005

5 2006 and later

A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement
shown here:

CREATE TABLE t1 (
 year_col INT,
 some_data INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2002),
 PARTITION p4 VALUES LESS THAN (2006),
 PARTITION p5 VALUES LESS THAN MAXVALUE
);

PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VALUES
LESS THAN MAXVALUE works to specify “leftover” values that are greater than the maximum value
otherwise specified.

VALUES LESS THAN clauses work sequentially in a manner similar to that of the case portions of a
switch ... case block (as found in many programming languages such as C, Java, and PHP).
That is, the clauses must be arranged in such a way that the upper limit specified in each successive
VALUES LESS THAN is greater than that of the previous one, with the one referencing MAXVALUE
coming last of all in the list.

• RANGE COLUMNS(column_list): This variant on RANGE facilitates partition pruning for queries
using range conditions on multiple columns (that is, having conditions such as WHERE a = 1 AND

CREATE TABLE Syntax

1659

b < 10 or WHERE a = 1 AND b = 10 AND c < 10). It enables you to specify value ranges in
multiple columns by using a list of columns in the COLUMNS clause and a set of column values in
each PARTITION ... VALUES LESS THAN (value_list) partition definition clause. (In the
simplest case, this set consists of a single column.) The maximum number of columns that can be
referenced in the column_list and value_list is 16.

The column_list used in the COLUMNS clause may contain only names of columns; each column
in the list must be one of the following MySQL data types: the integer types; the string types; and
time or date column types. Columns using BLOB, TEXT, SET, ENUM, BIT, or spatial data types are
not permitted; columns that use floating-point number types are also not permitted. You also may not
use functions or arithmetic expressions in the COLUMNS clause.

The VALUES LESS THAN clause used in a partition definition must specify a literal value for each
column that appears in the COLUMNS() clause; that is, the list of values used for each VALUES
LESS THAN clause must contain the same number of values as there are columns listed in the
COLUMNS clause. An attempt to use more or fewer values in a VALUES LESS THAN clause than
there are in the COLUMNS clause causes the statement to fail with the error Inconsistency
in usage of column lists for partitioning.... You cannot use NULL for any value
appearing in VALUES LESS THAN. It is possible to use MAXVALUE more than once for a given
column other than the first, as shown in this example:

CREATE TABLE rc (
 a INT NOT NULL,
 b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (10,5),
 PARTITION p1 VALUES LESS THAN (20,10),
 PARTITION p2 VALUES LESS THAN (MAXVALUE,15),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

Each value used in a VALUES LESS THAN value list must match the type of the corresponding
column exactly; no conversion is made. For example, you cannot use the string '1' for a value that
matches a column that uses an integer type (you must use the numeral 1 instead), nor can you use
the numeral 1 for a value that matches a column that uses a string type (in such a case, you must
use a quoted string: '1').

For more information, see Section 18.2.1, “RANGE Partitioning”, and Section 18.4, “Partition
Pruning”.

• LIST(expr): This is useful when assigning partitions based on a table column with a restricted set
of possible values, such as a state or country code. In such a case, all rows pertaining to a certain
state or country can be assigned to a single partition, or a partition can be reserved for a certain set
of states or countries. It is similar to RANGE, except that only VALUES IN may be used to specify
permissible values for each partition.

VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning
scheme such as the following:

CREATE TABLE client_firms (
 id INT,
 name VARCHAR(35)
)
PARTITION BY LIST (id) (
 PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
 PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
 PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
 PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);

CREATE TABLE Syntax

1660

When using list partitioning, you must define at least one partition using VALUES IN. You cannot use
VALUES LESS THAN with PARTITION BY LIST.

Note

For tables partitioned by LIST, the value list used with VALUES IN must
consist of integer values only. In MySQL 5.7, you can overcome this limitation
using partitioning by LIST COLUMNS, which is described later in this section.

• LIST COLUMNS(column_list): This variant on LIST facilitates partition pruning for queries
using comparison conditions on multiple columns (that is, having conditions such as WHERE a =
5 AND b = 5 or WHERE a = 1 AND b = 10 AND c = 5). It enables you to specify values in
multiple columns by using a list of columns in the COLUMNS clause and a set of column values in
each PARTITION ... VALUES IN (value_list) partition definition clause.

The rules governing regarding data types for the column list used in LIST
COLUMNS(column_list) and the value list used in VALUES IN(value_list) are the same
as those for the column list used in RANGE COLUMNS(column_list) and the value list used
in VALUES LESS THAN(value_list), respectively, except that in the VALUES IN clause,
MAXVALUE is not permitted, and you may use NULL.

There is one important difference between the list of values used for VALUES IN with PARTITION
BY LIST COLUMNS as opposed to when it is used with PARTITION BY LIST. When used with
PARTITION BY LIST COLUMNS, each element in the VALUES IN clause must be a set of column
values; the number of values in each set must be the same as the number of columns used in the
COLUMNS clause, and the data types of these values must match those of the columns (and occur in
the same order). In the simplest case, the set consists of a single column. The maximum number of
columns that can be used in the column_list and in the elements making up the value_list is
16.

The table defined by the following CREATE TABLE statement provides an example of a table using
LIST COLUMNS partitioning:

CREATE TABLE lc (
 a INT NULL,
 b INT NULL
)
PARTITION BY LIST COLUMNS(a,b) (
 PARTITION p0 VALUES IN((0,0), (NULL,NULL)),
 PARTITION p1 VALUES IN((0,1), (0,2), (0,3), (1,1), (1,2)),
 PARTITION p2 VALUES IN((1,0), (2,0), (2,1), (3,0), (3,1)),
 PARTITION p3 VALUES IN((1,3), (2,2), (2,3), (3,2), (3,3))
);

• The number of partitions may optionally be specified with a PARTITIONS num clause, where num
is the number of partitions. If both this clause and any PARTITION clauses are used, num must be
equal to the total number of any partitions that are declared using PARTITION clauses.

Note

Whether or not you use a PARTITIONS clause in creating a table that is
partitioned by RANGE or LIST, you must still include at least one PARTITION
VALUES clause in the table definition (see below).

• A partition may optionally be divided into a number of subpartitions. This can be indicated by using
the optional SUBPARTITION BY clause. Subpartitioning may be done by HASH or KEY. Either of
these may be LINEAR. These work in the same way as previously described for the equivalent
partitioning types. (It is not possible to subpartition by LIST or RANGE.)

The number of subpartitions can be indicated using the SUBPARTITIONS keyword followed by an
integer value.

CREATE TABLE Syntax

1661

• Rigorous checking of the value used in PARTITIONS or SUBPARTITIONS clauses is applied and this
value must adhere to the following rules:

• The value must be a positive, nonzero integer.

• No leading zeros are permitted.

• The value must be an integer literal, and cannot not be an expression. For example, PARTITIONS
0.2E+01 is not permitted, even though 0.2E+01 evaluates to 2. (Bug #15890)

Note

The expression (expr) used in a PARTITION BY clause cannot refer to any
columns not in the table being created; such references are specifically not
permitted and cause the statement to fail with an error. (Bug #29444)

Each partition may be individually defined using a partition_definition clause. The individual
parts making up this clause are as follows:

• PARTITION partition_name: This specifies a logical name for the partition.

• A VALUES clause: For range partitioning, each partition must include a VALUES LESS THAN
clause; for list partitioning, you must specify a VALUES IN clause for each partition. This is used to
determine which rows are to be stored in this partition. See the discussions of partitioning types in
Chapter 18, Partitioning, for syntax examples.

• An optional COMMENT clause may be used to specify a string that describes the partition. Example:

COMMENT = 'Data for the years previous to 1999'

The maximum length for a partition comment is 1024 characters.

• DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where,
respectively, the data and indexes for this partition are to be stored. Both the data_dir and the
index_dir must be absolute system path names. Example:

CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
 PARTITION p1999 VALUES IN (1995, 1999, 2003)
 DATA DIRECTORY = '/var/appdata/95/data'
 INDEX DIRECTORY = '/var/appdata/95/idx',
 PARTITION p2000 VALUES IN (1996, 2000, 2004)
 DATA DIRECTORY = '/var/appdata/96/data'
 INDEX DIRECTORY = '/var/appdata/96/idx',
 PARTITION p2001 VALUES IN (1997, 2001, 2005)
 DATA DIRECTORY = '/var/appdata/97/data'
 INDEX DIRECTORY = '/var/appdata/97/idx',
 PARTITION p2002 VALUES IN (1998, 2002, 2006)
 DATA DIRECTORY = '/var/appdata/98/data'
 INDEX DIRECTORY = '/var/appdata/98/idx'
);

DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE
statement's table_option clause as used for MyISAM tables.

One data directory and one index directory may be specified per partition. If left unspecified, the data
and indexes are stored by default in the table's database directory.

On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for
individual partitions or subpartitions of MyISAM tables, and the INDEX DIRECTORY option is not
supported for individual partitions or subpartitions of InnoDB tables. These options are ignored on
Windows, except that a warning is generated. (Bug #30459)

CREATE TABLE Syntax

1662

Note

The DATA DIRECTORY and INDEX DIRECTORY options are ignored for
creating partitioned tables if NO_DIR_IN_CREATE is in effect. (Bug #24633)

• MAX_ROWS and MIN_ROWS may be used to specify, respectively, the maximum and minimum
number of rows to be stored in the partition. The values for max_number_of_rows and
min_number_of_rows must be positive integers. As with the table-level options with the same
names, these act only as “suggestions” to the server and are not hard limits.

• TABLESPACE may be used to assign InnoDB table partitions or subpartitions to a general
tablespace, a separate file-per-table tablespace, or the system tablespace. TABLESPACE option
support for table partitions and subpartitions was added in MySQL 5.7.8. All partitions must belong to
the same storage engine. For more information, see Section 14.4.9, “InnoDB General Tablespaces”.

• The partitioning handler accepts a [STORAGE] ENGINE option for both PARTITION and
SUBPARTITION. Currently, the only way in which this can be used is to set all partitions or all
subpartitions to the same storage engine, and an attempt to set different storage engines for
partitions or subpartitions in the same table will give rise to the error ERROR 1469 (HY000):
The mix of handlers in the partitions is not permitted in this version of
MySQL. We expect to lift this restriction on partitioning in a future MySQL release.

• The partition definition may optionally contain one or more subpartition_definition clauses.
Each of these consists at a minimum of the SUBPARTITION name, where name is an identifier for
the subpartition. Except for the replacement of the PARTITION keyword with SUBPARTITION, the
syntax for a subpartition definition is identical to that for a partition definition.

Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LIST partitions.
See Section 18.2.6, “Subpartitioning”.

Partitioning by generated columns is permitted. For example:

CREATE TABLE t1 (
 s1 INT,
 s2 INT AS (EXP(s1)) STORED
)
PARTITION BY LIST (s2) (
 PARTITION p1 VALUES IN (1)
);

Partitioning sees a generated column as a regular column, which enables workarounds for limitations
on functions that are not permitted for partitioning (see Section 18.6.3, “Partitioning Limitations Relating
to Functions”). The preceding example demonstrates this technique: EXP() cannot be used directly in
the PARTITION BY clause, but a generated column defined using EXP() is permitted.

Partitions can be modified, merged, added to tables, and dropped from tables. For basic information
about the MySQL statements to accomplish these tasks, see Section 13.1.6, “ALTER TABLE Syntax”.
For more detailed descriptions and examples, see Section 18.3, “Partition Management”.

Important

The original CREATE TABLE statement, including all specifications and table
options are stored by MySQL when the table is created. The information is
retained so that if you change storage engines, collations or other settings using
an ALTER TABLE statement, the original table options specified are retained.
This enables you to change between InnoDB and MyISAM table types even
though the row formats supported by the two engines are different.

Because the text of the original statement is retained, but due to the way
that certain values and options may be silently reconfigured (such as the

CREATE TABLE Syntax

1663

ROW_FORMAT), the active table definition (accessible through DESCRIBE or with
SHOW TABLE STATUS) and the table creation string (accessible through SHOW
CREATE TABLE) will report different values.

13.1.14.1 CREATE TABLE ... LIKE Syntax

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

The copy is created using the same version of the table storage format as the original table. The
SELECT privilege is required on the original table.

LIKE works only for base tables, not for views.

Important

You cannot execute CREATE TABLE or CREATE TABLE ... LIKE while a
LOCK TABLES statement is in effect.

CREATE TABLE ... LIKE makes the same checks as CREATE TABLE and
does not just copy the .frm file. This means that if the current SQL mode is
different from the mode in effect when the original table was created, the table
definition might be considered invalid for the new mode and the statement will
fail.

For CREATE TABLE ... LIKE, the destination table preserves generated column information from
the original table.

CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY table
options that were specified for the original table, or any foreign key definitions.

If the original table is a TEMPORARY table, CREATE TABLE ... LIKE does not preserve TEMPORARY.
To create a TEMPORARY destination table, use CREATE TEMPORARY TABLE ... LIKE.

13.1.14.2 CREATE TABLE ... SELECT Syntax

You can create one table from another by adding a SELECT statement at the end of the CREATE
TABLE statement:

CREATE TABLE new_tbl [AS] SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY (a), KEY(b))
 -> ENGINE=MyISAM SELECT b,c FROM test2;

This creates a MyISAM table with three columns, a, b, and c. The ENGINE option is part of the CREATE
TABLE statement, and should not be used following the SELECT; this would result in a syntax error.
The same is true for other CREATE TABLE options such as CHARSET.

Notice that the columns from the SELECT statement are appended to the right side of the table, not
overlapped onto it. Take the following example:

mysql> SELECT * FROM foo;

CREATE TABLE Syntax

1664

+---+
| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default values for the
new columns.

In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TABLE
part come first. Columns named in both parts or only in the SELECT part come after that. The data type
of SELECT columns can be overridden by also specifying the column in the CREATE TABLE part.

If any errors occur while copying the data to the table, it is automatically dropped and not created.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate
unique key values. With IGNORE, rows that duplicate an existing row on a unique key value are
discarded. With REPLACE, new rows replace rows that have the same unique key value. If neither
IGNORE nor REPLACE is specified, duplicate unique key values result in an error. For more information,
see Comparison of the IGNORE Keyword and Strict SQL Mode.

Because the ordering of the rows in the underlying SELECT statements cannot always be determined,
CREATE TABLE ... IGNORE SELECT and CREATE TABLE ... REPLACE SELECT statements
are flagged as unsafe for statement-based replication. With this change, such statements produce a
warning in the log when using statement-based mode and are logged using the row-based format when
using MIXED mode. See also Section 17.2.1.1, “Advantages and Disadvantages of Statement-Based
and Row-Based Replication”.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If you want to have indexes in the created
table, you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

For CREATE TABLE ... SELECT, the destination table does not preserve information about whether
columns in the selected-from table are generated columns. The SELECT part of the statement cannot
assign values to generated columns in the destination table.

Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not
preserved, and VARCHAR columns can become CHAR columns. Retrained attributes are NULL (or NOT
NULL) and, for those columns that have them, CHARACTER SET, COLLATION, COMMENT, and the
DEFAULT clause.

When creating a table with CREATE TABLE ... SELECT, make sure to alias any function calls or
expressions in the query. If you do not, the CREATE statement might fail or result in undesirable column
names.

CREATE TABLE artists_and_works
 SELECT artist.name, COUNT(work.artist_id) AS number_of_works
 FROM artist LEFT JOIN work ON artist.id = work.artist_id

CREATE TABLE Syntax

1665

 GROUP BY artist.id;

You can also explicitly specify the data type for a column in the created table:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

For CREATE TABLE ... SELECT, if IF NOT EXISTS is given and the target table exists, nothing is
inserted into the destination table, and the statement is not logged.

To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts during CREATE TABLE ... SELECT.

You cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE TABLE
new_table SELECT ... FROM old_table If you attempt to do so, the statement fails.

13.1.14.3 Using FOREIGN KEY Constraints

MySQL supports foreign keys, which let you cross-reference related data across tables, and foreign
key constraints, which help keep this spread-out data consistent. The essential syntax for a foreign key
constraint definition in a CREATE TABLE or ALTER TABLE statement looks like this:

[CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (index_col_name, ...)
 REFERENCES tbl_name (index_col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION

index_name represents a foreign key ID. The index_name value is ignored if there is already an
explicitly defined index on the child table that can support the foreign key. Otherwise, MySQL implicitly
creates a foreign key index that is named according to the following rules:

• If defined, the CONSTRAINT symbol value is used. Otherwise, the FOREIGN KEY index_name
value is used.

• If neither a CONSTRAINT symbol or FOREIGN KEY index_name is defined, the foreign key index
name is generated using the name of the referencing foreign key column.

Foreign keys definitions are subject to the following conditions:

• Foreign key relationships involve a parent table that holds the central data values, and a child table
with identical values pointing back to its parent. The FOREIGN KEY clause is specified in the child
table. The parent and child tables must use the same storage engine. They must not be TEMPORARY
tables.

In MySQL 5.7, creation of a foreign key constraint requires the REFERENCES privilege for the parent
table as of 5.7.6.

• Corresponding columns in the foreign key and the referenced key must have similar data types. The
size and sign of integer types must be the same. The length of string types need not be the same.
For nonbinary (character) string columns, the character set and collation must be the same.

• When foreign_key_checks is enabled, which is the default setting, character set conversion is
not permitted on tables that include a character string column used in a foreign key constraint. The
workaround is described in Section 13.1.6, “ALTER TABLE Syntax”.

• MySQL requires indexes on foreign keys and referenced keys so that foreign key checks can be
fast and not require a table scan. In the referencing table, there must be an index where the foreign
key columns are listed as the first columns in the same order. Such an index is created on the

CREATE TABLE Syntax

1666

referencing table automatically if it does not exist. This index might be silently dropped later, if you
create another index that can be used to enforce the foreign key constraint. index_name, if given, is
used as described previously.

• InnoDB permits a foreign key to reference any index column or group of columns. However, in
the referenced table, there must be an index where the referenced columns are listed as the first
columns in the same order.

• Index prefixes on foreign key columns are not supported. One consequence of this is that BLOB and
TEXT columns cannot be included in a foreign key because indexes on those columns must always
include a prefix length.

• If the CONSTRAINT symbol clause is given, the symbol value, if used, must be unique in the
database. A duplicate symbol will result in an error similar to: ERROR 1022 (2300): Can't
write; duplicate key in table '#sql- 464_1'. If the clause is not given, or a symbol is
not included following the CONSTRAINT keyword, a name for the constraint is created automatically.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This
includes both parent and child tables.

Referential Actions

This section describes how foreign keys help guarantee referential integrity.

For storage engines supporting foreign keys, MySQL rejects any INSERT or UPDATE operation that
attempts to create a foreign key value in a child table if there is no a matching candidate key value in
the parent table.

When an UPDATE or DELETE operation affects a key value in the parent table that has matching rows
in the child table, the result depends on the referential action specified using ON UPDATE and ON
DELETE subclauses of the FOREIGN KEY clause. MySQL supports five options regarding the action to
be taken, listed here:

• CASCADE: Delete or update the row from the parent table, and automatically delete or update the
matching rows in the child table. Both ON DELETE CASCADE and ON UPDATE CASCADE are
supported. Between two tables, do not define several ON UPDATE CASCADE clauses that act on the
same column in the parent table or in the child table.

Note

Cascaded foreign key actions do not activate triggers.

• SET NULL: Delete or update the row from the parent table, and set the foreign key column or
columns in the child table to NULL. Both ON DELETE SET NULL and ON UPDATE SET NULL
clauses are supported.

If you specify a SET NULL action, make sure that you have not declared the columns in the child
table as NOT NULL.

• RESTRICT: Rejects the delete or update operation for the parent table. Specifying RESTRICT (or NO
ACTION) is the same as omitting the ON DELETE or ON UPDATE clause.

• NO ACTION: A keyword from standard SQL. In MySQL, equivalent to RESTRICT. The MySQL
Server rejects the delete or update operation for the parent table if there is a related foreign key
value in the referenced table. Some database systems have deferred checks, and NO ACTION is a
deferred check. In MySQL, foreign key constraints are checked immediately, so NO ACTION is the
same as RESTRICT.

• SET DEFAULT: This action is recognized by the MySQL parser, but InnoDB rejects table definitions
containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.

CREATE TABLE Syntax

1667

For an ON DELETE or ON UPDATE that is not specified, the default action is always RESTRICT.

MySQL supports foreign key references between one column and another within a table. (A column
cannot have a foreign key reference to itself.) In these cases, “child table records” really refers to
dependent records within the same table.

Foreign keys on a generated column cannot use ON DELETE SET NULL, ON UPDATE SET NULL, or
ON UPDATE CASCADE.

Examples of Foreign Key Clauses

Here is a simple example that relates parent and child tables through a single-column foreign key:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
 ON DELETE CASCADE
) ENGINE=INNODB;

A more complex example in which a product_order table has foreign keys for two other tables. One
foreign key references a two-column index in the product table. The other references a single-column
index in the customer table:

CREATE TABLE product (
 category INT NOT NULL, id INT NOT NULL,
 price DECIMAL,
 PRIMARY KEY(category, id)
) ENGINE=INNODB;

CREATE TABLE customer (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE product_order (
 no INT NOT NULL AUTO_INCREMENT,
 product_category INT NOT NULL,
 product_id INT NOT NULL,
 customer_id INT NOT NULL,

 PRIMARY KEY(no),
 INDEX (product_category, product_id),
 INDEX (customer_id),

 FOREIGN KEY (product_category, product_id)
 REFERENCES product(category, id)
 ON UPDATE CASCADE ON DELETE RESTRICT,

 FOREIGN KEY (customer_id)
 REFERENCES customer(id)
) ENGINE=INNODB;

Adding foreign keys

You can add a new foreign key constraint to an existing table by using ALTER TABLE. The syntax
relating to foreign keys for this statement is shown here:

CREATE TABLE Syntax

1668

ALTER TABLE tbl_name
 ADD [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (index_col_name, ...)
 REFERENCES tbl_name (index_col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

The foreign key can be self referential (referring to the same table). When you add a foreign key
constraint to a table using ALTER TABLE, remember to create the required indexes first.

Dropping Foreign Keys

You can also use ALTER TABLE to drop foreign keys, using the syntax shown here:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause included a CONSTRAINT name when you created the foreign key, you can
refer to that name to drop the foreign key. Otherwise, the fk_symbol value is generated internally
when the foreign key is created. To find out the symbol value when you want to drop a foreign key, use
a SHOW CREATE TABLE statement, as shown here:

mysql> SHOW CREATE TABLE ibtest11c\G
*************************** 1. row ***************************
 Table: ibtest11c
Create Table: CREATE TABLE `ibtest11c` (
 `A` int(11) NOT NULL auto_increment,
 `D` int(11) NOT NULL default '0',
 `B` varchar(200) NOT NULL default '',
 `C` varchar(175) default NULL,
 PRIMARY KEY (`A`,`D`,`B`),
 KEY `B` (`B`,`C`),
 KEY `C` (`C`),
 CONSTRAINT `0_38775` FOREIGN KEY (`A`, `D`)
REFERENCES `ibtest11a` (`A`, `D`)
ON DELETE CASCADE ON UPDATE CASCADE,
 CONSTRAINT `0_38776` FOREIGN KEY (`B`, `C`)
REFERENCES `ibtest11a` (`B`, `C`)
ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=INNODB CHARSET=latin1
1 row in set (0.01 sec)

mysql> ALTER TABLE ibtest11c DROP FOREIGN KEY `0_38775`;

Prior to MySQL 5.6.6, adding and dropping a foreign key in the same ALTER TABLE statement may
be problematic in some cases and is therefore unsupported. Separate statements should be used for
each operation. As of MySQL 5.6.6, adding and dropping a foreign key in the same ALTER TABLE
statement is supported for ALTER TABLE ... ALGORITHM=INPLACE but remains unsupported for
ALTER TABLE ... ALGORITHM=COPY.

In MySQL 5.7, the server prohibits changes to foreign key columns with the potential to cause loss
of referential integrity. A workaround is to use ALTER TABLE ... DROP FOREIGN KEY before
changing the column definition and ALTER TABLE ... ADD FOREIGN KEY afterward.

Foreign Keys and Other MySQL Statements

Table and column identifiers in a FOREIGN KEY ... REFERENCES ... clause can be quoted within
backticks (`). Alternatively, double quotation marks (") can be used if the ANSI_QUOTES SQL mode is
enabled. The setting of the lower_case_table_names system variable is also taken into account.

You can view a child table's foreign key definitions as part of the output of the SHOW CREATE TABLE
statement:

CREATE TABLE Syntax

1669

SHOW CREATE TABLE tbl_name;

You can also obtain information about foreign keys by querying the
INFORMATION_SCHEMA.KEY_COLUMN_USAGE table.

You can find information about foreign keys used by InnoDB tables in the INNODB_SYS_FOREIGN and
INNODB_SYS_FOREIGN_COLS tables, also in the INFORMATION_SCHEMA database.

mysqldump produces correct definitions of tables in the dump file, including the foreign keys for child
tables.

To make it easier to reload dump files for tables that have foreign key relationships, mysqldump
automatically includes a statement in the dump output to set foreign_key_checks to 0. This avoids
problems with tables having to be reloaded in a particular order when the dump is reloaded. It is also
possible to set this variable manually:

mysql> SET foreign_key_checks = 0;
mysql> SOURCE dump_file_name;
mysql> SET foreign_key_checks = 1;

This enables you to import the tables in any order if the dump file contains tables that are not correctly
ordered for foreign keys. It also speeds up the import operation. Setting foreign_key_checks
to 0 can also be useful for ignoring foreign key constraints during LOAD DATA and ALTER TABLE
operations. However, even if foreign_key_checks = 0, MySQL does not permit the creation of
a foreign key constraint where a column references a nonmatching column type. Also, if a table has
foreign key constraints, ALTER TABLE cannot be used to alter the table to use another storage engine.
To change the storage engine, you must drop any foreign key constraints first.

You cannot issue DROP TABLE for a table that is referenced by a FOREIGN KEY constraint, unless you
do SET foreign_key_checks = 0. When you drop a table, any constraints that were defined in the
statement used to create that table are also dropped.

If you re-create a table that was dropped, it must have a definition that conforms to the foreign key
constraints referencing it. It must have the correct column names and types, and it must have indexes
on the referenced keys, as stated earlier. If these are not satisfied, MySQL returns Error 1005 and
refers to Error 150 in the error message, which means that a foreign key constraint was not correctly
formed. Similarly, if an ALTER TABLE fails due to Error 150, this means that a foreign key definition
would be incorrectly formed for the altered table.

For InnoDB tables, you can obtain a detailed explanation of the most recent InnoDB foreign key error
in the MySQL Server, by checking the output of SHOW ENGINE INNODB STATUS.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no storage
engine, including InnoDB, recognizes or enforces the MATCH clause used in
referential-integrity constraint definitions. Use of an explicit MATCH clause will
not have the specified effect, and also causes ON DELETE and ON UPDATE
clauses to be ignored. For these reasons, specifying MATCH should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a
composite (multiple-column) foreign key are handled when comparing to a
primary key. MySQL essentially implements the semantics defined by MATCH
SIMPLE, which permit a foreign key to be all or partially NULL. In that case,
the (child table) row containing such a foreign key is permitted to be inserted,
and does not match any row in the referenced (parent) table. It is possible to
implement other semantics using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance reasons. However, the system does not enforce a requirement that

CREATE TABLE Syntax

1670

the referenced columns be UNIQUE or be declared NOT NULL. The handling of
foreign key references to nonunique keys or keys that contain NULL values is
not well defined for operations such as UPDATE or DELETE CASCADE. You are
advised to use foreign keys that reference only UNIQUE (including PRIMARY)
and NOT NULL keys.

Furthermore, MySQL parses but ignores “inline REFERENCES specifications”
(as defined in the SQL standard) where the references are defined as part of
the column specification. MySQL accepts REFERENCES clauses only when
specified as part of a separate FOREIGN KEY specification. For storage engines
that do not support foreign keys (such as MyISAM), MySQL Server parses and
ignores foreign key specifications.

13.1.14.4 Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE or
ALTER TABLE statement. These might be changes to a data type, to attributes associated with a data
type, or to an index specification.

All changes are subject to the internal row-size limit of 65,535 bytes, which may cause some attempts
at data type changes to fail. See Section C.10.4, “Limits on Table Column Count and Row Size”.

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

• Trailing spaces are automatically deleted from ENUM and SET member values when the table is
created.

• MySQL maps certain data types used by other SQL database vendors to MySQL types. See
Section 11.10, “Using Data Types from Other Database Engines”.

• If you include a USING clause to specify an index type that is not permitted for a given storage
engine, but there is another index type available that the engine can use without affecting query
results, the engine uses the available type.

• If strict SQL mode is not enabled, a VARCHAR column with a length specification greater than 65535
is converted to TEXT, and a VARBINARY column with a length specification greater than 65535 is
converted to BLOB. Otherwise, an error occurs in either of these cases.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they
are created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW
CREATE TABLE statement after creating or altering the table.

CREATE TABLESPACE Syntax

1671

Certain other data type changes can occur if you compress a table using myisampack. See
Section 15.2.3.3, “Compressed Table Characteristics”.

13.1.15 CREATE TABLESPACE Syntax

CREATE TABLESPACE tablespace_name
 ADD DATAFILE 'file_name'
 [FILE_BLOCK_SIZE = value]
 [ENGINE [=] engine_name]

This statement is used to create an InnoDB tablespace. An InnoDB tablespace created using CREATE
TABLESPACE is referred to as general tablespace.

A general tablespace is a shared tablespace, similar to the system tablespace. It can hold multiple
tables, and supports all table row formats. General tablespaces can also be created in a location
relative to or independent of the MySQL data directory.

After creating an InnoDB general tablespace, you can use CREATE TABLE tbl_name ...
TABLESPACE [=] tablespace_name or ALTER TABLE tbl_name TABLESPACE [=]
tablespace_name to add tables to the tablespace.

For more information, see Section 14.4.9, “InnoDB General Tablespaces”.

CREATE TABLESPACE is supported with InnoDB as of MySQL 5.7.6. In earlier releases, CREATE
TABLESPACE supports NDB, which is the MySQL Cluster storage engine. CREATE TABLESPACE will
support NDB in MySQL 5.7 when MySQL Cluster is branched from the MyQL 5.7 code base. The latest
version of MySQL Cluster is based on MySQL 5.6.

Options

• ADD DATAFILE: Defines the name of the tablespace data file. A data file must be specified with the
CREATE TABLESPACE statement, and the data file name must have a .ibd extension. An InnoDB
general tablespace only supports a single data file.

To place the data file in a location outside of the MySQL data directory (DATADIR), include an
absolute directory path or a path relative to the MySQL data directory. If you do not specify a path,
the general tablespace is created in the MySQL data directory. As of MySQL 5.7.8, an isl file is
created in the MySQL data directory when a general tablespace is created outside of the MySQL
data directory.

To avoid conflicts with implicitly created file-per-table tablespaces, creating a general tablespace
in a subdirectory under the MySQL data directory is not supported. Also, when creating a general
tablespace outside of the MySQL data directory, the directory must exist prior to creating the
tablespace.

The file_name, including the path (optional), must be quoted with single or double quotations
marks. File names (not counting the “.ibd” extension) and directory names must be at least one byte
in length. Zero length file names and directory names are not supported.

• FILE_BLOCK_SIZE: Defines the block size of the tablespace data file. If you do not specify
this option, FILE_BLOCK_SIZE defaults to innodb_page_size. The FILE_BLOCK_SIZE
setting is only required if you will use the tablespace to store compressed InnoDB tables
(ROW_FORMAT=COMPRESSED). In this case, you must define the tablespace FILE_BLOCK_SIZE
when creating the tablespace.

If FILE_BLOCK_SIZE is equal innodb_page_size, the tablespace can only contain tables with
an uncompressed row format (COMPACT, REDUNDANT, and DYNAMIC row formats). Tables with a
COMPRESSED row format have a different physical page size than uncompressed tables. Therefore,
compressed tables cannot coexist in the same tablespace as uncompressed tables.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

CREATE TABLESPACE Syntax

1672

For a general tablespace to contain compressed tables, FILE_BLOCK_SIZE must be
specified, and the FILE_BLOCK_SIZE value must be a valid compressed page size in
relation to the innodb_page_size value. Also, the physical page size of the compressed
table (KEY_BLOCK_SIZE) must be equal to FILE_BLOCK_SIZE/1024. For example, if
innodb_page_size=16K, and FILE_BLOCK_SIZE=8K, the KEY_BLOCK_SIZE of the table must
be 8. For more information, see Section 14.4.9, “InnoDB General Tablespaces”.

• ENGINE: Defines the storage engine which uses the tablespace, where engine_name is the name
of the storage engine. Currently, only the InnoDB storage engine is supported. ENGINE = InnoDB
must be defined as part of the CREATE TABLESPACE statement or InnoDB must be defined as the
default storage engine (default_storage_engine=InnoDB).

Notes

• tablespace_name is a case-sensitive identifier for the tablespace. It may be quoted or unquoted.
The forward slash character (“/”) is not permitted. Names beginning with innodb_ are either not
permitted or are reserved for special use.

• Creation of temporary general tablespaces is not supported.

• General tablespaces do not support temporary tables.

• As of MySQL 5.7.8, the TABLESPACE option may be used with CREATE TABLE or ALTER TABLE
to assign InnoDB table partitions or subpartitions to a general tablespace, a separate file-per-
table tablespace, or the system tablespace. TABLESPACE option support for table partitions and
subpartitions was added in MySQL 5.7.8. All partitions must belong to the same storage engine. For
more information, see Section 14.4.9, “InnoDB General Tablespaces”.

• innodb_file_per_table, innodb_file_format, and innodb_file_format_max settings
have no influence on CREATE TABLESPACE operations. innodb_file_per_table does not need
to be enabled. General tablespaces support all table row formats regardless of file format settings.
Likewise, general tablespaces support the addition of tables of any row format using CREATE
TABLE ... TABLESPACE, regardless of file format settings.

• innodb_strict_mode is not applicable to general tablespaces. Tablespace management rules
are strictly enforced independently of innodb_strict_mode. If CREATE TABLESPACE parameters
are incorrect or incompatible, the operation fails regardless of the innodb_strict_mode setting.
When a table is added to a general tablespace using CREATE TABLE ... TABLESPACE or ALTER
TABLE ... TABLESPACE, innodb_strict_mode is ignored but the statement is evaluated as if
innodb_strict_mode is enabled.

• Use DROP TABLESPACE to remove a general tablespace. All tables must be dropped from a general
tablespace using DROP TABLE prior to dropping the tablespace.

• All parts of a table added to a general tablespace reside in the general tablespace, including indexes
and BLOB pages.

• Similar to the system tablespace, truncating or dropping tables stored in a general tablespace
creates free space internally in the general tablespace .ibd data file which can only be used for
new InnoDB data. Space is not released back to the operating system as it is for file-per-table
tablespaces.

• A general tablespace is not associated with any database or schema.

• ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ...IMPORT TABLESPACE are
not supported for tables that belong to a general tablespace.

• The server uses tablespace-level metadata locking for DDL that references general tablespaces.
By comparison, the server uses table-level metadata locking for DDL that references file-per-table
tablespaces.

CREATE TRIGGER Syntax

1673

• A generated or existing tablespace cannot be changed to a general tablespace.

• Tables stored in a general tablespace can only be opened in MySQL 5.7.6 or later due to the
addition of new table flags.

• There is no conflict between general tablespace names and file-per-table tablespace names. The “/”
character, which is present in file-per-table tablespace names, is not permitted in general tablespace
names.

• General tablespaces created on Windows using a relative data file path cannot be opened on Unix-
like systems. This limitation is removed in MySQL 5.7.8 (Bug #20555168).

• In MySQL 5.7.6 and MySQL 5.7.7, tables stored in general tablespaces may not open (due to a
missing general tablespace file) after moving the MySQL data directory to a new location. This
limitation is addressed in MySQL 5.7.8 with the introduction of isl files for general tablespaces
created outside of the MySQL data directory (Bug #20563954).

Examples

This example demonstrates creating a general tablespace and adding three uncompressed tables of
different row formats.

mysql> CREATE TABLESPACE `ts1`
 -> ADD DATAFILE 'ts1.ibd'
 -> ENGINE=INNODB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY)
 -> TABLESPACE ts1
 -> ROW_FORMAT=REDUNDANT;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (c1 INT PRIMARY KEY)
 -> TABLESPACE ts1
 -> ROW_FORMAT=COMPACT;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t3 (c1 INT PRIMARY KEY)
 -> TABLESPACE ts1
 -> ROW_FORMAT=DYNAMIC;
Query OK, 0 rows affected (0.00 sec)

This example demonstrates creating a general tablespace and adding a compressed table. The
example assumes a default innodb_page_size of 16K. The FILE_BLOCK_SIZE of 8192 requires
that the compressed table have a KEY_BLOCK_SIZE of 8.

mysql> CREATE TABLESPACE `ts2`
 -> ADD DATAFILE 'ts2.ibd'
 -> FILE_BLOCK_SIZE = 8192
 -> ENGINE=INNODB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t4 (c1 INT PRIMARY KEY)
 -> TABLESPACE ts2
 -> ROW_FORMAT=COMPRESSED
 -> KEY_BLOCK_SIZE=8;
Query OK, 0 rows affected (0.00 sec)

13.1.16 CREATE TRIGGER Syntax

CREATE
 [DEFINER = { user | CURRENT_USER }]
 TRIGGER trigger_name
 trigger_time trigger_event

CREATE TRIGGER Syntax

1674

 ON tbl_name FOR EACH ROW
 [trigger_order]
 trigger_body

trigger_time: { BEFORE | AFTER }

trigger_event: { INSERT | UPDATE | DELETE }

trigger_order: { FOLLOWS | PRECEDES } other_trigger_name

This statement creates a new trigger. A trigger is a named database object that is associated with a
table, and that activates when a particular event occurs for the table. The trigger becomes associated
with the table named tbl_name, which must refer to a permanent table. You cannot associate a trigger
with a TEMPORARY table or a view.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names
within a schema. Triggers in different schemas can have the same name.

This section describes CREATE TRIGGER syntax. For additional discussion, see Section 19.3.1,
“Trigger Syntax and Examples”.

CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger. The
statement might also require the SUPER privilege, depending on the DEFINER value, as described later
in this section. If binary logging is enabled, CREATE TRIGGER might require the SUPER privilege, as
described in Section 19.7, “Binary Logging of Stored Programs”.

The DEFINER clause determines the security context to be used when checking access privileges at
trigger activation time, as described later in this section.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger
activates before or after each row to be modified.

trigger_event indicates the kind of operation that activates the trigger. These trigger_event
values are permitted:

• INSERT: The trigger activates whenever a new row is inserted into the table; for example, through
INSERT, LOAD DATA, and REPLACE statements.

• UPDATE: The trigger activates whenever a row is modified; for example, through UPDATE statements.

• DELETE: The trigger activates whenever a row is deleted from the table; for example, through
DELETE and REPLACE statements. DROP TABLE and TRUNCATE TABLE statements on the table
do not activate this trigger, because they do not use DELETE. Dropping a partition does not activate
DELETE triggers, either.

The trigger_event does not represent a literal type of SQL statement that activates the trigger so
much as it represents a type of table operation. For example, an INSERT trigger activates not only for
INSERT statements but also LOAD DATA statements because both statements insert rows into a table.

A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY
UPDATE ... syntax: a BEFORE INSERT trigger activates for every row, followed by either an AFTER
INSERT trigger or both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether
there was a duplicate key for the row.

Note

Cascaded foreign key actions do not activate triggers.

As of MySQL 5.7.2, it is possible to define multiple triggers for a given table that have the same
trigger event and action time. For example, you cannot have two BEFORE UPDATE triggers for a
table. By default, triggers that have the same trigger event and action time activate in the order they
were created. To affect trigger order, specify a trigger_order clause that indicates FOLLOWS or

CREATE TRIGGER Syntax

1675

PRECEDES and the name of an existing trigger that also has the same trigger event and action time.
With FOLLOWS, the new trigger activates after the existing trigger. With PRECEDES, the new trigger
activates before the existing trigger.

Before MySQL 5.7.2, there cannot be multiple triggers for a given table that have the same trigger
event and action time. For example, you cannot have two BEFORE UPDATE triggers for a table. But you
can have a BEFORE UPDATE and a BEFORE INSERT trigger, or a BEFORE UPDATE and an AFTER
UPDATE trigger.

trigger_body is the statement to execute when the trigger activates. To execute multiple
statements, use the BEGIN ... END compound statement construct. This also enables you to use
the same statements that are permitted within stored routines. See Section 13.6.1, “BEGIN ... END
Compound-Statement Syntax”. Some statements are not permitted in triggers; see Section C.1,
“Restrictions on Stored Programs”.

Within the trigger body, you can refer to columns in the subject table (the table associated with the
trigger) by using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before
it is updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an existing
row after it is updated.

Triggers cannot use NEW.col_name or use OLD.col_name to refer to generated columns. For
information about generated columns, see CREATE TABLE and Generated Columns.

MySQL stores the sql_mode system variable setting in effect when a trigger is created, and always
executes the trigger body with this setting in force, regardless of the current server SQL mode when
the trigger begins executing.

The DEFINER clause specifies the MySQL account to be used when checking access privileges
at trigger activation time. If a user value is given, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER,
or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE TRIGGER
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only permitted user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not exist, a warning is generated.

• Although it is possible to create a trigger with a nonexistent DEFINER account, it is not a good idea
for such triggers to be activated until the account actually does exist. Otherwise, the behavior with
respect to privilege checking is undefined.

MySQL takes the DEFINER user into account when checking trigger privileges as follows:

• At CREATE TRIGGER time, the user who issues the statement must have the TRIGGER privilege.

• At trigger activation time, privileges are checked against the DEFINER user. This user must have
these privileges:

• The TRIGGER privilege for the subject table.

• The SELECT privilege for the subject table if references to table columns occur using
OLD.col_name or NEW.col_name in the trigger body.

• The UPDATE privilege for the subject table if table columns are targets of SET NEW.col_name =
value assignments in the trigger body.

• Whatever other privileges normally are required for the statements executed by the trigger.

CREATE VIEW Syntax

1676

For more information about trigger security, see Section 19.6, “Access Control for Stored Programs
and Views”.

Within a trigger body, the CURRENT_USER() function returns the account used to check privileges at
trigger activation time. This is the DEFINER user, not the user whose actions caused the trigger to be
activated. For information about user auditing within triggers, see Section 6.3.16, “SQL-Based MySQL
Account Activity Auditing”.

If you use LOCK TABLES to lock a table that has triggers, the tables used within the trigger are also
locked, as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.

For additional discussion of trigger use, see Section 19.3.1, “Trigger Syntax and Examples”.

13.1.17 CREATE VIEW Syntax

CREATE
 [OR REPLACE]
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = { user | CURRENT_USER }]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

The CREATE VIEW statement creates a new view, or replaces an existing view if the OR REPLACE
clause is given. If the view does not exist, CREATE OR REPLACE VIEW is the same as CREATE VIEW.
If the view does exist, CREATE OR REPLACE VIEW is the same as ALTER VIEW.

The select_statement is a SELECT statement that provides the definition of the view. (Selecting
from the view selects, in effect, using the SELECT statement.) The select_statement can select
from base tables or other views.

The view definition is “frozen” at creation time. Changes to the underlying tables afterward do not affect
the view definition. For example, if a view is defined as SELECT * on a table, new columns added to
the table later do not become part of the view.

The ALGORITHM clause affects how MySQL processes the view. The DEFINER and SQL SECURITY
clauses specify the security context to be used when checking access privileges at view invocation
time. The WITH CHECK OPTION clause can be given to constrain inserts or updates to rows in tables
referenced by the view. These clauses are described later in this section.

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege
for each column selected by the SELECT statement. For columns used elsewhere in the SELECT
statement, you must have the SELECT privilege. If the OR REPLACE clause is present, you must also
have the DROP privilege for the view. CREATE VIEW might also require the SUPER privilege, depending
on the DEFINER value, as described later in this section.

When a view is referenced, privilege checking occurs as described later in this section.

A view belongs to a database. By default, a new view is created in the default database. To create the
view explicitly in a given database, use db_name.view_name syntax to qualify the view name with the
database name:

mysql> CREATE VIEW test.v AS SELECT * FROM t;

Within a database, base tables and views share the same namespace, so a base table and a view
cannot have the same name.

Columns retrieved by the SELECT statement can be simple references to table columns, or
expressions that use functions, constant values, operators, and so forth.

CREATE VIEW Syntax

1677

A view must have unique column names with no duplicates, just like a base table. By default, the
names of the columns retrieved by the SELECT statement are used for the view column names. To
define explicit names for the view columns, the optional column_list clause can be given as a list
of comma-separated identifiers. The number of names in column_list must be the same as the
number of columns retrieved by the SELECT statement.

Unqualified table or view names in the SELECT statement are interpreted with respect to the default
database. A view can refer to tables or views in other databases by qualifying the table or view name
with the appropriate database name.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other
views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables.

The following example defines a view that selects two columns from another table as well as an
expression calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
+------+-------+-------+

A view definition is subject to the following restrictions:

• Before MySQL 5.7.7, the SELECT statement cannot contain a subquery in the FROM clause.

• The SELECT statement cannot refer to system variables or user-defined variables.

• Within a stored program, the SELECT statement cannot refer to program parameters or local
variables.

• The SELECT statement cannot refer to prepared statement parameters.

• Any table or view referred to in the definition must exist. After the view has been created, it is
possible to drop a table or view that the definition refers to. In this case, use of the view results in an
error. To check a view definition for problems of this kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

• You cannot associate a trigger with a view.

• Aliases for column names in the SELECT statement are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters).

ORDER BY is permitted in a view definition, but it is ignored if you select from a view using a statement
that has its own ORDER BY.

For other options or clauses in the definition, they are added to the options or clauses of the statement
that references the view, but the effect is undefined. For example, if a view definition includes a
LIMIT clause, and you select from the view using a statement that has its own LIMIT clause, it is
undefined which limit applies. This same principle applies to options such as ALL, DISTINCT, or
SQL_SMALL_RESULT that follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE,
LOCK IN SHARE MODE, and PROCEDURE.

If you create a view and then change the query processing environment by changing system variables,
that may affect the results you get from the view:

mysql> CREATE VIEW v (mycol) AS SELECT 'abc';

CREATE VIEW Syntax

1678

Query OK, 0 rows affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| mycol |
+-------+
1 row in set (0.01 sec)

mysql> SET sql_mode = 'ANSI_QUOTES';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| abc |
+-------+
1 row in set (0.00 sec)

The DEFINER and SQL SECURITY clauses determine which MySQL account to use when checking
access privileges for the view when a statement is executed that references the view. The valid SQL
SECURITY characteristic values are DEFINER (the default) and INVOKER. These indicate that the
required privileges must be held by the user who defined or invoked the view, respectively.

If a user value is given for the DEFINER clause, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER,
or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE VIEW
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only valid user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not exist, a warning is generated.

• Although it is possible to create a view with a nonexistent DEFINER account, an error occurs when
the view is referenced if the SQL SECURITY value is DEFINER but the definer account does not
exist.

For more information about view security, see Section 19.6, “Access Control for Stored Programs and
Views”.

Within a view definition, CURRENT_USER returns the view's DEFINER value by default. For views
defined with the SQL SECURITY INVOKER characteristic, CURRENT_USER returns the account for
the view's invoker. For information about user auditing within views, see Section 6.3.16, “SQL-Based
MySQL Account Activity Auditing”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic,
CURRENT_USER returns the routine's DEFINER value. This also affects a view defined within such a
routine, if the view definition contains a DEFINER value of CURRENT_USER.

MySQL checks view privileges like this:

• At view definition time, the view creator must have the privileges needed to use the top-level objects
accessed by the view. For example, if the view definition refers to table columns, the creator must
have some privilege for each column in the select list of the definition, and the SELECT privilege
for each column used elsewhere in the definition. If the definition refers to a stored function, only
the privileges needed to invoke the function can be checked. The privileges required at function

CREATE VIEW Syntax

1679

invocation time can be checked only as it executes: For different invocations, different execution
paths within the function might be taken.

• The user who references a view must have appropriate privileges to access it (SELECT to select from
it, INSERT to insert into it, and so forth.)

• When a view has been referenced, privileges for objects accessed by the view are checked against
the privileges held by the view DEFINER account or invoker, depending on whether the SQL
SECURITY characteristic is DEFINER or INVOKER, respectively.

• If reference to a view causes execution of a stored function, privilege checking for statements
executed within the function depend on whether the function SQL SECURITY characteristic is
DEFINER or INVOKER. If the security characteristic is DEFINER, the function runs with the privileges
of the DEFINER account. If the characteristic is INVOKER, the function runs with the privileges
determined by the view's SQL SECURITY characteristic.

Example: A view might depend on a stored function, and that function might invoke other stored
routines. For example, the following view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);

Suppose that f() contains a statement such as this:

IF name IS NULL then
 CALL p1();
ELSE
 CALL p2();
END IF;

The privileges required for executing statements within f() need to be checked when f() executes.
This might mean that privileges are needed for p1() or p2(), depending on the execution path within
f(). Those privileges must be checked at runtime, and the user who must possess the privileges is
determined by the SQL SECURITY values of the view v and the function f().

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard
SQL, views are handled using the rules for SQL SECURITY DEFINER. The standard says that the
definer of the view, which is the same as the owner of the view's schema, gets applicable privileges
on the view (for example, SELECT) and may grant them. MySQL has no concept of a schema “owner”,
so MySQL adds a clause to identify the definer. The DEFINER clause is an extension where the intent
is to have what the standard has; that is, a permanent record of who defined the view. This is why the
default DEFINER value is the account of the view creator.

The optional ALGORITHM clause is a MySQL extension to standard SQL. It affects how MySQL
processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. For more
information, see Section 19.5.2, “View Processing Algorithms”.

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or
INSERT to update the contents of the underlying table. For a view to be updatable, there must be a
one-to-one relationship between the rows in the view and the rows in the underlying table. There are
also certain other constructs that make a view nonupdatable.

A generated column in a view is considered updatable because it is possible to assign to it. However,
if such a column is updated explicitly, the only permitted value is DEFAULT. For information about
generated columns, see CREATE TABLE and Generated Columns.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to
rows except those for which the WHERE clause in the select_statement is true.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords
determine the scope of check testing when the view is defined in terms of another view. The LOCAL

DROP DATABASE Syntax

1680

keyword restricts the CHECK OPTION only to the view being defined. CASCADED causes the checks for
underlying views to be evaluated as well. When neither keyword is given, the default is CASCADED.

For more information about updatable views and the WITH CHECK OPTION clause, see
Section 19.5.3, “Updatable and Insertable Views”, and Section 19.5.4, “The View WITH CHECK
OPTION Clause”.

Views created before MySQL 5.7.3 containing ORDER BY integer can result in errors at view
evaluation time. Consider these view definitions, which use ORDER BY with an ordinal number:

CREATE VIEW v1 AS SELECT x, y, z FROM t ORDER BY 2;
CREATE VIEW v2 AS SELECT x, 1, z FROM t ORDER BY 2;

In the first case, ORDER BY 2 refers to a named column y. In the second case, it refers to a constant
1. For queries that select from either view fewer than 2 columns (the number named in the ORDER BY
clause), an error occurs if the server evaluates the view using the MERGE algorithm. Examples:

mysql> SELECT x FROM v1;
ERROR 1054 (42S22): Unknown column '2' in 'order clause'
mysql> SELECT x FROM v2;
ERROR 1054 (42S22): Unknown column '2' in 'order clause'

As of MySQL 5.7.3, to handle view definitions like this, the server writes them differently into the .frm
file that stores the view definition. This difference is visible with SHOW CREATE VIEW. Previously, the
.frm file contained this for the ORDER BY 2 clause:

For v1: ORDER BY 2
For v2: ORDER BY 2

As of 5.7.3, the .frm file contains this:

For v1: ORDER BY `t`.`y`
For v2: ORDER BY ''

That is, for v1, 2 is replaced by a reference to the name of the column referred to. For v2, 2 is replaced
by a constant string expression (ordering by a constant has no effect, so ordering by any constant will
do).

If you experience view-evaluation errors such as just described, drop and recreate the view so that
the .frm file contains the updated view representation. Alternatively, for views like v2 that order by a
constant value, drop and recreate the view with no ORDER BY clause.

13.1.18 DROP DATABASE Syntax

DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this
statement! To use DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is a
synonym for DROP DATABASE.

Important

When a database is dropped, user privileges on the database are not
automatically dropped. See Section 13.7.1.4, “GRANT Syntax”.

IF EXISTS is used to prevent an error from occurring if the database does not exist.

If the default database is dropped, the default database is unset (the DATABASE() function returns
NULL).

DROP EVENT Syntax

1681

If you use DROP DATABASE on a symbolically linked database, both the link and the original database
are deleted.

DROP DATABASE returns the number of tables that were removed. This corresponds to the number of
.frm files removed.

The DROP DATABASE statement removes from the given database directory those files and directories
that MySQL itself may create during normal operation:

• All files with the following extensions.

.BAK .DAT .HSH .MRG

.MYD .MYI .TRG .TRN

.cfg .db .frm .ibd

.ndb .par

• The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just listed, the
database directory cannot be removed. In this case, you must remove any remaining files or directories
manually and issue the DROP DATABASE statement again.

Dropping a database does not remove any TEMPORARY tables that were created in that database.
TEMPORARY tables are automatically removed when the session that created them ends. See
Temporary Tables.

You can also drop databases with mysqladmin. See Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”.

13.1.19 DROP EVENT Syntax

DROP EVENT [IF EXISTS] event_name

This statement drops the event named event_name. The event immediately ceases being active, and
is deleted completely from the server.

If the event does not exist, the error ERROR 1517 (HY000): Unknown event 'event_name'
results. You can override this and cause the statement to generate a warning for nonexistent events
instead using IF EXISTS.

This statement requires the EVENT privilege for the schema to which the event to be dropped belongs.

13.1.20 DROP FUNCTION Syntax

The DROP FUNCTION statement is used to drop stored functions and user-defined functions (UDFs):

• For information about dropping stored functions, see Section 13.1.22, “DROP PROCEDURE and
DROP FUNCTION Syntax”.

• For information about dropping user-defined functions, see Section 13.7.3.2, “DROP FUNCTION
Syntax”.

13.1.21 DROP INDEX Syntax

DROP INDEX index_name ON tbl_name
 [algorithm_option | lock_option] ...

algorithm_option:

DROP PROCEDURE and DROP FUNCTION Syntax

1682

 ALGORITHM [=] {DEFAULT|INPLACE|COPY}

lock_option:
 LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

DROP INDEX drops the index named index_name from the table tbl_name. This statement is
mapped to an ALTER TABLE statement to drop the index. See Section 13.1.6, “ALTER TABLE
Syntax”.

To drop a primary key, the index name is always PRIMARY, which must be specified as a quoted
identifier because PRIMARY is a reserved word:

DROP INDEX `PRIMARY` ON t;

ALGORITHM and LOCK clauses may be given. These influence the table copying method and level
of concurrency for reading and writing the table while its indexes are being modified. They have the
same meaning as for the ALTER TABLE statement. For more information, see Section 13.1.6, “ALTER
TABLE Syntax”

13.1.22 DROP PROCEDURE and DROP FUNCTION Syntax

DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

This statement is used to drop a stored procedure or function. That is, the specified routine is
removed from the server. You must have the ALTER ROUTINE privilege for the routine. (If the
automatic_sp_privileges system variable is enabled, that privilege and EXECUTE are granted
automatically to the routine creator when the routine is created and dropped from the creator when the
routine is dropped. See Section 19.2.2, “Stored Routines and MySQL Privileges”.)

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or
function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.

DROP FUNCTION is also used to drop user-defined functions (see Section 13.7.3.2, “DROP
FUNCTION Syntax”).

13.1.23 DROP SERVER Syntax

DROP SERVER [IF EXISTS] server_name

Drops the server definition for the server named server_name. The corresponding row in the
mysql.servers table is deleted. This statement requires the SUPER privilege.

Dropping a server for a table does not affect any FEDERATED tables that used this connection
information when they were created. See Section 13.1.13, “CREATE SERVER Syntax”.

DROP SERVER does not cause an automatic commit.

In MySQL 5.7, DROP SERVER is not written to the binary log, regardless of the logging format that is in
use.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

13.1.24 DROP TABLE Syntax

DROP [TEMPORARY] TABLE [IF EXISTS]
 tbl_name [, tbl_name] ...
 [RESTRICT | CASCADE]

DROP TABLESPACE Syntax

1683

DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All table
data and the table definition are removed, so be careful with this statement! If any of the tables named
in the argument list do not exist, MySQL returns an error indicating by name which nonexisting tables it
was unable to drop, but it also drops all of the tables in the list that do exist.

Important

When a table is dropped, user privileges on the table are not automatically
dropped. See Section 13.7.1.4, “GRANT Syntax”.

For a partitioned table, DROP TABLE permanently removes the table definition, all of its partitions, and
all of the data which was stored in those partitions. It also removes partition definitions associated with
the dropped table.

Note

Prior to MySQL 5.7.6, DROP TABLE removes partition definitions (.par) files
associated with the dropped table. As of MySQL 5.7.6, partition definition
(.par) files are no longer created. Instead, partition definitions are stored in the
internal data dictionary.

Use IF EXISTS to prevent an error from occurring for tables that do not exist. A NOTE is generated for
each nonexistent table when using IF EXISTS. See Section 13.7.5.40, “SHOW WARNINGS Syntax”.

RESTRICT and CASCADE are permitted to make porting easier. In MySQL 5.7, they do nothing.

Note

DROP TABLE automatically commits the current active transaction, unless you
use the TEMPORARY keyword.

The TEMPORARY keyword has the following effects:

• The statement drops only TEMPORARY tables.

• The statement does not end an ongoing transaction.

• No access rights are checked. (A TEMPORARY table is visible only to the session that created it, so
no check is necessary.)

Using TEMPORARY is a good way to ensure that you do not accidentally drop a non-TEMPORARY table.

13.1.25 DROP TABLESPACE Syntax
DROP TABLESPACE tablespace_name
 [ENGINE [=] engine_name]

This statement is used to drop an InnoDB general tablespace that was created using CREATE
TABLESPACE (see Section 13.1.15, “CREATE TABLESPACE Syntax”).

All tables must be dropped from the tablespace prior to a DROP TABLESPACE operation. If the
tablespace is not empty, DROP TABLESPACE returns an error.

tablespace_name is a case-sensitive identifier in MySQL.

ENGINE: Defines the storage engine that uses the tablespace, where engine_name is the
name of the storage engine. Currently, only the InnoDB storage engine is supported. You do
not need to specify ENGINE = InnoDB if InnoDB is defined as the default storage engine
(default_storage_engine=InnoDB).

DROP TABLESPACE is supported with InnoDB as of MySQL 5.7.6. In earlier releases, DROP
TABLESPACE supports NDB, which is the MySQL Cluster storage engine. DROP TABLESPACE will

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

DROP TRIGGER Syntax

1684

support NDB in MySQL 5.7 when MySQL Cluster is branched from the MyQL 5.7 code base. The latest
version of MySQL Cluster is based on MySQL 5.6.

Notes

• A general InnoDB tablespace is not deleted automatically when the last table in the tablespace is
dropped. The tablespace must be dropped explicitly using DROP TABLESPACE tablespace_name.

• A DROP DATABASE operation can drop tables that belong to a general tablespace but it cannot drop
the tablespace, even if the operation drops all tables that belong to the tablespace. The tablespace
must be dropped explicitly using DROP TABLESPACE tablespace_name.

• Similar to the system tablespace, truncating or dropping tables stored in a general tablespace
creates free space internally in the general tablespace .ibd data file which can only be used for
new InnoDB data. Space is not released back to the operating system as it is for file-per-table
tablespaces.

Example

This example demonstrates how to drop an InnoDB general tablespace. The general tablespace ts1
is created with a single table. Before dropping the tablespace, the table must be dropped.

mysql> CREATE TABLESPACE `ts1`
 -> ADD DATAFILE 'ts1.ibd'
 -> ENGINE=INNODB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY)
 -> TABLESPACE ts10
 -> ENGINE=INNODB;
Query OK, 0 rows affected (0.02 sec)

mysql> DROP TABLE t1;
Query OK, 0 rows affected (0.01 sec)

mysql> DROP TABLESPACE ts1;
Query OK, 0 rows affected (0.01 sec)

13.1.26 DROP TRIGGER Syntax

DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name

This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the
trigger is dropped from the default schema. DROP TRIGGER requires the TRIGGER privilege for the
table associated with the trigger.

Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is
generated for a nonexistent trigger when using IF EXISTS. See Section 13.7.5.40, “SHOW
WARNINGS Syntax”.

Triggers for a table are also dropped if you drop the table.

13.1.27 DROP VIEW Syntax

DROP VIEW [IF EXISTS]
 view_name [, view_name] ...
 [RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view. If any of
the views named in the argument list do not exist, MySQL returns an error indicating by name which
nonexisting views it was unable to drop, but it also drops all of the views in the list that do exist.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

RENAME TABLE Syntax

1685

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause
is given, a NOTE is generated for each nonexistent view. See Section 13.7.5.40, “SHOW WARNINGS
Syntax”.

RESTRICT and CASCADE, if given, are parsed and ignored.

13.1.28 RENAME TABLE Syntax

RENAME TABLE tbl_name TO new_tbl_name
 [, tbl_name2 TO new_tbl_name2] ...

This statement renames one or more tables. The rename operation is done atomically, which means
that no other session can access any of the tables while the rename is running.

For example, a table named old_table can be renamed to new_table as shown here:

RENAME TABLE old_table TO new_table;

This statement is equivalent to the following ALTER TABLE statement:

ALTER TABLE old_table RENAME new_table;

If the statement renames more than one table, renaming operations are done from left to right. If you
want to swap two table names, you can do so like this (assuming that tmp_table does not already
exist):

RENAME TABLE old_table TO tmp_table,
 new_table TO old_table,
 tmp_table TO new_table;

MySQL checks the destination table name before checking whether the source table exists. For
example, if new_table already exists and old_table does not, the following statement fails as
shown here:

mysql> SHOW TABLES;
+----------------+
| Tables_in_mydb |
+----------------+
| table_a |
+----------------+
1 row in set (0.00 sec)

mysql> RENAME TABLE table_b TO table_a;
ERROR 1050 (42S01): Table 'table_a' already exists

As long as two databases are on the same file system, you can use RENAME TABLE to move a table
from one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

You can use this method to move all tables from one database to a different one, in effect renaming the
database. (MySQL has no single statement to perform this task.)

If there are any triggers associated with a table which is moved to a different database using RENAME
TABLE, then the statement fails with the error Trigger in wrong schema.

Foreign keys that point to the renamed table are not automatically updated. In such cases, you must
drop and re-create the foreign keys in order for them to function properly.

TRUNCATE TABLE Syntax

1686

RENAME TABLE also works for views, as long as you do not try to rename a view into a different
database.

Any privileges granted specifically for the renamed table or view are not migrated to the new name.
They must be changed manually.

When you execute RENAME TABLE, you cannot have any locked tables or active transactions. You
must also have the ALTER and DROP privileges on the original table, and the CREATE and INSERT
privileges on the new table.

If MySQL encounters any errors in a multiple-table rename, it does a reverse rename for all renamed
tables to return everything to its original state.

You cannot use RENAME TABLE to rename a TEMPORARY table. However, you can use ALTER TABLE
with temporary tables.

Like RENAME TABLE, ALTER TABLE ... RENAME can also be used to move a table to a different
database. Regardless of the statement used to perform the rename, if the rename operation would
move the table to a database located on a different file system, the success of the outcome is platform
specific and depends on the underlying operating system calls used to move the table files.

13.1.29 TRUNCATE TABLE Syntax

TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE empties a table completely. It requires the DROP privilege.

Logically, TRUNCATE TABLE is similar to a DELETE statement that deletes all rows, or a sequence of
DROP TABLE and CREATE TABLE statements. To achieve high performance, it bypasses the DML
method of deleting data. Thus, it cannot be rolled back, it does not cause ON DELETE triggers to fire,
and it cannot be performed for InnoDB tables with parent-child foreign key relationships.

Although TRUNCATE TABLE is similar to DELETE, it is classified as a DDL statement rather than a DML
statement. It differs from DELETE in the following ways in MySQL 5.7:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by
one, particularly for large tables.

• Truncate operations cause an implicit commit, and so cannot be rolled back.

• Truncation operations cannot be performed if the session holds an active table lock.

• TRUNCATE TABLE fails for an InnoDB table or NDB table if there are any FOREIGN KEY constraints
from other tables that reference the table. Foreign key constraints between columns of the same
table are permitted.

• Truncation operations do not return a meaningful value for the number of deleted rows. The usual
result is “0 rows affected,” which should be interpreted as “no information.”

• As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty
table with TRUNCATE TABLE, even if the data or index files have become corrupted.

• Any AUTO_INCREMENT value is reset to its start value. This is true even for MyISAM and InnoDB,
which normally do not reuse sequence values.

• When used with partitioned tables, TRUNCATE TABLE preserves the partitioning; that is, the data
and index files are dropped and re-created, while the partition definitions (.par) file is unaffected.

Note

As of MySQL 5.7.6, partition definition (.par) files are no longer created.
Instead, partition definitions are stored in the internal data dictionary.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Data Manipulation Statements

1687

• The TRUNCATE TABLE statement does not invoke ON DELETE triggers.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

TRUNCATE TABLE is treated for purposes of binary logging and replication as DROP TABLE followed
by CREATE TABLE—that is, as DDL rather than DML. This is due to the fact that, when using
InnoDB and other transactional storage engines where the transaction isolation level does not permit
statement-based logging (READ COMMITTED or READ UNCOMMITTED), the statement was not logged
and replicated when using STATEMENT or MIXED logging mode. (Bug #36763) However, it is still
applied on replication slaves using InnoDB in the manner described previously.

On a system with a large InnoDB buffer pool and innodb_adaptive_hash_index enabled,
TRUNCATE TABLE operations may cause a temporary drop in system performance due to an LRU
scan that occurs when removing an InnoDB table's adaptive hash index entries. The problem was
addressed for DROP TABLE in MySQL 5.5.23 (Bug #13704145, Bug #64284) but remains a known
issue for TRUNCATE TABLE (Bug #68184).

TRUNCATE TABLE can be used with Performance Schema summary tables, but the effect is to reset
the summary columns to 0 or NULL, not to remove rows. See Section 21.9.14, “Performance Schema
Summary Tables”.

13.2 Data Manipulation Statements

13.2.1 CALL Syntax

CALL sp_name([parameter[,...]])
CALL sp_name[()]

The CALL statement invokes a stored procedure that was defined previously with CREATE
PROCEDURE.

Stored procedures that take no arguments can be invoked without parentheses. That is, CALL p()
and CALL p are equivalent.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT
parameters. When the procedure returns, a client program can also obtain the number of rows affected
for the final statement executed within the routine: At the SQL level, call the ROW_COUNT() function;
from the C API, call the mysql_affected_rows() function.

To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by
means of a user variable, and then check the value of the variable after the procedure returns. (If you
are calling the procedure from within another stored procedure or function, you can also pass a routine
parameter or local routine variable as an IN or INOUT parameter.) For an INOUT parameter, initialize
its value before passing it to the procedure. The following procedure has an OUT parameter that the
procedure sets to the current server version, and an INOUT value that the procedure increments by
one from its current value:

CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN
 # Set value of OUT parameter
 SELECT VERSION() INTO ver_param;
 # Increment value of INOUT parameter
 SET incr_param = incr_param + 1;
END;

Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling
the procedure, the values of the two variables will have been set or modified:

mysql> SET @increment = 10;

CALL Syntax

1688

mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+--------------+------------+
| @version | @increment |
+--------------+------------+
| 5.5.3-m3-log | 11 |
+--------------+------------+

In prepared CALL statements used with PREPARE and EXECUTE, placeholders can be used for IN
parameters. For OUT and INOUT parameters, placeholder support is available as of MySQL 5.5.3.
These types of parameters can be used as follows:

mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(?, ?)';
mysql> EXECUTE s USING @version, @increment;
mysql> SELECT @version, @increment;
+--------------+------------+
| @version | @increment |
+--------------+------------+
| 5.5.3-m3-log | 11 |
+--------------+------------+

Before MySQL 5.5.3, placeholder support is not available for OUT or INOUT parameters. To work
around this limitation for OUT and INOUT parameters, forego the use of placeholders; instead, refer to
user variables in the CALL statement itself and do not specify them in the EXECUTE statement:

mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(@version, @increment)';
mysql> EXECUTE s;
mysql> SELECT @version, @increment;
+--------------+------------+
| @version | @increment |
+--------------+------------+
| 5.5.0-m2-log | 11 |
+--------------+------------+

To write C programs that use the CALL SQL statement to execute stored procedures that produce
result sets, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns
a result to indicate the call status, in addition to any result sets that might be returned by statements
executed within the procedure. CLIENT_MULTI_RESULTS must also be enabled if CALL is used to
execute any stored procedure that contains prepared statements. It cannot be determined when such
a procedure is loaded whether those statements will produce result sets, so it is necessary to assume
that they will.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). In MySQL 5.7,
CLIENT_MULTI_RESULTS is enabled by default.

To process the result of a CALL statement executed using mysql_query() or
mysql_real_query(), use a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 23.8.17, “C API Support for Multiple Statement
Execution”.

For programs written in a language that provides a MySQL interface, there is no native method prior
to MySQL 5.5.3 for directly retrieving the results of OUT or INOUT parameters from CALL statements.
To get the parameter values, pass user-defined variables to the procedure in the CALL statement and
then execute a SELECT statement to produce a result set containing the variable values. To handle an
INOUT parameter, execute a statement prior to the CALL that sets the corresponding user variable to
the value to be passed to the procedure.

The following example illustrates the technique (without error checking) for the stored procedure p
described earlier that has an OUT parameter and an INOUT parameter:

DELETE Syntax

1689

mysql_query(mysql, "SET @increment = 10");
mysql_query(mysql, "CALL p(@version, @increment)");
mysql_query(mysql, "SELECT @version, @increment");
result = mysql_store_result(mysql);
row = mysql_fetch_row(result);
mysql_free_result(result);

After the preceding code executes, row[0] and row[1] contain the values of @version and
@increment, respectively.

In MySQL 5.7, C programs can use the prepared-statement interface to execute CALL statements
and access OUT and INOUT parameters. This is done by processing the result of a CALL statement
using a loop that calls mysql_stmt_next_result() to determine whether there are more results.
For an example, see Section 23.8.20, “C API Support for Prepared CALL Statements”. Languages
that provide a MySQL interface can use prepared CALL statements to directly retrieve OUT and INOUT
procedure parameters.

In MySQL 5.7, metadata changes to objects referred to by stored programs are detected and
cause automatic reparsing of the affected statements when the program is next executed. For more
information, see Section 8.10.4, “Caching of Prepared Statements and Stored Programs”.

13.2.2 DELETE Syntax

DELETE is a DML statement that removes rows from a table.

Single-Table Syntax

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
 [PARTITION (partition_name,...)]
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

The DELETE statement deletes rows from tbl_name and returns the number of deleted rows. To
check the number of deleted rows, call the ROW_COUNT() function described in Section 12.14,
“Information Functions”.

Main Clauses

The conditions in the optional WHERE clause identify which rows to delete. With no WHERE clause, all
rows are deleted.

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as
described in Section 13.2.9, “SELECT Syntax”.

If the ORDER BY clause is specified, the rows are deleted in the order that is specified. The LIMIT
clause places a limit on the number of rows that can be deleted. These clauses apply to single-table
deletes, but not multi-table deletes.

Multiple-Table Syntax

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 tbl_name[.*] [, tbl_name[.*]] ...
 FROM table_references
 [WHERE where_condition]

Or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]

DELETE Syntax

1690

 FROM tbl_name[.*] [, tbl_name[.*]] ...
 USING table_references
 [WHERE where_condition]

Privileges

You need the DELETE privilege on a table to delete rows from it. You need only the SELECT privilege
for any columns that are only read, such as those named in the WHERE clause.

Performance

When you do not need to know the number of deleted rows, the TRUNCATE TABLE statement is
a faster way to empty a table than a DELETE statement with no WHERE clause. Unlike DELETE,
TRUNCATE TABLE cannot be used within a transaction or if you have a lock on the table. See
Section 13.1.29, “TRUNCATE TABLE Syntax” and Section 13.3.5, “LOCK TABLES and UNLOCK
TABLES Syntax”.

The speed of delete operations may also be affected by factors discussed in Section 8.2.2.3, “Speed of
DELETE Statements”.

To ensure that a given DELETE statement does not take too much time, the MySQL-specific LIMIT
row_count clause for DELETE specifies the maximum number of rows to be deleted. If the number of
rows to delete is larger than the limit, repeat the DELETE statement until the number of affected rows is
less than the LIMIT value.

Subqueries

You cannot delete from a table and select from the same table in a subquery.

Partitioned Tables

DELETE supports explicit partition selection using the PARTITION option, which takes a comma-
separated list of the names of one or more partitions or subpartitions (or both) from which to select
rows to be dropped. Partitions not included in the list are ignored. Given a partitioned table t with a
partition named p0, executing the statement DELETE FROM t PARTITION (p0) has the same effect
on the table as executing ALTER TABLE t TRUNCATE PARTITION (p0); in both cases, all rows in
partition p0 are dropped.

PARTITION can be used along with a WHERE condition, in which case the condition is tested only
on rows in the listed partitions. For example, DELETE FROM t PARTITION (p0) WHERE c < 5
deletes rows only from partition p0 for which the condition c < 5 is true; rows in any other partitions
are not checked and thus not affected by the DELETE.

The PARTITION option can also be used in multiple-table DELETE statements. You can use up to one
such option per table named in the FROM option.

See Section 18.5, “Partition Selection”, for more information and examples.

Auto-Increment Columns

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value
is not reused for a MyISAM or InnoDB table. If you delete all rows in the table with DELETE FROM
tbl_name (without a WHERE clause) in autocommit mode, the sequence starts over for all storage
engines except InnoDB and MyISAM. There are some exceptions to this behavior for InnoDB tables,
as discussed in Section 14.5.5, “AUTO_INCREMENT Handling in InnoDB”.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key.
In this case, reuse of values deleted from the top of the sequence occurs even for MyISAM tables. See
Section 3.6.9, “Using AUTO_INCREMENT”.

DELETE Syntax

1691

Modifiers

The DELETE statement supports the following modifiers:

• If you specify LOW_PRIORITY, the server delays execution of the DELETE until no other clients are
reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

• For MyISAM tables, if you use the QUICK keyword, the storage engine does not merge index leaves
during delete, which may speed up some kinds of delete operations.

• The IGNORE keyword causes MySQL to ignore errors during the process of deleting rows. (Errors
encountered during the parsing stage are processed in the usual manner.) Errors that are ignored
due to the use of IGNORE are returned as warnings. For more information, see Comparison of the
IGNORE Keyword and Strict SQL Mode.

Order of Deletion

If the DELETE statement includes an ORDER BY clause, rows are deleted in the order specified by the
clause. This is useful primarily in conjunction with LIMIT. For example, the following statement finds
rows matching the WHERE clause, sorts them by timestamp_column, and deletes the first (oldest)
one:

DELETE FROM somelog WHERE user = 'jcole'
ORDER BY timestamp_column LIMIT 1;

ORDER BY also helps to delete rows in an order required to avoid referential integrity violations.

InnoDB Tables

If you are deleting many rows from a large table, you may exceed the lock table size for an InnoDB
table. To avoid this problem, or simply to minimize the time that the table remains locked, the following
strategy (which does not use DELETE at all) might be helpful:

1. Select the rows not to be deleted into an empty table that has the same structure as the original
table:

INSERT INTO t_copy SELECT * FROM t WHERE ... ;

2. Use RENAME TABLE to atomically move the original table out of the way and rename the copy to
the original name:

RENAME TABLE t TO t_old, t_copy TO t;

3. Drop the original table:

DROP TABLE t_old;

No other sessions can access the tables involved while RENAME TABLE executes, so the rename
operation is not subject to concurrency problems. See Section 13.1.28, “RENAME TABLE Syntax”.

MyISAM Tables

In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations
reuse old row positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE TABLE
statement or the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier to use,
but myisamchk is faster. See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”, and Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”.

DELETE Syntax

1692

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is
most useful for applications where index values for deleted rows are replaced by similar index values
from rows inserted later. In this case, the holes left by deleted values are reused.

DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a range of
index values for which new inserts occur again. In this case, use of QUICK can lead to wasted space in
the index that remains unreclaimed. Here is an example of such a scenario:

1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many rows into the table. Each insert results in an index value that is added to the high end
of the index.

3. Delete a block of rows at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become underfilled but
are not merged with other index blocks due to the use of QUICK. They remain underfilled when new
inserts occur, because new rows do not have index values in the deleted range. Furthermore, they
remain underfilled even if you later use DELETE without QUICK, unless some of the deleted index
values happen to lie in index blocks within or adjacent to the underfilled blocks. To reclaim unused
index space under these circumstances, use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed by
OPTIMIZE TABLE. This rebuilds the index rather than performing many index block merge operations.

Multi-Table Deletes

You can specify multiple tables in a DELETE statement to delete rows from one or more tables
depending on the condition in the WHERE clause. You cannot use ORDER BY or LIMIT in a multiple-
table DELETE. The table_references clause lists the tables involved in the join, as described in
Section 13.2.9.2, “JOIN Syntax”.

For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are
deleted. For the second multiple-table syntax, only matching rows from the tables listed in the FROM
clause (before the USING clause) are deleted. The effect is that you can delete rows from many tables
at the same time and have additional tables that are used only for searching:

DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three tables when searching for rows to delete, but delete matching rows only
from tables t1 and t2.

The preceding examples use INNER JOIN, but multiple-table DELETE statements can use other types
of join permitted in SELECT statements, such as LEFT JOIN. For example, to delete rows that exist in
t1 that have no match in t2, use a LEFT JOIN:

DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;

The syntax permits .* after each tbl_name for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/
child relationship. In this case, the statement fails and rolls back. Instead, you should delete from a
single table and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to
be modified accordingly.

DO Syntax

1693

Note

If you declare an alias for a table, you must use the alias when referring to the
table:

DELETE t1 FROM test AS t1, test2 WHERE ...

Table aliases in a multiple-table DELETE should be declared only in the table_references part of
the statement. Elsewhere, alias references are permitted but not alias declarations.

Correct:

DELETE a1, a2 FROM t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

DELETE FROM a1, a2 USING t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

Incorrect:

DELETE t1 AS a1, t2 AS a2 FROM t1 INNER JOIN t2
WHERE a1.id=a2.id;

DELETE FROM t1 AS a1, t2 AS a2 USING t1 INNER JOIN t2
WHERE a1.id=a2.id;

13.2.3 DO Syntax

DO expr [, expr] ...

DO executes the expressions but does not return any results. In most respects, DO is shorthand for
SELECT expr, ..., but has the advantage that it is slightly faster when you do not care about the
result.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().

Example: This SELECT statement pauses, but also produces a result set:

mysql> SELECT SLEEP(5);
+----------+
| SLEEP(5) |
+----------+
| 0 |
+----------+
1 row in set (5.02 sec)

DO, on the other hand, pauses without producing a result set.:

mysql> DO SLEEP(5);
Query OK, 0 rows affected (4.99 sec)

This could be useful, for example in a stored function or trigger, which prohibit statements that produce
result sets.

DO only executes expressions. It cannot be used in all cases where SELECT can be used. For example,
DO id FROM t1 is invalid because it references a table.

As of MySQL 5.7.8, DO statement errors that previously were converted to warnings are returned as
errors.

13.2.4 HANDLER Syntax

HANDLER Syntax

1694

HANDLER tbl_name OPEN [[AS] alias]

HANDLER tbl_name READ index_name { = | <= | >= | < | > } (value1,value2,...)
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }
 [WHERE where_condition] [LIMIT ...]

HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is available for
InnoDB and MyISAM tables.

The HANDLER ... OPEN statement opens a table, making it accessible using subsequent
HANDLER ... READ statements. This table object is not shared by other sessions and is not closed
until the session calls HANDLER ... CLOSE or the session terminates. If you open the table using an
alias, further references to the open table with other HANDLER statements must use the alias rather
than the table name.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given
values and the WHERE condition is met. If you have a multiple-column index, specify the index column
values as a comma-separated list. Either specify values for all the columns in the index, or specify
values for a leftmost prefix of the index columns. Suppose that an index my_idx includes three
columns named col_a, col_b, and col_c, in that order. The HANDLER statement can specify values
for all three columns in the index, or for the columns in a leftmost prefix. For example:

HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...

To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier
`PRIMARY`:

HANDLER tbl_name READ `PRIMARY` ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches the
WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches
the WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full table scan
is desired. Natural row order is the order in which rows are stored in a MyISAM table data file. This
statement works for InnoDB tables as well, but there is no such concept because there is no separate
data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To
return a specific number of rows, include a LIMIT clause. It has the same syntax as for the SELECT
statement. See Section 13.2.9, “SELECT Syntax”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

• HANDLER is faster than SELECT:

• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object
is reused for subsequent HANDLER statements for that table; it need not be reinitialized for each
one.

• There is less parsing involved.

INSERT Syntax

1695

• There is no optimizer or query-checking overhead.

• The handler interface does not have to provide a consistent look of the data (for example, dirty
reads are permitted), so the storage engine can use optimizations that SELECT does not normally
permit.

• HANDLER makes it easier to port to MySQL applications that use a low-level ISAM-like interface. (See
Section 14.17, “InnoDB Integration with memcached” for an alternative way to adapt applications that
use the key-value store paradigm.)

• HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to
accomplish with SELECT. The HANDLER interface is a more natural way to look at data when working
with applications that provide an interactive user interface to the database.

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is,
HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This means
that after a HANDLER ... OPEN statement is issued, table data can be modified (by the current
session or other sessions) and these modifications might be only partially visible to HANDLER ...
NEXT or HANDLER ... PREV scans.

An open handler can be closed and marked for reopen, in which case the handler loses its position in
the table. This occurs when both of the following circumstances are true:

• Any session executes FLUSH TABLES or DDL statements on the handler's table.

• The session in which the handler is open executes non-HANDLER statements that use tables.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

If a table is flushed with FLUSH TABLES tbl_name WITH READ LOCK was opened with HANDLER,
the handler is implicitly flushed and loses its position.

In previous versions of MySQL, HANDLER was not supported with partitioned tables. This limitation is
removed beginning with MySQL 5.7.1.

13.2.5 INSERT Syntax

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 [(col_name,...)]
 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...
 [ON DUPLICATE KEY UPDATE
 col_name=expr
 [, col_name=expr] ...]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 SET col_name={expr | DEFAULT}, ...
 [ON DUPLICATE KEY UPDATE
 col_name=expr
 [, col_name=expr] ...]

Or:

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name

INSERT Syntax

1696

 [PARTITION (partition_name,...)]
 [(col_name,...)]
 SELECT ...
 [ON DUPLICATE KEY UPDATE
 col_name=expr
 [, col_name=expr] ...]

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ... SET
forms of the statement insert rows based on explicitly specified values. The INSERT ... SELECT
form inserts rows selected from another table or tables. INSERT ... SELECT is discussed further in
Section 13.2.5.1, “INSERT ... SELECT Syntax”.

When inserting into a partitioned table, you can control which partitions and subpartitions accept new
rows. The PARTITION option takes a comma-separated list of the names of one or more partitions
or subpartitions (or both) of the table. If any of the rows to be inserted by a given INSERT statement
do not match one of the partitions listed, the INSERT statement fails with the error Found a row
not matching the given partition set. See Section 18.5, “Partition Selection”, for more
information and examples.

In MySQL 5.7, the DELAYED keyword is accepted but ignored by the server. See Section 13.2.5.2,
“INSERT DELAYED Syntax”, for the reasons for this.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to INSERT
IGNORE in the treatment of new rows that contain unique key values that duplicate old rows: The new
rows are used to replace the old rows rather than being discarded. See Section 13.2.8, “REPLACE
Syntax”.

tbl_name is the table into which rows should be inserted. The columns for which the statement
provides values can be specified as follows:

• You can provide a comma-separated list of column names following the table name. In this case, a
value for each named column must be provided by the VALUES list or the SELECT statement.

• If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SELECT,
values for every column in the table must be provided by the VALUES list or the SELECT statement. If
you do not know the order of the columns in the table, use DESCRIBE tbl_name to find out.

• The SET clause indicates the column names explicitly.

Column values can be given in several ways:

• If you are not running in strict SQL mode, any column not explicitly given a value is set to its default
(explicit or implicit) value. For example, if you specify a column list that does not name all the
columns in the table, unnamed columns are set to their default values. Default value assignment is
described in Section 11.7, “Data Type Default Values”. See also Section 1.8.3.3, “Constraints on
Invalid Data”.

If you want an INSERT statement to generate an error unless you explicitly specify values for all
columns that do not have a default value, you should use strict mode. See Section 5.1.7, “Server
SQL Modes”.

• Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to
write INSERT statements that assign values to all but a few columns, because it enables you to
avoid writing an incomplete VALUES list that does not include a value for each column in the table.
Otherwise, you would have to write out the list of column names corresponding to each value in the
VALUES list.

You can also use DEFAULT(col_name) as a more general form that can be used in expressions to
produce a given column's default value.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column set to
its default value:

INSERT Syntax

1697

INSERT INTO tbl_name () VALUES();

In strict mode, an error occurs if any column doesn't have a default value. Otherwise, MySQL uses
the implicit default value for any column that does not have an explicitly defined default.

• You can specify an expression expr to provide a column value. This might involve type conversion
if the type of the expression does not match the type of the column, and conversion of a given value
can result in different inserted values depending on the data type. For example, inserting the string
'1999.0e-2' into an INT, FLOAT, DECIMAL(10,6), or YEAR column results in the values 1999,
19.9921, 19.992100, and 1999 being inserted, respectively. The reason the value stored in the
INT and YEAR columns is 1999 is that the string-to-integer conversion looks only at as much of the
initial part of the string as may be considered a valid integer or year. For the floating-point and fixed-
point columns, the string-to-floating-point conversion considers the entire string a valid floating-point
value.

An expression expr can refer to any column that was set earlier in a value list. For example, you can
do this because the value for col2 refers to col1, which has previously been assigned:

INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But the following is not legal, because the value for col1 refers to col2, which is assigned after
col1:

INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

One exception involves columns that contain AUTO_INCREMENT values. Because the
AUTO_INCREMENT value is generated after other value assignments, any reference to an
AUTO_INCREMENT column in the assignment returns a 0.

INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists
of column values, each enclosed within parentheses and separated by commas. Example:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);

The values list for each row must be enclosed within parentheses. The following statement is illegal
because the number of values in the list does not match the number of column names:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

VALUE is a synonym for VALUES in this context. Neither implies anything about the number of values
lists, and either may be used whether there is a single values list or multiple lists.

The affected-rows value for an INSERT can be obtained using the ROW_COUNT() function (see
Section 12.14, “Information Functions”), or the mysql_affected_rows() C API function (see
Section 23.8.7.1, “mysql_affected_rows()”).

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT, the
statement returns an information string in this format:

Records: 100 Duplicates: 0 Warnings: 0

Records indicates the number of rows processed by the statement. (This is not necessarily the
number of rows actually inserted because Duplicates can be nonzero.) Duplicates indicates the
number of rows that could not be inserted because they would duplicate some existing unique index
value. Warnings indicates the number of attempts to insert column values that were problematic in
some way. Warnings can occur under any of the following conditions:

INSERT Syntax

1698

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT
statements or INSERT INTO ... SELECT statements, the column is set to the implicit default
value for the column data type. This is 0 for numeric types, the empty string ('') for string types,
and the “zero” value for date and time types. INSERT INTO ... SELECT statements are handled
the same way as multiple-row inserts because the server does not examine the result set from the
SELECT to see whether it returns a single row. (For a single-row INSERT, no warning occurs when
NULL is inserted into a NOT NULL column. Instead, the statement fails with an error.)

• Setting a numeric column to a value that lies outside the column's range. The value is clipped to the
closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing nonnumeric text is stripped
off and the remaining numeric part is inserted. If the string value has no leading numeric part, the
column is set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column's
maximum length. The value is truncated to the column's maximum length.

• Inserting a value into a date or time column that is illegal for the data type. The column is set to the
appropriate zero value for the type.

If a generated column is inserted into explicitly, the only permitted value is DEFAULT. For information
about generated columns, see CREATE TABLE and Generated Columns.

If you are using the C API, the information string can be obtained by invoking the mysql_info()
function. See Section 23.8.7.36, “mysql_info()”.

If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value
used for that column by using the SQL LAST_INSERT_ID() function. From within the C API, use
the mysql_insert_id() function. However, you should note that the two functions do not always
behave identically. The behavior of INSERT statements with respect to AUTO_INCREMENT columns is
discussed further in Section 12.14, “Information Functions”, and Section 23.8.7.38, “mysql_insert_id()”.

The INSERT statement supports the following modifiers:

• INSERT DELAYED was deprecated in MySQL 5.6, and is scheduled for eventual removal. In MySQL
5.7, the DELAYED keyword is accepted but ignored. Use INSERT (without DELAYED) instead. See
Section 13.2.5.2, “INSERT DELAYED Syntax”.

• If you use the LOW_PRIORITY keyword, execution of the INSERT is delayed until no other clients
are reading from the table. This includes other clients that began reading while existing clients are
reading, and while the INSERT LOW_PRIORITY statement is waiting. It is possible, therefore, for a
client that issues an INSERT LOW_PRIORITY statement to wait for a very long time.

Note

LOW_PRIORITY should normally not be used with MyISAM tables because
doing so disables concurrent inserts. See Section 8.11.3, “Concurrent
Inserts”.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option
if the server was started with that option. It also causes concurrent inserts not to be used. See
Section 8.11.3, “Concurrent Inserts”.

LOW_PRIORITY and HIGH_PRIORITY affect only storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE).

• If you use the IGNORE keyword, errors that occur while executing the INSERT statement are ignored.
For example, without IGNORE, a row that duplicates an existing UNIQUE index or PRIMARY KEY
value in the table causes a duplicate-key error and the statement is aborted. With IGNORE, the row is
discarded and no error occurs. Ignored errors generate warnings instead.

INSERT Syntax

1699

 IGNORE has a similar effect on inserts into partitioned tables where no partition matching a given
value is found. Without IGNORE, such INSERT statements are aborted with an error; however, when
INSERT IGNORE is used, the insert operation fails silently for the row containing the unmatched
value, but any rows that are matched are inserted. For an example, see Section 18.2.2, “LIST
Partitioning”.

Data conversions that would trigger errors abort the statement if IGNORE is not specified. With
IGNORE, invalid values are adjusted to the closest values and inserted; warnings are produced but
the statement does not abort. You can determine with the mysql_info() C API function how many
rows were actually inserted into the table.

For more information, see Comparison of the IGNORE Keyword and Strict SQL Mode.

• If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate
value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row is performed. The affected-
rows value per row is 1 if the row is inserted as a new row, 2 if an existing row is updated, and
0 if an existing row is set to its current values. If you specify the CLIENT_FOUND_ROWS flag to
mysql_real_connect() when connecting to mysqld, the affected-rows value is 1 (not 0) if an
existing row is set to its current values. See Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”.

Inserting into a table requires the INSERT privilege for the table. If the ON DUPLICATE KEY UPDATE
clause is used and a duplicate key causes an UPDATE to be performed instead, the statement requires
the UPDATE privilege for the columns to be updated. For columns that are read but not modified you
need only the SELECT privilege (such as for a column referenced only on the right hand side of an
col_name=expr assignment in an ON DUPLICATE KEY UPDATE clause).

In MySQL 5.7, an INSERT statement affecting a partitioned table using a storage engine such as
MyISAM that employs table-level locks locks only those partitions into which rows are actually inserted.
(For storage engines such as InnoDB that employ row-level locking, no locking of partitions takes
place.) For more information, see Section 18.6.4, “Partitioning and Locking”.

13.2.5.1 INSERT ... SELECT Syntax

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 [(col_name,...)]
 SELECT ...
 [ON DUPLICATE KEY UPDATE col_name=expr, ...]

With INSERT ... SELECT, you can quickly insert many rows into a table from one or many tables.
For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

The following conditions hold for a INSERT ... SELECT statements:

• Specify IGNORE to ignore rows that would cause duplicate-key violations.

• The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the
query. (This was not possible in some older versions of MySQL.) However, you cannot insert into a
table and select from the same table in a subquery.

When selecting from and inserting into a table at the same time, MySQL creates a temporary table
to hold the rows from the SELECT and then inserts those rows into the target table. However, it
remains true that you cannot use INSERT INTO t ... SELECT ... FROM t when t is a

INSERT Syntax

1700

TEMPORARY table, because TEMPORARY tables cannot be referred to twice in the same statement
(see Section B.5.6.2, “TEMPORARY Table Problems”).

• AUTO_INCREMENT columns work as usual.

• To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts for INSERT ... SELECT statements.

• To avoid ambiguous column reference problems when the SELECT and the INSERT refer to the
same table, provide a unique alias for each table used in the SELECT part, and qualify column
names in that part with the appropriate alias.

You can explicitly select which partitions or subpartitions (or both) of the source or target table (or both)
are to be used with a PARTITION option following the name of the table. When PARTITION is used
with the name of the source table in the SELECT portion of the statement, rows are selected only from
the partitions or subpartitions named in its partition list. When PARTITION is used with the name of the
target table for the INSERT portion of the statement, then it must be possible to insert all rows selected
into the partitions or subpartitions named in the partition list following the option, else the INSERT ...
SELECT statement fails. For more information and examples, see Section 18.5, “Partition Selection”.

In the values part of ON DUPLICATE KEY UPDATE, you can refer to columns in other tables, as long
as you do not use GROUP BY in the SELECT part. One side effect is that you must qualify nonunique
column names in the values part.

The order in which rows are returned by a SELECT statement with no ORDER BY clause is not
determined. This means that, when using replication, there is no guarantee that such a SELECT returns
rows in the same order on the master and the slave; this can lead to inconsistencies between them.
To prevent this from occurring, you should always write INSERT ... SELECT statements that are to
be replicated as INSERT ... SELECT ... ORDER BY column. The choice of column does not
matter as long as the same order for returning the rows is enforced on both the master and the slave.
See also Section 17.4.1.17, “Replication and LIMIT”.

Due to this issue, INSERT ... SELECT ON DUPLICATE KEY UPDATE and INSERT IGNORE ...
SELECT statements are flagged as unsafe for statement-based replication. With this change, such
statements produce a warning in the log when using statement-based mode and are logged using the
row-based format when using MIXED mode. (Bug #11758262, Bug #50439)

See also Section 17.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

In MySQL 5.7, an INSERT ... SELECT statement that acted on partitioned tables using a storage
engine such as MyISAM that employs table-level locks locks all partitions of the target table; however,
only those partitions that are actually read from the source table are locked. (This does not occur with
tables using storage engines such as InnoDB that employ row-level locking.) See Section 18.6.4,
“Partitioning and Locking”, for more information.

13.2.5.2 INSERT DELAYED Syntax

INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL. In previous
versions of MySQL, it can be used for certain kinds of tables (such as MyISAM), such that when a client
uses INSERT DELAYED, it gets an okay from the server at once, and the row is queued to be inserted
when the table is not in use by any other thread.

DELAYED inserts and replaces were deprecated in MySQL 5.6.6. In MySQL 5.7, DELAYED is not
supported. The server recognizes but ignores the DELAYED keyword, handles the insert as a
nondelayed insert, and generates an ER_WARN_LEGACY_SYNTAX_CONVERTED warning (“INSERT
DELAYED is no longer supported. The statement was converted to INSERT”). The DELAYED keyword
is scheduled for removal in a future release.

INSERT Syntax

1701

13.2.5.3 INSERT ... ON DUPLICATE KEY UPDATE Syntax

If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value
in a UNIQUE index or PRIMARY KEY, MySQL performs an UPDATE of the old row. For example, if
column a is declared as UNIQUE and contains the value 1, the following two statements have similar
effect:

INSERT INTO table (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=c+1;

UPDATE table SET c=c+1 WHERE a=1;

(The effects are not identical for an InnoDB table where a is an auto-increment column. With an auto-
increment column, an INSERT statement increases the auto-increment value but UPDATE does not.)

The ON DUPLICATE KEY UPDATE clause can contain multiple column assignments, separated by
commas.

With ON DUPLICATE KEY UPDATE, the affected-rows value per row is 1 if the row is inserted as
a new row, 2 if an existing row is updated, and 0 if an existing row is set to its current values. If you
specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld, the
affected-rows value is 1 (not 0) if an existing row is set to its current values.

If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:

UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid
using an ON DUPLICATE KEY UPDATE clause on tables with multiple unique indexes.

You can use the VALUES(col_name) function in the UPDATE clause to refer to column values from
the INSERT portion of the INSERT ... ON DUPLICATE KEY UPDATE statement. In other words,
VALUES(col_name) in the ON DUPLICATE KEY UPDATE clause refers to the value of col_name
that would be inserted, had no duplicate-key conflict occurred. This function is especially useful in
multiple-row inserts. The VALUES() function is meaningful only in INSERT ... UPDATE statements
and returns NULL otherwise. Example:

INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
 ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

INSERT INTO table (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=3;
INSERT INTO table (a,b,c) VALUES (4,5,6)
 ON DUPLICATE KEY UPDATE c=9;

If a table contains an AUTO_INCREMENT column and INSERT ... ON DUPLICATE KEY UPDATE
inserts or updates a row, the LAST_INSERT_ID() function returns the AUTO_INCREMENT value.

The DELAYED option is ignored when you use ON DUPLICATE KEY UPDATE.

Because the results of INSERT ... SELECT statements depend on the ordering of rows from
the SELECT and this order cannot always be guaranteed, it is possible when logging INSERT ...
SELECT ON DUPLICATE KEY UPDATE statements for the master and the slave to diverge. Thus,
INSERT ... SELECT ON DUPLICATE KEY UPDATE statements are flagged as unsafe for
statement-based replication. With this change, such statements produce a warning in the log when
using statement-based mode and are logged using the row-based format when using MIXED mode.
In addition, an INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more

LOAD DATA INFILE Syntax

1702

than one unique or primary key is also marked as unsafe. (Bug #11765650, Bug #58637) See also
Section 17.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.

In MySQL 5.7, an INSERT ... ON DUPLICATE KEY UPDATE on a partitioned table using a storage
engine such as MyISAM that employs table-level locks locks any partitions of the table in which a
partitioning key column is updated. (This does not occur with tables using storage engines such as
InnoDB that employ row-level locking.) See Section 18.6.4, “Partitioning and Locking”, for more
information.

13.2.6 LOAD DATA INFILE Syntax

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name,...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number {LINES | ROWS}]
 [(col_name_or_user_var,...)]
 [SET col_name = expr,...]

The LOAD DATA INFILE statement reads rows from a text file into a table at a very high speed.
LOAD DATA INFILE is the complement of SELECT ... INTO OUTFILE. (See Section 13.2.9.1,
“SELECT ... INTO Syntax”.) To write data from a table to a file, use SELECT ... INTO OUTFILE.
To read the file back into a table, use LOAD DATA INFILE. The syntax of the FIELDS and LINES
clauses is the same for both statements. Both clauses are optional, but FIELDS must precede LINES if
both are specified.

You can also load data files by using the mysqlimport utility; it operates by sending a LOAD DATA
INFILE statement to the server. The --local option causes mysqlimport to read data files from
the client host. You can specify the --compress option to get better performance over slow networks
if the client and server support the compressed protocol. See Section 4.5.5, “mysqlimport — A Data
Import Program”.

For more information about the efficiency of INSERT versus LOAD DATA INFILE and speeding up
LOAD DATA INFILE, see Section 8.2.2.1, “Speed of INSERT Statements”.

The file name must be given as a literal string. On Windows, specify backslashes in path names
as forward slashes or doubled backslashes. The character_set_filesystem system variable
controls the interpretation of the file name.

LOAD DATA supports explicit partition selection using the PARTITION option with a comma-separated
list of one or more names of partitions, subpartitions, or both. When this option is used, if any rows from
the file cannot be inserted into any of the partitions or subpartitions named in the list, the statement fails
with the error Found a row not matching the given partition set. For more information,
see Section 18.5, “Partition Selection”.

For partitioned tables using storage engines that employ table locks, such as MyISAM, LOAD DATA
cannot prune any partition locks. This does not apply to tables using storage engines which employ
row-level locking, such as InnoDB. For more information, see Section 18.6.4, “Partitioning and
Locking”.

The server uses the character set indicated by the character_set_database system variable to
interpret the information in the file. SET NAMES and the setting of character_set_client do not

LOAD DATA INFILE Syntax

1703

affect interpretation of input. If the contents of the input file use a character set that differs from the
default, it is usually preferable to specify the character set of the file by using the CHARACTER SET
clause. A character set of binary specifies “no conversion.”

LOAD DATA INFILE interprets all fields in the file as having the same character set, regardless of the
data types of the columns into which field values are loaded. For proper interpretation of file contents,
you must ensure that it was written with the correct character set. For example, if you write a data file
with mysqldump -T or by issuing a SELECT ... INTO OUTFILE statement in mysql, be sure to
use a --default-character-set option so that output is written in the character set to be used
when the file is loaded with LOAD DATA INFILE.

Note

It is not possible to load data files that use the ucs2, utf16, utf16le, or
utf32 character set.

If you use LOW_PRIORITY, execution of the LOAD DATA statement is delayed until no other clients
are reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

If you specify CONCURRENT with a MyISAM table that satisfies the condition for concurrent inserts (that
is, it contains no free blocks in the middle), other threads can retrieve data from the table while LOAD
DATA is executing. This option affects the performance of LOAD DATA a bit, even if no other thread is
using the table at the same time.

With row-based replication, CONCURRENT is replicated regardless of MySQL version. With statement-
based replication CONCURRENT is not replicated prior to MySQL 5.5.1 (see Bug #34628). For more
information, see Section 17.4.1.18, “Replication and LOAD DATA INFILE”.

The LOCAL keyword affects expected location of the file and error handling, as described later. LOCAL
works only if your server and your client both have been configured to permit it. For example, if mysqld
was started with --local-infile=0, LOCAL does not work. See Section 6.1.6, “Security Issues with
LOAD DATA LOCAL”.

The LOCAL keyword affects where the file is expected to be found:

• If LOCAL is specified, the file is read by the client program on the client host and sent to the server.
The file can be given as a full path name to specify its exact location. If given as a relative path
name, the name is interpreted relative to the directory in which the client program was started.

When using LOCAL with LOAD DATA, a copy of the file is created in the server's temporary directory.
This is not the directory determined by the value of tmpdir or slave_load_tmpdir, but rather the
operating system's temporary directory, and is not configurable in the MySQL Server. (Typically the
system temporary directory is /tmp on Linux systems and C:\WINDOWS\TEMP on Windows.) Lack
of sufficient space for the copy in this directory can cause the LOAD DATA LOCAL statement to fail.

• If LOCAL is not specified, the file must be located on the server host and is read directly by the
server. The server uses the following rules to locate the file:

• If the file name is an absolute path name, the server uses it as given.

• If the file name is a relative path name with one or more leading components, the server searches
for the file relative to the server's data directory.

• If a file name with no leading components is given, the server looks for the file in the database
directory of the default database.

In the non-LOCAL case, these rules mean that a file named as ./myfile.txt is read from the
server's data directory, whereas the file named as myfile.txt is read from the database directory of
the default database. For example, if db1 is the default database, the following LOAD DATA statement

LOAD DATA INFILE Syntax

1704

reads the file data.txt from the database directory for db1, even though the statement explicitly
loads the file into a table in the db2 database:

LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

For security reasons, when reading text files located on the server, the files must either reside in the
database directory or be readable by the user account used to run the server. Also, to use LOAD DATA
INFILE on server files, you must have the FILE privilege. See Section 6.2.1, “Privileges Provided
by MySQL”. For non-LOCAL load operations, if the secure_file_priv system variable is set to a
nonempty directory name, the file to be loaded must be located in that directory.

Using LOCAL is a bit slower than letting the server access the files directly, because the contents of the
file must be sent over the connection by the client to the server. On the other hand, you do not need
the FILE privilege to load local files.

LOCAL also affects error handling:

• With LOAD DATA INFILE, data-interpretation and duplicate-key errors terminate the operation.

• With LOAD DATA LOCAL INFILE, data-interpretation and duplicate-key errors become warnings
and the operation continues because the server has no way to stop transmission of the file in the
middle of the operation. For duplicate-key errors, this is the same as if IGNORE is specified. IGNORE
is explained further later in this section.

The REPLACE and IGNORE keywords control handling of input rows that duplicate existing rows on
unique key values:

• If you specify REPLACE, input rows replace existing rows. In other words, rows that have the same
value for a primary key or unique index as an existing row. See Section 13.2.8, “REPLACE Syntax”.

• If you specify IGNORE, rows that duplicate an existing row on a unique key value are discarded. For
more information, see Comparison of the IGNORE Keyword and Strict SQL Mode.

• If you do not specify either option, the behavior depends on whether the LOCAL keyword is specified.
Without LOCAL, an error occurs when a duplicate key value is found, and the rest of the text file is
ignored. With LOCAL, the default behavior is the same as if IGNORE is specified; this is because the
server has no way to stop transmission of the file in the middle of the operation.

To ignore foreign key constraints during the load operation, issue a SET foreign_key_checks = 0
statement before executing LOAD DATA.

If you use LOAD DATA INFILE on an empty MyISAM table, all nonunique indexes are created in a
separate batch (as for REPAIR TABLE). Normally, this makes LOAD DATA INFILE much faster when
you have many indexes. In some extreme cases, you can create the indexes even faster by turning
them off with ALTER TABLE ... DISABLE KEYS before loading the file into the table and using
ALTER TABLE ... ENABLE KEYS to re-create the indexes after loading the file. See Section 8.2.2.1,
“Speed of INSERT Statements”.

For both the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements, the syntax of the
FIELDS and LINES clauses is the same. Both clauses are optional, but FIELDS must precede LINES
if both are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED
BY, and ESCAPED BY) is also optional, except that you must specify at least one of them.

If you specify no FIELDS or LINES clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'
LINES TERMINATED BY '\n' STARTING BY ''

LOAD DATA INFILE Syntax

1705

(Backslash is the MySQL escape character within strings in SQL statements, so to specify a literal
backslash, you must specify two backslashes for the value to be interpreted as a single backslash. The
escape sequences '\t' and '\n' specify tab and newline characters, respectively.)

In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:

• Look for line boundaries at newlines.

• Do not skip over any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret characters preceded by the escape character “\” as escape sequences. For example,
“\t”, “\n”, and “\\” signify tab, newline, and backslash, respectively. See the discussion of FIELDS
ESCAPED BY later for the full list of escape sequences.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use “\” to escape instances of tab, newline, or “\” that occur within field values.

• Write newlines at the ends of lines.

Note

If you have generated the text file on a Windows system, you might have to use
LINES TERMINATED BY '\r\n' to read the file properly, because Windows
programs typically use two characters as a line terminator. Some programs,
such as WordPad, might use \r as a line terminator when writing files. To read
such files, use LINES TERMINATED BY '\r'.

If all the lines you want to read in have a common prefix that you want to ignore, you can use LINES
STARTING BY 'prefix_string' to skip over the prefix, and anything before it. If a line does not
include the prefix, the entire line is skipped. Suppose that you issue the following statement:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test
 FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';

If the data file looks like this:

xxx"abc",1
something xxx"def",2
"ghi",3

The resulting rows will be ("abc",1) and ("def",2). The third row in the file is skipped because it
does not contain the prefix.

The IGNORE number LINES option can be used to ignore lines at the start of the file. For example,
you can use IGNORE 1 LINES to skip over an initial header line containing column names:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write data from
a database into a file and then read the file back into the database later, the field- and line-handling
options for both statements must match. Otherwise, LOAD DATA INFILE will not interpret the contents
of the file properly. Suppose that you use SELECT ... INTO OUTFILE to write a file with fields
delimited by commas:

LOAD DATA INFILE Syntax

1706

SELECT * INTO OUTFILE 'data.txt'
 FIELDS TERMINATED BY ','
 FROM table2;

To read the comma-delimited file back in, the correct statement would be:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY ',';

If instead you tried to read in the file with the statement shown following, it wouldn't work because it
instructs LOAD DATA INFILE to look for tabs between fields:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA INFILE can be used to read files obtained from external sources. For example, many
programs can export data in comma-separated values (CSV) format, such that lines have fields
separated by commas and enclosed within double quotation marks, with an initial line of column
names. If the lines in such a file are terminated by carriage return/newline pairs, the statement shown
here illustrates the field- and line-handling options you would use to load the file:

LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
 FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES;

If the input values are not necessarily enclosed within quotation marks, use OPTIONALLY before the
ENCLOSED BY keywords.

Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS
[OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character. The
FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values can be more
than one character. For example, to write lines that are terminated by carriage return/linefeed pairs, or
to read a file containing such lines, specify a LINES TERMINATED BY '\r\n' clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

CREATE TABLE jokes
 (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joke TEXT NOT NULL);
LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
 FIELDS TERMINATED BY ''
 LINES TERMINATED BY '\n%%\n' (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO
OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY character.
An example of such output (using a comma as the field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from columns
that have a string data type (such as CHAR, BINARY, TEXT, or ENUM):

1,"a string",100.20

LOAD DATA INFILE Syntax

1707

2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Occurrences of the ENCLOSED BY character within a field value are escaped by prefixing them with
the ESCAPED BY character. Also note that if you specify an empty ESCAPED BY value, it is possible to
inadvertently generate output that cannot be read properly by LOAD DATA INFILE. For example, the
preceding output just shown would appear as follows if the escape character is empty. Observe that
the second field in the fourth line contains a comma following the quote, which (erroneously) appears to
terminate the field:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is true
regardless of whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpretation.)
Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are interpreted
as part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as
terminating a field value only if followed by the field or line TERMINATED BY sequence. To avoid
ambiguity, occurrences of the ENCLOSED BY character within a field value can be doubled and are
interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified,
quotation marks are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to read or write special characters:

• For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are
stripped and the following character is taken literally as part of a field value. Some two-character
sequences that are exceptions, where the first character is the escape character. These sequences
are shown in the following table (using “\” for the escape character). The rules for NULL handling are
described later in this section.

Character Escape Sequence

\0 An ASCII NUL (X'00') character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character.

\Z ASCII 26 (Control+Z)

\N NULL

For more information about “\”-escape syntax, see Section 9.1.1, “String Literals”.

If the FIELDS ESCAPED BY character is empty, escape-sequence interpretation does not occur.

• For output, if the FIELDS ESCAPED BY character is not empty, it is used to prefix the following
characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

LOAD DATA INFILE Syntax

1708

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII 0 (what is actually written following the escape character is ASCII “0”, not a zero-valued
byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is nonempty, lines are
also terminated with FIELDS TERMINATED BY.

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a fixed-
row (nondelimited) format is used. With fixed-row format, no delimiters are used between fields
(but you can still have a line terminator). Instead, column values are read and written using a field
width wide enough to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT, INT, and
BIGINT, the field widths are 4, 6, 8, 11, and 20, respectively, no matter what the declared display
width is.

LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest of
the columns are set to their default values. If you do not have a line terminator, you should set this to
''. In this case, the text file must contain all fields for each row.

Fixed-row format also affects handling of NULL values, as described later.

Note

Fixed-size format does not work if you are using a multibyte character set.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a
field value of \N is read as NULL for input (assuming that the ESCAPED BY character is “\”).

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is read as
a NULL value. This differs from the word NULL enclosed within FIELDS ENCLOSED BY characters,
which is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS ENCLOSED
BY are both empty), NULL is written as an empty string. This causes both NULL values and empty
strings in the table to be indistinguishable when written to the file because both are written as empty
strings. If you need to be able to tell the two apart when reading the file back in, you should not use
fixed-row format.

An attempt to load NULL into a NOT NULL column causes assignment of the implicit default value
for the column's data type and a warning, or an error in strict SQL mode. Implicit default values are
discussed in Section 11.7, “Data Type Default Values”.

Some cases are not supported by LOAD DATA INFILE:

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB or
TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE cannot
interpret the input properly. For example, the following FIELDS clause would cause problems:

LOAD DATA INFILE Syntax

1709

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS ENCLOSED
BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value causes LOAD
DATA INFILE to stop reading a field or line too early. This happens because LOAD DATA INFILE
cannot properly determine where the field or line value ends.

The following example loads all columns of the persondata table:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA INFILE statement, input
lines are expected to contain a field for each table column. If you want to load only some of a table's
columns, specify a column list:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata (col1,col2,...);

You must also specify a column list if the order of the fields in the input file differs from the order of the
columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.

The column list can contain either column names or user variables. With user variables, the SET clause
enables you to perform transformations on their values before assigning the result to columns.

User variables in the SET clause can be used in several ways. The following example uses the first
input column directly for the value of t1.column1, and assigns the second input column to a user
variable that is subjected to a division operation before being used for the value of t1.column2:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @var1)
 SET column2 = @var1/100;

The SET clause can be used to supply values not derived from the input file. The following statement
sets column3 to the current date and time:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can also discard an input value by assigning it to a user variable and not assigning the variable to
a table column:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @dummy, column2, @dummy, column3);

Use of the column/variable list and SET clause is subject to the following restrictions:

• Assignments in the SET clause should have only column names on the left hand side of assignment
operators.

• You can use subqueries in the right hand side of SET assignments. A subquery that returns a value
to be assigned to a column may be a scalar subquery only. Also, you cannot use a subquery to
select from the table that is being loaded.

• Lines ignored by an IGNORE clause are not processed for the column/variable list or SET clause.

• User variables cannot be used when loading data with fixed-row format because user variables do
not have a display width.

LOAD DATA INFILE Syntax

1710

When processing an input line, LOAD DATA splits it into fields and uses the values according to the
column/variable list and the SET clause, if they are present. Then the resulting row is inserted into the
table. If there are BEFORE INSERT or AFTER INSERT triggers for the table, they are activated before
or after inserting the row, respectively.

If an input line has too many fields, the extra fields are ignored and the number of warnings is
incremented.

If an input line has too few fields, the table columns for which input fields are missing are set to their
default values. Default value assignment is described in Section 11.7, “Data Type Default Values”.

An empty field value is interpreted different from a missing field:

• For string types, the column is set to the empty string.

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate “zero” value for the type. See
Section 11.3, “Date and Time Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or
date or time type explicitly in an INSERT or UPDATE statement.

Treatment of empty or incorrect field values differs from that just described if the SQL mode is set to
a restrictive value. For example, if sql_mode is set to TRADITIONAL, conversion of an empty value
or a value such as 'x' for a numeric column results in an error, not conversion to 0. (With LOCAL
or IGNORE, warnings occur rather than errors, even with a restrictive sql_mode value, and the row
is inserted using the same closest-value behavior used for nonrestrictive SQL modes. This occurs
because the server has no way to stop transmission of the file in the middle of the operation.)

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column
(that is, \N) and the column is not declared to permit NULL values, or if the TIMESTAMP column's
default value is the current timestamp and it is omitted from the field list when a field list is specified.

LOAD DATA INFILE regards all input as strings, so you cannot use numeric values for ENUM or SET
columns the way you can with INSERT statements. All ENUM and SET values must be specified as
strings.

BIT values cannot be loaded using binary notation (for example, b'011010'). To work around this,
specify the values as regular integers and use the SET clause to convert them so that MySQL performs
a numeric type conversion and loads them into the BIT column properly:

shell> cat /tmp/bit_test.txt
2
127
shell> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'
 -> INTO TABLE bit_test (@var1) SET b = CAST(@var1 AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| bin(b+0) |
+----------+
| 10 |
| 1111111 |
+----------+
2 rows in set (0.00 sec)

On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (the
example loads a listing of the / directory into the table db1.t1):

LOAD XML Syntax

1711

mkfifo /mysql/data/db1/ls.dat
chmod 666 /mysql/data/db1/ls.dat
find / -ls > /mysql/data/db1/ls.dat &
mysql -e "LOAD DATA INFILE 'ls.dat' INTO TABLE t1" db1

Here you must run the command that generates the data to be loaded and the mysql commands
either on separate terminals, or run the data generation process in the background (as shown in the
preceding example). If you do not do this, the pipe will block until data is read by the mysql process.

When the LOAD DATA INFILE statement finishes, it returns an information string in the following
format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

Warnings occur under the same circumstances as when values are inserted using the INSERT
statement (see Section 13.2.5, “INSERT Syntax”), except that LOAD DATA INFILE also generates
warnings when there are too few or too many fields in the input row.

You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information
about what went wrong. See Section 13.7.5.40, “SHOW WARNINGS Syntax”.

If you are using the C API, you can get information about the statement by calling the mysql_info()
function. See Section 23.8.7.36, “mysql_info()”.

13.2.7 LOAD XML Syntax

LOAD XML [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE [db_name.]tbl_name
 [CHARACTER SET charset_name]
 [ROWS IDENTIFIED BY '<tagname>']
 [IGNORE number {LINES | ROWS}]
 [(field_name_or_user_var,...)]
 [SET col_name = expr,...]

The LOAD XML statement reads data from an XML file into a table. The file_name must be given as
a literal string. The tagname in the optional ROWS IDENTIFIED BY clause must also be given as a
literal string, and must be surrounded by angle brackets (< and >).

LOAD XML acts as the complement of running the mysql client in XML output mode (that is, starting
the client with the --xml option). To write data from a table to an XML file, you can invoke the mysql
client with the --xml and -e options from the system shell, as shown here:

shell> mysql --xml -e 'SELECT * FROM mydb.mytable' > file.xml

To read the file back into a table, use LOAD XML INFILE. By default, the <row> element is
considered to be the equivalent of a database table row; this can be changed using the ROWS
IDENTIFIED BY clause.

This statement supports three different XML formats:

• Column names as attributes and column values as attribute values:

<row column1="value1" column2="value2" .../>

• Column names as tags and column values as the content of these tags:

<row>
 <column1>value1</column1>
 <column2>value2</column2>

LOAD XML Syntax

1712

</row>

• Column names are the name attributes of <field> tags, and values are the contents of these tags:

<row>
 <field name='column1'>value1</field>
 <field name='column2'>value2</field>
</row>

This is the format used by other MySQL tools, such as mysqldump.

All three formats can be used in the same XML file; the import routine automatically detects the format
for each row and interprets it correctly. Tags are matched based on the tag or attribute name and the
column name.

Prior to MySQL 5.7.9, LOAD XML did not handle empty XML elements in the form <element/>
correctly. (Bug #67542, Bug #16171518)

The following clauses work essentially the same way for LOAD XML as they do for LOAD DATA:

• LOW_PRIORITY or CONCURRENT

• LOCAL

• REPLACE or IGNORE

• CHARACTER SET

• SET

See Section 13.2.6, “LOAD DATA INFILE Syntax”, for more information about these clauses.

(field_name_or_user_var, ...) is a comma-separated list of one or more XML fields or user
variables. The name of a user variable used for this purpose must match the name of a field from the
XML file, prefixed with @. You can use field names to select only desired fields. User variables can be
employed to store the corresponding field values for subsequent re-use.

The IGNORE number LINES or IGNORE number ROWS clause causes the first number rows in the
XML file to be skipped. It is analogous to the LOAD DATA statement's IGNORE ... LINES clause.

Suppose that we have a table named person, created as shown here:

USE test;

CREATE TABLE person (
 person_id INT NOT NULL PRIMARY KEY,
 fname VARCHAR(40) NULL,
 lname VARCHAR(40) NULL,
 created TIMESTAMP
);

Suppose further that this table is initially empty.

Now suppose that we have a simple XML file person.xml, whose contents are as shown here:

<list>
 <person person_id="1" fname="Kapek" lname="Sainnouine"/>
 <person person_id="2" fname="Sajon" lname="Rondela"/>
 <person person_id="3"><fname>Likame</fname><lname>Örrtmons</lname></person>
 <person person_id="4"><fname>Slar</fname><lname>Manlanth</lname></person>
 <person><field name="person_id">5</field><field name="fname">Stoma</field>
 <field name="lname">Milu</field></person>
 <person><field name="person_id">6</field><field name="fname">Nirtam</field>
 <field name="lname">Sklöd</field></person>

LOAD XML Syntax

1713

 <person person_id="7"><fname>Sungam</fname><lname>Dulbåd</lname></person>
 <person person_id="8" fname="Sraref" lname="Encmelt"/>
</list>

Each of the permissible XML formats discussed previously is represented in this example file.

To import the data in person.xml into the person table, you can use this statement:

mysql> LOAD XML LOCAL INFILE 'person.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';

Query OK, 8 rows affected (0.00 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

Here, we assume that person.xml is located in the MySQL data directory. If the file cannot be found,
the following error results:

ERROR 2 (HY000): File '/person.xml' not found (Errcode: 2)

The ROWS IDENTIFIED BY '<person>' clause means that each <person> element in the XML
file is considered equivalent to a row in the table into which the data is to be imported. In this case, this
is the person table in the test database.

As can be seen by the response from the server, 8 rows were imported into the test.person table.
This can be verified by a simple SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likame	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Sreraf	Encmelt	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

This shows, as stated earlier in this section, that any or all of the 3 permitted XML formats may appear
in a single file and be read in using LOAD XML.

The inverse of the import operation just shown—that is, dumping MySQL table data into an XML file—
can be accomplished using the mysql client from the system shell, as shown here:

shell> mysql --xml -e "SELECT * FROM test.person" > person-dump.xml
shell> cat person-dump.xml
<?xml version="1.0"?>

<resultset statement="SELECT * FROM test.person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <row>
 <field name="person_id">1</field>
 <field name="fname">Kapek</field>
 <field name="lname">Sainnouine</field>
 </row>

 <row>
 <field name="person_id">2</field>
 <field name="fname">Sajon</field>
 <field name="lname">Rondela</field>
 </row>

LOAD XML Syntax

1714

 <row>
 <field name="person_id">3</field>
 <field name="fname">Likema</field>
 <field name="lname">Örrtmons</field>
 </row>

 <row>
 <field name="person_id">4</field>
 <field name="fname">Slar</field>
 <field name="lname">Manlanth</field>
 </row>

 <row>
 <field name="person_id">5</field>
 <field name="fname">Stoma</field>
 <field name="lname">Nilu</field>
 </row>

 <row>
 <field name="person_id">6</field>
 <field name="fname">Nirtam</field>
 <field name="lname">Sklöd</field>
 </row>

 <row>
 <field name="person_id">7</field>
 <field name="fname">Sungam</field>
 <field name="lname">Dulbåd</field>
 </row>

 <row>
 <field name="person_id">8</field>
 <field name="fname">Sreraf</field>
 <field name="lname">Encmelt</field>
 </row>
</resultset>

Note

The --xml option causes the mysql client to use XML formatting for its output;
the -e option causes the client to execute the SQL statement immediately
following the option. See Section 4.5.1, “mysql — The MySQL Command-Line
Tool”.

You can verify that the dump is valid by creating a copy of the person table and importing the dump
file into the new table, like this:

mysql> USE test;
mysql> CREATE TABLE person2 LIKE person;
Query OK, 0 rows affected (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
 -> INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likema	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Sreraf	Encmelt	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

LOAD XML Syntax

1715

There is no requirement that every field in the XML file be matched with a column in the corresponding
table. Fields which have no corresponding columns are skipped. You can see this by first emptying the
person2 table and dropping the created column, then using the same LOAD XML statement we just
employed previously, like this:

mysql> TRUNCATE person2;
Query OK, 8 rows affected (0.26 sec)

mysql> ALTER TABLE person2 DROP COLUMN created;
Query OK, 0 rows affected (0.52 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE person2\G
*************************** 1. row ***************************
 Table: person2
Create Table: CREATE TABLE `person2` (
 `person_id` int(11) NOT NULL,
 `fname` varchar(40) DEFAULT NULL,
 `lname` varchar(40) DEFAULT NULL,
 PRIMARY KEY (`person_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
 -> INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+
| person_id | fname | lname |
+-----------+--------+------------+
1	Kapek	Sainnouine
2	Sajon	Rondela
3	Likema	Örrtmons
4	Slar	Manlanth
5	Stoma	Nilu
6	Nirtam	Sklöd
7	Sungam	Dulbåd
8	Sreraf	Encmelt
+-----------+--------+------------+
8 rows in set (0.00 sec)

The order in which the fields are given within each row of the XML file does not affect the operation of
LOAD XML; the field order can vary from row to row, and is not required to be in the same order as the
corresponding columns in the table.

As mentioned previously, you can use a (field_name_or_user_var, ...) list of one or more
XML fields (to select desired fields only) or user variables (to store the corresponding field values for
later use). User variables can be especially useful when you want to insert data from an XML file into
table columns whose names do not match those of the XML fields. To see how this works, we first
create a table named individual whose structure matches that of the person table, but whose
columns are named differently:

mysql> CREATE TABLE individual (
 -> individual_id INT NOT NULL PRIMARY KEY,
 -> name1 VARCHAR(40) NULL,
 -> name2 VARCHAR(40) NULL,
 -> made TIMESTAMP
 ->);
Query OK, 0 rows affected (0.42 sec)

In this case, you cannot simply load the XML file directly into the table, because the field and column
names do not match:

mysql> LOAD XML INFILE '../bin/person-dump.xml' INTO TABLE test.individual;

LOAD XML Syntax

1716

ERROR 1263 (22004): Column set to default value; NULL supplied to NOT NULL column 'individual_id' at row 1

This happens because the MySQL server looks for field names matching the column names of the
target table. You can work around this problem by selecting the field values into user variables, then
setting the target table's columns equal to the values of those variables using SET. You can perform
both of these operations in a single statement, as shown here:

mysql> LOAD XML INFILE '../bin/person-dump.xml'
 -> INTO TABLE test.individual (@person_id, @fname, @lname, @created)
 -> SET individual_id=@person_id, name1=@fname, name2=@lname, made=@created;
Query OK, 8 rows affected (0.05 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM individual;
+---------------+--------+------------+---------------------+
| individual_id | name1 | name2 | made |
+---------------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likema	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Srraf	Encmelt	2007-07-13 16:18:47
+---------------+--------+------------+---------------------+
8 rows in set (0.00 sec)

The names of the user variables must match those of the corresponding fields from the XML file, with
the addition of the required @ prefix to indicate that they are variables. The user variables need not be
listed or assigned in the same order as the corresponding fields.

Using a ROWS IDENTIFIED BY '<tagname>' clause, it is possible to import data from the same
XML file into database tables with different definitions. For this example, suppose that you have a file
named address.xml which contains the following XML:

<?xml version="1.0"?>

<list>
 <person person_id="1">
 <fname>Robert</fname>
 <lname>Jones</lname>
 <address address_id="1" street="Mill Creek Road" zip="45365" city="Sidney"/>
 <address address_id="2" street="Main Street" zip="28681" city="Taylorsville"/>
 </person>

 <person person_id="2">
 <fname>Mary</fname>
 <lname>Smith</lname>
 <address address_id="3" street="River Road" zip="80239" city="Denver"/>
 <!-- <address address_id="4" street="North Street" zip="37920" city="Knoxville"/> -->
 </person>

</list>

You can again use the test.person table as defined previously in this section, after clearing all the
existing records from the table and then showing its structure as shown here:

mysql< TRUNCATE person;
Query OK, 0 rows affected (0.04 sec)

mysql< SHOW CREATE TABLE person\G
*************************** 1. row ***************************
 Table: person
Create Table: CREATE TABLE `person` (
 `person_id` int(11) NOT NULL,

LOAD XML Syntax

1717

 `fname` varchar(40) DEFAULT NULL,
 `lname` varchar(40) DEFAULT NULL,
 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`person_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Now create an address table in the test database using the following CREATE TABLE statement:

CREATE TABLE address (
 address_id INT NOT NULL PRIMARY KEY,
 person_id INT NULL,
 street VARCHAR(40) NULL,
 zip INT NULL,
 city VARCHAR(40) NULL,
 created TIMESTAMP
);

To import the data from the XML file into the person table, execute the following LOAD XML
statement, which specifies that rows are to be specified by the <person> element, as shown here;

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

You can verify that the records were imported using a SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+-------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+-------+---------------------+
| 1 | Robert | Jones | 2007-07-24 17:37:06 |
| 2 | Mary | Smith | 2007-07-24 17:37:06 |
+-----------+--------+-------+---------------------+
2 rows in set (0.00 sec)

Since the <address> elements in the XML file have no corresponding columns in the person table,
they are skipped.

To import the data from the <address> elements into the address table, use the LOAD XML
statement shown here:

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE address
 -> ROWS IDENTIFIED BY '<address>';
Query OK, 3 rows affected (0.00 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 0

You can see that the data was imported using a SELECT statement such as this one:

mysql> SELECT * FROM address;
+------------+-----------+-----------------+-------+--------------+---------------------+
| address_id | person_id | street | zip | city | created |
+------------+-----------+-----------------+-------+--------------+---------------------+
1	1	Mill Creek Road	45365	Sidney	2007-07-24 17:37:37
2	1	Main Street	28681	Taylorsville	2007-07-24 17:37:37
3	2	River Road	80239	Denver	2007-07-24 17:37:37
+------------+-----------+-----------------+-------+--------------+---------------------+
3 rows in set (0.00 sec)

The data from the <address> element that is enclosed in XML comments is not imported. However,
since there is a person_id column in the address table, the value of the person_id attribute from
the parent <person> element for each <address> is imported into the address table.

REPLACE Syntax

1718

Security Considerations. As with the LOAD DATA statement, the transfer of the XML file from the
client host to the server host is initiated by the MySQL server. In theory, a patched server could be built
that would tell the client program to transfer a file of the server's choosing rather than the file named by
the client in the LOAD XML statement. Such a server could access any file on the client host to which
the client user has read access.

In a Web environment, clients usually connect to MySQL from a Web server. A user that can run any
command against the MySQL server can use LOAD XML LOCAL to read any files to which the Web
server process has read access. In this environment, the client with respect to the MySQL server
is actually the Web server, not the remote program being run by the user who connects to the Web
server.

You can disable loading of XML files from clients by starting the server with --local-infile=0 or
--local-infile=OFF. This option can also be used when starting the mysql client to disable LOAD
XML for the duration of the client session.

To prevent a client from loading XML files from the server, do not grant the FILE privilege to the
corresponding MySQL user account, or revoke this privilege if the client user account already has it.

Important

Revoking the FILE privilege (or not granting it in the first place) keeps the
user only from executing the LOAD XML INFILE statement (as well as the
LOAD_FILE() function; it does not prevent the user from executing LOAD XML
LOCAL INFILE. To disallow this statement, you must start the server or the
client with --local-infile=OFF.

In other words, the FILE privilege affects only whether the client can read files
on the server; it has no bearing on whether the client can read files on the local
file system.

For partitioned tables using storage engines that employ table locks, such as MyISAM, any locks
caused by LOAD XML perform locks on all partitions of the table. This does not apply to tables
using storage engines which employ row-level locking, such as InnoDB. For more information, see
Section 18.6.4, “Partitioning and Locking”.

13.2.8 REPLACE Syntax

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 [(col_name,...)]
 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 SET col_name={expr | DEFAULT}, ...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name,...)]
 [(col_name,...)]
 SELECT ...

REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a new
row for a PRIMARY KEY or a UNIQUE index, the old row is deleted before the new row is inserted. See
Section 13.2.5, “INSERT Syntax”.

REPLACE Syntax

1719

REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For
another MySQL extension to standard SQL—that either inserts or updates—see Section 13.2.5.3,
“INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

DELAYED inserts and replaces were deprecated in MySQL 5.6.6. In MySQL 5.7, DELAYED is not
supported. The server recognizes but ignores the DELAYED keyword, handles the replace as a
nondelayed replace, and generates an ER_WARN_LEGACY_SYNTAX_CONVERTED warning. (“REPLACE
DELAYED is no longer supported. The statement was converted to REPLACE.”) The DELAYED
keyword will be removed in a future release.

Note

REPLACE makes sense only if a table has a PRIMARY KEY or UNIQUE index.
Otherwise, it becomes equivalent to INSERT, because there is no index to be
used to determine whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any
missing columns are set to their default values, just as happens for INSERT. You cannot refer to
values from the current row and use them in the new row. If you use an assignment such as SET
col_name = col_name + 1, the reference to the column name on the right hand side is treated as
DEFAULT(col_name), so the assignment is equivalent to SET col_name = DEFAULT(col_name)
+ 1.

If a generated column is replaced explicitly, the only permitted value is DEFAULT. For information about
generated columns, see CREATE TABLE and Generated Columns.

To use REPLACE, you must have both the INSERT and DELETE privileges for the table.

REPLACE supports explicit partition selection using the PARTITION keyword with a comma-separated
list of names of partitions, subpartitions, or both. As with INSERT, if it is not possible to insert the new
row into any of these partitions or subpartitions, the REPLACE statement fails with the error Found
a row not matching the given partition set. See Section 18.5, “Partition Selection”, for
more information.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the
rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and no rows
were deleted. If the count is greater than 1, one or more old rows were deleted before the new row was
inserted. It is possible for a single row to replace more than one old row if the table contains multiple
unique indexes and the new row duplicates values for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it
also replaced any rows: Check whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the
mysql_affected_rows() function.

You cannot replace into a table and select from the same table in a subquery.

MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary key or unique index:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

It is possible that in the case of a duplicate-key error, a storage engine may perform the REPLACE as
an update rather than a delete plus insert, but the semantics are the same. There are no user-visible
effects other than a possible difference in how the storage engine increments Handler_xxx status
variables.

REPLACE Syntax

1720

Because the results of REPLACE ... SELECT statements depend on the ordering of rows from the
SELECT and this order cannot always be guaranteed, it is possible when logging these statements for
the master and the slave to diverge. For this reason, REPLACE ... SELECT statements are flagged
as unsafe for statement-based replication. With this change, such statements produce a warning in the
log when using the STATEMENT binary logging mode, and are logged using the row-based format when
using MIXED mode. See also Section 17.2.1.1, “Advantages and Disadvantages of Statement-Based
and Row-Based Replication”.

When modifying an existing table that is not partitioned to accommodate partitioning, or, when
modifying the partitioning of an already partitioned table, you may consider altering the table's primary
key (see Section 18.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”). You should be aware
that, if you do this, the results of REPLACE statements may be affected, just as they would be if you
modified the primary key of a nonpartitioned table. Consider the table created by the following CREATE
TABLE statement:

CREATE TABLE test (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 data VARCHAR(64) DEFAULT NULL,
 ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (id)
);

When we create this table and run the statements shown in the mysql client, the result is as follows:

mysql> REPLACE INTO test VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.04 sec)

mysql> REPLACE INTO test VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 2 rows affected (0.04 sec)

mysql> SELECT * FROM test;
+----+------+---------------------+
| id | data | ts |
+----+------+---------------------+
| 1 | New | 2014-08-20 18:47:42 |
+----+------+---------------------+
1 row in set (0.00 sec)

Now we create a second table almost identical to the first, except that the primary key now covers 2
columns, as shown here (emphasized text):

CREATE TABLE test2 (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 data VARCHAR(64) DEFAULT NULL,
 ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (id, ts)
);

When we run on test2 the same two REPLACE statements as we did on the original test table, we
obtain a different result:

mysql> REPLACE INTO test2 VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.05 sec)

mysql> REPLACE INTO test2 VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM test2;
+----+------+---------------------+
| id | data | ts |
+----+------+---------------------+
| 1 | Old | 2014-08-20 18:47:00 |
| 1 | New | 2014-08-20 18:47:42 |
+----+------+---------------------+

SELECT Syntax

1721

2 rows in set (0.00 sec)

This is due to the fact that, when run on test2, both the id and ts column values must match those
of an existing row for the row to be replaced; otherwise, a row is inserted.

In MySQL 5.7, a REPLACE statement affecting a partitioned table using a storage engine such as
MyISAM that employs table-level locks locks only those partitions containing rows that match the
REPLACE statement's WHERE clause, as long as none of the table's partitioning columns are updated;
otherwise the entire table is locked. (For storage engines such as InnoDB that employ row-level
locking, no locking of partitions takes place.) For more information, see Section 18.6.4, “Partitioning
and Locking”.

13.2.9 SELECT Syntax

SELECT
 [ALL | DISTINCT | DISTINCTROW]
 [HIGH_PRIORITY]
 [MAX_STATEMENT_TIME = N]
 [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
 select_expr [, select_expr ...]
 [FROM table_references
 [PARTITION partition_list]
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}
 [ASC | DESC], ... [WITH ROLLUP]]
 [HAVING where_condition]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ...]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
 [PROCEDURE procedure_name(argument_list)]
 [INTO OUTFILE 'file_name'
 [CHARACTER SET charset_name]
 export_options
 | INTO DUMPFILE 'file_name'
 | INTO var_name [, var_name]]
 [FOR UPDATE | LOCK IN SHARE MODE]]

SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements
and subqueries. See Section 13.2.9.3, “UNION Syntax”, and Section 13.2.10, “Subquery Syntax”.

The most commonly used clauses of SELECT statements are these:

• Each select_expr indicates a column that you want to retrieve. There must be at least one
select_expr.

• table_references indicates the table or tables from which to retrieve rows. Its syntax is described
in Section 13.2.9.2, “JOIN Syntax”.

• SELECT supports explicit partition selection using the PARTITION with a list of partitions
or subpartitions (or both) following the name of the table in a table_reference (see
Section 13.2.9.2, “JOIN Syntax”). In this case, rows are selected only from the partitions listed, and
any other partitions of the table are ignored. For more information and examples, see Section 18.5,
“Partition Selection”.

SELECT ... PARTITION from tables using storage engines such as MyISAM that perform
table-level locks (and thus partition locks) lock only the partitions or subpartitions named by the
PARTITION option.

See Section 18.6.4, “Partitioning and Locking”, for more information.

• The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be
selected. where_condition is an expression that evaluates to true for each row to be selected.
The statement selects all rows if there is no WHERE clause.

SELECT Syntax

1722

In the WHERE expression, you can use any of the functions and operators that MySQL supports,
except for aggregate (summary) functions. See Section 9.5, “Expression Syntax”, and Chapter 12,
Functions and Operators.

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;
 -> 2

 You are permitted to specify DUAL as a dummy table name in situations where no tables are
referenced:

mysql> SELECT 1 + 1 FROM DUAL;
 -> 2

DUAL is purely for the convenience of people who require that all SELECT statements should have
FROM and possibly other clauses. MySQL may ignore the clauses. MySQL does not require FROM
DUAL if no tables are referenced.

In general, clauses used must be given in exactly the order shown in the syntax description. For
example, a HAVING clause must come after any GROUP BY clause and before any ORDER BY
clause. The exception is that the INTO clause can appear either as shown in the syntax description or
immediately following the select_expr list. For more information about INTO, see Section 13.2.9.1,
“SELECT ... INTO Syntax”.

The list of select_expr terms comprises the select list that indicates which columns to retrieve.
Terms specify a column or expression or can use *-shorthand:

• A select list consisting only of a single unqualified * can be used as shorthand to select all columns
from all tables:

SELECT * FROM t1 INNER JOIN t2 ...

• tbl_name.* can be used as a qualified shorthand to select all columns from the named table:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ...

• Use of an unqualified * with other items in the select list may produce a parse error. To avoid this
problem, use a qualified tbl_name.* reference

SELECT AVG(score), t1.* FROM t1 ...

The following list provides additional information about other SELECT clauses:

• A select_expr can be given an alias using AS alias_name. The alias is used as the
expression's column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For
example:

SELECT CONCAT(last_name,', ',first_name) AS full_name
 FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr with an identifier. The preceding example
could have been written like this:

SELECT CONCAT(last_name,', ',first_name) full_name
 FROM mytable ORDER BY full_name;

SELECT Syntax

1723

However, because the AS is optional, a subtle problem can occur if you forget the comma between
two select_expr expressions: MySQL interprets the second as an alias name. For example, in the
following statement, columnb is treated as an alias name:

SELECT columna columnb FROM mytable;

For this reason, it is good practice to be in the habit of using AS explicitly when specifying column
aliases.

It is not permissible to refer to a column alias in a WHERE clause, because the column value might not
yet be determined when the WHERE clause is executed. See Section B.5.4.4, “Problems with Column
Aliases”.

• The FROM table_references clause indicates the table or tables from which to retrieve rows.
If you name more than one table, you are performing a join. For information on join syntax, see
Section 13.2.9.2, “JOIN Syntax”. For each table specified, you can optionally specify an alias.

tbl_name [[AS] alias] [index_hint]

The use of index hints provides the optimizer with information about how to choose indexes during
query processing. For a description of the syntax for specifying these hints, see Section 8.9.4, “Index
Hints”.

You can use SET max_seeks_for_key=value as an alternative way to force MySQL to prefer
key scans instead of table scans. See Section 5.1.4, “Server System Variables”.

• You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to
specify a database explicitly. You can refer to a column as col_name, tbl_name.col_name, or
db_name.tbl_name.col_name. You need not specify a tbl_name or db_name.tbl_name prefix
for a column reference unless the reference would be ambiguous. See Section 9.2.1, “Identifier
Qualifiers”, for examples of ambiguity that require the more explicit column reference forms.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
 WHERE t1.name = t2.name;

SELECT t1.name, t2.salary FROM employee t1, info t2
 WHERE t1.name = t2.name;

• Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column
names, column aliases, or column positions. Column positions are integers and begin with 1:

SELECT college, region, seed FROM tournament
 ORDER BY region, seed;

SELECT college, region AS r, seed AS s FROM tournament
 ORDER BY r, s;

SELECT college, region, seed FROM tournament
 ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the
ORDER BY clause that you are sorting by. The default is ascending order; this can be specified
explicitly using the ASC keyword.

If ORDER BY occurs within a subquery and also is applied in the outer query, the outermost ORDER
BY takes precedence. For example, results for the following statement are sorted in descending
order, not ascending order:

SELECT Syntax

1724

(SELECT ... ORDER BY a) ORDER BY a DESC;

Use of column positions is deprecated because the syntax has been removed from the SQL
standard.

• If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you had an
ORDER BY for the same columns. To avoid the overhead of sorting that GROUP BY produces, add
ORDER BY NULL:

SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;

Relying on implicit GROUP BY sorting in MySQL 5.7 is deprecated. To achieve a specific sort order of
grouped results, it is preferable to use an explicit ORDER BY clause. GROUP BY sorting is a MySQL
extension that may change in a future release; for example, to make it possible for the optimizer to
order groupings in whatever manner it deems most efficient and to avoid the sorting overhead.

• MySQL extends the GROUP BY clause so that you can also specify ASC and DESC after columns
named in the clause:

SELECT a, COUNT(b) FROM test_table GROUP BY a DESC;

• MySQL extends the use of GROUP BY to permit selecting fields that are not mentioned in the
GROUP BY clause. If you are not getting the results that you expect from your query, please read the
description of GROUP BY found in Section 12.20, “Functions and Modifiers for Use with GROUP BY
Clauses”.

• GROUP BY permits a WITH ROLLUP modifier. See Section 12.20.2, “GROUP BY Modifiers”.

• The HAVING clause is applied nearly last, just before items are sent to the client, with no
optimization. (LIMIT is applied after HAVING.)

The SQL standard requires that HAVING must reference only columns in the GROUP BY clause or
columns used in aggregate functions. However, MySQL supports an extension to this behavior, and
permits HAVING to refer to columns in the SELECT list and columns in outer subqueries as well.

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following
statement, col2 is ambiguous because it is used as both an alias and a column name:

SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP
BY and as an aliased column in the output column list, preference is given to the column in the
GROUP BY column.

• Do not use HAVING for items that should be in the WHERE clause. For example, do not write the
following:

SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:

SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

SELECT user, MAX(salary) FROM users
 GROUP BY user HAVING MAX(salary) > 10;

SELECT Syntax

1725

(This did not work in some older versions of MySQL.)

• MySQL permits duplicate column names. That is, there can be more than one select_expr with
the same name. This is an extension to standard SQL. Because MySQL also permits GROUP BY and
HAVING to refer to select_expr values, this can result in an ambiguity:

SELECT 12 AS a, a FROM t GROUP BY a;

In that statement, both columns have the name a. To ensure that the correct column is used for
grouping, use different names for each select_expr.

• MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the
select_expr values, then in the columns of the tables in the FROM clause. For GROUP BY or
HAVING clauses, it searches the FROM clause before searching in the select_expr values. (For
GROUP BY and HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules as
for ORDER BY.)

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement.
LIMIT takes one or two numeric arguments, which must both be nonnegative integer constants, with
these exceptions:

• Within prepared statements, LIMIT parameters can be specified using ? placeholder markers.

• Within stored programs, LIMIT parameters can be specified using integer-valued routine
parameters or local variables.

With two arguments, the first argument specifies the offset of the first row to return, and the second
specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large
number for the second parameter. This statement retrieves all rows from the 96th row to the last:

SELECT * FROM tbl LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the result
set:

SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.

For prepared statements, you can use placeholders. The following statements will return one row
from the tbl table:

SET @a=1;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';
EXECUTE STMT USING @a;

The following statements will return the second to sixth row from the tbl table:

SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';
EXECUTE STMT USING @skip, @numrows;

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET offset
syntax.

SELECT Syntax

1726

If LIMIT occurs within a subquery and also is applied in the outer query, the outermost LIMIT takes
precedence. For example, the following statement produces two rows, not one:

(SELECT ... LIMIT 1) LIMIT 2;

• A PROCEDURE clause names a procedure that should process the data in the result set. For an
example, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”, which describes ANALYSE, a
procedure that can be used to obtain suggestions for optimal column data types that may help
reduce table sizes.

• The SELECT ... INTO form of SELECT enables the query result to be written to a file or stored in
variables. For more information, see Section 13.2.9.1, “SELECT ... INTO Syntax”.

• If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current transaction. Using LOCK IN SHARE MODE sets
a shared lock that permits other transactions to read the examined rows but not to update or delete
them. See Section 14.2.2.3, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN
SHARE MODE)”.

In addition, you cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE
TABLE new_table SELECT ... FROM old_table (If you attempt to do so, the statement
is rejected with the error Can't update table 'old_table' while 'new_table' is
being created.) This is a change in behavior from MySQL 5.5 and earlier, which permitted
CREATE TABLE ... SELECT statements to make changes in tables other than the table being
created.

Following the SELECT keyword, you can use a number of options that affect the operation of the
statement. HIGH_PRIORITY, MAX_STATEMENT_TIME, STRAIGHT_JOIN, and options beginning with
SQL_ are MySQL extensions to standard SQL.

• The ALL and DISTINCT options specify whether duplicate rows should be returned. ALL (the
default) specifies that all matching rows should be returned, including duplicates. DISTINCT
specifies removal of duplicate rows from the result set. It is an error to specify both options.
DISTINCTROW is a synonym for DISTINCT.

• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table.
You should use this only for queries that are very fast and must be done at once. A SELECT
HIGH_PRIORITY query that is issued while the table is locked for reading runs even if there is an
update statement waiting for the table to be free. This affects only storage engines that use only
table-level locking (such as MyISAM, MEMORY, and MERGE).

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• MAX_STATEMENT_TIME = N sets a statement execution timeout of N milliseconds. If this option is
absent or N is 0, the statement timeout established by the max_statement_time system variable
applies.

Note

This option was added in MySQL 5.7.4. It was removed in MySQL 5.7.8
in preference to the MAX_EXECUTION_TIME() optimizer hint. See
Section 8.9.3, “Optimizer Hints”

The MAX_STATEMENT_TIME option is applicable as follows:

• For statements with multiple SELECT keywords, such as unions or statements with subqueries,
MAX_STATEMENT_TIME applies to the entire statement and must appear after the first SELECT.

• It applies to read-only SELECT statements. Statements that are not read only are those that invoke
a stored function that modifies data as a side effect.

SELECT Syntax

1727

• It does not apply to SELECT statements in stored programs; an error occurs.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the
FROM clause. You can use this to speed up a query if the optimizer joins the tables in nonoptimal
order. STRAIGHT_JOIN also can be used in the table_references list. See Section 13.2.9.2,
“JOIN Syntax”.

 STRAIGHT_JOIN does not apply to any table that the optimizer treats as a const or system table.
Such a table produces a single row, is read during the optimization phase of query execution, and
references to its columns are replaced with the appropriate column values before query execution
proceeds. These tables will appear first in the query plan displayed by EXPLAIN. See Section 8.8.1,
“Optimizing Queries with EXPLAIN”. This exception may not apply to const or system tables that
are used on the NULL-complemented side of an outer join (that is, the right-side table of a LEFT
JOIN or the left-side table of a RIGHT JOIN.

• SQL_BIG_RESULT or SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the
optimizer that the result set has many rows or is small, respectively. For SQL_BIG_RESULT, MySQL
directly uses disk-based temporary tables if needed, and prefers sorting to using a temporary table
with a key on the GROUP BY elements. For SQL_SMALL_RESULT, MySQL uses fast temporary
tables to store the resulting table instead of using sorting. This should not normally be needed.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free
the table locks early and helps in cases where it takes a long time to send the result set to the
client. This option can be used only for top-level SELECT statements, not for subqueries or following
UNION.

• SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result
set, disregarding any LIMIT clause. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 12.14, “Information Functions”.

• The SQL_CACHE and SQL_NO_CACHE options affect caching of query results in the query cache
(see Section 8.10.3, “The MySQL Query Cache”). SQL_CACHE tells MySQL to store the result in
the query cache if it is cacheable and the value of the query_cache_type system variable is 2 or
DEMAND. With SQL_NO_CACHE, the server does not use the query cache. It neither checks the query
cache to see whether the result is already cached, nor does it cache the query result.

For views, SQL_NO_CACHE applies if it appears in any SELECT in the query. For a cacheable query,
SQL_CACHE applies if it appears in the first SELECT of a view referred to by the query.

These two options are mutually exclusive and an error occurs if they are both specified. Also, these
options are not permitted in subqueries (including subqueries in the FROM clause), and SELECT
statements in unions other than the first SELECT.

In MySQL 5.7, a SELECT from a partitioned table using a storage engine such as MyISAM that employs
table-level locks locks only those partitions containing rows that match the SELECT statement's WHERE
clause. (This does not occur with storage engines such as InnoDB that employ row-level locking.) For
more information, see Section 18.6.4, “Partitioning and Locking”.

13.2.9.1 SELECT ... INTO Syntax

The SELECT ... INTO form of SELECT enables a query result to be stored in variables or written to a
file:

• SELECT ... INTO var_list selects column values and stores them into variables.

• SELECT ... INTO OUTFILE writes the selected rows to a file. Column and line terminators can be
specified to produce a specific output format.

• SELECT ... INTO DUMPFILE writes a single row to a file without any formatting.

SELECT Syntax

1728

The SELECT syntax description (see Section 13.2.9, “SELECT Syntax”) shows the INTO clause near
the end of the statement. It is also possible to use INTO immediately following the select_expr list.

An INTO clause should not be used in a nested SELECT because such a SELECT must return its result
to the outer context.

The INTO clause can name a list of one or more variables, which can be user-defined variables, stored
procedure or function parameters, or stored program local variables. (Within a prepared SELECT ...
INTO OUTFILE statement, only user-defined variables are permitted;see Section 13.6.4.2, “Local
Variable Scope and Resolution”.)

The selected values are assigned to the variables. The number of variables must match the number
of columns. The query should return a single row. If the query returns no rows, a warning with error
code 1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple
rows, error 1172 occurs (Result consisted of more than one row). If it is possible that the
statement may retrieve multiple rows, you can use LIMIT 1 to limit the result set to a single row.

SELECT id, data INTO @x, @y FROM test.t1 LIMIT 1;

User variable names are not case sensitive. See Section 9.4, “User-Defined Variables”.

The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows to a
file. The file is created on the server host, so you must have the FILE privilege to use this syntax.
file_name cannot be an existing file, which among other things prevents files such as /etc/passwd
and database tables from being destroyed. The character_set_filesystem system variable
controls the interpretation of the file name.

The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly dump a table
to a text file on the server machine. If you want to create the resulting file on some other host than the
server host, you normally cannot use SELECT ... INTO OUTFILE since there is no way to write a
path to the file relative to the server host's file system.

However, if the MySQL client software is installed on the remote machine, you can instead use a client
command such as mysql -e "SELECT ..." > file_name to generate the file on the client host.

It is also possible to create the resulting file on a different host other than the server host, if the location
of the file on the remote host can be accessed using a network-mapped path on the server's file
system. In this case, the presence of mysql (or some other MySQL client program) is not required on
the target host.

SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE. Column values are written
converted to the character set specified in the CHARACTER SET clause. If no such clause is present,
values are dumped using the binary character set. In effect, there is no character set conversion. If a
result set contains columns in several character sets, the output data file will as well and you may not
be able to reload the file correctly.

The syntax for the export_options part of the statement consists of the same FIELDS and LINES
clauses that are used with the LOAD DATA INFILE statement. See Section 13.2.6, “LOAD DATA
INFILE Syntax”, for information about the FIELDS and LINES clauses, including their default values
and permissible values.

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY
character is not empty, it is used when necessary to avoid ambiguity as a prefix that precedes following
characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

SELECT Syntax

1729

• ASCII NUL (the zero-valued byte; what is actually written following the escape character is ASCII “0”,
not a zero-valued byte)

The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY
characters must be escaped so that you can read the file back in reliably. ASCII NUL is escaped to
make it easier to view with some pagers.

The resulting file does not have to conform to SQL syntax, so nothing else need be escaped.

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

Here is an example that produces a file in the comma-separated values (CSV) format used by many
programs:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 LINES TERMINATED BY '\n'
 FROM test_table;

If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the file,
without any column or line termination and without performing any escape processing. This is useful if
you want to store a BLOB value in a file.

Note

Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users
on the server host. The reason for this is that the MySQL server cannot create
a file that is owned by anyone other than the user under whose account it is
running. (You should never run mysqld as root for this and other reasons.)
The file thus must be world-writable so that you can manipulate its contents.

If the secure_file_priv system variable is set to a nonempty directory
name, the file to be written must be located in that directory.

In the context of SELECT ... INTO statements that occur as part of events executed by the Event
Scheduler, diagnostics messages (not only errors, but also warnings) are written to the error log,
and, on Windows, to the application event log. For additional information, see Section 19.4.5, “Event
Scheduler Status”.

13.2.9.2 JOIN Syntax

MySQL supports the following JOIN syntaxes for the table_references part of SELECT statements
and multiple-table DELETE and UPDATE statements:

table_references:
 escaped_table_reference [, escaped_table_reference] ...

escaped_table_reference:
 table_reference
 | { OJ table_reference }

table_reference:
 table_factor
 | join_table

table_factor:
 tbl_name [PARTITION (partition_names)]
 [[AS] alias] [index_hint_list]
 | table_subquery [AS] alias
 | (table_references)

SELECT Syntax

1730

join_table:
 table_reference [INNER | CROSS] JOIN table_factor [join_condition]
 | table_reference STRAIGHT_JOIN table_factor
 | table_reference STRAIGHT_JOIN table_factor ON conditional_expr
 | table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_condition
 | table_reference NATURAL [{LEFT|RIGHT} [OUTER]] JOIN table_factor

join_condition:
 ON conditional_expr
 | USING (column_list)

index_hint_list:
 index_hint [, index_hint] ...

index_hint:
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | IGNORE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
 | FORCE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
 index_name [, index_name] ...

A table reference is also known as a join expression.

A table reference (when it refers to a partitioned table) may contain a PARTITION option, including
a comma-separated list of partitions, subpartitions, or both. This option follows the name of the table
and precedes any alias declaration. The effect of this option is that rows are selected only from the
listed partitions or subpartitions—in other words, any partitions or subpartitions not named in the list are
ignored For more information, see Section 18.5, “Partition Selection”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts
only table_reference, not a list of them inside a pair of parentheses.

This is a conservative extension if we consider each comma in a list of table_reference items as
equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents (they can replace each
other). In standard SQL, they are not equivalent. INNER JOIN is used with an ON clause, CROSS
JOIN is used otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations.
MySQL also supports nested joins (see Section 8.2.1.11, “Nested Join Optimization”).

Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more
information, see Section 8.9.4, “Index Hints”.

The following list describes general factors to take into account when writing joins.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary
 FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;

SELECT t1.name, t2.salary

SELECT Syntax

1731

 FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;

• A table_subquery is also known as a subquery in the FROM clause. Such subqueries must
include an alias to give the subquery result a table name. A trivial example follows; see also
Section 13.2.10.8, “Subqueries in the FROM Clause”.

SELECT * FROM (SELECT 1, 2, 3) AS t1;

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both
produce a Cartesian product between the specified tables (that is, each and every row in the first
table is joined to each and every row in the second table).

However, the precedence of the comma operator is less than of INNER JOIN, CROSS JOIN, LEFT
JOIN, and so on. If you mix comma joins with the other join types when there is a join condition, an
error of the form Unknown column 'col_name' in 'on clause' may occur. Information about
dealing with this problem is given later in this section.

• The conditional_expr used with ON is any conditional expression of the form that can be used
in a WHERE clause. Generally, you should use the ON clause for conditions that specify how to join
tables, and the WHERE clause to restrict which rows you want in the result set.

• If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with all
columns set to NULL is used for the right table. You can use this fact to find rows in a table that have
no counterpart in another table:

SELECT left_tbl.*
 FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id
 WHERE right_tbl.id IS NULL;

This example finds all rows in left_tbl with an id value that is not present in right_tbl (that is,
all rows in left_tbl with no corresponding row in right_tbl). This assumes that right_tbl.id
is declared NOT NULL. See Section 8.2.1.9, “LEFT JOIN and RIGHT JOIN Optimization”.

• The USING(column_list) clause names a list of columns that must exist in both tables. If tables a
and b both contain columns c1, c2, and c3, the following join compares corresponding columns from
the two tables:

a LEFT JOIN b USING (c1,c2,c3)

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER
JOIN or a LEFT JOIN with a USING clause that names all columns that exist in both tables.

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is
recommended that you use LEFT JOIN instead of RIGHT JOIN.

• The { OJ ... } syntax shown in the join syntax description exists only for compatibility with
ODBC. The curly braces in the syntax should be written literally; they are not metasyntax as used
elsewhere in syntax descriptions.

SELECT left_tbl.*
 FROM { OJ left_tbl LEFT OUTER JOIN right_tbl ON left_tbl.id = right_tbl.id }
 WHERE right_tbl.id IS NULL;

You can use other types of joins within { OJ ... }, such as INNER JOIN or RIGHT OUTER
JOIN. This helps with compatibility with some third-party applications, but is not official ODBC
syntax.

• STRAIGHT_JOIN is similar to JOIN, except that the left table is always read before the right table.
This can be used for those (few) cases for which the join optimizer puts the tables in the wrong order.

Some join examples:

SELECT Syntax

1732

SELECT * FROM table1, table2;

SELECT * FROM table1 INNER JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 USING (id);

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id
 LEFT JOIN table3 ON table2.id=table3.id;

Join Processing Changes in MySQL 5.0.12

Note

Natural joins and joins with USING, including outer join variants, are processed
according to the SQL:2003 standard. The goal was to align the syntax and
semantics of MySQL with respect to NATURAL JOIN and JOIN ... USING
according to SQL:2003. However, these changes in join processing can result
in different output columns for some joins. Also, some queries that appeared to
work correctly in older versions (prior to 5.0.12) must be rewritten to comply with
the standard.

These changes have five main aspects:

• The way that MySQL determines the result columns of NATURAL or USING join operations (and thus
the result of the entire FROM clause).

• Expansion of SELECT * and SELECT tbl_name.* into a list of selected columns.

• Resolution of column names in NATURAL or USING joins.

• Transformation of NATURAL or USING joins into JOIN ... ON.

• Resolution of column names in the ON condition of a JOIN ... ON.

The following list provides more detail about several effects of current join processing versus join
processing in older versions. The term “previously” means “prior to MySQL 5.0.12.”

• The columns of a NATURAL join or a USING join may be different from previously. Specifically,
redundant output columns no longer appear, and the order of columns for SELECT * expansion may
be different from before.

Consider this set of statements:

CREATE TABLE t1 (i INT, j INT);
CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);

Previously, the statements produced this output:

+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+
+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+

SELECT Syntax

1733

In the first SELECT statement, column j appears in both tables and thus becomes a join column,
so, according to standard SQL, it should appear only once in the output, not twice. Similarly, in the
second SELECT statement, column j is named in the USING clause and should appear only once
in the output, not twice. But in both cases, the redundant column is not eliminated. Also, the order of
the columns is not correct according to standard SQL.

Now the statements produce this output:

+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+

The redundant column is eliminated and the column order is correct according to standard SQL:

• First, coalesced common columns of the two joined tables, in the order in which they occur in the
first table

• Second, columns unique to the first table, in order in which they occur in that table

• Third, columns unique to the second table, in order in which they occur in that table

The single result column that replaces two common columns is defined using the coalesce
operation. That is, for two t1.a and t2.a the resulting single join column a is defined as a =
COALESCE(t1.a, t2.a), where:

COALESCE(x, y) = (CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END)

If the join operation is any other join, the result columns of the join consists of the concatenation of all
columns of the joined tables. This is the same as previously.

A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column
contains the value of the non-NULL column if one of the two columns is always NULL. If neither or
both columns are NULL, both common columns have the same value, so it doesn't matter which one
is chosen as the value of the coalesced column. A simple way to interpret this is to consider that
a coalesced column of an outer join is represented by the common column of the inner table of a
JOIN. Suppose that the tables t1(a,b) and t2(a,c) have the following contents:

t1 t2
---- ----
1 x 2 z
2 y 3 w

Then:

mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | x | NULL |
| 2 | y | z |
+------+------+------+

Here column a contains the values of t1.a.

SELECT Syntax

1734

mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |
+------+------+------+

Here column a contains the values of t2.a.

Compare these results to the otherwise equivalent queries with JOIN ... ON:

mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+

• Previously, a USING clause could be rewritten as an ON clause that compares corresponding
columns. For example, the following two clauses were semantically identical:

a LEFT JOIN b USING (c1,c2,c3)
a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3

Now the two clauses no longer are quite the same:

• With respect to determining which rows satisfy the join condition, both joins remain semantically
identical.

• With respect to determining which columns to display for SELECT * expansion, the two joins are
not semantically identical. The USING join selects the coalesced value of corresponding columns,
whereas the ON join selects all columns from all tables. For the preceding USING join, SELECT *
selects these values:

COALESCE(a.c1,b.c1), COALESCE(a.c2,b.c2), COALESCE(a.c3,b.c3)

For the ON join, SELECT * selects these values:

a.c1, a.c2, a.c3, b.c1, b.c2, b.c3

With an inner join, COALESCE(a.c1,b.c1) is the same as either a.c1 or b.c1 because both
columns will have the same value. With an outer join (such as LEFT JOIN), one of the two
columns can be NULL. That column will be omitted from the result.

• The evaluation of multi-way natural joins differs in a very important way that affects the result of
NATURAL or USING joins and that can require query rewriting. Suppose that you have three tables
t1(a,b), t2(c,b), and t3(a,c) that each have one row: t1(1,2), t2(10,2), and t3(7,10).
Suppose also that you have this NATURAL JOIN on the three tables:

SELECT Syntax

1735

SELECT ... FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;

Previously, the left operand of the second join was considered to be t2, whereas it should be the
nested join (t1 NATURAL JOIN t2). As a result, the columns of t3 are checked for common
columns only in t2, and, if t3 has common columns with t1, these columns are not used as equi-
join columns. Thus, previously, the preceding query was transformed to the following equi-join:

SELECT ... FROM t1, t2, t3
 WHERE t1.b = t2.b AND t2.c = t3.c;

That join is missing one more equi-join predicate (t1.a = t3.a). As a result, it produces one row,
not the empty result that it should. The correct equivalent query is this:

SELECT ... FROM t1, t2, t3
 WHERE t1.b = t2.b AND t2.c = t3.c AND t1.a = t3.a;

If you require the same query result in current versions of MySQL as in older versions, rewrite the
natural join as the first equi-join.

• Previously, the comma operator (,) and JOIN both had the same precedence, so the join expression
t1, t2 JOIN t3 was interpreted as ((t1, t2) JOIN t3). Now JOIN has higher precedence,
so the expression is interpreted as (t1, (t2 JOIN t3)). This change affects statements that
use an ON clause, because that clause can refer only to columns in the operands of the join, and the
change in precedence changes interpretation of what those operands are.

Example:

CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
INSERT INTO t3 VALUES(1,1);
SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);

Previously, the SELECT was legal due to the implicit grouping of t1,t2 as (t1,t2). Now the
JOIN takes precedence, so the operands for the ON clause are t2 and t3. Because t1.i1 is not a
column in either of the operands, the result is an Unknown column 't1.i1' in 'on clause'
error. To allow the join to be processed, group the first two tables explicitly with parentheses so that
the operands for the ON clause are (t1,t2) and t3:

SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);

Alternatively, avoid the use of the comma operator and use JOIN instead:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);

This change also applies to statements that mix the comma operator with INNER JOIN, CROSS
JOIN, LEFT JOIN, and RIGHT JOIN, all of which now have higher precedence than the comma
operator.

• Previously, the ON clause could refer to columns in tables named to its right. Now an ON clause can
refer only to its operands.

Example:

CREATE TABLE t1 (i1 INT);
CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);

SELECT Syntax

1736

SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;

Previously, the SELECT statement was legal. Now the statement fails with an Unknown column
'i3' in 'on clause' error because i3 is a column in t3, which is not an operand of the ON
clause. The statement should be rewritten as follows:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);

• Resolution of column names in NATURAL or USING joins is different than previously. For column
names that are outside the FROM clause, MySQL now handles a superset of the queries compared to
previously. That is, in cases when MySQL formerly issued an error that some column is ambiguous,
the query now is handled correctly. This is due to the fact that MySQL now treats the common
columns of NATURAL or USING joins as a single column, so when a query refers to such columns,
the query compiler does not consider them as ambiguous.

Example:

SELECT * FROM t1 NATURAL JOIN t2 WHERE b > 1;

Previously, this query would produce an error ERROR 1052 (23000): Column 'b' in where
clause is ambiguous. Now the query produces the correct result:

+------+------+------+
| b | c | y |
+------+------+------+
| 4 | 2 | 3 |
+------+------+------+

One extension of MySQL compared to the SQL:2003 standard is that MySQL enables you to qualify
the common (coalesced) columns of NATURAL or USING joins (just as previously), while the standard
disallows that.

13.2.9.3 UNION Syntax

SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

UNION is used to combine the result from multiple SELECT statements into a single result set.

The column names from the first SELECT statement are used as the column names for the results
returned. Selected columns listed in corresponding positions of each SELECT statement should have
the same data type. (For example, the first column selected by the first statement should have the
same type as the first column selected by the other statements.)

If the data types of corresponding SELECT columns do not match, the types and lengths of the columns
in the UNION result take into account the values retrieved by all of the SELECT statements. For
example, consider the following:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a |
| bbbbbbbbbb |
+---------------+

The SELECT statements are normal select statements, but with the following restrictions:

• Only the last SELECT statement can use INTO OUTFILE. (However, the entire UNION result is
written to the file.)

SELECT Syntax

1737

• HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION. If you specify
it for the first SELECT, it has no effect. If you specify it for any subsequent SELECT statements, a
syntax error results.

The default behavior for UNION is that duplicate rows are removed from the result. The optional
DISTINCT keyword has no effect other than the default because it also specifies duplicate-row
removal. With the optional ALL keyword, duplicate-row removal does not occur and the result includes
all matching rows from all the SELECT statements.

You can mix UNION ALL and UNION DISTINCT in the same query. Mixed UNION types are treated
such that a DISTINCT union overrides any ALL union to its left. A DISTINCT union can be produced
explicitly by using UNION DISTINCT or implicitly by using UNION with no following DISTINCT or ALL
keyword.

To apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the parentheses that
enclose the SELECT:

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

However, use of ORDER BY for individual SELECT statements implies nothing about the order in which
the rows appear in the final result because UNION by default produces an unordered set of rows.
Therefore, the use of ORDER BY in this context is typically in conjunction with LIMIT, so that it is
used to determine the subset of the selected rows to retrieve for the SELECT, even though it does
not necessarily affect the order of those rows in the final UNION result. If ORDER BY appears without
LIMIT in a SELECT, it is optimized away because it will have no effect anyway.

To use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, parenthesize the
individual SELECT statements and place the ORDER BY or LIMIT after the last one. The following
example uses both clauses:

(SELECT a FROM t1 WHERE a=10 AND B=1)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;

A statement without parentheses is equivalent to one parenthesized as just shown.

This kind of ORDER BY cannot use column references that include a table name (that is, names in
tbl_name.col_name format). Instead, provide a column alias in the first SELECT statement and refer
to the alias in the ORDER BY. (Alternatively, refer to the column in the ORDER BY using its column
position. However, use of column positions is deprecated.)

Also, if a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column
name. The first of the following statements will work, but the second will fail with an Unknown column
'a' in 'order clause' error:

(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;

To cause rows in a UNION result to consist of the sets of rows retrieved by each SELECT one after
the other, select an additional column in each SELECT to use as a sort column and add an ORDER BY
following the last SELECT:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;

To additionally maintain sort order within individual SELECT results, add a secondary column to the
ORDER BY clause:

Subquery Syntax

1738

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;

Use of an additional column also enables you to determine which SELECT each row comes from. Extra
columns can provide other identifying information as well, such as a string that indicates a table name.

As of MySQL 5.7.5, UNION queries with an aggregate function in an ORDER BY clause are rejected
with an ER_AGGREGATE_ORDER_FOR_UNION error. Example:

SELECT 1 AS foo UNION SELECT 2 ORDER BY MAX(1);

13.2.10 Subquery Syntax

A subquery is a SELECT statement within another statement.

All subquery forms and operations that the SQL standard requires are supported, as well as a few
features that are MySQL-specific.

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT
column1 FROM t2) is the subquery. We say that the subquery is nested within the outer query, and
in fact it is possible to nest subqueries within other subqueries, to a considerable depth. A subquery
must always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it is possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins and
unions.

• Many people find subqueries more readable than complex joins or unions. Indeed, it was the
innovation of subqueries that gave people the original idea of calling the early SQL “Structured Query
Language.”

Here is an example statement that shows the major points about subquery syntax as specified by the
SQL standard and supported in MySQL:

DELETE FROM t1
WHERE s11 > ANY
 (SELECT COUNT(*) /* no hint */ FROM t2
 WHERE NOT EXISTS
 (SELECT * FROM t3
 WHERE ROW(5*t2.s1,77)=
 (SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
 (SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more
rows of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries
that return a particular kind of result often can be used only in certain contexts, as described in the
following sections.

There are few restrictions on the type of statements in which subqueries can be used. A subquery can
contain many of the keywords or clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY,
ORDER BY, LIMIT, joins, index hints, UNION constructs, comments, functions, and so on.

Subquery Syntax

1739

A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO.

In MySQL, you cannot modify a table and select from the same table in a subquery. This applies to
statements such as DELETE, INSERT, REPLACE, UPDATE, and (because subqueries can be used in
the SET clause) LOAD DATA INFILE.

For information about how the optimizer handles subqueries, see Section 8.2.1.18, “Subquery
Optimization”. For a discussion of restrictions on subquery use, including performance issues for
certain forms of subquery syntax, see Section C.4, “Restrictions on Subqueries”.

13.2.10.1 The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a
simple operand, and you can use it almost anywhere a single column value or literal is legal, and you
can expect it to have those characteristics that all operands have: a data type, a length, an indication
that it can be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a
length of 5, a character set and collation equal to the defaults in effect at CREATE TABLE time, and
an indication that the value in the column can be NULL. Nullability of the value selected by a scalar
subquery is not copied because if the subquery result is empty, the result is NULL. For the subquery
just shown, if t1 were empty, the result would be NULL even though s2 is NOT NULL.

There are a few contexts in which a scalar subquery cannot be used. If a statement permits only a
literal value, you cannot use a subquery. For example, LIMIT requires literal integer arguments, and
LOAD DATA INFILE requires a literal string file name. You cannot use subqueries to supply these
values.

When you see examples in the following sections that contain the rather spartan construct (SELECT
column1 FROM t1), imagine that your own code contains much more diverse and complex
constructions.

Suppose that we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is
an operand that provides an argument for a function. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

13.2.10.2 Comparisons Using Subqueries

The most common use of a subquery is in the form:

Subquery Syntax

1740

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> != <=>

For example:

... WHERE 'a' = (SELECT column1 FROM t1)

MySQL also permits this construct:

non_subquery_operand LIKE (subquery)

At one time the only legal place for a subquery was on the right side of a comparison, and you might
still find some old DBMSs that insist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all
the rows in table t1 for which the column1 value is equal to a maximum value in table t2:

SELECT * FROM t1
 WHERE column1 = (SELECT MAX(column2) FROM t2);

Here is another example, which again is impossible with a join because it involves aggregating for one
of the tables. It finds all rows in table t1 containing a value that occurs twice in a given column:

SELECT * FROM t1 AS t
 WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison of the subquery to a scalar, the subquery must return a scalar. For a comparison of
the subquery to a row constructor, the subquery must be a row subquery that returns a row with the
same number of values as the row constructor. See Section 13.2.10.5, “Row Subqueries”.

13.2.10.3 Subqueries with ANY, IN, or SOME

Syntax:

operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> !=

The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ANY of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if table
t2 contains (20,10), or if table t2 is empty. The expression is unknown (that is, NULL) if table t2
contains (NULL,NULL,NULL).

When used with a subquery, the word IN is an alias for = ANY. Thus, these two statements are the
same:

Subquery Syntax

1741

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

IN and = ANY are not synonyms when used with an expression list. IN can take an expression list, but
= ANY cannot. See Section 12.3.2, “Comparison Functions and Operators”.

NOT IN is not an alias for <> ANY, but for <> ALL. See Section 13.2.10.4, “Subqueries with ALL”.

The word SOME is an alias for ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but this example shows why it might be useful. To most people, the
English phrase “a is not equal to any b” means “there is no b which is equal to a,” but that is not what is
meant by the SQL syntax. The syntax means “there is some b to which a is not equal.” Using <> SOME
instead helps ensure that everyone understands the true meaning of the query.

13.2.10.4 Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ALL of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if table t2
contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater than 10.
The expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).

Finally, the expression is TRUE if table t2 is empty. So, the following expression is TRUE when table t2
is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

But this expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables containing NULL values and empty tables are “edge cases.” When writing
subqueries, always consider whether you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

13.2.10.5 Row Subqueries

Subquery Syntax

1742

Scalar or column subqueries return a single value or a column of values. A row subquery is a subquery
variant that returns a single row and can thus return more than one column value. Legal operators for
row subquery comparisons are:

= > < >= <= <> != <=>

Here are two examples:

SELECT * FROM t1
 WHERE (col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM t1
 WHERE ROW(col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);

For both queries, if the table t2 contains a single row with id = 10, the subquery returns a single
row. If this row has col3 and col4 values equal to the col1 and col2 values of any rows in t1, the
WHERE expression is TRUE and each query returns those t1 rows. If the t2 row col3 and col4 values
are not equal the col1 and col2 values of any t1 row, the expression is FALSE and the query returns
an empty result set. The expression is unknown (that is, NULL) if the subquery produces no rows. An
error occurs if the subquery produces multiple rows because a row subquery can return at most one
row.

For information about how each operator works for row comparisons, see Section 12.3.2, “Comparison
Functions and Operators”.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are
equivalent. The row constructor and the row returned by the subquery must contain the same number
of values.

A row constructor is used for comparisons with subqueries that return two or more columns. When
a subquery returns a single column, this is regarded as a scalar value and not as a row, so a row
constructor cannot be used with a subquery that does not return at least two columns. Thus, the
following query fails with a syntax error:

SELECT * FROM t1 WHERE ROW(1) = (SELECT column1 FROM t2)

Row constructors are legal in other contexts. For example, the following two statements are
semantically equivalent (and are handled in the same way by the optimizer):

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The following query answers the request, “find all rows in table t1 that also exist in table t2”:

SELECT column1,column2,column3
 FROM t1
 WHERE (column1,column2,column3) IN
 (SELECT column1,column2,column3 FROM t2);

13.2.10.6 Subqueries with EXISTS or NOT EXISTS

If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is
FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SELECT
column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it makes no
difference.

Subquery Syntax

1743

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the
EXISTS condition is TRUE. This is actually an unlikely example because a [NOT] EXISTS subquery
almost always contains correlations. Here are some more realistic examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM stores
 WHERE EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM stores
 WHERE NOT EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM stores s1
 WHERE NOT EXISTS (
 SELECT * FROM cities WHERE NOT EXISTS (
 SELECT * FROM cities_stores
 WHERE cities_stores.city = cities.city
 AND cities_stores.store_type = stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within
a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store that is not in
Stores”? But it is easier to say that a nested NOT EXISTS answers the question “is x TRUE for all y?”

13.2.10.7 Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer
query. For example:

SELECT * FROM t1
 WHERE column1 = ANY (SELECT column1 FROM t2
 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM
clause does not mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer
query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table
t2 contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE
column1 = ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the WHERE
clause within the subquery is FALSE (because (5,6) is not equal to (5,7)), so the expression as a
whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
 WHERE x.column1 = (SELECT column1 FROM t2 AS x
 WHERE x.column1 = (SELECT column1 FROM t3
 WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2
AS x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ... is
an outer query that is farther out.

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the outer
select list.

Subquery Syntax

1744

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve
performance.

Aggregate functions in correlated subqueries may contain outer references, provided the function
contains nothing but outer references, and provided the function is not contained in another function or
expression.

13.2.10.8 Subqueries in the FROM Clause

Subqueries are legal in a SELECT statement's FROM clause. The actual syntax is:

SELECT ... FROM (subquery) [AS] name ...

The [AS] name clause is mandatory, because every table in a FROM clause must have a name. Any
columns in the subquery select list must have unique names.

For the sake of illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here is how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3
 FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
 WHERE sb1 > 1;

Result: 2, '2', 4.0.

Here is another example: Suppose that you want to know the average of a set of sums for a grouped
table. This does not work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

However, this query provides the desired information:

SELECT AVG(sum_column1)
 FROM (SELECT SUM(column1) AS sum_column1
 FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the outer
query.

Subqueries in the FROM clause can return a scalar, column, row, or table. Subqueries in the FROM
clause cannot be correlated subqueries, unless used within the ON clause of a JOIN operation.

In MySQL 5.7, the optimizer determines information about derived tables in such a way that
materialization of them does not occur for EXPLAIN. See Optimizing Derived Tables and View
References.

It is possible under certain circumstances to modify table data using EXPLAIN SELECT. This can
occur if the outer query accesses any tables and an inner query invokes a stored function that changes
one or more rows of a table. Suppose that there are two tables t1 and t2 in database d1, created as
shown here:

Subquery Syntax

1745

mysql> CREATE DATABASE d1;
Query OK, 1 row affected (0.00 sec)

mysql> USE d1;
Database changed

mysql> CREATE TABLE t1 (c1 INT);
Query OK, 0 rows affected (0.15 sec)

mysql> CREATE TABLE t2 (c1 INT);
Query OK, 0 rows affected (0.08 sec)

Now we create a stored function f1 which modifies t2:

mysql> DELIMITER //
mysql> CREATE FUNCTION f1(p1 INT) RETURNS INT
mysql> BEGIN
mysql> INSERT INTO t2 VALUES (p1);
mysql> RETURN p1;
mysql> END //
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

Referencing the function directly in an EXPLAIN SELECT does not have any effect on t2, as shown
here:

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

mysql> EXPLAIN SELECT f1(5);
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | SIMPLE | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

This is because the SELECT statement did not reference any tables, as can be seen in the table and
Extra columns of the output. This is also true of the following nested SELECT:

mysql> EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2;
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1249 | Select 2 was reduced during optimization |
+-------+------+--+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

However, if the outer SELECT references any tables, the optimizer executes the statement in the
subquery as well:

Subquery Syntax

1746

mysql> EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2;
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
1	PRIMARY	a1	system	NULL	NULL	NULL	NULL	0	const row not found
1	PRIMARY	<derived2>	system	NULL	NULL	NULL	NULL	1	
2	DERIVED	NULL	NULL	NULL	NULL	NULL	NULL	NULL	No tables used
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)

This also means that an EXPLAIN SELECT statement such as the one shown here may take a long
time to execute because the BENCHMARK() function is executed once for each row in t1:

EXPLAIN SELECT * FROM t1 AS a1, (SELECT BENCHMARK(1000000, MD5(NOW())));

13.2.10.9 Subquery Errors

There are some errors that apply only to subqueries. This section describes them.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL doesn't yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that MySQL does not support statements of the following form:

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

You may use a subquery that returns multiple columns, if the purpose is row comparison. In other
contexts, the subquery must be a scalar operand. See Section 13.2.10.5, “Row Subqueries”.

• Incorrect number of rows from subquery:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error occurs for statements where the subquery must return at most one row but returns multiple
rows. Consider the following example:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

Subquery Syntax

1747

If SELECT column1 FROM t2 returns just one row, the previous query will work. If the subquery
returns more than one row, error 1242 will occur. In that case, the query should be rewritten as:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

This error occurs in cases such as the following, which attempts to modify a table and select from the
same table in the subquery:

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

You can use a subquery for assignment within an UPDATE statement because subqueries are legal
in UPDATE and DELETE statements as well as in SELECT statements. However, you cannot use the
same table (in this case, table t1) for both the subquery FROM clause and the update target.

For transactional storage engines, the failure of a subquery causes the entire statement to fail. For
nontransactional storage engines, data modifications made before the error was encountered are
preserved.

13.2.10.10 Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. The following list provides
some interesting tricks that you might want to play with:

• Use subquery clauses that affect the number or order of the rows in the subquery. For example:

SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT column1 FROM t2 ORDER BY column1);
SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT DISTINCT column1 FROM t2);
SELECT * FROM t1 WHERE EXISTS
 (SELECT * FROM t2 LIMIT 1);

• Replace a join with a subquery. For example, try this:

SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
 SELECT column1 FROM t2);

Instead of this:

SELECT DISTINCT t1.column1 FROM t1, t2
 WHERE t1.column1 = t2.column1;

• Some subqueries can be transformed to joins for compatibility with older versions of MySQL that
do not support subqueries. However, in some cases, converting a subquery to a join may improve
performance. See Section 13.2.10.11, “Rewriting Subqueries as Joins”.

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

Instead of this query:

Subquery Syntax

1748

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

• Use a row subquery instead of a correlated subquery. For example, use this query:

SELECT * FROM t1
 WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:

SELECT * FROM t1
 WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
 AND t2.column2=t1.column2);

• Use NOT (a = ANY (...)) rather than a <> ALL (...).

• Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.

• Use = ANY rather than EXISTS.

• For uncorrelated subqueries that always return one row, IN is always slower than =. For example,
use this query:

SELECT * FROM t1
 WHERE t1.col_name = (SELECT a FROM t2 WHERE b = some_const);

Instead of this query:

SELECT * FROM t1
 WHERE t1.col_name IN (SELECT a FROM t2 WHERE b = some_const);

These tricks might cause programs to go faster or slower. Using MySQL facilities like the
BENCHMARK() function, you can get an idea about what helps in your own situation. See
Section 12.14, “Information Functions”.

Some optimizations that MySQL itself makes are:

• MySQL executes uncorrelated subqueries only once. Use EXPLAIN to make sure that a given
subquery really is uncorrelated.

• MySQL rewrites IN, ALL, ANY, and SOME subqueries in an attempt to take advantage of the
possibility that the select-list columns in the subquery are indexed.

• MySQL replaces subqueries of the following form with an index-lookup function, which EXPLAIN
describes as a special join type (unique_subquery or index_subquery):

... IN (SELECT indexed_column FROM single_table ...)

• MySQL enhances expressions of the following form with an expression involving MIN() or MAX(),
unless NULL values or empty sets are involved:

UPDATE Syntax

1749

value {ALL|ANY|SOME} {> | < | >= | <=} (uncorrelated subquery)

For example, this WHERE clause:

WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

See also MySQL Internals: How MySQL Transforms Subqueries.

13.2.10.11 Rewriting Subqueries as Joins

Sometimes there are other ways to test membership in a set of values than by using a subquery. Also,
on some occasions, it is not only possible to rewrite a query without a subquery, but it can be more
efficient to make use of some of these techniques rather than to use subqueries. One of these is the
IN() construct:

For example, this query:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

Can be rewritten as:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

SELECT table1.*
 FROM table1 LEFT JOIN table2 ON table1.id=table2.id
 WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able
to optimize it better—a fact that is not specific to MySQL Server alone. Prior to SQL-92, outer joins did
not exist, so subqueries were the only way to do certain things. Today, MySQL Server and many other
modern database systems offer a wide range of outer join types.

MySQL Server supports multiple-table DELETE statements that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time. Multiple-table UPDATE
statements are also supported. See Section 13.2.2, “DELETE Syntax”, and Section 13.2.11, “UPDATE
Syntax”.

13.2.11 UPDATE Syntax

Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_reference
 SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
 [WHERE where_condition]
 [ORDER BY ...]

http://dev.mysql.com/doc/internals/en/transformations.html

UPDATE Syntax

1750

 [LIMIT row_count]

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references
 SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
 [WHERE where_condition]

For the single-table syntax, the UPDATE statement updates columns of existing rows in the named
table with new values. The SET clause indicates which columns to modify and the values they should
be given. Each value can be given as an expression, or the keyword DEFAULT to set a column
explicitly to its default value. The WHERE clause, if given, specifies the conditions that identify which
rows to update. With no WHERE clause, all rows are updated. If the ORDER BY clause is specified, the
rows are updated in the order that is specified. The LIMIT clause places a limit on the number of rows
that can be updated.

For the multiple-table syntax, UPDATE updates rows in each table named in table_references that
satisfy the conditions. Each matching row is updated once, even if it matches the conditions multiple
times. For multiple-table syntax, ORDER BY and LIMIT cannot be used.

For partitioned tables, both the single-single and multiple-table forms of this statement support the use
of a PARTITION option as part of a table reference. This option takes a list of one or more partitions
or subpartitions (or both). Only the partitions (or subpartitions) listed are checked for matches, and
a row that is not in any of these partitions or subpartitions is not updated, whether it satisfies the
where_condition or not.

Note

Unlike the case when using PARTITION with an INSERT or REPLACE
statement, an otherwise valid UPDATE ... PARTITION statement is
considered successful even if no rows in the listed partitions (or subpartitions)
match the where_condition.

See Section 18.5, “Partition Selection”, for more information and examples.

where_condition is an expression that evaluates to true for each row to be updated. For expression
syntax, see Section 9.5, “Expression Syntax”.

table_references and where_condition are specified as described in Section 13.2.9, “SELECT
Syntax”.

You need the UPDATE privilege only for columns referenced in an UPDATE that are actually updated.
You need only the SELECT privilege for any columns that are read but not modified.

The UPDATE statement supports the following modifiers:

• With the LOW_PRIORITY keyword, execution of the UPDATE is delayed until no other clients are
reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

• With the IGNORE keyword, the update statement does not abort even if errors occur during the
update. Rows for which duplicate-key conflicts occur on a unique key value are not updated. Rows
updated to values that would cause data conversion errors are updated to the closest valid values
instead. For more information, see Comparison of the IGNORE Keyword and Strict SQL Mode.

UPDATE IGNORE statements, including those having an ORDER BY clause, are flagged as unsafe
for statement-based replication. (This is because the order in which the rows are updated determines
which rows are ignored.) With this change, such statements produce a warning in the log when using
statement-based mode and are logged using the row-based format when using MIXED mode. (Bug
#11758262, Bug #50439) See Section 17.2.1.3, “Determination of Safe and Unsafe Statements in
Binary Logging”, for more information.

UPDATE Syntax

1751

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. For example, the following statement sets col1 to one more than its current value:

UPDATE t1 SET col1 = col1 + 1;

The second assignment in the following statement sets col2 to the current (updated) col1 value, not
the original col1 value. The result is that col1 and col2 have the same value. This behavior differs
from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates,
there is no guarantee that assignments are carried out in any particular order.

If you set a column to the value it currently has, MySQL notices this and does not update it.

If you update a column that has been declared NOT NULL by setting to NULL, an error occurs if strict
SQL mode is enabled; otherwise, the column is set to the implicit default value for the column data type
and the warning count is incremented. The implicit default value is 0 for numeric types, the empty string
('') for string types, and the “zero” value for date and time types. See Section 11.7, “Data Type Default
Values”.

If a generated column is updated explicitly, the only permitted value is DEFAULT. For information about
generated columns, see CREATE TABLE and Generated Columns.

UPDATE returns the number of rows that were actually changed. The mysql_info() C API function
returns the number of rows that were matched and updated and the number of warnings that occurred
during the UPDATE.

You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-
matched restriction. The statement stops as soon as it has found row_count rows that satisfy the
WHERE clause, whether or not they actually were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified
by the clause. This can be useful in certain situations that might otherwise result in an error. Suppose
that a table t contains a column id that has a unique index. The following statement could fail with a
duplicate-key error, depending on the order in which rows are updated:

UPDATE t SET id = id + 1;

For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated
to 3, an error occurs. To avoid this problem, add an ORDER BY clause to cause the rows with larger id
values to be updated before those with smaller values:

UPDATE t SET id = id + 1 ORDER BY id DESC;

You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER
BY or LIMIT with a multiple-table UPDATE. The table_references clause lists the tables involved in
the join. Its syntax is described in Section 13.2.9.2, “JOIN Syntax”. Here is an example:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE
statements can use any type of join permitted in SELECT statements, such as LEFT JOIN.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/

MySQL Transactional and Locking Statements

1752

child relationship. In this case, the statement fails and rolls back. Instead, update a single table and
rely on the ON UPDATE capabilities that InnoDB provides to cause the other tables to be modified
accordingly. See Section 14.5.6, “InnoDB and FOREIGN KEY Constraints”.

You cannot update a table and select from the same table in a subquery.

In MySQL 5.7, an UPDATE on a partitioned table using a storage engine such as MyISAM that employs
table-level locks locks only those partitions containing rows that match the UPDATE statement's WHERE
clause, as long as none of the table's partitioning columns are updated. (For storage engines such as
InnoDB that employ row-level locking, no locking of partitions takes place.) For more information, see
Section 18.6.4, “Partitioning and Locking”.

13.3 MySQL Transactional and Locking Statements

MySQL supports local transactions (within a given client session) through statements such as SET
autocommit, START TRANSACTION, COMMIT, and ROLLBACK. See Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Syntax”. XA transaction support enables MySQL to
participate in distributed transactions as well. See Section 13.3.7, “XA Transactions”.

13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax

START TRANSACTION
 [transaction_characteristic [, transaction_characteristic] ...]

transaction_characteristic:
 WITH CONSISTENT SNAPSHOT
 | READ WRITE
 | READ ONLY

BEGIN [WORK]
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET autocommit = {0 | 1}

These statements provide control over use of transactions:

• START TRANSACTION or BEGIN start a new transaction.

• COMMIT commits the current transaction, making its changes permanent.

• ROLLBACK rolls back the current transaction, canceling its changes.

• SET autocommit disables or enables the default autocommit mode for the current session.

By default, MySQL runs with autocommit mode enabled. This means that as soon as you execute a
statement that updates (modifies) a table, MySQL stores the update on disk to make it permanent. The
change cannot be rolled back.

To disable autocommit mode implicitly for a single series of statements, use the START TRANSACTION
statement:

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT
or ROLLBACK. The autocommit mode then reverts to its previous state.

START TRANSACTION permits several modifiers that control transaction characteristics. To specify
multiple modifiers, separate them by commas.

START TRANSACTION, COMMIT, and ROLLBACK Syntax

1753

• The WITH CONSISTENT SNAPSHOT modifier starts a consistent read for storage engines
that are capable of it. This applies only to InnoDB. The effect is the same as issuing a START
TRANSACTION followed by a SELECT from any InnoDB table. See Section 14.2.2.2, “Consistent
Nonlocking Reads”. The WITH CONSISTENT SNAPSHOT modifier does not change the current
transaction isolation level, so it provides a consistent snapshot only if the current isolation level
is one that permits a consistent read. The only isolation level that permits a consistent read is
REPEATABLE READ. For all other isolation levels, the WITH CONSISTENT SNAPSHOT clause is
ignored. As of MySQL 5.7.2, a warning is generated when the WITH CONSISTENT SNAPSHOT
clause is ignored.

• The READ WRITE and READ ONLY modifiers set the transaction access mode. They permit
or prohibit changes to tables used in the transaction. The READ ONLY restriction prevents the
transaction from modifying or locking both transactional and nontransactional tables that are visible
to other transactions; the transaction can still modify or lock temporary tables.

MySQL enables extra optimizations for queries on InnoDB tables when the transaction is known to
be read-only. Specifying READ ONLY ensures these optimizations are applied in cases where the
read-only status cannot be determined automatically. See Section 8.5.3, “Optimizing InnoDB Read-
Only Transactions” for more information.

If no access mode is specified, the default mode applies. Unless the default has been changed, it is
read/write. It is not permitted to specify both READ WRITE and READ ONLY in the same statement.

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using
DML statements. Changes made with DDL statements are not permitted, just as with permanent
tables.

For additional information about transaction access mode, including ways to change the default
mode, see Section 13.3.6, “SET TRANSACTION Syntax”.

If the read_only system variable is enabled, explicitly starting a transaction with START
TRANSACTION READ WRITE requires the SUPER privilege.

Important

Many APIs used for writing MySQL client applications (such as JDBC) provide
their own methods for starting transactions that can (and sometimes should) be
used instead of sending a START TRANSACTION statement from the client. See
Chapter 23, Connectors and APIs, or the documentation for your API, for more
information.

To disable autocommit mode explicitly, use the following statement:

SET autocommit=0;

After disabling autocommit mode by setting the autocommit variable to zero, changes to transaction-
safe tables (such as those for InnoDB or NDB) are not made permanent immediately. You must use
COMMIT to store your changes to disk or ROLLBACK to ignore the changes.

autocommit is a session variable and must be set for each session. To disable autocommit mode for
each new connection, see the description of the autocommit system variable at Section 5.1.4, “Server
System Variables”.

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transaction.
START TRANSACTION is standard SQL syntax, is the recommended way to start an ad-hoc
transaction, and permits modifiers that BEGIN does not.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not begin a transaction. See Section 13.6.1, “BEGIN ... END
Compound-Statement Syntax”.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

START TRANSACTION, COMMIT, and ROLLBACK Syntax

1754

Note

Within all stored programs (stored procedures and functions, triggers, and
events), the parser treats BEGIN [WORK] as the beginning of a BEGIN ...
END block. Begin a transaction in this context with START TRANSACTION
instead.

The optional WORK keyword is supported for COMMIT and ROLLBACK, as are the CHAIN and RELEASE
clauses. CHAIN and RELEASE can be used for additional control over transaction completion. The
value of the completion_type system variable determines the default completion behavior. See
Section 5.1.4, “Server System Variables”.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the
new transaction has the same isolation level as the just-terminated transaction. The RELEASE clause
causes the server to disconnect the current client session after terminating the current transaction.
Including the NO keyword suppresses CHAIN or RELEASE completion, which can be useful if the
completion_type system variable is set to cause chaining or release completion by default.

Beginning a transaction causes any pending transaction to be committed. See Section 13.3.3,
“Statements That Cause an Implicit Commit”, for more information.

Beginning a transaction also causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock
acquired with FLUSH TABLES WITH READ LOCK.

For best results, transactions should be performed using only tables managed by a single transaction-
safe storage engine. Otherwise, the following problems can occur:

• If you use tables from more than one transaction-safe storage engine (such as InnoDB), and the
transaction isolation level is not SERIALIZABLE, it is possible that when one transaction commits,
another ongoing transaction that uses the same tables will see only some of the changes made
by the first transaction. That is, the atomicity of transactions is not guaranteed with mixed engines
and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET
TRANSACTION ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-transaction
basis as necessary.)

• If you use tables that are not transaction-safe within a transaction, changes to those tables are
stored at once, regardless of the status of autocommit mode.

• If you issue a ROLLBACK statement after updating a nontransactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables are
rolled back, but not changes to nontransaction-safe tables.

Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled
back are not logged. (Exception: Modifications to nontransactional tables cannot be rolled back. If a
transaction that is rolled back includes modifications to nontransactional tables, the entire transaction
is logged with a ROLLBACK statement at the end to ensure that modifications to the nontransactional
tables are replicated.) See Section 5.2.4, “The Binary Log”.

You can change the isolation level or access mode for transactions with the SET TRANSACTION
statement. See Section 13.3.6, “SET TRANSACTION Syntax”.

Rolling back can be a slow operation that may occur implicitly without the user having explicitly asked
for it (for example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling
back in the State column for the session, not only for explicit rollbacks performed with the ROLLBACK
statement but also for implicit rollbacks.

Note

In MySQL 5.7, BEGIN, COMMIT, and ROLLBACK are not affected by --
replicate-do-db or --replicate-ignore-db rules.

Statements That Cannot Be Rolled Back

1755

13.3.2 Statements That Cannot Be Rolled Back

Some statements cannot be rolled back. In general, these include data definition language (DDL)
statements, such as those that create or drop databases, those that create, drop, or alter tables or
stored routines.

You should design your transactions not to include such statements. If you issue a statement early in
a transaction that cannot be rolled back, and then another statement later fails, the full effect of the
transaction cannot be rolled back in such cases by issuing a ROLLBACK statement.

13.3.3 Statements That Cause an Implicit Commit

The statements listed in this section (and any synonyms for them) implicitly end any transaction active
in the current session, as if you had done a COMMIT before executing the statement.

Most of these statements also cause an implicit commit after executing. The intent is to handle each
such statement in its own special transaction because it cannot be rolled back anyway. Transaction-
control and locking statements are exceptions: If an implicit commit occurs before execution, another
does not occur after.

• Data definition language (DDL) statements that define or modify database objects. ALTER
DATABASE ... UPGRADE DATA DIRECTORY NAME, ALTER EVENT, ALTER PROCEDURE, ALTER
SERVER, ALTER TABLE, ALTER VIEW, CREATE DATABASE, CREATE EVENT, CREATE INDEX,
CREATE PROCEDURE, CREATE SERVER, CREATE TABLE, CREATE TRIGGER, CREATE VIEW,
DROP DATABASE, DROP EVENT, DROP INDEX, DROP PROCEDURE, DROP SERVER, DROP TABLE,
DROP TRIGGER, DROP VIEW, INSTALL PLUGIN (as of MySQL 5.7.6), RENAME TABLE, TRUNCATE
TABLE, UNINSTALL PLUGIN (as of MySQL 5.7.6).

ALTER FUNCTION, CREATE FUNCTION and DROP FUNCTION also cause an implicit commit when
used with stored functions, but not with user-defined functions. (ALTER FUNCTION can only be used
with stored functions.)

CREATE TABLE and DROP TABLE statements do not commit a transaction if the TEMPORARY
keyword is used. (This does not apply to other operations on temporary tables such as ALTER
TABLE and CREATE INDEX, which do cause a commit.) However, although no implicit commit
occurs, neither can the statement be rolled back, which means that the use of such statements
causes transactional atomicity to be violated. For example, if you use CREATE TEMPORARY TABLE
and then roll back the transaction, the table remains in existence.

The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that
a ROLLBACK from the user does not undo CREATE TABLE statements the user made during that
transaction.

CREATE TABLE ... SELECT causes an implicit commit before and after the statement is
executed when you are creating nontemporary tables. (No commit occurs for CREATE TEMPORARY
TABLE ... SELECT.) This is to prevent an issue during replication where the table could be
created on the master after a rollback, but fail to be recorded in the binary log, and therefore not
replicated to the slave.

• Statements that implicitly use or modify tables in the mysql database. ALTER USER, CREATE
USER, DROP USER, GRANT, RENAME USER, REVOKE, SET PASSWORD.

• Transaction-control and locking statements. BEGIN, LOCK TABLES, SET autocommit = 1 (if
the value is not already 1), START TRANSACTION, UNLOCK TABLES.

UNLOCK TABLES commits a transaction only if any tables currently have been locked with LOCK
TABLES to acquire nontransactional table locks. A commit does not occur for UNLOCK TABLES
following FLUSH TABLES WITH READ LOCK because the latter statement does not acquire table-
level locks.

SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax

1756

Transactions cannot be nested. This is a consequence of the implicit commit performed for any
current transaction when you issue a START TRANSACTION statement or one of its synonyms.

Statements that cause an implicit commit cannot be used in an XA transaction while the transaction
is in an ACTIVE state.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not cause an implicit commit. See Section 13.6.1, “BEGIN ...
END Compound-Statement Syntax”.

• Data loading statements. LOAD DATA INFILE. LOAD DATA INFILE causes an implicit commit
only for tables using the NDB storage engine.

• Administrative statements. ANALYZE TABLE, CACHE INDEX, CHECK TABLE, FLUSH, LOAD
INDEX INTO CACHE, OPTIMIZE TABLE, REPAIR TABLE, RESET.

• Replication control statements. START SLAVE, STOP SLAVE, RESET SLAVE, CHANGE MASTER
TO.

13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE
SAVEPOINT Syntax

SAVEPOINT identifier
ROLLBACK [WORK] TO [SAVEPOINT] identifier
RELEASE SAVEPOINT identifier

InnoDB supports the SQL statements SAVEPOINT, ROLLBACK TO SAVEPOINT, RELEASE
SAVEPOINT and the optional WORK keyword for ROLLBACK.

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the
current transaction has a savepoint with the same name, the old savepoint is deleted and a new one is
set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint without
terminating the transaction. Modifications that the current transaction made to rows after the savepoint
was set are undone in the rollback, but InnoDB does not release the row locks that were stored in
memory after the savepoint. (For a new inserted row, the lock information is carried by the transaction
ID stored in the row; the lock is not separately stored in memory. In this case, the row lock is released
in the undo.) Savepoints that were set at a later time than the named savepoint are deleted.

If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint with
the specified name exists:

ERROR 1305 (42000): SAVEPOINT identifier does not exist

The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the
current transaction. No commit or rollback occurs. It is an error if the savepoint does not exist.

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that does
not name a savepoint.

A new savepoint level is created when a stored function is invoked or a trigger is activated. The
savepoints on previous levels become unavailable and thus do not conflict with savepoints on the new
level. When the function or trigger terminates, any savepoints it created are released and the previous
savepoint level is restored.

13.3.5 LOCK TABLES and UNLOCK TABLES Syntax

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

LOCK TABLES and UNLOCK TABLES Syntax

1757

LOCK TABLES
 tbl_name [[AS] alias] lock_type
 [, tbl_name [[AS] alias] lock_type] ...

lock_type:
 READ [LOCAL]
 | [LOW_PRIORITY] WRITE

UNLOCK TABLES

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with
other sessions for access to tables, or to prevent other sessions from modifying tables during periods
when a session requires exclusive access to them. A session can acquire or release locks only for
itself. One session cannot acquire locks for another session or release locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables. This is
explained in more detail later in this section.

LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired
for base tables or views. You must have the LOCK TABLES privilege, and the SELECT privilege for
each object to be locked.

For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked
and locks them automatically. If you lock a table explicitly with LOCK TABLES, any tables used in
triggers are also locked implicitly, as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.

UNLOCK TABLES explicitly releases any table locks held by the current session. LOCK TABLES
implicitly releases any table locks held by the current session before acquiring new locks.

Another use for UNLOCK TABLES is to release the global read lock acquired with the FLUSH
TABLES WITH READ LOCK statement, which enables you to lock all tables in all databases. See
Section 13.7.6.3, “FLUSH Syntax”. (This is a very convenient way to get backups if you have a file
system such as Veritas that can take snapshots in time.)

A table lock protects only against inappropriate reads or writes by other sessions. A session holding
a WRITE lock can perform table-level operations such as DROP TABLE or TRUNCATE TABLE. For
sessions holding a READ lock, DROP TABLE and TRUNCATE TABLE operations are not permitted.

The following discussion applies only to non-TEMPORARY tables. LOCK TABLES is permitted (but
ignored) for a TEMPORARY table. The table can be accessed freely by the session within which it was
created, regardless of what other locking may be in effect. No lock is necessary because no other
session can see the table.

For information about other conditions on the use of LOCK TABLES and statements that cannot
be used while LOCK TABLES is in effect, see Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

Rules for Lock Acquisition

To acquire table locks within the current session, use the LOCK TABLES statement. The following lock
types are available:

READ [LOCAL] lock:

• The session that holds the lock can read the table (but not write it).

• Multiple sessions can acquire a READ lock for the table at the same time.

• Other sessions can read the table without explicitly acquiring a READ lock.

• The LOCAL modifier enables nonconflicting INSERT statements (concurrent inserts) by other
sessions to execute while the lock is held. (See Section 8.11.3, “Concurrent Inserts”.) However,

LOCK TABLES and UNLOCK TABLES Syntax

1758

READ LOCAL cannot be used if you are going to manipulate the database using processes external
to the server while you hold the lock. For InnoDB tables, READ LOCAL is the same as READ.

[LOW_PRIORITY] WRITE lock:

• The session that holds the lock can read and write the table.

• Only the session that holds the lock can access the table. No other session can access it until the
lock is released.

• Lock requests for the table by other sessions block while the WRITE lock is held.

• The LOW_PRIORITY modifier has no effect. In previous versions of MySQL, it affected locking
behavior, but this is no longer true. It is now deprecated and its use produces a warning. Use WRITE
without LOW_PRIORITY instead.

If the LOCK TABLES statement must wait due to locks held by other sessions on any of the tables, it
blocks until all locks can be acquired.

A session that requires locks must acquire all the locks that it needs in a single LOCK TABLES
statement. While the locks thus obtained are held, the session can access only the locked tables.
For example, in the following sequence of statements, an error occurs for the attempt to access t2
because it was not locked in the LOCK TABLES statement:

mysql> LOCK TABLES t1 READ;
mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
mysql> SELECT COUNT(*) FROM t2;
ERROR 1100 (HY000): Table 't2' was not locked with LOCK TABLES

Tables in the INFORMATION_SCHEMA database are an exception. They can be accessed without being
locked explicitly even while a session holds table locks obtained with LOCK TABLES.

You cannot refer to a locked table multiple times in a single query using the same name. Use aliases
instead, and obtain a separate lock for the table and each alias:

mysql> LOCK TABLE t WRITE, t AS t1 READ;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

The error occurs for the first INSERT because there are two references to the same name for a locked
table. The second INSERT succeeds because the references to the table use different names.

If your statements refer to a table by means of an alias, you must lock the table using that same alias. It
does not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES

LOCK TABLES and UNLOCK TABLES Syntax

1759

mysql> SELECT * FROM t AS myalias;

WRITE locks normally have higher priority than READ locks to ensure that updates are processed
as soon as possible. This means that if one session obtains a READ lock and then another session
requests a WRITE lock, subsequent READ lock requests wait until the session that requested the WRITE
lock has obtained the lock and released it.

LOCK TABLES acquires locks as follows:

1. Sort all tables to be locked in an internally defined order. From the user standpoint, this order is
undefined.

2. If a table is to be locked with a read and a write lock, put the write lock request before the read lock
request.

3. Lock one table at a time until the session gets all locks.

This policy ensures that table locking is deadlock free.

Note

LOCK TABLES or UNLOCK TABLES, when applied to a partitioned table, always
locks or unlocks the entire table; these statements do not support partition lock
pruning. See Section 18.6.4, “Partitioning and Locking”.

Rules for Lock Release

When the table locks held by a session are released, they are all released at the same time. A session
can release its locks explicitly, or locks may be released implicitly under certain conditions.

• A session can release its locks explicitly with UNLOCK TABLES.

• If a session issues a LOCK TABLES statement to acquire a lock while already holding locks, its
existing locks are released implicitly before the new locks are granted.

• If a session begins a transaction (for example, with START TRANSACTION), an implicit UNLOCK
TABLES is performed, which causes existing locks to be released. (For additional information about
the interaction between table locking and transactions, see Section 13.3.5.1, “Interaction of Table
Locking and Transactions”.)

If the connection for a client session terminates, whether normally or abnormally, the server implicitly
releases all table locks held by the session (transactional and nontransactional). If the client
reconnects, the locks will no longer be in effect. In addition, if the client had an active transaction, the
server rolls back the transaction upon disconnect, and if reconnect occurs, the new session begins with
autocommit enabled. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect
in effect, the client is not notified if reconnect occurs but any table locks or current transaction will have
been lost. With auto-reconnect disabled, if the connection drops, an error occurs for the next statement
issued. The client can detect the error and take appropriate action such as reacquiring the locks or
redoing the transaction. See Section 23.8.16, “Controlling Automatic Reconnection Behavior”.

Note

If you use ALTER TABLE on a locked table, it may become unlocked. For
example, if you attempt a second ALTER TABLE operation, the result may be
an error Table 'tbl_name' was not locked with LOCK TABLES.
To handle this, lock the table again prior to the second alteration. See also
Section B.5.6.1, “Problems with ALTER TABLE”.

13.3.5.1 Interaction of Table Locking and Transactions

LOCK TABLES and UNLOCK TABLES interact with the use of transactions as follows:

LOCK TABLES and UNLOCK TABLES Syntax

1760

• LOCK TABLES is not transaction-safe and implicitly commits any active transaction before attempting
to lock the tables.

• UNLOCK TABLES implicitly commits any active transaction, but only if LOCK TABLES has been used
to acquire table locks. For example, in the following set of statements, UNLOCK TABLES releases the
global read lock but does not commit the transaction because no table locks are in effect:

FLUSH TABLES WITH READ LOCK;
START TRANSACTION;
SELECT ... ;
UNLOCK TABLES;

• Beginning a transaction (for example, with START TRANSACTION) implicitly commits any current
transaction and releases existing table locks.

• FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits. For example, START TRANSACTION does not release the global read lock.
See Section 13.7.6.3, “FLUSH Syntax”.

• Other statements that implicitly cause transactions to be committed do not release existing table
locks. For a list of such statements, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

• The correct way to use LOCK TABLES and UNLOCK TABLES with transactional tables, such as
InnoDB tables, is to begin a transaction with SET autocommit = 0 (not START TRANSACTION)
followed by LOCK TABLES, and to not call UNLOCK TABLES until you commit the transaction
explicitly. For example, if you need to write to table t1 and read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes its own
table lock. InnoDB releases its internal table lock at the next commit, but for MySQL to release its
table lock, you have to call UNLOCK TABLES. You should not have autocommit = 1, because then
InnoDB releases its internal table lock immediately after the call of LOCK TABLES, and deadlocks
can very easily happen. InnoDB does not acquire the internal table lock at all if autocommit = 1,
to help old applications avoid unnecessary deadlocks.

• ROLLBACK does not release table locks.

13.3.5.2 LOCK TABLES and Triggers

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly:

• The locks are taken as the same time as those acquired explicitly with the LOCK TABLES statement.

• The lock on a table used in a trigger depends on whether the table is used only for reading. If so, a
read lock suffices. Otherwise, a write lock is used.

• If a table is locked explicitly for reading with LOCK TABLES, but needs to be locked for writing
because it might be modified within a trigger, a write lock is taken rather than a read lock. (That is, an
implicit write lock needed due to the table's appearance within a trigger causes an explicit read lock
request for the table to be converted to a write lock request.)

Suppose that you lock two tables, t1 and t2, using this statement:

LOCK TABLES t1 WRITE, t2 READ;

LOCK TABLES and UNLOCK TABLES Syntax

1761

If t1 or t2 have any triggers, tables used within the triggers will also be locked. Suppose that t1 has a
trigger defined like this:

CREATE TRIGGER t1_a_ins AFTER INSERT ON t1 FOR EACH ROW
BEGIN
 UPDATE t4 SET count = count+1
 WHERE id = NEW.id AND EXISTS (SELECT a FROM t3);
 INSERT INTO t2 VALUES(1, 2);
END;

The result of the LOCK TABLES statement is that t1 and t2 are locked because they appear in the
statement, and t3 and t4 are locked because they are used within the trigger:

• t1 is locked for writing per the WRITE lock request.

• t2 is locked for writing, even though the request is for a READ lock. This occurs because t2 is
inserted into within the trigger, so the READ request is converted to a WRITE request.

• t3 is locked for reading because it is only read from within the trigger.

• t4 is locked for writing because it might be updated within the trigger.

13.3.5.3 Table-Locking Restrictions and Conditions

You can safely use KILL to terminate a session that is waiting for a table lock. See Section 13.7.6.4,
“KILL Syntax”.

LOCK TABLES and UNLOCK TABLES cannot be used within stored programs.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

The following statements are prohibited while a LOCK TABLES statement is in effect: CREATE TABLE,
CREATE TABLE ... LIKE, CREATE VIEW, DROP VIEW, and DDL statements on stored functions
and procedures and events.

For some operations, system tables in the mysql database must be accessed. For example, the HELP
statement requires the contents of the server-side help tables, and CONVERT_TZ() might need to read
the time zone tables. The server implicitly locks the system tables for reading as necessary so that you
need not lock them explicitly. These tables are treated as just described:

mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition
mysql.time_zone_transition_type

If you want to explicitly place a WRITE lock on any of those tables with a LOCK TABLES statement, the
table must be the only one locked; no other table can be locked with the same statement.

Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other
session can interfere with any other currently executing SQL statement. However, there are a few
cases when locking tables may provide an advantage:

• If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the tables
you are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting on them
because MySQL does not flush the key cache for the locked tables until UNLOCK TABLES is called.
Normally, the key cache is flushed after each SQL statement.

SET TRANSACTION Syntax

1762

The downside to locking the tables is that no session can update a READ-locked table (including the
one holding the lock) and no session can access a WRITE-locked table other than the one holding
the lock.

• If you are using tables for a nontransactional storage engine, you must use LOCK TABLES if you
want to ensure that no other session modifies the tables between a SELECT and an UPDATE. The
example shown here requires LOCK TABLES to execute safely:

LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer
 SET total_value=sum_from_previous_statement
 WHERE customer_id=some_id;
UNLOCK TABLES;

Without LOCK TABLES, it is possible that another session might insert a new row in the trans table
between execution of the SELECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer
SET value=value+new_value) or the LAST_INSERT_ID() function.

You can also avoid locking tables in some cases by using the user-level advisory lock functions
GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See
Section 12.19, “Miscellaneous Functions”.

See Section 8.11.1, “Internal Locking Methods”, for more information on locking policy.

13.3.6 SET TRANSACTION Syntax

SET [GLOBAL | SESSION] TRANSACTION
 transaction_characteristic [, transaction_characteristic] ...

transaction_characteristic:
 ISOLATION LEVEL level
 | READ WRITE
 | READ ONLY

level:
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE

This statement specifies transaction characteristics. It takes a list of one or more characteristic values
separated by commas. These characteristics set the transaction isolation level or access mode. The
isolation level is used for operations on InnoDB tables. The access mode may be specified as to
whether transactions operate in read/write or read-only mode.

In addition, SET TRANSACTION can include an optional GLOBAL or SESSION keyword to indicate the
scope of the statement.

Scope of Transaction Characteristics

You can set transaction characteristics globally, for the current session, or for the next transaction:

• With the GLOBAL keyword, the statement applies globally for all subsequent sessions. Existing
sessions are unaffected.

• With the SESSION keyword, the statement applies to all subsequent transactions performed within
the current session.

SET TRANSACTION Syntax

1763

• Without any SESSION or GLOBAL keyword, the statement applies to the next (not started) transaction
performed within the current session. Subsequent transactions revert to using the SESSION isolation
level.

A global change to transaction characteristics requires the SUPER privilege. Any session is free to
change its session characteristics (even in the middle of a transaction), or the characteristics for its
next transaction.

SET TRANSACTION without GLOBAL or SESSION is not permitted while there is an active transaction:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.02 sec)

mysql> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
ERROR 1568 (25001): Transaction characteristics can't be changed
while a transaction is in progress

To set the global default isolation level at server startup, use the --transaction-
isolation=level option to mysqld on the command line or in an option file. Values of level for
this option use dashes rather than spaces, so the permissible values are READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. For example, to set the default isolation level to
REPEATABLE READ, use these lines in the [mysqld] section of an option file:

[mysqld]
transaction-isolation = REPEATABLE-READ

It is possible to check or set the global and session transaction isolation levels at runtime by using the
tx_isolation system variable:

SELECT @@GLOBAL.tx_isolation, @@tx_isolation;
SET GLOBAL tx_isolation='REPEATABLE-READ';
SET SESSION tx_isolation='SERIALIZABLE';

Similarly, to set the transaction access mode at server startup or at runtime, use the --transaction-
read-only option or tx_read_only system variable. By default, these are OFF (the mode is read/
write) but can be set to ON for a default mode of read only.

Setting the global or session value of tx_isolation or tx_read_only is equivalent to setting the
isolation level or access mode with SET GLOBAL TRANSACTION or SET SESSION TRANSACTION.

Details and Usage of Isolation Levels

InnoDB supports each of the transaction isolation levels described here using different locking
strategies. You can enforce a high degree of consistency with the default REPEATABLE READ level,
for operations on crucial data where ACID compliance is important. Or you can relax the consistency
rules with READ COMMITTED or even READ UNCOMMITTED, in situations such as bulk reporting where
precise consistency and repeatable results are less important than minimizing the amount of overhead
for locking. SERIALIZABLE enforces even stricter rules than REPEATABLE READ, and is used mainly
in specialized situations, such as with XA transactions and for troubleshooting issues with concurrency
and deadlocks.

For full information about how these isolation levels work with InnoDB transactions, see
Section 14.2.2, “The InnoDB Transaction Model and Locking”. In particular, for additional information
about InnoDB record-level locks and how it uses them to execute various types of statements, see
Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key Locks” and Section 14.2.2.7, “Locks Set by
Different SQL Statements in InnoDB”.

The following list describes how MySQL supports the different transaction levels. The list goes from the
most commonly used level to the least used.

SET TRANSACTION Syntax

1764

• REPEATABLE READ

This is the default isolation level for InnoDB. For consistent reads, there is an important difference
from the READ COMMITTED isolation level: All consistent reads within the same transaction read
the snapshot established by the first read. This convention means that if you issue several plain
(nonlocking) SELECT statements within the same transaction, these SELECT statements are
consistent also with respect to each other. See Section 14.2.2.2, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE
statements, locking depends on whether the statement uses a unique index with a unique search
condition, or a range-type search condition. For a unique index with a unique search condition,
InnoDB locks only the index record found, not the gap before it. For other search conditions,
InnoDB locks the index range scanned, using gap locks or next-key locks to block insertions by
other sessions into the gaps covered by the range.

• READ COMMITTED

A somewhat Oracle-like isolation level with respect to consistent (nonlocking) reads: Each consistent
read, even within the same transaction, sets and reads its own fresh snapshot. See Section 14.2.2.2,
“Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE statements, and
DELETE statements, InnoDB locks only index records, not the gaps before them, and thus permits
the free insertion of new records next to locked records.

Note

In MySQL 5.7, when READ COMMITTED isolation level is used, or the
deprecated innodb_locks_unsafe_for_binlog system variable is
enabled, there is no InnoDB gap locking except for foreign-key constraint
checking and duplicate-key checking. Also, record locks for nonmatching
rows are released after MySQL has evaluated the WHERE condition.

If you use READ COMMITTED or enable
innodb_locks_unsafe_for_binlog, you must use row-based binary
logging.

• READ UNCOMMITTED

SELECT statements are performed in a nonlocking fashion, but a possible earlier version of a row
might be used. Thus, using this isolation level, such reads are not consistent. This is also called a
dirty read. Otherwise, this isolation level works like READ COMMITTED.

• SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements
to SELECT ... LOCK IN SHARE MODE if autocommit is disabled. If autocommit is enabled,
the SELECT is its own transaction. It therefore is known to be read only and can be serialized if
performed as a consistent (nonlocking) read and need not block for other transactions. (To force a
plain SELECT to block if other transactions have modified the selected rows, disable autocommit.)

Transaction Access Mode

The transaction access mode may be specified with SET TRANSACTION. By default, a transaction
takes place in read/write mode, with both reads and writes permitted to tables used in the transaction.
This mode may be specified explicitly using an access mode of READ WRITE.

If the transaction access mode is set to READ ONLY, changes to tables are prohibited. This may enable
storage engines to make performance improvements that are possible when writes are not permitted.

It is not permitted to specify both READ WRITE and READ ONLY in the same statement.

XA Transactions

1765

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using
DML statements. Changes made with DDL statements are not permitted, just as with permanent
tables.

The READ WRITE and READ ONLY access modes also may be specified for an individual transaction
using the START TRANSACTION statement.

13.3.7 XA Transactions

Support for XA transactions is available for the InnoDB storage engine. The MySQL XA
implementation is based on the X/Open CAE document Distributed Transaction Processing:
The XA Specification. This document is published by The Open Group and available at http://
www.opengroup.org/public/pubs/catalog/c193.htm. Limitations of the current XA implementation are
described in Section C.6, “Restrictions on XA Transactions”.

On the client side, there are no special requirements. The XA interface to a MySQL server consists of
SQL statements that begin with the XA keyword. MySQL client programs must be able to send SQL
statements and to understand the semantics of the XA statement interface. They do not need be linked
against a recent client library. Older client libraries also will work.

Among the MySQL Connectors, MySQL Connector/J 5.0.0 and higher supports XA directly, by means
of a class interface that handles the XA SQL statement interface for you.

XA supports distributed transactions, that is, the ability to permit multiple separate transactional
resources to participate in a global transaction. Transactional resources often are RDBMSs but may be
other kinds of resources.

A global transaction involves several actions that are transactional in themselves, but that all must
either complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID
properties “up a level” so that multiple ACID transactions can be executed in concert as components of
a global operation that also has ACID properties. (However, for a distributed transaction, you must use
the SERIALIZABLE isolation level to achieve ACID properties. It is enough to use REPEATABLE READ
for a nondistributed transaction, but not for a distributed transaction.)

Some examples of distributed transactions:

• An application may act as an integration tool that combines a messaging service with an RDBMS.
The application makes sure that transactions dealing with message sending, retrieval, and
processing that also involve a transactional database all happen in a global transaction. You can
think of this as “transactional email.”

• An application performs actions that involve different database servers, such as a MySQL server
and an Oracle server (or multiple MySQL servers), where actions that involve multiple servers must
happen as part of a global transaction, rather than as separate transactions local to each server.

• A bank keeps account information in an RDBMS and distributes and receives money through
automated teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected
in the accounts, but this cannot be done with the RDBMS alone. A global transaction manager
integrates the ATM and database resources to ensure overall consistency of financial transactions.

Applications that use global transactions involve one or more Resource Managers and a Transaction
Manager:

• A Resource Manager (RM) provides access to transactional resources. A database server is one
kind of resource manager. It must be possible to either commit or roll back transactions managed by
the RM.

• A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It
communicates with the RMs that handle each of these transactions. The individual transactions

http://www.opengroup.org/public/pubs/catalog/c193.htm
http://www.opengroup.org/public/pubs/catalog/c193.htm

XA Transactions

1766

within a global transaction are “branches” of the global transaction. Global transactions and their
branches are identified by a naming scheme described later.

The MySQL implementation of XA MySQL enables a MySQL server to act as a Resource Manager
that handles XA transactions within a global transaction. A client program that connects to the MySQL
server acts as the Transaction Manager.

To carry out a global transaction, it is necessary to know which components are involved, and
bring each component to a point when it can be committed or rolled back. Depending on what each
component reports about its ability to succeed, they must all commit or roll back as an atomic group.
That is, either all components must commit, or all components must roll back. To manage a global
transaction, it is necessary to take into account that any component or the connecting network might
fail.

The process for executing a global transaction uses two-phase commit (2PC). This takes place after
the actions performed by the branches of the global transaction have been executed.

1. In the first phase, all branches are prepared. That is, they are told by the TM to get ready to
commit. Typically, this means each RM that manages a branch records the actions for the branch in
stable storage. The branches indicate whether they are able to do this, and these results are used
for the second phase.

2. In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated
when they were prepared that they will be able to commit, all branches are told to commit. If any
branch indicated when it was prepared that it will not be able to commit, all branches are told to roll
back.

In some cases, a global transaction might use one-phase commit (1PC). For example, when a
Transaction Manager finds that a global transaction consists of only one transactional resource (that is,
a single branch), that resource can be told to prepare and commit at the same time.

13.3.7.1 XA Transaction SQL Syntax

To perform XA transactions in MySQL, use the following statements:

XA {START|BEGIN} xid [JOIN|RESUME]

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER [CONVERT XID]

For XA START, the JOIN and RESUME clauses are not supported.

For XA END the SUSPEND [FOR MIGRATE] clause is not supported.

Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is
an XA transaction identifier. It indicates which transaction the statement applies to. xid values are
supplied by the client, or generated by the MySQL server. An xid value has from one to three parts:

xid: gtrid [, bqual [, formatID]]

gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that
identifies the format used by the gtrid and bqual values. As indicated by the syntax, bqual and
formatID are optional. The default bqual value is '' if not given. The default formatID value is 1 if
not given.

XA Transactions

1767

gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and bqual
can be specified in several ways. You can use a quoted string ('ab'), hex string (X'6162', 0x6162),
or bit value (b'nnnn').

formatID is an unsigned integer.

The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support
routines. However, while an SQL statement containing an XA statement is being parsed, the server
works with some specific character set. To be safe, write gtrid and bqual as hex strings.

xid values typically are generated by the Transaction Manager. Values generated by one TM must
be different from values generated by other TMs. A given TM must be able to recognize its own xid
values in a list of values returned by the XA RECOVER statement.

For XA START xid starts an XA transaction with the given xid value. Each XA transaction must have
a unique xid value, so the value must not currently be used by another XA transaction. Uniqueness is
assessed using the gtrid and bqual values. All following XA statements for the XA transaction must
be specified using the same xid value as that given in the XA START statement. If you use any of
those statements but specify an xid value that does not correspond to some existing XA transaction,
an error occurs.

One or more XA transactions can be part of the same global transaction. All XA transactions within
a given global transaction must use the same gtrid value in the xid value. For this reason, gtrid
values must be globally unique so that there is no ambiguity about which global transaction a given
XA transaction is part of. The bqual part of the xid value must be different for each XA transaction
within a global transaction. (The requirement that bqual values be different is a limitation of the current
MySQL XA implementation. It is not part of the XA specification.)

The XA RECOVER statement returns information for those XA transactions on the MySQL server that
are in the PREPARED state. (See Section 13.3.7.2, “XA Transaction States”.) The output includes a row
for each such XA transaction on the server, regardless of which client started it.

XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc',
'def', and 7):

mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+

The output columns have the following meanings:

• formatID is the formatID part of the transaction xid

• gtrid_length is the length in bytes of the gtrid part of the xid

• bqual_length is the length in bytes of the bqual part of the xid

• data is the concatenation of the gtrid and bqual parts of the xid

XID values may contain nonprintable characters. As of MySQL 5.7.5, XA RECOVER permits an optional
CONVERT XID clause so that clients can request XID values in hexadecimal.

13.3.7.2 XA Transaction States

An XA transaction progresses through the following states:

1. Use XA START to start an XA transaction and put it in the ACTIVE state.

Replication Statements

1768

2. For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then
issue an XA END statement. XA END puts the transaction in the IDLE state.

3. For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA
COMMIT ... ONE PHASE statement:

• XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this
point will include the transaction's xid value in its output, because XA RECOVER lists all XA
transactions that are in the PREPARED state.

• XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value will not be
listed by XA RECOVER because the transaction terminates.

4. For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and terminate
the transaction, or XA ROLLBACK to roll back and terminate the transaction.

Here is a simple XA transaction that inserts a row into a table as part of a global transaction:

mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)

mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)

Within the context of a given client connection, XA transactions and local (non-XA) transactions are
mutually exclusive. For example, if XA START has been issued to begin an XA transaction, a local
transaction cannot be started until the XA transaction has been committed or rolled back. Conversely,
if a local transaction has been started with START TRANSACTION, no XA statements can be used until
the transaction has been committed or rolled back.

If an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an implicit
commit. That would violate the XA contract because you could not roll back the XA transaction. You will
receive the following error if you try to execute such a statement:

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state

Statements to which the preceding remark applies are listed at Section 13.3.3, “Statements That Cause
an Implicit Commit”.

13.4 Replication Statements
Replication can be controlled through the SQL interface using the statements described in this section.
Statements are split into a group which controls master servers, a group which controls slave servers,
and a group which can be applied to any replication servers.

13.4.1 SQL Statements for Controlling Master Servers

This section discusses statements for managing master replication servers. Section 13.4.2, “SQL
Statements for Controlling Slave Servers”, discusses statements for managing slave servers.

In addition to the statements described here, the following SHOW statements are used with master
servers in replication. For information about these statements, see Section 13.7.5, “SHOW Syntax”.

SQL Statements for Controlling Master Servers

1769

• SHOW BINARY LOGS

• SHOW BINLOG EVENTS

• SHOW MASTER STATUS

• SHOW SLAVE HOSTS

13.4.1.1 PURGE BINARY LOGS Syntax

PURGE { BINARY | MASTER } LOGS
 { TO 'log_name' | BEFORE datetime_expr }

The binary log is a set of files that contain information about data modifications made by the MySQL
server. The log consists of a set of binary log files, plus an index file (see Section 5.2.4, “The Binary
Log”).

The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior
to the specified log file name or date. BINARY and MASTER are synonyms. Deleted log files also are
removed from the list recorded in the index file, so that the given log file becomes the first in the list.

This statement has no effect if the server was not started with the --log-bin option to enable binary
logging.

Examples:

PURGE BINARY LOGS TO 'mysql-bin.010';
PURGE BINARY LOGS BEFORE '2008-04-02 22:46:26';

The BEFORE variant's datetime_expr argument should evaluate to a DATETIME value (a value in
'YYYY-MM-DD hh:mm:ss' format).

This statement is safe to run while slaves are replicating. You need not stop them. If you have an active
slave that currently is reading one of the log files you are trying to delete, this statement does nothing.
In MySQL 5.7.2 and later, it fails with an error in such cases. (Bug #13727933) However, if a slave is
not connected and you happen to purge one of the log files it has yet to read, the slave will be unable
to replicate after it reconnects.

To safely purge binary log files, follow this procedure:

1. On each slave server, use SHOW SLAVE STATUS to check which log file it is reading.

2. Obtain a listing of the binary log files on the master server with SHOW BINARY LOGS.

3. Determine the earliest log file among all the slaves. This is the target file. If all the slaves are up to
date, this is the last log file on the list.

4. Make a backup of all the log files you are about to delete. (This step is optional, but always
advisable.)

5. Purge all log files up to but not including the target file.

You can also set the expire_logs_days system variable to expire binary log files automatically after
a given number of days (see Section 5.1.4, “Server System Variables”). If you are using replication, you
should set the variable no lower than the maximum number of days your slaves might lag behind the
master.

PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE both fail with an error when binary log
files listed in the .index file had been removed from the system by some other means (such as using
rm on Linux). (Bug #18199, Bug #18453) To handle such errors, edit the .index file (which is a simple

SQL Statements for Controlling Master Servers

1770

text file) manually to ensure that it lists only the binary log files that are actually present, then run again
the PURGE BINARY LOGS statement that failed.

13.4.1.2 RESET MASTER Syntax

RESET MASTER

Deletes all binary log files listed in the index file, resets the binary log index file to be empty, and
creates a new binary log file.

RESET MASTER also clears the values of the gtid_purged system variable as well as the global
value of the gtid_executed system variable (but not its session value); that is, executing this
statement sets each of these values to an empty string (''). In MySQL 5.7.5 and later, this statement
also clears the mysql.gtid_executed table (see The mysql.gtid_executed Table).

This statement is intended to be used only when the master is started for the first time.

Important

The effects of RESET MASTER differ from those of PURGE BINARY LOGS in 2
key ways:

1. RESET MASTER removes all binary log files that are listed in the index file,
leaving only a single, empty binary log file with a numeric suffix of .000001,
whereas the numbering is not reset by PURGE BINARY LOGS.

2. RESET MASTER is not intended to be used while any replication slaves
are running. The behavior of RESET MASTER when used while slaves are
running is undefined (and thus unsupported), whereas PURGE BINARY
LOGS may be safely used while replication slaves are running.

See also Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

RESET MASTER can prove useful when you first set up the master and the slave, so that you can verify
the setup as follows:

1. Start the master and slave, and start replication (see Section 17.1.2, “Setting Up Binary Log File
Position Based Replication”).

2. Execute a few test queries on the master.

3. Check that the queries were replicated to the slave.

4. When replication is running correctly, issue STOP SLAVE followed by RESET SLAVE on the slave,
then verify that any unwanted data no longer exists on the slave.

5. Issue RESET MASTER on the master to clean up the test queries.

After verifying the setup and getting rid of any unwanted and log files generated by testing, you can
start the slave and begin replicating.

13.4.1.3 SET sql_log_bin Syntax

SET sql_log_bin = {0|1}

The sql_log_bin variable controls whether logging to the binary log is done. The default value is
1 (do logging). To change logging for the current session, change the session value of this variable.
The session user must have the SUPER privilege to set this variable. Set this variable to 0 for a session
to temporarily disable binary logging while making changes to the master which you do not want to
replicate to the slave.

SQL Statements for Controlling Slave Servers

1771

As of MySQL 5.5, sql_log_bin can be set as a global or session variable. Setting sql_log_bin
globally is only detected when a new session is started. Any sessions previously running are not
impacted when setting sql_log_bin globally.

Warning

Incorrect use of sql_log_bin with a global scope means any changes made
in an already running session are still being recorded to the binary log and
therefore replicated. Exercise extreme caution using sql_log_bin with a
global scope as the above situation could cause unexpected results including
replication failure.

In MySQL 5.7, it is not possible to set @@session.sql_log_bin within a transaction or subquery.
(Bug #53437)

13.4.2 SQL Statements for Controlling Slave Servers

This section discusses statements for managing slave replication servers. Section 13.4.1, “SQL
Statements for Controlling Master Servers”, discusses statements for managing master servers.

In addition to the statements described here, SHOW SLAVE STATUS and SHOW RELAYLOG EVENTS
are also used with replication slaves. For information about these statements, see Section 13.7.5.34,
“SHOW SLAVE STATUS Syntax”, and Section 13.7.5.32, “SHOW RELAYLOG EVENTS Syntax”.

13.4.2.1 CHANGE MASTER TO Syntax

CHANGE MASTER TO option [, option] ... [channel_option]

option:
 MASTER_BIND = 'interface_name'
 | MASTER_HOST = 'host_name'
 | MASTER_USER = 'user_name'
 | MASTER_PASSWORD = 'password'
 | MASTER_PORT = port_num
 | MASTER_CONNECT_RETRY = interval
 | MASTER_RETRY_COUNT = count
 | MASTER_DELAY = interval
 | MASTER_HEARTBEAT_PERIOD = interval
 | MASTER_LOG_FILE = 'master_log_name'
 | MASTER_LOG_POS = master_log_pos
 | MASTER_AUTO_POSITION = {0|1}
 | RELAY_LOG_FILE = 'relay_log_name'
 | RELAY_LOG_POS = relay_log_pos
 | MASTER_SSL = {0|1}
 | MASTER_SSL_CA = 'ca_file_name'
 | MASTER_SSL_CAPATH = 'ca_directory_name'
 | MASTER_SSL_CERT = 'cert_file_name'
 | MASTER_SSL_CRL = 'crl_file_name'
 | MASTER_SSL_CRLPATH = 'crl_directory_name'
 | MASTER_SSL_KEY = 'key_file_name'
 | MASTER_SSL_CIPHER = 'cipher_list'
 | MASTER_SSL_VERIFY_SERVER_CERT = {0|1}
 | MASTER_TLS_VERSION = 'protocol_list'
 | IGNORE_SERVER_IDS = (server_id_list)

channel_option:
 FOR CHANNEL channel

server_id_list:
 [server_id [, server_id] ...]

CHANGE MASTER TO changes the parameters that the slave server uses for connecting to the master
server, for reading the master binary log, and reading the slave relay log. It also updates the contents
of the master info and relay log info repositories (see Section 17.2.4, “Replication Relay and Status
Logs”).

SQL Statements for Controlling Slave Servers

1772

Prior to MySQL 5.7.4, the slave replication threads must be stopped, using STOP SLAVE if necessary,
before issuing this statement. In MySQL 5.7.4 and later, you can issue CHANGE MASTER TO
statements on a running slave without doing this, depending on the states of the slave SQL thread and
slave I/O thread. The rules governing such use are provided later in this section.

When using a multi-threaded slave (in other words slave_parallel_workers is greater than 0),
stopping the slave can cause “gaps” in the sequence of transactions that have been executed from
the relay log, regardless of whether the slave was stopped intentionally or otherwise. When such
gaps exist, issuing CHANGE MASTER TO fails. The solution in this situation is to issue START SLAVE
UNTIL SQL_AFTER_MTS_GAPS which ensures that the gaps are closed.

The optional FOR CHANNEL channel clause added in MySQL 5.7.6 enables you to choose which
replication channel the statement applies to. If no clause is set and no extra channels exist, the
statement applies to the default channel and behaves the same as versions of MySQL prior to 5.7.6.
Providing a FOR CHANNEL channel clause applies the CHANGE MASTER TO statement to a specific
replication channel, and is used to add a new channel or modify an existing channel. For example, to
add a new channel called channel2:

CHANGE MASTER TO MASTER_NAME=host1, MASTER_PORT=3002 FOR CHANNEL channel2

When using multiple replication channels, if a CHANGE MASTER TO statement does not have a
channel defined using a FOR CHANNEL channel clause an error is generated. See Section 17.2.3,
“Replication Channels” for more information.

Options not specified retain their value, except as indicated in the following discussion. Thus, in most
cases, there is no need to specify options that do not change. For example, if the password to connect
to your MySQL master has changed, issue this statement to tell the slave about the new password:

CHANGE MASTER TO MASTER_PASSWORD='new3cret';

Similarly, incompatible options which have been set previously must be unset if other options depend
on them. For example if MASTER_LOG_FILE and MASTER_LOG_POS have been set when using
AUTO_POSIION=0, and you want to use GTID based replication with AUTO_POSITON=1, you must
also unset MASTER_LOG_FILE and MASTER_LOG_POS.

MASTER_HOST, MASTER_USER, MASTER_PASSWORD, and MASTER_PORT provide information to the
slave about how to connect to its master:

• MASTER_HOST and MASTER_PORT are the host name (or IP address) of the master host and its TCP/
IP port.

Note

Replication cannot use Unix socket files. You must be able to connect to the
master MySQL server using TCP/IP.

If you specify the MASTER_HOST or MASTER_PORT option, the slave assumes that the master
server is different from before (even if the option value is the same as its current value.) In this
case, the old values for the master binary log file name and position are considered no longer
applicable, so if you do not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement,
MASTER_LOG_FILE='' and MASTER_LOG_POS=4 are silently appended to it.

Setting MASTER_HOST='' (that is, setting its value explicitly to an empty string) is not the same as
not setting MASTER_HOST at all. Beginning with MySQL 5.5, trying to set MASTER_HOST to an empty
string fails with an error. Previously, setting MASTER_HOST to an empty string caused START SLAVE
subsequently to fail. (Bug #28796)

Values used for MASTER_HOST and other CHANGE MASTER TO options are checked for linefeed (\n
or 0x0A) characters; the presence of such characters in these values causes the statement to fail
with ER_MASTER_INFO. (Bug #11758581, Bug #50801)

SQL Statements for Controlling Slave Servers

1773

• MASTER_USER and MASTER_PASSWORD are the user name and password of the account to use for
connecting to the master.

MASTER_USER cannot be made empty; setting MASTER_USER = '' or leaving it unset when setting
a value for MASTER_PASSWORD causes an error (Bug #13427949).

The password used for a MySQL Replication slave account in a CHANGE MASTER TO statement is
limited to 32 characters in length; prior to MySQL 5.7.5, if the password was longer, the statement
succeeded, but any excess characters were silently truncated. In MySQL 5.7.5 and later, trying to
use a password of more than 32 characters causes CHANGE MASTER TO to fail. (Bug #11752299,
Bug #43439)

The text of a running CHANGE MASTER TO statement, including values for MASTER_USER and
MASTER_PASSWORD, can be seen in the output of a concurrent SHOW PROCESSLIST statement.
(The complete text of a START SLAVE statement is also visible to SHOW PROCESSLIST.)

The MASTER_SSL_xxx options provide information about using SSL for the connection. They
correspond to the --ssl-xxx options described in Section 6.3.12.5, “SSL Command Options”, and
Section 17.3.7, “Setting Up Replication Using SSL”. These options can be changed even on slaves that
are compiled without SSL support. They are saved to the master info repository, but are ignored if the
slave does not have SSL support enabled.

As of MySQL 5.7.3, the MASTER_SSL=1 is prescriptive, not advisory. When given, the slave connection
to the master must use SSL or the connection attempt fails. Before 5.7.3, an SSL connection is
permitted but not required. This is analogous to the client-side meaning of the --ssl command-line
option; see Section 6.3.12.5, “SSL Command Options”.

The MASTER_TLS_VERSION option specifies the encryption protocols permitted by the master for slave
connections. The value is like that for the tls_version system variable: A comma-separated list
containing one or more protocol names. The protocols that can be named for this option depend on the
SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection Protocols
and Ciphers”. This option was added in MySQL 5.7.10.

MASTER_CONNECT_RETRY specifies how many seconds to wait between connect retries. The default is
60.

MASTER_RETRY_COUNT limits the number of reconnection attempts and updates the value of the
Master_Retry_Count column in the output of SHOW SLAVE STATUS. The default value is 24
* 3600 = 86400. MASTER_RETRY_COUNT is intended to replace the older --master-retry-
count server option, and is now the preferred method for setting this limit. You are encouraged
not to rely on --master-retry-count in new applications and, when upgrading to MySQL 5.7,
to update any existing applications that rely on it, so that they use CHANGE MASTER TO ...
MASTER_RETRY_COUNT instead.

MASTER_DELAY specifies how many seconds behind the master the slave must lag. An event received
from the master is not executed until at least interval seconds later than its execution on the master.
The default is 0. An error occurs if interval is not a nonnegative integer in the range from 0 to 231−1.
For more information, see Section 17.3.9, “Delayed Replication”.

In MySQL 5.7.4 and later, a CHANGE MASTER TO statement employing the MASTER_DELAY option can
be executed on a running slave when the slave SQL thread is stopped.

MASTER_BIND is for use on replication slaves having multiple network interfaces, and determines
which of the slave's network interfaces is chosen for connecting to the master.

The address configured with this option, if any, can be seen in the Master_Bind column of the
output from SHOW SLAVE STATUS. If you are using slave status log tables (server started with --
master-info-repository=TABLE), the value can also be seen as the Master_bind column of
the mysql.slave_master_info table.

SQL Statements for Controlling Slave Servers

1774

MASTER_HEARTBEAT_PERIOD sets the interval in seconds between replication heartbeats. Whenever
the master's binary log is updated with an event, the waiting period for the next heartbeat is reset.
interval is a decimal value having the range 0 to 4294967 seconds and a resolution in milliseconds;
the smallest nonzero value is 0.001. Heartbeats are sent by the master only if there are no unsent
events in the binary log file for a period longer than interval.

Prior to MySQL 5.7.4, not including MASTER_HEARTBEAT_PERIOD caused CHANGE
MASTER TO to reset the heartbeat period (Slave_heartbeat_period) to the default, and
Slave_received_heartbeats to 0. (Bug #18185490)

If you are logging master connection information to tables, MASTER_HEARTBEAT_PERIOD can be seen
as the value of the Heartbeat column of the mysql.slave_master_info table.

Setting interval to 0 disables heartbeats altogether. The default value for interval is equal to the
value of slave_net_timeout divided by 2.

Setting @@global.slave_net_timeout to a value less than that of the current heartbeat interval
results in a warning being issued. The effect of issuing RESET SLAVE on the heartbeat interval is to
reset it to the default value.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread
should begin reading from the master the next time the thread starts. RELAY_LOG_FILE and
RELAY_LOG_POS are the coordinates at which the slave SQL thread should begin reading
from the relay log the next time the thread starts. If you specify either of MASTER_LOG_FILE or
MASTER_LOG_POS, you cannot specify RELAY_LOG_FILE or RELAY_LOG_POS. If you specify either of
MASTER_LOG_FILE or MASTER_LOG_POS, you also cannot specify MASTER_AUTO_POSITION = 1
(described later in this section). If neither of MASTER_LOG_FILE or MASTER_LOG_POS is specified, the
slave uses the last coordinates of the slave SQL thread before CHANGE MASTER TO was issued. This
ensures that there is no discontinuity in replication, even if the slave SQL thread was late compared to
the slave I/O thread, when you merely want to change, say, the password to use.

In MySQL 5.7.4 and later, a CHANGE MASTER TO statement employing RELAY_LOG_FILE,
RELAY_LOG_POS, or both options can be executed on a running slave when the slave SQL thread is
stopped.

If MASTER_AUTO_POSITION = 1 is used with CHANGE MASTER TO, the slave attempts to connect
to the master using the GTID-based replication protocol. In MySQL 5.7.4 and later, this option can be
employed by CHANGE MASTER TO only if both the slave SQL and slave I/O threads are stopped.

When using GTIDs, the slave tells the master which transactions it has already received, executed,
or both. To compute this set, it reads the global value of gtid_executed and the value of the
Retrieved_gtid_set column from SHOW SLAVE STATUS. Since the GTID of the last transmitted
transaction is included in Retrieved_gtid_set even if the transaction was only partially transmitted,
the last received GTID is subtracted from this set. Thus, the slave computes the following set:

UNION(@@global.gtid_executed, Retrieved_gtid_set - last_received_GTID)

This set is sent to the master as part of the initial handshake, and the master sends back all
transactions that it has executed which are not part of the set. If any of these transactions
have been already purged from the master's binary log, the master sends the error
ER_MASTER_HAS_PURGED_REQUIRED_GTIDS to the slave, and replication does not start.

When GTID-based replication is employed, the coordinates represented by MASTER_LOG_FILE and
MASTER_LOG_POS are not used, and global transaction identifiers are used instead. Thus the use of
either or both of these options together with MASTER_AUTO_POSITION causes an error.

Beginning with MySQL 5.7.1, you can see whether replication is running with autopositioning enabled
by checking the output of SHOW SLAVE STATUS. (Bug #15992220)

SQL Statements for Controlling Slave Servers

1775

gtid_mode must also be enabled before issuing CHANGE MASTER TO ...
MASTER_AUTO_POSITION = 1. Otherwise, the statement fails with an error.

To revert to the older file-based replication protocol after using GTIDs, you can issue a new CHANGE
MASTER TO statement that specifies MASTER_AUTO_POSITION = 0, as well as at least one of
MASTER_LOG_FILE or MASTER_LOG_POS.

Prior to MySQL 5.7.4, CHANGE MASTER TO deletes all relay log files and starts a new one,
unless you specify RELAY_LOG_FILE or RELAY_LOG_POS. In that case, relay log files are kept;
the relay_log_purge global variable is set silently to 0. In MySQL 5.7.4 and later, relay logs
are preserved when neither the slave SQL thread nor the slave I/O thread is stopped; if both
threads are stopped, all relay log files are deleted unless you at least one of RELAY_LOG_FILE or
RELAY_LOG_POS is specified.

RELAY_LOG_FILE can use either an absolute or relative path, and uses the same base name as
MASTER_LOG_FILE. (Bug #12190)

IGNORE_SERVER_IDS takes a comma-separated list of 0 or more server IDs. Events originating from
the corresponding servers are ignored, with the exception of log rotation and deletion events, which are
still recorded in the relay log.

In circular replication, the originating server normally acts as the terminator of its own events, so that
they are not applied more than once. Thus, this option is useful in circular replication when one of the
servers in the circle is removed. Suppose that you have a circular replication setup with 4 servers,
having server IDs 1, 2, 3, and 4, and server 3 fails. When bridging the gap by starting replication from
server 2 to server 4, you can include IGNORE_SERVER_IDS = (3) in the CHANGE MASTER TO
statement that you issue on server 4 to tell it to use server 2 as its master instead of server 3. Doing so
causes it to ignore and not to propagate any statements that originated with the server that is no longer
in use.

If a CHANGE MASTER TO statement is issued without any IGNORE_SERVER_IDS option, any existing
list is preserved. To clear the list of ignored servers, it is necessary to use the option with an empty list:

CHANGE MASTER TO IGNORE_SERVER_IDS = ();

Prior to MySQL 5.7.5, RESET SLAVE ALL has no effect on the server ID list. In MySQL 5.7.5 and
later, RESET SLAVE ALL clears IGNORE_SERVER_IDS. (Bug #18816897)

If IGNORE_SERVER_IDS contains the server's own ID and the server was started with the --
replicate-same-server-id option enabled, an error results.

In MySQL 5.7, the master info repository and the output of SHOW SLAVE STATUS provide the list of
servers that are currently ignored. For more information, see Section 17.2.4.2, “Slave Status Logs”, and
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”.

In MySQL 5.7, invoking CHANGE MASTER TO causes the previous values for MASTER_HOST,
MASTER_PORT, MASTER_LOG_FILE, and MASTER_LOG_POS to be written to the error log, along with
other information about the slave's state prior to execution.

In MySQL 5.7, CHANGE MASTER TO causes an implicit commit of an ongoing transaction. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

In MySQL 5.7.4 and later, the strict requirement to execute STOP SLAVE prior to issuing any CHANGE
MASTER TO statement (and START SLAVE afterward) is removed. Instead of depending on whether
the slave is stopped, the behavior of CHANGE MASTER TO depends (in MySQL 5.7.4 and later) on the
states of the slave SQL thread and slave I/O threads; which of these threads is stopped or running now
determines the options that can or cannot be used with a CHANGE MASTER TO statement at a given
point in time. The rules for making this determination are listed here:

• If the SQL thread is stopped, you can execute CHANGE MASTER TO using any combination that is
otherwise allowed of RELAY_LOG_FILE, RELAY_LOG_POS, and MASTER_DELAY options, even if the

SQL Statements for Controlling Slave Servers

1776

slave I/O thread is running. No other options may be used with this statement when the I/O thread is
running.

• If the I/O thread is stopped, you can execute CHANGE MASTER TO using any of the options for
this statement (in any allowed combination) except RELAY_LOG_FILE, RELAY_LOG_POS, or
MASTER_DELAY, even when the SQL thread is running. These three options may not be used when
the I/O thread is running.

• Both the SQL thread and the I/O thread must be stopped before issuing a CHANGE MASTER TO
statement that employs MASTER_AUTO_POSITION = 1.

You can check the current state of the slave SQL and I/O threads using SHOW SLAVE STATUS.

For more information, see Section 17.3.6, “Switching Masters During Failover”.

If you are using statement-based replication and temporary tables, it is possible for a CHANGE MASTER
TO statement following a STOP SLAVE statement to leave behind temporary tables on the slave.
In MySQL 5.7.4 and later, a warning (ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO) is now
issued whenever this occurs. You can avoid this in such cases by making sure that the value of the
Slave_open_temp_tables system status variable is equal to 0 prior to executing such a CHANGE
MASTER TO statement.

CHANGE MASTER TO is useful for setting up a slave when you have the snapshot of the master and
have recorded the master binary log coordinates corresponding to the time of the snapshot. After
loading the snapshot into the slave to synchronize it with the master, you can run CHANGE MASTER
TO MASTER_LOG_FILE='log_name', MASTER_LOG_POS=log_pos on the slave to specify the
coordinates at which the slave should begin reading the master binary log.

The following example changes the master server the slave uses and establishes the master binary
log coordinates from which the slave begins reading. This is used when you want to set up the slave to
replicate the master:

CHANGE MASTER TO
 MASTER_HOST='master2.mycompany.com',
 MASTER_USER='replication',
 MASTER_PASSWORD='bigs3cret',
 MASTER_PORT=3306,
 MASTER_LOG_FILE='master2-bin.001',
 MASTER_LOG_POS=4,
 MASTER_CONNECT_RETRY=10;

The next example shows an operation that is less frequently employed. It is used when the slave
has relay log files that you want it to execute again for some reason. To do this, the master need not
be reachable. You need only use CHANGE MASTER TO and start the SQL thread (START SLAVE
SQL_THREAD):

CHANGE MASTER TO
 RELAY_LOG_FILE='slave-relay-bin.006',
 RELAY_LOG_POS=4025;

You can even use the second operation in a nonreplication setup with a standalone, nonslave server
for recovery following a crash. Suppose that your server has crashed and you have restored it from
a backup. You want to replay the server's own binary log files (not relay log files, but regular binary
log files), named (for example) myhost-bin.*. First, make a backup copy of these binary log files in
some safe place, in case you don't exactly follow the procedure below and accidentally have the server
purge the binary log. Use SET GLOBAL relay_log_purge=0 for additional safety. Then start the
server without the --log-bin option, Instead, use the --replicate-same-server-id, --relay-
log=myhost-bin (to make the server believe that these regular binary log files are relay log files) and
--skip-slave-start options. After the server starts, issue these statements:

SQL Statements for Controlling Slave Servers

1777

CHANGE MASTER TO
 RELAY_LOG_FILE='myhost-bin.153',
 RELAY_LOG_POS=410,
 MASTER_HOST='some_dummy_string';
START SLAVE SQL_THREAD;

The server reads and executes its own binary log files, thus achieving crash recovery. Once the
recovery is finished, run STOP SLAVE, shut down the server, clear the master info and relay log info
repositories, and restart the server with its original options.

Specifying the MASTER_HOST option (even with a dummy value) is required to make the server think it
is a slave.

The following table shows the maximum permissible length for the string-valued options.

Option Maximum Length

MASTER_HOST 60

MASTER_USER 16

MASTER_PASSWORD 32

MASTER_LOG_FILE 255

RELAY_LOG_FILE 255

MASTER_SSL_CA 255

MASTER_SSL_CAPATH 255

MASTER_SSL_CERT 255

MASTER_SSL_CRL 255

MASTER_SSL_CRLPATH 255

MASTER_SSL_KEY 255

MASTER_SSL_CIPHER 511

13.4.2.2 CHANGE REPLICATION FILTER Syntax

CHANGE REPLICATION FILTER filter[, filter][, ...]

filter:
 REPLICATE_DO_DB = (db_list)
 | REPLICATE_IGNORE_DB = (db_list)
 | REPLICATE_DO_TABLE = (tbl_list)
 | REPLICATE_IGNORE_TABLE = (tbl_list)
 | REPLICATE_WILD_DO_TABLE = (wild_tbl_list)
 | REPLICATE_WILD_IGNORE_TABLE = (wild_tbl_list)
 | REPLICATE_REWRITE_DB = (db_pair_list)

db_list:
 db_name[, db_name][, ...]

tbl_list:
 db_name.table_name[, db_table_name][, ...]
wild_tbl_list:
 'db_pattern.table_pattern'[, 'db_pattern.table_pattern'][, ...]

db_pair_list:
 (db_pair)[, (db_pair)][, ...]

db_pair:
 from_db, to_db

In MySQL 5.7.3 and later, CHANGE REPLICATION FILTER sets one or more replication filtering
rules on the slave in the same way as starting the slave mysqld with replication filtering options

SQL Statements for Controlling Slave Servers

1778

such as --replicate-do-db or --replicate-wild-ignore-table. Unlike the case with the
server options, this statement does not require restarting the server to take effect, only that the slave
SQL thread be stopped using STOP SLAVE SQL_THREAD first (and restarted with START SLAVE
SQL_THREAD afterwards).

The following list shows the CHANGE REPLICATION FILTER options and how they relate to --
replicate-* server options:

• REPLICATE_DO_DB: Include updates based on database name. Equivalent to --replicate-do-
db.

• REPLICATE_IGNORE_DB: Exclude updates based on database name. Equivalent to --replicate-
ignore-db.

• REPLICATE_DO_TABLE: Include updates based on table name. Equivalent to --replicate-do-
table.

• REPLICATE_IGNORE_TABLE: Exclude updates based on table name. Equivalent to --replicate-
ignore-table.

• REPLICATE_WILD_DO_TABLE: Include updates based on wildcard pattern matching table name.
Equivalent to --replicate-wild-do-table.

• REPLICATE_WILD_IGNORE_TABLE: Exclude updates based on wildcard pattern matching table
name. Equivalent to --replicate-wild-ignore-table.

• REPLICATE_REWRITE_DB: Perform updates on slave after substituting new name on slave for
specified database on master. Equivalent to --replicate-rewrite-db.

The precise effects of REPLICATE_DO_DB and REPLICATE_IGNORE_DB filters are dependent on
whether statement-based or row-based replication is in effect. See Section 17.2.5, “How Servers
Evaluate Replication Filtering Rules”, for more information.

Multiple replication filtering rules can be created in a single CHANGE REPLICATION FILTER
statement by separating the rules with commas, as shown here:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (d1), REPLICATE_IGNORE_DB = (d2);

Issuing the statement just shown is equivalent to starting the slave mysqld with the options --
replicate-do-db=d1 --replicate-ignore-db=d2.

If the same filtering rule is specified multiple times, only the last such rule is actually used.
For example, the two statements shown here have exactly the same effect, because the first
REPLICATE_DO_DB rule in the first statement is ignored:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (db1, db2), REPLICATE_DO_DB = (db3, db4);

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (db3,db4);

Caution

This behavior differs from that of the --replicate-* filter options where
specifying the same option multiple times causes the creation of multiple filter
rules.

Names of tables and database not containing any special characters need not be quoted. Values used
with REPLICATION_WILD_TABLE and REPLICATION_WILD_IGNORE_TABLE are string expressions,

SQL Statements for Controlling Slave Servers

1779

possibly containing (special) wildcard characters, and so must be quoted. This is shown in the following
example statements:

CHANGE REPLICATION FILTER
 REPLICATE_WILD_DO_TABLE = ('db1.old%');

CHANGE REPLICATION FILTER
 REPLICATE_WILD_IGNORE_TABLE = ('db1.new%', 'db2.new*');

Values used with REPLICATE_REWRITE_DB represent pairs of database names; each such value
must be enclosed in parentheses. The following statement rewrites statements occurring on database
dbA on the master to database dbB on the slave:

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB = ((db1, db2));

The statement just shown contains two sets of parentheses, one enclosing the pair of database names,
and the other enclosing the entire list. This is perhap more easily seen in the following example, which
creates two rewrite-db rules, one rewriting database dbA to dbB, and one rewriting database dbC to
dbD:

CHANGE REPLICATION FILTER
 REPLICATE_REWRITE_DB = ((dbA, dbB), (dbC, dbD));

This statement leaves any existing replication filtering rules unchanged; to unset all filters of a given
type, set the filter's value to an explicitly empty list, as shown in this example, which removes all
existing REPLICATE_DO_DB and REPLICATE_IGNORE_DB rules:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (), REPLICATE_IGNORE_DB = ();

Setting a filter to empty in this way removes all existing rules, does not create any new ones, and does
not restore any rules set at mysqld startup using --replicate-* options on the command line or in
the configuration file.

Values employed with REPLICATE_WILD_DO_TABLE and REPLICATE_WILD_IGNORE_TABLE must
be in the format db_name.tbl_name. Prior to MySQL 5.7.5, this was not strictly enforced, although
using nonconforming values with these options could lead to erroneous results (Bug #18095449).

For more information, see Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.

13.4.2.3 MASTER_POS_WAIT() Syntax

SELECT MASTER_POS_WAIT('master_log_file', master_log_pos [, timeout][, channel])

This is actually a function, not a statement. It is used to ensure that the slave has read and executed
events up to a given position in the master's binary log. See Section 12.19, “Miscellaneous Functions”,
for a full description.

13.4.2.4 RESET SLAVE Syntax

RESET SLAVE [ALL] [channel_option]

channel_option:
 FOR CHANNEL channel

RESET SLAVE makes the slave forget its replication position in the master's binary log. This statement
is meant to be used for a clean start: It clears the master info and relay log info repositories, deletes

SQL Statements for Controlling Slave Servers

1780

all the relay log files, and starts a new relay log file. It also resets to 0 the replication delay specified
with the MASTER_DELAY option to CHANGE MASTER TO. To use RESET SLAVE, the slave replication
threads must be stopped (use STOP SLAVE if necessary).

Note

All relay log files are deleted, even if they have not been completely executed
by the slave SQL thread. (This is a condition likely to exist on a replication slave
if you have issued a STOP SLAVE statement or if the slave is highly loaded.)

The optional FOR CHANNEL channel clause added in MySQL 5.7.6 enables you to choose which
replication channel the statement applies to. If no clause is set and no extra channels exist, the
statement applies to the default channel and behaves the same as versions of MySQL prior to 5.7.6.
Providing a FOR CHANNEL channel clause applies the RESET SLAVE statement to a specific
replication channel. Combining a FOR CHANNEL channel clause with the ALL option deletes the
specified channel. Issuing a RESET SLAVE ALL statement without a FOR CHANNEL channel clause
when multiple replication channels exist deletes all replication channels and recreates only the default
channel. See Section 17.2.3, “Replication Channels” for more information.

RESET SLAVE does not change any replication connection parameters such as master host, master
port, master user, or master password, which are retained in memory. This means that START SLAVE
can be issued without requiring a CHANGE MASTER TO statement following RESET SLAVE.

Connection parameters are reset by RESET SLAVE ALL. (RESET SLAVE followed by a restart of the
slave mysqld also does this.)

In MySQL 5.7 RESET SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3,
“Statements That Cause an Implicit Commit”.

If the slave SQL thread was in the middle of replicating temporary tables when it was stopped, and
RESET SLAVE is issued, these replicated temporary tables are deleted on the slave.

Prior to MySQL 5.7.5, RESET SLAVE also had the effect of resetting both the heartbeat period
(Slave_heartbeat_period) and SSL_VERIFY_SERVER_CERT. This issue is fixed in MySQL 5.7.5
and later. (Bug #18777899, Bug #18778485)

Prior to MySQL 5.7.5, RESET SLAVE ALL did not clear the IGNORE_SERVER_IDS list set by CHANGE
MASTER TO. In MySQL 5.7.5 and later, the statement clears the list. (Bug #18816897)

13.4.2.5 SET GLOBAL sql_slave_skip_counter Syntax

SET GLOBAL sql_slave_skip_counter = N

This statement skips the next N events from the master. This is useful for recovering from replication
stops caused by a statement.

This statement is valid only when the slave threads are not running. Otherwise, it produces an error.

When using this statement, it is important to understand that the binary log is actually organized as a
sequence of groups known as event groups. Each event group consists of a sequence of events.

• For transactional tables, an event group corresponds to a transaction.

• For nontransactional tables, an event group corresponds to a single SQL statement.

Note

A single transaction can contain changes to both transactional and
nontransactional tables.

SQL Statements for Controlling Slave Servers

1781

When you use SET GLOBAL sql_slave_skip_counter to skip events and the result is in the
middle of a group, the slave continues to skip events until it reaches the end of the group. Execution
then starts with the next event group.

13.4.2.6 START SLAVE Syntax

START SLAVE [thread_types] [until_option] [connection_options] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type:
 IO_THREAD | SQL_THREAD

until_option:
 UNTIL { {SQL_BEFORE_GTIDS | SQL_AFTER_GTIDS} = gtid_set
 | MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
 | RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
 | SQL_AFTER_MTS_GAPS }

connection_options:
 [USER='user_name'] [PASSWORD='user_pass'] [DEFAULT_AUTH='plugin_name'] [PLUGIN_DIR='plugin_dir']

channel_option:
 FOR CHANNEL channel

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9,A-F]

interval:
 n[-n]

 (n >= 1)

START SLAVE with no thread_type options starts both of the slave threads. The I/O thread reads
events from the master server and stores them in the relay log. The SQL thread reads events from the
relay log and executes them. START SLAVE requires the SUPER privilege.

If START SLAVE succeeds in starting the slave threads, it returns without any error. However, even
in that case, it might be that the slave threads start and then later stop (for example, because they do
not manage to connect to the master or read its binary log, or some other problem). START SLAVE
does not warn you about this. You must check the slave's error log for error messages generated by
the slave threads, or check that they are running satisfactorily with SHOW SLAVE STATUS.

In MySQL 5.7, START SLAVE causes an implicit commit of an ongoing transaction. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

Beginning with MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement
(Bug #16062608).

The optional FOR CHANNEL channel clause added in MySQL 5.7.6 enables you to choose which
replication channel the statement applies to. If no clause is set and no extra channels exist, the
statement applies to the default channel and behaves the same as versions of MySQL prior to 5.7.6.
Providing a FOR CHANNEL channel clause applies the START SLAVE statement to a specific
replication channel. If a START SLAVE statement does not have a channel defined when using multiple

SQL Statements for Controlling Slave Servers

1782

channels, this statement starts the specified threads for all channels. Beginning with MySQL 5.7.9,
this statement is disallowed for the group_replication_recovery channel. See Section 17.2.3,
“Replication Channels” for more information.

MySQL 5.7 supports pluggable user-password authentication with START SLAVE with the USER,
PASSWORD, DEFAULT_AUTH and PLUGIN_DIR options, as described in the following list:

• USER: User name. Cannot be set to an empty or null string, or left unset if PASSWORD is used.

• PASSWORD: Password.

• DEFAULT_AUTH: Name of plugin; default is MySQL native authentication.

• PLUGIN_DIR: Location of plugin.

You cannot use the SQL_THREAD option when specifying any of USER, PASSWORD, DEFAULT_AUTH, or
PLUGIN_DIR, unless the IO_THREAD option is also provided.

See Section 6.3.8, “Pluggable Authentication”, for more information.

If an insecure connection is used with any these options, the server issues the warning Sending
passwords in plain text without SSL/TLS is extremely insecure.

START SLAVE ... UNTIL supports two additional options for use with global transaction identifiers
(GTIDs) (see Section 17.1.3, “Replication with Global Transaction Identifiers”). Each of these takes a
set of one or more global transaction identifiers gtid_set as an argument (see GTID Sets, for more
information).

When no thread_type is specified, START SLAVE UNTIL SQL_BEFORE_GTIDS causes the slave
SQL thread to process transactions until it has reached the first transaction whose GTID is listed in
the gtid_set. START SLAVE UNTIL SQL_AFTER_GTIDS causes the slave threads to process
all transactions until the last transaction in the gtid_set has been processed by both threads. In
other words, START SLAVE UNTIL SQL_BEFORE_GTIDS causes the slave SQL thread to process all
transactions occurring before the first GTID in the gtid_set is reached, and START SLAVE UNTIL
SQL_AFTER_GTIDS causes the slave threads to handle all transactions, including those whose GTIDs
are found in gtid_set, until each has encountered a transaction whose GTID is not part of the set.
SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS each support the SQL_THREAD and IO_THREAD
options, although using IO_THREAD with them currently has no effect.

For example, START SLAVE SQL_THREAD UNTIL SQL_BEFORE_GTIDS =
3E11FA47-71CA-11E1-9E33-C80AA9429562:11-56 causes the slave SQL thread
to process all transactions originating from the master whose server_uuid [2426] is
3E11FA47-71CA-11E1-9E33-C80AA9429562 until it encounters the transaction having
sequence number 11; it then stops without processing this transaction. In other words, all
transactions up to and including the transaction with sequence number 10 are processed. Executing
START SLAVE SQL_THREAD UNTIL SQL_AFTER_GTIDS = 3E11FA47-71CA-11E1-9E33-
C80AA9429562:11-56, on the other hand, would cause the slave SQL thread to obtain all
transactions just mentioned from the master, including all of the transactions having the sequence
numbers 11 through 56, and then to stop without processing any additional transactions; that is, the
transaction having sequence number 56 would be the last transaction fetched by the slave SQL thread.

Prior to MySQL 5.7.3, SQL_AFTER_GTIDS did not stop the slave once the indicated transaction was
completed, but waited until another GTID event was received (Bug #14767986).

When using a multi-threaded slave, there is a chance of gaps in the sequence of transactions that have
been executed from the relay log in the following cases:

• killing the coordinator thread

• after an error occurs in the worker threads

SQL Statements for Controlling Slave Servers

1783

• mysqld shuts down unexpectedly

Use the START SLAVE UNTIL SQL_AFTER_MTS_GAPS statement to cause a multi-threaded
slave's worker threads to only run until no more gaps are found in the relay log, and then to stop. This
statement can take an SQL_THREAD option, but the effects of the statement remain unchanged. It has
no effect on the slave I/O thread (and cannot be used with the IO_THREAD option).

Issuing START SLAVE on a multi-threaded slave with gaps in the sequence of transactions executed
from the relay log generates a warning. In such a situation, the solution is to use START SLAVE
UNTIL SQL_AFTER_MTS_GAPS, then issue RESET SLAVE to remove any remaining relay logs. See
Section 17.4.1.34, “Replication and Transaction Inconsistencies” for more information.

To change a failed multi-threaded slave to single-threaded mode, you can issue the following series of
statements, in the order shown:

START SLAVE UNTIL SQL_AFTER_MTS_GAPS;

SET @@GLOBAL.slave_parallel_workers = 0;

START SLAVE SQL_THREAD;

Note

It is possible to view the entire text of a running START SLAVE ...
statement, including any USER or PASSWORD values used, in the output of
SHOW PROCESSLIST. This is also true for the text of a running CHANGE
MASTER TO statement, including any values it employs for MASTER_USER or
MASTER_PASSWORD.

START SLAVE sends an acknowledgment to the user after both the I/O thread and the SQL thread
have started. However, the I/O thread may not yet have connected. For this reason, a successful
START SLAVE causes SHOW SLAVE STATUS to show Slave_SQL_Running=Yes, but this does not
guarantee that Slave_IO_Running=Yes (because Slave_IO_Running=Yes only if the I/O thread
is running and connected). For more information, see Section 13.7.5.34, “SHOW SLAVE STATUS
Syntax”, and Section 17.1.7.1, “Checking Replication Status”.

You can add IO_THREAD and SQL_THREAD options to the statement to name which of the
threads to start. The SQL_THREAD option is disallowed when specifying any of USER, PASSWORD,
DEFAULT_AUTH, or PLUGIN_DIR, unless the IO_THREAD option is also provided.

An UNTIL clause (until_option, in the preceding grammar) may be added to specify that the slave
should start and run until the SQL thread reaches a given point in the master binary log, specified
by the MASTER_LOG_POS and MASTER_LOG_FILE options, or a given point in the slave relay log,
indicated with the RELAY_LOG_POS and RELAY_LOG_FILE options. When the SQL thread reaches
the point specified, it stops. If the SQL_THREAD option is specified in the statement, it starts only the
SQL thread. Otherwise, it starts both slave threads. If the SQL thread is running, the UNTIL clause is
ignored and a warning is issued. You cannot use an UNTIL clause with the IO_THREAD option.

It is also possible with START SLAVE UNTIL to specify a stop point relative to a given GTID or set of
GTIDs using one of the options SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS, as explained previously
in this section. When using one of these options, you can specify SQL_THREAD, IO_THREAD, both of
these, or neither of them. If you specify only SQL_THREAD, then only the slave SQL thread is affected
by the statement; if only IO_THREAD is used, then only the slave I/O is affected. If both SQL_THREAD
and IO_THREAD are used, or if neither of them is used, then both the SQL and I/O threads are affected
by the statement.

The UNTIL clause is not supported for multi-threaded slaves except when also using
SQL_AFTER_MTS_GAPS.

For an UNTIL clause, you must specify any one of the following:

SQL Statements for Controlling Slave Servers

1784

• Both a log file name and a position in that file

• Either of SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS

• SQL_AFTER_MTS_GAPS

Do not mix master and relay log options. Do not mix log file options with GTID options.

Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE statement
that includes no UNTIL clause, or a server restart.

When specifying a log file and position, you can use the IO_THREAD option with START SLAVE ...
UNTIL even though only the SQL thread is affected by this statement. The IO_THREAD option is
ignored in such cases. The preceding restriction does not apply when using one of the GTID options
(SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS); the GTID options support both SQL_THREAD and
IO_THREAD, as explained previously in this section.

The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until just
before the point where you want to avoid having the slave replicate an event. For example, if an unwise
DROP TABLE statement was executed on the master, you can use UNTIL to tell the slave to execute
up to that point but no farther. To find what the event is, use mysqlbinlog with the master binary log
or slave relay log, or by using a SHOW BINLOG EVENTS statement.

If you are using UNTIL to have the slave process replicated queries in sections, it is recommended
that you start the slave with the --skip-slave-start option to prevent the SQL thread from running
when the slave server starts. It is probably best to use this option in an option file rather than on the
command line, so that an unexpected server restart does not cause it to be forgotten.

The SHOW SLAVE STATUS statement includes output fields that display the current values of the
UNTIL condition.

Prior to MySQL 5.7.5, the failure of this statement caused the slave heartbeat period to be reset. This
issue is fixed in MySQL 5.7.5 and later. (Bug #18791604)

In very old versions of MySQL (before 4.0.5), this statement was called SLAVE START. In MySQL 5.7,
that syntax produces an error.

13.4.2.7 STOP SLAVE Syntax

STOP SLAVE [thread_types]

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

channel_option:
 FOR CHANNEL channel

Stops the slave threads. STOP SLAVE requires the SUPER privilege. Recommended best practice is to
execute STOP SLAVE on the slave before stopping the slave server (see Section 5.1.12, “The Server
Shutdown Process”, for more information).

When using the row-based logging format: You should execute STOP SLAVE or STOP SLAVE
SQL_THREAD on the slave prior to shutting down the slave server if you are replicating any tables that
use a nontransactional storage engine (see the Note later in this section).

Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to
name the thread or threads to be stopped.

SQL Statements for Controlling Group Replication

1785

In MySQL 5.7, STOP SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3,
“Statements That Cause an Implicit Commit”.

Beginning with MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement
(Bug #16062608).

In MySQL 5.7.2 and later, you can control how long STOP SLAVE waits before timing out by setting
the rpl_stop_slave_timeout system variable. This can be used to avoid deadlocks between
STOP SLAVE and other slave SQL statements using different client connections to the slave. (Bug
#16856735)

Prior to MySQL 5.7.4, it was necessary to issue this statement on a running slave prior to executing
CHANGE MASTER TO. In MySQL 5.7.4 and later, this is no longer always the case; some CHANGE
MASTER TO statements are now allowed while the slave is running, depending on the states of
the slave SQL and I/O threads. However, using STOP SLAVE prior to executing CHANGE MASTER
TO in such cases is still supported. See Section 13.4.2.1, “CHANGE MASTER TO Syntax”, and
Section 17.3.6, “Switching Masters During Failover”, for more information.

The optional FOR CHANNEL channel clause added in MySQL 5.7.6 enables you to choose which
replication channel the statement applies to. If no clause is set and no extra channels exist, the
statement applies to the default channel and behaves the same as versions of MySQL prior to
5.7.6. Providing a FOR CHANNEL channel clause applies the STOP SLAVE statement to a specific
replication channel. If a STOP SLAVE statement does not have a channel defined when using multiple
channels, this statement stops the specified threads for all channels. Beginning with MySQL 5.7.9, this
statement cannot be used with the group_replication_recovery channel. See Section 17.2.3,
“Replication Channels” for more information.

When using statement-based replication: changing the master while it has open temporary tables is
potentially unsafe. This is one of the reasons why statement-based replication of temporary tables is
not recommended. You can find out whether there are any temporary tables on the slave by checking
the value of Slave_open_temp_tables; when using statement-based replication, this value should
be 0 before executing CHANGE MASTER TO. In MySQL 5.7.4 and later, if there are any temporary
tables open on the slave, issuing a CHANGE MASTER TO statement after issuing a STOP SLAVE
causes an ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO warning.

When using a multi-threaded slave (slave_parallel_workers is a nonzero value), any gaps in the
sequence of transactions executed from the relay log are closed as part of stopping the worker threads.
If the slave is stopped unexpectedly (for example due to an error in a worker thread, or another thread
issuing KILL) while a STOP SLAVE statement is executing, the sequence of executed transactions
from the relay log may become inconsistent. See Section 17.4.1.34, “Replication and Transaction
Inconsistencies” for more information.

Note

In MySQL 5.7, STOP SLAVE waits until the current replication event group
affecting one or more nontransactional tables has finished executing (if there
is any such replication group), or until you issue a KILL QUERY or KILL
CONNECTION statement. (Bug #319, Bug #38205)

13.4.3 SQL Statements for Controlling Group Replication

This section provides information about the statements used for controlling group replication.

13.4.3.1 START GROUP_REPLICATION Syntax

START GROUP_REPLICATION

Starts group replication. Added in MySQL 5.7.6.

13.4.3.2 STOP GROUP_REPLICATION Syntax

SQL Syntax for Prepared Statements

1786

STOP GROUP_REPLICATION

Stops group replication. Added in MySQL 5.7.6.

13.5 SQL Syntax for Prepared Statements

MySQL 5.7 provides support for server-side prepared statements. This support takes advantage of
the efficient client/server binary protocol. Using prepared statements with placeholders for parameter
values has the following benefits:

• Less overhead for parsing the statement each time it is executed. Typically, database applications
process large volumes of almost-identical statements, with only changes to literal or variable values
in clauses such as WHERE for queries and deletes, SET for updates, and VALUES for inserts.

• Protection against SQL injection attacks. The parameter values can contain unescaped SQL quote
and delimiter characters.

Prepared Statements in Application Programs

You can use server-side prepared statements through client programming interfaces, including the
MySQL C API client library or MySQL Connector/C for C programs, MySQL Connector/J for Java
programs, and MySQL Connector/Net for programs using .NET technologies. For example, the C API
provides a set of function calls that make up its prepared statement API. See Section 23.8.8, “C API
Prepared Statements”. Other language interfaces can provide support for prepared statements that use
the binary protocol by linking in the C client library, one example being the mysqli extension, available
in PHP 5.0 and later.

Prepared Statements in SQL Scripts

An alternative SQL interface to prepared statements is available. This interface is not as efficient as
using the binary protocol through a prepared statement API, but requires no programming because it is
available directly at the SQL level:

• You can use it when no programming interface is available to you.

• You can use it from any program that can send SQL statements to the server to be executed, such
as the mysql client program.

• You can use it even if the client is using an old version of the client library, as long as you connect to
a server running MySQL 4.1 or higher.

SQL syntax for prepared statements is intended to be used for situations such as these:

• To test how prepared statements work in your application before coding it.

• To use prepared statements when you do not have access to a programming API that supports
them.

• To interactively troubleshoot application issues with prepared statements.

• To create a test case that reproduces a problem with prepared statements, so that you can file a bug
report.

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

SQL syntax for prepared statements is based on three SQL statements:

• PREPARE prepares a statement for execution (see Section 13.5.1, “PREPARE Syntax”).

• EXECUTE executes a prepared statement (see Section 13.5.2, “EXECUTE Syntax”).

http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://php.net/mysqli

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

1787

• DEALLOCATE PREPARE releases a prepared statement (see Section 13.5.3, “DEALLOCATE
PREPARE Syntax”).

The following examples show two equivalent ways of preparing a statement that computes the
hypotenuse of a triangle given the lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the text
of the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement as a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

Here is an additional example that demonstrates how to choose the table on which to perform a query
at runtime, by storing the name of the table as a user variable:

mysql> USE test;
mysql> CREATE TABLE t1 (a INT NOT NULL);
mysql> INSERT INTO t1 VALUES (4), (8), (11), (32), (80);

mysql> SET @table = 't1';
mysql> SET @s = CONCAT('SELECT * FROM ', @table);

mysql> PREPARE stmt3 FROM @s;
mysql> EXECUTE stmt3;
+----+
| a |
+----+
| 4 |
| 8 |
| 11 |
| 32 |
| 80 |
+----+

mysql> DEALLOCATE PREPARE stmt3;

A prepared statement is specific to the session in which it was created. If you terminate a session
without deallocating a previously prepared statement, the server deallocates it automatically.

A prepared statement is also global to the session. If you create a prepared statement within a stored
routine, it is not deallocated when the stored routine ends.

To guard against too many prepared statements being created simultaneously, set the
max_prepared_stmt_count system variable. To prevent the use of prepared statements, set the
value to 0.

SQL Syntax Allowed in Prepared Statements

1788

SQL Syntax Allowed in Prepared Statements

The following SQL statements can be used as prepared statements:

ALTER TABLE
ALTER USER
ANALYZE TABLE
CACHE INDEX
CALL
CHANGE MASTER
CHECKSUM {TABLE | TABLES}
COMMIT
{CREATE | DROP} INDEX
{CREATE | RENAME | DROP} DATABASE
{CREATE | DROP} TABLE
{CREATE | RENAME | DROP} USER
{CREATE | DROP} VIEW
DELETE
DO
FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES
 | LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES}
GRANT
INSERT
INSTALL PLUGIN
KILL
LOAD INDEX INTO CACHE
OPTIMIZE TABLE
RENAME TABLE
REPAIR TABLE
REPLACE
RESET {MASTER | SLAVE | QUERY CACHE}
REVOKE
SELECT
SET
SHOW {WARNINGS | ERRORS}
SHOW BINLOG EVENTS
SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW}
SHOW {MASTER | BINARY} LOGS
SHOW {MASTER | SLAVE} STATUS
SLAVE {START | STOP}
TRUNCATE TABLE
UNINSTALL PLUGIN
UPDATE

As of MySQL 5.7.2, for compliance with the SQL standard, which states that diagnostics statements
are not preparable, MySQL does not support the following as prepared statements:

• SHOW WARNINGS, SHOW COUNT(*) WARNINGS

• SHOW ERRORS, SHOW COUNT(*) ERRORS

• Statements containing any reference to the warning_count or error_count system variable.

Other statements are not supported in MySQL 5.7.

Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. Exceptions are noted in Section C.1, “Restrictions on Stored Programs”.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”.

Placeholders can be used for the arguments of the LIMIT clause when using prepared statements.
See Section 13.2.9, “SELECT Syntax”.

In prepared CALL statements used with PREPARE and EXECUTE, placeholder support for OUT and
INOUT parameters is available beginning with MySQL 5.7. See Section 13.2.1, “CALL Syntax”, for

PREPARE Syntax

1789

an example and a workaround for earlier versions. Placeholders can be used for IN parameters
regardless of version.

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to
PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements is distinct from using prepared statement API calls. For example,
you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or
DEALLOCATE PREPARE statement.

SQL syntax for prepared statements can be used within stored procedures, but not in stored functions
or triggers. However, a cursor cannot be used for a dynamic statement that is prepared and executed
with PREPARE and EXECUTE. The statement for a cursor is checked at cursor creation time, so the
statement cannot be dynamic.

SQL syntax for prepared statements does not support multi-statements (that is, multiple statements
within a single string separated by “;” characters).

Prepared statements use the query cache under the conditions described in Section 8.10.3.1, “How the
Query Cache Operates”.

To write C programs that use the CALL SQL statement to execute stored procedures that contain
prepared statements, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each
CALL returns a result to indicate the call status, in addition to any result sets that might be returned by
statements executed within the procedure.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). For additional
information, see Section 13.2.1, “CALL Syntax”.

13.5.1 PREPARE Syntax

PREPARE stmt_name FROM preparable_stmt

The PREPARE statement prepares a SQL statement and assigns it a name, stmt_name, by which
to refer to the statement later. The prepared statement is executed with EXECUTE and released with
DEALLOCATE PREPARE. For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.

Statement names are not case sensitive. preparable_stmt is either a string literal or a user variable
that contains the text of the SQL statement. The text must represent a single statement, not multiple
statements. Within the statement, ? characters can be used as parameter markers to indicate where
data values are to be bound to the query later when you execute it. The ? characters should not be
enclosed within quotation marks, even if you intend to bind them to string values. Parameter markers
can be used only where data values should appear, not for SQL keywords, identifiers, and so forth.

If a prepared statement with the given name already exists, it is deallocated implicitly before the new
statement is prepared. This means that if the new statement contains an error and cannot be prepared,
an error is returned and no statement with the given name exists.

The scope of a prepared statement is the session within which it is created, which as several
implications:

• A prepared statement created in one session is not available to other sessions.

• When a session ends, whether normally or abnormally, its prepared statements no longer exist.
If auto-reconnect is enabled, the client is not notified that the connection was lost. For this
reason, clients may wish to disable auto-reconnect. See Section 23.8.16, “Controlling Automatic
Reconnection Behavior”.

EXECUTE Syntax

1790

• A prepared statement created within a stored program continues to exist after the program finishes
executing and can be executed outside the program later.

• A statement prepared in stored program context cannot refer to stored procedure or function
parameters or local variables because they go out of scope when the program ends and would be
unavailable were the statement to be executed later outside the program. As a workaround, refer
instead to user-defined variables, which also have session scope; see Section 9.4, “User-Defined
Variables”.

13.5.2 EXECUTE Syntax

EXECUTE stmt_name
 [USING @var_name [, @var_name] ...]

After preparing a statement with PREPARE, you execute it with an EXECUTE statement that refers to
the prepared statement name. If the prepared statement contains any parameter markers, you must
supply a USING clause that lists user variables containing the values to be bound to the parameters.
Parameter values can be supplied only by user variables, and the USING clause must name exactly as
many variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing different variables to it or setting
the variables to different values before each execution.

For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.

13.5.3 DEALLOCATE PREPARE Syntax

{DEALLOCATE | DROP} PREPARE stmt_name

To deallocate a prepared statement produced with PREPARE, use a DEALLOCATE PREPARE statement
that refers to the prepared statement name. Attempting to execute a prepared statement after
deallocating it results in an error. If too many prepared statements are created and not deallocated by
either the DEALLOCATE PREPARE statement or the end of the session, you might encounter the upper
limit enforced by the max_prepared_stmt_count system variable.

For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.

13.6 MySQL Compound-Statement Syntax

This section describes the syntax for the BEGIN ... END compound statement and other statements
that can be used in the body of stored programs: Stored procedures and functions, triggers, and
events. These objects are defined in terms of SQL code that is stored on the server for later invocation
(see Chapter 19, Stored Programs and Views).

A compound statement is a block that can contain other blocks; declarations for variables, condition
handlers, and cursors; and flow control constructs such as loops and conditional tests.

13.6.1 BEGIN ... END Compound-Statement Syntax

[begin_label:] BEGIN
 [statement_list]
END [end_label]

BEGIN ... END syntax is used for writing compound statements, which can appear within stored
programs (stored procedures and functions, triggers, and events). A compound statement can contain
multiple statements, enclosed by the BEGIN and END keywords. statement_list represents

Statement Label Syntax

1791

a list of one or more statements, each terminated by a semicolon (;) statement delimiter. The
statement_list itself is optional, so the empty compound statement (BEGIN END) is legal.

BEGIN ... END blocks can be nested.

Use of multiple statements requires that a client is able to send statement strings containing the ;
statement delimiter. In the mysql command-line client, this is handled with the delimiter command.
Changing the ; end-of-statement delimiter (for example, to //) permit ; to be used in a program body.
For an example, see Section 19.1, “Defining Stored Programs”.

A BEGIN ... END block can be labeled. See Section 13.6.2, “Statement Label Syntax”.

The optional [NOT] ATOMIC clause is not supported. This means that no transactional savepoint is
set at the start of the instruction block and the BEGIN clause used in this context has no effect on the
current transaction.

Note

Within all stored programs, the parser treats BEGIN [WORK] as the beginning
of a BEGIN ... END block. To begin a transaction in this context, use START
TRANSACTION instead.

13.6.2 Statement Label Syntax

[begin_label:] BEGIN
 [statement_list]
END [end_label]

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

Labels are permitted for BEGIN ... END blocks and for the LOOP, REPEAT, and WHILE statements.
Label use for those statements follows these rules:

• begin_label must be followed by a colon.

• begin_label can be given without end_label. If end_label is present, it must be the same as
begin_label.

• end_label cannot be given without begin_label.

• Labels at the same nesting level must be distinct.

• Labels can be up to 16 characters long.

To refer to a label within the labeled construct, use an ITERATE or LEAVE statement. The following
example uses those statements to continue iterating or terminate the loop:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;

DECLARE Syntax

1792

 IF p1 < 10 THEN ITERATE label1; END IF;
 LEAVE label1;
 END LOOP label1;
END;

The scope of a block label does not include the code for handlers declared within the block. For details,
see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

13.6.3 DECLARE Syntax

The DECLARE statement is used to define various items local to a program:

• Local variables. See Section 13.6.4, “Variables in Stored Programs”.

• Conditions and handlers. See Section 13.6.7, “Condition Handling”.

• Cursors. See Section 13.6.6, “Cursors”.

DECLARE is permitted only inside a BEGIN ... END compound statement and must be at its start,
before any other statements.

Declarations must follow a certain order. Cursor declarations must appear before handler declarations.
Variable and condition declarations must appear before cursor or handler declarations.

13.6.4 Variables in Stored Programs

System variables and user-defined variables can be used in stored programs, just as they can be
used outside stored-program context. In addition, stored programs can use DECLARE to define local
variables, and stored routines (procedures and functions) can be declared to take parameters that
communicate values between the routine and its caller.

• To declare local variables, use the DECLARE statement, as described in Section 13.6.4.1, “Local
Variable DECLARE Syntax”.

• Variables can be set directly with the SET statement. See Section 13.7.4, “SET Syntax”.

• Results from queries can be retrieved into local variables using SELECT ... INTO var_list or
by opening a cursor and using FETCH ... INTO var_list. See Section 13.2.9.1, “SELECT ...
INTO Syntax”, and Section 13.6.6, “Cursors”.

For information about the scope of local variables and how MySQL resolves ambiguous names, see
Section 13.6.4.2, “Local Variable Scope and Resolution”.

It is not permitted to assign the value DEFAULT to stored procedure or function parameters or stored
program local variables (for example with a SET var_name = DEFAULT statement). In MySQL 5.7,
this results in a syntax error.

13.6.4.1 Local Variable DECLARE Syntax

DECLARE var_name [, var_name] ... type [DEFAULT value]

This statement declares local variables within stored programs. To provide a default value for a
variable, include a DEFAULT clause. The value can be specified as an expression; it need not be a
constant. If the DEFAULT clause is missing, the initial value is NULL.

Local variables are treated like stored routine parameters with respect to data type and overflow
checking. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.

Variable declarations must appear before cursor or handler declarations.

Variables in Stored Programs

1793

Local variable names are not case sensitive. Permissible characters and quoting rules are the same as
for other identifiers, as described in Section 9.2, “Schema Object Names”.

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can
be referred to in blocks nested within the declaring block, except those blocks that declare a variable
with the same name.

13.6.4.2 Local Variable Scope and Resolution

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can
be referred to in blocks nested within the declaring block, except those blocks that declare a variable
with the same name.

Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the
current session, not the stored program, so the statement could be executed after the program ends, at
which point the variables would no longer be in scope. For example, SELECT ... INTO local_var
cannot be used as a prepared statement. This restriction also applies to stored procedure and function
parameters. See Section 13.5.1, “PREPARE Syntax”.

A local variable should not have the same name as a table column. If an SQL statement, such as a
SELECT ... INTO statement, contains a reference to a column and a declared local variable with
the same name, MySQL currently interprets the reference as the name of a variable. Consider the
following procedure definition:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;

 SELECT xname, id INTO newname, xid
 FROM table1 WHERE xname = xname;
 SELECT newname;
END;

MySQL interprets xname in the SELECT statement as a reference to the xname variable rather than the
xname column. Consequently, when the procedure sp1()is called, the newname variable returns the
value 'bob' regardless of the value of the table1.xname column.

Similarly, the cursor definition in the following procedure contains a SELECT statement that refers
to xname. MySQL interprets this as a reference to the variable of that name rather than a column
reference.

CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;
 DECLARE done TINYINT DEFAULT 0;
 DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

 OPEN cur1;
 read_loop: LOOP
 FETCH FROM cur1 INTO newname, xid;
 IF done THEN LEAVE read_loop; END IF;
 SELECT newname;
 END LOOP;
 CLOSE cur1;
END;

See also Section C.1, “Restrictions on Stored Programs”.

Flow Control Statements

1794

13.6.5 Flow Control Statements

MySQL supports the IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs for flow
control within stored programs. It also supports RETURN within stored functions.

Many of these constructs contain other statements, as indicated by the grammar specifications in the
following sections. Such constructs may be nested. For example, an IF statement might contain a
WHILE loop, which itself contains a CASE statement.

MySQL does not support FOR loops.

13.6.5.1 CASE Syntax

CASE case_value
 WHEN when_value THEN statement_list
 [WHEN when_value THEN statement_list] ...
 [ELSE statement_list]
END CASE

Or:

CASE
 WHEN search_condition THEN statement_list
 [WHEN search_condition THEN statement_list] ...
 [ELSE statement_list]
END CASE

The CASE statement for stored programs implements a complex conditional construct.

Note

There is also a CASE expression, which differs from the CASE statement
described here. See Section 12.4, “Control Flow Functions”. The CASE
statement cannot have an ELSE NULL clause, and it is terminated with END
CASE instead of END.

For the first syntax, case_value is an expression. This value is compared to the when_value
expression in each WHEN clause until one of them is equal. When an equal when_value is found, the
corresponding THEN clause statement_list executes. If no when_value is equal, the ELSE clause
statement_list executes, if there is one.

This syntax cannot be used to test for equality with NULL because NULL = NULL is false. See
Section 3.3.4.6, “Working with NULL Values”.

For the second syntax, each WHEN clause search_condition expression is evaluated until
one is true, at which point its corresponding THEN clause statement_list executes. If no
search_condition is equal, the ELSE clause statement_list executes, if there is one.

If no when_value or search_condition matches the value tested and the CASE statement contains
no ELSE clause, a Case not found for CASE statement error results.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

To handle situations where no value is matched by any WHEN clause, use an ELSE containing an empty
BEGIN ... END block, as shown in this example. (The indentation used here in the ELSE clause is for
purposes of clarity only, and is not otherwise significant.)

DELIMITER |

Flow Control Statements

1795

CREATE PROCEDURE p()
 BEGIN
 DECLARE v INT DEFAULT 1;

 CASE v
 WHEN 2 THEN SELECT v;
 WHEN 3 THEN SELECT 0;
 ELSE
 BEGIN
 END;
 END CASE;
 END;
 |

13.6.5.2 IF Syntax

IF search_condition THEN statement_list
 [ELSEIF search_condition THEN statement_list] ...
 [ELSE statement_list]
END IF

The IF statement for stored programs implements a basic conditional construct.

Note

There is also an IF() function, which differs from the IF statement described
here. See Section 12.4, “Control Flow Functions”. The IF statement can have
THEN, ELSE, and ELSEIF clauses, and it is terminated with END IF.

If the search_condition evaluates to true, the corresponding THEN or ELSEIF clause
statement_list executes. If no search_condition matches, the ELSE clause statement_list
executes.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

An IF ... END IF block, like all other flow-control blocks used within stored programs, must be
terminated with a semicolon, as shown in this example:

DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
 RETURNS VARCHAR(20)

 BEGIN
 DECLARE s VARCHAR(20);

 IF n > m THEN SET s = '>';
 ELSEIF n = m THEN SET s = '=';
 ELSE SET s = '<';
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m);

 RETURN s;
 END //

DELIMITER ;

As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control
constructs, including other IF statements. Each IF must be terminated by its own END IF followed
by a semicolon. You can use indentation to make nested flow-control blocks more easily readable by
humans (although this is not required by MySQL), as shown here:

Flow Control Statements

1796

DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
 RETURNS VARCHAR(50)

 BEGIN
 DECLARE s VARCHAR(50);

 IF n = m THEN SET s = 'equals';
 ELSE
 IF n > m THEN SET s = 'greater';
 ELSE SET s = 'less';
 END IF;

 SET s = CONCAT('is ', s, ' than');
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m, '.');

 RETURN s;
 END //

DELIMITER ;

In this example, the inner IF is evaluated only if n is not equal to m.

13.6.5.3 ITERATE Syntax

ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “start the
loop again.”

For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.4 LEAVE Syntax

LEAVE label

This statement is used to exit the flow control construct that has the given label. If the label is for the
outermost stored program block, LEAVE exits the program.

LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).

For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.5 LOOP Syntax

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of the statement list, which
consists of one or more statements, each terminated by a semicolon (;) statement delimiter. The
statements within the loop are repeated until the loop is terminated. Usually, this is accomplished with a
LEAVE statement. Within a stored function, RETURN can also be used, which exits the function entirely.

Neglecting to include a loop-termination statement results in an infinite loop.

A LOOP statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:

Flow Control Statements

1797

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN
 ITERATE label1;
 END IF;
 LEAVE label1;
 END LOOP label1;
 SET @x = p1;
END;

13.6.5.6 REPEAT Syntax

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition expression is
true. Thus, a REPEAT always enters the loop at least once. statement_list consists of one or more
statements, each terminated by a semicolon (;) statement delimiter.

A REPEAT statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT
 -> SET @x = @x + 1;
 -> UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

13.6.5.7 RETURN Syntax

RETURN expr

The RETURN statement terminates execution of a stored function and returns the value expr to the
function caller. There must be at least one RETURN statement in a stored function. There may be more
than one if the function has multiple exit points.

This statement is not used in stored procedures, triggers, or events. The LEAVE statement can be used
to exit a stored program of those types.

13.6.5.8 WHILE Syntax

Cursors

1798

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

The statement list within a WHILE statement is repeated as long as the search_condition
expression is true. statement_list consists of one or more SQL statements, each terminated by a
semicolon (;) statement delimiter.

A WHILE statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:

CREATE PROCEDURE dowhile()
BEGIN
 DECLARE v1 INT DEFAULT 5;

 WHILE v1 > 0 DO
 ...
 SET v1 = v1 - 1;
 END WHILE;
END;

13.6.6 Cursors

MySQL supports cursors inside stored programs. The syntax is as in embedded SQL. Cursors have
these properties:

• Asensitive: The server may or may not make a copy of its result table

• Read only: Not updatable

• Nonscrollable: Can be traversed only in one direction and cannot skip rows

Cursor declarations must appear before handler declarations and after variable and condition
declarations.

Example:

CREATE PROCEDURE curdemo()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE a CHAR(16);
 DECLARE b, c INT;
 DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
 DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur1;
 OPEN cur2;

 read_loop: LOOP
 FETCH cur1 INTO a, b;
 FETCH cur2 INTO c;
 IF done THEN
 LEAVE read_loop;
 END IF;
 IF b < c THEN
 INSERT INTO test.t3 VALUES (a,b);
 ELSE
 INSERT INTO test.t3 VALUES (a,c);
 END IF;
 END LOOP;

 CLOSE cur1;

Condition Handling

1799

 CLOSE cur2;
END;

13.6.6.1 Cursor CLOSE Syntax

CLOSE cursor_name

This statement closes a previously opened cursor. For an example, see Section 13.6.6, “Cursors”.

An error occurs if the cursor is not open.

If not closed explicitly, a cursor is closed at the end of the BEGIN ... END block in which it was
declared.

13.6.6.2 Cursor DECLARE Syntax

DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor and associates it with a SELECT statement that retrieves the rows to
be traversed by the cursor. To fetch the rows later, use a FETCH statement. The number of columns
retrieved by the SELECT statement must match the number of output variables specified in the FETCH
statement.

The SELECT statement cannot have an INTO clause.

Cursor declarations must appear before handler declarations and after variable and condition
declarations.

A stored program may contain multiple cursor declarations, but each cursor declared in a given block
must have a unique name. For an example, see Section 13.6.6, “Cursors”.

For information available through SHOW statements, it is possible in many cases to obtain equivalent
information by using a cursor with an INFORMATION_SCHEMA table.

13.6.6.3 Cursor FETCH Syntax

FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...

This statement fetches the next row for the SELECT statement associated with the specified cursor
(which must be open), and advances the cursor pointer. If a row exists, the fetched columns are stored
in the named variables. The number of columns retrieved by the SELECT statement must match the
number of output variables specified in the FETCH statement.

If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it (or for a NOT FOUND condition). For an example, see
Section 13.6.6, “Cursors”.

13.6.6.4 Cursor OPEN Syntax

OPEN cursor_name

This statement opens a previously declared cursor. For an example, see Section 13.6.6, “Cursors”.

13.6.7 Condition Handling

Conditions may arise during stored program execution that require special handling, such as exiting the
current program block or continuing execution. Handlers can be defined for general conditions such as

Condition Handling

1800

warnings or exceptions, or for specific conditions such as a particular error code. Specific conditions
can be assigned names and referred to that way in handlers.

To name a condition, use the DECLARE ... CONDITION statement. To declare a handler, use the
DECLARE ... HANDLER statement. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”, and
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”. For information about how the server chooses
handlers when a condition occurs, see Section 13.6.7.6, “Scope Rules for Handlers”.

To raise a condition, use the SIGNAL statement. To modify condition information within a
condition handler, use RESIGNAL. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”, and
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

13.6.7.1 DECLARE ... CONDITION Syntax

DECLARE condition_name CONDITION FOR condition_value

condition_value:
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value

The DECLARE ... CONDITION statement declares a named error condition, associating a name with
a condition that needs specific handling. The name can be referred to in a subsequent DECLARE ...
HANDLER statement (see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”).

Condition declarations must appear before cursor or handler declarations.

The condition_value for DECLARE ... CONDITION can be a MySQL error code (a number) or an
SQLSTATE value (a 5-character string literal). You should not use MySQL error code 0 or SQLSTATE
values that begin with '00', because those indicate success rather than an error condition. For a list of
MySQL error codes and SQLSTATE values, see Section B.3, “Server Error Codes and Messages”.

Using names for conditions can help make stored program code clearer. For example, this handler
applies to attempts to drop a nonexistent table, but that is apparent only if you know the meaning of
MySQL error code 1051:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

By declaring a name for the condition, the purpose of the handler is more readily seen:

DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

Here is a named condition for the same condition, but based on the corresponding SQLSTATE value
rather than the MySQL error code:

DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

Condition Handling

1801

Condition names referred to in SIGNAL or use RESIGNAL statements must be associated with
SQLSTATE values, not MySQL error codes.

13.6.7.2 DECLARE ... HANDLER Syntax

DECLARE handler_action HANDLER
 FOR condition_value [, condition_value] ...
 statement

handler_action:
 CONTINUE
 | EXIT
 | UNDO

condition_value:
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
 | condition_name
 | SQLWARNING
 | NOT FOUND
 | SQLEXCEPTION

The DECLARE ... HANDLER statement specifies a handler that deals with one or more conditions.
If one of these conditions occurs, the specified statement executes. statement can be a simple
statement such as SET var_name = value, or a compound statement written using BEGIN and END
(see Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”).

Handler declarations must appear after variable or condition declarations.

The handler_action value indicates what action the handler takes after execution of the handler
statement:

• CONTINUE: Execution of the current program continues.

• EXIT: Execution terminates for the BEGIN ... END compound statement in which the handler is
declared. This is true even if the condition occurs in an inner block.

• UNDO: Not supported.

The condition_value for DECLARE ... HANDLER indicates the specific condition or class of
conditions that activates the handler:

• A MySQL error code (a number) or an SQLSTATE value (a 5-character string literal). You should
not use MySQL error code 0 or SQLSTATE values that begin with '00', because those indicate
success rather than an error condition. For a list of MySQL error codes and SQLSTATE values, see
Section B.3, “Server Error Codes and Messages”.

• A condition name previously specified with DECLARE ... CONDITION. A condition name can be
associated with a MySQL error code or SQLSTATE value. See Section 13.6.7.1, “DECLARE ...
CONDITION Syntax”.

• SQLWARNING is shorthand for the class of SQLSTATE values that begin with '01'.

• NOT FOUND is shorthand for the class of SQLSTATE values that begin with '02'. This is relevant
within the context of cursors and is used to control what happens when a cursor reaches the end
of a data set. If no more rows are available, a No Data condition occurs with SQLSTATE value
'02000'. To detect this condition, you can set up a handler for it (or for a NOT FOUND condition).
For an example, see Section 13.6.6, “Cursors”. This condition also occurs for SELECT ... INTO
var_list statements that retrieve no rows.

• SQLEXCEPTION is shorthand for the class of SQLSTATE values that do not begin with '00', '01',
or '02'.

Condition Handling

1802

For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6,
“Scope Rules for Handlers”.

If a condition occurs for which no handler has been declared, the action taken depends on the
condition class:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the
condition, as if there were an EXIT handler. If the program was called by another stored program,
the calling program handles the condition using the handler selection rules applied to its own
handlers.

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE
handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was
raised by SIGNAL or RESIGNAL, the action is EXIT.

The following example uses a handler for SQLSTATE '23000', which occurs for a duplicate-key error:

mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
 -> BEGIN
 -> DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
 -> SET @x = 1;
 -> INSERT INTO test.t VALUES (1);
 -> SET @x = 2;
 -> INSERT INTO test.t VALUES (1);
 -> SET @x = 3;
 -> END;
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
 +------+
 | @x |
 +------+
 | 3 |
 +------+
 1 row in set (0.00 sec)

Notice that @x is 3 after the procedure executes, which shows that execution continued to the end
of the procedure after the error occurred. If the DECLARE ... HANDLER statement had not been
present, MySQL would have taken the default action (EXIT) after the second INSERT failed due to the
PRIMARY KEY constraint, and SELECT @x would have returned 2.

To ignore a condition, declare a CONTINUE handler for it and associate it with an empty block. For
example:

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

The scope of a block label does not include the code for handlers declared within the block. Therefore,
the statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that
enclose the handler declaration. Consider the following example, where the REPEAT block has a label
of retry:

CREATE PROCEDURE p ()

Condition Handling

1803

BEGIN
 DECLARE i INT DEFAULT 3;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 ITERATE retry; # illegal
 END;
 IF i < 0 THEN
 LEAVE retry; # legal
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

The retry label is in scope for the IF statement within the block. It is not in scope for the CONTINUE
handler, so the reference there is invalid and results in an error:

ERROR 1308 (42000): LEAVE with no matching label: retry

To avoid references to outer labels in handlers, use one of these strategies:

• To leave the block, use an EXIT handler. If no block cleanup is required, the BEGIN ... END
handler body can be empty:

DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;

Otherwise, put the cleanup statements in the handler body:

DECLARE EXIT HANDLER FOR SQLWARNING
 BEGIN
 block cleanup statements
 END;

• To continue execution, set a status variable in a CONTINUE handler that can be checked in the
enclosing block to determine whether the handler was invoked. The following example uses the
variable done for this purpose:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 DECLARE done INT DEFAULT FALSE;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 SET done = TRUE;
 END;
 IF done OR i < 0 THEN
 LEAVE retry;
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

13.6.7.3 GET DIAGNOSTICS Syntax

GET [CURRENT | STACKED] DIAGNOSTICS
{
 statement_information_item
 [, statement_information_item] ...

Condition Handling

1804

 | CONDITION condition_number
 condition_information_item
 [, condition_information_item] ...
}

statement_information_item:
 target = statement_information_item_name

condition_information_item:
 target = condition_information_item_name

statement_information_item_name:
 NUMBER
 | ROW_COUNT

condition_information_item_name:
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | RETURNED_SQLSTATE
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME

condition_number, target:
 (see following discussion)

SQL statements produce diagnostic information that populates the diagnostics area. The GET
DIAGNOSTICS statement enables applications to inspect this information. (You can also use SHOW
WARNINGS or SHOW ERRORS to see conditions or errors.)

No special privileges are required to execute GET DIAGNOSTICS.

The keyword CURRENT means to retrieve information from the current diagnostics area. The keyword
STACKED means to retrieve information from the second diagnostics area, which is available only if
the current context is a condition handler. If neither keyword is given, the default is to use the current
diagnostics area.

The GET DIAGNOSTICS statement is typically used in a handler within a stored program. It is a
MySQL extension that GET [CURRENT] DIAGNOSTICS is permitted outside handler context to check
the execution of any SQL statement. For example, if you invoke the mysql client program, you can
enter these statements at the prompt:

mysql> DROP TABLE test.no_such_table;
ERROR 1051 (42S02): Unknown table 'test.no_such_table'
mysql> GET DIAGNOSTICS CONDITION 1
 -> @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT;
mysql> SELECT @p1, @p2;
+-------+------------------------------------+
| @p1 | @p2 |
+-------+------------------------------------+
| 42S02 | Unknown table 'test.no_such_table' |
+-------+------------------------------------+

This extension applies only to the current diagnostics area. It does not apply to the second diagnostics
area because GET STACKED DIAGNOSTICS is permitted only if the current context is a condition
handler. If that is not the case, a GET STACKED DIAGNOSTICS when handler not active error
occurs.

For a description of the diagnostics area, see Section 13.6.7.7, “The MySQL Diagnostics Area”. Briefly,
it contains two kinds of information:

Condition Handling

1805

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no
conditions, this part of the diagnostics area is empty.

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

GET DIAGNOSTICS can obtain either statement or condition information, but not both in the same
statement:

• To obtain statement information, retrieve the desired statement items into target variables. This
instance of GET DIAGNOSTICS assigns the number of available conditions and the rows-affected
count to the user variables @p1 and @p2:

GET DIAGNOSTICS @p1 = NUMBER, @p2 = ROW_COUNT;

• To obtain condition information, specify the condition number and retrieve the desired condition items
into target variables. This instance of GET DIAGNOSTICS assigns the SQLSTATE value and error
message to the user variables @p3 and @p4:

GET DIAGNOSTICS CONDITION 1
 @p3 = RETURNED_SQLSTATE, @p4 = MESSAGE_TEXT;

The retrieval list specifies one or more target = item_name assignments, separated by commas.
Each assignment names a target variable and either a statement_information_item_name or
condition_information_item_name designator, depending on whether the statement retrieves
statement or condition information.

Valid target designators for storing item information can be stored procedure or function parameters,
stored program local variables declared with DECLARE, or user-defined variables.

Valid condition_number designators can be stored procedure or function parameters, stored
program local variables declared with DECLARE, user-defined variables, system variables, or literals. A
character literal may include a _charset introducer. A warning occurs if the condition number is not
in the range from 1 to the number of condition areas that have information. In this case, the warning is
added to the diagnostics area without clearing it.

When a condition occurs, MySQL does not populate all condition items recognized by GET
DIAGNOSTICS. For example:

mysql> GET DIAGNOSTICS CONDITION 1
 -> @p5 = SCHEMA_NAME, @p6 = TABLE_NAME;

Condition Handling

1806

mysql> SELECT @p5, @p6;
+------+------+
| @p5 | @p6 |
+------+------+
| | |
+------+------+

In standard SQL, if there are multiple conditions, the first condition relates to the SQLSTATE value
returned for the previous SQL statement. In MySQL, this is not guaranteed. To get the main error, you
cannot do this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

Instead, retrieve the condition count first, then use it to specify which condition number to inspect:

GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

For information about permissible statement and condition information items, and which ones are
populated when a condition occurs, see Diagnostics Area Information Items.

Here is an example that uses GET DIAGNOSTICS and an exception handler in stored procedure
context to assess the outcome of an insert operation. If the insert was successful, the procedure uses
GET DIAGNOSTICS to get the rows-affected count. This shows that you can use GET DIAGNOSTICS
multiple times to retrieve information about a statement as long as the current diagnostics area has not
been cleared.

CREATE PROCEDURE do_insert(value INT)
BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE code CHAR(5) DEFAULT '00000';
 DECLARE msg TEXT;
 DECLARE rows INT;
 DECLARE result TEXT;
 -- Declare exception handler for failed insert
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 GET DIAGNOSTICS CONDITION 1
 code = RETURNED_SQLSTATE, msg = MESSAGE_TEXT;
 END;

 -- Perform the insert
 INSERT INTO t1 (int_col) VALUES(value);
 -- Check whether the insert was successful
 IF code = '00000' THEN
 GET DIAGNOSTICS rows = ROW_COUNT;
 SET result = CONCAT('insert succeeded, row count = ',rows);
 ELSE
 SET result = CONCAT('insert failed, error = ',code,', message = ',msg);
 END IF;
 -- Say what happened
 SELECT result;
END;

Suppose that t1.int_col is an integer column that is declared as NOT NULL. The procedure
produces these results when invoked to insert non-NULL and NULL values, respectively:

mysql> CALL do_insert(1);
+---------------------------------+
| result |
+---------------------------------+
| insert succeeded, row count = 1 |
+---------------------------------+

mysql> CALL do_insert(NULL);

Condition Handling

1807

+---+
| result |
+---+
| insert failed, error = 23000, message = Column 'int_col' cannot be null |
+---+

When a condition handler activates, a push to the diagnostics area stack occurs:

• The first (current) diagnostics area becomes the second (stacked) diagnostics area and a new
current diagnostics area is created as a copy of it.

• GET [CURRENT] DIAGNOSTICS and GET STACKED DIAGNOSTICS can be used within the
handler to access the contents of the current and stacked diagnostics areas.

• Initially, both diagnostics areas return the same result, so it is possible to get information from the
current diagnostics area about the condition that activated the handler, as long as you execute no
statements within the handler that change its current diagnostics area.

• However, statements executing within the handler can modify the current diagnostics area, clearing
and setting its contents according to the normal rules (see How the Diagnostics Area is Populated).

A more reliable way to obtain information about the handler-activating condition is to use the
stacked diagnostics area, which cannot be modified by statements executing within the handler
except RESIGNAL. For information about when the current diagnostics area is set and cleared, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

The next example shows how GET STACKED DIAGNOSTICS can be used within a handler to obtain
information about the handled exception, even after the current diagnostics area has been modified by
handler statements.

Within a stored procedure p(), we attempt to insert two values into a table that contains a TEXT NOT
NULL column. The first value is a non-NULL string and the second is NULL. The column prohibits NULL
values, so the first insert succeeds but the second causes an exception. The procedure includes an
exception handler that maps attempts to insert NULL into inserts of the empty string:

DROP TABLE IF EXISTS t1;
CREATE TABLE t1 (c1 TEXT NOT NULL);
DROP PROCEDURE IF EXISTS p;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE errcount INT;
 DECLARE errno INT;
 DECLARE msg TEXT;
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 -- Here the current DA is nonempty because no prior statements
 -- executing within the handler have cleared it
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA before mapped insert' AS op, errno, msg;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA before mapped insert' AS op, errno, msg;

 -- Map attempted NULL insert to empty string insert
 INSERT INTO t1 (c1) VALUES('');

 -- Here the current DA should be empty (if the INSERT succeeded),
 -- so check whether there are conditions before attempting to
 -- obtain condition information
 GET CURRENT DIAGNOSTICS errcount = NUMBER;
 IF errcount = 0
 THEN
 SELECT 'mapped insert succeeded, current DA is empty' AS op;

Condition Handling

1808

 ELSE
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA after mapped insert' AS op, errno, msg;
 END IF ;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA after mapped insert' AS op, errno, msg;
 END;
 INSERT INTO t1 (c1) VALUES('string 1');
 INSERT INTO t1 (c1) VALUES(NULL);
END;
//
delimiter ;
CALL p();
SELECT * FROM t1;

When the handler activates, a copy of the current diagnostics area is pushed to the diagnostics area
stack. The handler first displays the contents of the current and stacked diagnostics areas, which are
both the same initially:

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| current DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| stacked DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

Statements executing after the GET DIAGNOSTICS statements may reset the current diagnostics
area. statements may reset the current diagnostics area. For example, the handler maps the NULL
insert to an empty-string insert and displays the result. The new insert succeeds and clears the current
diagnostics area, but the stacked diagnostics area remains unchanged and still contains information
about the condition that activated the handler:

+--+
| op |
+--+
| mapped insert succeeded, current DA is empty |
+--+

+--------------------------------+-------+----------------------------+
| op | errno | msg |
+--------------------------------+-------+----------------------------+
| stacked DA after mapped insert | 1048 | Column 'c1' cannot be null |
+--------------------------------+-------+----------------------------+

When the condition handler ends, its current diagnostics area is popped from the stack and the stacked
diagnostics area becomes the current diagnostics area in the stored procedure.

After the procedure returns, the table contains two rows. The empty row results from the attempt to
insert NULL that was mapped to an empty-string insert:

+----------+
| c1 |
+----------+
| string 1 |
| |
+----------+

In the preceding example, the first two GET DIAGNOSTICS statements within the condition handler that
retrieve information from the current and stacked diagnostics areas return the same values. This will

Condition Handling

1809

not be the case if statements that reset the current diagnostics area execute earlier within the handler.
Suppose that p() is rewritten to place the DECLARE statements within the handler definition rather than
preceding it:

CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE errcount INT;
 DECLARE errno INT;
 DECLARE msg TEXT;
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA before mapped insert' AS op, errno, msg;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA before mapped insert' AS op, errno, msg;
...

In this case, the result is version dependent:

• Before MySQL 5.7.2, DECLARE does not change the current diagnostics area, so the first two GET
DIAGNOSTICS statements return the same result, just as in the original version of p().

In MySQL 5.7.2, work was done to ensure that all nondiagnostic statements populate the
diagnostics area, per the SQL standard. DECLARE is one of them, so in 5.7.2 and up, DECLARE
statements executing at the beginning of the handler clear the current diagnostics area and the GET
DIAGNOSTICS statements produce different results:

+---------------------------------+-------+------+
| op | errno | msg |
+---------------------------------+-------+------+
| current DA before mapped insert | NULL | NULL |
+---------------------------------+-------+------+

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| stacked DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

To avoid this issue within a condition handler when seeking to obtain information about the condition
that activated the handler, be sure to access the stacked diagnostics area, not the current diagnostics
area.

13.6.7.4 RESIGNAL Syntax

RESIGNAL [condition_value]
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value:
 SQLSTATE [VALUE] sqlstate_value
 | condition_name

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name:
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA

Condition Handling

1810

 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME

condition_name, simple_value_specification:
 (see following discussion)

RESIGNAL passes on the error condition information that is available during execution of a condition
handler within a compound statement inside a stored procedure or function, trigger, or event.
RESIGNAL may change some or all information before passing it on. RESIGNAL is related to SIGNAL,
but instead of originating a condition as SIGNAL does, RESIGNAL relays existing condition information,
possibly after modifying it.

RESIGNAL makes it possible to both handle an error and return the error information. Otherwise, by
executing an SQL statement within the handler, information that caused the handler's activation is
destroyed. RESIGNAL also can make some procedures shorter if a given handler can handle part of a
situation, then pass the condition “up the line” to another handler.

No special privileges are required to execute the RESIGNAL statement.

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

For condition_value and signal_information_item, the definitions and rules are the same
for RESIGNAL as for SIGNAL. For example, the condition_value can be an SQLSTATE value, and
the value can indicate errors, warnings, or “not found.” For additional information, see Section 13.6.7.5,
“SIGNAL Syntax”.

The RESIGNAL statement takes condition_value and SET clauses, both of which are optional. This
leads to several possible uses:

• RESIGNAL alone:

RESIGNAL;

• RESIGNAL with new signal information:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

• RESIGNAL with a condition value and possibly new signal information:

RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];

These use cases all cause changes to the diagnostics and condition areas:

• A diagnostics area contains one or more condition areas.

• A condition area contains condition information items, such as the SQLSTATE value, MYSQL_ERRNO,
or MESSAGE_TEXT.

There is a stack of diagnostics areas. When a handler takes control, it pushes a diagnostics area to the
top of the stack, so there are two diagnostics areas during handler execution:

Condition Handling

1811

• The first (current) diagnostics area, which starts as a copy of the last diagnostics area, but will be
overwritten by the first statement in the handler that changes the current diagnostics area.

• The last (stacked) diagnostics area, which has the condition areas that were set up before the
handler took control.

The maximum number of condition areas in a diagnostics area is determined by the value of the
max_error_count system variable. See Diagnostics Area-Related System Variables.

RESIGNAL Alone

A simple RESIGNAL alone means “pass on the error with no change.” It restores the last diagnostics
area and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack.

Within a condition handler that catches a condition, one use for RESIGNAL alone is to perform some
other actions, and then pass on without change the original condition information (the information that
existed before entry into the handler).

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Suppose that the DROP TABLE xx statement fails. The diagnostics area stack looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

Then execution enters the EXIT handler. It starts by pushing a diagnostics area to the top of the stack,
which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, the contents of the first (current) and second (stacked) diagnostics areas are the same.
The first diagnostics area may be modified by statements executing subsequently within the handler.

Usually a procedure statement clears the first diagnostics area. BEGIN is an exception, it does not
clear, it does nothing. SET is not an exception, it clears, performs the operation, and produces a result
of “success.” The diagnostics area stack now looks like this:

DA 1. ERROR 0000 (00000): Successful operation
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, if @a = 0, RESIGNAL pops the diagnostics area stack, which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

And that is what the caller sees.

Condition Handling

1812

If @a is not 0, the handler simply ends, which means that there is no more use for the current
diagnostics area (it has been “handled”), so it can be thrown away, causing the stacked diagnostics
area to become the current diagnostics area again. The diagnostics area stack looks like this:

DA 1. ERROR 0000 (00000): Successful operation

The details make it look complex, but the end result is quite useful: Handlers can execute without
destroying information about the condition that caused activation of the handler.

RESIGNAL with New Signal Information

RESIGNAL with a SET clause provides new signal information, so the statement means “pass on the
error with changes”:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

As with RESIGNAL alone, the idea is to pop the diagnostics area stack so that the original information
will go out. Unlike RESIGNAL alone, anything specified in the SET clause changes.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SET MYSQL_ERRNO = 5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Remember from the previous discussion that RESIGNAL alone results in a diagnostics area stack like
this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

The RESIGNAL SET MYSQL_ERRNO = 5 statement results in this stack instead, which is what the
caller sees:

DA 1. ERROR 5 (42S02): Unknown table 'xx'

In other words, it changes the error number, and nothing else.

The RESIGNAL statement can change any or all of the signal information items, making the first
condition area of the diagnostics area look quite different.

RESIGNAL with a Condition Value and Optional New Signal Information

RESIGNAL with a condition value means “push a condition into the current diagnostics area.” If the SET
clause is present, it also changes the error information.

RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];

Condition Handling

1813

This form of RESIGNAL restores the last diagnostics area and makes it the current diagnostics area.
That is, it “pops” the diagnostics area stack, which is the same as what a simple RESIGNAL alone
would do. However, it also changes the diagnostics area depending on the condition value or signal
information.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SQLSTATE '45000' SET MYSQL_ERRNO=5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
SET @@max_error_count = 2;
CALL p();
SHOW ERRORS;

This is similar to the previous example, and the effects are the same, except that if RESIGNAL
happens, the current condition area looks different at the end. (The reason the condition adds to rather
than replaces the existing condition is the use of a condition value.)

The RESIGNAL statement includes a condition value (SQLSTATE '45000'), so it adds a new
condition area, resulting in a diagnostics area stack that looks like this:

DA 1. (condition 2) ERROR 1051 (42S02): Unknown table 'xx'
 (condition 1) ERROR 5 (45000) Unknown table 'xx'

The result of CALL p() and SHOW ERRORS for this example is:

mysql> CALL p();
ERROR 5 (45000): Unknown table 'xx'
mysql> SHOW ERRORS;
+-------+------+----------------------------------+
| Level | Code | Message |
+-------+------+----------------------------------+
| Error | 1051 | Unknown table 'xx' |
| Error | 5 | Unknown table 'xx' |
+-------+------+----------------------------------+

RESIGNAL Requires Condition Handler Context

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs. For example:

mysql> CREATE PROCEDURE p () RESIGNAL;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p();
ERROR 1645 (0K000): RESIGNAL when handler not active

Here is a more difficult example:

delimiter //
CREATE FUNCTION f () RETURNS INT
BEGIN
 RESIGNAL;

Condition Handling

1814

 RETURN 5;
END//
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION SET @a=f();
 SIGNAL SQLSTATE '55555';
END//
delimiter ;
CALL p();

RESIGNAL occurs within the stored function f(). Although f() itself is invoked within the context
of the EXIT handler, execution within f() has its own context, which is not handler context. Thus,
RESIGNAL within f() results in a “handler not active” error.

13.6.7.5 SIGNAL Syntax

SIGNAL condition_value
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value:
 SQLSTATE [VALUE] sqlstate_value
 | condition_name

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name:
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME

condition_name, simple_value_specification:
 (see following discussion)

SIGNAL is the way to “return” an error. SIGNAL provides error information to a handler, to an outer
portion of the application, or to the client. Also, it provides control over the error's characteristics (error
number, SQLSTATE value, message). Without SIGNAL, it is necessary to resort to workarounds such
as deliberately referring to a nonexistent table to cause a routine to return an error.

No special privileges are required to execute the SIGNAL statement.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

The condition_value in a SIGNAL statement indicates the error value to be returned. It can be an
SQLSTATE value (a 5-character string literal) or a condition_name that refers to a named condition
previously defined with DECLARE ... CONDITION (see Section 13.6.7.1, “DECLARE ... CONDITION
Syntax”).

An SQLSTATE value can indicate errors, warnings, or “not found.” The first two characters of the value
indicate its error class, as discussed in Signal Condition Information Items. Some signal values cause
statement termination; see Effect of Signals on Handlers, Cursors, and Statements.

The SQLSTATE value for a SIGNAL statement should not start with '00' because such values indicate
success and are not valid for signaling an error. This is true whether the SQLSTATE value is specified

Condition Handling

1815

directly in the SIGNAL statement or in a named condition referred to in the statement. If the value is
invalid, a Bad SQLSTATE error occurs.

To signal a generic SQLSTATE value, use '45000', which means “unhandled user-defined exception.”

The SIGNAL statement optionally includes a SET clause that contains multiple signal
items, in a comma-separated list of condition_information_item_name =
simple_value_specification assignments.

Each condition_information_item_name may be specified only once in the SET clause.
Otherwise, a Duplicate condition information item error occurs.

Valid simple_value_specification designators can be specified using stored procedure or
function parameters, stored program local variables declared with DECLARE, user-defined variables,
system variables, or literals. A character literal may include a _charset introducer.

For information about permissible condition_information_item_name values, see Signal
Condition Information Items.

The following procedure signals an error or warning depending on the value of pval, its input
parameter:

CREATE PROCEDURE p (pval INT)
BEGIN
 DECLARE specialty CONDITION FOR SQLSTATE '45000';
 IF pval = 0 THEN
 SIGNAL SQLSTATE '01000';
 ELSEIF pval = 1 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred';
 ELSEIF pval = 2 THEN
 SIGNAL specialty
 SET MESSAGE_TEXT = 'An error occurred';
 ELSE
 SIGNAL SQLSTATE '01000'
 SET MESSAGE_TEXT = 'A warning occurred', MYSQL_ERRNO = 1000;
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred', MYSQL_ERRNO = 1001;
 END IF;
END;

If pval is 0, p() signals a warning because SQLSTATE values that begin with '01' are signals in the
warning class. The warning does not terminate the procedure, and can be seen with SHOW WARNINGS
after the procedure returns.

If pval is 1, p() signals an error and sets the MESSAGE_TEXT condition information item. The error
terminates the procedure, and the text is returned with the error information.

If pval is 2, the same error is signaled, although the SQLSTATE value is specified using a named
condition in this case.

If pval is anything else, p() first signals a warning and sets the message text and error number
condition information items. This warning does not terminate the procedure, so execution continues
and p() then signals an error. The error does terminate the procedure. The message text and error
number set by the warning are replaced by the values set by the error, which are returned with the
error information.

SIGNAL is typically used within stored programs, but it is a MySQL extension that it is permitted outside
handler context. For example, if you invoke the mysql client program, you can enter any of these
statements at the prompt:

mysql> SIGNAL SQLSTATE '77777';

Condition Handling

1816

mysql> CREATE TRIGGER t_bi BEFORE INSERT ON t
 -> FOR EACH ROW SIGNAL SQLSTATE '77777';
mysql> CREATE EVENT e ON SCHEDULE EVERY 1 SECOND
 -> DO SIGNAL SQLSTATE '77777';

SIGNAL executes according to the following rules:

If the SIGNAL statement indicates a particular SQLSTATE value, that value is used to signal the
condition specified. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 IF divisor = 0 THEN
 SIGNAL SQLSTATE '22012';
 END IF;
END;

If the SIGNAL statement uses a named condition, the condition must be declared in some scope that
applies to the SIGNAL statement, and must be defined using an SQLSTATE value, not a MySQL error
number. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE divide_by_zero CONDITION FOR SQLSTATE '22012';
 IF divisor = 0 THEN
 SIGNAL divide_by_zero;
 END IF;
END;

If the named condition does not exist in the scope of the SIGNAL statement, an Undefined
CONDITION error occurs.

If SIGNAL refers to a named condition that is defined with a MySQL error number rather than
an SQLSTATE value, a SIGNAL/RESIGNAL can only use a CONDITION defined with
SQLSTATE error occurs. The following statements cause that error because the named condition is
associated with a MySQL error number:

DECLARE no_such_table CONDITION FOR 1051;
SIGNAL no_such_table;

If a condition with a given name is declared multiple times in different scopes, the declaration with the
most local scope applies. Consider the following procedure:

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '45000';
 IF divisor = 0 THEN
 BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '22012';
 SIGNAL my_error;
 END;
 END IF;
 SIGNAL my_error;
END;

If divisor is 0, the first SIGNAL statement executes. The innermost my_error condition declaration
applies, raising SQLSTATE '22012'.

If divisor is not 0, the second SIGNAL statement executes. The outermost my_error condition
declaration applies, raising SQLSTATE '45000'.

For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6,
“Scope Rules for Handlers”.

Condition Handling

1817

Signals can be raised within exception handlers:

CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SIGNAL SQLSTATE VALUE '99999'
 SET MESSAGE_TEXT = 'An error occurred';
 END;
 DROP TABLE no_such_table;
END;

CALL p() reaches the DROP TABLE statement. There is no table named no_such_table, so the
error handler is activated. The error handler destroys the original error (“no such table”) and makes a
new error with SQLSTATE '99999' and message An error occurred.

Signal Condition Information Items

The following table lists the names of diagnostics area condition information items that can be set
in a SIGNAL (or RESIGNAL) statement. All items are standard SQL except MYSQL_ERRNO, which
is a MySQL extension. For more information about these items see Section 13.6.7.7, “The MySQL
Diagnostics Area”.

Item Name Definition
--------- ----------
CLASS_ORIGIN VARCHAR(64)
SUBCLASS_ORIGIN VARCHAR(64)
CONSTRAINT_CATALOG VARCHAR(64)
CONSTRAINT_SCHEMA VARCHAR(64)
CONSTRAINT_NAME VARCHAR(64)
CATALOG_NAME VARCHAR(64)
SCHEMA_NAME VARCHAR(64)
TABLE_NAME VARCHAR(64)
COLUMN_NAME VARCHAR(64)
CURSOR_NAME VARCHAR(64)
MESSAGE_TEXT VARCHAR(128)
MYSQL_ERRNO SMALLINT UNSIGNED

The character set for character items is UTF-8.

It is illegal to assign NULL to a condition information item in a SIGNAL statement.

A SIGNAL statement always specifies an SQLSTATE value, either directly, or indirectly by referring to a
named condition defined with an SQLSTATE value. The first two characters of an SQLSTATE value are
its class, and the class determines the default value for the condition information items:

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

MESSAGE_TEXT = 'Unhandled user-defined warning condition';
MYSQL_ERRNO = ER_SIGNAL_WARN

• Class = '02' (not found)

MESSAGE_TEXT = 'Unhandled user-defined not found condition';
MYSQL_ERRNO = ER_SIGNAL_NOT_FOUND

• Class > '02' (exception)

Condition Handling

1818

MESSAGE_TEXT = 'Unhandled user-defined exception condition';
MYSQL_ERRNO = ER_SIGNAL_EXCEPTION

For legal classes, the other condition information items are set as follows:

CLASS_ORIGIN = SUBCLASS_ORIGIN = '';
CONSTRAINT_CATALOG = CONSTRAINT_SCHEMA = CONSTRAINT_NAME = '';
CATALOG_NAME = SCHEMA_NAME = TABLE_NAME = COLUMN_NAME = '';
CURSOR_NAME = '';

The error values that are accessible after SIGNAL executes are the SQLSTATE value raised by the
SIGNAL statement and the MESSAGE_TEXT and MYSQL_ERRNO items. These values are available from
the C API:

• SQLSTATE value: Call mysql_sqlstate()

• MYSQL_ERRNO value: Call mysql_errno()

• MESSAGE_TEXT value: Call mysql_error()

From SQL, the output from SHOW WARNINGS and SHOW ERRORS indicates the MYSQL_ERRNO and
MESSAGE_TEXT values in the Code and Message columns.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

Effect of Signals on Handlers, Cursors, and Statements

Signals have different effects on statement execution depending on the signal class. The class
determines how severe an error is. MySQL ignores the value of the sql_mode system variable; in
particular, strict SQL mode does not matter. MySQL also ignores IGNORE: The intent of SIGNAL is to
raise a user-generated error explicitly, so a signal is never ignored.

In the following descriptions, “unhandled” means that no handler for the signaled SQLSTATE value has
been defined with DECLARE ... HANDLER.

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

The value of the warning_count system variable goes up. SHOW WARNINGS shows the signal.
SQLWARNING handlers catch the signal. If the signal is unhandled in a function, statements do not
end.

• Class = '02' (not found)

NOT FOUND handlers catch the signal. There is no effect on cursors. If the signal is unhandled in a
function, statements end.

• Class > '02' (exception)

SQLEXCEPTION handlers catch the signal. If the signal is unhandled in a function, statements end.

• Class = '40'

Treated as an ordinary exception.

Example:

Condition Handling

1819

mysql> delimiter //
mysql> CREATE FUNCTION f () RETURNS INT
 -> BEGIN
 -> SIGNAL SQLSTATE '01234'; -- signal a warning
 -> RETURN 5;
 -> END//
mysql> delimiter ;
mysql> CREATE TABLE t (s1 INT);
mysql> INSERT INTO t VALUES (f());

The result is that a row containing 5 is inserted into table t. The warning that is signaled can be viewed
with SHOW WARNINGS.

13.6.7.6 Scope Rules for Handlers

A stored program may include handlers to be invoked when certain conditions occur within the
program. The applicability of each handler depends on its location within the program definition and on
the condition or conditions that it handles:

• A handler declared in a BEGIN ... END block is in scope only for the SQL statements following
the handler declarations in the block. If the handler itself raises a condition, it cannot handle that
condition, nor can any other handlers declared in the block. In the following example, handlers H1
and H2 are in scope for conditions raised by statements stmt1 and stmt2. But neither H1 nor H2
are in scope for conditions raised in the body of H1 or H2.

BEGIN -- outer block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 DECLARE EXIT HANDLER FOR ...; -- handler H2
 stmt1;
 stmt2;
END;

• A handler is in scope only for the block in which it is declared, and cannot be activated for conditions
occurring outside that block. In the following example, handler H1 is in scope for stmt1 in the inner
block, but not for stmt2 in the outer block:

BEGIN -- outer block
 BEGIN -- inner block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 stmt1;
 END;
 stmt2;
END;

• A handler can be specific or general. A specific handler is for a MySQL error code, SQLSTATE value,
or condition name. A general handler is for a condition in the SQLWARNING, SQLEXCEPTION, or NOT
FOUND class. Condition specificity is related to condition precedence, as described later.

Multiple handlers can be declared in different scopes and with different specificities. For example,
there might be a specific MySQL error code handler in an outer block, and a general SQLWARNING
handler in an inner block. Or there might be handlers for a specific MySQL error code and the general
SQLWARNING class in the same block.

Whether a handler is activated depends not only on its own scope and condition value, but on what
other handlers are present. When a condition occurs in a stored program, the server searches for
applicable handlers in the current scope (current BEGIN ... END block). If there are no applicable
handlers, the search continues outward with the handlers in each successive containing scope (block).
When the server finds one or more applicable handlers at a given scope, it chooses among them
based on condition precedence:

• A MySQL error code handler takes precedence over an SQLSTATE value handler.

Condition Handling

1820

• An SQLSTATE value handler takes precedence over general SQLWARNING, SQLEXCEPTION, or NOT
FOUND handlers.

• An SQLEXCEPTION handler takes precedence over an SQLWARNING handler.

• The precedence of NOT FOUND depends on how the condition is raised:

• Normally, a condition in the NOT FOUND class can be handled by an SQLWARNING or NOT FOUND
handler, with the SQLWARNING handler taking precedence if both are present. Normal occurrence
of NOT FOUND takes place when a cursor used to fetch a set of rows reaches the end of the data
set, or for instances of SELECT ... INTO var_list such that the WHERE clause finds no rows.

• If a NOT FOUND condition is raised by a SIGNAL (or RESIGNAL) statement, the condition can be
handled by a NOT FOUND handler but not an SQLWARNING handler.

• It is possible to have several applicable handlers with the same precedence. For example, a
statement could generate multiple warnings with different error codes, for each of which an error-
specific handler exists. In this case, the choice of which handler the server activates is indeterminate,
and may change depending on the circumstances under which the condition occurs.

One implication of the handler selection rules is that if multiple applicable handlers occur in different
scopes, handlers with the most local scope take precedence over handlers in outer scopes, even over
those for more specific conditions.

If there is no appropriate handler when a condition occurs, the action taken depends on the class of the
condition:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the
condition, as if there were an EXIT handler. If the program was called by another stored program,
the calling program handles the condition using the handler selection rules applied to its own
handlers.

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE
handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was
raised by SIGNAL or RESIGNAL, the action is EXIT.

The following examples demonstrate how MySQL applies the handler selection rules.

This procedure contains two handlers, one for the specific SQLSTATE value ('42S02') that occurs for
attempts to drop a nonexistent table, and one for the general SQLEXCEPTION class:

CREATE PROCEDURE p1()
BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t;
END;

Both handlers are declared in the same block and have the same scope. However, SQLSTATE
handlers take precedence over SQLEXCEPTION handlers, so if the table t is nonexistent, the DROP
TABLE statement raises a condition that activates the SQLSTATE handler:

mysql> CALL p1();
+--------------------------------+
| msg |
+--------------------------------+
| SQLSTATE handler was activated |

Condition Handling

1821

+--------------------------------+

This procedure contains the same two handlers. But this time, the DROP TABLE statement and
SQLEXCEPTION handler are in an inner block relative to the SQLSTATE handler:

CREATE PROCEDURE p2()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t; -- occurs within inner block
 END;
END;

In this case, the handler that is more local to where the condition occurs takes precedence. The
SQLEXCEPTION handler activates, even though it is more general than the SQLSTATE handler:

mysql> CALL p2();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, one of the handlers is declared in a block inner to the scope of the DROP TABLE
statement:

CREATE PROCEDURE p3()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block
END;

Only the SQLEXCEPTION handler applies because the other one is not in scope for the condition raised
by the DROP TABLE:

mysql> CALL p3();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, both handlers are declared in a block inner to the scope of the DROP TABLE
statement:

CREATE PROCEDURE p4()
BEGIN -- outer block
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

Condition Handling

1822

 DROP TABLE test.t; -- occurs within outer block
END;

Neither handler applies because they are not in scope for the DROP TABLE. The condition raised by
the statement goes unhandled and terminates the procedure with an error:

mysql> CALL p4();
ERROR 1051 (42S02): Unknown table 'test.t'

13.6.7.7 The MySQL Diagnostics Area

SQL statements produce diagnostic information that populates the diagnostics area. Standard SQL has
a diagnostics area stack, containing a diagnostics area for each nested execution context. Standard
SQL also supports GET STACKED DIAGNOSTICS syntax for referring to the second diagnostics area
during condition handler execution. MySQL supports the STACKED keyword as of MySQL 5.7. Before
that, MySQL does not support STACKED; there is a single diagnostics area containing information from
the most recent statement that wrote to it.

This section describes the structure of the diagnostics area in MySQL, the information items
recognized by MySQL, how statements clear and set the diagnostics area, and how diagnostics areas
are pushed to and popped from the stack.

Diagnostics Area Structure

The diagnostics area contains two kinds of information:

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no
conditions, this part of the diagnostics area is empty.

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

Diagnostics Area Information Items

The diagnostics area contains statement and condition information items. Numeric items are integers.
The character set for character items is UTF-8. No item can be NULL. If a statement or condition item is
not set by a statement that populates the diagnostics area, its value is 0 or the empty string, depending
on the item data type.

The statement information part of the diagnostics area contains these items:

• NUMBER: An integer indicating the number of condition areas that have information.

Condition Handling

1823

• ROW_COUNT: An integer indicating the number of rows affected by the statement. ROW_COUNT has
the same value as the ROW_COUNT() function (see Section 12.14, “Information Functions”).

The condition information part of the diagnostics area contains a condition area for each condition.
Condition areas are numbered from 1 to the value of the NUMBER statement condition item. If NUMBER
is 0, there are no condition areas.

Each condition area contains the items in the following list. All items are standard SQL except
MYSQL_ERRNO, which is a MySQL extension. The definitions apply for conditions generated other than
by a signal (that is, by a SIGNAL or RESIGNAL statement). For nonsignal conditions, MySQL populates
only those condition items not described as always empty. The effects of signals on the condition area
are described later.

• CLASS_ORIGIN: A string containing the class of the RETURNED_SQLSTATE value. If the
RETURNED_SQLSTATE value begins with a class value defined in SQL standards document ISO
9075-2 (section 24.1, SQLSTATE), CLASS_ORIGIN is 'ISO 9075'. Otherwise, CLASS_ORIGIN is
'MySQL'.

• SUBCLASS_ORIGIN: A string containing the subclass of the RETURNED_SQLSTATE value. If
CLASS_ORIGIN is 'ISO 9075' or RETURNED_SQLSTATE ends with '000', SUBCLASS_ORIGIN is
'ISO 9075'. Otherwise, SUBCLASS_ORIGIN is 'MySQL'.

• RETURNED_SQLSTATE: A string that indicates the SQLSTATE value for the condition.

• MESSAGE_TEXT: A string that indicates the error message for the condition.

• MYSQL_ERRNO: An integer that indicates the MySQL error code for the condition.

• CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME: Strings that indicate the
catalog, schema, and name for a violated constraint. They are always empty.

• CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_NAME: Strings that indicate the catalog,
schema, table, and column related to the condition. They are always empty.

• CURSOR_NAME: A string that indicates the cursor name. This is always empty.

For the RETURNED_SQLSTATE, MESSAGE_TEXT, and MYSQL_ERRNO values for particular errors, see
Section B.3, “Server Error Codes and Messages”.

If a SIGNAL (or RESIGNAL) statement populates the diagnostics area, its SET clause can assign to any
condition information item except RETURNED_SQLSTATE any value that is legal for the item data type.
SIGNAL also sets the RETURNED_SQLSTATE value, but not directly in its SET clause. That value comes
from the SIGNAL statement SQLSTATE argument.

SIGNAL also sets statement information items. It sets NUMBER to 1. It sets ROW_COUNT to −1 for errors
and 0 otherwise.

How the Diagnostics Area is Populated

Nondiagnostic SQL statements populate the diagnostics area automatically, and its contents can be set
explicitly with the SIGNAL and RESIGNAL statements. The diagnostics area can be examined with GET
DIAGNOSTICS to extract specific items, or with SHOW WARNINGS or SHOW ERRORS to see conditions
or errors.

SQL statements clear and set the diagnostics area as follows:

• When the server starts executing a statement after parsing it, it clears the diagnostics area
for nondiagnostic statements. (Before MySQL 5.7.2, the server clears the diagnostics area for
nondiagnostic statements that use tables.) Diagnostic statements do not clear the diagnostics area
(SHOW WARNINGS, SHOW ERRORS, GET DIAGNOSTICS).

Condition Handling

1824

• If a statement raises a condition, the diagnostics area is cleared of conditions that belong to earlier
statements. The exception is that conditions raised by GET DIAGNOSTICS and RESIGNAL are
added to the diagnostics area without clearing it.

Thus, even a statement that does not normally clear the diagnostics area when it begins executing
clears it if the statement raises a condition.

The following example shows the effect of various statements on the diagnostics area, using SHOW
WARNINGS to display information about conditions stored there.

This DROP TABLE statement clears the diagnostics area and populates it when the condition occurs:

mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

This SET statement generates an error, so it clears and populates the diagnostics area:

mysql> SET @x = @@x;
ERROR 1193 (HY000): Unknown system variable 'x'

mysql> SHOW WARNINGS;
+-------+------+-----------------------------+
| Level | Code | Message |
+-------+------+-----------------------------+
| Error | 1193 | Unknown system variable 'x' |
+-------+------+-----------------------------+
1 row in set (0.00 sec)

The previous SET statement produced a single condition, so 1 is the only valid condition number
for GET DIAGNOSTICS at this point. The following statement uses a condition number of 2, which
produces a warning that is added to the diagnostics area without clearing it:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------+
| Level | Code | Message |
+-------+------+------------------------------+
| Error | 1193 | Unknown system variable 'xx' |
| Error | 1753 | Invalid condition number |
+-------+------+------------------------------+
2 rows in set (0.00 sec)

Now there are two conditions in the diagnostics area, so the same GET DIAGNOSTICS statement
succeeds:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p;
+--------------------------+
| @p |
+--------------------------+
| Invalid condition number |
+--------------------------+

Condition Handling

1825

1 row in set (0.01 sec)

How the Diagnostics Area Stack Works

When a push to the diagnostics area stack occurs, the first (current) diagnostics area becomes the
second (stacked) diagnostics area and a new current diagnostics area is created as a copy of it.
Diagnostics areas are pushed to and popped from the stack under the following circumstances:

• Execution of a stored program

A push occurs before the program executes and a pop occurs afterward. If the stored program ends
while handlers are executing, there can be more than one diagnostics area to pop; this occurs due to
an exception for which there are no appropriate handlers or due to RETURN in the handler.

Any warning or error conditions occurring during stored program execution then are added to the
current diagnostics area, except that, for triggers, only errors are added. When the stored program
ends, the caller sees these conditions in its current diagonstics area.

• Execution of a condition handler within a stored program

When a push occurs as a result of condition handler activation, the stacked diagnostics area is the
area that was current within the stored program prior to the push. The new now-current diagnostics
area is the handler's current diagnostics area. GET [CURRENT] DIAGNOSTICS and GET STACKED
DIAGNOSTICS can be used within the handler to access the contents of the current (handler) and
stacked (stored program) diagnostics areas. Initially, they return the same result, but statements
executing within the handler modify the current diagnostics area, clearing and setting its contents
according to the normal rules (see How the Diagnostics Area is Populated). The stacked diagnostics
area cannot be modified by statements executing within the handler except RESIGNAL.

If the handler executes successfully, the current (handler) diagnostics area is popped and the
stacked (stored program) diagnostics area again becomes the current diagnostics area. Conditions
added to the handler diagnostics area during handler execution are added to the current diagnostics
area.

• Execution of RESIGNAL

The RESIGNAL statement passes on the error condition information that is available during execution
of a condition handler within a compound statement inside a stored program. RESIGNAL may
change some or all information before passing it on, modifying the diagnostics stack as described in
Section 13.6.7.4, “RESIGNAL Syntax”.

Diagnostics Area-Related System Variables

Certain system variables control or are related to some aspects of the diagnostics area:

• max_error_count controls the number of condition areas in the diagnostics area. If more
conditions than this occur, MySQL silently discards information for the excess conditions. (Conditions
added by RESIGNAL are always added, with older conditions being discarded as necessary to make
room.)

• warning_count indicates the number of conditions that occurred. This includes errors, warnings,
and notes. Normally, NUMBER and warning_count are the same. However, as the number of
conditions generated exceeds max_error_count, the value of warning_count continues to
rise whereas NUMBER remains capped at max_error_count because no additional conditions are
stored in the diagnostics area.

• error_count indicates the number of errors that occurred. This value includes “not found” and
exception conditions, but excludes warnings and notes. Like warning_count, its value can exceed
max_error_count.

• If the sql_notes system variable is set to 0, notes are not stored and do not increment
warning_count.

Database Administration Statements

1826

Example: If max_error_count is 10, the diagnostics area can contain a maximum of 10 condition
areas. Suppose that a statement raises 20 conditions, 12 of which are errors. In that case, the
diagnostics area contains the first 10 conditions, NUMBER is 10, warning_count is 20, and
error_count is 12.

Changes to the value of max_error_count have no effect until the next attempt to modify the
diagnostics area. If the diagnostics area contains 10 condition areas and max_error_count is set to
5, that has no immediate effect on the size or content of the diagnostics area.

13.7 Database Administration Statements

13.7.1 Account Management Statements

MySQL account information is stored in the tables of the mysql database. This database and the
access control system are discussed extensively in Chapter 5, MySQL Server Administration, which
you should consult for additional details.

Important

Some releases of MySQL introduce changes to the structure of the grant tables
to add new privileges or features. To ensure that you can take advantage of
any new capabilities, update your grant tables to have the current structure
whenever you update to a new version of MySQL. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

When the read_only system variable is enabled, account-management statements require the
SUPER privilege, in addition to any other required privileges. This is because they modify tables in the
mysql database.

13.7.1.1 ALTER USER Syntax

ALTER USER syntax for MySQL 5.7.6 and up:

ALTER USER [IF EXISTS]
 user_specification [, user_specification] ...
 [REQUIRE {NONE | ssl_option [[AND] ssl_option] ...}]
 [WITH resource_option [resource_option] ...]
 [password_option | lock_option] ...

ALTER USER [IF EXISTS]
 USER() IDENTIFIED BY 'auth_string'

user_specification:
 user [auth_option]

auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin AS 'hash_string'
}

ssl_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count

Account Management Statements

1827

 | MAX_USER_CONNECTIONS count
}

password_option: {
 PASSWORD EXPIRE
 | PASSWORD EXPIRE DEFAULT
 | PASSWORD EXPIRE NEVER
 | PASSWORD EXPIRE INTERVAL N DAY
}

lock_option: {
 ACCOUNT LOCK
 | ACCOUNT UNLOCK
}

ALTER USER syntax before MySQL 5.7.6:

ALTER USER user_specification [, user_specification] ...

user_specification:
 user password_option

password_option: {
 PASSWORD EXPIRE
 | PASSWORD EXPIRE DEFAULT
 | PASSWORD EXPIRE NEVER
 | PASSWORD EXPIRE INTERVAL N DAY
}

The ALTER USER statement modifies MySQL accounts. It provides control over account password
expiration. As of MySQL 5.7.6, it also provides control over authentication, SSL, and resource-limit
properties, and account locking and unlocking.

To use ALTER USER, you must have the global CREATE USER privilege or the UPDATE privilege for the
mysql database. When the read_only system variable is enabled, ALTER USER additionally requires
the SUPER privilege.

An error occurs if you try to modify an account that does not exist.

As of MySQL 5.7.8, the IF EXISTS clause can be used, which causes the statement to produce a
warning for each named account that does not exist, rather than an error.

ALTER USER modifies the mysql.user table row for each affected account according to the options
specified in the statement. Unspecified properties retain their current values.

Example 1: Change an account's password and expire it. As a result, the user must connect with the
named password and choose a new one at the next connection:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'new_password' PASSWORD EXPIRE;

Example 2: Modify an account to use the sha256_password authentication plugin and the given
password. Require that a new password be chosen every 180 days:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH sha256_password BY 'new_password'
 PASSWORD EXPIRE INTERVAL 180 DAY;

Example 3: Lock or unlock an account:

ALTER USER 'jeffrey'@'localhost' ACCOUNT LOCK;
ALTER USER 'jeffrey'@'localhost' ACCOUNT UNLOCK;

Example 4: Require an account to connect using SSL and establish a limit of 20 connections per hour:

Account Management Statements

1828

ALTER USER 'jeffrey'@'localhost'
 REQUIRE SSL WITH MAX_CONNECTIONS_PER_HOUR 20;

Because the capabilities of this statement were expanded considerably in MySQL 5.7.6, this section
first describes current syntax, and then the more limited pre-5.7.6 syntax.

• ALTER USER as of MySQL 5.7.6

• ALTER USER Before MySQL 5.7.6

Important

Under some circumstances, ALTER USER may be recorded in server logs or
on the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about the conditions under which this occurs for the
server logs and how to control it, see Section 6.1.2.3, “Passwords and Logging”.
For similar information about client-side logging, see Section 4.5.1.3, “mysql
Logging”.

ALTER USER as of MySQL 5.7.6

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. If you
specify only the user name part of the account name, a host name part of '%' is used. It is also
possible to specify CURRENT_USER or CURRENT_USER() to refer to the account associated with the
current session.

For one syntax only, the account may be specified with the USER() function:

ALTER USER USER() IDENTIFIED BY 'auth_string';

This syntax enables changing your own password without naming your account literally.

Each user_specification clause consists of an account name and an optional auth_option
value that specifies how the account authenticates. These values enable account authentication
plugins and credentials (passwords) to be specified. Each auth_option value applies only to the user
named immediately preceding it.

Following the user specifications, the statement may include options for SSL, resource-limit, password-
expiration, and locking properties. All these options are global to the statement and apply to all named
users.

Example: This statement changes the password for jeffrey but leaves that for jeanne unchanged.
For both accounts, connections are required to use SSL and each account can be used for a maximum
of two simultaneous connections:

ALTER USER
 'jeffrey'@'localhost' IDENTIFIED BY 'new_password',
 'jeanne'@'localhost'
 REQUIRE SSL WITH MAX_USER_CONNECTIONS 2;

In the absence of a particular type of option, the account remains unchanged in that respect. For
example, with no locking option, the locking state of the account is not changed.

Authentication Options

An account name may be followed by an authentication option that specifies the account authentication
plugin, credentials, or both:

• auth_plugin names an authentication plugin. The plugin name can be a quoted string literal or an
unquoted name. Plugin names are stored in the plugin column of the mysql.user table.

Account Management Statements

1829

• 'auth_string' or 'hash_string' specifiy account credentials, either as cleartext or hashed
in the format expected by the authentication plugin, respectively. Credentials are stored in the
authentication_string column of the mysql.user table.

ALTER USER permits these auth_option syntaxes:

• IDENTIFIED BY 'auth_string'

Sets the account authentication plugin to the default plugin, hashes the cleartext 'auth_string'
value, and stores the result in the mysql.user account row.

• IDENTIFIED WITH auth_plugin

Sets the account authentication plugin to auth_plugin, clears the credentials to the empty string
(the credentials are associated with the old authentication plugin, not the new one), and stores the
result in the mysql.user account row.

In addition, the password is marked expired. The user must choose a new one when next
connecting.

• IDENTIFIED WITH auth_plugin BY 'auth_string'

Sets the account authentication plugin to auth_plugin, hashes the cleartext 'auth_string'
value, and stores the result in the mysql.user account row.

• IDENTIFIED WITH auth_plugin AS 'hash_string'

Sets the account authentication plugin to auth_plugin, takes the hashed 'hash_string' value
as is, and stores the result in the mysql.user account row. The string is assumed to be already
hashed in the format required by the plugin.

The default plugin is mysql_native_password unless the default_authentication_plugin
system variable is set otherwise. For descriptions of each plugin, see Section 6.3.9, “Authentication
Plugins Available in MySQL”.

Example 1: Specify the password as cleartext; the default plugin is used:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'mypass';

Example 2: Specify the authentication plugin, along with a cleartext password value:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password
 BY 'mypass';

Example 3: Specify the authentication plugin, along with a hashed password value:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password
 AS '*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4';

SSL Options

MySQL can check X509 certificate attributes in addition to the usual authentication that is based
on the user name and credentials. For background information on the use of SSL with MySQL, see
Section 6.3.12, “Using Secure Connections”.

To specify SSL-related options for a MySQL account, use a REQUIRE clause that specifies one or more
ssl_option values.

ALTER USER permits these ssl_option values:

Account Management Statements

1830

• NONE

Indicates that the account has no SSL or X509 requirements. Unencrypted connections are
permitted if the user name and password are valid. However, encrypted connections can also be
used, at the client's option, if the client has the proper certificate and key files.

As of MySQL 5.7.3, a client need specify only the --ssl option to obtain an encrypted connection.
The connection attempt fails if SSL is not available. Before MySQL 5.7.3, the client must specify
either the --ssl-ca option, or all three of the --ssl-ca, --ssl-key, and --ssl-cert options.

• SSL

Tells the server to permit only SSL-encrypted connections for the account.

ALTER USER 'jeffrey'@'localhost' REQUIRE SSL;

As of MySQL 5.7.3, a client need specify only the --ssl option to obtain an encrypted connection.
The connection attempt fails if SSL is not available. Before MySQL 5.7.3, the client must specify the
--ssl-ca option to authenticate the server certificate, and may additionally specify the --ssl-key
and --ssl-cert options. If neither the --ssl-ca option nor --ssl-capath option is specified,
the client does not authenticate the server certificate.

• X509

Requires that the client must have a valid certificate but the exact certificate, issuer, and subject do
not matter. The only requirement is that it should be possible to verify its signature with one of the CA
certificates. Use of X509 certificates always implies encryption, so the SSL option is unnecessary in
this case.

ALTER USER 'jeffrey'@'localhost' REQUIRE X509;

To connect, the client must specify the --ssl-ca, --ssl-key, and --ssl-cert options. This
is also true for ISSUER and SUBJECT because those REQUIRE options imply the requirements of
X509.

• ISSUER 'issuer'

Places the restriction on connection attempts that the client must present a valid X509 certificate
issued by CA 'issuer'. If the client presents a certificate that is valid but has a different issuer, the
server rejects the connection. Use of X509 certificates always implies encryption, so the SSL option
is unnecessary in this case.

To connect, the client must specify the --ssl-ca, --ssl-key, and --ssl-cert options because
ISSUER implies the requirements of X509.

ALTER USER 'jeffrey'@'localhost'
 REQUIRE ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com';

Note

If MySQL is linked against a version of OpenSSL older than 0.9.6h, use
Email rather than emailAddress in the 'issuer' value.

• SUBJECT 'subject'

Places the restriction on connection attempts that the client must present a valid X509 certificate
containing the subject subject. If the client presents a certificate that is valid but has a different
subject, the server rejects the connection. Use of X509 certificates always implies encryption, so the
SSL option is unnecessary in this case.

Account Management Statements

1831

To connect, the client must specify the --ssl-ca, --ssl-key, and --ssl-cert options because
SUBJECT implies the requirements of X509.

ALTER USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com';

MySQL does a simple string comparison of the 'subject' value to the value in the certificate, so
lettercase and component ordering must be given exactly as present in the certificate.

Note

Regarding emailAddress, see the note in the description of REQUIRE
ISSUER.

• CIPHER 'cipher'

Requests a specific cipher method for connections. This option is needed to ensure that ciphers
and key lengths of sufficient strength are used. SSL itself can be weak if old algorithms using short
encryption keys are used.

ALTER USER 'jeffrey'@'localhost' REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause:

ALTER USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com'
 AND ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

The order of the options does not matter, but no option can be specified twice. The AND keyword is
optional between REQUIRE options.

Resource-Limit Options

It is possible to place limits on use of server resources by an account, as discussed in Section 6.3.4,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values:

ALTER USER permits these resource_option values:

• MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count,
MAX_CONNECTIONS_PER_HOUR count

These options restrict the number of queries, updates, and connections to the server permitted to
this account during any given one-hour period. (Queries for which results are served from the query
cache do not count against the MAX_QUERIES_PER_HOUR limit.) If count is 0 (the default), this
means that there is no limitation for the account.

• MAX_USER_CONNECTIONS count

Restricts the maximum number of simultaneous connections to the server by the account. A
nonzero count specifies the limit for the account explicitly. If count is 0 (the default), the server
determines the number of simultaneous connections for the account from the global value of the
max_user_connections system variable. If max_user_connections is also zero, there is no
limit for the account.

Account Management Statements

1832

Example:

ALTER USER 'jeffrey'@'localhost'
 WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

If a given resource limit is specified multiple times, the last instance takes precedence.

Password-Expiration Options

ALTER USER supports several password_option values for password expiration management,
to either expire an account password or establish its password expiration policy. Policy options do
not expire the password; instead, they determine how the server applies automatic expiration to the
account (see Section 6.3.6, “Password Expiration Policy”).

ALTER USER permits these password_option values:

• PASSWORD EXPIRE

Expires the account password.

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

• PASSWORD EXPIRE DEFAULT

Sets the account so that the global expiration policy applies, as specified by the
default_password_lifetime system variable.

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

• PASSWORD EXPIRE NEVER

Disables password expiration for the account so that its password never expires.

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

• PASSWORD EXPIRE INTERVAL N DAY

Sets the account password lifetime to N days. This statement requires the password to be changed
every 180 days:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 180 DAY;

If multiple password-expiration options are specified, the last one takes precedence.

A client session operates in restricted mode if the account password was expired manually or if
the password is considered past its lifetime per the automatic expiration policy. In restricted mode,
operations performed within the session result in an error until the user establishes a new account
password. See Section 6.3.6, “Password Expiration Policy”.

Note

It is possible to “reset” a password by setting it to its current value. As a matter
of good policy, it is preferable to choose a different password.

Account-Locking Options

MySQL supports account locking and unlocking using the ACCOUNT LOCK and ACCOUNT UNLOCK
options, which specify the locking state for an account. For additional discussion, see Section 6.3.11,
“User Account Locking”.

Account Management Statements

1833

If multiple account-locking options are specified, the last one takes precedence.

ALTER USER Before MySQL 5.7.6

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. If you
specify only the user name part of the account name, a host name part of '%' is used. It is also
possible to specify CURRENT_USER or CURRENT_USER() to refer to the account associated with the
current session.

Each user_specification clause consists of an account name and a password_option value
that specifies the action to take for the account, to either expire an account password or establish its
password expiration policy. Policy options do not expire the password; instead, they determine how the
server applies automatic expiration to the account (see Section 6.3.6, “Password Expiration Policy”).

The password_option values are as described earlier in this section. The DEFAULT, NEVER, and
INTERVAL variants of PASSWORD EXPIRE are not available before MySQL 5.7.4.

Before MySQL 5.7.3, it was possible to use ALTER USER to expire the password for anonymous-user
accounts. This is no longer permitted because an anonymous user cannot reset the account password
to lift the expiration.

13.7.1.2 CREATE USER Syntax

CREATE USER syntax for MySQL 5.7.6 and up:

CREATE USER [IF NOT EXISTS]
 user_specification [, user_specification] ...
 [REQUIRE {NONE | ssl_option [[AND] ssl_option] ...}]
 [WITH resource_option [resource_option] ...]
 [password_option | lock_option] ...

user_specification:
 user [auth_option]

auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED BY PASSWORD 'hash_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin AS 'hash_string'
}

ssl_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

password_option: {
 PASSWORD EXPIRE
 | PASSWORD EXPIRE DEFAULT
 | PASSWORD EXPIRE NEVER
 | PASSWORD EXPIRE INTERVAL N DAY
}

lock_option: {
 ACCOUNT LOCK
 | ACCOUNT UNLOCK

Account Management Statements

1834

}

CREATE USER syntax before MySQL 5.7.6:

CREATE USER user_specification [, user_specification] ...

user_specification:
 user [auth_option]

auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED BY PASSWORD 'hash_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin AS 'hash_string'
}

The CREATE USER statement creates new MySQL accounts. It enables account authentication
properties to be established. As of MySQL 5.7.6, it is also possible to establish authentication, SSL,
and resource-limit properties, account password expiration, and account locking and unlocking.

To use CREATE USER, you must have the global CREATE USER privilege or the INSERT privilege for
the mysql database. When the read_only system variable is enabled, CREATE USER additionally
requires the SUPER privilege.

An error occurs if you try to create an account that already exists.

As of MySQL 5.7.8, the IF NOT EXISTS clause can be used, which causes the statement to produce
a warning for each named account that already exists, rather than an error.

For each account, CREATE USER creates a new row in the mysql.user table. The row reflects the
properties specified in the statement. Unspecified properties are set to their default values.

Example 1: Create an account that uses the default authentication plugin and the given password.
Mark the password expired so that the user must choose a new one at the first connection to the
server:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'new_password' PASSWORD EXPIRE;

Example 2: Create an account that uses the sha256_password authentication plugin and the given
password. Require that a new password be chosen every 180 days:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED WITH sha256_password BY 'new_password'
 PASSWORD EXPIRE INTERVAL 180 DAY;

Because the capabilities of this statement were expanded considerably in MySQL 5.7.6, this section
first describes current syntax, and then the more limited pre-5.7.6 syntax.

• CREATE USER as of MySQL 5.7.6

• CREATE USER Before MySQL 5.7.6

Important

Under some circumstances, CREATE USER may be recorded in server logs or
on the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about the conditions under which this occurs for the
server logs and how to control it, see Section 6.1.2.3, “Passwords and Logging”.
For similar information about client-side logging, see Section 4.5.1.3, “mysql
Logging”.

Account Management Statements

1835

For additional information about setting passwords and authentication plugins, see Section 6.3.5,
“Assigning Account Passwords”, and Section 6.3.8, “Pluggable Authentication”.

CREATE USER as of MySQL 5.7.6

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';

If you specify only the user name part of the account name, a host name part of '%' is used.

Each user_specification clause consists of an account name and an optional auth_option
value that specifies how the account authenticates. These values enable account authentication
plugins and credentials (passwords) to be specified. Each auth_option value applies only to the user
named immediately preceding it.

Following the user specifications, the statement may include options for SSL, resource-limit, password-
expiration, and locking properties. All these options are global to the statement and apply to all named
users.

Example: This statement creates two accounts, each with the default authentication plugin and named
password. For both accounts, connections must be made using a valid X509 certificate and up to 60
queries per hour are permitted. Both accounts are locked initially, so effectively they are placeholders
and cannot be used until an administrator unlocks them:

CREATE USER
 'jeffrey'@'localhost' IDENTIFIED BY 'new_password1',
 'jeanne'@'localhost' IDENTIFIED BY 'new_password2'
 REQUIRE X509 WITH MAX_QUERIES_PER_HOUR 60
 ACCOUNT LOCK;

For omitted options, these default values are used:

• Authentication: The authentication plugin defined by the default_authentication_plugin
system variable, and empty credentials

• SSL: NONE

• Resource limits: Unlimited

• Password expiration: PASSWORD EXPIRE DEFAULT

• Account locking: ACCOUNT UNLOCK

Authentication Options

An account name may be followed by an authentication option that specifies the account authentication
plugin, credentials, or both:

• auth_plugin names an authentication plugin. The plugin name can be a quoted string literal or an
unquoted name. Plugin names are stored in the plugin column of the mysql.user table.

• 'auth_string' or 'hash_string' specifiy account credentials, either as cleartext or hashed
in the format expected by the authentication plugin, respectively. Credentials are stored in the
authentication_string column of the mysql.user table.

CREATE USER permits these auth_option syntaxes:

• IDENTIFIED BY 'auth_string'

Account Management Statements

1836

Sets the account authentication plugin to the default plugin, hashes the cleartext 'auth_string'
value, and stores the result in the mysql.user account row.

• IDENTIFIED BY PASSWORD 'hash_string'

Sets the account authentication plugin to the default plugin, takes the hashed 'hash_string'
value as is, and stores the result in the mysql.user account row. The string is assumed to be
already hashed in the format required by the plugin.

Note

This syntax is deprecated and will be removed in a future MySQL release.

• IDENTIFIED WITH auth_plugin

Sets the account authentication plugin to auth_plugin, clears the credentials to the empty string,
and stores the result in the mysql.user account row.

• IDENTIFIED WITH auth_plugin BY 'auth_string'

Sets the account authentication plugin to auth_plugin, hashes the cleartext 'auth_string'
value, and stores the result in the mysql.user account row.

• IDENTIFIED WITH auth_plugin AS 'hash_string'

Sets the account authentication plugin to auth_plugin, takes the 'hash_string' value as is,
and stores the result in the mysql.user account row. The string is assumed to be already hashed
in the format required by the plugin.

The default plugin is mysql_native_password unless the default_authentication_plugin
system variable is set otherwise. For descriptions of each plugin, see Section 6.3.9, “Authentication
Plugins Available in MySQL”.

Example 1: Specify the password as cleartext; the default plugin is used:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'mypass';

Example 2: Specify the authentication plugin, along with a cleartext password value:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password BY 'mypass';

SSL Options

MySQL can check X509 certificate attributes in addition to the usual authentication that is based
on the user name and credentials. For background information on the use of SSL with MySQL, see
Section 6.3.12, “Using Secure Connections”.

To specify SSL-related options for a MySQL account, use a REQUIRE clause that specifies one or more
ssl_option values:

CREATE USER permits these ssl_option values:

• NONE

Indicates that the account has no SSL or X509 requirements. Unencrypted connections are
permitted if the user name and password are valid. However, encrypted connections can also be
used, at the client's option, if the client has the proper certificate and key files.

Account Management Statements

1837

As of MySQL 5.7.3, a client need specify only the --ssl option to obtain an encrypted connection.
The connection attempt fails if SSL is not available. Before MySQL 5.7.3, the client must specify
either the --ssl-ca option, or all three of the --ssl-ca, --ssl-key, and --ssl-cert options.

• SSL

Tells the server to permit only SSL-encrypted connections for the account.

CREATE USER 'jeffrey'@'localhost' REQUIRE SSL;

As of MySQL 5.7.3, a client need specify only the --ssl option to obtain an encrypted connection.
The connection attempt fails if SSL is not available. Before MySQL 5.7.3, the client must specify the
--ssl-ca option to authenticate the server certificate, and may additionally specify the --ssl-key
and --ssl-cert options. If neither the --ssl-ca option nor --ssl-capath option is specified,
the client does not authenticate the server certificate.

• X509

Requires that the client must have a valid certificate but the exact certificate, issuer, and subject do
not matter. The only requirement is that it should be possible to verify its signature with one of the CA
certificates. Use of X509 certificates always implies encryption, so the SSL option is unnecessary in
this case.

CREATE USER 'jeffrey'@'localhost' REQUIRE X509;

To connect, the client must specify the --ssl-ca, --ssl-key, and --ssl-cert options. This
is also true for ISSUER and SUBJECT because those REQUIRE options imply the requirements of
X509.

• ISSUER 'issuer'

Places the restriction on connection attempts that the client must present a valid X509 certificate
issued by CA 'issuer'. If the client presents a certificate that is valid but has a different issuer, the
server rejects the connection. Use of X509 certificates always implies encryption, so the SSL option
is unnecessary in this case.

To connect, the client must specify the --ssl-ca, --ssl-key, and --ssl-cert options because
ISSUER implies the requirements of X509.

CREATE USER 'jeffrey'@'localhost'
 REQUIRE ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com';

Note

If MySQL is linked against a version of OpenSSL older than 0.9.6h, use
Email rather than emailAddress in the 'issuer' value.

• SUBJECT 'subject'

Places the restriction on connection attempts that the client must present a valid X509 certificate
containing the subject subject. If the client presents a certificate that is valid but has a different
subject, the server rejects the connection. Use of X509 certificates always implies encryption, so the
SSL option is unnecessary in this case.

To connect, the client must specify the --ssl-ca, --ssl-key, and --ssl-cert options because
SUBJECT implies the requirements of X509.

CREATE USER 'jeffrey'@'localhost'

Account Management Statements

1838

 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com';

MySQL does a simple string comparison of the 'subject' value to the value in the certificate, so
lettercase and component ordering must be given exactly as present in the certificate.

Note

Regarding emailAddress, see the note in the description of REQUIRE
ISSUER.

• CIPHER 'cipher'

Requests a specific cipher method for connections. This option is needed to ensure that ciphers
and key lengths of sufficient strength are used. SSL itself can be weak if old algorithms using short
encryption keys are used.

CREATE USER 'jeffrey'@'localhost' REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause:

CREATE USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com'
 AND ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

The order of the options does not matter, but no option can be specified twice. The AND keyword is
optional between REQUIRE options.

Resource-Limit Options

It is possible to place limits on use of server resources by an account, as discussed in Section 6.3.4,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values.

CREATE USER permits these resource_option values:

• MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count,
MAX_CONNECTIONS_PER_HOUR count

These options restrict the number of queries, updates, and connections to the server permitted to
this account during any given one-hour period. (Queries for which results are served from the query
cache do not count against the MAX_QUERIES_PER_HOUR limit.) If count is 0 (the default), this
means that there is no limitation for the account.

• MAX_USER_CONNECTIONS count

Restricts the maximum number of simultaneous connections to the server by the account. A
nonzero count specifies the limit for the account explicitly. If count is 0 (the default), the server
determines the number of simultaneous connections for the account from the global value of the
max_user_connections system variable. If max_user_connections is also zero, there is no
limit for the account.

Example:

CREATE USER 'jeffrey'@'localhost'
 WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

Account Management Statements

1839

If a given resource limit is specified multiple times, the last instance takes precedence.

Password-Expiration Options

CREATE USER supports several password_option values for password expiration management,
to either expire an account password or establish its password expiration policy. Policy options do
not expire the password; instead, they determine how the server applies automatic expiration to the
account (see Section 6.3.6, “Password Expiration Policy”).

CREATE USER permits these password_option values:

• PASSWORD EXPIRE

Expires the account password.

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

• PASSWORD EXPIRE DEFAULT

Sets the account so that the global expiration policy applies, as specified by the
default_password_lifetime system variable.

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

• PASSWORD EXPIRE NEVER

Disables password expiration for the account so that its password never expires.

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

• PASSWORD EXPIRE INTERVAL N DAY

Sets the account password lifetime to N days. This statement requires the password to be changed
every 180 days:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 180 DAY;

If multiple password-expiration options are specified, the last one takes precedence.

A client session operates in restricted mode if the account password was expired manually or if
the password is considered past its lifetime per the automatic expiration policy. In restricted mode,
operations performed within the session result in an error until the user establishes a new account
password. See Section 6.3.6, “Password Expiration Policy”.

Account-Locking Options

MySQL supports account locking and unlocking using the ACCOUNT LOCK and ACCOUNT UNLOCK
options, which specify the locking state for an account. For additional discussion, see Section 6.3.11,
“User Account Locking”.

If multiple account-locking options are specified, the last one takes precedence.

CREATE USER Before MySQL 5.7.6

For each account, CREATE USER creates a new row in the mysql.user table with no privileges and
assigns the account an authentication plugin and credentials (such as a password). If the statement
specifies no credentials, the empty string is assigned.

Each user_specification clause consists of an account name and information about how
authentication occurs for clients that use the account.

Account Management Statements

1840

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';

If you specify only the user name part of the account name, a host name part of '%' is used.

The server assigns an authentication plugin and password to each account as follows, depending on
whether the user specification clause includes IDENTIFIED WITH to specify a plugin or IDENTIFIED
BY to specify a password:

• With IDENTIFIED WITH, the server assigns the specified plugin and the account has no
password. If the optional AS 'hash_string' clause is also given, the string is stored as is in the
authentication_string column (it is assumed to be already hashed in the format required by
the plugin).

• With IDENTIFIED BY, the server assigns the plugin implicitly and assigns the specified password.

• With neither IDENTIFIED WITH nor IDENTIFIED BY, the server assigns the plugin implicitly and
the account has no password.

If the account has no password, the credentials in the account's mysql.user table row remain empty,
which is insecure. To set the password, use SET PASSWORD. See Section 13.7.1.7, “SET PASSWORD
Syntax”.

For implicit plugin assignment, the default plugin becomes the value of the plugin column in the
account's mysql.user table row. The default plugin is mysql_native_password unless the
default_authentication_plugin system variable is set otherwise.

For client connections that use a given account, the server invokes the authentication plugin assigned
to the account and the client must provide credentials as required by the authentication method that the
plugin implements. If the server cannot find the plugin, either at account-creation time or connect time,
an error occurs

If an account's mysql.user table row has a nonempty plugin column:

• The server authenticates client connection attempts using the named plugin.

• Changes to the account password using SET PASSWORD with PASSWORD() must be made
with the old_passwords system variable set to the value required by the authentication
plugin, so that PASSWORD() uses the appropriate password hashing method. If the plugin
is mysql_old_password, the password can also be changed using SET PASSWORD
with OLD_PASSWORD(), which uses pre-4.1 password hashing regardless of the value of
old_passwords. (Use of mysql_old_password is not recommended. It is deprecated and
support for it is removed in MySQL 5.7.5.)

If an account's mysql.user table row has an empty plugin column:

• As of MySQL 5.7.2, the server disables any account with an empty plugin until the DBA assigns a
nonempty one. Before MySQL 5.7.2, the server authenticates client connection attempts using the
mysql_native_password or mysql_old_password authentication plugin, depending on the
hash format of the password stored in the Password column.

• Changes to the account password using SET PASSWORD can be made with PASSWORD(),
with old_passwords set to 0 or 1 for 4.1 or pre-4.1 password hashing, respectively, or
with OLD_PASSWORD(), which uses pre-4.1 password hashing regardless of the value of
old_passwords.

CREATE USER examples:

• To specify an authentication plugin for an account, use IDENTIFIED WITH auth_plugin. The
plugin name can be a quoted string literal or an unquoted name. 'auth_string' is an optional

Account Management Statements

1841

quoted string literal to pass to the plugin. The plugin interprets the meaning of the string, so its format
is plugin specific and it is stored in the authentication_string column as given. (This value is
meaningful only for plugins that use that column.) Consult the documentation for a given plugin for
information about the authentication string values it accepts, if any.

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password;

The server assigns the given authentication plugin to the account but no password. Clients must
provide no password when they connect. However, an account with no password is insecure.
To ensure that an account uses a specific authentication plugin and has a password with the
corresponding hash format, specify the plugin explicitly with IDENTIFIED WITH, then use SET
PASSWORD to set the password:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password;
SET old_passwords = 0;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('mypass');

Changes to the account password using SET PASSWORD with PASSWORD() must be made with
the old_passwords system variable set to the value required by the account's authentication
plugin, so that PASSWORD() uses the appropriate password hashing method. Therefore, to use the
sha256_password or mysql_old_password plugin instead, name that plugin in the CREATE
USER statement and set old_passwords to 2 or 1, respectively, before using SET PASSWORD. (Use
of mysql_old_password is not recommended. It is deprecated and support for it is removed in
MySQL 5.7.5.)

• To specify a password for an account at account-creation time, use IDENTIFIED BY with the literal
cleartext password value:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';

The server assigns an authentication plugin to the account implicitly, as described previously, and
assigns the given password. Clients must provide the given password when they connect.

If the implicitly assigned plugin is mysql_native_password, the old_passwords system variable
must be set to 0. Otherwise, CREATE USER does not hash the password in the format required by
the plugin and an error occurs:

mysql> SET old_passwords = 1;
mysql> CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
ERROR 1827 (HY000): The password hash doesn't have the expected
format. Check if the correct password algorithm is being used with
the PASSWORD() function.

mysql> SET old_passwords = 0;
mysql> CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
Query OK, 0 rows affected (0.00 sec)

• To avoid specifying the cleartext password if you know its hash value (the value that PASSWORD()
would return for the password), specify the hash value preceded by the keyword PASSWORD:

CREATE USER 'jeffrey'@'localhost'
IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';

The server assigns an authentication plugin to the account implicitly, as described previously, and
assigns the given password. The password hash must be in the format required by the assigned
plugin. Clients must provide the password when they connect.

• To enable the user to connect with no password, include no IDENTIFIED BY clause:

Account Management Statements

1842

CREATE USER 'jeffrey'@'localhost';

The server assigns an authentication plugin to the account implicitly, as described previously, but
no password. Clients must provide no password when they connect. However, an account with no
password is insecure. To avoid this, use SET PASSWORD to set the account password.

As mentioned previously, implicit plugin assignment depends on the default authentication plugin.
Permitted values of default_authentication_plugin are mysql_native_plugin and
sha256_password, but not mysql_old_password. This means it is not possible to set the
default plugin so as to be able to create an account that uses mysql_old_password with CREATE
USER ... IDENTIFIED BY syntax. To create an account that uses mysql_old_password, use
CREATE USER ... IDENTIFIED WITH to name the plugin explicitly, then set the password:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_old_password;
SET old_passwords = 1;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('mypass');

However, the preceding procedure is not recommended because mysql_old_password is
deprecated and support for it is removed in MySQL 5.7.5.

13.7.1.3 DROP USER Syntax

DROP USER [IF EXISTS] user [, user] ...

The DROP USER statement removes one or more MySQL accounts and their privileges. It removes
privilege rows for the account from all grant tables.

To use DROP USER, you must have the global CREATE USER privilege or the DELETE privilege for the
mysql database. When the read_only system variable is enabled, DROP USER additionally requires
the SUPER privilege.

An error occurs if you try to drop an account that does not exist.

As of MySQL 5.7.8, the IF EXISTS clause can be used, which causes the statement to produce a
warning for each named account that does not exist, rather than an error.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

DROP USER 'jeffrey'@'localhost';

If you specify only the user name part of the account name, a host name part of '%' is used.

Important

DROP USER does not automatically close any open user sessions. Rather, in
the event that a user with an open session is dropped, the statement does not
take effect until that user's session is closed. Once the session is closed, the
user is dropped, and that user's next attempt to log in will fail. This is by design.

DROP USER does not automatically drop or invalidate databases or objects within them that the
old user created. This includes stored programs or views for which the DEFINER attribute names
the dropped user. Attempts to access such objects may produce an error if they execute in definer
security context. (For information about security context, see Section 19.6, “Access Control for Stored
Programs and Views”.)

13.7.1.4 GRANT Syntax

GRANT

Account Management Statements

1843

 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 TO user_specification [, user_specification] ...
 [REQUIRE {NONE | ssl_option [[AND] ssl_option] ...}]
 [WITH {GRANT OPTION | resource_option} ...]

GRANT PROXY ON user_specification
 TO user_specification [, user_specification] ...
 [WITH GRANT OPTION]

object_type: {
 TABLE
 | FUNCTION
 | PROCEDURE
}

priv_level: {
 *
 | *.*
 | db_name.*
 | db_name.tbl_name
 | tbl_name
 | db_name.routine_name
}

user_specification:
 user [auth_option]

auth_option: { # Before MySQL 5.7.6
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED BY PASSWORD 'hash_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin AS 'hash_string'
}

auth_option: { # As of MySQL 5.7.6
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED BY PASSWORD 'hash_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin AS 'hash_string'
}

ssl_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 | MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

The GRANT statement grants privileges to MySQL user accounts.

To use GRANT, you must have the GRANT OPTION privilege, and you must have the privileges that you
are granting. When the read_only system variable is enabled, GRANT additionally requires the SUPER
privilege.

The REVOKE statement is related to GRANT and enables administrators to remove account privileges.
See Section 13.7.1.6, “REVOKE Syntax”.

Normally, a database administrator first uses CREATE USER to create an account and define its
nonprivilege characteristics such as its password, whether it uses secure connections, and limits on

Account Management Statements

1844

access to server resources, then uses GRANT to define its privileges. ALTER USER may be used to
change the nonprivilege characteristics of existing accounts. For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
GRANT ALL ON db1.* TO 'jeffrey'@'localhost';
GRANT SELECT ON db2.invoice TO 'jeffrey'@'localhost';
ALTER USER 'jeffrey'@'localhost' WITH MAX_QUERIES_PER_HOUR 90;

Note

Examples shown here include no IDENTIFIED clause. It is assumed that you
establish passwords with CREATE USER at account-creation time to avoid
creating insecure accounts.

Note

If an account named in a GRANT statement does not already exist, GRANT
may create it under the conditions described later in the discussion of the
NO_AUTO_CREATE_USER SQL mode. It is also possible to use GRANT to specify
nonprivilege account characteristics such as whether it uses secure connections
and limits on access to server resources.

However, use of GRANT to create accounts or define nonprivilege characteristics
is deprecated as of MySQL 5.7.6. Instead, perform these tasks using CREATE
USER or ALTER USER.

From the mysql program, GRANT responds with Query OK, 0 rows affected when executed
successfully. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 13.7.5.21, “SHOW GRANTS Syntax”.

There are several aspects to the GRANT statement, described under the following topics in this section:

• Privileges Supported by MySQL

• Global Privileges

• Database Privileges

• Table Privileges

• Column Privileges

• Stored Routine Privileges

• Proxy User Privileges

• Account Names and Passwords

• Implicit Account Creation

• Other Account Characteristics

• MySQL and Standard SQL Versions of GRANT

GRANT supports host names up to 60 characters long. Database, table, column, and routine names can
be up to 64 characters. User names can be up to 32 characters (16 characters before MySQL 5.7.8).

Warning

The permissible length for user names cannot be changed by altering the
mysql.user table. Attempting to do so results in unpredictable behavior which

Account Management Statements

1845

may even make it impossible for users to log in to the MySQL server. You
should never alter the structure of tables in the mysql database in any manner
whatsoever except by means of the procedure described in Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

Important

Under some circumstances, GRANT may be recorded in server logs or on
the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about the conditions under which this occurs for the
server logs and how to control it, see Section 6.1.2.3, “Passwords and Logging”.
For similar information about client-side logging, see Section 4.5.1.3, “mysql
Logging”.

Privileges Supported by MySQL

The following table summarizes the permissible priv_type privilege types that can be specified
for the GRANT and REVOKE statements, and the levels at which each privilege can be granted. For
additional information about these privileges, see Section 6.2.1, “Privileges Provided by MySQL”.

Table 13.1 Permissible Privileges for GRANT and REVOKE

Privilege Meaning and Grantable Levels

ALL [PRIVILEGES] Grant all privileges at specified access level except GRANT OPTION

ALTER Enable use of ALTER TABLE. Levels: Global, database, table.

ALTER ROUTINE Enable stored routines to be altered or dropped. Levels: Global,
database, procedure.

CREATE Enable database and table creation. Levels: Global, database, table.

CREATE ROUTINE Enable stored routine creation. Levels: Global, database.

CREATE TABLESPACE Enable tablespaces and log file groups to be created, altered, or
dropped. Level: Global.

CREATE TEMPORARY
TABLES

Enable use of CREATE TEMPORARY TABLE. Levels: Global, database.

CREATE USER Enable use of CREATE USER, DROP USER, RENAME USER, and
REVOKE ALL PRIVILEGES. Level: Global.

CREATE VIEW Enable views to be created or altered. Levels: Global, database, table.

DELETE Enable use of DELETE. Level: Global, database, table.

DROP Enable databases, tables, and views to be dropped. Levels: Global,
database, table.

EVENT Enable use of events for the Event Scheduler. Levels: Global,
database.

EXECUTE Enable the user to execute stored routines. Levels: Global, database,
table.

FILE Enable the user to cause the server to read or write files. Level: Global.

GRANT OPTION Enable privileges to be granted to or removed from other accounts.
Levels: Global, database, table, procedure, proxy.

INDEX Enable indexes to be created or dropped. Levels: Global, database,
table.

INSERT Enable use of INSERT. Levels: Global, database, table, column.

LOCK TABLES Enable use of LOCK TABLES on tables for which you have the SELECT
privilege. Levels: Global, database.

Account Management Statements

1846

Privilege Meaning and Grantable Levels

PROCESS Enable the user to see all processes with SHOW PROCESSLIST. Level:
Global.

PROXY Enable user proxying. Level: From user to user.

REFERENCES Enable foreign key creation. Levels: Global, database, table, column.

RELOAD Enable use of FLUSH operations. Level: Global.

REPLICATION CLIENT Enable the user to ask where master or slave servers are. Level:
Global.

REPLICATION SLAVE Enable replication slaves to read binary log events from the master.
Level: Global.

SELECT Enable use of SELECT. Levels: Global, database, table, column.

SHOW DATABASES Enable SHOW DATABASES to show all databases. Level: Global.

SHOW VIEW Enable use of SHOW CREATE VIEW. Levels: Global, database, table.

SHUTDOWN Enable use of mysqladmin shutdown. Level: Global.

SUPER Enable use of other administrative operations such as CHANGE
MASTER TO, KILL, PURGE BINARY LOGS, SET GLOBAL, and
mysqladmin debug command. Level: Global.

TRIGGER Enable trigger operations. Levels: Global, database, table.

UPDATE Enable use of UPDATE. Levels: Global, database, table, column.

USAGE Synonym for “no privileges”

A trigger is associated with a table, so to create or drop a trigger, you must have the TRIGGER privilege
for the table, not the trigger.

In GRANT statements, the ALL [PRIVILEGES] or PROXY privilege must be named by itself and cannot
be specified along with other privileges. ALL [PRIVILEGES] stands for all privileges available for the
level at which privileges are to be granted except for the GRANT OPTION and PROXY privileges.

USAGE can be specified to create a user that has no privileges, or to specify the REQUIRE or WITH
clauses for an account without changing its existing privileges. (However, use of GRANT to define
nonprivilege characteristics is deprecated as of MySQL 5.7.6. Instead, perform this task using CREATE
USER or ALTER USER.)

MySQL account information is stored in the tables of the mysql database. For additional details,
consult Section 6.2, “The MySQL Access Privilege System”, which discusses the mysql database and
the access control system extensively.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to
revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not
create such rows when lower_case_table_names is set, but such rows might have been created
prior to setting that variable.)

Privileges can be granted at several levels, depending on the syntax used for the ON clause. For
REVOKE, the same ON syntax specifies which privileges to remove.

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at
the level you are granting. For example, GRANT ALL ON db_name.* is a database-level statement,
so it does not grant any global-only privileges such as FILE. Granting ALL does not assign the GRANT
OPTION or PROXY privilege.

The object_type clause, if present, should be specified as TABLE, FUNCTION, or PROCEDURE when
the following object is a table, a stored function, or a stored procedure.

Account Management Statements

1847

The privileges for a database, table, column, or routine are formed additively as the logical OR of the
privileges at each of the privilege levels. For example, if a user has a global SELECT privilege, the
privilege cannot be denied by an absence of the privilege at the database, table, or column level.
Details of the privilege-checking procedure are presented in Section 6.2.5, “Access Control, Stage 2:
Request Verification”.

If you are using table, column, or routine privileges for even one user, the server examines table,
column, and routine privileges for all users and this slows down MySQL a bit. Similarly, if you limit the
number of queries, updates, or connections for any users, the server must monitor these values.

MySQL enables you to grant privileges on databases or tables that do not exist. For tables, the
privileges to be granted must include the CREATE privilege. This behavior is by design, and is intended
to enable the database administrator to prepare user accounts and privileges for databases or tables
that are to be created at a later time.

Important

MySQL does not automatically revoke any privileges when you drop a database
or table. However, if you drop a routine, any routine-level privileges granted for
that routine are revoked.

Global Privileges

Global privileges are administrative or apply to all databases on a given server. To assign global
privileges, use ON *.* syntax:

GRANT ALL ON *.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';

The CREATE TABLESPACE, CREATE USER, FILE, PROCESS, RELOAD, REPLICATION CLIENT,
REPLICATION SLAVE, SHOW DATABASES, SHUTDOWN, and SUPER privileges are administrative and
can only be granted globally.

Other privileges can be granted globally or at more specific levels.

MySQL stores global privileges in the mysql.user table.

Database Privileges

Database privileges apply to all objects in a given database. To assign database-level privileges, use
ON db_name.* syntax:

GRANT ALL ON mydb.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';

If you use ON * syntax (rather than ON *.*) and you have selected a default database, privileges are
assigned at the database level for the default database. An error occurs if there is no default database.

The CREATE, DROP, EVENT, GRANT OPTION, LOCK TABLES, and REFERENCES privileges can be
specified at the database level. Table or routine privileges also can be specified at the database level,
in which case they apply to all tables or routines in the database.

MySQL stores database privileges in the mysql.db table.

Table Privileges

Table privileges apply to all columns in a given table. To assign table-level privileges, use ON
db_name.tbl_name syntax:

Account Management Statements

1848

GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';

If you specify tbl_name rather than db_name.tbl_name, the statement applies to tbl_name in the
default database. An error occurs if there is no default database.

The permissible priv_type values at the table level are ALTER, CREATE VIEW, CREATE, DELETE,
DROP, GRANT OPTION, INDEX, INSERT, REFERENCES, SELECT, SHOW VIEW, TRIGGER, and UPDATE.

MySQL stores table privileges in the mysql.tables_priv table.

Column Privileges

Column privileges apply to single columns in a given table. Each privilege to be granted at the column
level must be followed by the column or columns, enclosed within parentheses.

GRANT SELECT (col1), INSERT (col1,col2) ON mydb.mytbl TO 'someuser'@'somehost';

The permissible priv_type values for a column (that is, when you use a column_list clause) are
INSERT, REFERENCES, SELECT, and UPDATE.

MySQL stores column privileges in the mysql.columns_priv table.

Stored Routine Privileges

The ALTER ROUTINE, CREATE ROUTINE, EXECUTE, and GRANT OPTION privileges apply to stored
routines (procedures and functions). They can be granted at the global and database levels. Except for
CREATE ROUTINE, these privileges can be granted at the routine level for individual routines.

GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost';
GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';

The permissible priv_type values at the routine level are ALTER ROUTINE, EXECUTE, and GRANT
OPTION. CREATE ROUTINE is not a routine-level privilege because you must have this privilege to
create a routine in the first place.

MySQL stores routine-level privileges in the mysql.procs_priv table.

Proxy User Privileges

The PROXY privilege enables one user to be a proxy for another. The proxy user impersonates or takes
the identity of the proxied user.

GRANT PROXY ON 'localuser'@'localhost' TO 'externaluser'@'somehost';

When PROXY is granted, it must be the only privilege named in the GRANT statement, the REQUIRE
clause cannot be given, and the only permitted WITH option is WITH GRANT OPTION.

Proxying requires that the proxy user authenticate through a plugin that returns the name of the proxied
user to the server when the proxy user connects, and that the proxy user have the PROXY privilege for
the proxied user. For details and examples, see Section 6.3.10, “Proxy Users”.

MySQL stores proxy privileges in the mysql.proxies_priv table.

Account Names and Passwords

The user_specification clause names a user and optionally provides authentication information
such as a password.

Account Management Statements

1849

The user value indicates the MySQL account to which the GRANT statement applies. To accommodate
granting rights to users from arbitrary hosts, MySQL supports specifying the user value in the form
user_name@host_name. If a user_name or host_name value is legal as an unquoted identifier, you
need not quote it. However, quotation marks are necessary to specify a user_name string containing
special characters (such as “-”), or a host_name string containing special characters or wildcard
characters (such as “%”); for example, 'test-user'@'%.com'. Quote the user name and host name
separately.

You can specify wildcards in the host name. For example, user_name@'%.example.com' applies to
user_name for any host in the example.com domain, and user_name@'192.168.1.%' applies to
user_name for any host in the 192.168.1 class C subnet.

The simple form user_name is a synonym for user_name@'%'.

MySQL does not support wildcards in user names. To refer to an anonymous user, specify an account
with an empty user name with the GRANT statement:

GRANT ALL ON test.* TO ''@'localhost' ...;

In this case, any user who connects from the local host with the correct password for the anonymous
user will be permitted access, with the privileges associated with the anonymous-user account.

For additional information about user name and host name values in account names, see
Section 6.2.3, “Specifying Account Names”.

To specify quoted values, quote database, table, column, and routine names as identifiers. Quote user
names and host names as identifiers or as strings. Quote passwords as strings. For string-quoting
and identifier-quoting guidelines, see Section 9.1.1, “String Literals”, and Section 9.2, “Schema Object
Names”.

The “_” and “%” wildcards are permitted when specifying database names in GRANT statements that
grant privileges at the global or database levels. This means, for example, that if you want to use a “_”
character as part of a database name, you should specify it as “_” in the GRANT statement, to prevent
the user from being able to access additional databases matching the wildcard pattern; for example,
GRANT ... ON `foo_bar`.* TO

Warning

If you permit anonymous users to connect to the MySQL server, you should
also grant privileges to all local users as user_name@localhost. Otherwise,
the anonymous user account for localhost in the mysql.user table (created
during MySQL installation) is used when named users try to log in to the MySQL
server from the local machine. For details, see Section 6.2.4, “Access Control,
Stage 1: Connection Verification”.

To determine whether the preceding warning applies to you, execute the following query, which lists
any anonymous users:

SELECT Host, User FROM mysql.user WHERE User='';

To avoid the problem just described, delete the local anonymous user account using this statement:

DROP USER ''@'localhost';

To indicate how a user should authenticate when connecting to the server, the user_specification
value may include an IDENTIFIED clause to specify an authentication plugin, a password, or both.

Account Management Statements

1850

Syntax of the user specification is the same as for the CREATE USER statement. For details, see
Section 13.7.1.2, “CREATE USER Syntax”.

Note

Use of GRANT to define account authentication characteristics is deprecated
as of MySQL 5.7.6. Instead, establish or change authentication characteristics
using CREATE USER or ALTER USER. This GRANT capability will be removed in
a future MySQL release.

When IDENTIFIED BY is present and you have the global grant privilege (GRANT OPTION), the
password becomes the new password for the account, even if the account exists and already has a
password. Without IDENTIFIED BY, the account password remains unchanged.

Implicit Account Creation

If an account named in a GRANT statement does not exist, the action taken depends on the
NO_AUTO_CREATE_USER SQL mode:

• If NO_AUTO_CREATE_USER is not enabled, GRANT creates the account. This is very insecure unless
you specify a nonempty password using IDENTIFIED BY.

• If NO_AUTO_CREATE_USER is enabled, GRANT fails and does not create the account, unless you
specify a nonempty password using IDENTIFIED BY or name an authentication plugin using
IDENTIFIED WITH.

As of MySQL 5.7.2, if the account already exists, IDENTIFIED WITH is prohibited because it is
intended only for use when creating new accounts.

Other Account Characteristics

MySQL can check X509 certificate attributes in addition to the usual authentication that is based
on the user name and credentials. For background information on the use of SSL with MySQL, see
Section 6.3.12, “Using Secure Connections”.

The optional REQUIRE clause specifies SSL-related options for a MySQL account. The syntax is the
same as for the CREATE USER statement. For details, see Section 13.7.1.2, “CREATE USER Syntax”.

Note

Use of GRANT to define account SSL characteristics is deprecated as of MySQL
5.7.6. Instead, establish or change SSL characteristics using CREATE USER
or ALTER USER. This GRANT capability will be removed in a future MySQL
release.

The optional WITH clause is used for these purposes:

• To enable a user to grant privileges to other users

• To specify resource limits for a user

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges the
user has at the specified privilege level.

To grant the GRANT OPTION privilege to an account without otherwise changing its privileges, do this:

GRANT USAGE ON *.* TO 'someuser'@'somehost' WITH GRANT OPTION;

Be careful to whom you give the GRANT OPTION privilege because two users with different privileges
may be able to combine privileges!

Account Management Statements

1851

You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION
privilege enables you to assign only those privileges which you yourself possess.

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any
privileges the user possesses (or may be given in the future) at that level can also be granted by that
user to other users. Suppose that you grant a user the INSERT privilege on a database. If you then
grant the SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to
other users not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to
the user on the database, the user can grant INSERT, SELECT, and UPDATE.

For a nonadministrative user, you should not grant the ALTER privilege globally or for the mysql
database. If you do that, the user can try to subvert the privilege system by renaming tables!

For additional information about security risks associated with particular privileges, see Section 6.2.1,
“Privileges Provided by MySQL”.

It is possible to place limits on use of server resources by an account, as discussed in Section 6.3.4,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values. Limits not specified retain their current values. The syntax is the same as
for the CREATE USER statement. For details, see Section 13.7.1.2, “CREATE USER Syntax”.

Note

Use of GRANT to define account resource limits is deprecated as of MySQL
5.7.6. Instead, establish or change resource limits using CREATE USER or
ALTER USER. This GRANT capability will be removed in a future MySQL
release.

MySQL and Standard SQL Versions of GRANT

The biggest differences between the MySQL and standard SQL versions of GRANT are:

• MySQL associates privileges with the combination of a host name and user name and not with only a
user name.

• Standard SQL does not have global or database-level privileges, nor does it support all the privilege
types that MySQL supports.

• MySQL does not support the standard SQL UNDER privilege.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges
the user has been granted are revoked. This is also true in MySQL if you use DROP USER. See
Section 13.7.1.3, “DROP USER Syntax”.

• In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL,
when you revoke a privilege, all privileges that were granted based on that privilege are also
revoked. In MySQL, privileges can be dropped with DROP USER or REVOKE statements.

• In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this
case, you can still execute INSERT statements on the table, provided that you insert values only for
those columns for which you have the INSERT privilege. The omitted columns are set to their implicit
default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any of the
omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege
on all columns.) For information about strict SQL mode and implicit default values, see Section 5.1.7,
“Server SQL Modes”, and Section 11.7, “Data Type Default Values”.

13.7.1.5 RENAME USER Syntax

RENAME USER old_user TO new_user

Account Management Statements

1852

 [, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. An error occurs for old accounts that
do not exist or new accounts that already exist.

To use RENAME USER, you must have the global CREATE USER privilege or the UPDATE privilege for
the mysql database. When the read_only system variable is enabled, RENAME USER additionally
requires the SUPER privilege.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

RENAME USER 'jeffrey'@'localhost' TO 'jeff'@'127.0.0.1';

If you specify only the user name part of the account name, a host name part of '%' is used.

RENAME USER causes the privileges held by the old user to be those held by the new user. However,
RENAME USER does not automatically drop or invalidate databases or objects within them that the old
user created. This includes stored programs or views for which the DEFINER attribute names the old
user. Attempts to access such objects may produce an error if they execute in definer security context.
(For information about security context, see Section 19.6, “Access Control for Stored Programs and
Views”.)

The privilege changes take effect as indicated in Section 6.2.6, “When Privilege Changes Take Effect”.

13.7.1.6 REVOKE Syntax

REVOKE
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 FROM user [, user] ...

REVOKE ALL PRIVILEGES, GRANT OPTION
 FROM user [, user] ...

REVOKE PROXY ON user
 FROM user [, user] ...

The REVOKE statement enables system administrators to revoke privileges from MySQL accounts.

When the read_only system variable is enabled, REVOKE requires the SUPER privilege in addition to
any other required privileges described in the following discussion.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

REVOKE INSERT ON *.* FROM 'jeffrey'@'localhost';

If you specify only the user name part of the account name, a host name part of '%' is used.

For details on the levels at which privileges exist, the permissible priv_type and priv_level
values, and the syntax for specifying users and passwords, see Section 13.7.1.4, “GRANT Syntax”

To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the
privileges that you are revoking.

To revoke all privileges, use the second syntax, which drops all global, database, table, column, and
routine privileges for the named user or users:

Account Management Statements

1853

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

To use this REVOKE syntax, you must have the global CREATE USER privilege or the UPDATE privilege
for the mysql database.

REVOKE removes privileges, but does not drop mysql.user table entries. To remove a user account
entirely, use DROP USER (see Section 13.7.1.3, “DROP USER Syntax”) or DELETE.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to
revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not
create such rows when lower_case_table_names is set, but such rows might have been created
prior to setting the variable.)

When successfully executed from the mysql program, REVOKE responds with Query OK, 0
rows affected. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 13.7.5.21, “SHOW GRANTS Syntax”.

13.7.1.7 SET PASSWORD Syntax

SET PASSWORD syntax for MySQL 5.7.6 and up:

SET PASSWORD [FOR user] = password_option

password_option: {
 PASSWORD('auth_string')
 | 'auth_string'
}

SET PASSWORD syntax before MySQL 5.7.6:

SET PASSWORD [FOR user] = password_option

password_option: {
 PASSWORD('auth_string')
 | OLD_PASSWORD('auth_string')
 | 'hash_string'
}

The 'auth_string' function argument is the cleartext (unencrypted) password.

The 'hash_string' function argument is the encrypted password.

Note

SET PASSWORD is deprecated as of MySQL 5.7.6 and will be removed in
a future MySQL release. ALTER USER is now the preferred statement for
assigning passwords. For example:

ALTER USER user IDENTIFIED BY 'auth_string';

The SET PASSWORD statement assigns a password to a MySQL user account:

• With no FOR user clause, this statement sets the password for the current user:

SET PASSWORD = password_option;

Any client who connects to the server using a nonanonymous account can change the password for
that account. To see which account the server authenticated you as, invoke the CURRENT_USER()
function:

Account Management Statements

1854

SELECT CURRENT_USER();

• With a FOR user clause, this statement sets the password for the named account, which must exist:

SET PASSWORD FOR 'jeffrey'@'localhost' = password_option;

In this case, you must have the UPDATE privilege for the mysql database.

When the read_only system variable is enabled, SET PASSWORD requires the SUPER privilege in
addition to any other required privileges.

If a FOR user clause is given, the account name uses the format described in Section 6.2.3,
“Specifying Account Names”. The user value should be given as 'user_name'@'host_name',
where 'user_name' and 'host_name' are exactly as listed in the User and Host columns of
the account's mysql.user table row. If you specify only a user name, a host name of '%' is used.
For example, to set the password for an account with User and Host column values of 'bob' and
'%.example.org', write the statement like this:

SET PASSWORD FOR 'bob'@'%.example.org' = PASSWORD('cleartext password');

The password can be specified in these ways:

• Using the PASSWORD() function

The 'auth_string' function argument is the cleartext (unencrypted) password. PASSWORD()
hashes the password and returns the encrypted password string for storage in the mysql.user
account row.

The old_passwords system variable value determines the hashing method used by PASSWORD().
If SET PASSWORD rejects the password as not being in the correct format, it may be necessary
to change old_passwords to change the hashing method. For example, if the account uses the
mysql_native_password plugin, the old_passwords value must be 0:

SET old_passwords = 0;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('mypass');

If the old_passwords value differs from that required by the authentication plugin, the hashed
password value returned by PASSWORD() is not acceptable for that plugin, and attempts to set the
password produce an error. For example:

mysql> SET old_passwords = 1;
mysql> SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('mypass');
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number

Permitted old_passwords values are described later in this section.

• Using the OLD_PASSWORD() function (permitted before MySQL 5.7.5 only):

The 'auth_string' function argument is the cleartext (unencrypted) password.
OLD_PASSWORD() hashes the password using pre-4.1 hashing and returns the encrypted password
string for storage in the mysql.user account row. This hashing method is appropriate only for
accounts that use the mysql_old_password authentication plugin.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them is removed

Table Maintenance Statements

1855

in MySQL 5.7.5. Consequently, OLD_PASSWORD() is deprecated and is
removed in MySQL 5.7.5.

• Using a string without PASSWORD() or OLD_PASSWORD()

For this syntax, the meaning differs in MySQL 5.7.6 and up from earlier versions:

• As of MySQL 5.7.6, SET PASSWORD interprets the string as a cleartext string and hashes it
appropriately for the account authentication plugin before storing it in the mysql.user account
row.

• Before MySQL 5.7.6, SET PASSWORD interprets the string as a hashed password value to be
stored directly. The string must be hashed in the format required by the account authentication
plugin.

For more information about setting passwords, see Section 6.3.5, “Assigning Account Passwords”

The following table shows the permitted values of old_passwords, the password hashing method for
each value, and which authentication plugins use passwords hashed with each method.

Value Password Hashing Method Associated Authentication Plugin

0 MySQL 4.1 native hashing mysql_native_password

1 Pre-4.1 (“old”) hashing mysql_old_password

2 SHA-256 hashing sha256_password

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them is removed in
MySQL 5.7.5. Consequently, old_passwords=1, which causes PASSWORD()
to generate pre-4.1 password hashes, is not permitted as of 5.7.5. For account
upgrade instructions, see Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password Plugin”.

Important

Under some circumstances, SET PASSWORD may be recorded in server logs or
on the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about the conditions under which this occurs for the
server logs and how to control it, see Section 6.1.2.3, “Passwords and Logging”.
For similar information about client-side logging, see Section 4.5.1.3, “mysql
Logging”.

If you are using MySQL Replication, be aware that, currently, a password used by a replication slave
as part of a CHANGE MASTER TO statement is effectively limited to 32 characters in length; if the
password is longer, any excess characters are truncated. This is not due to any limit imposed by the
MySQL Server generally, but rather is an issue specific to MySQL Replication. (For more information,
see Bug #43439.)

13.7.2 Table Maintenance Statements

13.7.2.1 ANALYZE TABLE Syntax

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
 tbl_name [, tbl_name] ...

Table Maintenance Statements

1856

ANALYZE TABLE analyzes and stores the key distribution for a table. During the analysis, the table
is locked with a read lock for InnoDB and MyISAM. This statement works with InnoDB, NDB, and
MyISAM tables. For MyISAM tables, this statement is equivalent to using myisamchk --analyze.
This statement does not work with views.

For more information on how the analysis works within InnoDB, see Section 14.3.11.1, “Configuring
Persistent Optimizer Statistics Parameters” and Section 14.3.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”. Also see Section 14.5.7, “Limits on InnoDB Tables”. In particular, when
you enable the innodb_stats_persistent option, you must run ANALYZE TABLE after loading
substantial data into an InnoDB table, or creating a new index for one.

MySQL uses the stored key distribution to decide the order in which tables should be joined when you
perform a join on something other than a constant. In addition, key distributions can be used when
deciding which indexes to use for a specific table within a query.

This statement requires SELECT and INSERT privileges for the table.

ANALYZE TABLE is supported for partitioned tables, and you can use ALTER TABLE ... ANALYZE
PARTITION to analyze one or more partitions; for more information, see Section 13.1.6, “ALTER
TABLE Syntax”, and Section 18.3.4, “Maintenance of Partitions”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

ANALYZE TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always analyze

Msg_type status, error, info, note, or warning

Msg_text An informational message

You can check the stored key distribution with the SHOW INDEX statement. See Section 13.7.5.22,
“SHOW INDEX Syntax”.

If the table has not changed since the last ANALYZE TABLE statement, the table is not analyzed again.

By default, the server writes ANALYZE TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its
alias LOCAL.

13.7.2.2 CHECK TABLE Syntax

CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option = {
 FOR UPGRADE
 | QUICK
 | FAST
 | MEDIUM
 | EXTENDED
 | CHANGED
}

CHECK TABLE checks a table or tables for errors. CHECK TABLE works for InnoDB, MyISAM,
ARCHIVE, and CSV tables. For MyISAM tables, the key statistics are updated as well.

To check a table, you must have some privilege for it.

Table Maintenance Statements

1857

CHECK TABLE can also check views for problems, such as tables that are referenced in the view
definition that no longer exist.

CHECK TABLE is supported for partitioned tables, and you can use ALTER TABLE ... CHECK
PARTITION to check one or more partitions; for more information, see Section 13.1.6, “ALTER TABLE
Syntax”, and Section 18.3.4, “Maintenance of Partitions”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

CHECK TABLE ignores virtual generated columns that are not indexed.

Output

CHECK TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always check

Msg_type status, error, info, note, or warning

Msg_text An informational message

The statement might produce many rows of information for each checked table. The last row has a
Msg_type value of status and the Msg_text normally should be OK. If you don't get OK, or Table
is already up to date for a MyISAM table, you should normally run a repair of the table. See
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”. Table is already up to date
means that the storage engine for the table indicated that there was no need to check the table.

Checking Version Compatibility

The FOR UPGRADE option checks whether the named tables are compatible with the current version
of MySQL. With FOR UPGRADE, the server checks each table to determine whether there have been
any incompatible changes in any of the table's data types or indexes since the table was created. If not,
the check succeeds. Otherwise, if there is a possible incompatibility, the server runs a full check on the
table (which might take some time). If the full check succeeds, the server marks the table's .frm file
with the current MySQL version number. Marking the .frm file ensures that further checks for the table
with the same version of the server will be fast.

Incompatibilities might occur because the storage format for a data type has changed or because its
sort order has changed. Our aim is to avoid these changes, but occasionally they are necessary to
correct problems that would be worse than an incompatibility between releases.

FOR UPGRADE discovers these incompatibilities:

• The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed
between MySQL 4.1 and 5.0.

• The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.

• If your table was created by a different version of the MySQL server than the one you are currently
running, FOR UPGRADE indicates that the table has an .frm file with an incompatible version.
In this case, the result set returned by CHECK TABLE contains a line with a Msg_type value of
error and a Msg_text value of Table upgrade required. Please do "REPAIR TABLE
`tbl_name`" to fix it!

• Changes are sometimes made to character sets or collations that require table indexes to be
rebuilt. For details about these changes and when FOR UPGRADE detects them, see Section 2.11.3,
“Checking Whether Tables or Indexes Must Be Rebuilt”.

Table Maintenance Statements

1858

• The YEAR(2) data type is deprecated and support for it is removed in MySQL 5.7.5. For tables
containing YEAR(2) columns, CHECK TABLE recommends REPAIR TABLE, which converts
YEAR(2) to YEAR(4).

• As of MySQL 5.7.2, trigger creation time is maintained. If run against a table that has triggers, CHECK
TABLE ... FOR UPGRADE displays this warning for each trigger created before MySQL 5.7.2:

Trigger db_name.tbl_name.trigger_name does not have CREATED attribute.

The warning is informational only. No change is made to the trigger.

Checking Data Consistency

The following table shows the other check options that can be given. These options are passed to the
storage engine, which may use them or not.

Type Meaning

QUICK Do not scan the rows to check for incorrect links. Applies to InnoDB and MyISAM
tables and views.

FAST Check only tables that have not been closed properly. Applies only to MyISAM tables
and views; ignored for InnoDB.

CHANGED Check only tables that have been changed since the last check or that have not been
closed properly. Applies only to MyISAM tables and views; ignored for InnoDB.

MEDIUM Scan rows to verify that deleted links are valid. This also calculates a key checksum
for the rows and verifies this with a calculated checksum for the keys. Applies only to
MyISAM tables and views; ignored for InnoDB.

EXTENDED Do a full key lookup for all keys for each row. This ensures that the table is 100%
consistent, but takes a long time. Applies only to MyISAM tables and views; ignored for
InnoDB.

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dynamic-
format MyISAM tables is MEDIUM. This has the same result as running myisamchk --medium-check
tbl_name on the table. The default check type also is MEDIUM for static-format MyISAM tables, unless
CHANGED or FAST is specified. In that case, the default is QUICK. The row scan is skipped for CHANGED
and FAST because the rows are very seldom corrupted.

You can combine check options, as in the following example that does a quick check on the table to
determine whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note

CHECK TABLE may change the table if the table is marked as “corrupted” or
“not closed properly” but CHECK TABLE does not find any problems in the table.
In this case, CHECK TABLE marks the table as okay.

If a table is corrupted, the problem is most likely in the indexes and not in the data part. All of the
preceding check types check the indexes thoroughly and should thus find most errors.

If you just want to check a table that you assume is okay, you should use no check options or the
QUICK option. The latter should be used when you are in a hurry and can take the very small risk that
QUICK does not find an error in the data file. (In most cases, under normal usage, MySQL should find
any error in the data file. If this happens, the table is marked as “corrupted” and cannot be used until it
is repaired.)

Table Maintenance Statements

1859

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from
cron) if you want to check tables from time to time. In most cases, FAST is to be preferred over
CHANGED. (The only case when it is not preferred is when you suspect that you have found a bug in the
MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get strange errors from a table
when MySQL tries to update a row or find a row by key. This is very unlikely if a normal check has
succeeded.

Use of CHECK TABLE ... EXTENDED might influence the execution plan generated by the query
optimizer.

Some problems reported by CHECK TABLE cannot be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column contains the
value 0. (It is possible to create a row where the AUTO_INCREMENT column is 0 by explicitly setting
the column to 0 with an UPDATE statement.)

This is not an error in itself, but could cause trouble if you decide to dump the table and restore it
or do an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes value
according to the rules of AUTO_INCREMENT columns, which could cause problems such as a
duplicate-key error.

To get rid of the warning, execute an UPDATE statement to set the column to some value other than
0.

InnoDB Details

The following notes apply to InnoDB tables:

• If CHECK TABLE encounters errors in InnoDB tables or indexes, it reports an error, and usually
marks the index and sometimes marks the table as corrupted, preventing further use of the index or
table.

• If CHECK TABLE encounters a corrupt page, the server exits to prevent error propagation (Bug
#10132).

• If CHECK TABLE finds the wrong number of entries in a secondary index, it reports an error but does
not cause a server exit or prevent access to the file.

• CHECK TABLE surveys the index page structure, then surveys each key entry. It does not validate
the key pointer to a clustered record or follow the path for BLOB pointers.

• When an InnoDB table is stored in its own .ibd file in file-per-table mode, the first 3 pages of the
.ibd contain header information rather than table or index data. The CHECK TABLE statement
does not detect inconsistencies that affect only the header data. To verify the entire contents of an
InnoDB .ibd file, use the innochecksum command.

• When running CHECK TABLE on large InnoDB tables, other threads may be blocked during CHECK
TABLE execution. To avoid timeouts, the semaphore wait threshold (600 seconds) is extended by
2 hours (7200 seconds) for CHECK TABLE operations. If InnoDB detects semaphore waits of 240
seconds or more it starts printing InnoDB monitor output to the error log. If a lock request extends
beyond the semaphore wait threshold, InnoDB will abort the process. To avoid the possibility of a
semaphore wait timeout entirely, you can run CHECK TABLE QUICK instead of CHECK TABLE.

• CHECK TABLE functionality for InnoDB SPATIAL indexes is enhanced in MySQL 5.7.6.
Enhancements include an R-tree validity check and a check to ensure that the R-tree row count
matches the clustered index. Prior to these enhancements, minimal checks were performed on
InnoDB SPATIAL indexes (introduced in MySQL 5.7.5).

Table Maintenance Statements

1860

• CHECK TABLE supports secondary indexes on virtual generated columns. InnoDB added supported
for secondary indexes on virtual generated columns in MySQL 5.7.8.

13.7.2.3 CHECKSUM TABLE Syntax

CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

CHECKSUM TABLE reports a checksum for the contents of a table. During the checksum operation, the
table is locked with a read lock for InnoDB and MyISAM. You can use this statement to verify that the
contents are the same before and after a backup, rollback, or other operation that is intended to put the
data back to a known state. This statement requires the SELECT privilege for the table.

This statement is not supported for views. If you run CHECKSUM TABLE against a view, the Checksum
value is always NULL, and a warning is returned.

Performance Considerations

By default, the entire table is read row by row and the checksum is calculated. For large tables, this
could take a long time, thus you would only perform this operation occasionally. This row-by-row
calculation is what you get with the EXTENDED clause, with InnoDB and all other storage engines other
than MyISAM, and with MyISAM tables not created with the CHECKSUM=1 clause.

For MyISAM tables created with the CHECKSUM=1 clause, CHECKSUM TABLE or CHECKSUM
TABLE ... QUICK returns the “live” table checksum that can be returned very fast. If the table does
not meet all these conditions, the QUICK method returns NULL. See Section 13.1.14, “CREATE TABLE
Syntax” for the syntax of the CHECKSUM clause.

For a nonexistent table, CHECKSUM TABLE returns NULL and generates a warning.

The checksum value depends on the table row format. If the row format changes, the checksum
also changes. For example, the storage format for temporal types such as TIME, DATETIME, and
TIMESTAMP changed in MySQL 5.6 prior to MySQL 5.6.5, so if a 5.5 table is upgraded to MySQL 5.6,
the checksum value may change.

Important

If the checksums for two tables are different, then it is almost certain that the
tables are different in some way. However, because the hashing function used
by CHECKSUM TABLE is not guaranteed to be collision-free, there is a slight
chance that two tables which are not identical can produce the same checksum.

13.7.2.4 OPTIMIZE TABLE Syntax

OPTIMIZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
 tbl_name [, tbl_name] ...

Reorganizes the physical storage of table data and associated index data, to reduce storage space and
improve I/O efficiency when accessing the table. The exact changes made to each table depend on the
storage engine used by that table. This statement does not work with views.

Use OPTIMIZE TABLE in these cases, depending on the type of table:

• After doing substantial insert, update, or delete operations on an InnoDB table that has its own
.ibd file because it was created with the innodb_file_per_table option enabled. The table and
indexes are reorganized, and disk space can be reclaimed for use by the operating system.

• After doing substantial insert, update, or delete operations on columns that
are part of a FULLTEXT index in an InnoDB table. Set the configuration option
innodb_optimize_fulltext_only=1 first. To keep the index maintenance period to a
reasonable time, set the innodb_ft_num_word_optimize option to specify how many words to

Table Maintenance Statements

1861

update in the search index, and run a sequence of OPTIMIZE TABLE statements until the search
index is fully updated.

• After deleting a large part of a MyISAM or ARCHIVE table, or making many changes to a MyISAM or
ARCHIVE table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT
columns). Deleted rows are maintained in a linked list and subsequent INSERT operations reuse
old row positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defragment
the data file. After extensive changes to a table, this statement may also improve performance of
statements that use the table, sometimes significantly.

This statement requires SELECT and INSERT privileges for the table.

OPTIMIZE TABLE is also supported for partitioned tables. For information about using this statement
with partitioned tables and table partitions, see Section 18.3.4, “Maintenance of Partitions”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

OPTIMIZE TABLE works for InnoDB, MyISAM, and ARCHIVE tables.

By default, OPTIMIZE TABLE does not work for tables created using any other storage engine and
returns a result indicating this lack of support. You can make OPTIMIZE TABLE work for other storage
engines by starting mysqld with the --skip-new option. In this case, OPTIMIZE TABLE is just
mapped to ALTER TABLE.

InnoDB Details

For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE ... FORCE, which rebuilds the
table to update index statistics and free unused space in the clustered index. This is displayed in the
output of OPTIMIZE TABLE when you run it on an InnoDB table, as shown here:

mysql> OPTIMIZE TABLE foo;
+----------+----------+----------+---+
| Table | Op | Msg_type | Msg_text |
+----------+----------+----------+---+
| test.foo | optimize | note | Table does not support optimize, doing recreate + analyze instead |
| test.foo | optimize | status | OK |
+----------+----------+----------+---+

Prior to Mysql 5.7.4, OPTIMIZE TABLE does not use online DDL (ALGORITHM=INPLACE).
Consequently, concurrent DML (INSERT, UPDATE, DELETE) is not permitted on a table while
OPTIMIZE TABLE is running, i.e. the table is locked. Also, secondary indexes are not created as
efficiently because keys are inserted in the order they appeared in the primary key.

As of 5.7.4, OPTIMIZE TABLE uses online DDL (ALGORITHM=INPLACE) for both regular and
partitioned InnoDB tables. The table rebuild, triggered by OPTIMIZE TABLE and performed under the
cover by ALTER TABLE ... FORCE, is now performed using online DDL (ALGORITHM=INPLACE)
and only locks the table for a brief interval, which reduces downtime for concurrent DML operations.

OPTIMIZE TABLE continues to use ALGORITHM=COPY under the following conditions:

• When the old_alter_table system variable is turned ON.

• When the mysqld --skip-new option is enabled.

OPTIMIZE TABLE using online DDL (ALGORITHM=INPLACE) is not supported for InnoDB tables that
contain FULLTEXT indexes. ALGORITHM=COPY must be used instead.

InnoDB stores data using a page-allocation method and does not suffer from fragmentation in the
same way that legacy storage engines (such as MyISAM) will. When considering whether or not to run
optimize, consider the workload of transactions that your server will process:

Table Maintenance Statements

1862

• Some level of fragmentation is expected. InnoDB only fills pages 93% full, to leave room for updates
without having to split pages.

• Delete operations might leave gaps that leave pages less filled than desired, which could make it
worthwhile to optimize the table.

• Updates to rows usually rewrite the data within the same page, depending on the data type and
row format, when sufficient space is available. See Section 14.6.1.5, “How Compression Works for
InnoDB Tables” and Section 14.8.1, “Overview of InnoDB Row Storage”.

• High-concurrency workloads might leave gaps in indexes over time, as InnoDB retains multiple
versions of the same data due through its MVCC mechanism. See Section 14.2.3, “InnoDB Multi-
Versioning”.

MyISAM Details

For MyISAM tables, OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the table's statistics are not up to date (and the repair could not be accomplished by sorting the
index), update them.

Other Considerations

OPTIMIZE TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always optimize

Msg_type status, error, info, note, or warning

Msg_text An informational message

For InnoDB tables prior to 5.7.4 and other table types, MySQL locks the table during the time
OPTIMIZE TABLE is running. As of MySQL 5.7.4, OPTIMIZE TABLE is performed online for regular
and partitioned InnoDB tables.

By default, the server writes OPTIMIZE TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its
alias LOCAL.

OPTIMIZE TABLE does not sort R-tree indexes, such as spatial indexes on POINT columns. (Bug
#23578)

OPTIMIZE TABLE table catches and throws any errors that occur while copying table statistics from
the old file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD, or
.MYI file is different from the user ID of the mysqld process, OPTIMIZE TABLE generates a "cannot
change ownership of the file" error unless mysqld is started by the root user.

13.7.2.5 REPAIR TABLE Syntax

REPAIR [NO_WRITE_TO_BINLOG | LOCAL] TABLE
 tbl_name [, tbl_name] ...
 [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table, for certain storage engines only. By default, it
has the same effect as myisamchk --recover tbl_name. REPAIR TABLE works for MyISAM,

Table Maintenance Statements

1863

ARCHIVE, and CSV tables. See Section 15.2, “The MyISAM Storage Engine” Section 15.5, “The
ARCHIVE Storage Engine”, and Section 15.4, “The CSV Storage Engine”. This statement does not
work with views.

This statement requires SELECT and INSERT privileges for the table.

REPAIR TABLE is supported for partitioned tables. However, the USE_FRM option cannot be used with
this statement on a partitioned table.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

You can use ALTER TABLE ... REPAIR PARTITION to repair one or more partitions; for more
information, see Section 13.1.6, “ALTER TABLE Syntax”, and Section 18.3.4, “Maintenance of
Partitions”.

Although normally you should never have to run REPAIR TABLE, if disaster strikes, this statement is
very likely to get back all your data from a MyISAM table. If your tables become corrupted often, try to
find the reason for it, to eliminate the need to use REPAIR TABLE. See Section B.5.3.3, “What to Do If
MySQL Keeps Crashing”, and Section 15.2.4, “MyISAM Table Problems”.

Caution

Make a backup of a table before performing a table repair operation; under
some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors. See Chapter 7, Backup and
Recovery.

Warning

If the server crashes during a REPAIR TABLE operation, it is essential after
restarting it that you immediately execute another REPAIR TABLE statement
for the table before performing any other operations on it. In the worst case,
you might have a new clean index file without information about the data file,
and then the next operation you perform could overwrite the data file. This is an
unlikely but possible scenario that underscores the value of making a backup
first.

REPAIR TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always repair

Msg_type status, error, info, note, or warning

Msg_text An informational message

The REPAIR TABLE statement might produce many rows of information for each repaired table. The
last row has a Msg_type value of status and Msg_test normally should be OK. If you do not get OK
for a MyISAM table, you should try repairing it with myisamchk --safe-recover. (REPAIR TABLE
does not implement all the options of myisamchk.) With myisamchk --safe-recover, you can also
use options that REPAIR TABLE does not support, such as --max-record-length.

If you use the QUICK option, REPAIR TABLE tries to repair only the index file, and not the data file.
This type of repair is like that done by myisamchk --recover --quick.

If you use the EXTENDED option, MySQL creates the index row by row instead of creating one index at
a time with sorting. This type of repair is like that done by myisamchk --safe-recover.

Plugin and User-Defined Function Statements

1864

The USE_FRM option is available for use if the .MYI index file is missing or if its header is corrupted.
This option tells MySQL not to trust the information in the .MYI file header and to re-create it using
information from the .frm file. This kind of repair cannot be done with myisamchk.

Note

Use the USE_FRM option only if you cannot use regular REPAIR modes! Telling
the server to ignore the .MYI file makes important table metadata stored
in the .MYI unavailable to the repair process, which can have deleterious
consequences:

• The current AUTO_INCREMENT value is lost.

• The link to deleted records in the table is lost, which means that free space
for deleted records will remain unoccupied thereafter.

• The .MYI header indicates whether the table is compressed. If the server
ignores this information, it cannot tell that a table is compressed and repair
can cause change or loss of table contents. This means that USE_FRM should
not be used with compressed tables. That should not be necessary, anyway:
Compressed tables are read only, so they should not become corrupt.

Caution

If you use USE_FRM for a table that was created by a different version of the
MySQL server than the one you are currently running, REPAIR TABLE will
not attempt to repair the table. In this case, the result set returned by REPAIR
TABLE contains a line with a Msg_type value of error and a Msg_text value
of Failed repairing incompatible .FRM file.

If USE_FRM is not used, REPAIR TABLE checks the table to see whether an upgrade is required. If
so, it performs the upgrade, following the same rules as CHECK TABLE ... FOR UPGRADE. See
Section 13.7.2.2, “CHECK TABLE Syntax”, for more information. REPAIR TABLE without USE_FRM
upgrades the .frm file to the current version.

By default, the server writes REPAIR TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its
alias LOCAL.

Important

In the event that a table on the master becomes corrupted and you run REPAIR
TABLE on it, any resulting changes to the original table are not propagated to
slaves.

You may be able to increase REPAIR TABLE performance by setting certain system variables. See
Section 8.6.3, “Speed of REPAIR TABLE Statements”.

REPAIR TABLE table catches and throws any errors that occur while copying table statistics from the
old corrupted file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD,
or .MYI file is different from the user ID of the mysqld process, REPAIR TABLE generates a "cannot
change ownership of the file" error unless mysqld is started by the root user.

13.7.3 Plugin and User-Defined Function Statements

13.7.3.1 CREATE FUNCTION Syntax for User-Defined Functions

CREATE [AGGREGATE] FUNCTION function_name RETURNS {STRING|INTEGER|REAL|DECIMAL}
 SONAME shared_library_name

Plugin and User-Defined Function Statements

1865

A user-defined function (UDF) is a way to extend MySQL with a new function that works like a native
(built-in) MySQL function such as ABS() or CONCAT().

function_name is the name that should be used in SQL statements to invoke the function. The
RETURNS clause indicates the type of the function's return value. DECIMAL is a legal value after
RETURNS, but currently DECIMAL functions return string values and should be written like STRING
functions.

shared_library_name is the base name of the shared object file that contains the code that
implements the function. The file must be located in the plugin directory. This directory is given by
the value of the plugin_dir system variable. For more information, see Section 24.4.2.5, “UDF
Compiling and Installing”.

To create a function, you must have the INSERT privilege for the mysql database. This is necessary
because CREATE FUNCTION adds a row to the mysql.func system table that records the
function's name, type, and shared library name. If you do not have this table, you should run the
mysql_upgrade command to create it. See Section 4.4.7, “mysql_upgrade — Check and Upgrade
MySQL Tables”.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld
with the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are
unavailable.

For instructions on writing user-defined functions, see Section 24.4.2, “Adding a New User-Defined
Function”. For the UDF mechanism to work, functions must be written in C or C++ (or another language
that can use C calling conventions), your operating system must support dynamic loading and you
must have compiled mysqld dynamically (not statically).

An AGGREGATE function works exactly like a native MySQL aggregate (summary) function such as SUM
or COUNT(). For AGGREGATE to work, your mysql.func table must contain a type column. If your
mysql.func table does not have this column, you should run the mysql_upgrade program to create
it (see Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”).

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION
statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may crash.

13.7.3.2 DROP FUNCTION Syntax

DROP FUNCTION function_name

This statement drops the user-defined function (UDF) named function_name.

To drop a function, you must have the DELETE privilege for the mysql database. This is because DROP
FUNCTION removes a row from the mysql.func system table that records the function's name, type,
and shared library name.

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION
statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may crash.

DROP FUNCTION is also used to drop stored functions (see Section 13.1.22, “DROP PROCEDURE
and DROP FUNCTION Syntax”).

Plugin and User-Defined Function Statements

1866

13.7.3.3 INSTALL PLUGIN Syntax

INSTALL PLUGIN plugin_name SONAME 'shared_library_name'

This statement installs a server plugin. It requires the INSERT privilege for the mysql.plugin
table.

plugin_name is the name of the plugin as defined in the plugin descriptor structure contained in
the library file (see Section 24.2.4.2, “Plugin Data Structures”). Plugin names are not case sensitive.
For maximal compatibility, plugin names should be limited to ASCII letters, digits, and underscore
because they are used in C source files, shell command lines, M4 and Bourne shell scripts, and SQL
environments.

shared_library_name is the name of the shared library that contains the plugin code. The
name includes the file name extension (for example, libmyplugin.so, libmyplugin.dll, or
libmyplugin.dylib).

The shared library must be located in the plugin directory (the directory named by the plugin_dir
system variable). The library must be in the plugin directory itself, not in a subdirectory. By default,
plugin_dir is the plugin directory under the directory named by the pkglibdir configuration
variable, but it can be changed by setting the value of plugin_dir at server startup. For example, set
its value in a my.cnf file:

[mysqld]
plugin_dir=/path/to/plugin/directory

If the value of plugin_dir is a relative path name, it is taken to be relative to the MySQL base
directory (the value of the basedir system variable).

INSTALL PLUGIN loads and initializes the plugin code to make the plugin available for use. A plugin is
initialized by executing its initialization function, which handles any setup that the plugin must perform
before it can be used. When the server shuts down, it executes the deinitialization function for each
plugin that is loaded so that the plugin has a chance to perform any final cleanup.

INSTALL PLUGIN also registers the plugin by adding a line that indicates the plugin name and library
file name to the mysql.plugin table. At server startup, the server loads and initializes any plugin that
is listed in the mysql.plugin table. This means that a plugin is installed with INSTALL PLUGIN only
once, not every time the server starts. Plugin loading at startup does not occur if the server is started
with the --skip-grant-tables option.

A plugin library can contain multiple plugins. For each of them to be installed, use a separate INSTALL
PLUGIN statement. Each statement names a different plugin, but all of them specify the same library
name.

INSTALL PLUGIN causes the server to read option (my.cnf) files just as during server startup. This
enables the plugin to pick up any relevant options from those files. It is possible to add plugin options
to an option file even before loading a plugin (if the loose prefix is used). It is also possible to uninstall
a plugin, edit my.cnf, and install the plugin again. Restarting the plugin this way enables it to the new
option values without a server restart.

For options that control individual plugin loading at server startup, see Section 5.1.8.1, “Installing and
Uninstalling Plugins”. If you need to load plugins for a single server startup when the --skip-grant-
tables option is given (which tells the server not to read system tables), use the --plugin-load
option. See Section 5.1.3, “Server Command Options”.

To remove a plugin, use the UNINSTALL PLUGIN statement.

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

SET Syntax

1867

To see what plugins are installed, use the SHOW PLUGINS statement or query the
INFORMATION_SCHEMA.PLUGINS table.

If you recompile a plugin library and need to reinstall it, you can use either of the following methods:

• Use UNINSTALL PLUGIN to uninstall all plugins in the library, install the new plugin library file
in the plugin directory, and then use INSTALL PLUGIN to install all plugins in the library. This
procedure has the advantage that it can be used without stopping the server. However, if the plugin
library contains many plugins, you must issue many INSTALL PLUGIN and UNINSTALL PLUGIN
statements.

• Stop the server, install the new plugin library file in the plugin directory, and restart the server.

13.7.3.4 UNINSTALL PLUGIN Syntax

UNINSTALL PLUGIN plugin_name

This statement removes an installed server plugin. It requires the DELETE privilege for the
mysql.plugin table.

plugin_name must be the name of some plugin that is listed in the mysql.plugin table. The
server executes the plugin's deinitialization function and removes the row for the plugin from the
mysql.plugin table, so that subsequent server restarts will not load and initialize the plugin.
UNINSTALL PLUGIN does not remove the plugin's shared library file.

You cannot uninstall a plugin if any table that uses it is open.

Plugin removal has implications for the use of associated tables. For example, if a full-text parser plugin
is associated with a FULLTEXT index on the table, uninstalling the plugin makes the table unusable.
Any attempt to access the table results in an error. The table cannot even be opened, so you cannot
drop an index for which the plugin is used. This means that uninstalling a plugin is something to do with
care unless you do not care about the table contents. If you are uninstalling a plugin with no intention of
reinstalling it later and you care about the table contents, you should dump the table with mysqldump
and remove the WITH PARSER clause from the dumped CREATE TABLE statement so that you can
reload the table later. If you do not care about the table, DROP TABLE can be used even if any plugins
associated with the table are missing.

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

13.7.4 SET Syntax

SET variable_assignment [, variable_assignment] ...

variable_assignment:
 user_var_name = expr
 | [GLOBAL | SESSION] system_var_name = expr
 | [@@global. | @@session. | @@]system_var_name = expr

The SET statement assigns values to different types of variables that affect the operation of the server
or your client.

This section describes use of SET for assigning values to variables. The SET statement can be used to
assign values to these types of variables:

• System variables. See Section 5.1.4, “Server System Variables”. System variables also can be set at
server startup, as described in Section 5.1.5, “Using System Variables”.

User-defined variables. See Section 9.4, “User-Defined Variables”.

SET Syntax

1868

• Stored procedure and function parameters, and stored program local variables. See Section 13.6.4,
“Variables in Stored Programs”.

Some variants of SET syntax are used in other contexts:

• SET CHARACTER SET and SET NAMES assign values to character set and collation variables
associated with the connection to the server. These variants are described later in this section.

• SET PASSWORD assigns account passwords. See Section 13.7.1.7, “SET PASSWORD Syntax”.

• SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See
Section 13.3.6, “SET TRANSACTION Syntax”.

The following discussion shows the different SET syntaxes that you can use to set variables. The
examples use the = assignment operator, but you can also use the := assignment operator for this
purpose.

A user variable is written as @var_name and can be set as follows:

SET @var_name = expr;

Many system variables are dynamic and can be changed while the server runs by using the SET
statement. For a list, see Section 5.1.5.2, “Dynamic System Variables”. To change a system variable
with SET, refer to it as var_name, optionally preceded by a modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global..
The SUPER privilege is required to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION,
@@session., or @@. Setting a session variable normally requires no special privilege, although there
are exceptions (such as sql_log_bin.) A client can change its own session variables, but not
those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

A SET statement can contain multiple variable assignments, separated by commas. For example,
the statement can assign values to a user-defined variable and a system variable. If you set several
system variables, the most recent GLOBAL or SESSION modifier in the statement is used for following
variables that have no modifier specified.

Examples:

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

The @@var_name syntax for system variables is supported for compatibility with some other database
systems.

If you change a session system variable, the value remains in effect until your session ends or until you
change the variable to a different value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until
the server restarts. (To make a global system variable setting permanent, you should set it in an option
file.) The change is visible to any client that accesses that global variable. However, the change affects
the corresponding session variable only for clients that connect after the change. The global variable

SET Syntax

1869

change does not affect the session variable for any client that is currently connected (not even that of
the client that issues the SET GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that
can only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a
global variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default
value, use the DEFAULT keyword. For example, the following two statements are identical in setting the
session value of max_join_size to the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

It is not permitted to assign the value DEFAULT to user-defined variables, stored procedure or function
parameters, or stored program local variables. This results in a syntax error for user-defined variables,
parameters, and local variables.

You can refer to the values of specific global or session system variables in expressions by using one
of the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not
specify @@global. or @@session.), MySQL returns the session value if it exists and the global value
otherwise. (This differs from SET @@var_name = value, which always refers to the session value.)

Note

Some variables displayed by SHOW VARIABLES may not be available using
SELECT @@var_name syntax; an Unknown system variable occurs.
As a workaround in such cases, you can use SHOW VARIABLES LIKE
'var_name'.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

To display system variables names and values, use the SHOW VARIABLES statement. (See
Section 13.7.5.39, “SHOW VARIABLES Syntax”.)

The following list describes SET options that have nonstandard syntax (that is, options that are not set
with name = value syntax).

• CHARACTER SET {charset_name | DEFAULT}

This maps all strings from and to the client with the given mapping. You can add new mappings
by editing sql/convert.cc in the MySQL source distribution. SET CHARACTER SET sets

SHOW Syntax

1870

three session system variables: character_set_client and character_set_results
are set to the given character set, and character_set_connection to the value of
character_set_database. See Section 10.1.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using the value DEFAULT. The default depends on the
server configuration.

ucs2, utf16, and utf32 cannot be used as a client character set, which means that they do not
work for SET CHARACTER SET.

• NAMES {'charset_name' [COLLATE 'collation_name'] | DEFAULT}

SET NAMES sets the three session system variables character_set_client,
character_set_connection, and character_set_results to the given character set.
Setting character_set_connection to charset_name also sets collation_connection
to the default collation for charset_name. The optional COLLATE clause may be used to specify a
collation explicitly. See Section 10.1.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using a value of DEFAULT. The default depends on the
server configuration.

ucs2, utf16, and utf32 cannot be used as a client character set, which means that they do not
work for SET NAMES.

13.7.5 SHOW Syntax

SHOW has many forms that provide information about databases, tables, columns, or status information
about the server. This section describes those following:

SHOW {BINARY | MASTER} LOGS
SHOW BINLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW CHARACTER SET [like_or_where]
SHOW COLLATION [like_or_where]
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]
SHOW CREATE DATABASE db_name
SHOW CREATE EVENT event_name
SHOW CREATE FUNCTION func_name
SHOW CREATE PROCEDURE proc_name
SHOW CREATE TABLE tbl_name
SHOW CREATE TRIGGER trigger_name
SHOW CREATE VIEW view_name
SHOW DATABASES [like_or_where]
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW EVENTS
SHOW FUNCTION CODE func_name
SHOW FUNCTION STATUS [like_or_where]
SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW MASTER STATUS
SHOW OPEN TABLES [FROM db_name] [like_or_where]
SHOW PLUGINS
SHOW PROCEDURE CODE proc_name
SHOW PROCEDURE STATUS [like_or_where]
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
SHOW PROFILES
SHOW SLAVE HOSTS
SHOW SLAVE STATUS [NONBLOCKING]
SHOW [GLOBAL | SESSION] STATUS [like_or_where]
SHOW TABLE STATUS [FROM db_name] [like_or_where]
SHOW [FULL] TABLES [FROM db_name] [like_or_where]
SHOW TRIGGERS [FROM db_name] [like_or_where]
SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]

SHOW Syntax

1871

SHOW WARNINGS [LIMIT [offset,] row_count]

like_or_where:
 LIKE 'pattern'
 | WHERE expr

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string
that can contain the SQL “%” and “_” wildcard characters. The pattern is useful for restricting statement
output to matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which
rows to display. See Section 20.31, “Extensions to SHOW Statements”.

Many MySQL APIs (such as PHP) enable you to treat the result returned from a SHOW statement
as you would a result set from a SELECT; see Chapter 23, Connectors and APIs, or your API
documentation for more information. In addition, you can work in SQL with results from queries on
tables in the INFORMATION_SCHEMA database, which you cannot easily do with results from SHOW
statements. See Chapter 20, INFORMATION_SCHEMA Tables.

13.7.5.1 SHOW BINARY LOGS Syntax

SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as part of the procedure described in
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”, that shows how to determine which logs can be
purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS.

A user with the SUPER or REPLICATION CLIENT privilege may execute this statement.

13.7.5.2 SHOW BINLOG EVENTS Syntax

SHOW BINLOG EVENTS
 [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is displayed.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

Note

Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time-
and resource-consuming process because the server returns to the client the
complete contents of the binary log (which includes all statements executed by
the server that modify data). As an alternative to SHOW BINLOG EVENTS, use
the mysqlbinlog utility to save the binary log to a text file for later examination
and analysis. See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary
Log Files”.

SHOW Syntax

1872

Note

Some events relating to the setting of user and system variables are not
included in the output from SHOW BINLOG EVENTS. To get complete coverage
of events within a binary log, use mysqlbinlog.

Note

SHOW BINLOG EVENTS does not work with relay log files. You can use SHOW
RELAYLOG EVENTS for this purpose.

13.7.5.3 SHOW CHARACTER SET Syntax

SHOW CHARACTER SET
 [LIKE 'pattern' | WHERE expr]

The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if present,
indicates which character set names to match. The WHERE clause can be given to select rows using
more general conditions, as discussed in Section 20.31, “Extensions to SHOW Statements”. For
example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

The Maxlen column shows the maximum number of bytes required to store one character.

The filename character set is for internal use only; consequently, SHOW CHARACTER SET does not
display it.

13.7.5.4 SHOW COLLATION Syntax

SHOW COLLATION
 [LIKE 'pattern' | WHERE expr]

This statement lists collations supported by the server. By default, the output from SHOW COLLATION
includes all available collations. The LIKE clause, if present, indicates which collation names to
match. The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 20.31, “Extensions to SHOW Statements”. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

The Collation and Charset columns indicate the names of the collation and the character set with
which it is associated. Id is the collation ID. Default indicates whether the collation is the default for

SHOW Syntax

1873

its character set. Compiled indicates whether the character set is compiled into the server. Sortlen
is related to the amount of memory required to sort strings expressed in the character set.

To see the default collation for each character set, use the following statement. Default is a reserved
word, so to use it as an identifier, it must be quoted as such:

mysql> SHOW COLLATION WHERE `Default` = 'Yes';
+---------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+----------+----+---------+----------+---------+
big5_chinese_ci	big5	1	Yes	Yes	1
dec8_swedish_ci	dec8	3	Yes	Yes	1
cp850_general_ci	cp850	4	Yes	Yes	1
hp8_english_ci	hp8	6	Yes	Yes	1
koi8r_general_ci	koi8r	7	Yes	Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
...

13.7.5.5 SHOW COLUMNS Syntax

SHOW [FULL] COLUMNS {FROM | IN} tbl_name [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW COLUMNS displays information about the columns in a given table. It also works for views. The
LIKE clause, if present, indicates which column names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 20.31, “Extensions to SHOW
Statements”.

SHOW COLUMNS displays information only for those columns for which you have some privilege.

mysql> SHOW COLUMNS FROM City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

If the data types differ from what you expect them to be based on a CREATE TABLE statement, note
that MySQL sometimes changes data types when you create or alter a table. The conditions under
which this occurs are described in Section 13.1.14.4, “Silent Column Specification Changes”.

The FULL keyword causes the output to include the column collation and comments, as well as the
privileges you have for each column.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. In
other words, these two statements are equivalent:

mysql> SHOW COLUMNS FROM mytable FROM mydb;
mysql> SHOW COLUMNS FROM mydb.mytable;

SHOW COLUMNS displays the following values for each table column:

Field indicates the column name.

Type indicates the column data type.

Collation indicates the collation for nonbinary string columns, or NULL for other columns. This value
is displayed only if you use the FULL keyword.

SHOW Syntax

1874

The Null field contains YES if NULL values can be stored in the column, NO if not.

The Key field indicates whether the column is indexed:

• If Key is empty, the column either is not indexed or is indexed only as a secondary column in a
multiple-column, nonunique index.

• If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column PRIMARY
KEY.

• If Key is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits multiple
NULL values, but you can tell whether the column permits NULL by checking the Null field.)

• If Key is MUL, the column is the first column of a nonunique index in which multiple occurrences of a
given value are permitted within the column.

If more than one of the Key values applies to a given column of a table, Key displays the one with the
highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

The Default field indicates the default value that is assigned to the column. This is NULL if the
column has an explicit default of NULL, or if the column definition has no DEFAULT clause.

The Extra field contains any additional information that is available about a given column. The value is
nonempty in these cases:

• auto_increment for columns that have the AUTO_INCREMENT attribute

• on update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON
UPDATE CURRENT_TIMESTAMP attribute

• VIRTUAL GENERATED or VIRTUAL STORED for generated columns

Privileges indicates the privileges you have for the column. This value is displayed only if you use
the FULL keyword.

Comment indicates any comment the column has. This value is displayed only if you use the FULL
keyword.

SHOW FIELDS is a synonym for SHOW COLUMNS. You can also list a table's columns with the
mysqlshow db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 13.8.1,
“DESCRIBE Syntax”.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Syntax”.

13.7.5.6 SHOW CREATE DATABASE Syntax

SHOW CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

Shows the CREATE DATABASE statement that creates the named database. If the SHOW statement
includes an IF NOT EXISTS clause, the output too includes such a clause. SHOW CREATE SCHEMA is
a synonym for SHOW CREATE DATABASE.

SHOW Syntax

1875

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

SHOW CREATE DATABASE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.4, “Server System Variables”.

13.7.5.7 SHOW CREATE EVENT Syntax

SHOW CREATE EVENT event_name

This statement displays the CREATE EVENT statement needed to re-create a given event. It requires
the EVENT privilege for the database from which the event is to be shown. For example (using the
same event e_daily defined and then altered in Section 13.7.5.18, “SHOW EVENTS Syntax”):

mysql> SHOW CREATE EVENT test.e_daily\G
*************************** 1. row ***************************
 Event: e_daily
 sql_mode:
 time_zone: SYSTEM
 Create Event: CREATE EVENT `e_daily`
 ON SCHEDULE EVERY 1 DAY
 STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR
 ON COMPLETION NOT PRESERVE
 ENABLE
 COMMENT 'Saves total number of sessions then
 clears the table each day'
 DO BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the event was created. collation_connection is the session value of the
collation_connection system variable when the event was created. Database Collation is
the collation of the database with which the event is associated.

The output reflects the current status of the event (ENABLE) rather than the status with which it was
created.

13.7.5.8 SHOW CREATE FUNCTION Syntax

SHOW CREATE FUNCTION func_name

This statement is similar to SHOW CREATE PROCEDURE but for stored functions. See Section 13.7.5.9,
“SHOW CREATE PROCEDURE Syntax”.

13.7.5.9 SHOW CREATE PROCEDURE Syntax

SHOW CREATE PROCEDURE proc_name

SHOW Syntax

1876

This statement is a MySQL extension. It returns the exact string that can be used to re-create the
named stored procedure. A similar statement, SHOW CREATE FUNCTION, displays information about
stored functions (see Section 13.7.5.8, “SHOW CREATE FUNCTION Syntax”).

To use either statement, you must be the user named in the routine DEFINER clause or have SELECT
access to the mysql.proc table. If you do not have privileges for the routine itself, the value displayed
for the Create Procedure or Create Function field will be NULL.

mysql> SHOW CREATE PROCEDURE test.simpleproc\G
*************************** 1. row ***************************
 Procedure: simpleproc
 sql_mode:
 Create Procedure: CREATE PROCEDURE `simpleproc`(OUT param1 INT)
 BEGIN
 SELECT COUNT(*) INTO param1 FROM t;
 END
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************
 Function: hello
 sql_mode:
 Create Function: CREATE FUNCTION `hello`(s CHAR(20))
 RETURNS CHAR(50)
 RETURN CONCAT('Hello, ',s,'!')
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation is
the collation of the database with which the routine is associated.

13.7.5.10 SHOW CREATE TABLE Syntax

SHOW CREATE TABLE tbl_name

Shows the CREATE TABLE statement that creates the named table. To use this statement, you must
have some privilege for the table. This statement also works with views.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `s` char(60) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

SHOW CREATE TABLE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.4, “Server System Variables”.

13.7.5.11 SHOW CREATE TRIGGER Syntax

SHOW CREATE TRIGGER trigger_name

This statement shows the CREATE TRIGGER statement that creates the named trigger.

mysql> SHOW CREATE TRIGGER ins_sum\G

SHOW Syntax

1877

*************************** 1. row ***************************
 Trigger: ins_sum
 sql_mode: STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION
SQL Original Statement: CREATE DEFINER=`me`@`localhost` TRIGGER ins_sum
 BEFORE INSERT ON account
 FOR EACH ROW SET @sum = @sum + NEW.amount
 character_set_client: utf8
 collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci
 Created: 2013-07-09 10:39:34.96

SHOW CREATE TRIGGER output has the following columns:

• Trigger: The trigger name.

• sql_mode: The SQL mode in effect when the trigger executes.

• SQL Original Statement: The CREATE TRIGGER statement that defines the trigger.

• character_set_client: The session value of the character_set_client system variable
when the trigger was created.

• collation_connection: The session value of the collation_connection system variable
when the trigger was created.

• Database Collation: The collation of the database with which the trigger is associated.

• Created: The date and time when the trigger was created. This is a TIMESTAMP(2) value (with
a fractional part in hundredths of seconds) for triggers created in MySQL 5.7.2 or later, NULL for
triggers created prior to 5.7.2. This column was added in MySQL 5.7.2.

You can also obtain information about trigger objects from INFORMATION_SCHEMA, which contains a
TRIGGERS table. See Section 20.27, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.12 SHOW CREATE USER Syntax

SHOW CREATE USER user

This statement shows the CREATE USER statement that creates the named user. An error occurs if the
user does not exist. The statement requires the SELECT privilege for the mysql database, except to
see the privileges for the current user.

The account name uses the format described in Section 6.2.3, “Specifying Account Names”. If you
specify only the user name part of the account name, a host name part of '%' is used. It is also
possible to specify CURRENT_USER or CURRENT_USER() to refer to the account associated with the
current session.

mysql> SHOW CREATE USER 'root'@'localhost'\G
*************************** 1. row ***************************
CREATE USER for root@localhost: CREATE USER 'root'@'localhost'
IDENTIFIED WITH 'mysql_native_password'
AS '*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19'
REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK

The output format is affected by the setting of the log_builtin_as_identified_by_password
system variable (log_backward_compatible_user_definitions before MySQL 5.7.9).

This statement was added in MySQL 5.7.6.

13.7.5.13 SHOW CREATE VIEW Syntax

SHOW Syntax

1878

SHOW CREATE VIEW view_name

This statement shows the CREATE VIEW statement that creates the named view.

mysql> SHOW CREATE VIEW v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE ALGORITHM=UNDEFINED
 DEFINER=`bob`@`localhost`
 SQL SECURITY DEFINER VIEW
 `v` AS select 1 AS `a`,2 AS `b`
character_set_client: latin1
collation_connection: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the view was created. collation_connection is the session value of the
collation_connection system variable when the view was created.

Use of SHOW CREATE VIEW requires the SHOW VIEW privilege and the SELECT privilege for the view
in question.

You can also obtain information about view objects from INFORMATION_SCHEMA, which contains a
VIEWS table. See Section 20.29, “The INFORMATION_SCHEMA VIEWS Table”.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support.
For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard
SQL concatenation operator, the double bar (||), in your queries. If you then create a view that
concatenates items, you might worry that changing the sql_mode setting to a value different from
ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a
view definition, MySQL always stores it the same way, in a canonical form. Here is an example that
shows how the server changes a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW CREATE VIEW test.v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE VIEW "v" AS select concat('a','b') AS "col1"
...
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value
of sql_mode will not affect the results from the view. However an additional consequence is that
comments prior to SELECT are stripped from the definition by the server.

13.7.5.14 SHOW DATABASES Syntax

SHOW {DATABASES | SCHEMAS}
 [LIKE 'pattern' | WHERE expr]

SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym
for SHOW DATABASES. The LIKE clause, if present, indicates which database names to match.
The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 20.31, “Extensions to SHOW Statements”.

You see only those databases for which you have some kind of privilege, unless you have the global
SHOW DATABASES privilege. You can also get this list using the mysqlshow command.

SHOW Syntax

1879

If the server was started with the --skip-show-database option, you cannot use this statement at
all unless you have the SHOW DATABASES privilege.

MySQL implements databases as directories in the data directory, so this statement simply lists
directories in that location. However, the output may include names of directories that do not
correspond to actual databases.

13.7.5.15 SHOW ENGINE Syntax

SHOW ENGINE engine_name {STATUS | MUTEX}

SHOW ENGINE displays operational information about a storage engine. It requires the PROCESS
privilege. The statement has these variants:

SHOW ENGINE INNODB STATUS
SHOW ENGINE INNODB MUTEX
SHOW ENGINE PERFORMANCE_SCHEMA STATUS

SHOW ENGINE INNODB STATUS displays extensive information from the standard InnoDB Monitor
about the state of the InnoDB storage engine. For information about the standard monitor and other
InnoDB Monitors that provide information about InnoDB processing, see Section 14.14, “InnoDB
Monitors”.

SHOW ENGINE INNODB MUTEX displays InnoDB mutex and rw-lock statistics.

Note

InnoDB mutexes and rwlocks can also be monitored using Performance
Schema tables. See Section 14.13.2, “Monitoring InnoDB Mutex Waits Using
Performance Schema”.

SHOW ENGINE INNODB MUTEX output was removed in MySQL 5.7.2. It was revised and reintroduced
in MySQL 5.7.8.

In MySQL 5.7.8, mutex statistics collection is configured dynamically using the following options:

• To enable the collection of mutex statistics, run:

SET GLOBAL innodb_monitor_enable='latch';

• To reset mutex statistics, run:

SET GLOBAL innodb_monitor_reset='latch';

• To disable the collection of mutex statistics, run:

SET GLOBAL innodb_monitor_disable='latch';

Collection of mutex statistics for SHOW ENGINE INNODB MUTEX can also be enabled by setting
innodb_monitor_enable='all', or disabled by setting innodb_monitor_disable='all'.

SHOW ENGINE INNODB MUTEX output has the following columns:

• Type

Always InnoDB.

• Name

Prior to MySQL 5.7.8, the Name field reports the source file where the mutex is implemented, and
the line number in the file where the mutex is created. The line number is specific to your version of

SHOW Syntax

1880

MySQL. As of MySQL 5.7.8, only the mutex name is reported. File name and line number are still
reported for rwlocks.

• Status

The mutex status.

Prior to MySQL 5.7.8, the Status field displays several values if WITH_DEBUG was defined
at MySQL compilation time. If WITH_DEBUG was not defined, the statement displays only the
os_waits value. In the latter case (without WITH_DEBUG), the information on which the output is
based is insufficient to distinguish regular mutexes and mutexes that protect rwlocks (which permit
multiple readers or a single writer). Consequently, the output may appear to contain multiple rows for
the same mutex. Pre-MySQL 5.7.8 Status field values include:

• count indicates how many times the mutex was requested.

• spin_waits indicates how many times the spinlock had to run.

• spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by spin_waits
provides the average round count.)

• os_waits indicates the number of operating system waits. This occurs when the spinlock did not
work (the mutex was not locked during the spinlock and it was necessary to yield to the operating
system and wait).

• os_yields indicates the number of times a thread trying to lock a mutex gave up its timeslice and
yielded to the operating system (on the presumption that permitting other threads to run will free
the mutex so that it can be locked).

• os_wait_times indicates the amount of time (in ms) spent in operating system waits. In MySQL
5.7 timing is disabled and this value is always 0.

As of MySQL 5.7.8, the Status field reports the number of spins, waits, and calls. Statistics for low-
level operating system mutexes, which are implemented outside of InnoDB, are not reported.

• spins indicates the number of spins.

• waits indicates the number of mutex waits.

• calls indicates how many times the mutex was requested.

SHOW ENGINE INNODB MUTEX skips the mutexes and rw-locks of buffer pool blocks, as the amount
of output can be overwhelming on systems with a large buffer pool. (There is one mutex and one rw-
lock in each 16K buffer pool block, and there are 65,536 blocks per gigabyte.) SHOW ENGINE INNODB
MUTEX also does not list any mutexes or rw-locks that have never been waited on (os_waits=0).
Thus, SHOW ENGINE INNODB MUTEX only displays information about mutexes and rw-locks outside
of the buffer pool that have caused at least one OS-level wait.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the
Performance Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count
Status: 10000
*************************** 5. row ***************************

SHOW Syntax

1881

 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements.

Name values consist of two parts, which name an internal buffer and a buffer attribute, respectively.
Interpret buffer names as follows:

• An internal buffer that is not exposed as a table is named within parentheses. Examples:
(pfs_cond_class).size, (pfs_mutex_class).memory.

• An internal buffer that is exposed as a table in the performance_schema database is
named after the table, without parentheses. Examples: events_waits_history.size,
mutex_instances.count.

• A value that applies to the Performance Schema as a whole begins with performance_schema.
Example: performance_schema.memory.

Buffer attributes have these meanings:

• size is the size of the internal record used by the implementation, such as the size of a row in a
table. size values cannot be changed.

• count is the number of internal records, such as the number of rows in a table. count values can
be changed using Performance Schema configuration options.

• For a table, tbl_name.memory is the product of size and count. For the Performance Schema as
a whole, performance_schema.memory is the sum of all the memory used (the sum of all other
memory values).

Some size and count attributes were named row_size and row_count before MySQL 5.7.1.

In some cases, there is a direct relationship between a Performance Schema configuration
parameter and a SHOW ENGINE value. For example, events_waits_history_long.count
corresponds to performance_schema_events_waits_history_long_size. In other cases,
the relationship is more complex. For example, events_waits_history.count corresponds to
performance_schema_events_waits_history_size (the number of rows per thread) multiplied
by performance_schema_max_thread_instances (the number of threads).

13.7.5.16 SHOW ENGINES Syntax

SHOW [STORAGE] ENGINES

SHOW ENGINES displays status information about the server's storage engines. This is particularly
useful for checking whether a storage engine is supported, or to see what the default engine is. This
information can also be obtained from the INFORMATION_SCHEMA ENGINES table. See Section 20.6,
“The INFORMATION_SCHEMA ENGINES Table”.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys

SHOW Syntax

1882

Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 2. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 7. row ***************************
 Engine: ARCHIVE
 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 8. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 9. row ***************************
 Engine: FEDERATED
 Support: YES
 Comment: Federated MySQL storage engine
Transactions: NO
 XA: NO
 Savepoints: NO

The output from SHOW ENGINES may vary according to the MySQL version used and other factors.
The values shown in the Support column indicate the server's level of support for the storage engine,
as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

SHOW Syntax

1883

Value Meaning

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log file
should contain a reason indicating why the option is disabled. See Section 5.2.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option.

All MySQL servers support MyISAM tables. It is not possible to disable MyISAM.

The Transactions, XA, and Savepoints columns indicate whether the storage engine supports
transactions, XA transactions, and savepoints, respectively.

13.7.5.17 SHOW ERRORS Syntax

SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

SHOW ERRORS is a diagnostic statement that is similar to SHOW WARNINGS, except that it displays
information only for errors, rather than for errors, warnings, and notes.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this
number from the error_count variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

SHOW ERRORS and error_count apply only to errors, not warnings or notes. In other respects, they
are similar to SHOW WARNINGS and warning_count. In particular, SHOW ERRORS cannot display
information for more than max_error_count messages, and error_count can exceed the value of
max_error_count if the number of errors exceeds max_error_count.

For more information, see Section 13.7.5.40, “SHOW WARNINGS Syntax”.

13.7.5.18 SHOW EVENTS Syntax

SHOW EVENTS [{FROM | IN} schema_name]
 [LIKE 'pattern' | WHERE expr]

This statement displays information about Event Manager events. It requires the EVENT privilege for
the database from which the events are to be shown.

In its simplest form, SHOW EVENTS lists all of the events in the current schema:

mysql> SELECT CURRENT_USER(), SCHEMA();
+----------------+----------+
| CURRENT_USER() | SCHEMA() |
+----------------+----------+
| jon@ghidora | myschema |
+----------------+----------+
1 row in set (0.00 sec)

SHOW Syntax

1884

mysql> SHOW EVENTS\G
*************************** 1. row ***************************
 Db: myschema
 Name: e_daily
 Definer: jon@ghidora
 Time zone: SYSTEM
 Type: RECURRING
 Execute at: NULL
 Interval value: 10
 Interval field: SECOND
 Starts: 2006-02-09 10:41:23
 Ends: NULL
 Status: ENABLED
 Originator: 0
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

To see events for a specific schema, use the FROM clause. For example, to see events for the test
schema, use the following statement:

SHOW EVENTS FROM test;

The LIKE clause, if present, indicates which event names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 20.31, “Extensions to SHOW
Statements”.

SHOW EVENTS output has the following columns:

• Db: The schema (database) on which the event is defined.

• Name: The name of the event.

• Time zone: The event time zone, which is the time zone used for scheduling the event and that is in
effect within the event as it executes. The default value is SYSTEM.

• Definer: The account of the user who created the event, in 'user_name'@'host_name' format.

• Type: The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• Execute At: The date and time when a transient event is set to execute. Shown as a DATETIME
value.

For a recurring event, the value of this column is always NULL.

• Interval Value: For a recurring event, the number of intervals to wait between event executions.

For a transient event, the value of this column is always NULL.

• Interval Field: The time units used for the interval which a recurring event waits before
repeating.

For a transient event, the value of this column is always NULL.

• Starts: The start date and time for a recurring event. This is displayed as a DATETIME value, and
is NULL if no start date and time are defined for the event.

For a transient event, this column is always NULL.

• Ends: The end date and time for a recurring event. This is displayed as a DATETIME value, and
defaults to NULL if no end date and time is defined for the event.

For a transient event, this column is always NULL.

SHOW Syntax

1885

• Status: The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED.

SLAVESIDE_DISABLED indicates that the creation of the event occurred on another MySQL server
acting as a replication master and replicated to the current MySQL server which is acting as a slave,
but the event is not presently being executed on the slave.

• Originator: The server ID of the MySQL server on which the event was created. Defaults to 0.

• character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation
is the collation of the database with which the routine is associated.

For more information about SLAVE_DISABLED and the Originator column, see Section 17.4.1.12,
“Replication of Invoked Features”.

The event action statement is not shown in the output of SHOW EVENTS. Use SHOW CREATE EVENT or
the INFORMATION_SCHEMA.EVENTS table.

Times displayed by SHOW EVENTS are given in the event time zone, as discussed in Section 19.4.4,
“Event Metadata”.

The columns in the output of SHOW EVENTS are similar to, but not identical to the columns in the
INFORMATION_SCHEMA.EVENTS table. See Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”.

13.7.5.19 SHOW FUNCTION CODE Syntax

SHOW FUNCTION CODE func_name

This statement is similar to SHOW PROCEDURE CODE but for stored functions. See Section 13.7.5.27,
“SHOW PROCEDURE CODE Syntax”.

13.7.5.20 SHOW FUNCTION STATUS Syntax

SHOW FUNCTION STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is similar to SHOW PROCEDURE STATUS but for stored functions. See
Section 13.7.5.28, “SHOW PROCEDURE STATUS Syntax”.

13.7.5.21 SHOW GRANTS Syntax

SHOW GRANTS [FOR user]

This statement lists the GRANT statement or statements that must be issued to duplicate the privileges
that are granted to a MySQL user account. SHOW GRANTS requires the SELECT privilege for the mysql
database, except to see the privileges for the current user.

The account is named using the same format as for the GRANT statement; for example,
'jeffrey'@'localhost'. If you specify only the user name part of the account name, a host name
part of '%' is used. For additional information about specifying account names, see Section 13.7.1.4,
“GRANT Syntax”.

mysql> SHOW GRANTS FOR 'root'@'localhost';
+---+
| Grants for root@localhost |
+---+

SHOW Syntax

1886

| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+

To list the privileges granted to the account that you are using to connect to the server, you can use
any of the following statements:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

If SHOW GRANTS FOR CURRENT_USER (or any of the equivalent syntaxes) is used in DEFINER
context, such as within a stored procedure that is defined with SQL SECURITY DEFINER), the grants
displayed are those of the definer and not the invoker.

SHOW GRANTS does not display the authentication plugin associated with the account. To see that
information, use SHOW CREATE USER.

SHOW GRANTS displays only the privileges granted explicitly to the named account. Other privileges
might be available to the account, but they are not displayed. For example, if an anonymous account
exists, the named account might be able to use its privileges, but SHOW GRANTS will not display them.

13.7.5.22 SHOW INDEX Syntax

SHOW {INDEX | INDEXES | KEYS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]
 [WHERE expr]

SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in
ODBC. This statement requires some privilege for any column in the table.

SHOW INDEX returns the following fields:

• Table

The name of the table.

• Non_unique

0 if the index cannot contain duplicates, 1 if it can.

• Key_name

The name of the index. If the index is the primary key, the name is always PRIMARY.

• Seq_in_index

The column sequence number in the index, starting with 1.

• Column_name

The column name.

• Collation

How the column is sorted in the index. In MySQL, this can have values “A” (Ascending) or NULL (Not
sorted).

• Cardinality

An estimate of the number of unique values in the index. This is updated by running ANALYZE
TABLE or myisamchk -a. Cardinality is counted based on statistics stored as integers, so

SHOW Syntax

1887

the value is not necessarily exact even for small tables. The higher the cardinality, the greater the
chance that MySQL uses the index when doing joins.

• Sub_part

The number of indexed characters if the column is only partly indexed, NULL if the entire column is
indexed.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL values and '' if not.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Information about the index not described in its own column, such as disabled if the index is
disabled.

• Index_comment

Any comment provided for the index with a COMMENT attribute when the index was created.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. These
two statements are equivalent:

SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;

The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 20.31, “Extensions to SHOW Statements”.

You can also list a table's indexes with the mysqlshow -k db_name tbl_name command.

13.7.5.23 SHOW MASTER STATUS Syntax

SHOW MASTER STATUS

This statement provides status information about the binary log files of the master. It requires either the
SUPER or REPLICATION CLIENT privilege.

Example:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: master-bin.000002
 Position: 1307
 Binlog_Do_DB: test
 Binlog_Ignore_DB: manual, mysql
Executed_Gtid_Set: 3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
1 row in set (0.00 sec)

When global transaction IDs are in use, Executed_Gtid_Set shows the set of GTIDs for transactions
that have been executed on the master. This is the same as the value for the gtid_executed
system variable (named gtid_done prior to MySQL 5.6.9) on this server, as well as the value for
Executed_Gtid_Set in the output of SHOW SLAVE STATUS on this server.

http://dev.mysql.com/doc/refman/5.6/en/replication-options-gtids.html#sysvar_gtid_done

SHOW Syntax

1888

13.7.5.24 SHOW OPEN TABLES Syntax

SHOW OPEN TABLES [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”. The FROM clause, if present, restricts the
tables shown to those present in the db_name database. The LIKE clause, if present, indicates which
table names to match. The WHERE clause can be given to select rows using more general conditions,
as discussed in Section 20.31, “Extensions to SHOW Statements”.

SHOW OPEN TABLES output has the following columns:

• Database

The database containing the table.

• Table

The table name.

• In_use

The number of table locks or lock requests there are for the table. For example, if one client acquires
a lock for a table using LOCK TABLE t1 WRITE, In_use will be 1. If another client issues LOCK
TABLE t1 WRITE while the table remains locked, the client will block waiting for the lock, but
the lock request causes In_use to be 2. If the count is zero, the table is open but not currently
being used. In_use is also increased by the HANDLER ... OPEN statement and decreased by
HANDLER ... CLOSE.

• Name_locked

Whether the table name is locked. Name locking is used for operations such as dropping or
renaming tables.

If you have no privileges for a table, it does not show up in the output from SHOW OPEN TABLES.

13.7.5.25 SHOW PLUGINS Syntax

SHOW PLUGINS

SHOW PLUGINS displays information about server plugins. Plugin information is also available in
the INFORMATION_SCHEMA.PLUGINS table. See Section 20.15, “The INFORMATION_SCHEMA
PLUGINS Table”.

Example of SHOW PLUGINS output:

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 2. row ***************************
 Name: CSV
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 3. row ***************************

SHOW Syntax

1889

 Name: MEMORY
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 4. row ***************************
 Name: MyISAM
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...

SHOW PLUGINS output has the following columns:

• Name: The name used to refer to the plugin in statements such as INSTALL PLUGIN and
UNINSTALL PLUGIN.

• Status: The plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• Type: The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or
AUTHENTICATION.

• Library: The name of the plugin shared object file. This is the name used to refer to the plugin
file in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the
directory named by the plugin_dir system variable. If the library name is NULL, the plugin is
compiled in and cannot be uninstalled with UNINSTALL PLUGIN.

• License: How the plugin is licensed; for example, GPL.

For plugins installed with INSTALL PLUGIN, the Name and Library values are also registered in the
mysql.plugin table.

For information about plugin data structures that form the basis of the information displayed by SHOW
PLUGINS, see Section 24.2, “The MySQL Plugin API”.

13.7.5.26 SHOW PRIVILEGES Syntax

SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The exact list
of privileges depends on the version of your server.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
 Context: Tables
 Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
 Context: Functions,Procedures
 Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
 Context: Databases,Tables,Indexes
 Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
 Context: Databases
 Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
 Context: Databases
 Comment: To use CREATE TEMPORARY TABLE
...

SHOW Syntax

1890

Privileges belonging to a specific user are displayed by the SHOW GRANTS statement. See
Section 13.7.5.21, “SHOW GRANTS Syntax”, for more information.

13.7.5.27 SHOW PROCEDURE CODE Syntax

SHOW PROCEDURE CODE proc_name

This statement is a MySQL extension that is available only for servers that have been built with
debugging support. It displays a representation of the internal implementation of the named stored
procedure. A similar statement, SHOW FUNCTION CODE, displays information about stored functions
(see Section 13.7.5.19, “SHOW FUNCTION CODE Syntax”).

To use either statement, you must be the owner of the routine or have SELECT access to the
mysql.proc table.

If the named routine is available, each statement produces a result set. Each row in the result set
corresponds to one “instruction” in the routine. The first column is Pos, which is an ordinal number
beginning with 0. The second column is Instruction, which contains an SQL statement (usually
changed from the original source), or a directive which has meaning only to the stored-routine handler.

mysql> DELIMITER //
mysql> CREATE PROCEDURE p1 ()
 -> BEGIN
 -> DECLARE fanta INT DEFAULT 55;
 -> DROP TABLE t2;
 -> LOOP
 -> INSERT INTO t3 VALUES (fanta);
 -> END LOOP;
 -> END//
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW PROCEDURE CODE p1//
+-----+--+
| Pos | Instruction |
+-----+--+
0	set fanta@0 55
1	stmt 9 "DROP TABLE t2"
2	stmt 5 "INSERT INTO t3 VALUES (fanta)"
3	jump 2
+-----+--+
4 rows in set (0.00 sec)

In this example, the nonexecutable BEGIN and END statements have disappeared, and for the
DECLARE variable_name statement, only the executable part appears (the part where the default is
assigned). For each statement that is taken from source, there is a code word stmt followed by a type
(9 means DROP, 5 means INSERT, and so on). The final row contains an instruction jump 2, meaning
GOTO instruction #2.

13.7.5.28 SHOW PROCEDURE STATUS Syntax

SHOW PROCEDURE STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is a MySQL extension. It returns characteristics of a stored procedure, such as the
database, name, type, creator, creation and modification dates, and character set information. A
similar statement, SHOW FUNCTION STATUS, displays information about stored functions (see
Section 13.7.5.20, “SHOW FUNCTION STATUS Syntax”).

The LIKE clause, if present, indicates which procedure or function names to match. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 20.31, “Extensions
to SHOW Statements”.

SHOW Syntax

1891

mysql> SHOW PROCEDURE STATUS LIKE 'sp1'\G
*************************** 1. row ***************************
 Db: test
 Name: sp1
 Type: PROCEDURE
 Definer: testuser@localhost
 Modified: 2004-08-03 15:29:37
 Created: 2004-08-03 15:29:37
 Security_type: DEFINER
 Comment:
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation is
the collation of the database with which the routine is associated.

You can also get information about stored routines from the ROUTINES table in
INFORMATION_SCHEMA. See Section 20.19, “The INFORMATION_SCHEMA ROUTINES Table”.

13.7.5.29 SHOW PROCESSLIST Syntax

SHOW [FULL] PROCESSLIST

SHOW PROCESSLIST shows you which threads are running. You can also get this information from the
INFORMATION_SCHEMA PROCESSLIST table or the mysqladmin processlist command. If you
have the PROCESS privilege, you can see all threads. Otherwise, you can see only your own threads
(that is, threads associated with the MySQL account that you are using). If you do not use the FULL
keyword, only the first 100 characters of each statement are shown in the Info field.

Process information is also available from the performance_schema.threads table. However,
access to threads does not require a mutex and has minimal impact on server performance.
INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance
consequences because they require a mutex. threads also shows information about background
threads, which INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST do not. This means
that threads can be used to monitor activity the other thread information sources cannot.

The SHOW PROCESSLIST statement is very useful if you get the “too many connections” error
message and want to find out what is going on. MySQL reserves one extra connection to be used by
accounts that have the SUPER privilege, to ensure that administrators should always be able to connect
and check the system (assuming that you are not giving this privilege to all your users).

Threads can be killed with the KILL statement. See Section 13.7.6.4, “KILL Syntax”.

Here is an example of SHOW PROCESSLIST output:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
Id: 1
User: system user
Host:
db: NULL
Command: Connect
Time: 1030455
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 2
User: system user
Host:
db: NULL

SHOW Syntax

1892

Command: Connect
Time: 1004
State: Has read all relay log; waiting for the slave
 I/O thread to update it
Info: NULL
*************************** 3. row ***************************
Id: 3112
User: replikator
Host: artemis:2204
db: NULL
Command: Binlog Dump
Time: 2144
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 4. row ***************************
Id: 3113
User: replikator
Host: iconnect2:45781
db: NULL
Command: Binlog Dump
Time: 2086
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 5. row ***************************
Id: 3123
User: stefan
Host: localhost
db: apollon
Command: Query
Time: 0
State: NULL
Info: SHOW FULL PROCESSLIST
5 rows in set (0.00 sec)

The columns produced by SHOW PROCESSLIST have the following meanings:

• Id

The connection identifier. This is the same type of value displayed in the ID column of the
INFORMATION_SCHEMA.PROCESSLIST table, the PROCESSLIST_ID column of the Performance
Schema threads table, and returned by the CONNECTION_ID() function.

• User

The MySQL user who issued the statement. If this is system user, it refers to a nonclient thread
spawned by the server to handle tasks internally. This could be the I/O or SQL thread used on
replication slaves or a delayed-row handler. unauthenticated user refers to a thread that has
become associated with a client connection but for which authentication of the client user has not yet
been done. event_scheduler refers to the thread that monitors scheduled events. For system
user, there is no host specified in the Host column.

• Host

The host name of the client issuing the statement (except for system user where there is no host).
SHOW PROCESSLIST reports the host name for TCP/IP connections in host_name:client_port
format to make it easier to determine which client is doing what.

• db

The default database, if one is selected, otherwise NULL.

• Command

The type of command the thread is executing. For descriptions for thread commands, see
Section 8.14, “Examining Thread Information”. The value of this column corresponds to the COM_xxx
commands of the client/server protocol and Com_xxx status variables. See Section 5.1.6, “Server
Status Variables”

SHOW Syntax

1893

• Time

The time in seconds that the thread has been in its current state. For a slave SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
slave machine. See Section 17.2.2, “Replication Implementation Details”.

• State

An action, event, or state that indicates what the thread is doing. Descriptions for State values can
be found at Section 8.14, “Examining Thread Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

For the SHOW PROCESSLIST statement, the value of State is NULL.

• Info

The statement the thread is executing, or NULL if it is not executing any statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the Info value shows the SELECT statement.

13.7.5.30 SHOW PROFILE Syntax

SHOW PROFILE [type [, type] ...]
 [FOR QUERY n]
 [LIMIT row_count [OFFSET offset]]

type:
 ALL
 | BLOCK IO
 | CONTEXT SWITCHES
 | CPU
 | IPC
 | MEMORY
 | PAGE FAULTS
 | SOURCE
 | SWAPS

The SHOW PROFILE and SHOW PROFILES statements display profiling information that indicates
resource usage for statements executed during the course of the current session.

Note

These statements are deprecated and will be removed in a future MySQL
release. Use the Performance Schema instead; see Section 21.16.1, “Query
Profiling Using Performance Schema”.

Profiling is controlled by the profiling session variable, which has a default value of 0 (OFF).
Profiling is enabled by setting profiling to 1 or ON:

mysql> SET profiling = 1;

SHOW PROFILES displays a list of the most recent statements sent to the server. The size of the list is
controlled by the profiling_history_size session variable, which has a default value of 15. The
maximum value is 100. Setting the value to 0 has the practical effect of disabling profiling.

All statements are profiled except SHOW PROFILE and SHOW PROFILES, so you will find neither of
those statements in the profile list. Malformed statements are profiled. For example, SHOW PROFILING
is an illegal statement, and a syntax error occurs if you try to execute it, but it will show up in the
profiling list.

SHOW Syntax

1894

SHOW PROFILE displays detailed information about a single statement. Without the FOR QUERY n
clause, the output pertains to the most recently executed statement. If FOR QUERY n is included, SHOW
PROFILE displays information for statement n. The values of n correspond to the Query_ID values
displayed by SHOW PROFILES.

The LIMIT row_count clause may be given to limit the output to row_count rows. If LIMIT is
given, OFFSET offset may be added to begin the output offset rows into the full set of rows.

By default, SHOW PROFILE displays Status and Duration columns. The Status values are like
the State values displayed by SHOW PROCESSLIST, although there might be some minor differences
in interpretion for the two statements for some status values (see Section 8.14, “Examining Thread
Information”).

Optional type values may be specified to display specific additional types of information:

• ALL displays all information

• BLOCK IO displays counts for block input and output operations

• CONTEXT SWITCHES displays counts for voluntary and involuntary context switches

• CPU displays user and system CPU usage times

• IPC displays counts for messages sent and received

• MEMORY is not currently implemented

• PAGE FAULTS displays counts for major and minor page faults

• SOURCE displays the names of functions from the source code, together with the name and line
number of the file in which the function occurs

• SWAPS displays swap counts

Profiling is enabled per session. When a session ends, its profiling information is lost.

mysql> SELECT @@profiling;
+-------------+
| @@profiling |
+-------------+
| 0 |
+-------------+
1 row in set (0.00 sec)

mysql> SET profiling = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> CREATE TABLE T1 (id INT);
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROFILES;
+----------+----------+--------------------------+
| Query_ID | Duration | Query |
+----------+----------+--------------------------+
0	0.000088	SET PROFILING = 1
1	0.000136	DROP TABLE IF EXISTS t1
2	0.011947	CREATE TABLE t1 (id INT)
+----------+----------+--------------------------+
3 rows in set (0.00 sec)

mysql> SHOW PROFILE;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+

SHOW Syntax

1895

checking permissions	0.000040
creating table	0.000056
After create	0.011363
query end	0.000375
freeing items	0.000089
logging slow query	0.000019
cleaning up	0.000005
+----------------------+----------+
7 rows in set (0.00 sec)

mysql> SHOW PROFILE FOR QUERY 1;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
query end	0.000107
freeing items	0.000008
logging slow query	0.000015
cleaning up	0.000006
+--------------------+----------+
4 rows in set (0.00 sec)

mysql> SHOW PROFILE CPU FOR QUERY 2;
+----------------------+----------+----------+------------+
| Status | Duration | CPU_user | CPU_system |
+----------------------+----------+----------+------------+
checking permissions	0.000040	0.000038	0.000002
creating table	0.000056	0.000028	0.000028
After create	0.011363	0.000217	0.001571
query end	0.000375	0.000013	0.000028
freeing items	0.000089	0.000010	0.000014
logging slow query	0.000019	0.000009	0.000010
cleaning up	0.000005	0.000003	0.000002
+----------------------+----------+----------+------------+
7 rows in set (0.00 sec)

Note

Profiling is only partially functional on some architectures. For values that
depend on the getrusage() system call, NULL is returned on systems such
as Windows that do not support the call. In addition, profiling is per process and
not per thread. This means that activity on threads within the server other than
your own may affect the timing information that you see.

You can also get profiling information from the PROFILING table in INFORMATION_SCHEMA. See
Section 20.17, “The INFORMATION_SCHEMA PROFILING Table”. For example, the following queries
produce the same result:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

13.7.5.31 SHOW PROFILES Syntax

SHOW PROFILES

The SHOW PROFILES statement, together with SHOW PROFILE, displays profiling information that
indicates resource usage for statements executed during the course of the current session. For more
information, see Section 13.7.5.30, “SHOW PROFILE Syntax”.

Note

These statements are deprecated and will be removed in a future MySQL
release. Use the Performance Schema instead; see Chapter 21, MySQL
Performance Schema.

SHOW Syntax

1896

13.7.5.32 SHOW RELAYLOG EVENTS Syntax

SHOW RELAYLOG EVENTS
 [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the relay log of a replication slave. If you do not specify 'log_name', the first
relay log is displayed. This statement has no effect on the master.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

Note

Issuing a SHOW RELAYLOG EVENTS with no LIMIT clause could start a very
time- and resource-consuming process because the server returns to the client
the complete contents of the relay log (including all statements modifying data
that have been received by the slave).

Note

Some events relating to the setting of user and system variables are not
included in the output from SHOW RELAYLOG EVENTS. To get complete
coverage of events within a relay log, use mysqlbinlog.

13.7.5.33 SHOW SLAVE HOSTS Syntax

SHOW SLAVE HOSTS

Displays a list of replication slaves currently registered with the master.

SHOW SLAVE HOSTS should be executed on a server that acts as a replication master. The statement
displays information about servers that are or have been connected as replication slaves, with each
row of the result corresponding to one slave server, as shown here:

mysql> SHOW SLAVE HOSTS;
+-----------+-----------+-------+-----------+--------------------------------------+
| Server_id | Host | Port | Master_id | Slave_UUID |
+-----------+-----------+-------+-----------+--------------------------------------+
| 192168010 | iconnect2 | 3306 | 192168011 | 14cb6624-7f93-11e0-b2c0-c80aa9429562 |
| 1921680101 | athena | 3306 | 192168011 | 07af4990-f41f-11df-a566-7ac56fdaf645 |
+------------+-----------+------+-----------+--------------------------------------+

• Server_id: The unique server ID of the slave server, as configured in the slave server's option file,
or on the command line with --server-id=value [2426].

• Host: The host name of the slave server as specified on the slave with the --report-host option.
This can differ from the machine name as configured in the operating system.

• User: The slave server user name as, specified on the slave with the --report-user option.
Statement output includes this column only if the master server is started with the --show-slave-
auth-info option.

• Password: The slave server password as, specified on the slave with the --report-password
option. Statement output includes this column only if the master server is started with the --show-
slave-auth-info option.

• Port: The port on the master to which the slave server is listening, as specified on the slave with the
--report-port option.

A zero in this column means that the slave port (--report-port) was not set.

SHOW Syntax

1897

• Master_id: The unique server ID of the master server that the slave server is replicating from. This
is the server ID of the server on which SHOW SLAVE HOSTS is executed, so this same value is listed
for each row in the result.

• Slave_UUID: The globally unique ID of this slave, as generated on the slave and found in the
slave's auto.cnf file.

13.7.5.34 SHOW SLAVE STATUS Syntax

SHOW SLAVE STATUS [NONBLOCKING # Removed in MySQL 5.7.6]
 [FOR CHANNEL channel]

This statement provides status information on essential parameters of the slave threads. It requires
either the SUPER or REPLICATION CLIENT privilege.

Between MySQL 5.7.1 and MySQL 5.7.5, an optional NONBLOCKING clause could be used. The
NONBLOCKING clause caused SHOW SLAVE STATUS, when run concurrently with STOP SLAVE,
to return without waiting for STOP SLAVE to finish shutting down the slave SQL thread or slave I/
O thread (or both). This option was intended for use in monitoring and other applications where
getting an immediate response from SHOW SLAVE STATUS was more important than ensuring that it
returned the latest data. This option was removed in MySQL 5.7.6 due to locking changes in replication
administrative statements. As of MySQL 5.7.9 the non-blocking behavior of SHOW SLAVE STATUS is
fixed and the option became unnecessary.

If you issue this statement using the mysql client, you can use a \G statement terminator rather than a
semicolon to obtain a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: localhost
 Master_User: root
 Master_Port: 13000
 Connect_Retry: 60
 Master_Log_File: master-bin.000002
 Read_Master_Log_Pos: 1307
 Relay_Log_File: slave-relay-bin.000003
 Relay_Log_Pos: 1508
 Relay_Master_Log_File: master-bin.000002
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 1307
 Relay_Log_Space: 1858
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0

SHOW Syntax

1898

 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1
 Master_UUID: 3e11fa47-71ca-11e1-9e33-c80aa9429562
 Master_Info_File: /var/mysqld.2/data/master.info
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Slave_SQL_Running_State: Slave has read all relay log; waiting for the slave I/O thread to update it
 Master_Retry_Count: 10
 Master_Bind:
 Last_IO_Error_Timestamp:
 Last_SQL_Error_Timestamp:
 Master_SSL_Crl:
 Master_SSL_Crlpath:
 Retrieved_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
 Executed_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
 Auto_Position: 1
 Replicate_Rewrite_DB:
 Channel_name:
1 row in set (0.00 sec)

As of MySQL 5.7.2, the Performance Schema provides tables that expose replication information. This
is similar to the information available from the SHOW SLAVE STATUS statement, but represented in
table form. For details, see Section 21.9.10, “Performance Schema Replication Tables”.

The following list describes the fields returned by SHOW SLAVE STATUS. For additional information
about interpreting their meanings, see Section 17.1.7.1, “Checking Replication Status”.

• Slave_IO_State

A copy of the State field of the SHOW PROCESSLIST output for the slave I/O thread. This
tells you what the thread is doing: trying to connect to the master, waiting for events from the
master, reconnecting to the master, and so on. For a listing of possible states, see Section 8.14.5,
“Replication Slave I/O Thread States”.

• Master_Host

The master host that the slave is connected to.

• Master_User

The user name of the account used to connect to the master.

• Master_Port

The port used to connect to the master.

• Connect_Retry

The number of seconds between connect retries (default 60). This can be set with the CHANGE
MASTER TO statement.

• Master_Log_File

The name of the master binary log file from which the I/O thread is currently reading.

• Read_Master_Log_Pos

The position in the current master binary log file up to which the I/O thread has read.

• Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and executing.

• Relay_Log_Pos

The position in the current relay log file up to which the SQL thread has read and executed.

SHOW Syntax

1899

• Relay_Master_Log_File

The name of the master binary log file containing the most recent event executed by the SQL thread.

• Slave_IO_Running

Whether the I/O thread is started and has connected successfully to the master. Internally, the state
of this thread is represented by one of the following three values:

• MYSQL_SLAVE_NOT_RUN. The slave I/O thread is not running. For this state,
Slave_IO_Running is No.

• MYSQL_SLAVE_RUN_NOT_CONNECT. The slave I/O thread is running, but is not connected
to a replication master. For this state, Slave_IO_Running depends on the server version as
shown in the following table.

MySQL Version Slave_IO_Running

4.1 (4.1.13 and earlier); 5.0 (5.0.11 and earlier) Yes

4.1 (4.1.14 and later); 5.0 (5.0.12 and later) No

5.1 (5.1.45 and earlier) No

5.1 (5.1.46 and later); 5.5; 5.6 Connecting

• MYSQL_SLAVE_RUN_CONNECT. The slave I/O thread is running, and is connected to a
replication master. For this state, Slave_IO_Running is Yes.

The value of the Slave_running system status variable corresponds with this value.

• Slave_SQL_Running

Whether the SQL thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB

The lists of databases that were specified with the --replicate-do-db and --replicate-
ignore-db options, if any.

• Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table,
Replicate_Wild_Ignore_Table

The lists of tables that were specified with the --replicate-do-table, --replicate-ignore-
table, --replicate-wild-do-table, and --replicate-wild-ignore-table options, if
any.

• Last_Errno, Last_Error

These columns are aliases for Last_SQL_Errno and Last_SQL_Error.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

Note

When the slave SQL thread receives an error, it reports the error first, then
stops the SQL thread. This means that there is a small window of time during
which SHOW SLAVE STATUS shows a nonzero value for Last_SQL_Errno
even though Slave_SQL_Running still displays Yes.

• Skip_Counter

The current value of the sql_slave_skip_counter system variable. See Section 13.4.2.5, “SET
GLOBAL sql_slave_skip_counter Syntax”.

SHOW Syntax

1900

• Exec_Master_Log_Pos

The position in the current master binary log file to which the SQL thread has read and executed,
marking the start of the next transaction or event to be processed. You can use this value with
the CHANGE MASTER TO statement's MASTER_LOG_POS option when starting a new slave
from an existing slave, so that the new slave reads from this point. The coordinates given by
(Relay_Master_Log_File, Exec_Master_Log_Pos) in the master's binary log correspond to the
coordinates given by (Relay_Log_File, Relay_Log_Pos) in the relay log.

Inconsistencies in the sequence of transactions from the relay log which have been executed can
cause this value to be a “low-water mark”. In other words, transactions appearing before the position
are guaranteed to have committed, but transactions after the position may have committed or not.
If these gaps need to be corrected, use START SLAVE UNTIL SQL_AFTER_MTS_GAPS. See
Section 17.4.1.34, “Replication and Transaction Inconsistencies” for more information.

• Relay_Log_Space

The total combined size of all existing relay log files.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:

• None if no UNTIL clause was specified

• Master if the slave is reading until a given position in the master's binary log

• Relay if the slave is reading until a given position in its relay log

• SQL_BEFORE_GTIDS if the slave SQL thread is processing transactions until it has reached the
first transaction whose GTID is listed in the gtid_set.

• SQL_AFTER_GTIDS if the slave threads are processing all transactions until the last transaction in
the gtid_set has been processed by both threads.

• SQL_AFTER_MTS_GAPS if a multi-threaded slave's SQL threads are running until no more gaps
are found in the relay log.

Until_Log_File and Until_Log_Pos indicate the log file name and position that define the
coordinates at which the SQL thread stops executing.

For more information on UNTIL clauses, see Section 13.4.2.6, “START SLAVE Syntax”.

• Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert,
Master_SSL_Cipher, Master_SSL_CRL_File, Master_SSL_CRL_Path, Master_SSL_Key,
Master_SSL_Verify_Server_Cert

These fields show the SSL parameters used by the slave to connect to the master, if any.

Master_SSL_Allowed has these values:

• Yes if an SSL connection to the master is permitted

• No if an SSL connection to the master is not permitted

• Ignored if an SSL connection is permitted but the slave server does not have SSL support
enabled

The values of the other SSL-related fields correspond to the values of the MASTER_SSL_CA,
MASTER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL,

SHOW Syntax

1901

MASTER_SSL_CRLPATH, MASTER_SSL_KEY, and MASTER_SSL_VERIFY_SERVER_CERT options to
the CHANGE MASTER TO statement. See Section 13.4.2.1, “CHANGE MASTER TO Syntax”.

• Seconds_Behind_Master

This field is an indication of how “late” the slave is:

• When the slave is actively processing updates, this field shows the difference between the current
timestamp on the slave and the original timestamp logged on the master for the event currently
being processed on the slave.

• When no event is currently being processed on the slave, this value is 0.

In essence, this field measures the time difference in seconds between the slave SQL thread
and the slave I/O thread. If the network connection between master and slave is fast, the slave
I/O thread is very close to the master, so this field is a good approximation of how late the slave
SQL thread is compared to the master. If the network is slow, this is not a good approximation;
the slave SQL thread may quite often be caught up with the slow-reading slave I/O thread, so
Seconds_Behind_Master often shows a value of 0, even if the I/O thread is late compared to the
master. In other words, this column is useful only for fast networks.

This time difference computation works even if the master and slave do not have identical clock
times, provided that the difference, computed when the slave I/O thread starts, remains constant
from then on. Any changes—including NTP updates—can lead to clock skews that can make
calculation of Seconds_Behind_Master less reliable.

In MySQL 5.7, this field is NULL (undefined or unknown) if the slave SQL thread is not running,
or if the SQL thread has consumed all of the relay log and the slave I/O thread is not running. (In
older versions of MySQL, this field was NULL if the slave SQL thread or the slave I/O thread was
not running or was not connected to the master.) If the I/O thread is running but the relay log is
exhausted, Seconds_Behind_Master is set to 0.

The value of Seconds_Behind_Master is based on the timestamps stored in events, which are
preserved through replication. This means that if a master M1 is itself a slave of M0, any event from
M1's binary log that originates from M0's binary log has M0's timestamp for that event. This enables
MySQL to replicate TIMESTAMP successfully. However, the problem for Seconds_Behind_Master
is that if M1 also receives direct updates from clients, the Seconds_Behind_Master value
randomly fluctuates because sometimes the last event from M1 originates from M0 and sometimes is
the result of a direct update on M1.

When using a multi-threaded slave, you should keep in mind that this value is based on
Exec_Master_Log_Pos, and so may not reflect the position of the most recently committed
transaction.

• Last_IO_Errno, Last_IO_Error

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_IO_Error value is
not empty, the error values also appear in the slave's error log.

I/O error information includes a timestamp showing when the most recent I/O thread
error occurred. This timestamp uses the format YYMMDD HH:MM:SS, and appears in the
Last_SQL_Error_Timestamp column.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

• Last_SQL_Errno, Last_SQL_Error

The error number and error message of the most recent error that caused the SQL thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_SQL_Error value
is not empty, the error values also appear in the slave's error log.

SHOW Syntax

1902

If the slave is multi-threaded, the SQL thread is the coordinator for worker threads. In this case, as of
MySQL 5.7.2, the Last_SQL_Error field shows exactly what the Last_Error_Message column
in the Performance Schema replication_applier_status_by_coordinator table shows.
The field value is modified to suggest that there may be more failures in the other worker threads
which can be seen in the replication_applier_status_by_worker table that shows each
worker thread's status. If that table is not available, the slave error log can be used. The log or the
replication_applier_status_by_worker table should also be used to learn more about the
failure shown by SHOW SLAVE STATUS or the coordinator table.

SQL error information includes a timestamp showing when the most recent SQL thread
error occurred. This timestamp uses the format YYMMDD HH:MM:SS, and appears in the
Last_SQL_Error_Timestamp column.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

In MySQL 5.7, all error codes and messages displayed in the Last_SQL_Errno and
Last_SQL_Error columns correspond to error values listed in Section B.3, “Server Error Codes
and Messages”. This was not always true in previous versions. (Bug #11760365, Bug #52768)

• Replicate_Ignore_Server_Ids

In MySQL 5.7, you set a slave to ignore events from 0 or more masters using the
IGNORE_SERVER_IDS option of the CHANGE MASTER TO statement. By default this is blank, and
is usually modified only when using a circular or other multi-master replication setup. The message
shown for Replicate_Ignore_Server_Ids when not blank consists of a comma-delimited list of
one or more numbers, indicating the server IDs to be ignored. For example:

 Replicate_Ignore_Server_Ids: 2, 6, 9

Note

Ignored_server_ids also shows the server IDs to be ignored, but is a
space-delimited list, which is preceded by the total number of server IDs to
be ignored. For example, if a CHANGE MASTER TO statement containing the
IGNORE_SERVER_IDS = (2,6,9) option has been issued to tell a slave
to ignore masters having the server ID 2, 6, or 9, that information appears as
shown here:

 Ignored_server_ids: 3, 2, 6, 9

The first number (in this case 3) shows the number of server IDs being
ignored.

Replicate_Ignore_Server_Ids filtering is performed by the I/O thread, rather than by the SQL
thread, which means that events which are filtered out are not written to the relay log. This differs
from the filtering actions taken by server options such --replicate-do-table, which apply to the
SQL thread.

• Master_Server_Id

The server_id value from the master.

• Master_UUID

The server_uuid [2426] value from the master.

• Master_Info_File

The location of the master.info file.

SHOW Syntax

1903

• SQL_Delay

The number of seconds that the slave must lag the master.

• SQL_Remaining_Delay

When Slave_SQL_Running_State is Waiting until MASTER_DELAY seconds after
master executed event, this field contains the number of delay seconds remaining. At other
times, this field is NULL.

• Slave_SQL_Running_State

The state of the SQL thread (analogous to Slave_IO_State). The value is identical to the State
value of the SQL thread as displayed by SHOW PROCESSLIST. Section 8.14.6, “Replication Slave
SQL Thread States”, provides a listing of possible states

• Master_Retry_Count

The number of times the slave can attempt to reconnect to the master in the event of a lost
connection. This value can be set using the MASTER_RETRY_COUNT option of the CHANGE MASTER
TO statement (preferred) or the older --master-retry-count server option (still supported for
backward compatibility).

• Master_Bind

The network interface that the slave is bound to, if any. This is set using the MASTER_BIND option for
the CHANGE MASTER TO statement.

• Last_IO_Error_Timestamp

A timestamp in YYMMDD HH:MM:SS format that shows when the most recent I/O error took place.

• Last_SQL_Error_Timestamp

A timestamp in YYMMDD HH:MM:SS format that shows when the last SQL error occurred.

• Retrieved_Gtid_Set

The set of global transaction IDs corresponding to all transactions received by this slave. Empty if
GTIDs are not in use. See GTID Sets for more information.

This is the set of all GTIDs that exist or have existed in the relay logs. Each GTID is added as soon
as the Gtid_log_event is received. This can cause partially transmitted transactions to have their
GTIDs included in the set.

When all relay logs are lost due to executing RESET SLAVE or CHANGE MASTER TO, or due to the
effects of the --relay-log-recovery option, the set is cleared. When relay_log_purge = 1,
the newest relay log is always kept, and the set is not cleared.

Prior to MySQL 5.7.1, this value was printed using uppercase. In MySQL 5.7.1 and later, it is always
printed using lowercase. (Bug #15869441)

• Executed_Gtid_Set

The set of global transaction IDs written in the binary log. This is the same as the value for the global
gtid_executed system variable on this server, as well as the value for Executed_Gtid_Set in
the output of SHOW MASTER STATUS on this server. Empty if GTIDs are not in use. See GTID Sets
for more information.

Prior to MySQL 5.7.1, this value was printed using uppercase. In MySQL 5.7.1 and later, it is always
printed using lowercase. (Bug #15869441)

• Auto_Position

SHOW Syntax

1904

1 if autopositioning is in use; otherwise 0.

This column was added in MySQL 5.7.1. (Bug #15992220)

• Replicate_Rewrite_DB

Beginning with MySQL 5.7.3, the Replicate_Rewrite_DB value displays any replication filtering
rules that were specified. For example, if the following replication filter rule was set:

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB=((db1,db2), (db3,db4));

the Replicate_Rewrite_DB value displays:

Replicate_Rewrite_DB: (db1,db2),(db3,db4)

For more information, see Section 13.4.2.2, “CHANGE REPLICATION FILTER Syntax”.

• Channel_name

The replication channel which is being displayed. There is always a default replication channel,
and more replication channels can be added. See Section 17.2.3, “Replication Channels” for more
information.

13.7.5.35 SHOW STATUS Syntax

SHOW [GLOBAL | SESSION] STATUS
 [LIKE 'pattern' | WHERE expr]

Note

As of MySQL 5.7.6, the value of the show_compatibility_56 system
variable affects the information available from and privileges required for the
statement described here. For details, see the description of that variable in
Section 5.1.4, “Server System Variables”.

SHOW STATUS provides server status information (see Section 5.1.6, “Server Status Variables”). This
statement does not require any privilege. It requires only the ability to connect to the server.

Status variable information is also available from these sources:

• Performance Schema tables. See Section 21.9.13, “Performance Schema Status Variable Tables”.

• The GLOBAL_STATUS and SESSION_STATUS tables. See Section 20.9, “The
INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”.

• The mysqladmin extended-status command. See Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”.

For SHOW STATUS, a LIKE clause, if present, indicates which variable names to match. A WHERE
clause can be given to select rows using more general conditions, as discussed in Section 20.31,
“Extensions to SHOW Statements”.

SHOW STATUS accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays the global status values. A global status variable
may represent status for some aspect of the server itself (for example, Aborted_connects),
or the aggregated status over all connections to MySQL (for example, Bytes_received and
Bytes_sent). If a variable has no global value, the session value is displayed.

• With a SESSION modifier, the statement displays the status variable values for the current
connection. If a variable has no session value, the global value is displayed. LOCAL is a synonym for
SESSION.

SHOW Syntax

1905

• If no modifier is present, the default is SESSION.

The scope for each status variable is listed at Section 5.1.6, “Server Status Variables”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the
global Created_tmp_tables value.

Partial output is shown here. The list of names and values may differ for your server. The meaning of
each variable is given in Section 5.1.6, “Server Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_tables	8340
Created_tmp_files	60
...	
Open_tables	1
Open_files	2
Open_streams	0
Opened_tables	44600
Questions	2026873
...	
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_created	30022
Threads_connected	1
Threads_running	1
Uptime	80380
+--------------------------+------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern:

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040
Key_write_requests	7589728
Key_writes	3813196
+--------------------+----------+

13.7.5.36 SHOW TABLE STATUS Syntax

SHOW TABLE STATUS [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLE STATUS works likes SHOW TABLES, but provides a lot of information about each
non-TEMPORARY table. You can also get this list using the mysqlshow --status db_name
command. The LIKE clause, if present, indicates which table names to match. The WHERE clause can
be given to select rows using more general conditions, as discussed in Section 20.31, “Extensions to
SHOW Statements”.

This statement also displays information about views.

SHOW TABLE STATUS output has the following columns:

SHOW Syntax

1906

• Name

The name of the table.

• Engine

The storage engine for the table. See Chapter 15, Alternative Storage Engines.

• Version

The version number of the table's .frm file.

• Row_format

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM
tables, (Dynamic corresponds to what myisamchk -dvv reports as Packed. The format of InnoDB
tables is reported as Redundant or Compact. For the Barracuda file format of the InnoDB
Plugin, the format may be Compressed or Dynamic.

• Rows

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other
storage engines, such as InnoDB, this value is an approximation, and may vary from the actual
value by as much as 40 to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.

The Rows value is NULL for tables in the INFORMATION_SCHEMA database.

• Avg_row_length

The average row length.

• Data_length

The length of the data file.

• Max_data_length

The maximum length of the data file. This is the total number of bytes of data that can be stored in
the table, given the data pointer size used.

• Index_length

The length of the index file.

• Data_free

The number of allocated but unused bytes.

This information is also shown for InnoDB tables (previously, it was in the Comment value). InnoDB
tables report the free space of the tablespace to which the table belongs. For a table located in
the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of bytes in completely free extents minus a safety margin. Even if free space
displays as 0, it may be possible to insert rows as long as new extents need not be allocated.

For partitioned tables, this value is only an estimate and may not be absolutely correct.
A more accurate method of obtaining this information in such cases is to query the
INFORMATION_SCHEMA.PARTITIONS table, as shown in this example:

SELECT SUM(DATA_FREE)
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_SCHEMA = 'mydb'
 AND TABLE_NAME = 'mytable';

SHOW Syntax

1907

For more information, see Section 20.14, “The INFORMATION_SCHEMA PARTITIONS Table”.

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

• Update_time

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its system tablespace and the data file timestamp does not apply.
Even with file-per-table mode with each InnoDB table in a separate .ibd file, change buffering can
delay the write to the data file, so the file modification time is different from the time of the last insert,
update, or delete. For MyISAM, the data file timestamp is used; however, on Windows the timestamp
is not updated by updates so the value is inaccurate.

• Check_time

When the table was last checked. Not all storage engines update this time, in which case the value is
always NULL.

• Collation

The table's character set and collation.

• Checksum

The live checksum value (if any).

• Create_options

Extra options used with CREATE TABLE. The original options supplied when CREATE TABLE
is called are retained and the options reported here may differ from the active table settings and
options.

• Comment

The comment used when creating the table (or information as to why MySQL could not access the
table information).

For MEMORY tables, the Data_length, Max_data_length, and Index_length values approximate
the actual amount of allocated memory. The allocation algorithm reserves memory in large amounts to
reduce the number of allocation operations.

For views, all the fields displayed by SHOW TABLE STATUS are NULL except that Name indicates the
view name and Comment says view.

13.7.5.37 SHOW TABLES Syntax

SHOW [FULL] TABLES [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using
the mysqlshow db_name command. The LIKE clause, if present, indicates which table names to
match. The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 20.31, “Extensions to SHOW Statements”.

Matching performed by the LIKE clause is dependent on the setting of the
lower_case_table_names system variable.

SHOW Syntax

1908

This statement also lists any views in the database. The FULL modifier is supported such that SHOW
FULL TABLES displays a second output column. Values for the second column are BASE TABLE for a
table and VIEW for a view.

If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES
or mysqlshow db_name.

13.7.5.38 SHOW TRIGGERS Syntax

SHOW TRIGGERS [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TRIGGERS lists the triggers currently defined for tables in a database (the default database
unless a FROM clause is given). This statement returns results only for databases and tables for which
you have the TRIGGER privilege. The LIKE clause, if present, indicates which table names to match
(not trigger names) and causes the statement to display triggers for those tables. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 20.31, “Extensions
to SHOW Statements”.

For the trigger ins_sum as defined in Section 19.3, “Using Triggers”, the output of this statement is as
shown here:

mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************
 Trigger: ins_sum
 Event: INSERT
 Table: account
 Statement: SET @sum = @sum + NEW.amount
 Timing: BEFORE
 Created: 2013-07-09 10:39:34.96
 sql_mode: NO_ENGINE_SUBSTITUTION
 Definer: me@localhost
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

SHOW TRIGGERS output has the following columns:

• Trigger: The trigger name.

• Event: The type of operation that causes trigger activation. The value is 'INSERT', 'UPDATE', or
'DELETE'.

• Table: The table for which the trigger is defined.

• Statement: The trigger body; that is, the statement executed when the trigger activates.

• Timing: Whether the trigger activates before or after the triggering event. The value is 'BEFORE' or
'AFTER'.

• Created: The date and time when the trigger was created. This is a TIMESTAMP(2) value (with
a fractional part in hundredths of seconds) for triggers created in MySQL 5.7.2 or later, NULL for
triggers created prior to 5.7.2.

• sql_mode: The SQL mode in effect when the trigger executes.

• Definer: The account of the user who created the trigger, in 'user_name'@'host_name' format.

• character_set_client: The session value of the character_set_client system variable
when the trigger was created.

• collation_connection: The session value of the collation_connection system variable
when the trigger was created.

SHOW Syntax

1909

• Database Collation: The collation of the database with which the trigger is associated.

You can also obtain information about trigger objects from INFORMATION_SCHEMA, which contains a
TRIGGERS table. See Section 20.27, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.39 SHOW VARIABLES Syntax

SHOW [GLOBAL | SESSION] VARIABLES
 [LIKE 'pattern' | WHERE expr]

Note

As of MySQL 5.7.6, the value of the show_compatibility_56 system
variable affects the information available from and privileges required for the
statement described here. For details, see the description of that variable in
Section 5.1.4, “Server System Variables”.

SHOW VARIABLES shows the values of MySQL system variables (see Section 5.1.4, “Server System
Variables”). This statement does not require any privilege. It requires only the ability to connect to the
server.

System variable information is also available from these sources:

• Performance Schema tables. See Section 21.9.12, “Performance Schema System Variable Tables”.

• The GLOBAL_VARIABLES and SESSION_VARIABLES tables. See Section 20.10, “The
INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”.

• The mysqladmin variables command. See Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”.

For SHOW VARIABLES, a LIKE clause, if present, indicates which variable names to match. A WHERE
clause can be given to select rows using more general conditions, as discussed in Section 20.31,
“Extensions to SHOW Statements”.

SHOW VARIABLES accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays global system variable values. These are the values
used to initialize the corresponding session variables for new connections to MySQL. If a variable
has no global value, no value is displayed.

• With a SESSION modifier, the statement displays the system varaible values that are in effect for
the current connection. If a variable has no session value, the global value is displayed. LOCAL is a
synonym for SESSION.

• If no modifier is present, the default is SESSION.

The scope for each system variable is listed at Section 5.1.4, “Server System Variables”.

SHOW VARIABLES is subject to a version-dependent display-width limit. For variables with very long
values that are not completely displayed, use SELECT as a workaround. For example:

SELECT @@GLOBAL.innodb_data_file_path;

Most system variables can be set at server startup (read-only variables such as version_comment
are exceptions). Many can be changed at runtime with the SET statement. See Section 5.1.5, “Using
System Variables”, and Section 13.7.4, “SET Syntax”.

Partial output is shown here. The list of names and values may differ for your server. Section 5.1.4,
“Server System Variables”, describes the meaning of each variable, and Section 8.12.2, “Tuning Server
Parameters”, provides information about tuning them.

SHOW Syntax

1910

mysql> SHOW VARIABLES;
+---+---------------------------+
| Variable_name | Value |
+---+---------------------------+
auto_increment_increment	1
auto_increment_offset	1
autocommit	ON
automatic_sp_privileges	ON
back_log	50
basedir	/home/jon/bin/mysql-5.5
big_tables	OFF
binlog_cache_size	32768
binlog_direct_non_transactional_updates	OFF
binlog_format	STATEMENT
binlog_stmt_cache_size	32768
bulk_insert_buffer_size	8388608
...	
max_allowed_packet	4194304
max_binlog_cache_size	18446744073709547520
max_binlog_size	1073741824
max_binlog_stmt_cache_size	18446744073709547520
max_connect_errors	100
max_connections	151
max_delayed_threads	20
max_error_count	64
max_heap_table_size	16777216
max_insert_delayed_threads	20
max_join_size	18446744073709551615
...

thread_handling	one-thread-per-connection
thread_stack	262144
time_format	%H:%i:%s
time_zone	SYSTEM
timestamp	1316689732
tmp_table_size	16777216
tmpdir	/tmp
transaction_alloc_block_size	8192
transaction_prealloc_size	4096
tx_isolation	REPEATABLE-READ
unique_checks	ON
updatable_views_with_limit	YES
version	5.5.17-log
version_comment	Source distribution
version_compile_machine	x86_64
version_compile_os	Linux
wait_timeout	28800
warning_count	0
+---+---------------------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern. To obtain the row for a specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because “_” is a wildcard that matches any single character, you should escape it as “_” to match it
literally. In practice, this is rarely necessary.

13.7.5.40 SHOW WARNINGS Syntax

SHOW Syntax

1911

SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS is a diagnostic statement that displays information about the conditions (errors,
warnings, and notes) resulting from executing a statement in the current session. Warnings are
generated for DML statements such as INSERT, UPDATE, and LOAD DATA INFILE as well as DDL
statements such as CREATE TABLE and ALTER TABLE.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

SHOW WARNINGS is also used following EXPLAIN EXTENDED, to display the extra information
generated by EXPLAIN when the EXTENDED keyword is used. See Section 8.8.3, “EXPLAIN
EXTENDED Output Format”.

As of MySQL 5.7.2, SHOW WARNINGS displays information about the conditions resulting from
execution of the most recent nondiagnostic statement in the current session. If the most recent
statement resulted in an error during parsing, SHOW WARNINGS shows the resulting conditions,
regardless of statement type (diagnostic or nondiagnostic).

Before MySQL 5.7.2, SHOW WARNINGS displays information about the conditions resulting from the
most recent statement in the current session that generated messages. It shows nothing if the most
recent statement used a table and generated no messages. (That is, statements that use a table but
generate no messages clear the message list.) Statements that do not use tables and do not generate
messages have no effect on the message list.

The SHOW COUNT(*) WARNINGS diagnostic statement displays the total number of errors, warnings,
and notes. You can also retrieve this number from the warning_count system variable:

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

A difference in these statements is that the first is a diagnostic statement that does not clear the
message list. The second, because it is a SELECT statement is considered nondiagnostic and, as of
MySQL 5.7.2, does clear the message list.

A related diagnostic statement, SHOW ERRORS, shows only error conditions (it excludes warnings
and notes), and SHOW COUNT(*) ERRORS statement displays the total number of errors. See
Section 13.7.5.17, “SHOW ERRORS Syntax”. GET DIAGNOSTICS can be used to examine information
for individual conditions. See Section 13.6.7.3, “GET DIAGNOSTICS Syntax”.

Here is a simple example that shows data-conversion warnings for INSERT:

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4));
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t1 VALUES(10,'mysql'), (NULL,'test'), (300,'xyz');
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1265
Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
 Level: Warning
 Code: 1048
Message: Column 'a' cannot be null
*************************** 3. row ***************************
 Level: Warning
 Code: 1264
Message: Out of range value for column 'a' at row 3
3 rows in set (0.00 sec)

SHOW Syntax

1912

The max_error_count system variable controls the maximum number of error, warning, and note
messages for which the server stores information, and thus the number of messages that SHOW
WARNINGS displays. To change the number of messages the server can store, change the value of
max_error_count. The default is 64.

max_error_count controls only how many messages are stored, not how many are counted. The
value of warning_count is not limited by max_error_count, even if the number of messages
generated exceeds max_error_count. The following example demonstrates this. The ALTER TABLE
statement produces three warning messages (strict SQL mode is disabled for the example to prevent
an error from occuring after a single conversion issue). Only one message is stored and displayed
because max_error_count has been set to 1, but all three are counted (as shown by the value of
warning_count):

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> SET max_error_count=1, sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |
+-----------------+
1 row in set (0.01 sec)

To disable message storage, set max_error_count to 0. In this case, warning_count still indicates
how many warnings occurred, but messages are not stored and cannot be displayed.

The sql_notes system variable controls whether note messages increment warning_count and
whether the server stores them. By default, sql_notes is 1, but if set to 0, notes do not increment
warning_count and the server does not store them:

mysql> SET sql_notes = 1;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

mysql> SET sql_notes = 0;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW WARNINGS;
Empty set (0.00 sec)

Other Administrative Statements

1913

The MySQL server sends to each client a count indicating the total number of errors, warnings, and
notes resulting from the most recent statement executed by that client. From the C API, this value can
be obtained by calling mysql_warning_count(). See Section 23.8.7.78, “mysql_warning_count()”.

In the mysql client, you can enable and disable automatic warnings display using the warnings
and nowarning commands, respectively, or their shortcuts, \W and \w (see Section 4.5.1.2, “mysql
Commands”). For example:

mysql> \W
Show warnings enabled.
mysql> SELECT 1/0;
+------+
| 1/0 |
+------+
| NULL |
+------+
1 row in set, 1 warning (0.03 sec)

Warning (Code 1365): Division by 0
mysql> \w
Show warnings disabled.

13.7.6 Other Administrative Statements

13.7.6.1 BINLOG Syntax

BINLOG 'str'

BINLOG is an internal-use statement. It is generated by the mysqlbinlog program as the printable
representation of certain events in binary log files. (See Section 4.6.7, “mysqlbinlog — Utility for
Processing Binary Log Files”.) The 'str' value is a base 64-encoded string the that server decodes
to determine the data change indicated by the corresponding event. This statement requires the SUPER
privilege.

This statement can execute only format description events and row events.

13.7.6.2 CACHE INDEX Syntax

CACHE INDEX
 tbl_index_list [, tbl_index_list] ...
 [PARTITION (partition_list | ALL)]
 IN key_cache_name

tbl_index_list:
 tbl_name [[INDEX|KEY] (index_name[, index_name] ...)]

partition_list:
 partition_name[, partition_name][, ...]

The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for MyISAM
tables. After the indexes have been assigned, they can be preloaded into the cache if desired with
LOAD INDEX INTO CACHE.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named
hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

Other Administrative Statements

1914

The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should
be assigned to the cache. The current implementation assigns all the table's indexes to the cache, so
there is no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a
parameter setting statement or in the server parameter settings. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters can be accessed as members of a structured system variable. See
Section 5.1.5.1, “Structured System Variables”.

A key cache must exist before you can assign indexes to it:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it become assigned to the default key cache
again.

Index assignment affects the server globally: If one client assigns an index to a given cache, this cache
is used for all queries involving the index, no matter which client issues the queries.

In MySQL 5.7, this statement is also supported for partitioned MyISAM tables. You can assign one
or more indexes for one, several, or all partitions to a given key cache. For example, you can do the
following:

CREATE TABLE pt (c1 INT, c2 VARCHAR(50), INDEX i(c1))
 ENGINE=MyISAM
 PARTITION BY HASH(c1)
 PARTITIONS 4;

SET GLOBAL kc_fast.key_buffer_size = 128 * 1024;
SET GLOBAL kc_slow.key_buffer_size = 128 * 1024;

CACHE INDEX pt PARTITION (p0) IN kc_fast;
CACHE INDEX pt PARTITION (p1, p3) IN kc_slow;

The previous set of statements performs the following actions:

• Creates a partitioned table with 4 partitions; these partitions are automatically named p0, ..., p3; this
table has an index named i on column c1.

• Creates 2 key caches named kc_fast and kc_slow

• Assigns the index for partition p0 to the kc_fast key cache and the index for partitions p1 and p3
to the kc_slow key cache; the index for the remaining partition (p2) uses the server's default key
cache.

If you wish instead to assign the indexes for all partitions in table pt to a single key cache named
kc_all, you can use either one of the following 2 statements:

CACHE INDEX pt PARTITION (ALL) IN kc_all;

CACHE INDEX pt IN kc_all;

The two statements just shown are equivalent, and issuing either one of them has exactly the same
effect. In other words, if you wish to assign indexes for all partitions of a partitioned table to the same
key cache, then the PARTITION (ALL) clause is optional.

When assigning indexes for multiple partitions to a key cache, the partitions do not have to be
contiguous, and you are not required to list their names in any particular order. Indexes for any

Other Administrative Statements

1915

partitions that are not explicitly assigned to a key cache automatically use the server's default key
cache.

In MySQL 5.7, index preloading is also supported for partitioned MyISAM tables. For more information,
see Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

13.7.6.3 FLUSH Syntax

FLUSH [NO_WRITE_TO_BINLOG | LOCAL]
 flush_option [, flush_option] ...

The FLUSH statement has several variant forms that clear or reload various internal caches, flush
tables, or acquire locks. To execute FLUSH, you must have the RELOAD privilege. Specific flush options
might require additional privileges, as described later.

By default, the server writes FLUSH statements to the binary log so that they replicate to replication
slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

Note

FLUSH LOGS, FLUSH TABLES WITH READ LOCK (with or without a table
list), and FLUSH TABLES tbl_name ... FOR EXPORT are not written to the
binary log in any case because they would cause problems if replicated to a
slave.

Sending a SIGHUP signal to the server causes several flush operations to occur that are similar to
various forms of the FLUSH statement. See Section 5.1.11, “Server Response to Signals”.

The FLUSH statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an
Implicit Commit”.

The RESET statement is similar to FLUSH. See Section 13.7.6.6, “RESET Syntax”, for information about
using the RESET statement with replication.

flush_option can be any of the following items.

• DES_KEY_FILE

Reloads the DES keys from the file that was specified with the --des-key-file option at server
startup time.

• HOSTS

Empties the host cache. You should flush the host cache if some of your hosts change IP address
or if the error message Host 'host_name' is blocked occurs. (See Section B.5.2.6, “Host
'host_name' is blocked”.) When more than max_connect_errors errors occur successively for
a given host while connecting to the MySQL server, MySQL assumes that something is wrong and
blocks the host from further connection requests. Flushing the host cache enables further connection
attempts from the host. The default value of max_connect_errors is 100. To avoid this error
message, start the server with max_connect_errors set to a large value.

• [log_type] LOGS | RELAY LOGS [channel_option]

With no log_type option, FLUSH LOGS closes and reopens all log files. If binary logging is enabled,
the sequence number of the binary log file is incremented by one relative to the previous file.

FLUSH LOGS has no effect on tables used for the general query log or for the slow query log (see
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).

Other Administrative Statements

1916

With a log_type option, only the specified log type is flushed. These log_type options are
permitted:

• BINARY closes and reopens the binary log files. If binary logging is enabled, the sequence number
of the binary log file is incremented by one relative to the previous file.

• ENGINE closes and reopens any flushable logs for installed storage engines. This causes InnoDB
to flush its logs to disk.

• ERROR closes and reopens the error log file.

• GENERAL closes and reopens the general query log file.

• RELAY closes and reopens the relay log files. If binary logging is enabled, the sequence number of
the binary log file is incremented by one relative to the previous file.

The FOR CHANNEL channel clause added in MySQL 5.7.6 enables you to choose which
replication channel to apply a FLUSH RELAY LOGS statement to. If no clause is set and no extra
replication channels exist, the statement applies to the default channel and behaves the same
as versions of MySQL prior to 5.7.6. If multiple replication channels exist and no clause is set,
all replication channels are flushed. Execute a FLUSH RELAY LOGS FOR CHANNEL channel
statement to flush a specific replication channel's relay log. See Section 17.2.3, “Replication
Channels” for more information.

Note

The FOR CHANNEL channel clause can only be used with the RELAY
LOGS log_type.

• SLOW closes and reopens the slow query log file.

• OPTIMIZER_COSTS

Rereads the cost model tables so that the optimizer starts using the current cost estimates stored
in them. The server writes a warning to the error log for any unrecognized entries. (For information
about these tables, see Section 8.9.5, “The Optimizer Cost Model”.) This operation affects only
sessions that begin subsequent to the flush. Existing sessions continue to use the cost estimates
that were current when they began.

This option was added in MySQL 5.7.5.

• PRIVILEGES

Reloads the privileges from the grant tables in the mysql database.

The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER,
and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE,
DROP USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes
many instances of the statements that cause caching, there will be an increase in memory use. This
cached memory can be freed with FLUSH PRIVILEGES.

• QUERY CACHE

Defragment the query cache to better utilize its memory. FLUSH QUERY CACHE does not remove
any queries from the cache, unlike FLUSH TABLES or RESET QUERY CACHE.

• STATUS

Other Administrative Statements

1917

Note

As of MySQL 5.7.6, the value of the show_compatibility_56 system
variable affects the operation of this option. For details, see the description of
that variable in Section 5.1.4, “Server System Variables”.

This option adds the current thread's session status variable values to the global values and resets
the session values to zero. Some global variables may be reset to zero as well. It also resets the
counters for key caches (default and named) to zero and sets Max_used_connections to the
current number of open connections. This is something you should use only when debugging a
query. See Section 1.7, “How to Report Bugs or Problems”.

• TABLES

FLUSH TABLES flushes tables, and, depending on the variant used, acquires locks. The permitted
syntax is discussed later in this section.

• USER_RESOURCES

Resets all per-hour user resources to zero. This enables clients that have reached their hourly
connection, query, or update limits to resume activity immediately. FLUSH USER_RESOURCES does
not apply to the limit on maximum simultaneous connections. See Section 6.3.4, “Setting Account
Resource Limits”.

The mysqladmin utility provides a command-line interface to some flush operations, using commands
such as flush-hosts, flush-logs, flush-privileges, flush-status, and flush-tables.
See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.

Note

It is not possible to issue FLUSH statements within stored functions or triggers.
However, you may use FLUSH in stored procedures, so long as these are
not called from stored functions or triggers. See Section C.1, “Restrictions on
Stored Programs”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

FLUSH TABLES Syntax

FLUSH TABLES has several forms, described following. If any variant of the TABLES option is used in a
FLUSH statement, it must be the only option used. FLUSH TABLE is a synonym for FLUSH TABLES.

• FLUSH TABLES

Closes all open tables, forces all tables in use to be closed, and flushes the query cache. FLUSH
TABLES also removes all query results from the query cache, like the RESET QUERY CACHE
statement.

In MySQL 5.7, FLUSH TABLES is not permitted when there is an active LOCK TABLES ... READ.
To flush and lock tables, use FLUSH TABLES tbl_name ... WITH READ LOCK instead.

• FLUSH TABLES tbl_name [, tbl_name] ...

With a list of one or more comma-separated table names, this statement is like FLUSH TABLES with
no names except that the server flushes only the named tables. No error occurs if a named table
does not exist.

• FLUSH TABLES WITH READ LOCK

Other Administrative Statements

1918

Closes all open tables and locks all tables for all databases with a global read lock. This is a very
convenient way to get backups if you have a file system such as Veritas or ZFS that can take
snapshots in time. Use UNLOCK TABLES to release the lock.

FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits:

• UNLOCK TABLES implicitly commits any active transaction only if any tables currently have been
locked with LOCK TABLES. The commit does not occur for UNLOCK TABLES following FLUSH
TABLES WITH READ LOCK because the latter statement does not acquire table locks.

• Beginning a transaction causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock
acquired with FLUSH TABLES WITH READ LOCK.

FLUSH TABLES WITH READ LOCK does not prevent the server from inserting rows into the log
tables (see Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).

• FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK

This statement flushes and acquires read locks for the named tables. The statement first acquires
exclusive metadata locks for the tables, so it waits for transactions that have those tables open to
complete. Then the statement flushes the tables from the table cache, reopens the tables, acquires
table locks (like LOCK TABLES ... READ), and downgrades the metadata locks from exclusive to
shared. After the statement acquires locks and downgrades the metadata locks, other sessions can
read but not modify the tables.

Because this statement acquires table locks, you must have the LOCK TABLES privilege for each
table, in addition to the RELOAD privilege that is required to use any FLUSH statement.

This statement applies only to existing base tables. If a name refers to a base table, that
table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an
ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

Use UNLOCK TABLES to release the locks, LOCK TABLES to release the locks and acquire other
locks, or START TRANSACTION to release the locks and begin a new transaction.

This variant of FLUSH enables tables to be flushed and locked in a single operation. It provides a
workaround for the restriction in MySQL 5.7 that FLUSH TABLES is not permitted when there is an
active LOCK TABLES ... READ.

This statement does not perform an implicit UNLOCK TABLES, so an error results if you use the
statement while there is any active LOCK TABLES or use it a second time without first releasing the
locks acquired.

If a flushed table was opened with HANDLER, the handler is implicitly flushed and loses its position.

• FLUSH TABLES tbl_name [, tbl_name] ... FOR EXPORT

This FLUSH TABLES variant applies to InnoDB tables. It ensures that changes to the named tables
have been flushed to disk so that binary table copies can be made while the server is running.

The statement works like this:

1. It acquires shared metadata locks for the named tables. The statement blocks as long as other
sessions have active transactions that have modified those tables or hold table locks for them.
When the locks have been acquired, the statement blocks transactions that attempt to update the
tables while permitting read-only operations to continue.

Other Administrative Statements

1919

2. It checks whether all storage engines for the tables support FOR EXPORT. If any do not, an
ER_ILLEGAL_HA error occurs and the statement fails.

3. The statement notifies the storage engine for each table to make the table ready for export. The
storage engine must ensure that any pending changes are written to disk.

4. The statement puts the session in lock-tables mode so that the metadata locks acquired earlier
are not released when the FOR EXPORT statement completes.

The FLUSH TABLES ... FOR EXPORT statement requires that you have the SELECT privilege
for each table. Because this statement acquires table locks, you must also have the LOCK TABLES
privilege for each table, in addition to the RELOAD privilege that is required to use any FLUSH
statement.

This statement applies only to existing base tables. If a name refers to a base table, that
table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an
ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

InnoDB supports FOR EXPORT for tables that have their own .ibd file file (that is, tables that were
created with the innodb_file_per_table setting enabled). InnoDB ensures when notified by
the FOR EXPORT statement that any changes have been flushed to disk. This permits a binary copy
of table contents to be made while the FOR EXPORT statement is in effect because the .ibd file is
transaction consistent and can be copied while the server is running. FOR EXPORT does not apply to
InnoDB system tablespace files, or to InnoDB tables that have any FULLTEXT indexes.

FLUSH TABLES ...FOR EXPORT does not work with partitioned InnoDB tables prior to MySQL
5.7.4, but is supported for such tables in MySQL 5.7.4 and later. (Bug #16943907)

When notified by FOR EXPORT, InnoDB writes to disk certain kinds of data that is normally held
in memory or in separate disk buffers outside the tablespace files. For each table, InnoDB also
produces a file named table_name.cfg in the same database directory as the table. The .cfg file
contains metadata needed to reimport the tablespace files later, into the same or different server.

When the FOR EXPORT statement completes, InnoDB will have flushed all dirty pages to the table
data files. Any change buffer entries are merged prior to flushing. At this point, the tables are locked
and quiescent: The tables are in a transactionally consistent state on disk and you can copy the
.ibd tablespace files along with the corresponding .cfg files to get a consistent snapshot of those
tables.

For the procedure to reimport the copied table data into a MySQL instance, see Section 14.4.6,
“Copying File-Per-Table Tablespaces to Another Server”.

After you are done with the tables, use UNLOCK TABLES to release the locks, LOCK TABLES to
release the locks and acquire other locks, or START TRANSACTION to release the locks and begin a
new transaction.

While any of these statements is in effect within the session, attempts to use FLUSH TABLES ...
FOR EXPORT produce an error:

FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT
LOCK TABLES ... READ
LOCK TABLES ... WRITE

While FLUSH TABLES ... FOR EXPORT is in effect within the session, attempts to use any of
these statements produce an error:

FLUSH TABLES WITH READ LOCK
FLUSH TABLES ... WITH READ LOCK

Other Administrative Statements

1920

FLUSH TABLES ... FOR EXPORT

13.7.6.4 KILL Syntax

KILL [CONNECTION | QUERY] processlist_id

Each connection to mysqld runs in a separate thread. You can kill a thread with the KILL
processlist_id statement.

Thread processlist identifiers can be determined from the ID column of the
INFORMATION_SCHEMA.PROCESSLIST table, the Id column of SHOW PROCESSLIST output, and
the PROCESSLIST_ID column of the Performance Schema threads table. The value for the current
thread is returned by the CONNECTION_ID() function.

KILL permits an optional CONNECTION or QUERY modifier:

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated
with the given processlist_id, after terminating any statement the connection is executing.

• KILL QUERY terminates the statement the connection is currently executing, but leaves the
connection itself intact.

If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege, you can
kill all threads and statements. Otherwise, you can see and kill only your own threads and statements.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine
and kill threads.

Note

You cannot use KILL with the Embedded MySQL Server library because the
embedded server merely runs inside the threads of the host application. It does
not create any connection threads of its own.

When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some
time for the thread to die because the kill flag is checked only at specific intervals:

• During SELECT operations, for ORDER BY and GROUP BY loops, the flag is checked after reading a
block of rows. If the kill flag is set, the statement is aborted.

• During ALTER TABLE operations, the kill flag is checked before each block of rows are read from the
original table. If the kill flag was set, the statement is aborted and the temporary table is deleted.

• During UPDATE or DELETE operations, the kill flag is checked after each block read and after
each updated or deleted row. If the kill flag is set, the statement is aborted. If you are not using
transactions, the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error
message.

Warning

Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table
results in a table that is corrupted and unusable. Any reads or writes to such a
table fail until you optimize or repair it again (without interruption).

13.7.6.5 LOAD INDEX INTO CACHE Syntax

Other Administrative Statements

1921

LOAD INDEX INTO CACHE
 tbl_index_list [, tbl_index_list] ...

tbl_index_list:
 tbl_name
 [PARTITION (partition_list | ALL)]
 [[INDEX|KEY] (index_name[, index_name] ...)]
 [IGNORE LEAVES]

partition_list:
 partition_name[, partition_name][, ...]

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has
been assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise.

LOAD INDEX INTO CACHE is used only for MyISAM tables. In MySQL 5.7, it is also supported for
partitioned MyISAM tables; in addition, indexes on partitioned tables can be preloaded for one, several,
or all partitions.

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.

IGNORE LEAVES is also supported for partitioned MyISAM tables.

The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the nonleaf nodes from t2.

The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a
table should be preloaded. The current implementation preloads all the table's indexes into the cache,
so there is no reason to specify anything other than the table name.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

In MySQL 5.7, it is possible to preload indexes on specific partitions of partitioned MyISAM tables. For
example, of the following 2 statements, the first preloads indexes for partition p0 of a partitioned table
pt, while the second preloads the indexes for partitions p1 and p3 of the same table:

LOAD INDEX INTO CACHE pt PARTITION (p0);
LOAD INDEX INTO CACHE pt PARTITION (p1, p3);

To preload the indexes for all partitions in table pt, you can use either one of the following 2
statements:

LOAD INDEX INTO CACHE pt PARTITION (ALL);

LOAD INDEX INTO CACHE pt;

The two statements just shown are equivalent, and issuing either one of them has exactly the same
effect. In other words, if you wish to preload indexes for all partitions of a partitioned table, then the
PARTITION (ALL) clause is optional.

When preloading indexes for multiple partitions, the partitions do not have to be contiguous, and you
are not required to list their names in any particular order.

MySQL Utility Statements

1922

LOAD INDEX INTO CACHE ... IGNORE LEAVES fails unless all indexes in a table have the same
block size. You can determine index block sizes for a table by using myisamchk -dv and checking
the Blocksize column.

13.7.6.6 RESET Syntax

RESET reset_option [, reset_option] ...

The RESET statement is used to clear the state of various server operations. You must have the
RELOAD privilege to execute RESET.

RESET acts as a stronger version of the FLUSH statement. See Section 13.7.6.3, “FLUSH Syntax”.

The RESET statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an
Implicit Commit”.

In MySQL 5.7.1, gtid_next must be set to AUTOMATIC before issuing this statement. This restriction
does not apply in MySQL 5.7.2 or later. (Bug #16062608, Bug #16715809, Bug #69045)

reset_option can be any of the following:

• MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates
a new binary log file.

• QUERY CACHE

Removes all query results from the query cache.

• SLAVE

Makes the slave forget its replication position in the master binary logs. Also resets the relay log by
deleting any existing relay log files and beginning a new one.

13.7.6.7 SHUTDOWN Syntax

SHUTDOWN

This statement stops the MySQL server. It requires the SHUTDOWN privilege.

SHUTDOWN was added in MySQL 5.7.9. It provides a SQL-level interface to the same functionality
available using the mysqladmin shutdown command or the mysql_shutdown() C API function.

13.8 MySQL Utility Statements

13.8.1 DESCRIBE Syntax

The DESCRIBE and EXPLAIN statements are synonyms, used either to obtain information about table
structure or query execution plans. For more information, see Section 13.7.5.5, “SHOW COLUMNS
Syntax”, and Section 13.8.2, “EXPLAIN Syntax”.

13.8.2 EXPLAIN Syntax

{EXPLAIN | DESCRIBE | DESC}
 tbl_name [col_name | wild]

{EXPLAIN | DESCRIBE | DESC}
 [explain_type]
 {explainable_stmt | FOR CONNECTION connection_id}

EXPLAIN Syntax

1923

explain_type: {
 EXTENDED
 | PARTITIONS
 | FORMAT = format_name
}

format_name: {
 TRADITIONAL
 | JSON
}

explainable_stmt: {
 SELECT statement
 | DELETE statement
 | INSERT statement
 | REPLACE statement
 | UPDATE statement
}

The DESCRIBE and EXPLAIN statements are synonyms. In practice, the DESCRIBE keyword is more
often used to obtain information about table structure, whereas EXPLAIN is used to obtain a query
execution plan (that is, an explanation of how MySQL would execute a query). The following discussion
uses the DESCRIBE and EXPLAIN keywords in accordance with those uses, but the MySQL parser
treats them as completely synonymous.

Obtaining Table Structure Information

DESCRIBE provides information about the columns in a table:

mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+

DESCRIBE is a shortcut for SHOW COLUMNS. These statements also display information for views.
The description for SHOW COLUMNS provides more information about the output columns. See
Section 13.7.5.5, “SHOW COLUMNS Syntax”.

By default, DESCRIBE displays information about all columns in the table. col_name, if given, is the
name of a column in the table. In this case, the statement displays information only for the named
column. wild, if given, is a pattern string. It can contain the SQL “%” and “_” wildcard characters. In
this case, the statement displays output only for the columns with names matching the string. There
is no need to enclose the string within quotation marks unless it contains spaces or other special
characters.

The DESCRIBE statement is provided for compatibility with Oracle.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Syntax”.

Obtaining Execution Plan Information

The EXPLAIN statement provides information about how MySQL executes statements:

• In MySQL 5.7, permitted explainable statements for EXPLAIN are SELECT, DELETE, INSERT,
REPLACE, and UPDATE.

• When EXPLAIN is used with an explainable statement, MySQL displays information from the
optimizer about the statement execution plan. That is, MySQL explains how it would process the

HELP Syntax

1924

statement, including information about how tables are joined and in which order. For information
about using EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output
Format”.

• When EXPLAIN is used with FOR CONNECTION connection_id rather than an explainable
statement, it displays the execution plan for the statement executing in the named connection. See
Section 8.8.4, “Obtaining Execution Plan Information for a Named Connection”.

• EXPLAIN EXTENDED can be used to obtain additional execution plan information. See Section 8.8.3,
“EXPLAIN EXTENDED Output Format”.

As of MySQL 5.7.3, the EXPLAIN statement is changed so that the effect of the EXTENDED keyword
is always enabled. EXTENDED is still recognized for backward compatibility, but is superfluous and is
deprecated; its use results in a warning. It will be removed from EXPLAIN syntax in a future MySQL
release.

• EXPLAIN PARTITIONS is useful for examining queries involving partitioned tables. See
Section 18.3.5, “Obtaining Information About Partitions”.

As of MySQL 5.7.3, the EXPLAIN statement is changed so that the effect of the PARTITIONS
keyword is always enabled. PARTITIONS is still recognized for backward compatibility, but is
superfluous and is deprecated; its use results in a warning. It will be removed from EXPLAIN syntax
in a future MySQL release.

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output
in tabular format. This is the default if no FORMAT option is present. JSON format displays the
information in JSON format. With FORMAT = JSON, the output includes extended and partition
information.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the
optimizer joins the tables in an optimal order. To give a hint to the optimizer to use a join order
corresponding to the order in which the tables are named in a SELECT statement, begin the statement
with SELECT STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Syntax”.)

The optimizer trace may sometimes provide information complementary to that of EXPLAIN. However,
the optimizer trace format and content are subject to change between versions. For details, see
MySQL Internals: Tracing the Optimizer.

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.

13.8.3 HELP Syntax

HELP 'search_string'

The HELP statement returns online information from the MySQL Reference manual. Its proper
operation requires that the help tables in the mysql database be initialized with help topic information
(see Section 5.1.10, “Server-Side Help”).

The HELP statement searches the help tables for the given search string and displays the result of the
search. The search string is not case sensitive.

The search string can contain the wildcard characters “%” and “_”. These have the same meaning
as for pattern-matching operations performed with the LIKE operator. For example, HELP 'rep%'
returns a list of topics that begin with rep.

The HELP statement understands several types of search strings:

• At the most general level, use contents to retrieve a list of the top-level help categories:

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

HELP Syntax

1925

HELP 'contents'

• For a list of topics in a given help category, such as Data Types, use the category name:

HELP 'data types'

• For help on a specific help topic, such as the ASCII() function or the CREATE TABLE statement,
use the associated keyword or keywords:

HELP 'ascii'
HELP 'create table'

In other words, the search string matches a category, many topics, or a single topic. You cannot
necessarily tell in advance whether a given search string will return a list of items or the help
information for a single help topic. However, you can tell what kind of response HELP returned by
examining the number of rows and columns in the result set.

The following descriptions indicate the forms that the result set can take. Output for the example
statements is shown using the familiar “tabular” or “vertical” format that you see when using the mysql
client, but note that mysql itself reformats HELP result sets in a different way.

• Empty result set

No match could be found for the search string.

• Result set containing a single row with three columns

This means that the search string yielded a hit for the help topic. The result has three columns:

• name: The topic name.

• description: Descriptive help text for the topic.

• example: Usage example or examples. This column might be blank.

Example: HELP 'replace'

Yields:

name: REPLACE
description: Syntax:
REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str
replaced by the string to_str. REPLACE() performs a case-sensitive
match when searching for from_str.
example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

• Result set containing multiple rows with two columns

This means that the search string matched many help topics. The result set indicates the help topic
names:

• name: The help topic name.

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the
name value when specified as the argument to the HELP statement should yield a single-row result
set containing a description for the named item.

Example: HELP 'status'

USE Syntax

1926

Yields:

+-----------------------+----------------+
| name | is_it_category |
+-----------------------+----------------+
SHOW	N
SHOW ENGINE	N
SHOW MASTER STATUS	N
SHOW PROCEDURE STATUS	N
SHOW SLAVE STATUS	N
SHOW STATUS	N
SHOW TABLE STATUS	N
+-----------------------+----------------+

• Result set containing multiple rows with three columns

This means the search string matches a category. The result set contains category entries:

• source_category_name: The help category name.

• name: The category or topic name

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the
name value when specified as the argument to the HELP statement should yield a single-row result
set containing a description for the named item.

Example: HELP 'functions'

Yields:

+----------------------+-------------------------+----------------+
| source_category_name | name | is_it_category |
+----------------------+-------------------------+----------------+
Functions	CREATE FUNCTION	N
Functions	DROP FUNCTION	N
Functions	Bit Functions	Y
Functions	Comparison operators	Y
Functions	Control flow functions	Y
Functions	Date and Time Functions	Y
Functions	Encryption Functions	Y
Functions	Information Functions	Y
Functions	Logical operators	Y
Functions	Miscellaneous Functions	Y
Functions	Numeric Functions	Y
Functions	String Functions	Y
+----------------------+-------------------------+----------------+

13.8.4 USE Syntax

USE db_name

The USE db_name statement tells MySQL to use the db_name database as the default (current)
database for subsequent statements. The database remains the default until the end of the session or
another USE statement is issued:

USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable

Making a particular database the default by means of the USE statement does not preclude you from
accessing tables in other databases. The following example accesses the author table from the db1
database and the editor table from the db2 database:

USE Syntax

1927

USE db1;
SELECT author_name,editor_name FROM author,db2.editor
 WHERE author.editor_id = db2.editor.editor_id;

1928

1929

Chapter 14 The InnoDB Storage Engine

Table of Contents
14.1 Introduction to InnoDB .. 1931

14.1.1 InnoDB as the Default MySQL Storage Engine .. 1932
14.1.2 Checking InnoDB Availability ... 1935
14.1.3 Turning Off InnoDB .. 1935

14.2 InnoDB Concepts and Architecture .. 1935
14.2.1 MySQL and the ACID Model ... 1936
14.2.2 The InnoDB Transaction Model and Locking .. 1937
14.2.3 InnoDB Multi-Versioning ... 1950
14.2.4 InnoDB Redo Log .. 1952
14.2.5 InnoDB Undo Logs ... 1952
14.2.6 InnoDB Temporary Table Undo Logs .. 1953
14.2.7 InnoDB Table and Index Structures ... 1953
14.2.8 InnoDB Mutex and Read/Write Lock Implementation .. 1965

14.3 InnoDB Configuration .. 1966
14.3.1 InnoDB Initialization and Startup Configuration ... 1966
14.3.2 Configuring InnoDB for Read-Only Operation ... 1970
14.3.3 InnoDB Buffer Pool Configuration .. 1971
14.3.4 Configuring the Memory Allocator for InnoDB ... 1983
14.3.5 Configuring InnoDB Change Buffering ... 1984
14.3.6 Configuring Thread Concurrency for InnoDB .. 1985
14.3.7 Configuring the Number of Background InnoDB I/O Threads 1986
14.3.8 Configuring the InnoDB Master Thread I/O Rate .. 1987
14.3.9 Configuring Spin Lock Polling ... 1987
14.3.10 Configuring InnoDB Purge Scheduling ... 1988
14.3.11 Configuring Optimizer Statistics for InnoDB .. 1988
14.3.12 Configuring the Merge Threshold for Index Pages .. 1999

14.4 InnoDB Tablespace Management .. 2001
14.4.1 Resizing the InnoDB System Tablespace .. 2001
14.4.2 Changing the Number or Size of InnoDB Redo Log Files .. 2002
14.4.3 Using Raw Disk Partitions for the System Tablespace .. 2002
14.4.4 InnoDB File-Per-Table Tablespaces .. 2004
14.4.5 Creating a File-Per-Table Tablespace Outside the Data Directory 2006
14.4.6 Copying File-Per-Table Tablespaces to Another Server .. 2007
14.4.7 Storing InnoDB Undo Logs in Separate Tablespaces .. 2015
14.4.8 Truncating Undo Logs That Reside in Undo Tablespaces 2016
14.4.9 InnoDB General Tablespaces ... 2019

14.5 InnoDB Table Management ... 2025
14.5.1 Creating InnoDB Tables ... 2025
14.5.2 Moving or Copying InnoDB Tables to Another Machine ... 2027
14.5.3 Grouping DML Operations with Transactions ... 2029
14.5.4 Converting Tables from MyISAM to InnoDB ... 2030
14.5.5 AUTO_INCREMENT Handling in InnoDB ... 2034
14.5.6 InnoDB and FOREIGN KEY Constraints .. 2040
14.5.7 Limits on InnoDB Tables .. 2041

14.6 InnoDB Table and Page Compression ... 2044
14.6.1 InnoDB Table Compression .. 2044
14.6.2 InnoDB Page Compression ... 2058

14.7 InnoDB File-Format Management .. 2061
14.7.1 Enabling File Formats ... 2062
14.7.2 Verifying File Format Compatibility .. 2063
14.7.3 Identifying the File Format in Use .. 2066
14.7.4 Modifying the File Format ... 2066

1930

14.8 InnoDB Row Storage and Row Formats ... 2067
14.8.1 Overview of InnoDB Row Storage ... 2067
14.8.2 Specifying the Row Format for a Table .. 2067
14.8.3 DYNAMIC and COMPRESSED Row Formats .. 2069
14.8.4 COMPACT and REDUNDANT Row Formats ... 2070

14.9 InnoDB Disk I/O and File Space Management .. 2070
14.9.1 InnoDB Disk I/O ... 2071
14.9.2 File Space Management ... 2071
14.9.3 InnoDB Checkpoints ... 2072
14.9.4 Defragmenting a Table ... 2073
14.9.5 Reclaiming Disk Space with TRUNCATE TABLE ... 2073

14.10 InnoDB and Online DDL .. 2074
14.10.1 Overview of Online DDL ... 2074
14.10.2 Performance and Concurrency Considerations for Online DDL 2081
14.10.3 SQL Syntax for Online DDL .. 2083
14.10.4 Combining or Separating DDL Statements ... 2084
14.10.5 Examples of Online DDL .. 2084
14.10.6 Implementation Details of Online DDL ... 2105
14.10.7 How Crash Recovery Works with Online DDL .. 2107
14.10.8 Online DDL for Partitioned InnoDB Tables ... 2107
14.10.9 Limitations of Online DDL ... 2108

14.11 InnoDB Startup Options and System Variables ... 2109
14.12 InnoDB INFORMATION_SCHEMA Tables .. 2196

14.12.1 InnoDB INFORMATION_SCHEMA Tables about Compression 2196
14.12.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Tables 2198
14.12.3 InnoDB INFORMATION_SCHEMA System Tables ... 2203
14.12.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables 2209
14.12.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables .. 2212
14.12.6 InnoDB INFORMATION_SCHEMA Metrics Table ... 2216
14.12.7 InnoDB INFORMATION_SCHEMA Temporary Table Information Table 2224
14.12.8 Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES 2225

14.13 InnoDB Integration with MySQL Performance Schema .. 2227
14.13.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema
... 2229
14.13.2 Monitoring InnoDB Mutex Waits Using Performance Schema 2230

14.14 InnoDB Monitors ... 2234
14.14.1 InnoDB Monitor Types .. 2234
14.14.2 Enabling InnoDB Monitors ... 2234
14.14.3 InnoDB Standard Monitor and Lock Monitor Output .. 2237
14.14.4 InnoDB Tablespace Monitor Output ... 2242
14.14.5 InnoDB Table Monitor Output .. 2244

14.15 InnoDB Backup and Recovery ... 2247
14.15.1 The InnoDB Recovery Process ... 2249
14.15.2 Tablespace Discovery During Crash Recovery ... 2249

14.16 InnoDB and MySQL Replication ... 2250
14.17 InnoDB Integration with memcached .. 2252

14.17.1 Benefits of the InnoDB / memcached Combination ... 2252
14.17.2 Architecture of InnoDB and memcached Integration .. 2253
14.17.3 Getting Started with InnoDB Memcached Plugin ... 2257
14.17.4 Security Considerations for the InnoDB memcached Plugin 2260
14.17.5 Writing Applications for the InnoDB memcached Interface 2261
14.17.6 Using the InnoDB memcached Plugin with Replication .. 2272
14.17.7 Internals of the InnoDB memcached Plugin .. 2276
14.17.8 Troubleshooting the InnoDB memcached Plugin ... 2281

14.18 InnoDB Troubleshooting .. 2283
14.18.1 Troubleshooting InnoDB I/O Problems ... 2283
14.18.2 Forcing InnoDB Recovery ... 2284
14.18.3 Troubleshooting InnoDB Data Dictionary Operations ... 2285

Introduction to InnoDB

1931

14.18.4 InnoDB Error Handling .. 2288
14.18.5 InnoDB Error Codes ... 2288

14.1 Introduction to InnoDB
InnoDB is a general-purpose storage engine that balances high reliability and high performance. In
MySQL 5.7, InnoDB is the default MySQL storage engine. Issuing the CREATE TABLE statement
without an ENGINE= clause creates an InnoDB table.

Key Advantages of InnoDB

Key advantages of InnoDB tables include:

• Its DML operations follow the ACID model, with transactions featuring commit, rollback, and crash-
recovery capabilities to protect user data.

• Row-level locking and Oracle-style consistent reads increase multi-user concurrency and
performance.

• InnoDB tables arrange your data on disk to optimize queries based on primary keys.

• To maintain data integrity, InnoDB also supports FOREIGN KEY constraints. With foreign keys,
inserts, updates, and deletes are checked to ensure they do not result in inconsistencies across
different tables.

• You can freely mix InnoDB tables with tables from other MySQL storage engines, even within the
same statement. For example, you can use a join operation to combine data from InnoDB and
MEMORY tables in a single query.

• InnoDB has been designed for CPU efficiency and maximum performance when processing large
data volumes.

Table 14.1 InnoDB Storage Engine Features

Storage limits 64TB Transactions Yes Locking granularity Row

MVCC Yes Geospatial data
type support

Yes Geospatial indexing
support

Yesa

B-tree indexes Yes T-tree indexes No Hash indexes Nob

Full-text search
indexes

Yesc Clustered indexes Yes Data caches Yes

Index caches Yes Compressed data Yesd Encrypted datae Yes

Cluster database
support

No Replication supportf Yes Foreign key support Yes

Backup / point-in-
time recoveryg

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aInnoDB support for geospatial indexing is available in MySQL 5.7.5 and higher.
bInnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.
cInnoDB support for FULLTEXT indexes is available in MySQL 5.6.4 and higher.
dCompressed InnoDB tables require the InnoDB Barracuda file format.
eImplemented in the server (via encryption functions), rather than in the storage engine.
fImplemented in the server, rather than in the storage engine.
gImplemented in the server, rather than in the storage engine.

The InnoDB storage engine maintains its own buffer pool for caching data and indexes in main
memory. By default, with the innodb_file_per_table setting enabled, each new InnoDB table
and its associated indexes are stored in a separate file. When the innodb_file_per_table option
is disabled, InnoDB stores tables and indexes in the single system tablespace, which may consist of
several files (or raw disk partitions). As of MySQL 5.7.6, InnoDB tables can also be stored in general

InnoDB Enhancements and New Features

1932

tablespaces, which are shared tablespaces that can store data for multiple tables. InnoDB tables can
handle large quantities of data, even on operating systems where file size is limited to 2GB.

To compare the features of InnoDB with other storage engines provided with MySQL, see the Storage
Engine Features table in Chapter 15, Alternative Storage Engines.

InnoDB Enhancements and New Features

For information about InnoDB enhancements and new features in MySQL 5.7, refer to:

• The InnoDB enhancements list in Section 1.4, “What Is New in MySQL 5.7”, which provides an
overview of the features added in MySQL 5.7.

• The Release Notes, which provide information about changes in each version.

Additional Resources

• For InnoDB-related terms and definitions, see MySQL Glossary.

• A forum dedicated to the InnoDB storage engine is available here: MySQL Forums::InnoDB.

• InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For
more information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.

14.1.1 InnoDB as the Default MySQL Storage Engine

InnoDB is the default storage engine in MySQL 5.7. InnoDB is a transaction-safe (ACID compliant)
storage engine for MySQL that has commit, rollback, and crash-recovery capabilities to protect user
data. InnoDB row-level locking (without escalation to coarser granularity locks) and Oracle-style
consistent nonlocking reads increase multi-user concurrency and performance. InnoDB stores user
data in clustered indexes to reduce I/O for common queries based on primary keys. To maintain data
integrity, InnoDB also supports FOREIGN KEY referential-integrity constraints.

Unless you have configured a different default storage engine, issuing the CREATE TABLE statement
without an ENGINE= clause creates an InnoDB table.

Benefits of InnoDB Tables

If you use MyISAM tables but are not committed to them for technical reasons, you may find InnoDB
tables beneficial for the following reasons:

• If your server crashes because of a hardware or software issue, regardless of what was happening in
the database at the time, you don't need to do anything special after restarting the database. InnoDB
crash recovery automatically finalizes any changes that were committed before the time of the crash,
and undoes any changes that were in process but not committed. Just restart and continue where
you left off.

• The InnoDB buffer pool caches table and index data as the data is accessed. Frequently used data
is processed directly from memory. This cache applies to many types of information, and speeds up
processing.

• If you split up related data into different tables, you can set up foreign keys that enforce referential
integrity. Update or delete data, and the related data in other tables is updated or deleted
automatically. Try to insert data into a secondary table without corresponding data in the primary
table, and the bad data gets kicked out automatically.

• If data becomes corrupted on disk or in memory, a checksum mechanism alerts you to the bogus
data before you use it.

• When you design your database with appropriate primary key columns for each table, operations
involving those columns are automatically optimized. It is very fast to reference the primary key
columns in WHERE clauses, ORDER BY clauses, GROUP BY clauses, and join operations.

http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
http://forums.mysql.com/list.php?22
http://www.mysql.com/company/legal/licensing/

InnoDB as the Default MySQL Storage Engine

1933

• Inserts, updates, and deletes are optimized by an automatic mechanism called change buffering.
InnoDB not only allows concurrent read and write access to the same table, it caches changed data
to streamline disk I/O.

• Performance benefits are not limited to giant tables with long-running queries. When the same rows
are accessed over and over from a table, a feature called the Adaptive Hash Index takes over to
make these lookups even faster, as if they came out of a hash table.

• You can compress tables and associated indexes.

• You can create and drop indexes with much less impact on performance and availability.

• Truncating a file_per_table tablespace is very fast, and can free up disk space for the operating
system to reuse, rather than freeing up space within the system tablespace that only InnoDB could
reuse.

• The storage layout for table data is more efficient for BLOB and long text fields, with the DYNAMIC
row format.

• You can monitor the internal workings of the storage engine by querying INFORMATION_SCHEMA
tables.

• You can monitor the performance details of the storage engine by querying Performance Schema
tables.

For InnoDB-specific tuning techniques you can apply in your application code, see Section 8.5,
“Optimizing for InnoDB Tables”.

Recent Improvements for InnoDB Tables

MySQL continues to work on addressing use cases that formerly required MyISAM tables. In MySQL
5.6 and higher:

• InnoDB can perform full-text search using the FULLTEXT index type. See Section 14.2.7.3, “InnoDB
FULLTEXT Indexes” for details.

• InnoDB now performs better with read-only or read-mostly workloads. Automatic optimizations apply
to InnoDB queries in autocommit mode, and you can explicitly mark transactions as read-only with
the syntax START TRANSACTION READ ONLY. See Section 8.5.3, “Optimizing InnoDB Read-Only
Transactions” for details.

• Applications distributed on read-only media can now use InnoDB tables. See Section 14.3.2,
“Configuring InnoDB for Read-Only Operation” for details.

Best Practices for InnoDB Tables

Some general best practices for InnoDB tables include:

• Specifying a primary key for every table using the most frequently queried column or columns, or an
auto-increment value if there is no obvious primary key.

• Using joins wherever data is pulled from multiple tables based on identical ID values from those
tables. For fast join performance, define foreign keys on the join columns, and declare those columns
with the same data type in each table. Adding foreign keys ensures that referenced columns are
indexed, which can improve performance. Foreign keys also propagate deletes or updates to all
affected tables, and prevent insertion of data in a child table if the corresponding IDs are not present
in the parent table.

• Turning off autocommit. Committing hundreds of times a second puts a cap on performance (limited
by the write speed of your storage device).

• Grouping sets of related DML operations into transactions, by bracketing them with START
TRANSACTION and COMMIT statements. While you don't want to commit too often, you also don't

InnoDB as the Default MySQL Storage Engine

1934

want to issue huge batches of INSERT, UPDATE, or DELETE statements that run for hours without
committing.

• Not using LOCK TABLES statements. InnoDB can handle multiple sessions all reading and writing
to the same table at once, without sacrificing reliability or high performance. To get exclusive write
access to a set of rows, use the SELECT ... FOR UPDATE syntax to lock just the rows you intend
to update.

• Enabling the innodb_file_per_table option to put the data and indexes for individual tables into
separate files, instead of in a single giant system tablespace. This setting is required to use some of
the other features, such as table compression and fast truncation.

The innodb_file_per_table option is enabled by default as of MySQL 5.6.6.

• Evaluating whether your data and access patterns benefit from the InnoDB table compression
feature (ROW_FORMAT=COMPRESSED) on the CREATE TABLE statement. You can compress InnoDB
tables without sacrificing read/write capability.

• Running your server with the option --sql_mode=NO_ENGINE_SUBSTITUTION to prevent tables
being created with a different storage engine if there is an issue with the engine specified in the
ENGINE= clause of CREATE TABLE.

Testing and Benchmarking with InnoDB as Default Storage Engine

If InnoDB is not your default storage engine, you can determine if your database server or applications
work correctly with InnoDB by restarting the server with --default-storage-engine=InnoDB
defined on the command line or with default-storage-engine=innodb defined in the [mysqld]
section of the my.cnf configuration file.

Since changing the default storage engine only affects new tables as they are created, run all your
application installation and setup steps to confirm that everything installs properly. Then exercise all
the application features to make sure all the data loading, editing, and querying features work. If a table
relies on some MyISAM-specific feature, you'll receive an error; add the ENGINE=MyISAM clause to the
CREATE TABLE statement to avoid the error.

If you did not make a deliberate decision about the storage engine, and you just want to preview
how certain tables work when they're created under InnoDB, issue the command ALTER TABLE
table_name ENGINE=InnoDB; for each table. Or, to run test queries and other statements without
disturbing the original table, make a copy like so:

CREATE TABLE InnoDB_Table (...) ENGINE=InnoDB AS SELECT * FROM MyISAM_Table;

To get a true idea of the performance with a full application under a realistic workload, install the latest
MySQL server and run benchmarks.

Test the full application lifecycle, from installation, through heavy usage, and server restart. Kill the
server process while the database is busy to simulate a power failure, and verify that the data is
recovered successfully when you restart the server.

Test any replication configurations, especially if you use different MySQL versions and options on the
master and the slaves.

Verifying that InnoDB is the Default Storage Engine

To verify that InnoDB is the default storage engine:

• Issue the SHOW ENGINES command to view the different MySQL storage engines. Look for
DEFAULT in the InnoDB line. Alternatively, query the INFORMATION_SCHEMA ENGINES table.

• If InnoDB is not present, you have a mysqld binary that was compiled without InnoDB support and
you need to get a different one.

Checking InnoDB Availability

1935

• If InnoDB is present but disabled, go back through your startup options and configuration file and get
rid of any skip-innodb option.

14.1.2 Checking InnoDB Availability

To determine whether your server supports InnoDB, use the SHOW ENGINES statement. (Now that
InnoDB is the default MySQL storage engine, only very specialized environments might not support it.)

14.1.3 Turning Off InnoDB

Oracle recommends InnoDB as the preferred storage engine for typical database applications, from
single-user wikis and blogs running on a local system, to high-end applications pushing the limits of
performance. In MySQL 5.7, InnoDB is the default storage engine for new tables.

As of MySQL 5.7.5, InnoDB cannot be disabled. The --skip-innodb option is deprecated and has
no effect, and its use results in a warning. It will be removed in a future MySQL release. This also
applies to its synonyms (--innodb=OFF, --disable-innodb, and so forth). Before 5.7.5, if you do
not want to use InnoDB tables:

• Start the server with the --innodb=OFF or --skip-innodb option to disable the InnoDB storage
engine.

• Because the default storage engine is InnoDB, the server will not start unless you also use --
default-storage-engine and --default-tmp-storage-engine to set the default to some
other engine for both permanent and TEMPORARY tables.

• To prevent the server from crashing when the InnoDB-related information_schema tables are
queried, also disable the plugins associated with those tables. Specify in the [mysqld] section of
the MySQL configuration file:

loose-innodb-trx=0
loose-innodb-locks=0
loose-innodb-lock-waits=0
loose-innodb-cmp=0
loose-innodb-cmp-per-index=0
loose-innodb-cmp-per-index-reset=0
loose-innodb-cmp-reset=0
loose-innodb-cmpmem=0
loose-innodb-cmpmem-reset=0
loose-innodb-buffer-page=0
loose-innodb-buffer-page-lru=0
loose-innodb-buffer-pool-stats=0
loose-innodb-metrics=0
loose-innodb-ft-default-stopword=0
loose-innodb-ft-inserted=0
loose-innodb-ft-deleted=0
loose-innodb-ft-being-deleted=0
loose-innodb-ft-config=0
loose-innodb-ft-index-cache=0
loose-innodb-ft-index-table=0
loose-innodb-sys-tables=0
loose-innodb-sys-tablestats=0
loose-innodb-sys-indexes=0
loose-innodb-sys-columns=0
loose-innodb-sys-fields=0
loose-innodb-sys-foreign=0
loose-innodb-sys-foreign-cols=0

14.2 InnoDB Concepts and Architecture
The information in this section provides background to help you get the most performance and
functionality from using InnoDB tables. It is intended for:

• Anyone switching to MySQL from another database system, to explain what things might seem
familiar and which might be all-new.

MySQL and the ACID Model

1936

• Anyone moving from MyISAM tables to InnoDB, now that InnoDB is the default MySQL storage
engine.

• Anyone considering their application architecture or software stack, to understand the design
considerations, performance characteristics, and scalability of InnoDB tables at a detailed level.

In this section, you will learn:

• How InnoDB closely adheres to ACID principles.

• How InnoDB implements transactions, and how the inner workings of transactions compare with
other database systems you might be familiar with.

• How InnoDB implements row-level locking to allow queries and DML statements to read and write
the same table simultaneously.

• How multi-version concurrency control (MVCC) keeps transactions from viewing or modifying each
others' data before the appropriate time.

• The physical layout of InnoDB-related objects on disk, such as tables, indexes, tablespaces, undo
logs, and the redo log.

14.2.1 MySQL and the ACID Model

The ACID model is a set of database design principles that emphasize aspects of reliability that are
important for business data and mission-critical applications. MySQL includes components such
as the InnoDB storage engine that adhere closely to the ACID model, so that data is not corrupted
and results are not distorted by exceptional conditions such as software crashes and hardware
malfunctions. When you rely on ACID-compliant features, you do not need to reinvent the wheel of
consistency checking and crash recovery mechanisms. In cases where you have additional software
safeguards, ultra-reliable hardware, or an application that can tolerate a small amount of data loss
or inconsistency, you can adjust MySQL settings to trade some of the ACID reliability for greater
performance or throughput.

The following sections discuss how MySQL features, in particular the InnoDB storage engine, interact
with the categories of the ACID model:

• A: atomicity.

• C: consistency.

• I:: isolation.

• D: durability.

Atomicity

The atomicity aspect of the ACID model mainly involves InnoDB transactions. Related MySQL
features include:

• Autocommit setting.

• COMMIT statement.

• ROLLBACK statement.

• Operational data from the INFORMATION_SCHEMA tables.

Consistency

The consistency aspect of the ACID model mainly involves internal InnoDB processing to protect
data from crashes. Related MySQL features include:

The InnoDB Transaction Model and Locking

1937

• InnoDB doublewrite buffer.

• InnoDB crash recovery.

Isolation

The isolation aspect of the ACID model mainly involves InnoDB transactions, in particular the isolation
level that applies to each transaction. Related MySQL features include:

• Autocommit setting.

• SET ISOLATION LEVEL statement.

• The low-level details of InnoDB locking. During performance tuning, you see these details through
INFORMATION_SCHEMA tables.

Durability

The durability aspect of the ACID model involves MySQL software features interacting with your
particular hardware configuration. Because of the many possibilities depending on the capabilities
of your CPU, network, and storage devices, this aspect is the most complicated to provide concrete
guidelines for. (And those guidelines might take the form of buy “new hardware”.) Related MySQL
features include:

• InnoDB doublewrite buffer, turned on and off by the innodb_doublewrite configuration option.

• Configuration option innodb_flush_log_at_trx_commit.

• Configuration option sync_binlog.

• Configuration option innodb_file_per_table.

• Write buffer in a storage device, such as a disk drive, SSD, or RAID array.

• Battery-backed cache in a storage device.

• The operating system used to run MySQL, in particular its support for the fsync() system call.

• Uninterruptible power supply (UPS) protecting the electrical power to all computer servers and
storage devices that run MySQL servers and store MySQL data.

• Your backup strategy, such as frequency and types of backups, and backup retention periods.

• For distributed or hosted data applications, the particular characteristics of the data centers where
the hardware for the MySQL servers is located, and network connections between the data centers.

14.2.2 The InnoDB Transaction Model and Locking

To implement a large-scale, busy, or highly reliable database application, to port substantial code
from a different database system, or to tune MySQL performance, you must understand the notions of
transactions and locking as they relate to the InnoDB storage engine.

In the InnoDB transaction model, the goal is to combine the best properties of a multi-versioning
database with traditional two-phase locking. InnoDB does locking on the row level and runs queries
as nonlocking consistent reads by default, in the style of Oracle. The lock information in InnoDB is
stored so space-efficiently that lock escalation is not needed: Typically, several users are permitted to
lock every row in InnoDB tables, or any random subset of the rows, without causing InnoDB memory
exhaustion.

In InnoDB, all user activity occurs inside a transaction. If autocommit mode is enabled, each SQL
statement forms a single transaction on its own. By default, MySQL starts the session for each new

The InnoDB Transaction Model and Locking

1938

connection with autocommit enabled, so MySQL does a commit after each SQL statement if that
statement did not return an error. If a statement returns an error, the commit or rollback behavior
depends on the error. See Section 14.18.4, “InnoDB Error Handling”.

A session that has autocommit enabled can perform a multiple-statement transaction by starting it
with an explicit START TRANSACTION or BEGIN statement and ending it with a COMMIT or ROLLBACK
statement. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

If autocommit mode is disabled within a session with SET autocommit = 0, the session always has
a transaction open. A COMMIT or ROLLBACK statement ends the current transaction and a new one
starts.

A COMMIT means that the changes made in the current transaction are made permanent and become
visible to other sessions. A ROLLBACK statement, on the other hand, cancels all modifications made by
the current transaction. Both COMMIT and ROLLBACK release all InnoDB locks that were set during the
current transaction.

In terms of the SQL:1992 transaction isolation levels, the default InnoDB level is REPEATABLE
READ. InnoDB offers all four transaction isolation levels described by the SQL standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE.

A user can change the isolation level for a single session or for all subsequent connections with the
SET TRANSACTION statement. To set the server's default isolation level for all connections, use the --
transaction-isolation option on the command line or in an option file. For detailed information
about isolation levels and level-setting syntax, see Section 13.3.6, “SET TRANSACTION Syntax”.

In row-level locking, InnoDB normally uses next-key locking. That means that besides index records,
InnoDB can also lock the gap preceding an index record to block insertions by other sessions where
the indexed values would be inserted in that gap within the tree data structure. A next-key lock refers
to a lock that locks an index record and the gap before it. A gap lock refers to a lock that locks only the
gap before some index record.

For more information about row-level locking, and the circumstances under which gap locking is
disabled, see Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key Locks”.

To handle locking for operations involving SPATIAL indexes, next-key locking does not work well to
support REPEATABLE READ or SERIALIZABLE transaction isolation levels. In this case, InnoDB uses
predicate locking. See Section 14.2.2.6, “Predicate Locking for Spatial Indexes”.

14.2.2.1 InnoDB Lock Modes

InnoDB implements standard row-level locking where there are two types of locks, shared (S)
locks and exclusive (X) locks. For information about record, gap, and next-key lock types, see
Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key Locks”.

• A shared (S) lock permits the transaction that holds the lock to read a row.

• An exclusive (X) lock permits the transaction that holds the lock to update or delete a row.

If transaction T1 holds a shared (S) lock on row r, then requests from some distinct transaction T2 for
a lock on row r are handled as follows:

• A request by T2 for an S lock can be granted immediately. As a result, both T1 and T2 hold an S lock
on r.

• A request by T2 for an X lock cannot be granted immediately.

If a transaction T1 holds an exclusive (X) lock on row r, a request from some distinct transaction T2
for a lock of either type on r cannot be granted immediately. Instead, transaction T2 has to wait for
transaction T1 to release its lock on row r.

The InnoDB Transaction Model and Locking

1939

Intention Locks

Additionally, InnoDB supports multiple granularity locking which permits coexistence of record locks
and locks on entire tables. To make locking at multiple granularity levels practical, additional types of
locks called intention locks are used. Intention locks are table locks in InnoDB that indicate which type
of lock (shared or exclusive) a transaction will require later for a row in that table. There are two types
of intention locks used in InnoDB (assume that transaction T has requested a lock of the indicated type
on table t):

• Intention shared (IS): Transaction T intends to set S locks on individual rows in table t.

• Intention exclusive (IX): Transaction T intends to set X locks on those rows.

For example, SELECT ... LOCK IN SHARE MODE sets an IS lock and SELECT ... FOR UPDATE
sets an IX lock.

The intention locking protocol is as follows:

• Before a transaction can acquire an S lock on a row in table t, it must first acquire an IS or stronger
lock on t.

• Before a transaction can acquire an X lock on a row, it must first acquire an IX lock on t.

These rules can be conveniently summarized by means of the following lock type compatibility matrix.

 X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

S Conflict Conflict Compatible Compatible

IS Conflict Compatible Compatible Compatible

A lock is granted to a requesting transaction if it is compatible with existing locks, but not if it conflicts
with existing locks. A transaction waits until the conflicting existing lock is released. If a lock request
conflicts with an existing lock and cannot be granted because it would cause deadlock, an error occurs.

Thus, intention locks do not block anything except full table requests (for example, LOCK TABLES ...
WRITE). The main purpose of IX and IS locks is to show that someone is locking a row, or going to
lock a row in the table.

Deadlock Example

The following example illustrates how an error can occur when a lock request would cause a deadlock.
The example involves two clients, A and B.

First, client A creates a table containing one row, and then begins a transaction. Within the transaction,
A obtains an S lock on the row by selecting it in share mode:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
Query OK, 0 rows affected (1.07 sec)

mysql> INSERT INTO t (i) VALUES(1);
Query OK, 1 row affected (0.09 sec)

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t WHERE i = 1 LOCK IN SHARE MODE;
+------+
| i |
+------+
| 1 |

The InnoDB Transaction Model and Locking

1940

+------+

Next, client B begins a transaction and attempts to delete the row from the table:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> DELETE FROM t WHERE i = 1;

The delete operation requires an X lock. The lock cannot be granted because it is incompatible with the
S lock that client A holds, so the request goes on the queue of lock requests for the row and client B
blocks.

Finally, client A also attempts to delete the row from the table:

mysql> DELETE FROM t WHERE i = 1;
ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

Deadlock occurs here because client A needs an X lock to delete the row. However, that lock request
cannot be granted because client B already has a request for an X lock and is waiting for client A to
release its S lock. Nor can the S lock held by A be upgraded to an X lock because of the prior request
by B for an X lock. As a result, InnoDB generates an error for one of the clients and releases its locks.
The client returns this error:

ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

At that point, the lock request for the other client can be granted and it deletes the row from the table.

Note

If the LATEST DETECTED DEADLOCK section of InnoDB Monitor
output includes a message stating, “TOO DEEP OR LONG SEARCH
IN THE LOCK TABLE WAITS-FOR GRAPH, WE WILL ROLL BACK
FOLLOWING TRANSACTION,” this indicates that the number of transactions
on the wait-for list has reached a limit of 200, which is defined by
LOCK_MAX_DEPTH_IN_DEADLOCK_CHECK. A wait-for list that exceeds 200
transactions is treated as a deadlock and the transaction attempting to check
the wait-for list is rolled back.

The same error may also occur if the locking thread must look at more than
1,000,000 locks owned by the transactions on the wait-for list. The limit of
1,000,000 locks is defined by LOCK_MAX_N_STEPS_IN_DEADLOCK_CHECK.

14.2.2.2 Consistent Nonlocking Reads

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the
database at a point in time. The query sees the changes made by transactions that committed before
that point of time, and no changes made by later or uncommitted transactions. The exception to this
rule is that the query sees the changes made by earlier statements within the same transaction. This
exception causes the following anomaly: If you update some rows in a table, a SELECT sees the
latest version of the updated rows, but it might also see older versions of any rows. If other sessions
simultaneously update the same table, the anomaly means that you might see the table in a state that
never existed in the database.

If the transaction isolation level is REPEATABLE READ (the default level), all consistent reads within the
same transaction read the snapshot established by the first such read in that transaction. You can get
a fresher snapshot for your queries by committing the current transaction and after that issuing new
queries.

The InnoDB Transaction Model and Locking

1941

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its
own fresh snapshot.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ
COMMITTED and REPEATABLE READ isolation levels. A consistent read does not set any locks on the
tables it accesses, and therefore other sessions are free to modify those tables at the same time a
consistent read is being performed on the table.

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a
consistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint
according to which your query sees the database. If another transaction deletes a row and commits
after your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates
are treated similarly.

Note

The snapshot of the database state applies to SELECT statements within a
transaction, not necessarily to DML statements. If you insert or modify some
rows and then commit that transaction, a DELETE or UPDATE statement issued
from another concurrent REPEATABLE READ transaction could affect those just-
committed rows, even though the session could not query them. If a transaction
does update or delete rows committed by a different transaction, those changes
do become visible to the current transaction. For example, you might encounter
a situation like the following:

SELECT COUNT(c1) FROM t1 WHERE c1 = 'xyz'; -- Returns 0: no rows match.
DELETE FROM t1 WHERE c1 = 'xyz'; -- Deletes several rows recently committed by other transaction.

SELECT COUNT(c2) FROM t1 WHERE c2 = 'abc'; -- Returns 0: no rows match.
UPDATE t1 SET c2 = 'cba' WHERE c2 = 'abc'; -- Affects 10 rows: another txn just committed 10 rows with 'abc' values.
SELECT COUNT(c2) FROM t1 WHERE c2 = 'cba'; -- Returns 10: this txn can now see the rows it just updated.

You can advance your timepoint by committing your transaction and then doing another SELECT or
START TRANSACTION WITH CONSISTENT SNAPSHOT.

This is called multi-versioned concurrency control.

In the following example, session A sees the row inserted by B only when B has committed the insert
and A has committed as well, so that the timepoint is advanced past the commit of B.

 Session A Session B

 SET autocommit=0; SET autocommit=0;
time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;
 empty set
 COMMIT;

 SELECT * FROM t;
 empty set

 COMMIT;

 SELECT * FROM t;

 | 1 | 2 |

If you want to see the “freshest” state of the database, use either the READ COMMITTED isolation level
or a locking read:

The InnoDB Transaction Model and Locking

1942

SELECT * FROM t LOCK IN SHARE MODE;

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads
its own fresh snapshot. With LOCK IN SHARE MODE, a locking read occurs instead: A SELECT
blocks until the transaction containing the freshest rows ends (see Section 14.2.2.3, “Locking Reads
(SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”).

Consistent read does not work over certain DDL statements:

• Consistent read does not work over DROP TABLE, because MySQL cannot use a table that has
been dropped and InnoDB destroys the table.

• Consistent read does not work over ALTER TABLE, because that statement makes a temporary
copy of the original table and deletes the original table when the temporary copy is built. When you
reissue a consistent read within a transaction, rows in the new table are not visible because those
rows did not exist when the transaction's snapshot was taken. In this case, the transaction returns an
error: ER_TABLE_DEF_CHANGED, “Table definition has changed, please retry transaction”.

The type of read varies for selects in clauses like INSERT INTO ... SELECT, UPDATE ...
(SELECT), and CREATE TABLE ... SELECT that do not specify FOR UPDATE or LOCK IN SHARE
MODE:

• By default, InnoDB uses stronger locks and the SELECT part acts like READ COMMITTED, where
each consistent read, even within the same transaction, sets and reads its own fresh snapshot.

• To use a consistent read in such cases, enable the innodb_locks_unsafe_for_binlog
option and set the isolation level of the transaction to READ UNCOMMITTED, READ COMMITTED, or
REPEATABLE READ (that is, anything other than SERIALIZABLE). In this case, no locks are set on
rows read from the selected table.

14.2.2.3 Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE
MODE)

If you query data and then insert or update related data within the same transaction, the regular
SELECT statement does not give enough protection. Other transactions can update or delete the same
rows you just queried. InnoDB supports two types of locking reads that offer extra safety:

• SELECT ... LOCK IN SHARE MODE sets a shared mode lock on any rows that are read. Other
sessions can read the rows, but cannot modify them until your transaction commits. If any of these
rows were changed by another transaction that has not yet committed, your query waits until that
transaction ends and then uses the latest values.

• For index records the search encounters, SELECT ... FOR UPDATE locks the rows and any
associated index entries, the same as if you issued an UPDATE statement for those rows. Other
transactions are blocked from updating those rows, from doing SELECT ... LOCK IN SHARE
MODE, or from reading the data in certain transaction isolation levels. Consistent reads ignore any
locks set on the records that exist in the read view. (Old versions of a record cannot be locked; they
are reconstructed by applying undo logs on an in-memory copy of the record.)

These clauses are primarily useful when dealing with tree-structured or graph-structured data, either
in a single table or split across multiple tables. You traverse edges or tree branches from one place to
another, while reserving the right to come back and change any of these “pointer” values.

All locks set by LOCK IN SHARE MODE and FOR UPDATE queries are released when the transaction
is committed or rolled back.

Note

Locking of rows for update using SELECT FOR UPDATE only applies
when autocommit is disabled (either by beginning transaction with START

The InnoDB Transaction Model and Locking

1943

TRANSACTION or by setting autocommit to 0. If autocommit is enabled, the
rows matching the specification are not locked.

Usage Examples

Suppose that you want to insert a new row into a table child, and make sure that the child row has
a parent row in table parent. Your application code can ensure referential integrity throughout this
sequence of operations.

First, use a consistent read to query the table PARENT and verify that the parent row exists. Can you
safely insert the child row to table CHILD? No, because some other session could delete the parent
row in the moment between your SELECT and your INSERT, without you being aware of it.

To avoid this potential issue, perform the SELECT using LOCK IN SHARE MODE:

SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

After the LOCK IN SHARE MODE query returns the parent 'Jones', you can safely add the child
record to the CHILD table and commit the transaction. Any transaction that tries to read or write to
the applicable row in the PARENT table waits until you are finished, that is, the data in all tables is in a
consistent state.

For another example, consider an integer counter field in a table CHILD_CODES, used to assign a
unique identifier to each child added to table CHILD. Do not use either consistent read or a shared
mode read to read the present value of the counter, because two users of the database could see the
same value for the counter, and a duplicate-key error occurs if two transactions attempt to add rows
with the same identifier to the CHILD table.

Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the same
time, at least one of them ends up in deadlock when it attempts to update the counter.

To implement reading and incrementing the counter, first perform a locking read of the counter using
FOR UPDATE, and then increment the counter. For example:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it
reads. Thus, it sets the same locks a searched SQL UPDATE would set on the rows.

The preceding description is merely an example of how SELECT ... FOR UPDATE works. In MySQL,
the specific task of generating a unique identifier actually can be accomplished using only a single
access to the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connection). It
does not access any table.

14.2.2.4 InnoDB Record, Gap, and Next-Key Locks

InnoDB has several types of record-level locks including record locks, gap locks, and next-key locks.
For information about shared locks, exclusive locks, and intention locks, see Section 14.2.2.1, “InnoDB
Lock Modes”.

• Record lock: This is a lock on an index record.

• Gap lock: This is a lock on a gap between index records, or a lock on the gap before the first or after
the last index record.

The InnoDB Transaction Model and Locking

1944

• Next-key lock: This is a combination of a record lock on the index record and a gap lock on the gap
before the index record.

Record Locks

Record locks always lock index records, even if a table is defined with no indexes. For such cases,
InnoDB creates a hidden clustered index and uses this index for record locking. See Section 14.2.7.2,
“Clustered and Secondary Indexes”.

Next-key Locks

By default, InnoDB operates in REPEATABLE READ transaction isolation level. In this case,
InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see
Section 14.2.2.5, “Avoiding the Phantom Problem Using Next-Key Locking”).

Next-key locking combines index-row locking with gap locking. InnoDB performs row-level locking in
such a way that when it searches or scans a table index, it sets shared or exclusive locks on the index
records it encounters. Thus, the row-level locks are actually index-record locks. In addition, a next-key
lock on an index record also affects the “gap” before that index record. That is, a next-key lock is an
index-record lock plus a gap lock on the gap preceding the index record. If one session has a shared
or exclusive lock on record R in an index, another session cannot insert a new index record in the gap
immediately before R in the index order.

Suppose that an index contains the values 10, 11, 13, and 20. The possible next-key locks for this
index cover the following intervals, where (or) denote exclusion of the interval endpoint and [or]
denote inclusion of the endpoint:

(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)

For the last interval, the next-key lock locks the gap above the largest value in the index and the
“supremum” pseudo-record having a value higher than any value actually in the index. The supremum
is not a real index record, so, in effect, this next-key lock locks only the gap following the largest index
value.

Gap Locks

The next-key locking example in the previous section shows that a gap might span a single index
value, multiple index values, or even be empty.

Gap locking is not needed for statements that lock rows using a unique index to search for a unique
row. (This does not include the case that the search condition includes only some columns of a
multiple-column unique index; in that case, gap locking does occur.) For example, if the id column has
a unique index, the following statement uses only an index-record lock for the row having id value 100
and it does not matter whether other sessions insert rows in the preceding gap:

SELECT * FROM child WHERE id = 100;

If id is not indexed or has a nonunique index, the statement does lock the preceding gap.

A type of gap lock called an insert intention gap lock is set by INSERT operations prior to row insertion.
This lock signals the intent to insert in such a way that multiple transactions inserting into the same
index gap need not wait for each other if they are not inserting at the same position within the gap.
Suppose that there are index records with values of 4 and 7. Separate transactions that attempt
to insert values of 5 and 6 each lock the gap between 4 and 7 with insert intention locks prior to
obtaining the exclusive lock on the inserted row, but do not block each other because the rows are
nonconflicting.

The InnoDB Transaction Model and Locking

1945

It is also worth noting here that conflicting locks can be held on a gap by different transactions. For
example, transaction A can hold a shared gap lock (gap S-lock) on a gap while transaction B holds an
exclusive gap lock (gap X-lock) on the same gap. The reason conflicting gap locks are allowed is that
if a record is purged from an index, the gap locks held on the record by different transactions must be
merged.

Gap locks in InnoDB are “purely inhibitive”, which means they only stop other transactions from
inserting to the gap. Thus, a gap X-lock has the same effect as a gap S-lock.

Disabling Gap Locking

Gap locking can be disabled explicitly. This occurs if you change the transaction isolation level to READ
COMMITTED or enable the innodb_locks_unsafe_for_binlog system variable (which is now
deprecated). Under these circumstances, gap locking is disabled for searches and index scans and is
used only for foreign-key constraint checking and duplicate-key checking.

There are also other effects of using the READ COMMITTED isolation level or enabling
innodb_locks_unsafe_for_binlog: Record locks for nonmatching rows are released after
MySQL has evaluated the WHERE condition. For UPDATE statements, InnoDB does a “semi-consistent”
read, such that it returns the latest committed version to MySQL so that MySQL can determine whether
the row matches the WHERE condition of the UPDATE.

14.2.2.5 Avoiding the Phantom Problem Using Next-Key Locking

The so-called phantom problem occurs within a transaction when the same query produces different
sets of rows at different times. For example, if a SELECT is executed twice, but returns a row the
second time that was not returned the first time, the row is a “phantom” row.

Suppose that there is an index on the id column of the child table and that you want to read and lock
all rows from the table having an identifier value larger than 100, with the intention of updating some
column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is bigger than 100. Let the table
contain rows having id values of 90 and 102. If the locks set on the index records in the scanned
range do not lock out inserts made in the gaps (in this case, the gap between 90 and 102), another
session can insert a new row into the table with an id of 101. If you were to execute the same SELECT
within the same transaction, you would see a new row with an id of 101 (a “phantom”) in the result set
returned by the query. If we regard a set of rows as a data item, the new phantom child would violate
the isolation principle of transactions that a transaction should be able to run so that the data it has
read does not change during the transaction.

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row
locking with gap locking. InnoDB performs row-level locking in such a way that when it searches or
scans a table index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-
level locks are actually index-record locks. In addition, a next-key lock on an index record also affects
the “gap” before that index record. That is, a next-key lock is an index-record lock plus a gap lock on
the gap preceding the index record. If one session has a shared or exclusive lock on record R in an
index, another session cannot insert a new index record in the gap immediately before R in the index
order.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that
happens in the preceding example: To prevent any insert into the table where id would be bigger than
100, the locks set by InnoDB include a lock on the gap following id value 102.

You can use next-key locking to implement a uniqueness check in your application: If you read your
data in share mode and do not see a duplicate for a row you are going to insert, then you can safely
insert your row and know that the next-key lock set on the successor of your row during the read

The InnoDB Transaction Model and Locking

1946

prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you
to “lock” the nonexistence of something in your table.

Gap locking can be disabled as discussed in Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key
Locks”. This may cause phantom problems because other sessions can insert new rows into the gaps
when gap locking is disabled.

14.2.2.6 Predicate Locking for Spatial Indexes

As of MySQL 5.7.5, InnoDB supports SPATIAL indexing of columns containing spatial columns (see
Section 11.5.3.5, “Optimizing Spatial Analysis”).

To handle locking for operations involving SPATIAL indexes, next-key locking does not work well
to support REPEATABLE READ or SERIALIZABLE transaction isolation levels. There is no absolute
ordering concept in multidimensional data, so it is not clear which is the “next” key.

To enable support of isolation levels for tables with SPATIAL indexes, InnoDB uses predicate locks. A
SPATIAL index contains minimum bounding rectangle (MBR) values, so InnoDB enforces consistent
read on the index by setting a predicate lock on the MBR value used for a query. Other transactions
cannot insert or modify a row that would match the query condition.

14.2.2.7 Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that
is scanned in the processing of the SQL statement. It does not matter whether there are WHERE
conditions in the statement that would exclude the row. InnoDB does not remember the exact WHERE
condition, but only knows which index ranges were scanned. The locks are normally next-key locks that
also block inserts into the “gap” immediately before the record. However, gap locking can be disabled
explicitly, which causes next-key locking not to be used. For more information, see Section 14.2.2.4,
“InnoDB Record, Gap, and Next-Key Locks”. The transaction isolation level also can affect which locks
are set; see Section 13.3.6, “SET TRANSACTION Syntax”.

If a secondary index is used in a search and index record locks to be set are exclusive, InnoDB also
retrieves the corresponding clustered index records and sets locks on them.

Differences between shared and exclusive locks are described in Section 14.2.2.1, “InnoDB Lock
Modes”.

If you have no indexes suitable for your statement and MySQL must scan the entire table to process
the statement, every row of the table becomes locked, which in turn blocks all inserts by other users to
the table. It is important to create good indexes so that your queries do not unnecessarily scan many
rows.

For SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE, locks are acquired for
scanned rows, and expected to be released for rows that do not qualify for inclusion in the result set
(for example, if they do not meet the criteria given in the WHERE clause). However, in some cases,
rows might not be unlocked immediately because the relationship between a result row and its original
source is lost during query execution. For example, in a UNION, scanned (and locked) rows from a
table might be inserted into a temporary table before evaluation whether they qualify for the result set.
In this circumstance, the relationship of the rows in the temporary table to the rows in the original table
is lost and the latter rows are not unlocked until the end of query execution.

InnoDB sets specific types of locks as follows.

• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks
unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, the search
sets shared next-key locks on the index records it encounters.

• SELECT ... FROM ... LOCK IN SHARE MODE sets shared next-key locks on all index records
the search encounters.

The InnoDB Transaction Model and Locking

1947

• For index records the search encounters, SELECT ... FROM ... FOR UPDATE blocks other
sessions from doing SELECT ... FROM ... LOCK IN SHARE MODE or from reading in certain
transaction isolation levels. Consistent reads will ignore any locks set on the records that exist in the
read view.

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search
encounters.

• INSERT sets an exclusive lock on the inserted row. This lock is an index-record lock, not a next-key
lock (that is, there is no gap lock) and does not prevent other sessions from inserting into the gap
before the inserted row.

Prior to inserting the row, a type of gap lock called an insertion intention gap lock is set. This lock
signals the intent to insert in such a way that multiple transactions inserting into the same index gap
need not wait for each other if they are not inserting at the same position within the gap. Suppose
that there are index records with values of 4 and 7. Separate transactions that attempt to insert
values of 5 and 6 each lock the gap between 4 and 7 with insert intention locks prior to obtaining the
exclusive lock on the inserted row, but do not block each other because the rows are nonconflicting.

If a duplicate-key error occurs, a shared lock on the duplicate index record is set. This use of a
shared lock can result in deadlock should there be multiple sessions trying to insert the same row
if another session already has an exclusive lock. This can occur if another session deletes the row.
Suppose that an InnoDB table t1 has the following structure:

CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

Now suppose that three sessions perform the following operations in order:

Session 1:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

ROLLBACK;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions
2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When
session 1 rolls back, it releases its exclusive lock on the row and the queued shared lock requests
for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an
exclusive lock for the row because of the shared lock held by the other.

A similar situation occurs if the table already contains a row with key value 1 and three sessions
perform the following operations in order:

Session 1:

The InnoDB Transaction Model and Locking

1948

START TRANSACTION;
DELETE FROM t1 WHERE i = 1;

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

COMMIT;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions
2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When
session 1 commits, it releases its exclusive lock on the row and the queued shared lock requests
for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an
exclusive lock for the row because of the shared lock held by the other.

• INSERT ... ON DUPLICATE KEY UPDATE differs from a simple INSERT in that an exclusive
next-key lock rather than a shared lock is placed on the row to be updated when a duplicate-key
error occurs.

• REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive
next-key lock is placed on the row to be replaced.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive index record lock (without
a gap lock) on each row inserted into T. If the transaction isolation level is READ COMMITTED,
or innodb_locks_unsafe_for_binlog is enabled and the transaction isolation level is not
SERIALIZABLE, InnoDB does the search on S as a consistent read (no locks). Otherwise, InnoDB
sets shared next-key locks on rows from S. InnoDB has to set locks in the latter case: In roll-forward
recovery from a backup, every SQL statement must be executed in exactly the same way it was
done originally.

CREATE TABLE ... SELECT ... performs the SELECT with shared next-key locks or as a
consistent read, as for INSERT ... SELECT.

When a SELECT is used in the constructs REPLACE INTO t SELECT ... FROM s WHERE ...
or UPDATE t ... WHERE col IN (SELECT ... FROM s ...), InnoDB sets shared next-key
locks on rows from table s.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an
exclusive lock on the end of the index associated with the AUTO_INCREMENT column. In accessing
the auto-increment counter, InnoDB uses a specific AUTO-INC table lock mode where the lock lasts
only to the end of the current SQL statement, not to the end of the entire transaction. Other sessions
cannot insert into the table while the AUTO-INC table lock is held; see Section 14.2.2, “The InnoDB
Transaction Model and Locking”.

InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any
locks.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the
constraint condition to be checked sets shared record-level locks on the records that it looks at to
check the constraint. InnoDB also sets these locks in the case where the constraint fails.

The InnoDB Transaction Model and Locking

1949

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that
sets these locks. InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and
autocommit = 0, and the MySQL layer above InnoDB knows about row-level locks.

Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks
are involved. Also, because in this case the higher MySQL layer does not know about row-level
locks, it is possible to get a table lock on a table where another session currently has row-level locks.
However, this does not endanger transaction integrity, as discussed in Section 14.2.2.9, “Deadlock
Detection and Rollback”. See also Section 14.5.7, “Limits on InnoDB Tables”.

14.2.2.8 Implicit Transaction Commit and Rollback

By default, MySQL starts the session for each new connection with autocommit mode enabled,
so MySQL does a commit after each SQL statement if that statement did not return an error. If a
statement returns an error, the commit or rollback behavior depends on the error. See Section 14.18.4,
“InnoDB Error Handling”.

If a session that has autocommit disabled ends without explicitly committing the final transaction,
MySQL rolls back that transaction.

Some statements implicitly end a transaction, as if you had done a COMMIT before executing the
statement. For details, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

14.2.2.9 Deadlock Detection and Rollback

InnoDB automatically detects transaction deadlocks and rolls back a transaction or transactions to
break the deadlock. InnoDB tries to pick small transactions to roll back, where the size of a transaction
is determined by the number of rows inserted, updated, or deleted.

InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit
= 0, and the MySQL layer above it knows about row-level locks. Otherwise, InnoDB cannot
detect deadlocks where a table lock set by a MySQL LOCK TABLES statement or a lock set by a
storage engine other than InnoDB is involved. Resolve these situations by setting the value of the
innodb_lock_wait_timeout system variable.

When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are
released. However, if just a single SQL statement is rolled back as a result of an error, some of the
locks set by the statement may be preserved. This happens because InnoDB stores row locks in a
format such that it cannot know afterward which lock was set by which statement.

If a SELECT calls a stored function in a transaction, and a statement within the function fails, that
statement rolls back. Furthermore, if ROLLBACK is executed after that, the entire transaction rolls back.

For techniques to organize database operations to avoid deadlocks, see Section 14.2.2.10, “How to
Cope with Deadlocks”.

14.2.2.10 How to Cope with Deadlocks

This section builds on the conceptual information about deadlocks in Section 14.2.2.9, “Deadlock
Detection and Rollback”. It explains how to organize database operations to minimize deadlocks and
the subsequent error handling required in applications.

Deadlocks are a classic problem in transactional databases, but they are not dangerous unless
they are so frequent that you cannot run certain transactions at all. Normally, you must write your
applications so that they are always prepared to re-issue a transaction if it gets rolled back because of
a deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions
that just insert or delete a single row. That is because these operations are not really “atomic”; they
automatically set locks on the (possibly several) index records of the row inserted or deleted.

InnoDB Multi-Versioning

1950

You can cope with deadlocks and reduce the likelihood of their occurrence with the following
techniques:

• At any time, issue the SHOW ENGINE INNODB STATUS command to determine the cause of the
most recent deadlock. That can help you to tune your application to avoid deadlocks.

• If frequent deadlock warnings cause concern, collect more extensive debugging information by
enabling the innodb_print_all_deadlocks configuration option. Information about each
deadlock, not just the latest one, is recorded in the MySQL error log. Disable this option when you
are finished debugging.

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous.
Just try again.

• Keep transactions small and short in duration to make them less prone to collision.

• Commit transactions immediately after making a set of related changes to make them less prone
to collision. In particular, do not leave an interactive mysql session open for a long time with an
uncommitted transaction.

• If you use locking reads (SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE), try
using a lower isolation level such as READ COMMITTED.

• When modifying multiple tables within a transaction, or different sets of rows in the same table, do
those operations in a consistent order each time. Then transactions form well-defined queues and do
not deadlock. For example, organize database operations into functions within your application, or
call stored routines, rather than coding multiple similar sequences of INSERT, UPDATE, and DELETE
statements in different places.

• Add well-chosen indexes to your tables. Then your queries need to scan fewer index records and
consequently set fewer locks. Use EXPLAIN SELECT to determine which indexes the MySQL server
regards as the most appropriate for your queries.

• Use less locking. If you can afford to permit a SELECT to return data from an old snapshot, do not
add the clause FOR UPDATE or LOCK IN SHARE MODE to it. Using the READ COMMITTED isolation
level is good here, because each consistent read within the same transaction reads from its own
fresh snapshot.

• If nothing else helps, serialize your transactions with table-level locks. The correct way to use
LOCK TABLES with transactional tables, such as InnoDB tables, is to begin a transaction with SET
autocommit = 0 (not START TRANSACTION) followed by LOCK TABLES, and to not call UNLOCK
TABLES until you commit the transaction explicitly. For example, if you need to write to table t1 and
read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

Table-level locks prevent concurrent updates to the table, avoiding deadlocks at the expense of less
responsiveness for a busy system.

• Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just
a single row. Have each transaction update that row before accessing other tables. In that way, all
transactions happen in a serial fashion. Note that the InnoDB instant deadlock detection algorithm
also works in this case, because the serializing lock is a row-level lock. With MySQL table-level
locks, the timeout method must be used to resolve deadlocks.

14.2.3 InnoDB Multi-Versioning

InnoDB Multi-Versioning

1951

InnoDB is a multi-versioned storage engine: it keeps information about old versions of changed rows,
to support transactional features such as concurrency and rollback. This information is stored in the
tablespace in a data structure called a rollback segment (after an analogous data structure in Oracle).
InnoDB uses the information in the rollback segment to perform the undo operations needed in a
transaction rollback. It also uses the information to build earlier versions of a row for a consistent read.

Internally, InnoDB adds three fields to each row stored in the database. A 6-byte DB_TRX_ID field
indicates the transaction identifier for the last transaction that inserted or updated the row. Also, a
deletion is treated internally as an update where a special bit in the row is set to mark it as deleted.
Each row also contains a 7-byte DB_ROLL_PTR field called the roll pointer. The roll pointer points to an
undo log record written to the rollback segment. If the row was updated, the undo log record contains
the information necessary to rebuild the content of the row before it was updated. A 6-byte DB_ROW_ID
field contains a row ID that increases monotonically as new rows are inserted. If InnoDB generates a
clustered index automatically, the index contains row ID values. Otherwise, the DB_ROW_ID column
does not appear in any index.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs
are needed only in transaction rollback and can be discarded as soon as the transaction commits.
Update undo logs are used also in consistent reads, but they can be discarded only after there is no
transaction present for which InnoDB has assigned a snapshot that in a consistent read could need
the information in the update undo log to build an earlier version of a database row.

Commit your transactions regularly, including those transactions that issue only consistent reads.
Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback segment may
grow too big, filling up your tablespace.

The physical size of an undo log record in the rollback segment is typically smaller than the
corresponding inserted or updated row. You can use this information to calculate the space needed for
your rollback segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database
immediately when you delete it with an SQL statement. InnoDB only physically removes the
corresponding row and its index records when it discards the update undo log record written for the
deletion. This removal operation is called a purge, and it is quite fast, usually taking the same order of
time as the SQL statement that did the deletion.

If you insert and delete rows in smallish batches at about the same rate in the table, the purge thread
can start to lag behind and the table can grow bigger and bigger because of all the “dead” rows,
making everything disk-bound and very slow. In such a case, throttle new row operations, and allocate
more resources to the purge thread by tuning the innodb_max_purge_lag system variable. See
Section 14.11, “InnoDB Startup Options and System Variables” for more information.

Multi-Versioning and Secondary Indexes

InnoDB multiversion concurrency control (MVCC) treats secondary indexes differently than clustered
indexes. Records in a clustered index are updated in-place, and their hidden system columns point
undo log entries from which earlier versions of records can be reconstructed. Unlike clustered index
records, secondary index records do not contain hidden system columns nor are they updated in-place.

When a secondary index column is updated, old secondary index records are delete-marked, new
records are inserted, and delete-marked records are eventually purged. When a secondary index
record is delete-marked or the secondary index page is updated by a newer transaction, InnoDB
looks up the database record in the clustered index. In the clustered index, the record's DB_TRX_ID is
checked, and the correct version of the record is retrieved from the undo log if the record was modified
after the reading transaction was initiated.

If a secondary index record is marked for deletion or the secondary index page is updated by a newer
transaction, the covering index technique is not used. Instead of returning values from the index
structure, InnoDB looks up the record in the clustered index.

InnoDB Redo Log

1952

However, if the index condition pushdown (ICP) optimization is enabled, and parts of the WHERE
condition can be evaluated using only fields from the index, the MySQL server still pushes this part of
the WHERE condition down to the storage engine where it is evaluated using the index. If no matching
records are found, the clustered index lookup is avoided. If matching records are found, even among
delete-marked records, InnoDB looks up the record in the clustered index.

14.2.4 InnoDB Redo Log

The redo log is a disk-based data structure used during crash recovery to correct data written by
incomplete transactions. During normal operations, the redo log encodes requests to change InnoDB
table data, which result from SQL statements or low-level API calls. Modifications that did not finish
updating the data files before an unexpected shutdown are replayed automatically during initialization,
and before the connections are accepted. For information about the role of the redo log in crash
recovery, see Section 14.15.1, “The InnoDB Recovery Process”.

By default, the redo log is physically represented on disk as a set of files, named ib_logfile0 and
ib_logfile1. MySQL writes to the redo log files in a circular fashion. Data in the redo log is encoded
in terms of records affected; this data is collectively referred to as redo. The passage of data through
the redo log is represented by an ever-increasing LSN value.

Disk layout for the redo log is configured using the following options:

• innodb_log_file_size: Defines the size of each redo log file in bytes. By default, redo log files
are 50331648 bytes (48MB) in size. The combined size of log files (innodb_log_file_size *
innodb_log_files_in_group) cannot exceed a maximum value that is slightly less than 512GB.

• innodb_log_files_in_group: The number of log files in the log group. The default is to create
two files named ib_logfile0 and ib_logfile1.

• innodb_log_group_home_dir: The directory path to the InnoDB log files. If you do not specify a
value, the log files are created in the MySQL data directory (datadir).

To change your initial redo log configuration, refer to Section 14.4.2, “Changing the Number or Size of
InnoDB Redo Log Files”. For information about optimizing redo logging, see Section 8.5.4, “Optimizing
InnoDB Redo Logging”.

14.2.4.1 Group Commit for Redo Log Flushing

InnoDB, like any other ACID-compliant database engine, flushes the redo log of a transaction before
it is committed. InnoDB uses group commit functionality to group multiple such flush requests together
to avoid one flush for each commit. With group commit, InnoDB issues a single write to the log file
to perform the commit action for multiple user transactions that commit at about the same time,
significantly improving throughput.

For more information about performance of COMMIT and other transactional operations, see
Section 8.5.2, “Optimizing InnoDB Transaction Management”.

14.2.5 InnoDB Undo Logs

An undo log (or rollback segment) is a storage area that holds copies of data modified by active
transactions. If another transaction needs to see the original data (as part of a consistent read
operation), the unmodified data is retrieved from this storage area. By default, this area is physically
part of the system tablespace. However, as of MySQL 5.6.3, undo logs can reside in separate undo
tablespaces. For more information, see Section 14.4.7, “Storing InnoDB Undo Logs in Separate
Tablespaces”. For more information about undo logs and multi-versioning, see Section 14.2.3, “InnoDB
Multi-Versioning”.

InnoDB supports 128 undo logs. As of MySQL 5.7.2, 32 of 128 undo logs were reserved as non-redo
undo logs for temporary table transactions. Each transaction that updates a temporary table (excluding
read-only transactions) is assigned two undo logs, one redo-enabled undo log and one non-redo undo

InnoDB Temporary Table Undo Logs

1953

log. Read-only transactions are only assigned non-redo undo logs, as read-only transactions are only
permitted to modify temporary tables.

This leaves 96 available undo logs, each of which supports up to 1023 concurrent data-modifying
transactions, for a total limit of approximately 96K concurrent data-modifying transactions. The 96K
limit assumes that transactions do not modify temporary tables. If all data-modifying transactions
also modify temporary tables, the total limit would be approximately 32K concurrent data modifying
transactions. For more information about undo logs that are reserved for temporary table transactions,
see Section 14.2.6, “InnoDB Temporary Table Undo Logs”.

The innodb_undo_logs option defines the number of undo logs used by InnoDB.

14.2.6 InnoDB Temporary Table Undo Logs

MySQL 5.7.2 introduces a new type of undo log for both normal and compressed temporary tables
and related objects. This type of undo log is not a redo log, as temporary tables are not recovered
during crash recovery and do not require redo logs. Temporary table undo logs are, however, used for
rollback while the server is running. This special type of non-redo undo log benefits performance by
avoiding redo logging I/O for temporary tables and related objects. Temporary table undo logs reside
in the temporary tablespace. The default temporary tablespace file, ibtmp1, is located in the data
directory by default and is always recreated on server startup. A user defined location for the temporary
tablespace file can be specified by setting innodb_temp_data_file_path.

With this change, 32 rollback segments are now reserved for temporary table undo logs for
transactions that modify temporary tables and related objects. This reduces the maximum number of
rollback segments available for data-modifying transactions that generate undo records from 128 to
96, which reduces the limit on concurrent data-modifying transactions from 128K to 96K. For more
information see Section 14.2.3, “InnoDB Multi-Versioning” and Section 14.5.7, “Limits on InnoDB
Tables”.

14.2.7 InnoDB Table and Index Structures

This section describes how InnoDB tables, indexes, and their associated metadata is represented at
the physical level. This information is primarily useful for performance tuning and troubleshooting.

14.2.7.1 Role of the .frm File for InnoDB Tables

MySQL stores its data dictionary information for tables in .frm files in database directories. Unlike other
MySQL storage engines, InnoDB also encodes information about the table in its own internal data
dictionary inside the tablespace. When MySQL drops a table or a database, it deletes one or more
.frm files as well as the corresponding entries inside the InnoDB data dictionary. You cannot move
InnoDB tables between databases simply by moving the .frm files.

14.2.7.2 Clustered and Secondary Indexes

Every InnoDB table has a special index called the clustered index where the data for the rows is
stored. Typically, the clustered index is synonymous with the primary key. To get the best performance
from queries, inserts, and other database operations, you must understand how InnoDB uses the
clustered index to optimize the most common lookup and DML operations for each table.

• When you define a PRIMARY KEY on your table, InnoDB uses it as the clustered index. Define a
primary key for each table that you create. If there is no logical unique and non-null column or set of
columns, add a new auto-increment column, whose values are filled in automatically.

• If you do not define a PRIMARY KEY for your table, MySQL locates the first UNIQUE index where all
the key columns are NOT NULL and InnoDB uses it as the clustered index.

• If the table has no PRIMARY KEY or suitable UNIQUE index, InnoDB internally generates a hidden
clustered index on a synthetic column containing row ID values. The rows are ordered by the ID that

InnoDB Table and Index Structures

1954

InnoDB assigns to the rows in such a table. The row ID is a 6-byte field that increases monotonically
as new rows are inserted. Thus, the rows ordered by the row ID are physically in insertion order.

How the Clustered Index Speeds Up Queries

Accessing a row through the clustered index is fast because the index search leads directly to the page
with all the row data. If a table is large, the clustered index architecture often saves a disk I/O operation
when compared to storage organizations that store row data using a different page from the index
record. (For example, MyISAM uses one file for data rows and another for index records.)

How Secondary Indexes Relate to the Clustered Index

All indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in
a secondary index contains the primary key columns for the row, as well as the columns specified for
the secondary index. InnoDB uses this primary key value to search for the row in the clustered index.

If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short
primary key.

For coding guidelines to take advantage of InnoDB clustered and secondary indexes, see
Section 8.3.2, “Using Primary Keys” Section 8.3, “Optimization and Indexes” Section 8.5, “Optimizing
for InnoDB Tables” Section 8.3.2, “Using Primary Keys”.

14.2.7.3 InnoDB FULLTEXT Indexes

FULLTEXT indexes are created on text-based columns (CHAR, VARCHAR, or TEXT columns) to help
speed up queries and DML operations on data contained within those columns, omitting any words that
are defined as stopwords.

A FULLTEXT index can be defined as part of a CREATE TABLE statement, or added later using ALTER
TABLE or CREATE INDEX.

Full-text searching is performed using MATCH() ... AGAINST [1446] syntax. For usage information,
see Section 12.9, “Full-Text Search Functions”.

Full-Text Index Design

InnoDB FULLTEXT indexes have an inverted index design. Inverted indexes store a list of words,
and for each word, a list of documents that the word appears in. To support proximity search, position
information for each word is also stored, as a byte offset.

Full-text Index Tables

For each InnoDB FULLTEXT index, a set of index tables is created, as shown in the following example:

CREATE TABLE opening_lines (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
opening_line TEXT(500),
author VARCHAR(200),
title VARCHAR(200),
FULLTEXT idx (opening_line)
) ENGINE=InnoDB;

mysql> SELECT table_id, name, space from INFORMATION_SCHEMA.INNODB_SYS_TABLES
WHERE name LIKE 'test/%';
+----------+--+-------+
| table_id | name | space |
+----------+--+-------+
333	test/FTS_0000000000000147_00000000000001c9_INDEX_1	289
334	test/FTS_0000000000000147_00000000000001c9_INDEX_2	290
335	test/FTS_0000000000000147_00000000000001c9_INDEX_3	291
336	test/FTS_0000000000000147_00000000000001c9_INDEX_4	292
337	test/FTS_0000000000000147_00000000000001c9_INDEX_5	293
338	test/FTS_0000000000000147_00000000000001c9_INDEX_6	294
330	test/FTS_0000000000000147_BEING_DELETED	286
331	test/FTS_0000000000000147_BEING_DELETED_CACHE	287

InnoDB Table and Index Structures

1955

332	test/FTS_0000000000000147_CONFIG	288
328	test/FTS_0000000000000147_DELETED	284
329	test/FTS_0000000000000147_DELETED_CACHE	285
327	test/opening_lines	283
+----------+--+-------+

The first six tables represent the inverted index and are referred to as auxiliary index tables. When
incoming documents are tokenized, the individual words (also referred to as “tokens”) are inserted into
the index tables along with position information and the associated Document ID (DOC_ID). The words
are fully sorted and partitioned among the six index tables based on the character set sort weight of the
word's first character.

The inverted index is partitioned into six auxiliary index tables to support parallel index creation. By
default, two threads tokenize, sort, and insert words and associated data into the index tables. The
number of threads is configurable using the innodb_ft_sort_pll_degree option. When creating
FULLTEXT indexes on large tables, consider increasing the number of threads.

Auxiliary index table names are prefixed with FTS_ and postfixed with INDEX_*. Each index table is
associated with the indexed table by a hex value in the index table name that matches the table_id
of the indexed table. For example, the table_id of the test/opening_lines table is 327, for
which the hex value is 0x147. As shown in the preceding example, the “147” hex value appears in the
names of index tables that are associated with the test/opening_lines table.

A hex value representing the index_id of the FULLTEXT index also appears
in auxiliary index table names. For example, in the auxiliary table name test/
FTS_0000000000000147_00000000000001c9_INDEX_1, the hex value 1c9 has a decimal value
of 457. The index defined on the opening_lines table (idx) can be identified by querying the
INFORMATION_SCHEMA.INNODB_SYS_INDEXES table for this value (457).

mysql> SELECT index_id, name, table_id, space from INFORMATION_SCHEMA.INNODB_SYS_INDEXES
 WHERE index_id=457;
+----------+------+----------+-------+
| index_id | name | table_id | space |
+----------+------+----------+-------+
| 457 | idx | 327 | 283 |
+----------+------+----------+-------+

Index tables are stored in their own tablespace if the primary table is created in a file-per-table
tablespace.

Note

Due to a bug introduced in MySQL 5.6.5, index tables were created in the
InnoDB system tablespace (space 0) even though the primary table was
created in a file-per-table tablespace. The bug is fixed in MySQL 5.6.20 and
MySQL 5.7.5 (Bug#18635485). As of MySQL 5.7.8, auxiliary index tables are
always stored in the same tablespace as the primary table and have the same
row format as the primary table (MySQL Bug #75869).

The other index tables shown in the preceding example are used for deletion handling and for storing
the internal state of the FULLTEXT index.

• FTS_*_DELETED and FTS_*_DELETED_CACHE: Contain the document IDs (DOC_ID) for
documents that are deleted but whose data is not yet removed from the full-text index. The
FTS_*_DELETED_CACHE is the in-memory version of the FTS_*_DELETED table.

• FTS_*_BEING_DELETED and FTS_*_BEING_DELETED_CACHE: Contain the document IDs
(DOC_ID) for documents that are deleted and whose data is currently in the process of being
removed from the full-text index. The FTS_*_BEING_DELETED_CACHE table is the in-memory
version of the FTS_*_BEING_DELETED table.

• FTS_*_CONFIG: Stores information about the internal state of the FULLTEXT index. Most
importantly, it stores the FTS_SYNCED_DOC_ID, which identifies documents that have been

InnoDB Table and Index Structures

1956

parsed and flushed to disk. In case of crash recovery, FTS_SYNCED_DOC_ID values are used
to identify documents that have not been flushed to disk so that the documents can be re-
parsed and added back to the FULLTEXT index cache. To view the data in this table, query the
INFORMATION_SCHEMA.INNODB_FT_CONFIG table.

Full-Text Index Cache

When a document is inserted, it is tokenized, and the individual words and associated data are
inserted into the FULLTEXT index. This process, even for small documents, could result in numerous
small insertions into the auxiliary index tables, making concurrent access to these tables a point of
contention. To avoid this problem, InnoDB uses a FULLTEXT index cache to temporarily cache index
table insertions for recently inserted rows. This in-memory cache structure holds insertions until the
cache is full and then batch flushes them to disk (to the auxiliary index tables). You can query the
INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE table to view tokenized data for recently inserted
rows.

The caching and batch flushing behavior avoids frequent updates to auxiliary index tables, which
could result in concurrent access issues during busy insert and update times. The batching technique
also avoids multiple insertions for the same word, and minimizes duplicate entries. Instead of flushing
each word individually, insertions for the same word are merged and flushed to disk as a single entry,
improving insertion efficiency while keeping auxiliary index tables as small as possible.

The innodb_ft_cache_size variable is used to configure the full-text index cache size
(on a per-table basis), which affects how often the full-text index cache is flushed. You can
also define a global full-text index cache size limit for all tables in a given instance using the
innodb_ft_total_cache_size option.

The full-text index cache stores the same information as auxiliary index tables. However, the full-text
index cache only caches tokenized data for recently inserted rows. The data that is already flushed to
disk (to the full-text auxiliary tables) is not brought back into the full-text index cache when queried. The
data in auxiliary index tables is queried directly, and results from the auxiliary index tables are merged
with results from the full-text index cache before being returned.

InnoDB Full-Text Document ID and FTS_DOC_ID Column

InnoDB uses a unique document identifier referred to as a Document ID (DOC_ID) to map words in the
full-text index to document records where the word appears. The mapping requires an FTS_DOC_ID
column on the indexed table. If an FTS_DOC_ID column is not defined, InnoDB automatically adds a
hidden FTS_DOC_ID column when the full-text index is created. The following example demonstrates
this behavior.

The following table definition does not include an FTS_DOC_ID column:

CREATE TABLE opening_lines (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
opening_line TEXT(500),
author VARCHAR(200),
title VARCHAR(200)
) ENGINE=InnoDB;

When you create a full-text index on the table using CREATE FULLTEXT INDEX syntax, a warning is
returned which reports that InnoDB is rebuilding the table to add the FTS_DOC_ID column.

mysql> CREATE FULLTEXT INDEX idx ON opening_lines(opening_line);
Query OK, 0 rows affected, 1 warning (0.19 sec)
Records: 0 Duplicates: 0 Warnings: 1

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 124 | InnoDB rebuilding table to add column FTS_DOC_ID |
+---------+------+--+

InnoDB Table and Index Structures

1957

The same warning is returned when using ALTER TABLE to add a full-text index to a table that does
not have an FTS_DOC_ID column. If you create a full-text index at CREATE TABLE time and do not
specify an FTS_DOC_ID column, InnoDB adds a hidden FTS_DOC_ID column, without warning.

Defining an FTS_DOC_ID column at CREATE TABLE time reduces the time required to create a full-text
index on a table that is already loaded with data. If an FTS_DOC_ID column is defined on a table prior
to loading data, the table and its indexes do not have to be rebuilt to add the new column. If you are not
concerned with CREATE FULLTEXT INDEX performance, leave out the FTS_DOC_ID column to have
InnoDB create it for you. InnoDB creates a hidden FTS_DOC_ID column along with a unique index
(FTS_DOC_ID_INDEX) on the FTS_DOC_ID column. If you want to create your own FTS_DOC_ID
column, the column must be defined as BIGINT UNSIGNED NOT NULL and named FTS_DOC_ID (all
upper case), as in the following example:

Note

The FTS_DOC_ID column does not need to be defined as an
AUTO_INCREMENT column but AUTO_INCREMENT could make loading data
easier.

CREATE TABLE opening_lines (
FTS_DOC_ID BIGINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
opening_line TEXT(500),
author VARCHAR(200),
title VARCHAR(200)
) ENGINE=InnoDB;

If you choose to define the FTS_DOC_ID column yourself, you are responsible for managing the
column to avoid empty or duplicate values. FTS_DOC_ID values cannot be reused, which means
FTS_DOC_ID values must be ever increasing.

Optionally, you can create the required unique FTS_DOC_ID_INDEX (all upper case) on the
FTS_DOC_ID column.

CREATE UNIQUE INDEX FTS_DOC_ID_INDEX on opening_lines(FTS_DOC_ID);

If you do not create the FTS_DOC_ID_INDEX, InnoDB creates it automatically.

InnoDB Full-Text Index Deletion Handling

Deleting a record that has a full-text index column could result in numerous small deletions in the
auxiliary index tables, making concurrent access to these tables a point of contention. To avoid this
problem, the Document ID (DOC_ID) of a deleted document is logged in a special FTS_*_DELETED
table whenever a record is deleted from an indexed table, and the indexed record remains in the full-
text index. Before returning query results, information in the FTS_*_DELETED table is used to filter
out deleted Document IDs. The benefit of this design is that deletions are fast and inexpensive. The
drawback is that the size of the index is not immediately reduced after deleting records. To remove
full-text index entries for deleted records, you must run OPTIMIZE TABLE on the indexed table with
innodb_optimize_fulltext_only=ON to rebuild the full-text index. For more information, see
Optimizing InnoDB Full-Text Indexes.

InnoDB Full-Text Index Transaction Handling

InnoDB FULLTEXT indexes have special transaction handling characteristics due its caching and
batch processing behavior. Specifically, updates and insertions on a FULLTEXT index are processed
at transaction commit time, which means that a FULLTEXT search can only see committed data. The
following example demonstrates this behavior. The FULLTEXT search only returns a result after the
inserted lines are committed.

mysql> CREATE TABLE opening_lines (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
opening_line TEXT(500),
author VARCHAR(200),
title VARCHAR(200),

InnoDB Table and Index Structures

1958

FULLTEXT idx (opening_line)
) ENGINE=InnoDB;

mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO opening_lines(opening_line,author,title) VALUES
('Call me Ishmael.','Herman Melville','Moby-Dick'),
('A screaming comes across the sky.','Thomas Pynchon','Gravity\'s Rainbow'),
('I am an invisible man.','Ralph Ellison','Invisible Man'),
('Where now? Who now? When now?','Samuel Beckett','The Unnamable'),
('It was love at first sight.','Joseph Heller','Catch-22'),
('All this happened, more or less.','Kurt Vonnegut','Slaughterhouse-Five'),
('Mrs. Dalloway said she would buy the flowers herself.','Virginia Woolf','Mrs. Dalloway'),
('It was a pleasure to burn.','Ray Bradbury','Fahrenheit 451');
Query OK, 8 rows affected (0.00 sec)
Records: 8 Duplicates: 0 Warnings: 0

mysql> SELECT COUNT(*) FROM opening_lines WHERE MATCH(opening_line) AGAINST('Ishmael');
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT COUNT(*) FROM opening_lines WHERE MATCH(opening_line) AGAINST('Ishmael');
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+

Monitoring InnoDB Full-Text Indexes

You can monitor and examine the special text-processing aspects of InnoDB FULLTEXT indexes by
querying the following INFORMATION_SCHEMA tables:

• INNODB_FT_CONFIG

• INNODB_FT_INDEX_TABLE

• INNODB_FT_INDEX_CACHE

• INNODB_FT_DEFAULT_STOPWORD

• INNODB_FT_DELETED

• INNODB_FT_BEING_DELETED

You can also view basic information for FULLTEXT indexes and tables by querying
INNODB_SYS_INDEXES and INNODB_SYS_TABLES.

See Section 14.12.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables” for more
information.

14.2.7.4 Physical Structure of an InnoDB Index

With the exception of spatial indexes, InnoDB indexes are B-tree data structures. Spatial indexes use
R-trees, which are specialized data structures for indexing multi-dimensional data. Index records are
stored in the leaf pages of their B-tree or R-tree data structure. The default size of an index page is
16KB.

When new records are inserted into an InnoDB clustered index, InnoDB tries to leave 1/16 of the page
free for future insertions and updates of the index records. If index records are inserted in a sequential

InnoDB Table and Index Structures

1959

order (ascending or descending), the resulting index pages are about 15/16 full. If records are inserted
in a random order, the pages are from 1/2 to 15/16 full.

As of MySQL 5.7.5, InnoDB performs a bulk load when creating or rebuilding B-tree indexes.
This method of index creation is known as a sorted index build. innodb_fill_factor defines
the percentage of space on each B-tree page that is filled during a sorted index build, with the
remaining space reserved for future index growth. Sorted index builds are not supported for spatial
indexes. For more information, see Section 14.2.7.8, “Sorted Index Builds”. As of MySQL 5.7.8, an
innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered index pages free for future
index growth.

If the fill factor of an InnoDB index page drops below the MERGE_THRESHOLD, which is 50% by default
if not specified, InnoDB tries to contract the index tree to free the page. The MERGE_THRESHOLD
setting applies to both B-tree and R-tree indexes. For more information, see Section 14.3.12,
“Configuring the Merge Threshold for Index Pages”.

You can configure the page size for all InnoDB tablespaces in a MySQL instance by setting the
innodb_page_size configuration option before creating the instance. Once the page size for an
instance is set, you cannot change it. Supported sizes are 64KB, 32KB, 16KB (default), 8KB, and 4KB,
corresponding to the option values 64k, 32k, 16k, 8k, and 4k.

Support for 32KB and 64KB pages sizes was added in MySQL 5.7.6. For more information, refer to the
innodb_page_size documentation.

A MySQL instance using a particular InnoDB page size cannot use data files or log files from an
instance that uses a different page size.

14.2.7.5 Change Buffer

The change buffer is a special data structure that caches changes to secondary index pages when
affected pages are not in the buffer pool. The buffered changes, which may result from INSERT,
UPDATE, or DELETE operations (DML), are merged later when the pages are loaded into the buffer pool
by other read operations.

Unlike clustered indexes, secondary indexes are usually non-unique, and inserts into secondary
indexes happen in a relatively random order. Similarly, deletes and updates may affect secondary
index pages that are not adjacently located in an index tree. Merging cached changes at a later time,
when affected pages are read into the buffer pool by other operations, avoids substantial random
access I/O that would be required to read-in secondary index pages from disk.

Periodically, the purge operation that runs when the system is mostly idle, or during a slow shutdown,
writes the updated index pages to disk. The purge operation can write disk blocks for a series of index
values more efficiently than if each value were written to disk immediately.

Change buffer merging may take several hours when there are numerous secondary indexes
to update and many affected rows. During this time, disk I/O is increased, which can cause a
significant slowdown for disk-bound queries. Change buffer merging may also continue to occur after a
transaction is committed. In fact, change buffer merging may continue to occur after a server shutdown
and restart (see Section 14.18.2, “Forcing InnoDB Recovery” for more information).

In memory, the change buffer occupies part of the InnoDB buffer pool. On disk, the change buffer is
part of the system tablespace, so that index changes remain buffered across database restarts.

The type of data cached in the change buffer is governed by the innodb_change_buffering
configuration option. For more information see, Section 14.3.5, “Configuring InnoDB Change Buffering”.
You can also configure the maximum change buffer size. For more information, see Section 14.3.5.1,
“Configuring the Change Buffer Maximum Size”.

Monitoring the Change Buffer

The following options are available for change buffer monitoring:

InnoDB Table and Index Structures

1960

• InnoDB Standard Monitor output includes status information for the change buffer. To view monitor
data, issue the SHOW ENGINE INNODB STATUS command.

mysql> SHOW ENGINE INNODB STATUS\G

Change buffer status information is located under the INSERT BUFFER AND ADAPTIVE HASH
INDEX heading and appears similar to the following:

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:
 insert 0, delete mark 0, delete 0
Hash table size 4425293, used cells 32, node heap has 1 buffer(s)
13577.57 hash searches/s, 202.47 non-hash searches/s

For a description of each data point, see Section 14.14.3, “InnoDB Standard Monitor and Lock
Monitor Output”.

• The INFORMATION_SCHEMA.INNODB_METRICS table provides most of the data points found
in InnoDB Standard Monitor output, plus other data points. To view change buffer metrics and a
description of each, issue the following query:

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME LIKE '%ibuf%'\G

For INNODB_METRICS table usage information, see Section 14.12.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

• The INFORMATION_SCHEMA.INNODB_BUFFER_PAGE table provides metadata about each page
in the buffer pool, including change buffer index and change buffer bitmap pages. Change buffer
pages are identified by PAGE_TYPE. IBUF_INDEX is the page type for change buffer index pages,
and IBUF_BITMAP is the page type for change buffer bitmap pages.

Warning

Querying the INNODB_BUFFER_PAGE table can introduce significant
performance overhead. To avoid impacting performance, reproduce the issue
you want to investigate on a test instance and run your queries on the test
instance.

For example, you can query the INNODB_BUFFER_PAGE table to determine the approximate number
of IBUF_INDEX and IBUF_BITMAP pages as a percentage of total buffer pool pages.

SELECT
(SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE PAGE_TYPE LIKE 'IBUF%'
) AS change_buffer_pages,
(
SELECT COUNT(*)
FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
(
SELECT ((change_buffer_pages/total_pages)*100)
) AS change_buffer_page_percentage;
+---------------------+-------------+-------------------------------+
| change_buffer_pages | total_pages | change_buffer_page_percentage |
+---------------------+-------------+-------------------------------+
| 25 | 8192 | 0.3052 |
+---------------------+-------------+-------------------------------+

For information about other data provided by the INNODB_BUFFER_PAGE table, see
Section 20.30.17, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”. For related
usage information, see Section 14.12.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”.

InnoDB Table and Index Structures

1961

• Performance Schema provides change buffer mutex wait instrumentation for advanced performance
monitoring. To view change buffer instrumentation, issue the following query:

mysql> SELECT * FROM performance_schema.setup_instruments
WHERE NAME LIKE '%wait/synch/mutex/innodb/ibuf%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/ibuf_bitmap_mutex	YES	YES
wait/synch/mutex/innodb/ibuf_mutex	YES	YES
wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex	YES	YES
+---+---------+-------+

For information about monitoring InnoDB mutex waits, see Section 14.13.2, “Monitoring InnoDB
Mutex Waits Using Performance Schema”.

14.2.7.6 Adaptive Hash Indexes

The feature known as the adaptive hash index (AHI) lets InnoDB perform more like an in-
memory database on systems with appropriate combinations of workload and ample memory
for the buffer pool, without sacrificing any transactional features or reliability. This feature
is enabled by the innodb_adaptive_hash_index option, or turned off by the --skip-
innodb_adaptive_hash_index at server startup.

Based on the observed pattern of searches, MySQL builds a hash index using a prefix of the index
key. The prefix of the key can be any length, and it may be that only some of the values in the B-tree
appear in the hash index. Hash indexes are built on demand for those pages of the index that are often
accessed.

If a table fits almost entirely in main memory, a hash index can speed up queries by enabling direct
lookup of any element, turning the index value into a sort of pointer. InnoDB has a mechanism that
monitors index searches. If InnoDB notices that queries could benefit from building a hash index, it
does so automatically.

With some workloads, the speedup from hash index lookups greatly outweighs the extra work to
monitor index lookups and maintain the hash index structure. Sometimes, the read/write lock that
guards access to the adaptive hash index can become a source of contention under heavy workloads,
such as multiple concurrent joins. Queries with LIKE operators and % wildcards also tend not to benefit
from the AHI. For workloads where the adaptive hash index is not needed, turning it off reduces
unnecessary performance overhead. Because it is difficult to predict in advance whether this feature
is appropriate for a particular system, consider running benchmarks with it both enabled and disabled,
using a realistic workload. The architectural changes in MySQL 5.6 and higher make more workloads
suitable for disabling the adaptive hash index than in earlier releases, although it is still enabled by
default.

As of MySQL 5.7.8, the adaptive hash index search system is partitioned. Each index is bound to a
specific partition, and each partition is protected by a separate latch. Partitioning is controlled by the
innodb_adaptive_hash_index_parts configuration option. Prior to MySQL 5.7.8, the adaptive
hash index search system was protected by a single latch which could become a point of contention
under heavy workloads. The innodb_adaptive_hash_index_parts option is set to 8 by default.
The maximum setting is 512.

The hash index is always built based on an existing B-tree index on the table. InnoDB can build a hash
index on a prefix of any length of the key defined for the B-tree, depending on the pattern of searches
that InnoDB observes for the B-tree index. A hash index can be partial, covering only those pages of
the index that are often accessed.

You can monitor the use of the adaptive hash index and the contention for its use in the SEMAPHORES
section of the output of the SHOW ENGINE INNODB STATUS command. If you see many threads
waiting on an RW-latch created in btr0sea.c, then it might be useful to disable adaptive hash
indexing.

InnoDB Table and Index Structures

1962

For more information about the performance characteristics of hash indexes, see Section 8.3.8,
“Comparison of B-Tree and Hash Indexes”.

14.2.7.7 Physical Row Structure

The physical row structure of an InnoDB table depends on the row format specified when the table
is created. If a row format is not specified, the default row format is used. In MySQL 5.7.6 and earlier,
InnoDB uses the Antelope file format and its COMPACT row format by default. In MySQL 5.7.7, the
innodb_file_format default was changed to Barracuda, and in In MySQL 5.7.9, the default row
format is defined by the innodb_default_row_format configuration option, which has a default
value of DYNAMIC.

The REDUNDANT format is available to retain compatibility with older versions of MySQL.

To check the row format of an InnoDB table, you can use SHOW TABLE STATUS. For example:

mysql> SHOW TABLE STATUS IN test1\G
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 16384
 Data_free: 0
 Auto_increment: 1
 Create_time: 2014-10-31 16:02:01
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

You can also check the row format of an InnoDB table by querying
INFORMATION_SCHEMA.INNODB_SYS_TABLES.

mysql> SELECT NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test1/t1';
+----------+------------+
| NAME | ROW_FORMAT |
+----------+------------+
| test1/t1 | Compact |
+----------+------------+

The COMPACT row format decreases row storage space by about 20% at the cost of increasing CPU
use for some operations. If your workload is a typical one that is limited by cache hit rates and disk
speed, COMPACT format is likely to be faster. If the workload is a rare case that is limited by CPU
speed, COMPACT format might be slower.

Rows in InnoDB tables that use REDUNDANT row format have the following characteristics:

• Each index record contains a 6-byte header. The header is used to link together consecutive
records, and also in row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-
byte transaction ID field and a 7-byte roll pointer field.

• If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID
field.

• Each secondary index record also contains all the primary key fields defined for the clustered index
key that are not in the secondary index.

InnoDB Table and Index Structures

1963

• A record contains a pointer to each field of the record. If the total length of the fields in a record is
less than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of these pointers is
called the record directory. The area where these pointers point is called the data part of the record.

• Internally, InnoDB stores fixed-length character columns such as CHAR(10) in a fixed-length format.
InnoDB does not truncate trailing spaces from VARCHAR columns.

• An SQL NULL value reserves one or two bytes in the record directory. Besides that, an SQL NULL
value reserves zero bytes in the data part of the record if stored in a variable length column. In
a fixed-length column, it reserves the fixed length of the column in the data part of the record.
Reserving the fixed space for NULL values enables an update of the column from NULL to a
non-NULL value to be done in place without causing fragmentation of the index page.

Rows in InnoDB tables that use COMPACT row format have the following characteristics:

• Each index record contains a 5-byte header that may be preceded by a variable-length header. The
header is used to link together consecutive records, and also in row-level locking.

• The variable-length part of the record header contains a bit vector for indicating NULL columns. If the
number of columns in the index that can be NULL is N, the bit vector occupies CEILING(N/8) bytes.
(For example, if there are anywhere from 9 to 15 columns that can be NULL, the bit vector uses two
bytes.) Columns that are NULL do not occupy space other than the bit in this vector. The variable-
length part of the header also contains the lengths of variable-length columns. Each length takes one
or two bytes, depending on the maximum length of the column. If all columns in the index are NOT
NULL and have a fixed length, the record header has no variable-length part.

• For each non-NULL variable-length field, the record header contains the length of the column in
one or two bytes. Two bytes will only be needed if part of the column is stored externally in overflow
pages or the maximum length exceeds 255 bytes and the actual length exceeds 127 bytes. For an
externally stored column, the 2-byte length indicates the length of the internally stored part plus the
20-byte pointer to the externally stored part. The internal part is 768 bytes, so the length is 768+20.
The 20-byte pointer stores the true length of the column.

• The record header is followed by the data contents of the non-NULL columns.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-
byte transaction ID field and a 7-byte roll pointer field.

• If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID
field.

• Each secondary index record also contains all the primary key fields defined for the clustered index
key that are not in the secondary index. If any of these primary key fields are variable length, the
record header for each secondary index will have a variable-length part to record their lengths, even
if the secondary index is defined on fixed-length columns.

• Internally, InnoDB stores fixed-length, fixed-width character columns such as CHAR(10) in a fixed-
length format. InnoDB does not truncate trailing spaces from VARCHAR columns.

• Internally, InnoDB stores fixed-length character columns such as CHAR(10) in a fixed-length format.
InnoDB does not truncate trailing spaces from VARCHAR columns.

• An SQL NULL value reserves one or two bytes in the record directory. Besides that, an SQL NULL
value reserves zero bytes in the data part of the record if stored in a variable length column. In
a fixed-length column, it reserves the fixed length of the column in the data part of the record.
Reserving the fixed space for NULL values enables an update of the column from NULL to a
non-NULL value to be done in place without causing fragmentation of the index page.

• Internally, InnoDB attempts to store utf8 CHAR(N) and utf8mb4 CHAR(N) columns in N bytes
by trimming trailing spaces. If the byte length of a CHAR(N) column value exceeds N bytes,
InnoDB trims trailing spaces to a minimum of the column value byte length. The maximum

InnoDB Table and Index Structures

1964

length of a CHAR(N) column is the maximum character byte length × N, as reported by the
CHARACTER_OCTET_LENGTH column of the INFORMATION_SCHEMA.COLUMNS table.

InnoDB reserves a minimum of N bytes for CHAR(N). Reserving the minimum space N in many
cases enables column updates to be done in place without causing fragmentation of the index page.

By comparison, for ROW_FORMAT=REDUNDANT, utf8 and uft8mb4 columns occupy the maximum
character byte length × N. ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPRESSED handle CHAR
storage in the same way as ROW_FORMAT=COMPACT.

DYNAMIC and COMPRESSED row formats are variations of the COMPACT row format. For information
about these row formats, see Section 14.8.3, “DYNAMIC and COMPRESSED Row Formats”.

14.2.7.8 Sorted Index Builds

As of MySQL 5.7.5, InnoDB performs a bulk load instead of inserting one index record at a time when
creating or rebuilding indexes. This method of index creation is also known as a sorted index build.
Sorted index builds are not supported for spatial indexes.

There are three phases to an index build. In the first phase, the clustered index is scanned, and
index entries are generated and added to the sort buffer. When the sort buffer becomes full, entries
are sorted and written out to a temporary intermediate file. This process is also known as a “run”. In
the second phase, with one or more runs written to the temporary intermediate file, a merge sort is
performed on all entries in the file. In the third and final phase, the sorted entries are inserted into the
B-tree.

Prior to the introduction of sorted index builds, index entries were inserted into the B-tree one record
at a time using insert APIs. This method involved opening a B-tree cursor to find the insert position
and then inserting entries into a B-tree page using an optimistic insert. If an insert failed due to a page
being full, a pessimistic insert would be performed, which involves opening a B-tree cursor and splitting
and merging B-tree nodes as necessary to find space for the entry. The drawbacks of this “top-down”
method of building an index are the cost of searching for an insert position and the constant splitting
and merging of B-tree nodes.

Sorted index builds use a bottom up approach to building an index. With this approach, a reference to
the right-most leaf page is held at all levels of the B-tree. The right-most leaf page at the necessary B-
tree depth is allocated and entries are inserted according to their sorted order. Once a leaf page is full,
a node pointer is appended to the parent page and a sibling leaf page is allocated for the next insert.
This process continues until all entries are inserted, which may result in inserts up to the root level.
When a sibling page is allocated, the reference to the previously pinned leaf page is released, and the
newly allocated leaf page becomes the right-most leaf page and new default insert location.

Reserving B-tree Page Space for Future Index Growth

To set aside space for future index growth, you can use the innodb_fill_factor configuration
option to reserve a percentage of B-tree page space. For example, setting innodb_fill_factor
to 80 will reserve 20 percent of the space in B-tree pages during a sorted index build. This setting
applies to both B-tree leaf and non-leaf pages. It does not apply to external pages used for TEXT
or BLOB entries. The amount of space that is reserved may not be exactly as configured, as the
innodb_fill_factor value is interpreted as a hint rather than a hard limit.

Sorted Index Builds and Fulltext Index Support

Sorted index builds are supported for fulltext indexes. Previously, SQL was used to insert entries into a
fulltext index.

Sorted Index Builds and Compressed Tables

For compressed tables, the previous index creation method appended entries to both compressed and
uncompressed pages. When the modification log (representing free space on the compressed page)

InnoDB Mutex and Read/Write Lock Implementation

1965

became full, the compressed page would be recompressed. If compression failed due to a lack of
space, the page would be split. With sorted index builds, entries are only appended to uncompressed
pages. When an uncompressed page becomes full, it is compressed. Adaptive padding is used
to ensure that compression succeeds in most cases, but if compression fails, the page is split and
compression is attempted again. This process continues until compression is successful. For additional
information about compression of B-Tree pages, see Section 14.6.1.5, “How Compression Works for
InnoDB Tables”.

Sorted Index Builds and Redo Logging

Redo logging is turned off during a sorted index build. Instead, there is a checkpoint to ensure that the
index build can withstand a crash or failure. The checkpoint forces a write of all dirty pages to disk.
During a sorted index build, the page cleaner thread is signaled periodically to flush dirty pages to
ensure that the checkpoint operation can be processed quickly. Normally, the page cleaner thread
flushes dirty pages when the number of clean pages falls below a set threshold. For sorted index
builds, dirty pages are flushed promptly to reduce checkpoint overhead and to parallelize IO and CPU
activity.

Sorted Index Builds and Optimizer Statistics

Sorted index builds may result in optimizer statistics that differ from those generated by the previous
method of index creation. The difference in statistics, which is not expected to affect workload
performance, is due to the different algorithm that is used to populate the index.

14.2.8 InnoDB Mutex and Read/Write Lock Implementation

In MySQL and InnoDB, multiple threads of execution access shared data structures. InnoDB
synchronizes these accesses with its own implementation of mutexes and read/write locks. Historically,
InnoDB protected the internal state of a read/write lock with an InnoDB mutex, and the the internal
state of an InnoDB mutex was protected by a Pthreads mutex, as in IEEE Std 1003.1c (POSIX.1c).

On many platforms, Atomic operations can often be used to synchronize the actions of multiple threads
more efficiently than Pthreads. Each operation to acquire or release a lock can be done in fewer CPU
instructions, wasting less time when threads contend for access to shared data structures. This in turn
means greater scalability on multi-core platforms.

On platforms that support Atomic operations, InnoDB now implements mutexes and read/write locks
with the built-in functions provided by the GNU Compiler Collection (GCC) for atomic memory access
instead of using the Pthreads approach. More specifically, InnoDB compiled with GCC version 4.1.2
or later uses the atomic builtins instead of a pthread_mutex_t to implement InnoDB mutexes and
read/write locks.

On 32-bit Microsoft Windows, InnoDB implements mutexes (but not read/write locks) with hand-written
assembler instructions. Beginning with Microsoft Windows 2000, functions for Interlocked Variable
Access are available that are similar to the built-in functions provided by GCC. On Windows 2000
and higher, InnoDB makes use of the Interlocked functions, which support read/write locks and 64-bit
platforms.

Solaris 10 introduced library functions for atomic operations, and InnoDB uses these functions by
default. When MySQL is compiled on Solaris 10 or later with a compiler that does not support the built-
in functions provided by the GNU Compiler Collection (GCC) for atomic memory access, InnoDB uses
the library functions.

On platforms where the GCC, Windows, or Solaris functions for atomic memory access are not
available, InnoDB uses the traditional Pthreads method of implementing mutexes and read/write locks.

When MySQL starts, InnoDB writes a message to the log file indicating whether atomic memory
access is used for mutexes, for mutexes and read/write locks, or neither. If suitable tools are used to
build InnoDB and the target CPU supports the atomic operations required, InnoDB uses the built-

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
http://msdn.microsoft.com/en-us/library/ms684122(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684122(VS.85).aspx
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html

InnoDB Configuration

1966

in functions for mutexing. If, in addition, the compare-and-swap operation can be used on thread
identifiers (pthread_t), then InnoDB uses the instructions for read-write locks as well.

If you are building from source, ensure that the build process properly takes advantage of your platform
capabilities.

For more information about the performance implications of locking, see Section 8.11, “Optimizing
Locking Operations”.

14.3 InnoDB Configuration
This section provides configuration information and procedures for InnoDB initialization, startup, and
various components and features of the InnoDB storage engine. For information about optimizing
database operations for InnoDB tables, see Section 8.5, “Optimizing for InnoDB Tables”.

14.3.1 InnoDB Initialization and Startup Configuration

The first decisions to make about InnoDB configuration involve how to lay out InnoDB data files, and
how much memory to allocate for the InnoDB storage engine. You record these choices either by
recording them in a configuration file that MySQL reads at startup, or by specifying them as command-
line options in a startup script. The full list of options, descriptions, and allowed parameter values is at
Section 14.11, “InnoDB Startup Options and System Variables”.

Overview of InnoDB Tablespace and Log Files

Two important disk-based resources managed by the InnoDB storage engine are its tablespace
data files and its log files. If you specify no InnoDB configuration options, MySQL creates an
auto-extending data file, slightly larger than 12MB, named ibdata1 and two log files named
ib_logfile0 and ib_logfile1 in the MySQL data directory. Their size is given by the size of
the innodb_log_file_size system variable. To get good performance, explicitly provide InnoDB
parameters as discussed in the following examples. Naturally, edit the settings to suit your hardware
and requirements.

The examples shown here are representative. See Section 14.11, “InnoDB Startup Options and
System Variables” for additional information about InnoDB-related configuration parameters.

Considerations for Storage Devices

In some cases, database performance improves if the data is not all placed on the same physical disk.
Putting log files on a different disk from data is very often beneficial for performance. The example
illustrates how to do this. It places the two data files on different disks and places the log files on the
third disk. InnoDB fills the tablespace beginning with the first data file. You can also use raw disk
partitions (raw devices) as InnoDB data files, which may speed up I/O. See Section 14.4.3, “Using
Raw Disk Partitions for the System Tablespace”.

Caution

InnoDB is a transaction-safe (ACID compliant) storage engine for MySQL
that has commit, rollback, and crash-recovery capabilities to protect user data.
However, it cannot do so if the underlying operating system or hardware
does not work as advertised. Many operating systems or disk subsystems may
delay or reorder write operations to improve performance. On some operating
systems, the very fsync() system call that should wait until all unwritten
data for a file has been flushed might actually return before the data has been
flushed to stable storage. Because of this, an operating system crash or a
power outage may destroy recently committed data, or in the worst case, even
corrupt the database because of write operations having been reordered. If data
integrity is important to you, perform some “pull-the-plug” tests before using
anything in production. On OS X 10.3 and up, InnoDB uses a special fcntl()
file flush method. Under Linux, it is advisable to disable the write-back cache.

InnoDB Initialization and Startup Configuration

1967

On ATA/SATA disk drives, a command such hdparm -W0 /dev/hda may
work to disable the write-back cache. Beware that some drives or disk
controllers may be unable to disable the write-back cache.

With regard to InnoDB recovery capabilities that protect user data, InnoDB
uses a file flush technique involving a structure called the doublewrite buffer,
which is enabled by default (innodb_doublewrite=ON). The doublewrite
buffer adds safety to recovery following a crash or power outage, and improves
performance on most varieties of Unix by reducing the need for fsync()
operations. It is recommended that the innodb_doublewrite option remains
enabled if you are concerned with data integrity or possible failures. For
additional information about the doublewrite buffer, see Section 14.9, “InnoDB
Disk I/O and File Space Management”.

Caution

If reliability is a consideration for your data, do not configure InnoDB to use data
files or log files on NFS volumes. Potential problems vary according to OS and
version of NFS, and include such issues as lack of protection from conflicting
writes, and limitations on maximum file sizes.

Specifying the Location and Size for InnoDB Tablespace Files

To set up the InnoDB tablespace files, use the innodb_data_file_path option in the [mysqld]
section of the my.cnf option file. On Windows, you can use my.ini instead. The value of
innodb_data_file_path should be a list of one or more data file specifications. If you name more
than one data file, separate them by semicolon (“;”) characters:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

For example, the following setting explicitly creates a minimally sized system tablespace:

[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend

This setting configures a single 12MB data file named ibdata1 that is auto-extending. No location for
the file is given, so by default, InnoDB creates it in the MySQL data directory.

Sizes are specified using K, M, or G suffix letters to indicate units of KB, MB, or GB.

A tablespace containing a fixed-size 50MB data file named ibdata1 and a 50MB auto-extending file
named ibdata2 in the data directory can be configured like this:

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The full syntax for a data file specification includes the file name, its size, and several optional
attributes:

file_name:file_size[:autoextend[:max:max_file_size]]

The autoextend and max attributes can be used only for the last data file in the
innodb_data_file_path line.

If you specify the autoextend option for the last data file, InnoDB extends the data file if it runs out
of free space in the tablespace. The increment is 8MB at a time by default. To modify the increment,
change the innodb_autoextend_increment system variable.

If the disk becomes full, you might want to add another data file on another disk. For tablespace
reconfiguration instructions, see Section 14.4.1, “Resizing the InnoDB System Tablespace”.

InnoDB Initialization and Startup Configuration

1968

InnoDB is not aware of the file system maximum file size, so be cautious on file systems where the
maximum file size is a small value such as 2GB. To specify a maximum size for an auto-extending
data file, use the max attribute following the autoextend attribute. Use the max attribute only in cases
where constraining disk usage is of critical importance, because exceeding the maximum size causes a
fatal error, possibly including a crash. The following configuration permits ibdata1 to grow up to a limit
of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend:max:500M

InnoDB creates tablespace files in the MySQL data directory by default. To specify a location explicitly,
use the innodb_data_home_dir option. For example, to use two files named ibdata1 and
ibdata2 but create them in the /ibdata directory, configure InnoDB like this:

[mysqld]
innodb_data_home_dir = /ibdata
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note

InnoDB does not create directories, so make sure that the /ibdata directory
exists before you start the server. This is also true of any log file directories that
you configure. Use the Unix or DOS mkdir command to create any necessary
directories.

Make sure that the MySQL server has the proper access rights to create files
in the data directory. More generally, the server must have access rights in any
directory where it needs to create data files or log files.

InnoDB forms the directory path for each data file by textually concatenating the value of
innodb_data_home_dir to the data file name, adding a path name separator (slash or backslash)
between values if necessary. If the innodb_data_home_dir option is not specified in my.cnf at all,
the default value is the “dot” directory ./, which means the MySQL data directory. (The MySQL server
changes its current working directory to its data directory when it begins executing.)

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for the
data files listed in the innodb_data_file_path value. The following example is equivalent to the
preceding one:

[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/ibdata/ibdata1:50M;/ibdata/ibdata2:50M:autoextend

Specifying InnoDB Configuration Options

Sample my.cnf file for small systems. Suppose that you have a computer with 512MB RAM and
one hard disk. The following example shows possible configuration parameters in my.cnf or my.ini
for InnoDB, including the autoextend attribute. The example suits most users, both on Unix and
Windows, who do not want to distribute InnoDB data files and log files onto several disks. It creates an
auto-extending data file ibdata1 and two InnoDB log files ib_logfile0 and ib_logfile1 in the
MySQL data directory.

[mysqld]
You can write your other MySQL server options here
...
Data files must be able to hold your data and indexes.
Make sure that you have enough free disk space.
innodb_data_file_path = ibdata1:12M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory
innodb_buffer_pool_size=256M

InnoDB Initialization and Startup Configuration

1969

#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=64M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1

Note that data files must be less than 2GB in some file systems. The combined size of the log files can
be up to 512GB. The combined size of data files must be slightly larger than 10MB.

Setting Up the InnoDB System Tablespace

When you create an InnoDB system tablespace for the first time, it is best that you start the MySQL
server from the command prompt. InnoDB then prints the information about the database creation to
the screen, so you can see what is happening. For example, on Windows, if mysqld is located in C:
\Program Files\MySQL\MySQL Server 5.7\bin, you can start it like this:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld" --console

If you do not send server output to the screen, check the server's error log to see what InnoDB prints
during the startup process.

Editing the MySQL Configuration File

You can place InnoDB options in the [mysqld] group of any option file that your server reads when it
starts. The locations for option files are described in Section 4.2.6, “Using Option Files”.

If you installed MySQL on Windows using the installation and configuration wizards, the option file will
be the my.ini file located in your MySQL installation directory. See Section 2.3.3, “Installing MySQL
on Microsoft Windows Using MySQL Installer”.

If your PC uses a boot loader where the C: drive is not the boot drive, your only option is to use the
my.ini file in your Windows directory (typically C:\WINDOWS). You can use the SET command at the
command prompt in a console window to print the value of WINDIR:

C:\> SET WINDIR
windir=C:\WINDOWS

To make sure that mysqld reads options only from a specific file, use the --defaults-file option
as the first option on the command line when starting the server:

mysqld --defaults-file=your_path_to_my_cnf

Sample my.cnf file for large systems. Suppose that you have a Linux computer with 2GB RAM and
three 60GB hard disks at directory paths /, /dr2 and /dr3. The following example shows possible
configuration parameters in my.cnf for InnoDB.

[mysqld]
You can write your other MySQL server options here
...
innodb_data_home_dir =
#
Data files must be able to hold your data and indexes
innodb_data_file_path = /db/ibdata1:2000M;/dr2/db/ibdata2:2000M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory,
but make sure on Linux x86 total memory usage is < 2GB
innodb_buffer_pool_size=1G
innodb_log_group_home_dir = /dr3/iblogs
#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=250M
innodb_log_buffer_size=8M

Configuring InnoDB for Read-Only Operation

1970

#
innodb_flush_log_at_trx_commit=1
innodb_lock_wait_timeout=50
#
Uncomment the next line if you want to use it
#innodb_thread_concurrency=5

Determining the Maximum Memory Allocation for InnoDB

Warning

On 32-bit GNU/Linux x86, be careful not to set memory usage too high. glibc
may permit the process heap to grow over thread stacks, which crashes your
server. It is a risk if the value of the following expression is close to or exceeds
2GB:

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL binaries
provided by Oracle Corporation.) and in the worst case also uses
sort_buffer_size + read_buffer_size additional memory.

Tuning other mysqld server parameters. The following values are typical and suit most users:

[mysqld]
skip-external-locking
max_connections=200
read_buffer_size=1M
sort_buffer_size=1M
#
Set key_buffer to 5 - 50% of your RAM depending on how much
you use MyISAM tables, but keep key_buffer_size + InnoDB
buffer pool size < 80% of your RAM
key_buffer_size=value

On Linux, if the kernel is enabled for large page support, InnoDB can use large pages to allocate
memory for its buffer pool and additional memory pool. See Section 8.12.5.2, “Enabling Large Page
Support”.

14.3.2 Configuring InnoDB for Read-Only Operation

You can now query InnoDB tables where the MySQL data directory is on read-only media, by enabling
the --innodb-read-only configuration option at server startup.

How to Enable

To prepare an instance for read-only operation, make sure all the necessary information is flushed to
the data files before storing it on the read-only medium. Run the server with change buffering disabled
(innodb_change_buffering=0) and do a slow shutdown.

To enable read-only mode for an entire MySQL instance, specify the following configuration options at
server startup:

• --innodb-read-only=1

• If the instance is on read-only media such as a DVD or CD, or the /var directory is not writeable by
all: --pid-file=path_on_writeable_media and --event-scheduler=disabled

Usage Scenarios

This mode of operation is appropriate in situations such as:

InnoDB Buffer Pool Configuration

1971

• Distributing a MySQL application, or a set of MySQL data, on a read-only storage medium such as a
DVD or CD.

• Multiple MySQL instances querying the same data directory simultaneously, typically in a data
warehousing configuration. You might use this technique to avoid bottlenecks that can occur with
a heavily loaded MySQL instance, or you might use different configuration options for the various
instances to tune each one for particular kinds of queries.

• Querying data that has been put into a read-only state for security or data integrity reasons, such as
archived backup data.

Note

This feature is mainly intended for flexibility in distribution and deployment,
rather than raw performance based on the read-only aspect. See Section 8.5.3,
“Optimizing InnoDB Read-Only Transactions” for ways to tune the performance
of read-only queries, which do not require making the entire server read-only.

How It Works

When the server is run in read-only mode through the --innodb-read-only option, certain InnoDB
features and components are reduced or turned off entirely:

• No change buffering is done, in particular no merges from the change buffer. To make sure the
change buffer is empty when you prepare the instance for read-only operation, disable change
buffering (innodb_change_buffering=0) and do a slow shutdown first.

• There is no crash recovery phase at startup. The instance must have performed a slow shutdown
before being put into the read-only state.

• Because the redo log is not used in read-only operation, you can set innodb_log_file_size to
the smallest size possible (1 MB) before making the instance read-only.

• All background threads other than I/O read threads are turned off. As a consequence, a read-only
instance cannot encounter any deadlocks.

• Information about deadlocks, monitor output, and so on is not written to temporary files. As a
consequence, SHOW ENGINE INNODB STATUS does not produce any output.

• If the MySQL server is started with --innodb-read-only but the data directory is still on writeable
media, the root user can still perform DCL operations such as GRANT and REVOKE.

• Changes to configuration option settings that would normally change the behavior of write
operations, have no effect when the server is in read-only mode.

• The MVCC processing to enforce isolation levels is turned off. All queries read the latest version of a
record, because update and deletes are not possible.

• The undo log is not used. Disable any settings for the innodb_undo_tablespaces and
innodb_undo_directory configuration options.

14.3.3 InnoDB Buffer Pool Configuration

This section provides configuration information and procedures for the InnoDB buffer pool. For
additional information, see Section 8.10.1, “The InnoDB Buffer Pool”.

14.3.3.1 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)

A read-ahead request is an I/O request to prefetch multiple pages in the buffer pool asynchronously,
in anticipation that these pages will be needed soon. The requests bring in all the pages in one extent.
InnoDB uses two read-ahead algorithms to improve I/O performance:

InnoDB Buffer Pool Configuration

1972

Linear read-ahead is a technique that predicts what pages might be needed soon based on pages
in the buffer pool being accessed sequentially. You control when InnoDB performs a read-ahead
operation by adjusting the number of sequential page accesses required to trigger an asynchronous
read request, using the configuration parameter innodb_read_ahead_threshold. Before this
parameter was added, InnoDB would only calculate whether to issue an asynchronous prefetch
request for the entire next extent when it read in the last page of the current extent.

The configuration parameter innodb_read_ahead_threshold controls how sensitive InnoDB is in
detecting patterns of sequential page access. If the number of pages read sequentially from an extent
is greater than or equal to innodb_read_ahead_threshold, InnoDB initiates an asynchronous
read-ahead operation of the entire following extent. It can be set to any value from 0-64. The default
value is 56. The higher the value, the more strict the access pattern check. For example, if you set the
value to 48, InnoDB triggers a linear read-ahead request only when 48 pages in the current extent
have been accessed sequentially. If the value is 8, InnoDB would trigger an asynchronous read-
ahead even if as few as 8 pages in the extent were accessed sequentially. You can set the value of this
parameter in the MySQL configuration file, or change it dynamically with the SET GLOBAL command,
which requires the SUPER privilege.

Random read-ahead is a technique that predicts when pages might be needed soon based on pages
already in the buffer pool, regardless of the order in which those pages were read. If 13 consecutive
pages from the same extent are found in the buffer pool, InnoDB asynchronously issues a request
to prefetch the remaining pages of the extent. To enable this feature, set the configuration variable
innodb_random_read_ahead to ON.

The SHOW ENGINE INNODB STATUS command displays statistics to help you evaluate
the effectiveness of the read-ahead algorithm. Statistics include counter information for the
Innodb_buffer_pool_read_ahead, Innodb_buffer_pool_read_ahead_evicted, and
Innodb_buffer_pool_read_ahead_rnd global status variables. This information can be useful
when fine-tuning the innodb_random_read_ahead setting.

For more information about I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O” and
Section 8.12.3, “Optimizing Disk I/O”.

14.3.3.2 Configuring the Rate of InnoDB Buffer Pool Flushing

InnoDB performs certain tasks in the background, including flushing of dirty pages (those
pages that have been changed but are not yet written to the database files) from the buffer
pool. InnoDB flushes buffer pool pages if the percentage of dirty pages in the buffer pool
exceeds innodb_max_dirty_pages_pct. As of MySQL 5.7.5, InnoDB flushes buffer
pool pages if the percentage of dirty pages in the buffer pool is greater than or equal to
innodb_max_dirty_pages_pct (Bug#13029450).

InnoDB uses an algorithm to estimate the required rate of flushing, based on the speed of redo log
generation and the current rate of flushing. The intent is to smooth overall performance by ensuring
that buffer flush activity keeps up with the need to keep the buffer pool “clean”. Automatically adjusting
the rate of flushing can help to avoid sudden dips in throughput, when excessive buffer pool flushing
limits the I/O capacity available for ordinary read and write activity.

InnoDB uses its log files in a circular fashion. Before reusing a portion of a log file, InnoDB flushes
to disk all dirty buffer pool pages whose redo entries are contained in that portion of the log file,
a process known as a sharp checkpoint. If a workload is write-intensive, it generates a lot of redo
information, all written to the log file. If all available space in the log files is used up, a sharp checkpoint
occurs, causing a temporary reduction in throughput. This situation can happen even though
innodb_max_dirty_pages_pct is not reached.

InnoDB uses a heuristic-based algorithm to avoid such a scenario, by measuring the number of dirty
pages in the buffer pool and the rate at which redo is being generated. Based on these numbers,
InnoDB decides how many dirty pages to flush from the buffer pool each second. This self-adapting
algorithm is able to deal with sudden changes in the workload.

InnoDB Buffer Pool Configuration

1973

Internal benchmarking has also shown that this algorithm not only maintains throughput over time, but
can also improve overall throughput significantly.

Because adaptive flushing can significantly affect the I/O pattern of a workload, the
innodb_adaptive_flushing configuration parameter lets you turn off this feature. The default
value for innodb_adaptive_flushing is TRUE, enabling the adaptive flushing algorithm. You can
set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically
with the SET GLOBAL command, which requires the SUPER privilege.

For more information about InnoDB I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

14.3.3.3 Making the Buffer Pool Scan Resistant

Rather than using a strictly LRU algorithm, InnoDB uses a technique to minimize the amount of data
that is brought into the buffer pool and never accessed again. The goal is to make sure that frequently
accessed (“hot”) pages remain in the buffer pool, even as read-ahead and full table scans bring in new
blocks that might or might not be accessed afterward.

Newly read blocks are inserted into the middle of the LRU list. All newly read pages are inserted at a
location that by default is 3/8 from the tail of the LRU list. The pages are moved to the front of the list
(the most-recently used end) when they are accessed in the buffer pool for the first time. Thus pages
that are never accessed never make it to the front portion of the LRU list, and “age out” sooner than
with a strict LRU approach. This arrangement divides the LRU list into two segments, where the pages
downstream of the insertion point are considered “old” and are desirable victims for LRU eviction.

For an explanation of the inner workings of the InnoDB buffer pool and the specifics of its LRU
replacement algorithm, see Section 8.10.1, “The InnoDB Buffer Pool”.

You can control the insertion point in the LRU list, and choose whether InnoDB applies the same
optimization to blocks brought into the buffer pool by table or index scans. The configuration parameter
innodb_old_blocks_pct controls the percentage of “old” blocks in the LRU list. The default value of
innodb_old_blocks_pct is 37, corresponding to the original fixed ratio of 3/8. The value range is 5
(new pages in the buffer pool age out very quickly) to 95 (only 5% of the buffer pool is reserved for hot
pages, making the algorithm close to the familiar LRU strategy).

The optimization that keeps the buffer pool from being churned by read-ahead can avoid
similar problems due to table or index scans. In these scans, a data page is typically accessed
a few times in quick succession and is never touched again. The configuration parameter
innodb_old_blocks_time specifies the time window (in milliseconds) after the first access to a
page during which it can be accessed without being moved to the front (most-recently used end) of the
LRU list. The default value of innodb_old_blocks_time is 1000. Increasing this value makes more
and more blocks likely to age out faster from the buffer pool.

Both innodb_old_blocks_pct and innodb_old_blocks_time are dynamic, global and can be
specified in the MySQL option file (my.cnf or my.ini) or changed at runtime with the SET GLOBAL
command. Changing the setting requires the SUPER privilege.

To help you gauge the effect of setting these parameters, the SHOW ENGINE INNODB STATUS
command reports additional statistics. The BUFFER POOL AND MEMORY section looks like:

Total memory allocated 1107296256; in additional pool allocated 0
Dictionary memory allocated 80360
Buffer pool size 65535
Free buffers 0
Database pages 63920
Old database pages 23600
Modified db pages 34969
Pending reads 32
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 414946, not young 2930673
1274.75 youngs/s, 16521.90 non-youngs/s
Pages read 486005, created 3178, written 160585
2132.37 reads/s, 3.40 creates/s, 323.74 writes/s

InnoDB Buffer Pool Configuration

1974

Buffer pool hit rate 950 / 1000, young-making rate 30 / 1000 not 392 / 1000
Pages read ahead 1510.10/s, evicted without access 0.00/s
LRU len: 63920, unzip_LRU len: 0
I/O sum[43690]:cur[221], unzip sum[0]:cur[0]

• Old database pages is the number of pages in the “old” segment of the LRU list.

• Pages made young and not young is the total number of “old” pages that have been made
young or not respectively.

• youngs/s and non-young/s is the rate at which page accesses to the “old” pages have resulted in
making such pages young or otherwise respectively since the last invocation of the command.

• young-making rate and not provides the same rate but in terms of overall buffer pool accesses
instead of accesses just to the “old” pages.

Note

Per second averages provided in InnoDB Monitor output are based on the
elapsed time between the current time and the last time InnoDB Monitor output
was printed.

Because the effects of these parameters can vary widely based on your hardware configuration, your
data, and the details of your workload, always benchmark to verify the effectiveness before changing
these settings in any performance-critical or production environment.

In mixed workloads where most of the activity is OLTP type with periodic batch reporting queries which
result in large scans, setting the value of innodb_old_blocks_time during the batch runs can help
keep the working set of the normal workload in the buffer pool.

When scanning large tables that cannot fit entirely in the buffer pool, setting
innodb_old_blocks_pct to a small value keeps the data that is only read once from consuming a
significant portion of the buffer pool. For example, setting innodb_old_blocks_pct=5 restricts this
data that is only read once to 5% of the buffer pool.

When scanning small tables that do fit into memory, there is less overhead for moving pages around
within the buffer pool, so you can leave innodb_old_blocks_pct at its default value, or even
higher, such as innodb_old_blocks_pct=50.

The effect of the innodb_old_blocks_time parameter is harder to predict than the
innodb_old_blocks_pct parameter, is relatively small, and varies more with the workload. To
arrive at an optimal value, conduct your own benchmarks if the performance improvement from
adjusting innodb_old_blocks_pct is not sufficient.

For more information about the InnoDB buffer pool, see Section 8.10.1, “The InnoDB Buffer Pool”.

14.3.3.4 Using Multiple Buffer Pool Instances

For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate
instances can improve concurrency, by reducing contention as different threads read and write to
cached pages. This feature is typically intended for systems with a buffer pool size in the multi-gigabyte
range. Multiple buffer pool instances are configured using the innodb_buffer_pool_instances
configuration option, and you might also adjust the innodb_buffer_pool_size value.

When the InnoDB buffer pool is large, many data requests can be satisfied by retrieving from memory.
You might encounter bottlenecks from multiple threads trying to access the buffer pool at once. You
can enable multiple buffer pools to minimize this contention. Each page that is stored in or read from
the buffer pool is assigned to one of the buffer pools randomly, using a hashing function. Each buffer
pool manages its own free lists, flush lists, LRUs, and all other data structures connected to a buffer
pool, and is protected by its own buffer pool mutex.

To enable multiple buffer pool instances, set the innodb_buffer_pool_instances configuration
option to a value greater than 1 (the default) up to 64 (the maximum). This option takes effect only

InnoDB Buffer Pool Configuration

1975

when you set the innodb_buffer_pool_size to a size of 1 gigabyte or more. The total size
you specify is divided among all the buffer pools. For best efficiency, specify a combination of
innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool
instance is at least 1 gigabyte.

For more information about the InnoDB buffer pool, see Section 8.10.1, “The InnoDB Buffer Pool”.

14.3.3.5 Preloading the InnoDB Buffer Pool for Faster Restart

To avoid a lengthy warmup period after restarting the server, particularly for instances with large
InnoDB buffer pools, you can save the InnoDB buffer pool state at server shutdown and restore the
buffer pool to the same state at server startup.

Note

The innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup configuration options
are enabled by default as of MySQL 5.7.7, and the default value for
innodb_buffer_pool_dump_pct is reduced from 100 to 25.

After you restart a busy server, there is typically a warmup period with steadily increasing throughput,
as disk pages that were in the InnoDB buffer pool are brought back into memory (as the same data is
queried, updated, and so on). The ability to restore the buffer pool to the pre-shutdown state shortens
the warmup period as it allows you to immediately reload disk pages that were in the buffer pool before
the restart, rather than waiting for DML operations to access the corresponding rows. The I/O requests
can be performed in large batches, making the overall I/O faster. The page loading happens in the
background, and does not delay the database startup.

In addition to saving the buffer pool state at shutdown and restoring it at startup, you can also save and
restore the buffer pool state at any time, while the server is running. For example, you might save the
state of the buffer pool after reaching a stable throughput under a steady workload. You might restore
the previous buffer pool state after running reports or maintenance jobs that bring data pages into the
buffer pool that are only needed during the time period for those operations, or after some other period
with a non-typical workload.

Although the buffer pool itself could be many gigabytes in size, the data that InnoDB saves on
disk is tiny by comparison. Only tablespace IDs and page IDs necessary to locate the appropriate
pages are saved to disk. This information is derived from the INNODB_BUFFER_PAGE_LRU
INFORMATION_SCHEMA table. By default, tablespace ID and page ID data is saved in a file named
ib_buffer_pool, which is saved to the InnoDB data directory. The file name can be modified using
the innodb_buffer_pool_filename configuration parameter.

Because the data is cached in and aged out of the buffer pool as it is with regular database operations,
there is no problem if the disk pages are recently updated, or if a DML operation involves data that has
not yet been loaded. The loading mechanism skips requested pages that no longer exist.

The underlying mechanism involves a background thread that is dispatched to perform the dump and
load operations.

Disk pages from compressed tables are loaded into the buffer pool in their compressed form.
Uncompression happens as usual when the page contents are accessed during the course of DML
operations. Because decompression is a CPU-intensive process, it is more efficient for concurrency to
perform the operation in one of the connection threads rather than in the single thread that performs
the buffer pool restore operation.

Configuring the Dump Percentage for Buffer Pool Pages

Before you dump pages from the buffer pool, configure the percentage of most-recently-used buffer
pool pages that you want to dump by setting the innodb_buffer_pool_dump_pct option. If you
plan to dump buffer pool pages while the server is running, you can configure the option dynamically:

InnoDB Buffer Pool Configuration

1976

SET GLOBAL innodb_buffer_dump_pct=40;

If you plan to dump buffer pool pages at server shutdown, set innodb_buffer_pool_dump_pct in
your configuration file.

[mysqld]
 innodb_buffer_dump_pct=40

The innodb_buffer_pool_dump_pct default value was changed from 100 (dump
all pages) to 25 (dump 25% of most-recently-used pages) in MySQL 5.7.7 when
innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup
were enabled by default.

Saving the Buffer Pool State

To save the state of the InnoDB buffer pool at server shutdown, issue the statement:

SET GLOBAL innodb_buffer_pool_dump_at_shutdown=ON;

innodb_buffer_pool_dump_at_shutdown is enabled by default in MySQL 5.7.7.

To save the state of the InnoDB buffer pool while MySQL server is running, issue the statement:

SET GLOBAL innodb_buffer_pool_dump_now=ON;

Restoring the Buffer Pool State

To restore the InnoDB buffer pool state at server startup, specify the --
innodb_buffer_pool_load_at_startup option when starting the server:

mysqld --innodb_buffer_pool_load_at_startup=ON;

innodb_buffer_pool_load_at_startup is enabled by default in MySQL 5.7.7.

To restore the InnoDB buffer pool state while MySQL is running, issue the statement:

SET GLOBAL innodb_buffer_pool_load_now=ON;

Displaying Buffer Pool Dump Progress

To display progress when saving the InnoDB buffer pool state to disk, use one of the following options:

SHOW STATUS LIKE 'Innodb_buffer_pool_dump_status';

or:

SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_DUMP_STATUS';

If the operation has not yet started, “not started” is returned. If the operation is complete, the
completion time is printed (e.g. Finished at 110505 12:18:02). If the operation is in progress, status
information is provided (e.g. Dumping buffer pool 5/7, page 237/2873).

Displaying Buffer Pool Load Progress

To display progress when loading the InnoDB buffer pool, use one of the following options:

SHOW STATUS LIKE 'Innodb_buffer_pool_load_status';

or:

SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_LOAD_STATUS';

If the operation has not yet started, “not started” is returned. If the operation is complete, the
completion time is printed (e.g. Finished at 110505 12:23:24). If the operation is in progress, status
information is provided (e.g. Loaded 123/22301 pages).

InnoDB Buffer Pool Configuration

1977

Aborting a Buffer Pool Load

To abort a buffer pool load operation, issue the statement:

SET GLOBAL innodb_buffer_pool_load_abort=ON;

Monitoring Buffer Pool Load Progress Using Performance Schema

As of MySQL 5.7.6, you can monitor buffer pool load progress using Performance Schema.

The following example demonstrates how to enable the stage/innodb/buffer pool load stage
event instrument and related consumer tables to monitor buffer pool load progress.

For information about buffer pool dump and load procedures used in this example, see
Section 14.3.3.5, “Preloading the InnoDB Buffer Pool for Faster Restart”. For information about
Performance Schema stage event instruments and related consumers, see Section 21.9.5,
“Performance Schema Stage Event Tables”.

1. Enable the stage/innodb/buffer pool load instrument:

mysql> UPDATE setup_instruments SET ENABLED = 'YES' WHERE NAME LIKE 'stage/innodb/buffer%';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

2. Enable the stage event consumer tables, which include events_stages_current,
events_stages_history, and events_stages_history_long.

mysql> UPDATE setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%stages%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

3. Dump the current buffer pool state by enabling innodb_buffer_pool_dump_now.

mysql> SET GLOBAL innodb_buffer_pool_dump_now=ON;
Query OK, 0 rows affected (0.00 sec)

4. Check the buffer pool dump status to ensure that the operation has completed.

mysql> SHOW STATUS LIKE 'Innodb_buffer_pool_dump_status'\G
*************************** 1. row ***************************
Variable_name: Innodb_buffer_pool_dump_status
 Value: Buffer pool(s) dump completed at 150202 16:38:58

5. Load the buffer pool by enabling innodb_buffer_pool_load_now:

mysql> SET GLOBAL innodb_buffer_pool_load_now=ON;
Query OK, 0 rows affected (0.01 sec)

6. Check the current status of the buffer pool load operation by querying the Performance Schema
events_stages_current table. The WORK_COMPLETED column shows the number of buffer
pool pages loaded. The WORK_ESTIMATED column provides an estimate of the remaining work, in
pages.

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED FROM events_stages_current;
+-------------------------------+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+-------------------------------+----------------+----------------+
| stage/innodb/buffer pool load | 5353 | 7167 |
+-------------------------------+----------------+----------------+

The events_stages_current table returns an empty set if the buffer pool load operation has
completed. In this case, you can check the events_stages_history table to view data for the
completed event. For example:

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED FROM events_stages_history;

InnoDB Buffer Pool Configuration

1978

+-------------------------------+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+-------------------------------+----------------+----------------+
| stage/innodb/buffer pool load | 7167 | 7167 |
+-------------------------------+----------------+----------------+

Note

You can also monitor buffer pool load progress using Performance
Schema when loading the buffer pool at startup using
innodb_buffer_pool_load_at_startup. In this case, the stage/
innodb/buffer pool load instrument and related consumers must also
be enabled at startup. For more information, see Section 21.2.2, “Performance
Schema Startup Configuration”.

14.3.3.6 Tuning InnoDB Buffer Pool Flushing

The configuration options innodb_flush_neighbors and innodb_lru_scan_depth let you
fine-tune certain aspects of the flushing process for the InnoDB buffer pool. These options primarily
help write-intensive workloads. With heavy DML activity, flushing can fall behind if it is not aggressive
enough, resulting in excessive memory use in the buffer pool; or, disk writes due to flushing can
saturate your I/O capacity if that mechanism is too aggressive. The ideal settings depend on your
workload, data access patterns, and storage configuration (for example, whether data is stored on HDD
or SSD devices).

For systems with constant heavy workloads, or workloads that fluctuate widely,
several configuration options let you fine-tune the flushing behavior for InnoDB tables:
innodb_adaptive_flushing_lwm, innodb_max_dirty_pages_pct_lwm,
innodb_io_capacity_max, and innodb_flushing_avg_loops. These options feed into the
formula used by the innodb_adaptive_flushing option.

The innodb_adaptive_flushing, innodb_io_capacity and innodb_max_dirty_pages_pct
options are limited or extended by the following options: innodb_adaptive_flushing_lwm,
innodb_io_capacity_max and innodb_max_dirty_pages_pct_lwm:

• The InnoDB adaptive flushing mechanism is not appropriate in all cases. It gives the most benefit
when the redo log is in danger of filling up. The innodb_adaptive_flushing_lwm option
specifies a “low water mark” percentage of redo log capacity; when that threshold is crossed,
InnoDB turns on adaptive flushing even if not specified by the innodb_adaptive_flushing
option.

• If flushing activity falls far behind, InnoDB can flush more aggressively than specified by
innodb_io_capacity. innodb_io_capacity_max represents an upper limit on the I/O capacity
used in such emergency situations, so that the spike in I/O does not consume all the capacity of the
server.

• InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages
does not exceed the value of innodb_max_dirty_pages_pct. The default value for
innodb_max_dirty_pages_pct is 75.

Note

The innodb_max_dirty_pages_pct setting establishes a target for
flushing activity. It does not affect the rate of flushing. For information about
managing the rate of flushing, see Section 14.3.3.2, “Configuring the Rate of
InnoDB Buffer Pool Flushing”.

The innodb_max_dirty_pages_pct_lwm option specifies a “low water mark” value that
represents the percentage of dirty pages where pre-flushing is enabled to control the dirty page ratio
and ideally prevent the percentage of dirty pages from reaching innodb_max_dirty_pages_pct.
A value of innodb_max_dirty_pages_pct_lwm=0 disables the “pre-flushing” behavior.

InnoDB Buffer Pool Configuration

1979

Most of the options referenced above are most applicable to servers that run write-heavy workloads for
long periods of time and have little reduced load time to catch up with changes waiting to be written to
disk.

innodb_flushing_avg_loops defines the number of iterations for which InnoDB keeps the
previously calculated snapshot of the flushing state, which controls how quickly adaptive flushing
responds to foreground load changes. Setting a high value for innodb_flushing_avg_loops
means that InnoDB keeps the previously calculated snapshot longer, so adaptive flushing
responds more slowly. A high value also reduces positive feedback between foreground and
background work, but when setting a high value it is important to ensure that InnoDB redo log
utilization does not reach 75% (the hardcoded limit at which async flushing starts) and that the
innodb_max_dirty_pages_pct setting keeps the number of dirty pages to a level that is
appropriate for the workload.

Systems with consistent workloads, a large innodb_log_file_size, and small spikes that do not
reach 75% redo log space utilization should use a high innodb_flushing_avg_loops value to keep
flushing as smooth as possible. For systems with extreme load spikes or log files that do not provide a
lot of space, consider a smaller innodb_flushing_avg_loops value. The smaller value will allow
flushing to closely track the load and help avoid reaching 75% redo log space utilization.

14.3.3.7 Resizing the InnoDB Buffer Pool Online

As of MySQL 5.7.5, the innodb_buffer_pool_size configuration option can be set dynamically
using a SET statement, allowing you to resize the buffer pool without restarting the server. For
example:

mysql> SET GLOBAL innodb_buffer_pool_size=402653184;

Active transactions, and operations performed through InnoDB APIs, should be completed before
resizing the buffer pool. When initiating a resizing operation, the operation does not start until all
active transactions are completed. Once the resizing operation is in progress, new transactions and
operations that require access to the buffer pool must wait until the resizing operation finishes. The
exception to this rule is that concurrent access to the buffer pool is permitted while the buffer pool is
defragmented and pages are withdrawn during an operation to decrease buffer pool size. A drawback
of allowing concurrent access is that it could result in a temporary shortage of available pages while
pages are being withdrawn.

Note

Nested transactions could fail if initiated after the buffer pool resizing operation
begins.

When you increase or decrease innodb_buffer_pool_size online, the operation is performed
in chunks. Chunk size is defined by the innodb_buffer_pool_chunk_size configuration option.
For example, if innodb_buffer_pool_chunk_size is 128 MB, which is the default value, you can
resize the buffer pool by one or more 128 MB chunks. In the following example, buffer pool size is
increased by two chunks, from 128 MB (134217728 bytes) to 384 MB (402653184 bytes).

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 134217728 |
+---------------------------+

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 134217728 |
+---------------------------------+

mysql> SET GLOBAL innodb_buffer_pool_size=402653184;

InnoDB Buffer Pool Configuration

1980

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 402653184 |
+---------------------------+

Increasing or decreasing innodb_buffer_pool_size by a value that is not
divisible by innodb_buffer_pool_chunk_size returns a warning and adjusts the
innodb_buffer_pool_size value to a valid value.

Configuring InnoDB Buffer Pool Chunk Size

innodb_buffer_pool_chunk_size can be increased or decreased in 1MB (1048576 byte) units
but can only be modified at startup, in a command line string or in a configuration file.

Command line:

./mysqld --innodb_buffer_pool_chunk_size=134217728

Configuration file:

[mysqld]
innodb_buffer_pool_chunk_size=134217728

The following conditions apply when altering the innodb_buffer_pool_chunk_size value:

• If innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances is larger than the
current buffer pool size when the buffer pool is initialized, innodb_buffer_pool_chunk_size is
truncated to innodb_buffer_pool_size / innodb_buffer_pool_instances.

For example, if the buffer pool is initialized with a size of 2GB (2147483648 bytes), 4 buffer pool
instances, and a chunk size of 1GB (1073741824 bytes), chunk size will be truncated to a value
equal to innodb_buffer_pool_size / innodb_buffer_pool_instances, as shown below:

./mysqld --innodb_buffer_pool_size=2147483648 --innodb_buffer_pool_instances=4
--innodb_buffer_pool_chunk_size=1073741824;

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 2147483648 |
+---------------------------+

mysql> SELECT @@innodb_buffer_pool_instances;
+--------------------------------+
| @@innodb_buffer_pool_instances |
+--------------------------------+
| 4 |
+--------------------------------+

Chunk size was set to 1GB (1073741824 bytes) on startup but was
truncated to innodb_buffer_pool_size / innodb_buffer_pool_instances

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 536870912 |
+---------------------------------+

• Buffer pool size must always be a multiple of innodb_buffer_pool_chunk_size *
innodb_buffer_pool_instances. If you alter innodb_buffer_pool_chunk_size,
innodb_buffer_pool_size is automatically adjusted to a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances that is not less than
current buffer pool size. The adjustment occurs when the buffer pool is initialized. This behavior is
demonstrated in the following example:

InnoDB Buffer Pool Configuration

1981

The buffer pool has a default size of 128MB (134217728 bytes)

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 134217728 |
+---------------------------+

The chunk size is also 128MB (134217728 bytes)

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 134217728 |
+---------------------------------+

There is a single buffer pool instance

mysql> SELECT @@innodb_buffer_pool_instances;
+--------------------------------+
| @@innodb_buffer_pool_instances |
+--------------------------------+
| 1 |
+--------------------------------+

Chunk size is decreased by 1MB (1048576 bytes) at startup
(134217728 - 1048576 = 133169152):

shell$./mysqld --innodb_buffer_pool_chunk_size=133169152

mysql> select @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 133169152 |
+---------------------------------+

Buffer pool size increases from 134217728 to 266338304
Buffer pool size is automatically adjusted to a multiple of
the innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances that
is not less than current buffer pool size

mysql> select @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 266338304 |
+---------------------------+

This example demonstrates the same behaviour but with multiple buffer pool instances:

The buffer pool has a default size of 2GB (2147483648 bytes)

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 2147483648 |
+---------------------------+

The chunk size is .5 GB (536870912 bytes)

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 536870912 |
+---------------------------------+

InnoDB Buffer Pool Configuration

1982

There are 4 buffer pool instances

mysql> SELECT @@innodb_buffer_pool_instances;
+--------------------------------+
| @@innodb_buffer_pool_instances |
+--------------------------------+
| 4 |
+--------------------------------+

Chunk size is decreased by 1MB (1048576 bytes) at startup
(536870912 - 1048576 = 535822336):

shell$./mysqld --innodb_buffer_pool_chunk_size=535822336

mysql> select @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 535822336 |
+---------------------------------+

Buffer pool size increases from 2147483648 to 4286578688
Buffer pool size is automatically adjusted to a multiple of
the innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances that
is not less than current buffer pool size of 2147483648

mysql> select @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 4286578688 |
+---------------------------+

Care should be taken when changing innodb_buffer_pool_chunk_size, as changing
this value can increase the size of the buffer pool, as shown in the examples above. Before
you change innodb_buffer_pool_chunk_size, calculate the effect it will have on
innodb_buffer_pool_size to ensure that the resulting buffer pool size is acceptable.

Note

To avoid potential performance issues, the number of chunks
(innodb_buffer_pool_size / innodb_buffer_pool_chunk_size)
should not exceed 1000.

Monitoring Online Buffer Pool Resize Progress

The Innodb_buffer_pool_resize_status variable reports the progress of the buffer pool resizing
operation. For example:

mysql> SHOW STATUS WHERE Variable_name='InnoDB_buffer_pool_resize_status';
+----------------------------------+----------------------------------+
| Variable_name | Value |
+----------------------------------+----------------------------------+
| Innodb_buffer_pool_resize_status | Resizing also other hash tables. |
+----------------------------------+----------------------------------+

The progress of the resizing operation is also logged in the server error log file. This example shows
notes that are logged when increasing the size of the buffer pool:

[Note] InnoDB: Resizing buffer pool from 134217728 to 4294967296. (unit=134217728)
[Note] InnoDB: disabled adaptive hash index.
[Note] InnoDB: buffer pool 0 : 31 chunks (253952 blocks) was added.
[Note] InnoDB: buffer pool 0 : hash tables were resized.
[Note] InnoDB: Resized hash tables at lock_sys, adaptive hash index, dictionary.
[Note] InnoDB: completed to resize buffer pool from 134217728 to 4294967296.
[Note] InnoDB: re-enabled adaptive hash index.

This example shows notes that are logged when decreasing the size of the buffer pool:

Configuring the Memory Allocator for InnoDB

1983

[Note] InnoDB: Resizing buffer pool from 4294967296 to 134217728. (unit=134217728)
[Note] InnoDB: disabled adaptive hash index.
[Note] InnoDB: buffer pool 0 : start to withdraw the last 253952 blocks.
[Note] InnoDB: buffer pool 0 : withdrew 253952 blocks from free list. tried to relocate 0 pages. (253952/253952)
[Note] InnoDB: buffer pool 0 : withdrawn target 253952 blocks.
[Note] InnoDB: buffer pool 0 : 31 chunks (253952 blocks) was freed.
[Note] InnoDB: buffer pool 0 : hash tables were resized.
[Note] InnoDB: Resized hash tables at lock_sys, adaptive hash index, dictionary.
[Note] InnoDB: completed to resize buffer pool from 4294967296 to 134217728.
[Note] InnoDB: re-enabled adaptive hash index.

Buffer Pool Resizing Internals

The resizing operation is performed by a background thread. When increasing the size of the buffer
pool, the resizing operation:

• Adds pages in chunks (chunk size is defined by innodb_buffer_pool_chunk_size)

• Coverts hash tables, lists, and pointers to use new addresses in memory

• Adds new pages to the free list

While these operations are in progress, other threads are blocked from accessing the buffer pool.

When decreasing the size of the buffer pool, the resizing operation:

• Defragments the buffer pool and withdraws (frees) pages

• Removes pages in chunks (chunk size is defined by innodb_buffer_pool_chunk_size)

• Converts hash tables, lists, and pointers to use new addresses in memory

Of these operations, only defragmenting the buffer pool and withdrawing pages allow other threads to
access to the buffer pool concurrently.

14.3.4 Configuring the Memory Allocator for InnoDB

When InnoDB was developed, the memory allocators supplied with operating systems and run-time
libraries were often lacking in performance and scalability. At that time, there were no memory allocator
libraries tuned for multi-core CPUs. Therefore, InnoDB implemented its own memory allocator in the
mem subsystem. This allocator is guarded by a single mutex, which may become a bottleneck. InnoDB
also implements a wrapper interface around the system allocator (malloc and free) that is likewise
guarded by a single mutex.

Today, as multi-core systems have become more widely available, and as operating systems have
matured, significant improvements have been made in the memory allocators provided with operating
systems. New memory allocators perform better and are more scalable than they were in the past.
The leading high-performance memory allocators include Hoard, libumem, mtmalloc, ptmalloc,
tbbmalloc, and TCMalloc. Most workloads, especially those where memory is frequently allocated
and released (such as multi-table joins), benefit from using a more highly tuned memory allocator as
opposed to the internal, InnoDB-specific memory allocator.

You can control whether InnoDB uses its own memory allocator or an allocator of the operating
system, by setting the value of the system configuration parameter innodb_use_sys_malloc in the
MySQL option file (my.cnf or my.ini). If set to ON or 1 (the default), InnoDB uses the malloc and
free functions of the underlying system rather than manage memory pools itself. This parameter is
not dynamic, and takes effect only when the system is started. To continue to use the InnoDB memory
allocator, set innodb_use_sys_malloc to 0.

When the InnoDB memory allocator is disabled, InnoDB ignores the value of the parameter
innodb_additional_mem_pool_size. The InnoDB memory allocator uses an additional memory

Configuring InnoDB Change Buffering

1984

pool for satisfying allocation requests without having to fall back to the system memory allocator.
When the InnoDB memory allocator is disabled, all such allocation requests are fulfilled by the system
memory allocator.

On Unix-like systems that use dynamic linking, replacing the memory allocator may be as easy as
making the environment variable LD_PRELOAD or LD_LIBRARY_PATH point to the dynamic library
that implements the allocator. On other systems, some relinking may be necessary. Please refer to the
documentation of the memory allocator library of your choice.

Since InnoDB cannot track all memory use when the system memory allocator is used
(innodb_use_sys_malloc is ON), the section “BUFFER POOL AND MEMORY” in the output of
the SHOW ENGINE INNODB STATUS command only includes the buffer pool statistics in the “Total
memory allocated”. Any memory allocated using the mem subsystem or using ut_malloc is excluded.

Note

innodb_use_sys_malloc and innodb_additional_mem_pool_size
were deprecated in MySQL 5.6.3 and are removed in MySQL 5.7.4.

For more information about the performance implications of InnoDB memory usage, see Section 8.10,
“Buffering and Caching”.

14.3.5 Configuring InnoDB Change Buffering

When INSERT, UPDATE, and DELETE operations are performed on a table, the values of indexed
columns (particularly the values of secondary keys) are often in an unsorted order, requiring substantial
I/O to bring secondary indexes up to date. InnoDB has a change buffer that caches changes to
secondary index entries when the relevant page is not in the buffer pool, thus avoiding expensive I/O
operations by not immediately reading in the page from disk. The buffered changes are merged when
the page is loaded to the buffer pool, and the updated page is later flushed to disk. The InnoDB main
thread merges buffered changes when the server is nearly idle, and during a slow shutdown.

Because it can result in fewer disk reads and writes, the change buffer feature is most valuable for
workloads that are I/O-bound, for example applications with a high volume of DML operations such as
bulk inserts.

However, the change buffer occupies a part of the buffer pool, reducing the memory available to
cache data pages. If the working set almost fits in the buffer pool, or if your tables have relatively few
secondary indexes, it may be useful to disable change buffering. If the working set fits entirely within
the buffer, change buffering does not impose extra overhead, because it only applies to pages that are
not in the buffer pool.

You can control the extent to which InnoDB performs change buffering using the
innodb_change_buffering configuration parameter. You can enable or disable buffering for
inserts, delete operations (when index records are initially marked for deletion) and purge operations
(when index records are physically deleted). An update operation is a combination of an insert and a
delete. The default innodb_change_buffering value is all.

Permitted innodb_change_buffering values include:

• all

The default value: buffer inserts, delete-marking operations, and purges.

• none

Do not buffer any operations.

• inserts

Configuring Thread Concurrency for InnoDB

1985

Buffer insert operations.

• deletes

Buffer delete-marking operations.

• changes

Buffer both inserts and delete-marking operations.

• purges

Buffer the physical deletion operations that happen in the background.

You can set the innodb_change_buffering parameter in the MySQL option file (my.cnf or
my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER
privilege. Changing the setting affects the buffering of new operations; the merging of existing buffered
entries is not affected.

For related information, see Section 14.2.7.5, “Change Buffer”. For information about configuring
change buffer size, see Section 14.3.5.1, “Configuring the Change Buffer Maximum Size”.

14.3.5.1 Configuring the Change Buffer Maximum Size

As of MySQL 5.6.2, the innodb_change_buffer_max_size configuration option allows you to
configure the maximum size of the change buffer as a percentage of the total size of the buffer pool. By
default, innodb_change_buffer_max_size is set to 25. The maximum setting is 50.

You might consider increasing innodb_change_buffer_max_size on a MySQL server with heavy
insert, update, and delete activity, where change buffer merging does not keep pace with new change
buffer entries, causing the change buffer to reach its maximum size limit.

You might consider decreasing innodb_change_buffer_max_size on a MySQL server with static
data used for reporting, or if the change buffer consumes too much of the memory space that is shared
with the buffer pool, causing pages to age out of the buffer pool sooner than desired.

Test different settings with a representative workload to determine an optimal configuration. The
innodb_change_buffer_max_size setting is dynamic, which allows you modify the setting without
restarting the server.

14.3.6 Configuring Thread Concurrency for InnoDB

InnoDB uses operating system threads to process requests from user transactions. (Transactions
may issue many requests to InnoDB before they commit or roll back.) On modern operating systems
and servers with multi-core processors, where context switching is efficient, most workloads run well
without any limit on the number of concurrent threads. Scalability improvements in MySQL 5.5 and up
reduce the need to limit the number of concurrently executing threads inside InnoDB.

In situations where it is helpful to minimize context switching between threads, InnoDB can use a
number of techniques to limit the number of concurrently executing operating system threads (and thus
the number of requests that are processed at any one time). When InnoDB receives a new request
from a user session, if the number of threads concurrently executing is at a pre-defined limit, the new
request sleeps for a short time before it tries again. A request that cannot be rescheduled after the
sleep is put in a first-in/first-out queue and eventually is processed. Threads waiting for locks are not
counted in the number of concurrently executing threads.

You can limit the number of concurrent threads by setting the configuration parameter
innodb_thread_concurrency. Once the number of executing threads reaches this limit,

Configuring the Number of Background InnoDB I/O Threads

1986

additional threads sleep for a number of microseconds, set by the configuration parameter
innodb_thread_sleep_delay, before being placed into the queue.

Previously, it required experimentation to find the optimal value for innodb_thread_sleep_delay,
and the optimal value could change depending on the workload. In MySQL 5.6.3 and higher,
you can set the configuration option innodb_adaptive_max_sleep_delay to the highest
value you would allow for innodb_thread_sleep_delay, and InnoDB automatically adjusts
innodb_thread_sleep_delay up or down depending on the current thread-scheduling activity. This
dynamic adjustment helps the thread scheduling mechanism to work smoothly during times when the
system is lightly loaded and when it is operating near full capacity.

The default value for innodb_thread_concurrency and the implied default limit on the number of
concurrent threads has been changed in various releases of MySQL and InnoDB. The default value of
innodb_thread_concurrency is 0, so that by default there is no limit on the number of concurrently
executing threads.

InnoDB causes threads to sleep only when the number of concurrent threads is limited. When
there is no limit on the number of threads, all contend equally to be scheduled. That is, if
innodb_thread_concurrency is 0, the value of innodb_thread_sleep_delay is ignored.

When there is a limit on the number of threads (when innodb_thread_concurrency is >
0), InnoDB reduces context switching overhead by permitting multiple requests made during
the execution of a single SQL statement to enter InnoDB without observing the limit set by
innodb_thread_concurrency. Since an SQL statement (such as a join) may comprise multiple row
operations within InnoDB, InnoDB assigns a specified number of “tickets” that allow a thread to be
scheduled repeatedly with minimal overhead.

When a new SQL statement starts, a thread has no tickets, and it must observe
innodb_thread_concurrency. Once the thread is entitled to enter InnoDB, it is assigned a number
of tickets that it can use for subsequently entering InnoDB to perform row operations. If the tickets
run out, the thread is evicted, and innodb_thread_concurrency is observed again which may
place the thread back into the first-in/first-out queue of waiting threads. When the thread is once again
entitled to enter InnoDB, tickets are assigned again. The number of tickets assigned is specified by the
global option innodb_concurrency_tickets, which is 5000 by default. A thread that is waiting for a
lock is given one ticket once the lock becomes available.

The correct values of these variables depend on your environment and workload. Try a range of
different values to determine what value works for your applications. Before limiting the number of
concurrently executing threads, review configuration options that may improve the performance of
InnoDB on multi-core and multi-processor computers, such as innodb_adaptive_hash_index.

For general performance information about MySQL thread handling, see Section 8.12.6.1, “How
MySQL Uses Threads for Client Connections”.

14.3.7 Configuring the Number of Background InnoDB I/O Threads

InnoDB uses background threads to service various types of I/O requests. You can configure the
number of background threads that service read and write I/O on data pages, using the configuration
parameters innodb_read_io_threads and innodb_write_io_threads. These parameters
signify the number of background threads used for read and write requests respectively. They are
effective on all supported platforms. You can set the value of these parameters in the MySQL option
file (my.cnf or my.ini); you cannot change them dynamically. The default value for these parameters
is 4 and the permissible values range from 1-64.

The purpose of this change is to make InnoDB more scalable on high end systems. Each background
thread can handle up to 256 pending I/O requests. A major source of background I/O is the read-
ahead requests. InnoDB tries to balance the load of incoming requests in such way that most of
the background threads share work equally. InnoDB also attempts to allocate read requests from
the same extent to the same thread to increase the chances of coalescing the requests together.

Configuring the InnoDB Master Thread I/O Rate

1987

If you have a high end I/O subsystem and you see more than 64 × innodb_read_io_threads
pending read requests in SHOW ENGINE INNODB STATUS, you might gain by increasing the value of
innodb_read_io_threads.

For more information about InnoDB I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

14.3.8 Configuring the InnoDB Master Thread I/O Rate

The master thread in InnoDB is a thread that performs various tasks in the background. Most of these
tasks are I/O related, such as flushing dirty pages from the buffer pool or writing changes from the
insert buffer to the appropriate secondary indexes. The master thread attempts to perform these tasks
in a way that does not adversely affect the normal working of the server. It tries to estimate the free I/O
bandwidth available and tune its activities to take advantage of this free capacity. Historically, InnoDB
has used a hard coded value of 100 IOPs (input/output operations per second) as the total I/O capacity
of the server.

The parameter innodb_io_capacity indicates the overall I/O capacity available to InnoDB. This
parameter should be set to approximately the number of I/O operations that the system can perform
per second. The value depends on your system configuration. When innodb_io_capacity is set,
the master threads estimates the I/O bandwidth available for background tasks based on the set value.
Setting the value to 100 reverts to the old behavior.

You can set the value of innodb_io_capacity to any number 100 or greater. The default value
is 200, reflecting that the performance of typical modern I/O devices is higher than in the early days
of MySQL. Typically, values around the previous default of 100 are appropriate for consumer-level
storage devices, such as hard drives up to 7200 RPMs. Faster hard drives, RAID configurations, and
SSDs benefit from higher values.

The innodb_io_capacity setting is a total limit for all buffer pool instances. When dirty pages are
flushed, the innodb_io_capacity limit is divided equally among buffer pool instances. For more
information, see the innodb_io_capacity system variable description.

You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it
dynamically with the SET GLOBAL command, which requires the SUPER privilege.

The innodb_flush_sync configuration option, introduced in MySQL 5.7.8, causes the
innodb_io_capacity setting to be ignored during bursts of I/O activity that occur at checkpoints.
innodb_flush_sync is enabled by default.

Formerly, the InnoDB master thread also performed any needed purge operations. In MySQL 5.6.5
and higher, those I/O operations are moved to other background threads, whose number is controlled
by the innodb_purge_threads configuration option.

For more information about InnoDB I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

14.3.9 Configuring Spin Lock Polling

Many InnoDB mutexes and rw-locks are reserved for a short time. On a multi-core system, it can
be more efficient for a thread to continuously check if it can acquire a mutex or rw-lock for a while
before sleeping. If the mutex or rw-lock becomes available during this polling period, the thread can
continue immediately, in the same time slice. However, too-frequent polling by multiple threads of a
shared object can cause “cache ping pong”, different processors invalidating portions of each others'
cache. InnoDB minimizes this issue by waiting a random time between subsequent polls. The delay is
implemented as a busy loop.

You can control the maximum delay between testing a mutex or rw-lock using the parameter
innodb_spin_wait_delay. The duration of the delay loop depends on the C compiler and the target
processor. (In the 100MHz Pentium era, the unit of delay was one microsecond.) On a system where
all processor cores share a fast cache memory, you might reduce the maximum delay or disable the
busy loop altogether by setting innodb_spin_wait_delay=0. On a system with multiple processor

Configuring InnoDB Purge Scheduling

1988

chips, the effect of cache invalidation can be more significant and you might increase the maximum
delay.

The default value of innodb_spin_wait_delay is 6. The spin wait delay is a dynamic global
parameter that you can specify in the MySQL option file (my.cnf or my.ini) or change at runtime
with the command SET GLOBAL innodb_spin_wait_delay=delay, where delay is the desired
maximum delay. Changing the setting requires the SUPER privilege.

For performance considerations for InnoDB locking operations, see Section 8.11, “Optimizing Locking
Operations”.

14.3.10 Configuring InnoDB Purge Scheduling

The purge operations (a type of garbage collection) that InnoDB performs automatically is now done
in one or more separate threads, rather than as part of the master thread. This change improves
scalability, because the main database operations run independently from maintenance work
happening in the background.

To control this feature, increase the value of the configuration option innodb_purge_threads. If
DML action is concentrated on a single table or a few tables, keep the setting low so that the threads
do not contend with each other for access to the busy tables. If DML operations are spread across
many tables, increase the setting. Its maximum is 32.

There is another related configuration option, innodb_purge_batch_size with a default value of
300 and maximum value of 5000. This option is mainly intended for experimentation and tuning of
purge operations, and should not be interesting to typical users.

For more information about InnoDB I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

14.3.11 Configuring Optimizer Statistics for InnoDB

This section describes how to configure persistent and non-persistent optimizer statistics for InnoDB
tables.

Persistent optimizer statistics are persisted across server restarts, allowing for greater plan stability and
more consistent query performance. Persistent optimizer statistics also provide control and flexibility
with these additional benefits:

• You can use the innodb_stats_auto_recalc configuration option to control whether statistics
are updated automatically after substantial changes to a table.

• You can use the STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES
clauses with CREATE TABLE and ALTER TABLE statements to configure optimizer statistics for
individual tables.

• You can query optimizer statistics data in the mysql.innodb_table_stats and
mysql.innodb_index_stats tables.

• You can view the last_update column of the mysql.innodb_table_stats and
mysql.innodb_index_stats tables to see when statistics were last updated.

• You can manually modify the mysql.innodb_table_stats and mysql.innodb_index_stats
tables to force a specific query optimization plan or to test alternative plans without modifying the
database.

The persistent optimizer statistics feature is enabled by default (innodb_stats_persistent=ON).

Non-persistent optimizer statistics are cleared on each server restart and after some other operations,
and recomputed on the next table access. As a result, different estimates could be produced
when recomputing statistics, leading to different choices in execution plans and variations in query
performance.

Configuring Optimizer Statistics for InnoDB

1989

This section also provides information about estimating ANALYZE TABLE complexity, which may
be useful when attempting to achieve a balance between accurate statistics and ANALYZE TABLE
execution time.

14.3.11.1 Configuring Persistent Optimizer Statistics Parameters

The persistent optimizer statistics feature improves plan stability by storing statistics to disk and making
them persistent across server restarts so that the optimizer is more likely to make consistent choices
each time for a given query.

Optimizer statistics are persisted to disk when innodb_stats_persistent=ON or when individual
tables are created or altered with STATS_PERSISTENT=1. innodb_stats_persistent is enabled
by default.

Formerly, optimizer statistics were cleared on each server restart and after some other operations,
and recomputed on the next table access. Consequently, different estimates could be produced when
recalculating statistics, leading to different choices in query execution plans and thus variations in
query performance.

Persistent statistics are stored in the mysql.innodb_table_stats and
mysql.innodb_index_stats tables, as described in InnoDB Persistent Statistics Tables.

To revert to using non-persistent optimizer statistics, you can modify tables using an ALTER TABLE
tbl_name STATS_PERSISTENT=0 statement. For related information, see Section 14.3.11.2,
“Configuring Non-Persistent Optimizer Statistics Parameters”

Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics

The innodb_stats_auto_recalc configuration option, which is enabled by default, determines
whether statistics are calculated automatically whenever a table undergoes substantial changes (to
more than 10% of the rows). You can also configure automatic statistics recalculation for individual
tables using a STATS_AUTO_RECALC clause in a CREATE TABLE or ALTER TABLE statement.
innodb_stats_auto_recalc is enabled by default.

Because of the asynchronous nature of automatic statistics recalculation (which occurs in the
background), statistics may not be recalculated instantly after running a DML operation that
affects more than 10% of a table, even when innodb_stats_auto_recalc is enabled. In
some cases, statistics recalculation may be delayed by a few seconds. If up-to-date statistics are
required immediately after changing significant portions of a table, run ANALYZE TABLE to initiate a
synchronous (foreground) recalculation of statistics.

If innodb_stats_auto_recalc is disabled, ensure the accuracy of optimizer statistics by issuing
the ANALYZE TABLE statement for each applicable table after making substantial changes to indexed
columns. You might run this statement in your setup scripts after representative data has been loaded
into the table, and run it periodically after DML operations significantly change the contents of indexed
columns, or on a schedule at times of low activity. When a new index is added to an existing table,
index statistics are calculated and added to the innodb_index_stats table regardless of the value
of innodb_stats_auto_recalc.

Caution

To ensure statistics are gathered when a new index is created, either enable the
innodb_stats_auto_recalc option, or run ANALYZE TABLE after creating
each new index when the persistent statistics mode is enabled.

Configuring Optimizer Statistics Parameters for Individual Tables

innodb_stats_persistent, innodb_stats_auto_recalc, and
innodb_stats_persistent_sample_pages are global configuration options. To override these

Configuring Optimizer Statistics for InnoDB

1990

system-wide settings and configure optimizer statistics parameters for individual tables, you can
define STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES clauses in CREATE
TABLE or ALTER TABLE statements.

• STATS_PERSISTENT specifies whether to enable persistent statistics for an InnoDB table. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_persistent configuration option. The value 1 enables persistent statistics for the
table, while the value 0 turns off this feature. After enabling persistent statistics through a CREATE
TABLE or ALTER TABLE statement, issue an ANALYZE TABLE statement to calculate the statistics,
after loading representative data into the table.

• STATS_AUTO_RECALC specifies whether to automatically recalculate persistent statistics for
an InnoDB table. The value DEFAULT causes the persistent statistics setting for the table to be
determined by the innodb_stats_auto_recalc configuration option. The value 1 causes
statistics to be recalculated when 10% of the data in the table has changed. The value 0 prevents
automatic recalculation for this table; with this setting, issue an ANALYZE TABLE statement to
recalculate the statistics after making substantial changes to the table.

• STATS_SAMPLE_PAGES specifies the number of index pages to sample when estimating cardinality
and other statistics for an indexed column, such as those calculated by ANALYZE TABLE.

All three clauses are specified in the following CREATE TABLE example:

CREATE TABLE `t1` (
`id` int(8) NOT NULL auto_increment,
`data` varchar(255),
`date` datetime,
PRIMARY KEY (`id`),
INDEX `DATE_IX` (`date`)
) ENGINE=InnoDB,
 STATS_PERSISTENT=1,
 STATS_AUTO_RECALC=1,
 STATS_SAMPLE_PAGES=25;

Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics

The MySQL query optimizer uses estimated statistics about key distributions to choose the indexes for
an execution plan, based on the relative selectivity of the index. Operations such as ANALYZE TABLE
cause InnoDB to sample random pages from each index on a table to estimate the cardinality of the
index. (This technique is known as random dives.)

To give you control over the quality of the statistics estimate (and thus better information for
the query optimizer), you can change the number of sampled pages using the parameter
innodb_stats_persistent_sample_pages, which can be set at runtime.

innodb_stats_persistent_sample_pages has a default value of 20. As a general guideline,
consider modifying this parameter when encountering the following issues:

1. Statistics are not accurate enough and the optimizer chooses suboptimal plans, as shown by
EXPLAIN output. The accuracy of statistics can be checked by comparing the actual cardinality of
an index (as returned by running SELECT DISTINCT on the index columns) with the estimates
provided in the mysql.innodb_index_stats persistent statistics table.

If it is determined that statistics are not accurate enough, the value of
innodb_stats_persistent_sample_pages should be increased until the statistics estimates
are sufficiently accurate. Increasing innodb_stats_persistent_sample_pages too much,
however, could cause ANALYZE TABLE to run slowly.

2. ANALYZE TABLE is too slow. In this case innodb_stats_persistent_sample_pages should
be decreased until ANALYZE TABLE execution time is acceptable. Decreasing the value too much,
however, could lead to the first problem of inaccurate statistics and suboptimal query execution
plans.

Configuring Optimizer Statistics for InnoDB

1991

If a balance cannot be achieved between accurate statistics and ANALYZE TABLE execution time,
consider decreasing the number of indexed columns in the table or limiting the number of partitions
to reduce ANALYZE TABLE complexity. The number of columns in the table's primary key is also
important to consider, as primary key columns are appended to each non-unique index.

For related information, see Section 14.3.11.3, “Estimating ANALYZE TABLE Complexity for
InnoDB Tables”.

InnoDB Persistent Statistics Tables

The persistent statistics feature relies on the internally managed tables in the mysql database, named
innodb_table_stats and innodb_index_stats. These tables are set up automatically in all
install, upgrade, and build-from-source procedures.

Table 14.2 Columns of innodb_table_stats

Column name Description

database_name Database name

table_name Table name, partition name, or subpartition name

last_update A timestamp indicating the last time that InnoDB updated this row

n_rows The number of rows in the table

clustered_index_size The size of the primary index, in pages

sum_of_other_index_sizesThe total size of other (non-primary) indexes, in pages

Table 14.3 Columns of innodb_index_stats

Column name Description

database_name Database name

table_name Table name, partition name, or subpartition name

index_name Index name

last_update A timestamp indicating the last time that InnoDB updated this row

stat_name The name of the statistic, whose value is reported in the stat_value
column

stat_value The value of the statistic that is named in stat_name column

sample_size The number of pages sampled for the estimate provided in the
stat_value column

stat_description Description of the statistic that is named in the stat_name column

Both the innodb_table_stats and innodb_index_stats tables include a last_update column
showing when InnoDB last updated index statistics, as shown in the following example:

mysql> select * from innodb_table_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 last_update: 2014-05-28 16:16:44
 n_rows: 200
 clustered_index_size: 1
sum_of_other_index_sizes: 1
...

mysql> select * from innodb_index_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 index_name: PRIMARY

Configuring Optimizer Statistics for InnoDB

1992

 last_update: 2014-05-28 16:16:44
 stat_name: n_diff_pfx01
 stat_value: 200
 sample_size: 1
 ...

The innodb_table_stats and innodb_index_stats tables are ordinary tables and can be
updated manually. The ability to update statistics manually makes it possible to force a specific
query optimization plan or test alternative plans without modifying the database. If you manually
update statistics, issue the FLUSH TABLE tbl_name command to make MySQL reload the updated
statistics.

InnoDB Persistent Statistics Tables Example

The innodb_table_stats table contains one row per table. The data collected is demonstrated in
the following example.

Table t1 contains a primary index (columns a, b) secondary index (columns c, d), and unique index
(columns e, f):

CREATE TABLE t1 (
a INT, b INT, c INT, d INT, e INT, f INT,
PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

After inserting five rows of sample data, the table appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+

To immediately update statistics, run ANALYZE TABLE (if innodb_stats_auto_recalc is enabled,
statistics are updated automatically within a few seconds assuming that the 10% threshold for changed
table rows is reached):

mysql> ANALYZE TABLE t1;
+---------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+---------+----------+----------+
| test.t1 | analyze | status | OK |
+---------+---------+----------+----------+

Table statistics for table t1 show the last time InnoDB updated the table statistics (2014-03-14
14:36:34), the number of rows in the table (5), the clustered index size (1 page), and the combined
size of the other indexes (2 pages).

mysql> SELECT * FROM mysql.innodb_table_stats WHERE table_name like 't1'\G
*************************** 1. row ***************************
 database_name: test
 table_name: t1
 last_update: 2014-03-14 14:36:34
 n_rows: 5
 clustered_index_size: 1
sum_of_other_index_sizes: 2

The innodb_index_stats table contains multiple rows for each index. Each row in the
innodb_index_stats table provides data related to a particular index statistic which is named in the
stat_name column and described in the stat_description column. For example:

mysql> SELECT index_name, stat_name, stat_value, stat_description

Configuring Optimizer Statistics for InnoDB

1993

 -> FROM mysql.innodb_index_stats WHERE table_name like 't1';
+------------+--------------+------------+-----------------------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+-----------------------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
PRIMARY	n_leaf_pages	1	Number of leaf pages in the index
PRIMARY	size	1	Number of pages in the index
i1	n_diff_pfx01	1	c
i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b
i1	n_leaf_pages	1	Number of leaf pages in the index
i1	size	1	Number of pages in the index
i2uniq	n_diff_pfx01	2	e
i2uniq	n_diff_pfx02	5	e,f
i2uniq	n_leaf_pages	1	Number of leaf pages in the index
i2uniq	size	1	Number of pages in the index
+------------+--------------+------------+-----------------------------------+

The stat_name column shows the following types of statistics:

• size: Where stat_name=size, the stat_value column displays the total number of pages in the
index.

• n_leaf_pages: Where stat_name=n_leaf_pages, the stat_value column displays the
number of leaf pages in the index.

• n_diff_pfxNN: Where stat_name=n_diff_pfx01, the stat_value column displays the
number of distinct values in the first column of the index. Where stat_name=n_diff_pfx02, the
stat_value column displays the number of distinct values in the first two columns of the index, and
so on. Additionally, where stat_name=n_diff_pfxNN, the stat_description column shows a
comma separated list of the index columns that are counted.

To further illustrate the n_diff_pfxNN statistic, which provides cardinality data, consider the t1 table
example. As shown below, the t1 table is created with a primary index (columns a, b), a secondary
index (columns c, d), and a unique index (columns e, f):

CREATE TABLE t1 (
 a INT, b INT, c INT, d INT, e INT, f INT,
 PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

After inserting five rows of sample data, the table appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+

When you query the index_name, stat_name, stat_value, and stat_description where
stat_name LIKE 'n_diff%', the following result set is returned:

mysql> SELECT index_name, stat_name, stat_value, stat_description
 -> FROM mysql.innodb_index_stats
 -> WHERE table_name like 't1' AND stat_name LIKE 'n_diff%';
+------------+--------------+------------+------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
i1	n_diff_pfx01	1	c

Configuring Optimizer Statistics for InnoDB

1994

i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b
i2uniq	n_diff_pfx01	2	e
i2uniq	n_diff_pfx02	5	e,f
+------------+--------------+------------+------------------+

For the PRIMARY index, there are two n_diff% rows. The number of rows is equal to the number of
columns in the index.

Note

For non-unique indexes, InnoDB appends the columns of the primary key.

• Where index_name=PRIMARY and stat_name=n_diff_pfx01, the stat_value is 1, which
indicates that there is a single distinct value in the first column of the index (column a). The number
of distinct values in column a is confirmed by viewing the data in column a in table t1, in which there
is a single distinct value (1). The counted column (a) is shown in the stat_description column of
the result set.

• Where index_name=PRIMARY and stat_name=n_diff_pfx02, the stat_value is 5, which
indicates that there are five distinct values in the two columns of the index (a,b). The number of
distinct values in columns a and b is confirmed by viewing the data in columns a and b in table t1,
in which there are five distinct values: (1,1), (1,2), (1,3), (1,4) and (1,5). The counted columns
(a,b) are shown in the stat_description column of the result set.

For the secondary index (i1), there are four n_diff% rows. Only two columns are defined for the
secondary index (c,d) but there are four n_diff% rows for the secondary index because InnoDB
suffixes all non-unique indexes with the primary key. As a result, there are four n_diff% rows instead
of two to account for the both the secondary index columns (c,d) and the primary key columns (a,b).

• Where index_name=i1 and stat_name=n_diff_pfx01, the stat_value is 1, which indicates
that there is a single distinct value in the first column of the index (column c). The number of distinct
values in column c is confirmed by viewing the data in column c in table t1, in which there is a single
distinct value: (10). The counted column (c) is shown in the stat_description column of the
result set.

• Where index_name=i1 and stat_name=n_diff_pfx02, the stat_value is 2, which indicates
that there are two distinct values in the first two columns of the index (c,d). The number of distinct
values in columns c an d is confirmed by viewing the data in columns c and d in table t1, in which
there are two distinct values: (10,11) and (10,12). The counted columns (c,d) are shown in the
stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx03, the stat_value is 2, which indicates
that there are two distinct values in the first three columns of the index (c,d,a). The number of
distinct values in columns c, d, and a is confirmed by viewing the data in column c, d, and a in table
t1, in which there are two distinct values: (10,11,1) and (10,12,1). The counted columns (c,d,a)
are shown in the stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx04, the stat_value is 5, which indicates
that there are five distinct values in the four columns of the index (c,d,a,b). The number of distinct
values in columns c, d, a and b is confirmed by viewing the data in columns c, d, a, and b in table
t1, in which there are five distinct values: (10,11,1,1), (10,11,1,2), (10,11,1,3), (10,12,1,4)
and (10,12,1,5). The counted columns (c,d,a,b) are shown in the stat_description column
of the result set.

For the unique index (i2uniq), there are two n_diff% rows.

• Where index_name=i2uniq and stat_name=n_diff_pfx01, the stat_value is 2, which
indicates that there are two distinct values in the first column of the index (column e). The
number of distinct values in column e is confirmed by viewing the data in column e in table t1,

Configuring Optimizer Statistics for InnoDB

1995

in which there are two distinct values: (100) and (200). The counted column (e) is shown in the
stat_description column of the result set.

• Where index_name=i2uniq and stat_name=n_diff_pfx02, the stat_value is 5, which
indicates that there are five distinct values in the two columns of the index (e,f). The number of
distinct values in columns e and f is confirmed by viewing the data in columns e and f in table t1, in
which there are five distinct values: (100,101), (200,102), (100,103), (200,104) and (100,105).
The counted columns (e,f) are shown in the stat_description column of the result set.

Retrieving Index Size Using the innodb_index_stats Table

The size of indexes for tables, partitions, or subpartitions can be retrieved using the
innodb_index_stats table. In the following example, index sizes are retrieved for table t1. For
a definition of table t1 and corresponding index statistics, see InnoDB Persistent Statistics Tables
Example.

mysql> SELECT SUM(stat_value) pages, index_name,
 -> SUM(stat_value)*@@innodb_page_size size
 -> FROM mysql.innodb_index_stats WHERE table_name='t1'
 -> AND stat_name = 'size' GROUP BY index_name;
+-------+------------+-------+
| pages | index_name | size |
+-------+------------+-------+
1	PRIMARY	16384
1	i1	16384
1	i2uniq	16384
+-------+------------+-------+

For partitions or subpartitions, the same query with a modified WHERE clause can be used to retrieve
index sizes. For example, the following query retrieves index sizes for partitions of table t1:

mysql> SELECT SUM(stat_value) pages, index_name,
 -> SUM(stat_value)*@@innodb_page_size size
 -> FROM mysql.innodb_index_stats WHERE table_name like 't1#P%'
 -> AND stat_name = 'size' GROUP BY index_name;

14.3.11.2 Configuring Non-Persistent Optimizer Statistics Parameters

This section describes how to configure non-persistent optimizer statistics. Optimizer statistics are not
persisted to disk when innodb_stats_persistent=OFF or when individual tables are created or
altered with STATS_PERSISTENT=0. Instead, statistics are stored in memory, and are lost when the
server is shut down. Statistics are also updated periodically by certain operations and under certain
conditions.

As of MySQL 5.6.6, optimizer statistics are persisted to disk by default, enabled by the
innodb_stats_persistent configuration option. For information about persistent optimizer
statistics, see Section 14.3.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

Optimizer Statistics Updates

Optimizer statistics are updated when:

• Running ANALYZE TABLE.

• Running SHOW TABLE STATUS, SHOW INDEX, or querying the INFORMATION_SCHEMA.TABLES
or INFORMATION_SCHEMA.STATISTICS tables with the innodb_stats_on_metadata option
enabled.

The default setting for innodb_stats_on_metadata was changed to OFF when
persistent optimizer statistics were enabled by default in MySQL 5.6.6. Enabling
innodb_stats_on_metadata may reduce access speed for schemas that have a large number
of tables or indexes, and reduce stability of execution plans for queries that involve InnoDB tables.
innodb_stats_on_metadata is configured globally using a SET statement.

Configuring Optimizer Statistics for InnoDB

1996

SET GLOBAL innodb_stats_on_metadata=ON

• Starting a mysql client with the --auto-rehash option enabled, which is the default. The auto-
rehash option causes all InnoDB tables to be opened, and the open table operations cause
statistics to be recalculated.

To improve the start up time of the mysql client and to updating statistics, you can turn off auto-
rehash using the --disable-auto-rehash option. The auto-rehash feature enables
automatic name completion of database, table, and column names for interactive users.

• A table is first opened.

• InnoDB detects that 1 / 16 of table has been modified since the last time statistics were updated.

Configuring the Number of Sampled Pages

The MySQL query optimizer uses estimated statistics about key distributions to choose the indexes
for an execution plan, based on the relative selectivity of the index. When InnoDB updates optimizer
statistics, it samples random pages from each index on a table to estimate the cardinality of the index.
(This technique is known as random dives.)

To give you control over the quality of the statistics estimate (and thus better information for
the query optimizer), you can change the number of sampled pages using the parameter
innodb_stats_transient_sample_pages. The default number of sampled pages is 8,
which could be insufficient to produce an accurate estimate, leading to poor index choices
by the query optimizer. This technique is especially important for large tables and tables
used in joins. Unnecessary full table scans for such tables can be a substantial performance
issue. See Section 8.2.1.20, “How to Avoid Full Table Scans” for tips on tuning such queries.
innodb_stats_transient_sample_pages is a global parameter that can be set at runtime.

The value of innodb_stats_transient_sample_pages affects the index sampling for all InnoDB
tables and indexes when innodb_stats_persistent=0. Be aware of the following potentially
significant impacts when you change the index sample size:

• Small values like 1 or 2 can result in inaccurate estimates of cardinality.

• Increasing the innodb_stats_transient_sample_pages value might require more disk reads.
Values much larger than 8 (say, 100), can cause a significant slowdown in the time it takes to open a
table or execute SHOW TABLE STATUS.

• The optimizer might choose very different query plans based on different estimates of index
selectivity.

Whatever value of innodb_stats_transient_sample_pages works best for a system, set the
option and leave it at that value. Choose a value that results in reasonably accurate estimates for
all tables in your database without requiring excessive I/O. Because the statistics are automatically
recalculated at various times other than on execution of ANALYZE TABLE, it does not make sense to
increase the index sample size, run ANALYZE TABLE, then decrease sample size again.

Smaller tables generally require fewer index samples than larger tables. If your database has many
large tables, consider using a higher value for innodb_stats_transient_sample_pages than if
you have mostly smaller tables.

14.3.11.3 Estimating ANALYZE TABLE Complexity for InnoDB Tables

ANALYZE TABLE complexity for InnoDB tables is dependent on:

• The number of pages sampled, as defined by innodb_stats_persistent_sample_pages.

• The number of indexed columns in a table

Configuring Optimizer Statistics for InnoDB

1997

• The number of partitions. If a table has no partitions, the number of partitions is considered to be 1.

Using these parameters, an approximate formula for estimating ANALYZE TABLE complexity would be:

The value of innodb_stats_persistent_sample_pages * number of indexed columns in a table *
the number of partitions

Typically, the greater the resulting value, the greater the execution time for ANALYZE TABLE.

Note

innodb_stats_persistent_sample_pages defines the number of pages
sampled at a global level. To set the number of pages sampled for an individual
table, use the STATS_SAMPLE_PAGES option with CREATE TABLE or ALTER
TABLE. For more information, see Section 14.3.11.1, “Configuring Persistent
Optimizer Statistics Parameters”.

If innodb_stats_persistent=OFF, the number of pages sampled is defined
by innodb_stats_transient_sample_pages. See Section 14.3.11.2,
“Configuring Non-Persistent Optimizer Statistics Parameters” for additional
information.

For a more in-depth approach to estimating ANALYZE TABLE complexity, consider the following
example.

In Big O notation, ANALYZE TABLE complexity is described as:

 O(n_sample
 * (n_cols_in_uniq_i
 + n_cols_in_non_uniq_i
 + n_cols_in_pk * (1 + n_non_uniq_i))
 * n_part)

where:

• n_sample is the number of pages sampled (defined by
innodb_stats_persistent_sample_pages)

• n_cols_in_uniq_i is total number of all columns in all unique indexes (not counting the primary
key columns)

• n_cols_in_non_uniq_i is the total number of all columns in all non-unique indexes

• n_cols_in_pk is the number of columns in the primary key (if a primary key is not defined, InnoDB
creates a single column primary key internally)

• n_non_uniq_i is the number of non-unique indexes in the table

• n_part is the number of partitions. If no partitions are defined, the table is considered to be a single
partition.

Now, consider the following table (table t), which has a primary key (2 columns), a unique index (2
columns), and two non-unique indexes (two columns each):

 CREATE TABLE t (
 a INT,
 b INT,
 c INT,
 d INT,
 e INT,
 f INT,
 g INT,
 h INT,
 PRIMARY KEY (a, b),

http://en.wikipedia.org/wiki/Big_O_notation

Configuring Optimizer Statistics for InnoDB

1998

 UNIQUE KEY i1uniq (c, d),
 KEY i2nonuniq (e, f),
 KEY i3nonuniq (g, h)
);

For the column and index data required by the algorithm described above, query the
mysql.innodb_index_stats persistent index statistics table for table t. The n_diff_pfx%
statistics show the columns that are counted for each index. For example, columns a and b are
counted for the primary key index. For the non-unique indexes, the primary key columns (a,b) are
counted in addition to the user defined columns.

Note

For additional information about the InnoDB persistent statistics tables, see
Section 14.3.11.1, “Configuring Persistent Optimizer Statistics Parameters”

 SELECT index_name, stat_name, stat_description
 FROM mysql.innodb_index_stats
 WHERE
 database_name='test' AND
 table_name='t' AND
 stat_name like 'n_diff_pfx%';

 +------------+--------------+------------------+
 | index_name | stat_name | stat_description |
 +------------+--------------+------------------+
PRIMARY	n_diff_pfx01	a
PRIMARY	n_diff_pfx02	a,b
i1uniq	n_diff_pfx01	c
i1uniq	n_diff_pfx02	c,d
i2nonuniq	n_diff_pfx01	e
i2nonuniq	n_diff_pfx02	e,f
i2nonuniq	n_diff_pfx03	e,f,a
i2nonuniq	n_diff_pfx04	e,f,a,b
i3nonuniq	n_diff_pfx01	g
i3nonuniq	n_diff_pfx02	g,h
i3nonuniq	n_diff_pfx03	g,h,a
i3nonuniq	n_diff_pfx04	g,h,a,b
 +------------+--------------+------------------+

Based on the index statistics data shown above and the table definition, the following values can be
determined:

• n_cols_in_uniq_i, the total number of all columns in all unique indexes not counting the primary
key columns, is 2 (c and d)

• n_cols_in_non_uniq_i, the total number of all columns in all non-unique indexes, is 4 (e, f, g
and h)

• n_cols_in_pk, the number of columns in the primary key, is 2 (a and b)

• n_non_uniq_i, the number of non-unique indexes in the table, is 2 (i2nonuniq and i3nonuniq))

• n_part, the number of partitions, is 1.

You can now calculate innodb_stats_persistent_sample_pages * (2 +
4 + 2 * (1 + 2)) * 1 to determine the number of leaf pages that are scanned. With
innodb_stats_persistent_sample_pages set to the default value of 20, and with a default page
size of 16 KiB (innodb_page_size=16384), you can then estimate that 20 * 12 * 16384 bytes are
read for table t, or about 4 MiB.

Note

All 4 MiB may not be read from disk, as some leaf pages may already be
cached in the buffer pool.

Configuring the Merge Threshold for Index Pages

1999

14.3.12 Configuring the Merge Threshold for Index Pages

Staring in MySQL 5.7.6, you can configure the MERGE_THRESHOLD value for index pages. If the “page-
full” percentage for an index page falls below the MERGE_THRESHOLD value when a row is deleted
or when a row is shortened by an UPDATE operation, InnoDB attempts to merge the index page
with a neighboring index page. The default MERGE_THRESHOLD value is 50, which is the previously
hardcoded value. The minimum MERGE_THRESHOLD value is 1 and the maximum value is 50.

When the “page-full” percentage for an index page falls below 50%, which is the default
MERGE_THRESHOLD setting, InnoDB attempts to merge the index page with a neighboring page. If
both pages are close to 50% full, a page split can occur soon after the pages are merged. If this merge-
split behavior occurs frequently, it can have an adverse affect on performance. To avoid frequent
merge-splits, you can lower the MERGE_THRESHOLD value so that InnoDB attempts page merges at a
lower “page-full” percentage. Merging pages at a lower page-full percentage leaves more room in index
pages and helps reduce merge-split behaviour.

The MERGE_THRESHOLD for index pages can be defined for a table or for individual indexes. A
MERGE_THRESHOLD value defined for an individual index takes priority over a MERGE_THRESHOLD
value defined for the table. If undefined, the MERGE_THRESHOLD value defaults to 50.

Setting MERGE_THRESHOLD for a Table

You can set the MERGE_THRESHOLD value for a table using the table_option COMMENT clause of
the CREATE TABLE statement. For example:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
) COMMENT='MERGE_THRESHOLD=45';

You can also set the MERGE_THRESHOLD value for an existing table using the table_option
COMMENT clause with ALTER TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
);

ALTER TABLE t1 COMMENT='MERGE_THRESHOLD=40';

Setting MERGE_THRESHOLD for Individual Indexes

To set the MERGE_THRESHOLD value for an individual index, you can use the index_option
COMMENT clause with CREATE TABLE, ALTER TABLE, or CREATE INDEX, as shown in the following
examples:

• Setting MERGE_THRESHOLD for an individual index using CREATE TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id) COMMENT 'MERGE_THRESHOLD=40'
);

• Setting MERGE_THRESHOLD for an individual index using ALTER TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
);

ALTER TABLE t1 DROP KEY id_index;
ALTER TABLE t1 ADD KEY id_index (id) COMMENT 'MERGE_THRESHOLD=40';

• Setting MERGE_THRESHOLD for an individual index using CREATE INDEX:

CREATE TABLE t1 (id INT);

Configuring the Merge Threshold for Index Pages

2000

CREATE INDEX id_index ON t1 (id) COMMENT 'MERGE_THRESHOLD=40';

Note

You cannot modify the MERGE_THRESHOLD value at the index level for
GEN_CLUST_INDEX, which is the clustered index created by InnoDB when an
InnoDB table is created without a primary key or unique key index. You can
only modify the MERGE_THRESHOLD value for GEN_CLUST_INDEX by setting
MERGE_THRESHOLD for the table.

Querying the MERGE_THRESHOLD Value for an Index

The current MERGE_THRESHOLD value for an index can be obtained by querying the
INNODB_SYS_INDEXES table. For example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_INDEXES WHERE NAME='id_index' \G
*************************** 1. row ***************************
 INDEX_ID: 91
 NAME: id_index
 TABLE_ID: 68
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 57
MERGE_THRESHOLD: 40

You can use SHOW CREATE TABLE to view the MERGE_THRESHOLD value for a table, if explicitly
defined using the table_option COMMENT clause:

mysql> SHOW CREATE TABLE t2 \G
*************************** 1. row ***************************
 Table: t2
Create Table: CREATE TABLE `t2` (
 `id` int(11) DEFAULT NULL,
 KEY `id_index` (`id`) COMMENT 'MERGE_THRESHOLD=40'
) ENGINE=InnoDB DEFAULT CHARSET=latin1

Note

A MERGE_THRESHOLD value defined at the index level takes priority
over a MERGE_THRESHOLD value defined for the table. If undefined,
MERGE_THRESHOLD defaults to 50% (MERGE_THRESHOLD=50, which is the
previously hardcoded value.

Likewise, you can use SHOW INDEX to view the MERGE_THRESHOLD value for an index, if explicitly
defined using the index_option COMMENT clause:

mysql> SHOW INDEX FROM t2 \G
*************************** 1. row ***************************
 Table: t2
 Non_unique: 1
 Key_name: id_index
 Seq_in_index: 1
 Column_name: id
 Collation: A
 Cardinality: 0
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:
Index_comment: MERGE_THRESHOLD=40

Measuring the Effect of MERGE_THRESHOLD Settings

The INNODB_METRICS table provides two counters that can be used to measure the effect of a
MERGE_THRESHOLD setting on index page merges.

InnoDB Tablespace Management

2001

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS
WHERE NAME like '%index_page_merge%';
+-----------------------------+--+
| NAME | COMMENT |
+-----------------------------+--+
| index_page_merge_attempts | Number of index page merge attempts |
| index_page_merge_successful | Number of successful index page merges |
+-----------------------------+--+

When lowering the MERGE_THRESHOLD value, the objectives are:

• A smaller number of page merge attempts and successful page merges

• A similar number of page merge attempts and successful page merges

A MERGE_THRESHOLD setting that is too small could result in large data files due to an excessive
amount of empty page space.

For information about using INNODB_METRICS counters, see Section 14.12.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

14.4 InnoDB Tablespace Management

14.4.1 Resizing the InnoDB System Tablespace

This section describes how to increase or decrease the size of the InnoDB system tablespace.

Increasing the Size of the InnoDB System Tablespace

The easiest way to increase the size of the InnoDB system tablespace is to configure it from
the beginning to be auto-extending. Specify the autoextend attribute for the last data file in
the tablespace definition. Then InnoDB increases the size of that file automatically in 8MB
increments when it runs out of space. The increment size can be changed by setting the value of the
innodb_autoextend_increment system variable, which is measured in megabytes.

You can expand the system tablespace by a defined amount by adding another data file:

1. Shut down the MySQL server.

2. If the previous last data file is defined with the keyword autoextend, change its definition to use a
fixed size, based on how large it has actually grown. Check the size of the data file, round it down
to the closest multiple of 1024 × 1024 bytes (= 1MB), and specify this rounded size explicitly in
innodb_data_file_path.

3. Add a new data file to the end of innodb_data_file_path, optionally making that file auto-
extending. Only the last data file in the innodb_data_file_path can be specified as auto-
extending.

4. Start the MySQL server again.

For example, this tablespace has just one auto-extending data file ibdata1:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that this data file, over time, has grown to 988MB. Here is the configuration line after
modifying the original data file to use a fixed size and adding a new auto-extending data file:

innodb_data_home_dir =

Changing the Number or Size of InnoDB Redo Log Files

2002

innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When you add a new data file to the system tablespace configuration, make sure that the filename
does not refer to an existing file. InnoDB creates and initializes the file when you restart the server.

Decreasing the Size of the InnoDB System Tablespace

You cannot remove a data file from the system tablespace. To decrease the system tablespace size,
use this procedure:

1. Use mysqldump to dump all your InnoDB tables, including InnoDB tables located in the MySQL
database. As of 5.6, there are five InnoDB tables included in the MySQL database:

mysql> select table_name from information_schema.tables where table_schema='mysql' and engine='InnoDB';
+----------------------+
| table_name |
+----------------------+
| innodb_index_stats |
| innodb_table_stats |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
+----------------------+
5 rows in set (0.00 sec)

2. Stop the server.

3. Remove all the existing tablespace files (*.ibd), including the ibdata and ib_log files. Do not
forget to remove *.ibd files for tables located in the MySQL database.

4. Remove any .frm files for InnoDB tables.

5. Configure a new tablespace.

6. Restart the server.

7. Import the dump files.

Note

If your databases only use the InnoDB engine, it may be simpler to dump all
databases, stop the server, remove all databases and InnoDB log files, restart
the server, and import the dump files.

14.4.2 Changing the Number or Size of InnoDB Redo Log Files

To change the number or the size of your InnoDB redo log files, perform the following steps:

1. Stop the MySQL server and make sure that it shuts down without errors.

2. Edit my.cnf to change the log file configuration. To change the log file size,
configure innodb_log_file_size. To increase the number of log files, configure
innodb_log_files_in_group.

3. Start the MySQL server again.

If InnoDB detects that the innodb_log_file_size differs from the redo log file size, it will write a
log checkpoint, close and remove the old log files, create new log files at the requested size, and open
the new log files.

14.4.3 Using Raw Disk Partitions for the System Tablespace

Using Raw Disk Partitions for the System Tablespace

2003

You can use raw disk partitions as data files in the InnoDB system tablespace. This technique
enables nonbuffered I/O on Windows and on some Linux and Unix systems without file system
overhead. Perform tests with and without raw partitions to verify whether this change actually improves
performance on your system.

When you use a raw disk partition, ensure that the user ID that runs the MySQL server has read and
write privileges for that partition. For example, if you run the server as the mysql user, the partition
must be readable and writeable by mysql. If you run the server with the --memlock option, the server
must be run as root, so the partition must be readable and writeable by root.

The procedures described below involve option file modification. For additional information, see
Section 4.2.6, “Using Option Files”.

Allocating a Raw Disk Partition on Linux and Unix Systems

1. When you create a new data file, specify the keyword newraw immediately after the data file size
for the innodb_data_file_path option. The partition must be at least as large as the size that
you specify. Note that 1MB in InnoDB is 1024 × 1024 bytes, whereas 1MB in disk specifications
usually means 1,000,000 bytes.

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition. However,
do not create or change any InnoDB tables yet. Otherwise, when you next restart the server,
InnoDB reinitializes the partition and your changes are lost. (As a safety measure InnoDB prevents
users from modifying data when any partition with newraw is specified.)

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Graw;/dev/hdd2:2Graw

4. Restart the server. InnoDB now permits changes to be made.

Allocating a Raw Disk Partition on Windows

On Windows systems, the same steps and accompanying guidelines described for Linux and Unix
systems apply except that the innodb_data_file_path setting differs slightly on Windows.

1. When you create a new data file, specify the keyword newraw immediately after the data file size
for the innodb_data_file_path option:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Gnewraw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives. In the
example above, D: is the drive letter of the partition.

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition.

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=

InnoDB File-Per-Table Tablespaces

2004

innodb_data_file_path=//./D::10Graw

4. Restart the server. InnoDB now permits changes to be made.

14.4.4 InnoDB File-Per-Table Tablespaces

Historically, all InnoDB tables and indexes were stored in the system tablespace. This monolithic
approach was targeted at machines dedicated entirely to database processing, with carefully planned
data growth, where any disk storage allocated to MySQL would never be needed for other purposes.
InnoDB's file-per-table tablespace feature provides a more flexible alternative, where each InnoDB
table and its indexes are stored in a separate .ibd data file. Each such .ibd data file represents
an individual tablespace. This feature is controlled by the innodb_file_per_table configuration
option, which is enabled by default in MySQL 5.6.6 and higher.

Advantages of File-Per-Table Tablespaces

• You can reclaim disk space when truncating or dropping a table stored in a file-per-table tablepace.
Truncating or dropping tables stored in the system tablespace creates free space internally in the
system tablespace data files (ibdata files) which can only be used for new InnoDB data.

• The TRUNCATE TABLE operation is faster when run on tables stored in file-per-table tablepaces.

• You can store specific tables on separate storage devices, for I/O optimization, space management,
or backup purposes. In previous releases, you had to move entire database directories to other
drives and create symbolic links in the MySQL data directory, as described in Section 8.12.4, “Using
Symbolic Links”. In MySQL 5.6.6 and higher, you can specify the location of each table using
the syntax CREATE TABLE ... DATA DIRECTORY = absolute_path_to_directory, as
explained in Section 14.4.5, “Creating a File-Per-Table Tablespace Outside the Data Directory”.

• You can run OPTIMIZE TABLE to compact or recreate a file-per-table tablespace. When you run an
OPTIMIZE TABLE, InnoDB creates a new .ibd file with a temporary name, using only the space
required to store actual data. When the optimization is complete, InnoDB removes the old .ibd file
and replaces it with the new one. If the previous .ibd file grew significantly but the actual data only
accounted for a portion of its size, running OPTIMIZE TABLE can reclaim the unused space.

• You can move individual InnoDB tables rather than entire databases.

• You can copy individual InnoDB tables from one MySQL instance to another (known as the
transportable tablespace feature).

• Tables created in file-per-table tablespaces use the Barracuda file format. The Barracuda file format
enables features such as compressed and dynamic row formats.

• You can enable more efficient storage for tables with large BLOB or TEXT columns using the dynamic
row format.

• File-per-table tablespaces may improve chances for a successful recovery and save time when
a corruption occurs, when a server cannot be restarted, or when backup and binary logs are
unavailable.

• File-per-table tablespaces are convenient for per-table status reporting when copying or backing up
tables.

• You can monitor table size at a file system level, without accessing MySQL.

• Common Linux file systems do not permit concurrent writes to a single file when
innodb_flush_method is set to O_DIRECT. As a result, there are possible performance
improvements when using file-per-table tablespaces in conjunction with innodb_flush_method.

• The system tablespace stores the data dictionary and undo logs, and has a 64TB size limit. By
comparison, each file-per-table tablespace has a 64TB size limit, which provides you with room for
growth. See Section C.10.3, “Limits on Table Size” for related information.

InnoDB File-Per-Table Tablespaces

2005

Potential Disadvantages of File-Per-Table Tablespaces

• With file-per-table tablespaces, each table may have unused space, which can only be utilized by
rows of the same table. This could lead to wasted space if not properly managed.

• fsync operations must run on each open table rather than on a single file. Because there is a
separate fsync operation for each file, write operations on multiple tables cannot be combined
into a single I/O operation. This may require InnoDB to perform a higher total number of fsync
operations.

• mysqld must keep one open file handle per table, which may impact performance if you have
numerous tables in file-per-table tablespaces.

• More file descriptors are used.

• innodb_file_per_table is enabled by default in MySQL 5.6.6 and higher. You may
consider disabling it if backward compatibility with MySQL 5.5 or 5.1 is a concern. Disabling
innodb_file_per_table prevents ALTER TABLE from moving an InnoDB table from the
system tablespace to an individual .ibd file in cases where ALTER TABLE recreates the table
(ALGORITHM=COPY).

For example, when restructuring the clustered index for an InnoDB table, the table is re-created
using the current setting for innodb_file_per_table. This behavior does not apply when
adding or dropping InnoDB secondary indexes. When a secondary index is created without
rebuilding the table, the index is stored in the same file as the table data, regardless of the current
innodb_file_per_table setting. This behaviour also does not apply to tables added to the
system tablespace using CREATE TABLE ... TABLESPACE or ALTER TABLE ... TABLESPACE
syntax. These tables are not affected by the innodb_file_per_table setting.

• If many tables are growing there is potential for more fragmentation which can impede DROP TABLE
and table scan performance. However, when fragmentation is managed, having files in their own
tablespace can improve performance.

• The buffer pool is scanned when dropping a file-per-table tablespace, which can take several
seconds for buffer pools that are tens of gigabytes in size. The scan is performed with a broad
internal lock, which may delay other operations. Tables in the system tablespace are not affected.

• The innodb_autoextend_increment variable, which defines increment size (in MB)
for extending the size of an auto-extending shared tablespace file when it becomes full,
does not apply to file-per-table tablespace files, which are auto-extending regardless of the
innodb_autoextend_increment setting. The initial extensions are by small amounts, after which
extensions occur in increments of 4MB.

14.4.4.1 Enabling and Disabling File-Per-Table Tablespaces

The innodb_file_per_table option is enabled by default as of MySQL 5.6.6.

To set the innodb_file_per_table option at startup, start the server with the --
innodb_file_per_table command-line option, or add this line to the [mysqld] section of
my.cnf:

[mysqld]
innodb_file_per_table=1

You can also set innodb_file_per_table dynamically, while the server is running:

SET GLOBAL innodb_file_per_table=1;

With innodb_file_per_table enabled, you can store InnoDB tables in a tbl_name.ibd file.
Unlike the MyISAM storage engine, with its separate tbl_name.MYD and tbl_name.MYI files

Creating a File-Per-Table Tablespace Outside the Data Directory

2006

for indexes and data, InnoDB stores the data and the indexes together in a single .ibd file. The
tbl_name.frm file is still created as usual.

If you disable innodb_file_per_table in your startup options and restart the server, or disable it
with the SET GLOBAL command, InnoDB creates new tables inside the system tablespace unless you
have explicitly placed the table in file-per-table tablespace or general tablespace using the CREATE
TABLE ... TABLESPACE option, introduced in MySQL 5.7.6.

You can always read and write any InnoDB tables, regardless of the file-per-table setting.

To move a table from the system tablespace to its own tablespace, change the
innodb_file_per_table setting and rebuild the table:

SET GLOBAL innodb_file_per_table=1;
ALTER TABLE table_name ENGINE=InnoDB;

Tables added to the system tablespace using CREATE TABLE ... TABLESPACE or ALTER
TABLE ... TABLESPACE syntax are not affected by the innodb_file_per_table setting. To
move these tables from the system tablespace to a file-per-table tablespace, they must be moved
explicitly using ALTER TABLE ... TABLESPACE syntax.

Note

InnoDB always needs the system tablespace because it puts its internal data
dictionary and undo logs there. The .ibd files are not sufficient for InnoDB to
operate.

When a table is moved out of the system tablespace into its own .ibd file,
the data files that make up the system tablespace remain the same size. The
space formerly occupied by the table can be reused for new InnoDB data, but
is not reclaimed for use by the operating system. When moving large InnoDB
tables out of the system tablespace, where disk space is limited, you may prefer
to enable innodb_file_per_table and recreate the entire instance using
the mysqldump command. As mentioned above, tables added to the system
tablespace using CREATE TABLE ... TABLESPACE or ALTER TABLE ...
TABLESPACE syntax are not affected by the innodb_file_per_table
setting. These tables must be moved individually.

14.4.5 Creating a File-Per-Table Tablespace Outside the Data Directory

To create a new InnoDB file-per-table tablespace in a specific location outside the MySQL data
directory, use the DATA DIRECTORY = absolute_path_to_directory clause of the CREATE
TABLE statement.

Plan the location in advance, because you cannot use the DATA DIRECTORY clause with the ALTER
TABLE statement. The directory you specify could be on another storage device with particular
performance or capacity characteristics, such as a fast SSD or a high-capacity HDD.

Within the destination directory, MySQL creates a subdirectory corresponding to the database name,
and within that a .ibd file for the new table. In the database directory beneath the MySQL DATADIR
directory, MySQL creates a table_name.isl file containing the path name for the table. The .isl file
is treated by MySQL like a symbolic link. (Using actual symbolic links has never been supported for
InnoDB tables.)

The following example demonstrates creating a file-per-table tablespace outside the MySQL data
directory. It shows the .ibd created in the specified directory, and the .isl created in the database
directory beneath the MySQL data directory.

mysql> USE test;
Database changed

Copying File-Per-Table Tablespaces to Another Server

2007

mysql> SHOW VARIABLES LIKE 'innodb_file_per_table';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| innodb_file_per_table | ON |
+-----------------------+-------+
1 row in set (0.00 sec)

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) DATA DIRECTORY = '/alternative/directory';
Query OK, 0 rows affected (0.03 sec)

MySQL creates a .ibd file for the new table in a subdirectory that corresponding
to the database name

db_user@ubuntu:~/alternative/directory/test$ ls
t1.ibd

MySQL creates a .isl file containing the path name for the table in a directory
beneath the MySQL data directory

db_user@ubuntu:~/mysql/data/test$ ls
db.opt t1.frm t1.isl

As of MySQL 5.7.6, you can also use CREATE TABLE ... TABLESPACE in combination with the
DATA DIRECTORY clause to create a file-per-table tablespace outside the MySQL data directory. To
do so, you must specify innodb_file_per_table as the tablespace name.

CREATE TABLE t2 (c1 INT PRIMARY KEY) TABLESPACE = innodb_file_per_table
 DATA DIRECTORY = '/alternative/directory';

You do not have to enable innodb_file_per_table when using this method.

Usage Notes:

• MySQL initially holds the .ibd file open, preventing you from dismounting the device, but might
eventually close the table if the server is busy. Be careful not to accidentally dismount an external
device while MySQL is running, or to start MySQL while the device is disconnected. Attempting to
access a table when the associated .ibd file is missing causes a serious error that requires a server
restart.

A server restart might fail if the .ibd file is still not at the expected path. In this case, manually
remove the table_name.isl file in the database directory, and after restarting perform a DROP
TABLE to delete the .frm file and remove the information about the table from the data dictionary.

• Do not put MySQL tables on an NFS-mounted volume. NFS uses a message-passing protocol to
write to files, which could cause data inconsistency if network messages are lost or received out of
order.

• If you use an LVM snapshot, file copy, or other file-based mechanism to back up the .ibd file,
always use the FLUSH TABLES ... FOR EXPORT statement first to make sure all changes that
were buffered in memory are flushed to disk before the backup occurs.

• The DATA DIRECTORY clause is a supported alternative to using symbolic links, which has always
been problematic and was never supported for individual InnoDB tables.

14.4.6 Copying File-Per-Table Tablespaces to Another Server

This section describes how to copy file-per-table tablespaces from one database server to another,
otherwise known as the Transportable Tablespaces feature. Prior to MySQL 5.7.4, only non-partitioned
InnoDB tables are supported. As of MySQL 5.7.4, partitioned InnoDB tables and individual InnoDB
table partitions and subpartitions are also supported.

For information about other InnoDB table copying methods, see Section 14.5.2, “Moving or Copying
InnoDB Tables to Another Machine”.

Copying File-Per-Table Tablespaces to Another Server

2008

There are many reasons why you might copy an InnoDB file-per-table tablespace to a different
database server:

• To run reports without putting extra load on a production server.

• To set up identical data for a table on a new slave server.

• To restore a backed-up version of a table or partition after a problem or mistake.

• As a faster way of moving data around than importing the results of a mysqldump command. The
data is available immediately, rather than having to be re-inserted and the indexes rebuilt.

• To move a file-per-table tablespace to a server with storage medium that better suits system
requirements. For example, you may want to have busy tables on an SSD device, or large tables on
a high-capacity HDD device.

Limitations and Usage Notes

• The tablespace copy procedure is only possible when innodb_file_per_table is set to ON,
which is the default setting as of MySQL 5.6.6. Tables residing in the shared system tablespace
cannot be quiesced.

• When a table is quiesced, only read-only transactions are allowed on the affected table.

• When importing a tablespace, the page size must match the page size of the importing instance.

• Prior to MySQL 5.7.4, DISCARD TABLESPACE is not supported for partitioned tables meaning
that transportable tablespaces is also unsupported. If you run ALTER TABLE ... DISCARD
TABLESPACE on a partitioned table, the following error is returned: ERROR 1031 (HY000): Table
storage engine for 'part' doesn't have this option. As of MySQL 5.7.4, ALTER
TABLE ... DISCARD TABLESPACE is supported for partitioned InnoDB tables, and ALTER
TABLE ... DISCARD PARTITION ... TABLESPACE is supported for InnoDB table partitions.

• DISCARD TABLESPACE is not supported for tablespaces with a parent-child (primary key-foreign
key) relationship when foreign_key_checks is set to 1. Before discarding a tablespace for
parent-child tables, set foreign_key_checks=0. Partitioned InnoDB tables do not support foreign
keys.

• ALTER TABLE ... IMPORT TABLESPACE does not enforce foreign key constraints on imported
data. If there are foreign key constraints between tables, all tables should be exported at the same
(logical) point in time. Partitioned InnoDB tables do not support foreign keys.

• ALTER TABLE ... IMPORT TABLESPACE and ALTER TABLE ... IMPORT PARTITION ...
TABLESPACE do not require a .cfg metadata file to import a tablespace. However, metadata checks
are not performed when importing without a .cfg file, and a warning similar to the following will be
issued:

Message: InnoDB: IO Read error: (2, No such file or directory) Error opening '.\
test\t.cfg', will attempt to import without schema verification
1 row in set (0.00 sec)

The ability to import without a .cfg file may be more convenient when no schema mismatches are
expected. Additionally, the ability to import without a .cfg file could be useful in crash recovery
scenarios in which metadata cannot be collected from an .ibd file.

• Due to a .cfg metadata file limitation, schema mismatches are not reported for partition type
or partition definition differences when importing tablespace files for partitioned tables. Column
differences are reported.

• When running ALTER TABLE ... DISCARD PARTITION ... TABLESPACE and ALTER
TABLE ... IMPORT PARTITION ... TABLESPACE on subpartitioned tables, both partition

Copying File-Per-Table Tablespaces to Another Server

2009

and subpartition table names are allowed. When a partition name is specified, subpartitions of that
partition are included in the operation.

• In MySQL 5.6 or later, importing a tablespace file from another server works if both servers have GA
(General Availability) status and their versions are within the same series. Otherwise, the file must
have been created on the server into which it is imported.

• In replication scenarios, innodb_file_per_table must be set to ON on both the master and
slave.

• On Windows, InnoDB stores database, tablespace, and table names internally in lowercase. To
avoid import problems on case-sensitive operating systems such as Linux and UNIX, create all
databases, tablespaces, and tables using lowercase names. A convenient way to accomplish this
is to add the following line to the [mysqld] section of your my.cnf or my.ini file before creating
databases, tablespaces, or tables:

[mysqld]
lower_case_table_names=1

• ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ...IMPORT TABLESPACE are
not supported with tables that belong to an InnoDB general tablespace. For more information, see
CREATE TABLESPACE.

• As of MySQL 5.7.9, the default row format for InnoDB tables is configurable using the
innodb_default_row_format configuration option. Attempting to import a table that does not
explicitly define a row format (ROW_FORMAT), or that uses ROW_FORMAT=DEFAULT, could result in a
schema mismatch error if the innodb_default_row_format setting on the source server differs
from the setting on the destination server. For related information, see Section 14.8.2, “Specifying
the Row Format for a Table”.

14.4.6.1 Transportable Tablespace Examples

Example 1: Copying an InnoDB Table From One Server To Another

This procedure demonstrates how to copy a regular InnoDB table from a running MySQL server
instance to another running instance. The same procedure with minor adjustments can be used to
perform a full table restore on the same instance.

1. On the source server, create a table if one does not exist:

mysql> use test;
mysql> CREATE TABLE t(c1 INT) engine=InnoDB;

2. On the destination server, create a table if one does not exist:

mysql> use test;
mysql> CREATE TABLE t(c1 INT) engine=InnoDB;

3. On the destination server, discard the existing tablespace. (Before a tablespace can be imported,
InnoDB must discard the tablespace that is attached to the receiving table.)

mysql> ALTER TABLE t DISCARD TABLESPACE;

4. On the source server, run FLUSH TABLES ... FOR EXPORT to quiesce the table and create the
.cfg metadata file:

mysql> use test;
mysql> FLUSH TABLES t FOR EXPORT;

The metadata (.cfg) is created in the InnoDB data directory.

Copying File-Per-Table Tablespaces to Another Server

2010

Note

FLUSH TABLES ... FOR EXPORT is available as of MySQL 5.6.6. The
statement ensures that changes to the named table have been flushed to
disk so that a binary table copy can be made while the server is running.
When FLUSH TABLES ... FOR EXPORT is run, InnoDB produces a
.cfg file in the same database directory as the table. The .cfg file contains
metadata used for schema verification when importing the tablespace file.

5. Copy the .ibd file and .cfg metadata file from the source server to the destination server. For
example:

shell> scp /path/to/datadir/test/t.{ibd,cfg} destination-server:/path/to/datadir/test

Note

The .ibd file and .cfg file must be copied before releasing the shared
locks, as described in the next step.

6. On the source server, use UNLOCK TABLES to release the locks acquired by FLUSH TABLES ...
FOR EXPORT:

mysql> use test;
mysql> UNLOCK TABLES;

7. On the destination server, import the tablespace:

mysql> use test;
mysql> ALTER TABLE t IMPORT TABLESPACE;

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data. If there are foreign key constraints
between tables, all tables should be exported at the same (logical)
point in time. In this case you would stop updating the tables, commit all
transactions, acquire shared locks on the tables, and then perform the
export operation.

Example 2: Copying an InnoDB Partitioned Table From One Server To Another

This procedure demonstrates how to copy a partitioned InnoDB table from a running MySQL server
instance to another running instance. The same procedure with minor adjustments can be used to
perform a full restore of a partitioned InnoDB table on the same instance.

1. On the source server, create a partitioned table if one does not exist. In the following example, a
table with three partitions (p0, p1, p2) is created:

mysql> use test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 3;

In the /datadir/test directory, you will see a separate tablespace (.ibd) file for each of the
three partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd

2. On the destination server, create the same partitioned table:

Copying File-Per-Table Tablespaces to Another Server

2011

mysql> use test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 3;

In the /datadir/test directory, you will see a separate tablespace (.ibd) file for each of the
three partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd

3. On the destination server, discard the tablespace for the partitioned table. (Before the tablespace
can be imported on the destination server, the tablespace that is attached to the receiving table
must be discarded.)

mysql> ALTER TABLE t1 DISCARD TABLESPACE;

The three .ibd files that make up the tablespace for the partitioned table are discarded from the
/datadir/test directory, leaving the following files:

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm

4. On the source server, run FLUSH TABLES ... FOR EXPORT to quiesce the partitioned table and
create the .cfg metadata files:

mysql> use test;
mysql> FLUSH TABLES t1 FOR EXPORT;

Metadata (.cfg) files, one for each tablespace (.ibd) file, are created in the /datadir/test
directory on the source server:

mysql> \! ls /path/to/datadir/test/
db.opt t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd
t1.frm t1#P#p0.cfg t1#P#p1.cfg t1#P#p2.cfg

Note

FLUSH TABLES ... FOR EXPORT statement ensures that changes to
the named table have been flushed to disk so that binary table copy can
be made while the server is running. When FLUSH TABLES ... FOR
EXPORT is run, InnoDB produces a .cfg metadata file for the table's
tablespace files in the same database directory as the table. The .cfg files
contain metadata used for schema verification when importing tablespace
files. FLUSH TABLES ... FOR EXPORT can only be run on the table, not
on individual table partitions.

5. Copy the .ibd and .cfg files from the source server database directory to the destination server
database directory. For example:

shell> scp /path/to/datadir/test/t1*.{ibd,cfg} destination-server:/path/to/datadir/test

Note

The .ibd and .cfg files must be copied before releasing the shared locks,
as described in the next step.

6. On the source server, use UNLOCK TABLES to release the locks acquired by FLUSH TABLES ...
FOR EXPORT:

Copying File-Per-Table Tablespaces to Another Server

2012

mysql> use test;
mysql> UNLOCK TABLES;

7. On the destination server, import the tablespace for the partitioned table:

mysql> use test;
mysql> ALTER TABLE t1 IMPORT TABLESPACE;

Example 3: Copying InnoDB Table Partitions From One Server To Another

This procedure demonstrates how to copy InnoDB table partitions from a running MySQL server
instance to another running instance. The same procedure with minor adjustments can be used
to perform a restore of InnoDB table partitions on the same instance. In the following example,
a partitioned table with four partitions (p0, p1, p2, p3) is created on the source server. Two of the
partitions (p2 and p3) are copied to the destination server.

1. On the source server, create a partitioned table if one does not exist. In the following example, a
table with four partitions (p0, p1, p2, p3) is created:

mysql> use test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 4;

In the /datadir/test directory, you will see a separate tablespace (.ibd) file for each of the four
partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd t1#P#p3.ibd

2. On the destination server, create the same partitioned table:

mysql> use test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 4;

In the /datadir/test directory, you will see a separate tablespace (.ibd) file for each of the four
partitions.

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd t1#P#p3.ibd

3. On the destination server, discard the tablespace partitions that you plan to import from the source
server. (Before tablespace partitions can be imported on the destination server, the corresponding
partitions that are attached to the receiving table must be discarded.)

mysql> ALTER TABLE t1 DISCARD PARTITION p2, p3 TABLESPACE;

The .ibd files for the two discarded partitions are removed from the /datadir/test directory on
the destination server, leaving the following files:

mysql> \! ls /path/to/datadir/test/
db.opt t1.frm t1#P#p0.ibd t1#P#p1.ibd

Note

When ALTER TABLE ... DISCARD PARTITION ... TABLESPACE is
run on subpartitioned tables, both partition and subpartition table names are
allowed. When a partition name is specified, subpartitions of that partition
are included in the operation.

Copying File-Per-Table Tablespaces to Another Server

2013

4. On the source server, run FLUSH TABLES ... FOR EXPORT to quiesce the partitioned table and
create the .cfg metadata files.

mysql> use test;
mysql> FLUSH TABLES t1 FOR EXPORT;

The metadata files (.cfg files) are created in the /datadir/test directory on the source server.
There is a .cfg file for each tablespace (.ibd) file.

mysql> \! ls /path/to/datadir/test/
db.opt t1#P#p0.ibd t1#P#p1.ibd t1#P#p2.ibd t1#P#p3.ibd
t1.frm t1#P#p0.cfg t1#P#p1.cfg t1#P#p2.cfg t1#P#p3.cfg

Note

FLUSH TABLES ... FOR EXPORT statement ensures that changes to
the named table have been flushed to disk so that binary table copy can
be made while the server is running. When FLUSH TABLES ... FOR
EXPORT is run, InnoDB produces a .cfg metadata file for the table's
tablespace files in the same database directory as the table. The .cfg files
contain metadata used for schema verification when importing tablespace
files. FLUSH TABLES ... FOR EXPORT can only be run on the table, not
on individual table partitions.

5. Copy the .ibd and .cfg files from the source server database directory to the destination server
database directory. In this example, only the .ibd and .cfg files for partition 2 (p2) and partition 3
(p3) are copied to the data directory on the destination server. Partition 0 (p0) and partition 1 (p1)
remain on the source server.

shell> scp t1#P#p2.ibd t1#P#p2.cfg t1#P#p3.ibd t1#P#p3.cfg destination-server:/path/to/datadir/test

Note

The .ibd files and .cfg files must be copied before releasing the shared
locks, as described in the next step.

6. On the source server, use UNLOCK TABLES to release the locks acquired by FLUSH TABLES ...
FOR EXPORT:

mysql> use test;
mysql> UNLOCK TABLES;

7. On the destination server, import the tablespace partitions (p2 and p3):

mysql> use test;
mysql> ALTER TABLE t1 IMPORT PARTITION p2, p3 TABLESPACE;

Note

When ALTER TABLE ... IMPORT PARTITION ... TABLESPACE is
run on subpartitioned tables, both partition and subpartition table names are
allowed. When a partition name is specified, subpartitions of that partition
are included in the operation.

14.4.6.2 Transportable Tablespace Internals

The following information describes internals and error log messaging for the transportable tablespaces
copy procedure for a regular InnoDB table.

Copying File-Per-Table Tablespaces to Another Server

2014

When ALTER TABLE ... DISCARD TABLESPACE is run on the destination instance:

• The table is locked in X mode.

• The tablespace is detached from the table.

When FLUSH TABLES ... FOR EXPORT is run on the source instance:

• The table being flushed for export is locked in shared mode.

• The purge coordinator thread is stopped.

• Dirty pages are synchronized to disk.

• Table metadata is written to the binary .cfg file.

Expected error log messages for this operation:

2013-09-24T13:10:19.903526Z 2 [Note] InnoDB: Sync to disk of '"test"."t"' started.
2013-09-24T13:10:19.903586Z 2 [Note] InnoDB: Stopping purge
2013-09-24T13:10:19.903725Z 2 [Note] InnoDB: Writing table metadata to './test/t.cfg'
2013-09-24T13:10:19.904014Z 2 [Note] InnoDB: Table '"test"."t"' flushed to disk

When UNLOCK TABLES is run on the source instance:

• The binary .cfg file is deleted.

• The shared lock on the table or tables being imported is released and the purge coordinator thread is
restarted.

Expected error log messages for this operation:

2013-09-24T13:10:21.181104Z 2 [Note] InnoDB: Deleting the meta-data file './test/t.cfg'
2013-09-24T13:10:21.181180Z 2 [Note] InnoDB: Resuming purge

When ALTER TABLE ... IMPORT TABLESPACE is run on the destination instance, the import
algorithm performs the following operations for each tablespace being imported:

• Each tablespace page is checked for corruption.

• The space ID and log sequence numbers (LSNs) on each page are updated

• Flags are validated and LSN updated for the header page.

• Btree pages are updated.

• The page state is set to dirty so that it will be written to disk.

Expected error log messages for this operation:

2013-07-18 15:15:01 34960 [Note] InnoDB: Importing tablespace for table 'test/t' that was exported from host 'ubuntu'
2013-07-18 15:15:01 34960 [Note] InnoDB: Phase I - Update all pages
2013-07-18 15:15:01 34960 [Note] InnoDB: Sync to disk
2013-07-18 15:15:01 34960 [Note] InnoDB: Sync to disk - done!
2013-07-18 15:15:01 34960 [Note] InnoDB: Phase III - Flush changes to disk
2013-07-18 15:15:01 34960 [Note] InnoDB: Phase IV - Flush complete

Note

You may also receive a warning that a tablespace is discarded (if you discarded
the tablespace for the destination table) and a message stating that statistics
could not be calculated due to a missing .ibd file:

Storing InnoDB Undo Logs in Separate Tablespaces

2015

2013-07-18 15:14:38 34960 [Warning] InnoDB: Table "test"."t" tablespace is set as discarded.
2013-07-18 15:14:38 7f34d9a37700 InnoDB: cannot calculate statistics for table "test"."t" because the .ibd file is missing. For help, please refer to
http://dev.mysql.com/doc/refman/5.7/en/innodb-troubleshooting.html

14.4.7 Storing InnoDB Undo Logs in Separate Tablespaces

You can store InnoDB undo logs in one or more separate undo tablespaces outside of the system
tablespace. This layout is different from the default configuration where the undo log is part of the
system tablespace. The I/O patterns for the undo log make these tablespaces good candidates to
move to SSD storage, while keeping the system tablespace on hard disk storage. Users cannot drop
the separate tablespaces created to hold InnoDB undo logs, or the individual segments inside those
tablespaces. However, as of MySQL 5.7.5, undo logs stored in undo tablespaces can be truncated. For
more information, see Section 14.4.8, “Truncating Undo Logs That Reside in Undo Tablespaces”.

Because these files handle I/O operations formerly done inside the system tablespace, we broaden the
definition of system tablespace to include these new files.

Undo logs are also referred to as rollback segments.

This feature involves the following new or renamed configuration options:

• innodb_undo_tablespaces

• innodb_undo_directory

• innodb_rollback_segments becomes innodb_undo_logs. The old name is still available for
compatibility.

Because the InnoDB undo log feature involves setting two non-dynamic startup variables
(innodb_undo_tablespaces and innodb_undo_directory), this feature can only be enabled
when initializing a MySQL instance.

Usage Notes

To use this feature, follow these steps:

1. Decide on a path to hold the undo logs. You will specify that path as the argument to the
innodb_undo_directory option in your MySQL configuration file or startup script. If no path is
specified, undo tablespaces are created in the MySQL data directory, as defined by datadir.

2. Decide on a starting value for the innodb_undo_logs option. You can start with a relatively low
value and increase it over time to examine the effect on performance.

As of MySQL 5.7.2, 32 of 128 undo logs were reserved as non-redo undo logs (rollback segments)
for temporary table transactions. To allocate undo logs to undo tablespaces, innodb_undo_logs
must be set to a value greater than 33. For example, if you have two undo tablespaces
(innodb_undo_tablespaces=2), innodb_undo_logs must be set to 35 to assign one undo log
to each of the two undo tablespaces.

• The first undo log (rollback segment) always resides in the system tablespace (when undo
tablespaces are present, this undo log is inactive).

• Undo logs 2 to 33 reside in the shared temporary tablespace (ibtmp1).

• The 34th undo log resides in the first undo tablespace.

• The 35th undo log resides in the second undo tablespace.

3. Decide on a non-zero value for the innodb_undo_tablespaces option. The multiple undo
logs specified by the innodb_undo_logs value are divided between this number of separate

Truncating Undo Logs That Reside in Undo Tablespaces

2016

tablespaces (represented by .ibd files). This value is fixed for the life of the MySQL instance, so if
you are uncertain about the optimal value, estimate on the high side.

4. Create a new MySQL instance, using the values you chose in the configuration file or in your
MySQL startup script. Use a realistic workload with data volume similar to your production servers.
Alternatively, use the transportable tablespaces feature to copy existing database tables to your
newly configured MySQL instance. See Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server” for more information.

5. Benchmark the performance of I/O intensive workloads.

6. Periodically increase the value of innodb_undo_logs and rerun performance tests. Find the
value where you stop experiencing gains in I/O performance.

7. Deploy a new production instance using the ideal settings for these options. Set it up as a slave
server in a replication configuration, or transfer data from an earlier production instance.

Performance and Scalability Considerations

Keeping the undo logs in separate files allows the MySQL team to implement I/O and memory
optimizations related to this transactional data. For example, because the undo data is written to disk
and then rarely used (only in case of crash recovery), it does not need to be kept in the file system
memory cache, in turn allowing a higher percentage of system memory to be devoted to the InnoDB
buffer pool.

The typical SSD best practice of keeping the InnoDB system tablespace on a hard drive and moving
the per-table tablespaces to SSD, is assisted by moving the undo information into separate tablespace
files.

Internals

The physical tablespace files are named undoN, where N is the space ID, including leading zeros.

MySQL instances containing separate undo tablespaces cannot be downgraded to earlier releases
such as MySQL 5.5 or 5.1.

Note

As of MySQL 5.7.5, you can truncate undo logs that reside in undo tablespaces.
For more information, see Section 14.4.8, “Truncating Undo Logs That Reside
in Undo Tablespaces”.

14.4.8 Truncating Undo Logs That Reside in Undo Tablespaces

As of MySQL 5.7.5, you can truncate undo logs that reside in undo tablespaces, provided that the
following conditions are true:

• Your MySQL instance is configured with a minimum of two undo tablespaces
(innodb_undo_tablespaces=2). When an undo tablespace is truncated, it is temporarily taken
offline. For the server to function, there must be at least one other active undo tablespace. The
number of undo tablespaces is defined by the innodb_undo_tablespaces option, which can
only be set when the MySQL instance is initialized. The default value is 0. To check the value of
innodb_undo_tablespaces, submit the following query:

mysql> SELECT @@innodb_undo_tablespaces;
+---------------------------+
| @@innodb_undo_tablespaces |
+---------------------------+
| 2 |
+---------------------------+
1 row in set (0.00 sec)

Truncating Undo Logs That Reside in Undo Tablespaces

2017

• innodb_undo_logs, which defines the number of rollback segments used by InnoDB, must be set
to 35 or greater. A setting of 35 or greater ensures that a redo-enabled undo log is assigned to each
of the two undo tablespaces. With an innodb_undo_logs setting of 35:

• The first rollback segment always resides in the system tablespace (when undo tablespaces are
present, this rollback segment is inactive)

• Rollback segments 2 to 33 reside in the shared temporary tablespace (ibtmp1)

• The 34th rollback segment resides in the first undo tablespace (if present)

• The 35th rollback segment resides in the second undo tablespace (if present)

There is a many-to-one relationship between rollback segments and undo tablespaces. If the number
of allocated rollback segments is greater than 35, the “additional” rollback segments are assigned
to undo tablespaces in a round-robin fashion. For example, if you have 2 undo tablespaces (undo
tablespace 1 and undo-tablespace 2) and innodb_undo_logs=37, undo-tablespace 1 and undo-
tablespace 2 would each be assigned a second rollback segment.

By default, innodb_undo_logs is set to 128, which is also the maximum value. To check the value
of innodb_undo_logs, submit the following query:

mysql> SELECT @@innodb_undo_logs;
+--------------------+
| @@innodb_undo_logs |
+--------------------+
| 128 |
+--------------------+
1 row in set (0.00 sec)

innodb_undo_logs is a dynamic global variable and can be configured using a SET GLOBAL
statement:

mysql> SET GLOBAL innodb_undo_logs=128;

Enabling Truncation of Undo Tablespaces

To truncate undo logs that reside in undo tablespaces, you must first enable
innodb_undo_log_truncate.

mysql> SET GLOBAL innodb_undo_log_truncate=ON;

When you enable innodb_undo_log_truncate, undo tablespace files that exceed the size limit
defined by innodb_max_undo_log_size are marked for truncation. innodb_max_undo_log_size
is a dynamic global variable with a default value of 1024 MiB (1073741824 bytes).

mysql> SELECT @@innodb_max_undo_log_size;
+----------------------------+
| @@innodb_max_undo_log_size |
+----------------------------+
| 1073741824 |
+----------------------------+
1 row in set (0.00 sec)

You can configure innodb_max_undo_log_size using a SET GLOBAL statement:

mysql> SET GLOBAL innodb_max_undo_log_size=2147483648;
Query OK, 0 rows affected (0.00 sec)

When innodb_undo_log_truncate is enabled:

1. Undo tablespaces that exceed the innodb_max_undo_log_size setting are marked for
truncation. Selection of an undo tablespace for truncation is performed in a round-robin fashion to
avoid truncating the same undo tablespace each time.

Truncating Undo Logs That Reside in Undo Tablespaces

2018

2. Rollback segments residing in the selected undo tablespace are made inactive so that they are not
allocated to new transactions. Existing transactions that are currently using rollback segments are
allowed to complete.

3. The purge system frees rollback segments that are no longer needed.

4. After all rollback segments in the undo tablespace are freed, the truncate operation runs and the
undo tablespace is truncated to its initial size. The initial size of an undo tablespace file is 10MB.

Note

If you check the size of an undo tablespace after a truncation operation,
the file size may be larger than 10MB due to immediate use following the
completion of the truncation operation. The innodb_undo_directory
option defines the location of undo tablespace files. The default value of “.”
represents directory where InnoDB creates its other log files by default.

mysql> select @@innodb_undo_directory;
+-------------------------+
| @@innodb_undo_directory |
+-------------------------+
| . |
+-------------------------+
1 row in set (0.00 sec)

5. The rollback segments are reactivated so that they can be allocated to new transactions.

Expediting Truncation of Undo Tablespace Files

An undo tablespace cannot be truncated until its rollback segments are freed. Normally, the purge
system frees rollback segments once every 128 times that purge is invoked. To expedite the truncation
of undo tablespaces, you can use the innodb_purge_rseg_truncate_frequency option to
temporarily increase the frequency with which the purge system frees rollback segments. By default,
innodb_purge_rseg_truncate_frequency is 128, which is also the maximum value.

mysql> select @@innodb_purge_rseg_truncate_frequency;
+--+
| @@innodb_purge_rseg_truncate_frequency |
+--+
| 128 |
+--+
1 row in set (0.00 sec)

To increase the frequency with which the purge thread frees rollback segments, decrease the value of
innodb_purge_rseg_truncate_frequency. For example:

mysql> SET GLOBAL innodb_purge_rseg_truncate_frequency=32;
Query OK, 0 rows affected (0.00 sec)

Performance Impact of Truncating Undo Tablespace Files Online

While an undo tablespace truncation operation is in progress, rollback segments in one
undo tablespace are temporarily deactivated. For example, if you have 2 undo tablespaces
(innodb_undo_tablespaces=2) and 128 allocated undo logs (innodb_undo_logs=128), 95 of
the undo logs reside in the two undo tablespaces (48 rollback segments in one undo tablespace and
47 in the other). If the first undo tablespace is taken offline, 48 undo logs are made inactive, reducing
the undo log resource by slightly more than half. While the truncation operation is in progress, the
remaining undo logs assume responsibility for the entire system load, which may result in a slight
performance degradation. The degree of performance degradation depends on a number of factors
including:

• Number of undo tablespaces

• Number of undo logs

InnoDB General Tablespaces

2019

• Undo tablespace size

• Speed of the I/O susbsystem

• Existing long running transactions

• System load

14.4.9 InnoDB General Tablespaces

A general tablespace is a new type of InnoDB tablespace, introduced in MySQL 5.7.6. The general
tablespace feature provides the following capabilities:

• Similar to the system tablespace, general tablespaces are shared tablespaces that can store data for
multiple tables.

• General tablespaces have a potential memory advantage over file-per-table tablespaces. The server
keeps tablespace metadata in memory for the lifetime of a tablespace. Multiple tables in fewer
general tablespaces consume less memory for tablespace metadata than the same number of tables
in separate file-per-table tablespaces.

• General tablespace data files may be placed in a directory relative to or independent of the MySQL
data directory, which provides you with many of the data file and storage management capabilities
of file-per-table tablespaces. As with file-per-table tablespaces, the ability to place data files outside
of the MySQL data directory allows you to manage performance of critical tables separately, setup
RAID or DRBD for specific tables, or bind tables to particular disks, for example.

• General tablespaces support both Antelope and Barracuda file formats, and therefore support all
table row formats and associated features. With support for both file formats, general tablespaces
have no dependence on innodb_file_format or innodb_file_per_table settings, nor do
these variables have any effect on general tablespaces.

• The TABLESPACE option can be used with CREATE TABLE to create tables in a general
tablespaces, file-per-table tablespace, or in the system tablespace.

• The TABLESPACE option can be used with ALTER TABLE to move tables between general
tablespaces, file-per-table tablespaces, and the system tablespace. Previously, it was not possible to
move a table from a file-per-table tablespace to the system tablespace. With the general tablespace
feature, you can now do so.

Creating a General Tablespace

General tablespaces are created using CREATE TABLESPACE syntax.

CREATE TABLESPACE tablespace_name
 ADD DATAFILE 'file_name'
 [FILE_BLOCK_SIZE = value]
 [ENGINE [=] engine_name]

A general tablespace may be created in the MySQL data directory or in a directory outside of the
MySQL data directory. To avoid conflicts with implicitly created file-per-table tablespaces, creating a
general tablespace in a subdirectory under the MySQL data directory is not supported. Also, when
creating a general tablespace outside of the MySQL data directory, the directory must exist prior to
creating the tablespace.

As of MySQL 5.7.8, an isl file is created in the MySQL data directory when a general tablespace is
created outside of the MySQL data directory.

Examples:

Creating a general tablespace in the MySQL data directory:

InnoDB General Tablespaces

2020

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;

Creating a general tablespace in a directory outside of the MySQL data directory:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE '/my/tablespace/directory/ts1.ibd' Engine=InnoDB;

You can specify a path that is relative to the MySQL data directory as long as the tablespace directory
is not under the MySQL data directory. In this example, the my_tablespace directory is at the same
level as the MySQL data directory:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE '../my_tablespace/ts1.ibd' Engine=InnoDB;

Note

The ENGINE = InnoDB clause must be defined as part of the CREATE
TABLESPACE statement or InnoDB must be defined as the default storage
engine (default_storage_engine=InnoDB).

Adding Tables to a General Tablespace

After creating an InnoDB general tablespace, you can use CREATE TABLE tbl_name ...
TABLESPACE [=] tablespace_name or ALTER TABLE tbl_name TABLESPACE [=]
tablespace_name to add tables to the tablespace, as shown in the following examples:

CREATE TABLE:

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=COMPACT;

ALTER TABLE:

mysql> ALTER TABLE t2 TABLESPACE ts1;

For detailed syntax information, see CREATE TABLE and ALTER TABLE.

General Tablespace Row Format Support

General tablespaces support all table row formats (REDUNDANT, COMPACT, DYNAMIC, COMPRESSED)
with the caveat that compressed and uncompressed tables cannot coexist in the same general
tablespace due to different physical page sizes.

For a general tablespace to contain compressed tables (ROW_FORMAT=COMPRESSED),
FILE_BLOCK_SIZE must be specified, and the FILE_BLOCK_SIZE value must be a valid
compressed page size in relation to the innodb_page_size value. Also, the physical page size of the
compressed table (KEY_BLOCK_SIZE) must be equal to FILE_BLOCK_SIZE/1024. For example, if
innodb_page_size=16K and FILE_BLOCK_SIZE=8K, the KEY_BLOCK_SIZE of the table must be
8.

The following table shows permitted FILE_BLOCK_SIZE and KEY_BLOCK_SIZE values for each
innodb_page_size value. FILE_BLOCK_SIZE values may also be specified in bytes. To determine
a valid KEY_BLOCK_SIZE value for a given FILE_BLOCK_SIZE, divide the FILE_BLOCK_SIZE value
by 1024. Table compression is not support for 32K and 64K InnoDB page sizes. For more information
about KEY_BLOCK_SIZE, see CREATE TABLE, and Section 14.6.1.2, “Creating Compressed Tables”.

Table 14.4 FILE_BLOCK_SIZE and KEY_BLOCK_SIZE Values for CREATE TABLESPACE

InnoDB Page Size
(innodb_page_size)

Permitted FILE_BLOCK_SIZE
Values

Permitted KEY_BLOCK_SIZE
Values

64K 64K (65536) Compression is not supported

32K 32K (32768) Compression is not supported

InnoDB General Tablespaces

2021

InnoDB Page Size
(innodb_page_size)

Permitted FILE_BLOCK_SIZE
Values

Permitted KEY_BLOCK_SIZE
Values

16K (16384) N/A: If innodb_page_size is
equal to FILE_BLOCK_SIZE,
the tablespace cannot contain a
compressed table.

8K (8192) 8

4K (4096) 4

2K (2048) 2

16K

1K (1024) 1

8K (8192) N/A: If innodb_page_size is
equal to FILE_BLOCK_SIZE,
the tablespace cannot contain a
compressed table.

4K (4096) 4

2K (2048) 2

8K

1K (1024) 1

4K (4096) N/A: If innodb_page_size is
equal to FILE_BLOCK_SIZE,
the tablespace cannot contain a
compressed table.

2K (2048) 2

4K

1K (1024) 1

This example demonstrates creating a general tablespace and adding a compressed table. The
example assumes a default innodb_page_size of 16K. The FILE_BLOCK_SIZE of 8192 requires
that the compressed table have a KEY_BLOCK_SIZE of 8.

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t4 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED
KEY_BLOCK_SIZE=8;
Query OK, 0 rows affected (0.00 sec)

If you do not specify FILE_BLOCK_SIZE when creating a general tablespace, FILE_BLOCK_SIZE
defaults to innodb_page_size. When FILE_BLOCK_SIZE is equal to innodb_page_size, the
tablespace may only contain tables with an uncompressed row format (COMPACT, REDUNDANT, and
DYNAMIC row formats).

Moving Non-Partitioned Tables Between Tablespaces Using ALTER TABLE

You can use ALTER TABLE with the TABLESPACE option to move a non-partitioned InnoDB table to
an existing general tablespace, to a new file-per-table tablespace, or to the system tablespace.

Note

Running an ALTER TABLE tbl_name TABLESPACE [=]
tablespace_name operation on a partitioned table only modifies the table's
default tablespace. It does not move the table's partitions.

To move a non-partitioned table from a file-per-table tablespace or from the system tablespace to a
general tablespace, specify the name of the general tablespace. The general tablespace must exist.
See CREATE TABLESPACE for more information.

ALTER TABLE tbl_name TABLESPACE [=] tablespace_name

InnoDB General Tablespaces

2022

To move a non-partitioned table from a general tablespace or file-per-table tablespace to the system
tablespace, specify innodb_system as the tablespace name.

ALTER TABLE tbl_name ... TABLESPACE [=] innodb_system

To move a non-partitioned table from the system tablespace or a general tablespace to a file-per-table
tablespace, specify innodb_file_per_table as the tablespace name.

ALTER TABLE tbl_name ... TABLESPACE [=] innodb_file_per_table

ALTER TABLE ... TABLESPACE operations always cause a full table rebuild, even if the
TABLESPACE attribute has not changed from its previous value.

ALTER TABLE ... TABLESPACE syntax does not support moving a table from a temporary
tablespace to a persistent tablespace.

The DATA DIRECTORY clause is permitted with CREATE TABLE ...
TABLESPACE=innodb_file_per_table but is otherwise not supported for use in combination with
the TABLESPACE option.

General Tablespace Table Partition Support

The TABLESPACE option may be used to assign individual table partitions or subpartitions to a general
tablespace, a separate file-per-table tablespace, or the system tablespace. General tablespace support
for table partitions and subpartitions was added in MySQL 5.7.8. All partitions must belong to the same
storage engine. Usage is demonstrated in the following examples.

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;
mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' Engine=InnoDB;

mysql> CREATE TABLE t1 (a INT, b INT) ENGINE = InnoDB
 -> PARTITION BY RANGE(a) SUBPARTITION BY KEY(b) (
 -> PARTITION p1 VALUES LESS THAN (100) TABLESPACE=`ts1`,
 -> PARTITION p2 VALUES LESS THAN (1000) TABLESPACE=`ts2`,
 -> PARTITION p3 VALUES LESS THAN (10000) TABLESPACE `innodb_file_per_table`,
 -> PARTITION p4 VALUES LESS THAN (100000) TABLESPACE `innodb_system`);

mysql> CREATE TABLE t2 (a INT, b INT) ENGINE = InnoDB
 -> PARTITION BY RANGE(a) SUBPARTITION BY KEY(b) (
 -> PARTITION p1 VALUES LESS THAN (100) TABLESPACE=`ts1`
 -> (SUBPARTITION sp1,
 -> SUBPARTITION sp2),
 -> PARTITION p2 VALUES LESS THAN (1000)
 -> (SUBPARTITION sp3,
 -> SUBPARTITION sp4 TABLESPACE=`ts2`),
 -> PARTITION p3 VALUES LESS THAN (10000)
 -> (SUBPARTITION sp5 TABLESPACE `innodb_system`,
 -> SUBPARTITION sp6 TABLESPACE `innodb_file_per_table`));

The TABLESPACE option is also supported with ALTER TABLE.

mysql> ALTER TABLE t1 ADD PARTITION (PARTITION p5 VALUES LESS THAN (1000000) TABLESPACE = `ts1`);

Note

If the TABLESPACE = tablespace_name option is not defined, the ALTER
TABLE ... ADD PARTITION operation adds the partition to the table's default
tablespace, which can be specified at the table level during CREATE TABLE or
ALTER TABLE.

To verify that partitions were placed in the specified tablespaces, you can query
INFORMATION_SCHEMA.INNODB_SYS_TABLES:

mysql> SELECT NAME, SPACE, SPACE_TYPE FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES
 -> WHERE NAME LIKE '%t1%';
+-----------------------+-------+------------+

InnoDB General Tablespaces

2023

| NAME | SPACE | SPACE_TYPE |
+-----------------------+-------+------------+
test/t1#P#p1#SP#p1sp0	57	General
test/t1#P#p2#SP#p2sp0	58	General
test/t1#P#p3#SP#p3sp0	59	Single
test/t1#P#p4#SP#p4sp0	0	System
test/t1#P#p5#SP#p5sp0	57	General
+-----------------------+-------+------------+

mysql> SELECT NAME, SPACE, SPACE_TYPE FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES
 -> WHERE NAME LIKE '%t2%';
+---------------------+-------+------------+
| NAME | SPACE | SPACE_TYPE |
+---------------------+-------+------------+
test/t2#P#p1#SP#sp1	57	General
test/t2#P#p1#SP#sp2	57	General
test/t2#P#p2#SP#sp3	60	Single
test/t2#P#p2#SP#sp4	58	General
test/t2#P#p3#SP#sp5	0	System
test/t2#P#p3#SP#sp6	61	Single
+---------------------+-------+------------+

Moving Table Partitions Between Tablespaces Using ALTER TABLE

To move table partitions to a different tablespace, you must move each partition using an ALTER
TABLE tbl_name REORGANIZE PARTITION statement.

The following example demonstrates how to move table partitions to a
different tablespace. INFORMATION_SCHEMA.INNODB_SYS_TABLES and
INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES are queried to verify that partitions are placed
in the expected tablespace.

Note

If the TABLESPACE = tablespace_name option is not defined in the
REORGANIZE PARTITION statement, InnoDB moves the partition to the table's
default tablespace. In this example, tablespace ts1, which is defined at the
table level, is the default tablespace for table t1. Partition P3 is moved from the
system tablespace to tablespace ts1 since no TABLESPACE option is specified
in the ALTER TABLE t1 REORGANIZE PARTITION statement for partition P3.

To change a partitioned table's default tablespace, you can run ALTER TABLE
tbl_name TABLESPACE [=] tablespace_name on the partitioned table.

mysql> CREATE TABLESPACE ts1 ADD DATAFILE 'ts1.ibd';
mysql> CREATE TABLESPACE ts2 ADD DATAFILE 'ts2.ibd';

mysql> CREATE TABLE t1 (a INT NOT NULL, PRIMARY KEY (a))
 -> ENGINE=InnoDB TABLESPACE ts1
 -> PARTITION BY RANGE (a) PARTITIONS 3 (
 -> PARTITION P1 VALUES LESS THAN (2),
 -> PARTITION P2 VALUES LESS THAN (4) TABLESPACE `innodb_file_per_table`,
 -> PARTITION P3 VALUES LESS THAN (6) TABLESPACE `innodb_system`);

mysql> SELECT A.NAME as partition_name, A.SPACE_TYPE as space_type, B.NAME as space_name
 -> FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES A
 -> LEFT JOIN INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES B
 -> ON A.SPACE = B.SPACE WHERE A.NAME LIKE '%t1%' ORDER BY A.NAME;
+----------------+------------+--------------+
| partition_name | space_type | space_name |
+----------------+------------+--------------+
test/t1#P#P1	General	ts1
test/t1#P#P2	Single	test/t1#P#P2
test/t1#P#P3	System	NULL
+----------------+------------+--------------+

mysql> ALTER TABLE t1 REORGANIZE PARTITION P1

InnoDB General Tablespaces

2024

 -> INTO (PARTITION P1 VALUES LESS THAN (2) TABLESPACE = `ts2`);

mysql> ALTER TABLE t1 REORGANIZE PARTITION P2
 -> INTO (PARTITION P2 VALUES LESS THAN (4) TABLESPACE = `ts2`);

mysql> ALTER TABLE t1 REORGANIZE PARTITION P3
 -> INTO (PARTITION P3 VALUES LESS THAN (6));

mysql> SELECT A.NAME AS partition_name, A.SPACE_TYPE AS space_type, B.NAME AS space_name
 -> FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES A
 -> LEFT JOIN INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES B
 -> ON A.SPACE = B.SPACE WHERE A.NAME LIKE '%t1%' ORDER BY A.NAME;
+----------------+------------+------------+
| partition_name | space_type | space_name |
+----------------+------------+------------+
test/t1#P#P1	General	ts2
test/t1#P#P2	General	ts2
test/t1#P#P3	General	ts1
+----------------+------------+------------+

Dropping a General Tablespace

The DROP TABLESPACE statement is used to drop an InnoDB general tablespace.

All tables must be dropped from the tablespace prior to a DROP TABLESPACE operation. If the
tablespace is not empty, DROP TABLESPACE returns an error.

A general InnoDB tablespace is not deleted automatically when the last table in the tablespace is
dropped. The tablespace must be dropped explicitly using DROP TABLESPACE tablespace_name.

A general tablespace does not belong to any particular database. A DROP DATABASE operation can
drop tables that belong to a general tablespace but it cannot drop the tablespace, even if the DROP
DATABASE operation drops all tables that belong to the tablespace. A general tablespace must be
dropped explicitly using DROP TABLESPACE tablespace_name.

Similar to the system tablespace, truncating or dropping tables stored in a general tablespace creates
free space internally in the general tablespace .ibd data file which can only be used for new InnoDB
data. Space is not released back to the operating system as it is when a file-per-table tablespace is
deleted during a DROP TABLE operation.

This example demonstrates how to drop an InnoDB general tablespace. The general tablespace ts1
is created with a single table. The table must be dropped before dropping the tablespace.

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts10 Engine=InnoDB;
Query OK, 0 rows affected (0.02 sec)

mysql> DROP TABLE t1;
Query OK, 0 rows affected (0.01 sec)

mysql> DROP TABLESPACE ts1;
Query OK, 0 rows affected (0.01 sec)

Note

tablespace_name is a case-sensitive identifier in MySQL.

General Tablespace Limitations

• A generated or existing tablespace cannot be changed to a general tablespace.

• Creation of temporary general tablespaces is not supported.

• General tablespaces do not support temporary tables.

InnoDB Table Management

2025

• Partitioned InnoDB tables, and using the TABLESPACE=tablespace_name to assign individual
table partitions or subpartitions to a general tablespace, are only supported in MySQL 5.7.8 or
higher.

• Tables stored in a general tablespace may only be opened in MySQL 5.7.6 or later.

• Similar to the system tablespace, truncating or dropping tables stored in a general tablespace
creates free space internally in the general tablespace .ibd data file which can only be used for
new InnoDB data. Space is not released back to the operating system as it is for file-per-table
tablespaces.

• ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ...IMPORT TABLESPACE are
not supported for tables that belong to a general tablespace.

• General tablespaces created on Windows using a relative data file path cannot be opened on Unix-
like systems. This limitation is removed in MySQL 5.7.8 (Bug #20555168).

• In MySQL 5.7.6 and MySQL 5.7.7, tables stored in general tablespaces may not open (due to a
missing general tablespace file) after moving the MySQL data directory to a new location. This
limitation is addressed in MySQL 5.7.8 with the introduction of isl files for general tablespaces
created outside of the MySQL data directory (Bug #20563954).

For more information see Section 13.1.15, “CREATE TABLESPACE Syntax”.

14.5 InnoDB Table Management

14.5.1 Creating InnoDB Tables

To create an InnoDB table, use the CREATE TABLE statement. You do not need to specify the
ENGINE=InnoDB clause if InnoDB is defined as the default storage engine, which is the default as of
MySQL 5.5. You might still use ENGINE=InnoDB clause if you plan to use mysqldump or replication to
replay the CREATE TABLE statement on a server where the default storage engine is not InnoDB.

-- Default storage engine = InnoDB.
CREATE TABLE t1 (a INT, b CHAR (20), PRIMARY KEY (a));
-- Backward-compatible with older MySQL.
CREATE TABLE t2 (a INT, b CHAR (20), PRIMARY KEY (a)) ENGINE=InnoDB;

An InnoDB table and its indexes can be created in the system tablespace, in a file-per-table
tablespace, or in a general tablespace (introduced in MySQL 5.7.6). When innodb_file_per_table
is enabled, which is the default setting as of MySQL 5.6.6, an InnoDB table is implicitly created in
an individual file-per-table tablespace. Conversely, when innodb_file_per_table is disabled,
an InnoDB table is implicitly created in the system tablespace. With the introduction of general
tablespaces in MySQL 5.7.6, you can use CREATE TABLE ... TABLESPACE syntax to explicitly
create an InnoDB table in any of the three tablespace types.

When you create an InnoDB table, MySQL creates a .frm file in a database directory under the MySQL
data directory. For a table created in a file-per-table tablespace, an .ibd file is also created. A table
created in the system tablespace is created in the existing system tablespace ibdata files. A table
created in a general tablespace is created in an existing general tablespace .ibd file.

Internally, InnoDB adds an entry for each table to the InnoDB data dictionary. The entry includes the
database name. For example, if table t1 is created in the test database, the data dictionary entry is
'test/t1'. This means you can create a table of the same name (t1) in a different database, and
the table names do not collide inside InnoDB.

Viewing the Properties of InnoDB Tables

To view the properties of InnoDB tables, issue a SHOW TABLE STATUS statement:

Creating InnoDB Tables

2026

mysql > SHOW TABLE STATUS FROM test LIKE 't%' \G;
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 0
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2015-03-16 15:13:31
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:
1 row in set (0.00 sec)

In the status output, you see the Row format property of table t1 is Compact. The Dynamic
or Compressed row format is required take advantage of InnoDB features such as table
compression and off-page storage for long column values. To use these row formats, you can enable
innodb_file_per_table (the default as of MySQL 5.6.6) and set innodb_file_format to
Barracuda, which implicitly creates InnoDB tables in file-per-table tablespaces:

SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=barracuda;
CREATE TABLE t3 (a INT, b CHAR (20), PRIMARY KEY (a)) ROW_FORMAT=DYNAMIC;
CREATE TABLE t4 (a INT, b CHAR (20), PRIMARY KEY (a)) ROW_FORMAT=COMPRESSED;

Or, you can use CREATE TABLE ... TABLESPACE syntax to create an InnoDB table in a general
tablespace. General tablespaces support all row formats. For more information, see Section 14.4.9,
“InnoDB General Tablespaces”.

CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=DYNAMIC;

CREATE TABLE ... TABLESPACE syntax can also be used to create InnoDB tables with a Dynamic
row format in the system tablespace, along side tables with a Compact or Redundant row format.

CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE = innodb_system ROW_FORMAT=DYNAMIC;

InnoDB table properties may also be queried using the InnoDB Information Schema system tables:

SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 45
 NAME: test/t1
 FLAG: 1
 N_COLS: 5
 SPACE: 35
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single
1 row in set (0.00 sec)

Defining a Primary Key for InnoDB Tables

Always set up a primary key for each InnoDB table, specifying the column or columns that:

• Are referenced by the most important queries.

• Are never left blank.

• Never have duplicate values.

Moving or Copying InnoDB Tables to Another Machine

2027

• Rarely if ever change value once inserted.

For example, in a table containing information about people, you would not create a primary key on
(firstname, lastname) because more than one person can have the same name, some people
have blank last names, and sometimes people change their names. With so many constraints, often
there is not an obvious set of columns to use as a primary key, so you create a new column with a
numeric ID to serve as all or part of the primary key. You can declare an auto-increment column so that
ascending values are filled in automatically as rows are inserted:

-- The value of ID can act like a pointer between related items in different tables.
CREATE TABLE t5 (id INT AUTO_INCREMENT, b CHAR (20), PRIMARY KEY (id));
-- The primary key can consist of more than one column. Any autoinc column must come first.
CREATE TABLE t6 (id INT AUTO_INCREMENT, a INT, b CHAR (20), PRIMARY KEY (id,a));

Although the table works correctly without defining a primary key, the primary key is involved with
many aspects of performance and is a crucial design aspect for any large or frequently used table. It
is recommended that you always specify a primary key in the CREATE TABLE statement. If you create
the table, load data, and then run ALTER TABLE to add a primary key later, that operation is much
slower than defining the primary key when creating the table.

14.5.2 Moving or Copying InnoDB Tables to Another Machine

This section describes techniques for moving or copying some or all InnoDB tables to a different
server. For example, you might move an entire MySQL instance to a larger, faster server; you might
clone an entire MySQL instance to a new replication slave server; you might copy individual tables to
another server to develop and test an application, or to a data warehouse server to produce reports.

Techniques for moving or copying InnoDB tables include:

• Transportable Tablespaces

• MySQL Enterprise Backup

• Copying Data Files (Cold Backup Method)

• Export and Import (mysqldump)

Using Lowercase Names for Cross-Platform Moving or Copying

On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and
tables using lowercase names. A convenient way to accomplish this is to add the following line to the
[mysqld] section of your my.cnf or my.ini file before creating any databases or tables:

[mysqld]
lower_case_table_names=1

Transportable Tablespaces

Introduced in MySQL 5.6.6, the transportable tablespaces feature uses FLUSH TABLES ... FOR
EXPORT to ready InnoDB tables for copying from one server instance to another. To use this feature,
InnoDB tables must be created with innodb_file_per_table set to ON so that each InnoDB
table has its own tablespace. For usage information, see Section 14.4.6, “Copying File-Per-Table
Tablespaces to Another Server”.

MySQL Enterprise Backup

The MySQL Enterprise Backup product lets you back up a running MySQL database, including
InnoDB and MyISAM tables, with minimal disruption to operations while producing a consistent
snapshot of the database. When MySQL Enterprise Backup is copying InnoDB tables, reads and

Moving or Copying InnoDB Tables to Another Machine

2028

writes to both InnoDB and MyISAM tables can continue. During the copying of MyISAM and other non-
InnoDB tables, reads (but not writes) to those tables are permitted. In addition, MySQL Enterprise
Backup can create compressed backup files, and back up subsets of InnoDB tables. In conjunction
with the MySQL binary log, you can perform point-in-time recovery. MySQL Enterprise Backup is
included as part of the MySQL Enterprise subscription.

For more details about MySQL Enterprise Backup, see Section 25.2, “MySQL Enterprise Backup
Overview”.

Copying Data Files (Cold Backup Method)

You can move an InnoDB database simply by copying all the relevant files listed under "Cold Backups"
in Section 14.15, “InnoDB Backup and Recovery”.

Like MyISAM data files, InnoDB data and log files are binary-compatible on all platforms having the
same floating-point number format. If the floating-point formats differ but you have not used FLOAT or
DOUBLE data types in your tables, then the procedure is the same: simply copy the relevant files.

Portability Considerations for File-Per-Table .ibd Files

When you move or copy file-per-table .ibd files, the database directory name must be the same
on the source and destination systems. The table definition stored in the InnoDB shared tablespace
includes the database name. The transaction IDs and log sequence numbers stored in the tablespace
files also differ between databases.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE
statement:

RENAME TABLE db1.tbl_name TO db2.tbl_name;

If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it
originated as follows:

1. The table must not have been dropped or truncated since you copied the .ibd file, because doing
so changes the table ID stored inside the tablespace.

2. Issue this ALTER TABLE statement to delete the current .ibd file:

ALTER TABLE tbl_name DISCARD TABLESPACE;

3. Copy the backup .ibd file to the proper database directory.

4. Issue this ALTER TABLE statement to tell InnoDB to use the new .ibd file for the table:

ALTER TABLE tbl_name IMPORT TABLESPACE;

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data.

In this context, a “clean” .ibd file backup is one for which the following requirements are satisfied:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

Grouping DML Operations with Transactions

2029

You can make a clean backup .ibd file using the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2. Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the
database, and the main thread status of InnoDB is Waiting for server activity. Then you
can make a copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use the MySQL Enterprise Backup
product:

1. Use MySQL Enterprise Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

Export and Import (mysqldump)

You can use mysqldump to dump your tables on one machine and then import the dump files on the
other machine. Using this method, it does not matter whether the formats differ or if your tables contain
floating-point data.

One way to increase the performance of this method is to switch off autocommit mode when importing
data, assuming that the tablespace has enough space for the big rollback segment that the import
transactions generate. Do the commit only after importing a whole table or a segment of a table.

14.5.3 Grouping DML Operations with Transactions

By default, connection to the MySQL server begins with autocommit mode enabled, which
automatically commits every SQL statement as you execute it. This mode of operation might be
unfamiliar if you have experience with other database systems, where it is standard practice to issue a
sequence of DML statements and commit them or roll them back all together.

To use multiple-statement transactions, switch autocommit off with the SQL statement SET
autocommit = 0 and end each transaction with COMMIT or ROLLBACK as appropriate. To leave
autocommit on, begin each transaction with START TRANSACTION and end it with COMMIT or
ROLLBACK. The following example shows two transactions. The first is committed; the second is rolled
back.

shell> mysql test

mysql> CREATE TABLE customer (a INT, b CHAR (20), INDEX (a));
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do a transaction with autocommit turned on.
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do another transaction with autocommit turned off.
mysql> SET autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO customer VALUES (20, 'Paul');
Query OK, 1 row affected (0.00 sec)
mysql> DELETE FROM customer WHERE b = 'Heikki';
Query OK, 1 row affected (0.00 sec)
mysql> -- Now we undo those last 2 inserts and the delete.
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM customer;
+------+--------+
| a | b |

Converting Tables from MyISAM to InnoDB

2030

+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

Transactions in Client-Side Languages

In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send
transaction control statements such as COMMIT to the MySQL server as strings just like any other SQL
statements such as SELECT or INSERT. Some APIs also offer separate special transaction commit and
rollback functions or methods.

14.5.4 Converting Tables from MyISAM to InnoDB

If you have existing tables, and applications that use them, that you want to convert to InnoDB for
better reliability and scalability, use the following guidelines and tips. This section assumes most such
tables were originally MyISAM, which was formerly the default.

Reduce Memory Usage for MyISAM, Increase Memory Usage for InnoDB

As you transition away from MyISAM tables, lower the value of the key_buffer_size
configuration option to free memory no longer needed for caching results. Increase the value of the
innodb_buffer_pool_size configuration option, which performs a similar role of allocating cache
memory for InnoDB tables. The InnoDB buffer pool caches both table data and index data, so it does
double duty in speeding up lookups for queries and keeping query results in memory for reuse.

• Allocate as much memory to this option as you can afford, often up to 80% of physical memory on
the server.

• If the operating system runs short of memory for other processes and begins to swap, reduce the
innodb_buffer_pool_size value. Swapping is such an expensive operation that it drastically
reduces the benefit of the cache memory.

• If the innodb_buffer_pool_size value is several gigabytes or higher, consider increasing
the values of innodb_buffer_pool_instances. Doing so helps on busy servers where many
connections are reading data into the cache at the same time.

• On a busy server, run benchmarks with the Query Cache turned off. The InnoDB buffer pool
provides similar benefits, so the Query Cache might be tying up memory unnecessarily.

Watch Out for Too-Long Or Too-Short Transactions

Because MyISAM tables do not support transactions, you might not have paid much attention to the
autocommit configuration option and the COMMIT and ROLLBACK statements. These keywords are
important to allow multiple sessions to read and write InnoDB tables concurrently, providing substantial
scalability benefits in write-heavy workloads.

While a transaction is open, the system keeps a snapshot of the data as seen at the beginning of the
transaction, which can cause substantial overhead if the system inserts, updates, and deletes millions
of rows while a stray transaction keeps running. Thus, take care to avoid transactions that run for too
long:

• If you are using a mysql session for interactive experiments, always COMMIT (to finalize the
changes) or ROLLBACK (to undo the changes) when finished. Close down interactive sessions rather
than leaving them open for long periods, to avoid keeping transactions open for long periods by
accident.

• Make sure that any error handlers in your application also ROLLBACK incomplete changes or
COMMIT completed changes.

Converting Tables from MyISAM to InnoDB

2031

• ROLLBACK is a relatively expensive operation, because INSERT, UPDATE, and DELETE operations
are written to InnoDB tables prior to the COMMIT, with the expectation that most changes will be
committed successfully and rollbacks will be rare. When experimenting with large volumes of data,
avoid making changes to large numbers of rows and then rolling back those changes.

• When loading large volumes of data with a sequence of INSERT statements, periodically COMMIT
the results to avoid having transactions that last for hours. In typical load operations for data
warehousing, if something goes wrong, you TRUNCATE TABLE and start over from the beginning
rather than doing a ROLLBACK.

The preceding tips save memory and disk space that can be wasted during too-long transactions.
When transactions are shorter than they should be, the problem is excessive I/O. With each COMMIT,
MySQL makes sure each change is safely recorded to disk, which involves some I/O.

• For most operations on InnoDB tables, you should use the setting autocommit=0. From an
efficiency perspective, this avoids unnecessary I/O when you issue large numbers of consecutive
INSERT, UPDATE, or DELETE statements. From a safety perspective, this allows you to issue a
ROLLBACK statement to recover lost or garbled data if you make a mistake on the mysql command
line, or in an exception handler in your application.

• The time when autocommit=1 is suitable for InnoDB tables is when running a sequence of queries
for generating reports or analyzing statistics. In this situation, there is no I/O penalty related to
COMMIT or ROLLBACK, and InnoDB can automatically optimize the read-only workload.

• If you make a series of related changes, finalize all those changes at once with a single COMMIT
at the end. For example, if you insert related pieces of information into several tables, do a single
COMMIT after making all the changes. Or if you run many consecutive INSERT statements, do a
single COMMIT after all the data is loaded; if you are doing millions of INSERT statements, perhaps
split up the huge transaction by issuing a COMMIT every ten thousand or hundred thousand records,
so the transaction does not grow too large.

• Remember that even a SELECT statement opens a transaction, so after running some report or
debugging queries in an interactive mysql session, either issue a COMMIT or close the mysql
session.

Don't Worry Too Much About Deadlocks

You might see warning messages referring to “deadlocks” in the MySQL error log, or the output of
SHOW ENGINE INNODB STATUS. Despite the scary-sounding name, a deadlock is not a serious
issue for InnoDB tables, and often does not require any corrective action. When two transactions start
modifying multiple tables, accessing the tables in a different order, they can reach a state where each
transaction is waiting for the other and neither can proceed. MySQL immediately detects this condition
and cancels (rolls back) the “smaller” transaction, allowing the other to proceed.

Your applications do need error-handling logic to restart a transaction that is forcibly cancelled like this.
When you re-issue the same SQL statements as before, the original timing issue no longer applies:
either the other transaction has already finished and yours can proceed, or the other transaction is still
in progress and your transaction waits until it finishes.

If deadlock warnings occur constantly, you might review the application code to reorder the
SQL operations in a consistent way, or to shorten the transactions. You can test with the
innodb_print_all_deadlocks option enabled to see all deadlock warnings in the MySQL error
log, rather than only the last warning in the SHOW ENGINE INNODB STATUS output.

Plan the Storage Layout

To get the best performance from InnoDB tables, you can adjust a number of parameters related to
storage layout.

When you convert MyISAM tables that are large, frequently accessed, and hold vital data, investigate
and consider the innodb_file_per_table, innodb_file_format, and innodb_page_size

Converting Tables from MyISAM to InnoDB

2032

configuration options, and the ROW_FORMAT and KEY_BLOCK_SIZE clauses of the CREATE TABLE
statement.

During your initial experiments, the most important setting is innodb_file_per_table. When this
setting is enabled, which is the default as of MySQL 5.6.6, new InnoDB tables are implicitly created in
file-per-table tablespaces. In contrast with the InnoDB system tablespace, file-per-table tablespaces
allow disk space to be reclaimed by the operating system when a table is truncated or dropped.
File-per-table tablespaces also support the Barracuda file format and associated features such as
table compression and off-page storage for long variable-length columns. For more information, see
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”.

As of MySQl 5.7.6, you can also store InnoDB tables in a shared general tablespace. General
tablespaces support the Barracuda file format and can contain multiple tables. For more information,
see Section 14.4.9, “InnoDB General Tablespaces”.

Converting an Existing Table

To convert a non-InnoDB table to use InnoDB use ALTER TABLE:

ALTER TABLE table_name ENGINE=InnoDB;

Important

Do not convert MySQL system tables in the mysql database (such as user or
host) to the InnoDB type. This is an unsupported operation. The system tables
must always be of the MyISAM type.

Cloning the Structure of a Table

You might make an InnoDB table that is a clone of a MyISAM table, rather than doing the ALTER
TABLE conversion, to test the old and new table side-by-side before switching.

Create an empty InnoDB table with identical column and index definitions. Use show create table
table_name\G to see the full CREATE TABLE statement to use. Change the ENGINE clause to
ENGINE=INNODB.

Transferring Existing Data

To transfer a large volume of data into an empty InnoDB table created as shown in the previous
section, insert the rows with INSERT INTO innodb_table SELECT * FROM myisam_table
ORDER BY primary_key_columns.

You can also create the indexes for the InnoDB table after inserting the data. Historically, creating new
secondary indexes was a slow operation for InnoDB, but now you can create the indexes after the data
is loaded with relatively little overhead from the index creation step.

If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the
uniqueness checks temporarily during the import operation:

SET unique_checks=0;
... import operation ...
SET unique_checks=1;

For big tables, this saves disk I/O because InnoDB can use its change buffer to write secondary index
records as a batch. Be certain that the data contains no duplicate keys. unique_checks permits but
does not require storage engines to ignore duplicate keys.

To get better control over the insertion process, you might insert big tables in pieces:

Converting Tables from MyISAM to InnoDB

2033

INSERT INTO newtable SELECT * FROM oldtable
 WHERE yourkey > something AND yourkey <= somethingelse;

After all records have been inserted, you can rename the tables.

During the conversion of big tables, increase the size of the InnoDB buffer pool to reduce disk I/O, to a
maximum of 80% of physical memory. You can also increase the sizes of the InnoDB log files.

Storage Requirements

If you intend to make several temporary copies of your data in InnoDB tables during the conversion
process, it is recommended that you create the tables in file-per-table tablespaces so that
you can reclaim the disk space when you drop the tables. As mentioned previously, when the
innodb_file_per_table option is enabled, newly created InnoDB tables are implicitly created in
file-per-table tablespaces.

Whether you convert the MyISAM table directly or create a cloned InnoDB table, make sure that you
have sufficient disk space to hold both the old and new tables during the process. InnoDB tables
require more disk space than MyISAM tables. If an ALTER TABLE operation runs out of space, it starts
a rollback, and that can take hours if it is disk-bound. For inserts, InnoDB uses the insert buffer to
merge secondary index records to indexes in batches. That saves a lot of disk I/O. For rollback, no
such mechanism is used, and the rollback can take 30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be
advisable to kill the database process rather than wait for millions of disk I/O operations to complete.
For the complete procedure, see Section 14.18.2, “Forcing InnoDB Recovery”.

Carefully Choose a PRIMARY KEY for Each Table

The PRIMARY KEY clause is a critical factor affecting the performance of MySQL queries and the
space usage for tables and indexes. Perhaps you have phoned a financial institution where you are
asked for an account number. If you do not have the number, you are asked for a dozen different
pieces of information to “uniquely identify” yourself. The primary key is like that unique account number
that lets you get straight down to business when querying or modifying the information in a table. Every
row in the table must have a primary key value, and no two rows can have the same primary key value.

Here are some guidelines for the primary key, followed by more detailed explanations.

• Declare a PRIMARY KEY for each table. Typically, it is the most important column that you refer to in
WHERE clauses when looking up a single row.

• Declare the PRIMARY KEY clause in the original CREATE TABLE statement, rather than adding it
later through an ALTER TABLE statement.

• Choose the column and its data type carefully. Prefer numeric columns over character or string ones.

• Consider using an auto-increment column if there is not another stable, unique, non-null, numeric
column to use.

• An auto-increment column is also a good choice if there is any doubt whether the value of the
primary key column could ever change. Changing the value of a primary key column is an expensive
operation, possibly involving rearranging data within the table and within each secondary index.

Consider adding a primary key to any table that does not already have one. Use the smallest practical
numeric type based on the maximum projected size of the table. This can make each row slightly more
compact, which can yield substantial space savings for large tables. The space savings are multiplied
if the table has any secondary indexes, because the primary key value is repeated in each secondary
index entry. In addition to reducing data size on disk, a small primary key also lets more data fit into the
buffer pool, speeding up all kinds of operations and improving concurrency.

AUTO_INCREMENT Handling in InnoDB

2034

If the table already has a primary key on some longer column, such as a VARCHAR, consider adding a
new unsigned AUTO_INCREMENT column and switching the primary key to that, even if that column is
not referenced in queries. This design change can produce substantial space savings in the secondary
indexes. You can designate the former primary key columns as UNIQUE NOT NULL to enforce the
same constraints as the PRIMARY KEY clause, that is, to prevent duplicate or null values across all
those columns.

If you spread related information across multiple tables, typically each table uses the same column for
its primary key. For example, a personnel database might have several tables, each with a primary
key of employee number. A sales database might have some tables with a primary key of customer
number, and other tables with a primary key of order number. Because lookups using the primary key
are very fast, you can construct efficient join queries for such tables.

If you leave the PRIMARY KEY clause out entirely, MySQL creates an invisible one for you. It is a 6-
byte value that might be longer than you need, thus wasting space. Because it is hidden, you cannot
refer to it in queries.

Application Performance Considerations

The extra reliability and scalability features of InnoDB do require more disk storage than equivalent
MyISAM tables. You might change the column and index definitions slightly, for better space utilization,
reduced I/O and memory consumption when processing result sets, and better query optimization
plans making efficient use of index lookups.

If you do set up a numeric ID column for the primary key, use that value to cross-reference with related
values in any other tables, particularly for join queries. For example, rather than accepting a country
name as input and doing queries searching for the same name, do one lookup to determine the country
ID, then do other queries (or a single join query) to look up relevant information across several tables.
Rather than storing a customer or catalog item number as a string of digits, potentially using up several
bytes, convert it to a numeric ID for storing and querying. A 4-byte unsigned INT column can index
over 4 billion items (with the US meaning of billion: 1000 million). For the ranges of the different integer
types, see Section 11.2.1, “Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT”.

Understand Files Associated with InnoDB Tables

InnoDB files require more care and planning than MyISAM files do:

• You must not delete the ibdata files that represent the InnoDB system tablespace.

• Copying InnoDB tables from one server to another requires issuing the FLUSH TABLES ... FOR
EXPORT statement first, and copying the table_name.cfg file along with the table_name.ibd
file.

14.5.5 AUTO_INCREMENT Handling in InnoDB

InnoDB provides a configurable locking mechanism that can significantly improve scalability and
performance of SQL statements that add rows to tables with AUTO_INCREMENT columns. To use
the AUTO_INCREMENT mechanism with an InnoDB table, an AUTO_INCREMENT column must be
defined as part of an index such that it is possible to perform the equivalent of an indexed SELECT
MAX(ai_col) lookup on the table to obtain the maximum column value. Typically, this is achieved by
making the column the first column of some table index.

This section describes the behavior of AUTO_INCREMENT lock modes, usage implications for different
AUTO_INCREMENT lock mode settings, and how InnoDB initializes the AUTO_INCREMENT counter.

• InnoDB AUTO_INCREMENT Lock Modes

• InnoDB AUTO_INCREMENT Lock Mode Usage Implications

AUTO_INCREMENT Handling in InnoDB

2035

• InnoDB AUTO_INCREMENT Counter Initialization

InnoDB AUTO_INCREMENT Lock Modes

This section describes the behavior of AUTO_INCREMENT lock modes used to generate auto-increment
values, and how each lock mode affects replication. Auto-increment lock modes are configured at
startup using the innodb_autoinc_lock_mode configuration parameter.

The following terms are used in describing innodb_autoinc_lock_mode settings:

• “INSERT-like” statements

All statements that generate new rows in a table, including INSERT, INSERT ... SELECT,
REPLACE, REPLACE ... SELECT, and LOAD DATA. Includes “simple-inserts”, “bulk-inserts”, and
“mixed-mode” inserts.

• “Simple inserts”

Statements for which the number of rows to be inserted can be determined in advance (when the
statement is initially processed). This includes single-row and multiple-row INSERT and REPLACE
statements that do not have a nested subquery, but not INSERT ... ON DUPLICATE KEY
UPDATE.

• “Bulk inserts”

Statements for which the number of rows to be inserted (and the number of required auto-increment
values) is not known in advance. This includes INSERT ... SELECT, REPLACE ... SELECT,
and LOAD DATA statements, but not plain INSERT. InnoDB will assign new values for the
AUTO_INCREMENT column one at a time as each row is processed.

• “Mixed-mode inserts”

These are “simple insert” statements that specify the auto-increment value for some (but not all) of
the new rows. An example follows, where c1 is an AUTO_INCREMENT column of table t1:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

Another type of “mixed-mode insert” is INSERT ... ON DUPLICATE KEY UPDATE, which in
the worst case is in effect an INSERT followed by a UPDATE, where the allocated value for the
AUTO_INCREMENT column may or may not be used during the update phase.

There are three possible settings for the innodb_autoinc_lock_mode configuration parameter. The
settings are 0, 1, or 2, for “traditional”, “consecutive”, or “interleaved” lock mode, respectively.

• innodb_autoinc_lock_mode = 0 (“traditional” lock mode)

The traditional lock mode provides the same behavior that existed before the
innodb_autoinc_lock_mode configuration parameter was introduced in MySQL 5.1. The
traditional lock mode option is provided for backward compatibility, performance testing, and working
around issues with “mixed-mode inserts”, due to possible differences in semantics.

In this lock mode, all “INSERT-like” statements obtain a special table-level AUTO-INC lock for inserts
into tables with AUTO_INCREMENT columns. This lock is normally held to the end of the statement
(not to the end of the transaction) to ensure that auto-increment values are assigned in a predictable
and repeatable order for a given sequence of INSERT statements, and to ensure that auto-increment
values assigned by any given statement are consecutive.

In the case of statement-based replication, this means that when an SQL statement is replicated on
a slave server, the same values are used for the auto-increment column as on the master server.
The result of execution of multiple INSERT statements is deterministic, and the slave reproduces
the same data as on the master. If auto-increment values generated by multiple INSERT statements

AUTO_INCREMENT Handling in InnoDB

2036

were interleaved, the result of two concurrent INSERT statements would be nondeterministic, and
could not reliably be propagated to a slave server using statement-based replication.

To make this clear, consider an example that uses this table:

CREATE TABLE t1 (
 c1 INT(11) NOT NULL AUTO_INCREMENT,
 c2 VARCHAR(10) DEFAULT NULL,
 PRIMARY KEY (c1)
) ENGINE=InnoDB;

Suppose that there are two transactions running, each inserting rows into a table with an
AUTO_INCREMENT column. One transaction is using an INSERT ... SELECT statement that
inserts 1000 rows, and another is using a simple INSERT statement that inserts one row:

Tx1: INSERT INTO t1 (c2) SELECT 1000 rows from another table ...
Tx2: INSERT INTO t1 (c2) VALUES ('xxx');

InnoDB cannot tell in advance how many rows will be retrieved from the SELECT in the INSERT
statement in Tx1, and it assigns the auto-increment values one at a time as the statement proceeds.
With a table-level lock, held to the end of the statement, only one INSERT statement referring
to table t1 can execute at a time, and the generation of auto-increment numbers by different
statements is not interleaved. The auto-increment value generated by the Tx1 INSERT ...
SELECT statement will be consecutive, and the (single) auto-increment value used by the INSERT
statement in Tx2 will either be smaller or larger than all those used for Tx1, depending on which
statement executes first.

As long as the SQL statements execute in the same order when replayed from the binary log (when
using statement-based replication, or in recovery scenarios), the results will be the same as they
were when Tx1 and Tx2 first ran. Thus, table-level locks held until the end of a statement make
INSERT statements using auto-increment safe for use with statement-based replication. However,
those table-level locks limit concurrency and scalability when multiple transactions are executing
insert statements at the same time.

In the preceding example, if there were no table-level lock, the value of the auto-increment column
used for the INSERT in Tx2 depends on precisely when the statement executes. If the INSERT of
Tx2 executes while the INSERT of Tx1 is running (rather than before it starts or after it completes),
the specific auto-increment values assigned by the two INSERT statements are nondeterministic,
and may vary from run to run.

Under the consecutive lock mode, InnoDB can avoid using table-level AUTO-INC locks for “simple
insert” statements where the number of rows is known in advance, and still preserve deterministic
execution and safety for statement-based replication.

If you are not using the binary log to replay SQL statements as part of recovery or replication, the
interleaved lock mode can be used to eliminate all use of table-level AUTO-INC locks for even
greater concurrency and performance, at the cost of permitting gaps in auto-increment numbers
assigned by a statement and potentially having the numbers assigned by concurrently executing
statements interleaved.

• innodb_autoinc_lock_mode = 1 (“consecutive” lock mode)

This is the default lock mode. In this mode, “bulk inserts” use the special AUTO-INC table-level lock
and hold it until the end of the statement. This applies to all INSERT ... SELECT, REPLACE ...
SELECT, and LOAD DATA statements. Only one statement holding the AUTO-INC lock can execute
at a time.

“Simple inserts” (for which the number of rows to be inserted is known in advance) avoid table-level
AUTO-INC locks by obtaining the required number of auto-increment values under the control of a
mutex (a light-weight lock) that is only held for the duration of the allocation process, not until the

AUTO_INCREMENT Handling in InnoDB

2037

statement completes. No table-level AUTO-INC lock is used unless an AUTO-INC lock is held by
another transaction. If another transaction holds an AUTO-INC lock, a “simple insert” waits for the
AUTO-INC lock, as if it were a “bulk insert”.

This lock mode ensures that, in the presence of INSERT statements where the number of rows is not
known in advance (and where auto-increment numbers are assigned as the statement progresses),
all auto-increment values assigned by any “INSERT-like” statement are consecutive, and operations
are safe for statement-based replication.

Simply put, this lock mode significantly improves scalability while being safe for use with statement-
based replication. Further, as with “traditional” lock mode, auto-increment numbers assigned by any
given statement are consecutive. There is no change in semantics compared to “traditional” mode for
any statement that uses auto-increment, with one important exception.

The exception is for “mixed-mode inserts”, where the user provides explicit values for an
AUTO_INCREMENT column for some, but not all, rows in a multiple-row “simple insert”. For such
inserts, InnoDB allocates more auto-increment values than the number of rows to be inserted.
However, all values automatically assigned are consecutively generated (and thus higher than)
the auto-increment value generated by the most recently executed previous statement. “Excess”
numbers are lost.

• innodb_autoinc_lock_mode = 2 (“interleaved” lock mode)

In this lock mode, no “INSERT-like” statements use the table-level AUTO-INC lock, and multiple
statements can execute at the same time. This is the fastest and most scalable lock mode, but it is
not safe when using statement-based replication or recovery scenarios when SQL statements are
replayed from the binary log.

In this lock mode, auto-increment values are guaranteed to be unique and monotonically increasing
across all concurrently executing “INSERT-like” statements. However, because multiple statements
can be generating numbers at the same time (that is, allocation of numbers is interleaved across
statements), the values generated for the rows inserted by any given statement may not be
consecutive.

If the only statements executing are “simple inserts” where the number of rows to be inserted is
known ahead of time, there will be no gaps in the numbers generated for a single statement, except
for “mixed-mode inserts”. However, when “bulk inserts” are executed, there may be gaps in the auto-
increment values assigned by any given statement.

InnoDB AUTO_INCREMENT Lock Mode Usage Implications

• Using auto-increment with replication

If you are using statement-based replication, set innodb_autoinc_lock_mode to 0 or 1 and use
the same value on the master and its slaves. Auto-increment values are not ensured to be the same
on the slaves as on the master if you use innodb_autoinc_lock_mode = 2 (“interleaved”) or
configurations where the master and slaves do not use the same lock mode.

If you are using row-based or mixed-format replication, all of the auto-increment lock modes are safe,
since row-based replication is not sensitive to the order of execution of the SQL statements (and the
mixed format uses row-based replication for any statements that are unsafe for statement-based
replication).

• “Lost” auto-increment values and sequence gaps

In all lock modes (0, 1, and 2), if a transaction that generated auto-increment values rolls back, those
auto-increment values are “lost”. Once a value is generated for an auto-increment column, it cannot
be rolled back, whether or not the “INSERT-like” statement is completed, and whether or not the
containing transaction is rolled back. Such lost values are not reused. Thus, there may be gaps in
the values stored in an AUTO_INCREMENT column of a table.

AUTO_INCREMENT Handling in InnoDB

2038

• Specifying NULL or 0 for the AUTO_INCREMENT column

In all lock modes (0, 1, and 2), if a user specifies NULL or 0 for the AUTO_INCREMENT column in an
INSERT, InnoDB treats the row as if the value was not specified and generates a new value for it.

• Assigning a negative value to the AUTO_INCREMENT column

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is not defined if you
assign a negative value to the AUTO_INCREMENT column.

• If the AUTO_INCREMENT value becomes larger than the maximum integer for the specified integer
type

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is not defined if the
value becomes larger than the maximum integer that can be stored in the specified integer type.

• Gaps in auto-increment values for “bulk inserts”

With innodb_autoinc_lock_mode set to 0 (“traditional”) or 1 (“consecutive”), the auto-increment
values generated by any given statement will be consecutive, without gaps, because the table-level
AUTO-INC lock is held until the end of the statement, and only one such statement can execute at a
time.

With innodb_autoinc_lock_mode set to 2 (“interleaved”), there may be gaps in the auto-
increment values generated by “bulk inserts,” but only if there are concurrently executing “INSERT-
like” statements.

For lock modes 1 or 2, gaps may occur between successive statements because for bulk inserts
the exact number of auto-increment values required by each statement may not be known and
overestimation is possible.

• Auto-increment values assigned by “mixed-mode inserts”

Consider a “mixed-mode insert,” where a “simple insert” specifies the auto-increment value for
some (but not all) resulting rows. Such a statement will behave differently in lock modes 0, 1, and
2. For example, assume c1 is an AUTO_INCREMENT column of table t1, and that the most recent
automatically generated sequence number is 100. Consider the following “mixed-mode insert”
statement:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With innodb_autoinc_lock_mode set to 0 (“traditional”), the four new rows will be:

+-----+------+
| c1 | c2 |
+-----+------+
1	a
101	b
5	c
102	d
+-----+------+

The next available auto-increment value will be 103 because the auto-increment values are allocated
one at a time, not all at once at the beginning of statement execution. This result is true whether or
not there are concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to 1 (“consecutive”), the four new rows will also be:

+-----+------+
| c1 | c2 |
+-----+------+

AUTO_INCREMENT Handling in InnoDB

2039

1	a
101	b
5	c
102	d
+-----+------+

However, in this case, the next available auto-increment value will be 105, not 103 because four
auto-increment values are allocated at the time the statement is processed, but only two are used.
This result is true whether or not there are concurrently executing “INSERT-like” statements (of any
type).

With innodb_autoinc_lock_mode set to mode 2 (“interleaved”), the four new rows will be:

+-----+------+
| c1 | c2 |
+-----+------+
1	a
x	b
5	c
y	d
+-----+------+

The values of x and y will be unique and larger than any previously generated rows. However,
the specific values of x and y will depend on the number of auto-increment values generated by
concurrently executing statements.

Finally, consider the following statement, issued when the most-recently generated sequence
number was the value 4:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With any innodb_autoinc_lock_mode setting, this statement will generate a duplicate-key error
23000 (Can't write; duplicate key in table) because 5 will be allocated for the row
(NULL, 'b') and insertion of the row (5, 'c') will fail.

InnoDB AUTO_INCREMENT Counter Initialization

This section describes how InnoDB initializes AUTO_INCREMENT counters.

If you specify an AUTO_INCREMENT column for an InnoDB table, the table handle in the InnoDB data
dictionary contains a special counter called the auto-increment counter that is used in assigning new
values for the column. This counter is stored only in main memory, not on disk.

To initialize an auto-increment counter after a server restart, InnoDB executes the equivalent of the
following statement on the first insert into a table containing an AUTO_INCREMENT column.

SELECT MAX(ai_col) FROM table_name FOR UPDATE;

InnoDB increments the value retrieved by the statement and assigns it to the column and to the
auto-increment counter for the table. By default, the value is incremented by 1. This default can be
overridden by the auto_increment_increment configuration setting.

If the table is empty, InnoDB uses the value 1. This default can be overridden by the
auto_increment_offset configuration setting.

If a SHOW TABLE STATUS statement examines the table before the auto-increment counter is
initialized, InnoDB initializes but does not increment the value. The value is stored for use by later
inserts. This initialization uses a normal exclusive-locking read on the table and the lock lasts to the
end of the transaction. InnoDB follows the same procedure for initializing the auto-increment counter
for a newly created table.

InnoDB and FOREIGN KEY Constraints

2040

After the auto-increment counter has been initialized, if you do not explicitly specify a value for an
AUTO_INCREMENT column, InnoDB increments the counter and assigns the new value to the column.
If you insert a row that explicitly specifies the column value, and the value is greater than the current
counter value, the counter is set to the specified column value.

InnoDB uses the in-memory auto-increment counter as long as the server runs. When the server is
stopped and restarted, InnoDB reinitializes the counter for each table for the first INSERT to the table,
as described earlier.

A server restart also cancels the effect of the AUTO_INCREMENT = N table option in CREATE TABLE
and ALTER TABLE statements, which you can use with InnoDB tables to set the initial counter value
or alter the current counter value.

14.5.6 InnoDB and FOREIGN KEY Constraints

This section describes differences in the InnoDB storage engine's handling of foreign keys as
compared with that of the MySQL Server.

Foreign Key Definitions

Foreign key definitions for InnoDB tables are subject to the following conditions:

• InnoDB permits a foreign key to reference any index column or group of columns. However, in
the referenced table, there must be an index where the referenced columns are listed as the first
columns in the same order.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This means
that no user-partitioned InnoDB table may contain foreign key references or columns referenced by
foreign keys.

• InnoDB allows a foreign key constraint to reference a non-unique key. This is an InnoDB extension
to standard SQL.

Referential Actions

Referential actions for foreign keys of InnoDB tables are subject to the following conditions:

• While SET DEFAULT is allowed by the MySQL Server, it is rejected as invalid by InnoDB. CREATE
TABLE and ALTER TABLE statements using this clause are not allowed for InnoDB tables.

• If there are several rows in the parent table that have the same referenced key value, InnoDB acts
in foreign key checks as if the other parent rows with the same key value do not exist. For example,
if you have defined a RESTRICT type constraint, and there is a child row with several parent rows,
InnoDB does not permit the deletion of any of those parent rows.

• InnoDB performs cascading operations through a depth-first algorithm, based on records in the
indexes corresponding to the foreign key constraints.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the cascade, it acts like RESTRICT. This means that you cannot use self-
referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent infinite
loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the other hand,
is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not be nested
more than 15 levels deep.

• Like MySQL in general, in an SQL statement that inserts, deletes, or updates many rows, InnoDB
checks UNIQUE and FOREIGN KEY constraints row-by-row. When performing foreign key checks,
InnoDB sets shared row-level locks on child or parent records it has to look at. InnoDB checks
foreign key constraints immediately; the check is not deferred to transaction commit. According to
the SQL standard, the default behavior should be deferred checking. That is, constraints are only
checked after the entire SQL statement has been processed. Until InnoDB implements deferred

Limits on InnoDB Tables

2041

constraint checking, some things will be impossible, such as deleting a record that refers to itself
using a foreign key.

Foreign Key Usage and Error Information

You can obtain general information about foreign keys and their usage from querying the
INFORMATION_SCHEMA.KEY_COLUMN_USAGE table, and more information more specific to InnoDB
tables can be found in the INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables,
also in the INFORMATION_SCHEMA database. See also Section 13.1.14.3, “Using FOREIGN KEY
Constraints”.

In addition to SHOW ERRORS, in the event of a foreign key error involving InnoDB tables (usually Error
150 in the MySQL Server), you can obtain a detailed explanation of the most recent InnoDB foreign
key error by checking the output of SHOW ENGINE INNODB STATUS.

14.5.7 Limits on InnoDB Tables

Warning

Do not convert MySQL system tables in the mysql database from MyISAM to
InnoDB tables. This is an unsupported operation. If you do this, MySQL does
not restart until you restore the old system tables from a backup or re-generate
them with the mysql_install_db program.

Warning

 It is not a good idea to configure InnoDB to use data files or log files on NFS
volumes. Otherwise, the files might be locked by other processes and become
unavailable for use by MySQL.

Maximums and Minimums

• A table can contain a maximum of 1017 columns (raised in MySQL 5.6.9 from the earlier limit of
1000). Virtual generated columns are included in this limit.

• A table can contain a maximum of 64 secondary indexes.

• By default, an index key for a single-column index can be up to 767 bytes. The same length limit
applies to any index key prefix. See Section 13.1.11, “CREATE INDEX Syntax”. For example, you
might hit this limit with a column prefix index of more than 255 characters on a TEXT or VARCHAR
column, assuming a UTF-8 character set and the maximum of 3 bytes for each character. When the
innodb_large_prefix configuration option is enabled, this length limit is raised to 3072 bytes, for
InnoDB tables that use the DYNAMIC and COMPRESSED row formats.

Attempting to use an index prefix length that is greater than the allowed maximum value produces an
error. To avoid such errors for replication configurations, avoid setting the innodb_large_prefix
option on the master if it cannot also be set on the slaves, and the slaves have unique indexes that
could be affected by this limit.

• The InnoDB internal maximum key length is 3500 bytes, but MySQL itself restricts this to 3072
bytes. This limit applies to the length of the combined index key in a multi-column index.

• If you reduce the InnoDB page size to 8KB or 4KB by specifying the innodb_page_size option
when creating the MySQL instance, the maximum length of the index key is lowered proportionally,
based on the limit of 3072 bytes for a 16KB page size. That is, the maximum index key length is
1536 bytes when the page size is 8KB, and 768 bytes when the page size is 4KB.

• The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB and
TEXT), is slightly less than half of a database page for 4KB, 8KB, 16KB, and 32KB page sizes. For
example, the maximum row length for the default innodb_page_size of 16KB is about 8000 bytes.

Limits on InnoDB Tables

2042

For an InnoDB page size of 64KB, the maximum row length is about 16000 bytes. LONGBLOB and
LONGTEXT columns must be less than 4GB, and the total row length, including BLOB and TEXT
columns, must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a
page, variable-length columns are chosen for external off-page storage until the row fits within half a
page, as described in Section 14.9.2, “File Space Management”.

• Although InnoDB supports row sizes larger than 65,535 bytes internally, MySQL itself imposes a
row-size limit of 65,535 for the combined size of all columns:

mysql> CREATE TABLE t (a VARCHAR(8000), b VARCHAR(10000),
 -> c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 -> f VARCHAR(10000), g VARCHAR(10000)) ENGINE=InnoDB;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

See Section C.10.4, “Limits on Table Column Count and Row Size”.

• On some older operating systems, files must be less than 2GB. This is not a limitation of InnoDB
itself, but if you require a large tablespace, you will need to configure it using several smaller data
files rather than one large data file.

• The combined size of the InnoDB log files can be up to 512GB.

• The minimum tablespace size is slightly larger than 10MB. The maximum tablespace size is four
billion database pages (64TB). This is also the maximum size for a table.

• The default database page size in InnoDB is 16KB. You can lower the page size to 8KB or 4KB by
specifying the innodb_page_size option when creating the MySQL instance.

Note

Prior to MySQL 5.7.6, increasing the page size is not a supported operation.
There is no guarantee that InnoDB will function normally with a page size
greater than 16KB. Problems compiling or running InnoDB may occur. In
particular, ROW_FORMAT=COMPRESSED in the Barracuda file format assumes
that the page size is at most 16KB and uses 14-bit pointers.

As of MySQL 5.7.6, 32KB and 64KB page sizes are supported but
ROW_FORMAT=COMPRESSED is still unsupported for page sizes greater
than 16KB. For both 32KB and 64KB page sizes, the maximum record
size is 16KB. For innodb_page_size=32k, extent size is 2MB. For
innodb_page_size=64k, extent size is 4MB.

A MySQL instance using a particular InnoDB page size cannot use data files
or log files from an instance that uses a different page size. This limitation
could affect restore or downgrade operations using data from MySQL 5.6,
which does support page sizes other than 16KB.

Restrictions on InnoDB Tables

• ANALYZE TABLE determines index cardinality (as displayed in the Cardinality column of SHOW
INDEX output) by doing random dives to each of the index trees and updating index cardinality
estimates accordingly. Because these are only estimates, repeated runs of ANALYZE TABLE could
produce different numbers. This makes ANALYZE TABLE fast on InnoDB tables but not 100%
accurate because it does not take all rows into account.

You can make the statistics collected by ANALYZE TABLE more precise and more stable by turning
on the innodb_stats_persistent configuration option, as explained in Section 14.3.11.1,

Limits on InnoDB Tables

2043

“Configuring Persistent Optimizer Statistics Parameters”. When that setting is enabled, it is important
to run ANALYZE TABLE after major changes to indexed column data, because the statistics are not
recalculated periodically (such as after a server restart) as they traditionally have been.

You can change the number of random dives by modifying the
innodb_stats_persistent_sample_pages system variable (if the persistent statistics setting is
turned on), or the innodb_stats_transient_sample_pages system variable (if the persistent
statistics setting is turned off).

MySQL uses index cardinality estimates only in join optimization. If some join is not optimized in
the right way, you can try using ANALYZE TABLE. In the few cases that ANALYZE TABLE does not
produce values good enough for your particular tables, you can use FORCE INDEX with your queries
to force the use of a particular index, or set the max_seeks_for_key system variable to ensure that
MySQL prefers index lookups over table scans. See Section 5.1.4, “Server System Variables”, and
Section B.5.5, “Optimizer-Related Issues”.

• If statements or transactions are running on a table and ANALYZE TABLE is run on the same table
followed by a second ANALYZE TABLE operation, the second ANALYZE TABLE operation is blocked
until the statements or transactions are completed. This behaviour occurs because ANALYZE TABLE
marks the currently loaded table definition as obsolete when ANALYZE TABLE is finished running.
New statements or transactions (including a second ANALYZE TABLE statement) must load the
new table definition into the table cache, which cannot occur until currently running statements or
transactions are completed and the old table definition is purged. Loading multiple concurrent table
definitions is not supported.

• SHOW TABLE STATUS does not give accurate statistics on InnoDB tables, except for the physical
size reserved by the table. The row count is only a rough estimate used in SQL optimization.

• InnoDB does not keep an internal count of rows in a table because concurrent transactions might
“see” different numbers of rows at the same time. To process a SELECT COUNT(*) FROM t
statement, InnoDB scans an index of the table, which takes some time if the index is not entirely
in the buffer pool. To get a fast count, you have to use a counter table you create yourself and let
your application update it according to the inserts and deletes it does. If an approximate row count is
sufficient, SHOW TABLE STATUS can be used. See Section 8.5, “Optimizing for InnoDB Tables”.

• On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases
and tables using lowercase names.

• An AUTO_INCREMENT column ai_col must be defined as part of an index such that it is possible
to perform the equivalent of an indexed SELECT MAX(ai_col) lookup on the table to obtain the
maximum column value. Typically, this is achieved by making the column the first column of some
table index.

• InnoDB sets an exclusive lock on the end of the index associated with the AUTO_INCREMENT
column while initializing a previously specified AUTO_INCREMENT column on a table.

With innodb_autoinc_lock_mode=0, InnoDB uses a special AUTO-INC table lock mode where
the lock is obtained and held to the end of the current SQL statement while accessing the auto-
increment counter. Other clients cannot insert into the table while the AUTO-INC table lock is held.
The same behavior occurs for “bulk inserts” with innodb_autoinc_lock_mode=1. Table-level
AUTO-INC locks are not used with innodb_autoinc_lock_mode=2. For more information, See
Section 14.5.5, “AUTO_INCREMENT Handling in InnoDB”.

• When you restart the MySQL server, InnoDB may reuse an old value that was generated for an
AUTO_INCREMENT column but never stored (that is, a value that was generated during an old
transaction that was rolled back).

• When an AUTO_INCREMENT integer column runs out of values, a subsequent INSERT operation
returns a duplicate-key error. This is general MySQL behavior, similar to how MyISAM works.

InnoDB Table and Page Compression

2044

• DELETE FROM tbl_name does not regenerate the table but instead deletes all rows, one by one.

• Cascaded foreign key actions do not activate triggers.

• You cannot create a table with a column name that matches the name of an internal InnoDB column
(including DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR, and DB_MIX_ID). The server reports error
1005 and refers to error −1 in the error message. This restriction applies only to use of the names in
uppercase.

Locking and Transactions

• LOCK TABLES acquires two locks on each table if innodb_table_locks=1 (the default). In
addition to a table lock on the MySQL layer, it also acquires an InnoDB table lock. Versions of
MySQL before 4.1.2 did not acquire InnoDB table locks; the old behavior can be selected by setting
innodb_table_locks=0. If no InnoDB table lock is acquired, LOCK TABLES completes even if
some records of the tables are being locked by other transactions.

In MySQL 5.7, innodb_table_locks=0 has no effect for tables locked explicitly with LOCK
TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK
TABLES ... WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.

• All InnoDB locks held by a transaction are released when the transaction is committed or aborted.
Thus, it does not make much sense to invoke LOCK TABLES on InnoDB tables in autocommit=1
mode because the acquired InnoDB table locks would be released immediately.

• You cannot lock additional tables in the middle of a transaction because LOCK TABLES performs an
implicit COMMIT and UNLOCK TABLES.

• The limit on data-modifying transactions is now 96 * 1023 concurrent transactions that generate
undo records. As of MySQL 5.7.2, 32 of 128 rollback segments are assigned to non-redo logs for
transactions that modify temporary tables and related objects. This reduces the maximum number of
concurrent data-modifying transactions from 128K to 96K. The 96K limit assumes that transactions
do not modify temporary tables. If all data-modifying transactions also modify temporary tables, the
limit is 32K concurrent transactions.

14.6 InnoDB Table and Page Compression

This section provides information about the InnoDB table compression and InnoDB page compression
features. The page compression feature, referred to as transparent page compression, was introduced
in MySQL 5.7.8.

Using the compression features of InnoDB, you can create tables where the data is stored in
compressed form. Compression can help to improve both raw performance and scalability. The
compression means less data is transferred between disk and memory, and takes up less space on
disk and in memory. The benefits are amplified for tables with secondary indexes, because index data
is compressed also. Compression can be especially important for SSD storage devices, because they
tend to have lower capacity than HDD devices.

14.6.1 InnoDB Table Compression

This section describes InnoDB table compression, which is supported with InnoDB tables that
reside in file_per_table tablespaces or general tablespaces. Table compression is enabled using the
ROW_FORMAT=COMPRESSED attribute with CREATE TABLE or ALTER TABLE.

14.6.1.1 Overview of Table Compression

Because processors and cache memories have increased in speed more than disk storage devices,
many workloads are disk-bound. Data compression enables smaller database size, reduced I/O, and

InnoDB Table Compression

2045

improved throughput, at the small cost of increased CPU utilization. Compression is especially valuable
for read-intensive applications, on systems with enough RAM to keep frequently used data in memory.

An InnoDB table created with ROW_FORMAT=COMPRESSED can use a smaller page size on disk than
the configured innodb_page_size value. Smaller pages require less I/O to read from and write to
disk, which is especially valuable for SSD devices.

The compressed page size is specified through the CREATE TABLE or ALTER TABLE
KEY_BLOCK_SIZE parameter. The different page size requires that the table be placed in a file-per-
table tablespace or general tablespace rather than in the system tablespace, as the system tablespace
cannot store compressed tables. For more information, see Section 14.4.4, “InnoDB File-Per-Table
Tablespaces”, and Section 14.4.9, “InnoDB General Tablespaces”.

The level of compression is the same regardless of the KEY_BLOCK_SIZE value. As you specify
smaller values for KEY_BLOCK_SIZE, you get the I/O benefits of increasingly smaller pages. But if you
specify a value that is too small, there is additional overhead to reorganize the pages when data values
cannot be compressed enough to fit multiple rows in each page. There is a hard limit on how small
KEY_BLOCK_SIZE can be for a table, based on the lengths of the key columns for each of its indexes.
Specify a value that is too small, and the CREATE TABLE or ALTER TABLE statement fails.

In the buffer pool, the compressed data is held in small pages, with a page size based on the
KEY_BLOCK_SIZE value. For extracting or updating the column values, MySQL also creates an
uncompressed page in the buffer pool with the uncompressed data. Within the buffer pool, any
updates to the uncompressed page are also re-written back to the equivalent compressed page. You
might need to size your buffer pool to accommodate the additional data of both compressed and
uncompressed pages, although the uncompressed pages are evicted from the buffer pool when space
is needed, and then uncompressed again on the next access.

14.6.1.2 Creating Compressed Tables

Compressed tables can be created in file-per-table tablespaces or in general tablespaces. Table
compression is not available for the InnoDB system tablespace. The system tablespace (space 0, the
.ibdata files) can contain user-created tables, but it also contains internal system data, which is never
compressed. Thus, compression applies only to tables (and indexes) stored in file-per-table or general
tablespaces.

Creating a Compressed Table in File-Per-Table Tablespace

To create a compressed table in a file-per-table tablespace, innodb_file_per_table must be
enabled (the default in MySQL 5.6.6) and innodb_file_format must be set to Barracuda. You
can set these parameters in the MySQL configuration file (my.cnf or my.ini) or dynamically, using a
SET statement.

After the innodb_file_per_table and innodb_file_format options are configured, specify
the ROW_FORMAT=COMPRESSED clause or KEY_BLOCK_SIZE clause, or both, in a CREATE TABLE or
ALTER TABLE statement to create a compressed table in a file-per-table tablespace.

For example, you might use the following statements:

SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=Barracuda;
CREATE TABLE t1
 (c1 INT PRIMARY KEY)
 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=8;

Creating a Compressed Table in a General Tablespace

To create a compressed table in a general tablespace, FILE_BLOCK_SIZE must be defined for the
general tablespace, which is specified when the tablespace is created. The FILE_BLOCK_SIZE value
must be a valid compressed page size in relation to the innodb_page_size value, and the page
size of the compressed table, defined by the CREATE TABLE or ALTER TABLE KEY_BLOCK_SIZE

InnoDB Table Compression

2046

clause, must be equal to FILE_BLOCK_SIZE/1024. For example, if innodb_page_size=16384 and
FILE_BLOCK_SIZE=8192, the KEY_BLOCK_SIZE of the table must be 8. For more information, see
Section 14.4.9, “InnoDB General Tablespaces”.

The following example demonstrates creating a general tablespace and adding a compressed table.
The example assumes a default innodb_page_size of 16K. The FILE_BLOCK_SIZE of 8192
requires that the compressed table have a KEY_BLOCK_SIZE of 8.

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t4 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=8;
Query OK, 0 rows affected (0.00 sec)

Notes

• If you specify ROW_FORMAT=COMPRESSED, you can omit KEY_BLOCK_SIZE; the KEY_BLOCK_SIZE
setting defaults to half the innodb_page_size value.

• If you specify a valid KEY_BLOCK_SIZE value, you can omit ROW_FORMAT=COMPRESSED;
compression is enabled automatically.

• To determine the best value for KEY_BLOCK_SIZE, typically you create several copies of the same
table with different values for this clause, then measure the size of the resulting .ibd files and
see how well each performs with a realistic workload. For general tablespaces, keep in mind that
dropping a table does not reduce the size of the general tablespace .ibd file, nor does it return
disk space to the operating system. For more information, see Section 14.4.9, “InnoDB General
Tablespaces”.

• The KEY_BLOCK_SIZE value is treated as a hint; a different size could be used by InnoDB if
necessary. For file-per-table tablespaces, the KEY_BLOCK_SIZE can only be less than or equal
to the innodb_page_size value. If you specify a value greater than the innodb_page_size
value, the specified value is ignored, a warning is issued, and KEY_BLOCK_SIZE is set to half of the
innodb_page_size value. If innodb_strict_mode=ON, specifying an invalid KEY_BLOCK_SIZE
value returns an error. For general tablespaces, valid KEY_BLOCK_SIZE values depend on the
FILE_BLOCK_SIZE setting of the tablespace. For more information, see Section 14.4.9, “InnoDB
General Tablespaces”.

• Support for 32k and 64k page sizes was added in MySQL 5.7.6 but these page sizes do not support
compression. For more information, refer to the innodb_page_size documentation.

• The default uncompressed size of InnoDB data pages is 16KB. Depending on the combination of
option values, MySQL uses a page size of 1KB, 2KB, 4KB, 8KB, or 16KB for the tablespace data file
(.ibd file). The actual compression algorithm is not affected by the KEY_BLOCK_SIZE value; the
value determines how large each compressed chunk is, which in turn affects how many rows can be
packed into each compressed page.

• When creating a compressed table in a file-per-table tablespace, setting KEY_BLOCK_SIZE equal
to the InnoDB page size does not typically result in much compression. For example, setting
KEY_BLOCK_SIZE=16 typically would not result in much compression, since the normal InnoDB
page size is 16KB. This setting may still be useful for tables with many long BLOB, VARCHAR or TEXT
columns, because such values often do compress well, and might therefore require fewer overflow
pages as described in Section 14.6.1.5, “How Compression Works for InnoDB Tables”. For general
tablespaces, a KEY_BLOCK_SIZE value equal to the InnoDB page size is not permitted. For more
information, see Section 14.4.9, “InnoDB General Tablespaces”.

• All indexes of a table (including the clustered index) are compressed using the same page size, as
specified in the CREATE TABLE or ALTER TABLE statement. Table attributes such as ROW_FORMAT
and KEY_BLOCK_SIZE are not part of the CREATE INDEX syntax for InnoDB tables, and are
ignored if they are specified (although, if specified, they will appear in the output of the SHOW
CREATE TABLE statement).

InnoDB Table Compression

2047

• For performance-related configuration options, see Section 14.6.1.3, “Tuning Compression for
InnoDB Tables”.

Restrictions on Compressed Tables

• MySQL versions prior to 5.1 cannot process compressed tables.

• Compressed tables cannot be stored in the InnoDB system tablespace.

• General tablespaces can contain multiple tables, but compressed and uncompressed tables cannot
coexist within the same general tablespace.

• Compression applies to an entire table and all its associated indexes, not to individual rows, despite
the clause name ROW_FORMAT.

14.6.1.3 Tuning Compression for InnoDB Tables

Most often, the internal optimizations described in InnoDB Data Storage and Compression ensure that
the system runs well with compressed data. However, because the efficiency of compression depends
on the nature of your data, you can make decisions that affect the performance of compressed tables:

• Which tables to compress.

• What compressed page size to use.

• Whether to adjust the size of the buffer pool based on run-time performance characteristics, such as
the amount of time the system spends compressing and uncompressing data. Whether the workload
is more like a data warehouse (primarily queries) or an OLTP system (mix of queries and DML).

• If the system performs DML operations on compressed tables, and the way the data is distributed
leads to expensive compression failures at runtime, you might adjust additional advanced
configuration options.

Use the guidelines in this section to help make those architectural and configuration choices.
When you are ready to conduct long-term testing and put compressed tables into production, see
Section 14.6.1.4, “Monitoring Compression at Runtime” for ways to verify the effectiveness of those
choices under real-world conditions.

When to Use Compression

In general, compression works best on tables that include a reasonable number of character string
columns and where the data is read far more often than it is written. Because there are no guaranteed
ways to predict whether or not compression benefits a particular situation, always test with a specific
workload and data set running on a representative configuration. Consider the following factors when
deciding which tables to compress.

Data Characteristics and Compression

A key determinant of the efficiency of compression in reducing the size of data files is the nature of
the data itself. Recall that compression works by identifying repeated strings of bytes in a block of
data. Completely randomized data is the worst case. Typical data often has repeated values, and so
compresses effectively. Character strings often compress well, whether defined in CHAR, VARCHAR,
TEXT or BLOB columns. On the other hand, tables containing mostly binary data (integers or floating
point numbers) or data that is previously compressed (for example JPEG or PNG images) may not
generally compress well, significantly or at all.

You choose whether to turn on compression for each InnoDB table. A table and all of its indexes use
the same (compressed) page size. It might be that the primary key (clustered) index, which contains
the data for all columns of a table, compresses more effectively than the secondary indexes. For those
cases where there are long rows, the use of compression might result in long column values being

InnoDB Table Compression

2048

stored “off-page”, as discussed in Section 14.8.3, “DYNAMIC and COMPRESSED Row Formats”.
Those overflow pages may compress well. Given these considerations, for many applications, some
tables compress more effectively than others, and you might find that your workload performs best only
with a subset of tables compressed.

To determine whether or not to compress a particular table, conduct experiments. You can get a
rough estimate of how efficiently your data can be compressed by using a utility that implements LZ77
compression (such as gzip or WinZip) on a copy of the .ibd file for an uncompressed table. You can
expect less compression from a MySQL compressed table than from file-based compression tools,
because MySQL compresses data in chunks based on the page size, 16KB by default. In addition
to user data, the page format includes some internal system data that is not compressed. File-based
compression utilities can examine much larger chunks of data, and so might find more repeated strings
in a huge file than MySQL can find in an individual page.

Another way to test compression on a specific table is to copy some data from your uncompressed
table to a similar, compressed table (having all the same indexes) in a file-per-table tablespace and
look at the size of the resulting .ibd file. For example:

use test;
set global innodb_file_per_table=1;
set global innodb_file_format=Barracuda;
set global autocommit=0;

-- Create an uncompressed table with a million or two rows.
create table big_table as select * from information_schema.columns;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
commit;
alter table big_table add id int unsigned not null primary key auto_increment;

show create table big_table\G

select count(id) from big_table;

-- Check how much space is needed for the uncompressed table.
\! ls -l data/test/big_table.ibd

create table key_block_size_4 like big_table;
alter table key_block_size_4 key_block_size=4 row_format=compressed;

insert into key_block_size_4 select * from big_table;
commit;

-- Check how much space is needed for a compressed table
-- with particular compression settings.
\! ls -l data/test/key_block_size_4.ibd

This experiment produced the following numbers, which of course could vary considerably depending
on your table structure and data:

-rw-rw---- 1 cirrus staff 310378496 Jan 9 13:44 data/test/big_table.ibd
-rw-rw---- 1 cirrus staff 83886080 Jan 9 15:10 data/test/key_block_size_4.ibd

To see whether compression is efficient for your particular workload:

• For simple tests, use a MySQL instance with no other compressed tables and run queries against
the INFORMATION_SCHEMA.INNODB_CMP table.

InnoDB Table Compression

2049

• For more elaborate tests involving workloads with multiple compressed tables, run queries against
the INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table. Because the statistics in the
INNODB_CMP_PER_INDEX table are expensive to collect, you must enable the configuration option
innodb_cmp_per_index_enabled before querying that table, and you might restrict such testing
to a development server or a non-critical slave server.

• Run some typical SQL statements against the compressed table you are testing.

• Examine the ratio of successful compression operations to overall compression
operations by querying the INFORMATION_SCHEMA.INNODB_CMP or
INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table, and comparing COMPRESS_OPS to
COMPRESS_OPS_OK.

• If a high percentage of compression operations complete successfully, the table might be a good
candidate for compression.

• If you get a high proportion of compression failures, you can adjust innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
options as described in Section 14.6.1.6, “Compression for OLTP Workloads”, and try further tests.

Database Compression versus Application Compression

Decide whether to compress data in your application or in the table; do not use both types of
compression for the same data. When you compress the data in the application and store the results
in a compressed table, extra space savings are extremely unlikely, and the double compression just
wastes CPU cycles.

Compressing in the Database

When enabled, MySQL table compression is automatic and applies to all columns and index values.
The columns can still be tested with operators such as LIKE, and sort operations can still use indexes
even when the index values are compressed. Because indexes are often a significant fraction of the
total size of a database, compression could result in significant savings in storage, I/O or processor
time. The compression and decompression operations happen on the database server, which likely is a
powerful system that is sized to handle the expected load.

Compressing in the Application

If you compress data such as text in your application, before it is inserted into the database, You might
save overhead for data that does not compress well by compressing some columns and not others.
This approach uses CPU cycles for compression and uncompression on the client machine rather
than the database server, which might be appropriate for a distributed application with many clients, or
where the client machine has spare CPU cycles.

Hybrid Approach

Of course, it is possible to combine these approaches. For some applications, it may be appropriate to
use some compressed tables and some uncompressed tables. It may be best to externally compress
some data (and store it in uncompressed tables) and allow MySQL to compress (some of) the other
tables in the application. As always, up-front design and real-life testing are valuable in reaching the
right decision.

Workload Characteristics and Compression

In addition to choosing which tables to compress (and the page size), the workload is another key
determinant of performance. If the application is dominated by reads, rather than updates, fewer
pages need to be reorganized and recompressed after the index page runs out of room for the per-
page “modification log” that MySQL maintains for compressed data. If the updates predominantly
change non-indexed columns or those containing BLOBs or large strings that happen to be stored “off-
page”, the overhead of compression may be acceptable. If the only changes to a table are INSERTs
that use a monotonically increasing primary key, and there are few secondary indexes, there is little

InnoDB Table Compression

2050

need to reorganize and recompress index pages. Since MySQL can “delete-mark” and delete rows
on compressed pages “in place” by modifying uncompressed data, DELETE operations on a table are
relatively efficient.

For some environments, the time it takes to load data can be as important as run-time retrieval.
Especially in data warehouse environments, many tables may be read-only or read-mostly. In those
cases, it might or might not be acceptable to pay the price of compression in terms of increased load
time, unless the resulting savings in fewer disk reads or in storage cost is significant.

Fundamentally, compression works best when the CPU time is available for compressing and
uncompressing data. Thus, if your workload is I/O bound, rather than CPU-bound, you might find
that compression can improve overall performance. When you test your application performance with
different compression configurations, test on a platform similar to the planned configuration of the
production system.

Configuration Characteristics and Compression

Reading and writing database pages from and to disk is the slowest aspect of system performance.
Compression attempts to reduce I/O by using CPU time to compress and uncompress data, and is
most effective when I/O is a relatively scarce resource compared to processor cycles.

This is often especially the case when running in a multi-user environment with fast, multi-core CPUs.
When a page of a compressed table is in memory, MySQL often uses additional memory, typically
16KB, in the buffer pool for an uncompressed copy of the page. The adaptive LRU algorithm attempts
to balance the use of memory between compressed and uncompressed pages to take into account
whether the workload is running in an I/O-bound or CPU-bound manner. Still, a configuration with
more memory dedicated to the buffer pool tends to run better when using compressed tables than a
configuration where memory is highly constrained.

Choosing the Compressed Page Size

The optimal setting of the compressed page size depends on the type and distribution of data that the
table and its indexes contain. The compressed page size should always be bigger than the maximum
record size, or operations may fail as noted in Compression of B-Tree Pages.

Setting the compressed page size too large wastes some space, but the pages do not have to be
compressed as often. If the compressed page size is set too small, inserts or updates may require
time-consuming recompression, and the B-tree nodes may have to be split more frequently, leading to
bigger data files and less efficient indexing.

Typically, you set the compressed page size to 8K or 4K bytes. Given that the maximum row size for
an InnoDB table is around 8K, KEY_BLOCK_SIZE=8 is usually a safe choice.

14.6.1.4 Monitoring Compression at Runtime

Overall application performance, CPU and I/O utilization and the size of disk files are good indicators of
how effective compression is for your application. This section builds on the performance tuning advice
from Section 14.6.1.3, “Tuning Compression for InnoDB Tables”, and shows how to find problems that
might not turn up during initial testing.

To dig deeper into performance considerations for compressed tables, you can monitor compression
performance at runtime using the Information Schema tables described in Example 14.10, “Using the
Compression Information Schema Tables”. These tables reflect the internal use of memory and the
rates of compression used overall.

The INNODB_CMP table reports information about compression activity for each compressed page
size (KEY_BLOCK_SIZE) in use. The information in these tables is system-wide: it summarizes the
compression statistics across all compressed tables in your database. You can use this data to help
decide whether or not to compress a table by examining these tables when no other compressed
tables are being accessed. It involves relatively low overhead on the server, so you might query it
periodically on a production server to check the overall efficiency of the compression feature.

InnoDB Table Compression

2051

The INNODB_CMP_PER_INDEX table reports information about compression activity for individual
tables and indexes. This information is more targeted and more useful for evaluating compression
efficiency and diagnosing performance issues one table or index at a time. (Because that each InnoDB
table is represented as a clustered index, MySQL does not make a big distinction between tables and
indexes in this context.) The INNODB_CMP_PER_INDEX table does involve substantial overhead, so it
is more suitable for development servers, where you can compare the effects of different workloads,
data, and compression settings in isolation. To guard against imposing this monitoring overhead by
accident, you must enable the innodb_cmp_per_index_enabled configuration option before you
can query the INNODB_CMP_PER_INDEX table.

The key statistics to consider are the number of, and amount of time spent performing, compression
and uncompression operations. Since MySQL splits B-tree nodes when they are too full to contain
the compressed data following a modification, compare the number of “successful” compression
operations with the number of such operations overall. Based on the information in the INNODB_CMP
and INNODB_CMP_PER_INDEX tables and overall application performance and hardware resource
utilization, you might make changes in your hardware configuration, adjust the size of the buffer pool,
choose a different page size, or select a different set of tables to compress.

If the amount of CPU time required for compressing and uncompressing is high, changing to faster
or multi-core CPUs can help improve performance with the same data, application workload and set
of compressed tables. Increasing the size of the buffer pool might also help performance, so that
more uncompressed pages can stay in memory, reducing the need to uncompress pages that exist in
memory only in compressed form.

A large number of compression operations overall (compared to the number of INSERT, UPDATE and
DELETE operations in your application and the size of the database) could indicate that some of your
compressed tables are being updated too heavily for effective compression. If so, choose a larger page
size, or be more selective about which tables you compress.

If the number of “successful” compression operations (COMPRESS_OPS_OK) is a high percentage of
the total number of compression operations (COMPRESS_OPS), then the system is likely performing
well. If the ratio is low, then MySQL is reorganizing, recompressing, and splitting B-tree nodes more
often than is desirable. In this case, avoid compressing some tables, or increase KEY_BLOCK_SIZE
for some of the compressed tables. You might turn off compression for tables that cause the number
of “compression failures” in your application to be more than 1% or 2% of the total. (Such a failure ratio
might be acceptable during a temporary operation such as a data load).

14.6.1.5 How Compression Works for InnoDB Tables

This section describes some internal implementation details about compression for InnoDB tables. The
information presented here may be helpful in tuning for performance, but is not necessary to know for
basic use of compression.

Compression Algorithms

Some operating systems implement compression at the file system level. Files are typically divided into
fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation.
Every time something inside a block is modified, the whole block is recompressed before it is written
to disk. These properties make this compression technique unsuitable for use in an update-intensive
database system.

MySQL implements compression with the help of the well-known zlib library, which implements the
LZ77 compression algorithm. This compression algorithm is mature, robust, and efficient in both CPU
utilization and in reduction of data size. The algorithm is “lossless”, so that the original uncompressed
data can always be reconstructed from the compressed form. LZ77 compression works by finding
sequences of data that are repeated within the data to be compressed. The patterns of values in your
data determine how well it compresses, but typical user data often compresses by 50% or more.

Unlike compression performed by an application, or compression features of some other database
management systems, InnoDB compression applies both to user data and to indexes. In many

http://www.zlib.net/

InnoDB Table Compression

2052

cases, indexes can constitute 40-50% or more of the total database size, so this difference is
significant. When compression is working well for a data set, the size of the InnoDB data files (the
file-per-table tablespace or general tablespace .idb files) is 25% to 50% of the uncompressed
size or possibly smaller. Depending on the workload, this smaller database can in turn lead to
a reduction in I/O, and an increase in throughput, at a modest cost in terms of increased CPU
utilization. You can adjust the balance between compression level and CPU overhead by modifying the
innodb_compression_level configuration option.

InnoDB Data Storage and Compression

All user data in InnoDB tables is stored in pages comprising a B-tree index (the clustered index). In
some other database systems, this type of index is called an “index-organized table”. Each row in the
index node contains the values of the (user-specified or system-generated) primary key and all the
other columns of the table.

Secondary indexes in InnoDB tables are also B-trees, containing pairs of values: the index key and a
pointer to a row in the clustered index. The pointer is in fact the value of the primary key of the table,
which is used to access the clustered index if columns other than the index key and primary key are
required. Secondary index records must always fit on a single B-tree page.

The compression of B-tree nodes (of both clustered and secondary indexes) is handled differently from
compression of overflow pages used to store long VARCHAR, BLOB, or TEXT columns, as explained in
the following sections.

Compression of B-Tree Pages

Because they are frequently updated, B-tree pages require special treatment. It is important to
minimize the number of times B-tree nodes are split, as well as to minimize the need to uncompress
and recompress their content.

One technique MySQL uses is to maintain some system information in the B-tree node in
uncompressed form, thus facilitating certain in-place updates. For example, this allows rows to be
delete-marked and deleted without any compression operation.

In addition, MySQL attempts to avoid unnecessary uncompression and recompression of index pages
when they are changed. Within each B-tree page, the system keeps an uncompressed “modification
log” to record changes made to the page. Updates and inserts of small records may be written to this
modification log without requiring the entire page to be completely reconstructed.

When the space for the modification log runs out, InnoDB uncompresses the page, applies the
changes and recompresses the page. If recompression fails (a situation known as a compression
failure), the B-tree nodes are split and the process is repeated until the update or insert succeeds.

To avoid frequent compression failures in write-intensive workloads, such as for OLTP applications,
MySQL sometimes reserves some empty space (padding) in the page, so that the modification log
fills up sooner and the page is recompressed while there is still enough room to avoid splitting it.
The amount of padding space left in each page varies as the system keeps track of the frequency
of page splits. On a busy server doing frequent writes to compressed tables, you can adjust the
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
configuration options to fine-tune this mechanism.

Generally, MySQL requires that each B-tree page in an InnoDB table can accommodate at least
two records. For compressed tables, this requirement has been relaxed. Leaf pages of B-tree nodes
(whether of the primary key or secondary indexes) only need to accommodate one record, but that
record must fit, in uncompressed form, in the per-page modification log. If innodb_strict_mode is
ON, MySQL checks the maximum row size during CREATE TABLE or CREATE INDEX. If the row does
not fit, the following error message is issued: ERROR HY000: Too big row.

If you create a table when innodb_strict_mode is OFF, and a subsequent INSERT or UPDATE
statement attempts to create an index entry that does not fit in the size of the compressed page, the

InnoDB Table Compression

2053

operation fails with ERROR 42000: Row size too large. (This error message does not name
the index for which the record is too large, or mention the length of the index record or the maximum
record size on that particular index page.) To solve this problem, rebuild the table with ALTER TABLE
and select a larger compressed page size (KEY_BLOCK_SIZE), shorten any column prefix indexes, or
disable compression entirely with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPACT.

innodb_strict_mode is not applicable to general tablespaces, which also support compressed
tables. Tablespace management rules for general tablespaces are strictly enforced independently
of innodb_strict_mode. For more information, see Section 13.1.15, “CREATE TABLESPACE
Syntax”.

Compressing BLOB, VARCHAR, and TEXT Columns

In an InnoDB table, BLOB, VARCHAR, and TEXT columns that are not part of the primary key may be
stored on separately allocated overflow pages. We refer to these columns as off-page columns. Their
values are stored on singly-linked lists of overflow pages.

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, the values of BLOB,
TEXT, or VARCHAR columns may be stored fully off-page, depending on their length and the length of
the entire row. For columns that are stored off-page, the clustered index record only contains 20-byte
pointers to the overflow pages, one per column. Whether any columns are stored off-page depends
on the page size and the total size of the row. When the row is too long to fit entirely within the page
of the clustered index, MySQL chooses the longest columns for off-page storage until the row fits on
the clustered index page. As noted above, if a row does not fit by itself on a compressed page, an error
occurs.

Note

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED,
TEXT and BLOB columns that are less than or equal to 40 bytes are always
stored in-line.

Tables created in older versions of MySQL use the Antelope file format, which supports only
ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. In these formats, MySQL stores the first 768
bytes of BLOB, VARCHAR, and TEXT columns in the clustered index record along with the primary key.
The 768-byte prefix is followed by a 20-byte pointer to the overflow pages that contain the rest of the
column value.

When a table is in COMPRESSED format, all data written to overflow pages is compressed “as is”; that is,
MySQL applies the zlib compression algorithm to the entire data item. Other than the data, compressed
overflow pages contain an uncompressed header and trailer comprising a page checksum and a link
to the next overflow page, among other things. Therefore, very significant storage savings can be
obtained for longer BLOB, TEXT, or VARCHAR columns if the data is highly compressible, as is often the
case with text data. Image data, such as JPEG, is typically already compressed and so does not benefit
much from being stored in a compressed table; the double compression can waste CPU cycles for little
or no space savings.

The overflow pages are of the same size as other pages. A row containing ten columns stored off-
page occupies ten overflow pages, even if the total length of the columns is only 8K bytes. In an
uncompressed table, ten uncompressed overflow pages occupy 160K bytes. In a compressed table
with an 8K page size, they occupy only 80K bytes. Thus, it is often more efficient to use compressed
table format for tables with long column values.

For file-per-table tablespaces, using a 16K compressed page size can reduce storage and I/O
costs for BLOB, VARCHAR, or TEXT columns, because such data often compress well, and might
therefore require fewer overflow pages, even though the B-tree nodes themselves take as many pages
as in the uncompressed form. General tablespaces do not support a 16K compressed page size
(KEY_BLOCK_SIZE). For more information, see Section 14.4.9, “InnoDB General Tablespaces”.

Compression and the InnoDB Buffer Pool

InnoDB Table Compression

2054

In a compressed InnoDB table, every compressed page (whether 1K, 2K, 4K or 8K) corresponds to
an uncompressed page of 16K bytes (or a smaller size if innodb_page_size is set). To access the
data in a page, MySQL reads the compressed page from disk if it is not already in the buffer pool, then
uncompresses the page to its original form. This section describes how InnoDB manages the buffer
pool with respect to pages of compressed tables.

To minimize I/O and to reduce the need to uncompress a page, at times the buffer pool contains
both the compressed and uncompressed form of a database page. To make room for other required
database pages, MySQL can evict from the buffer pool an uncompressed page, while leaving the
compressed page in memory. Or, if a page has not been accessed in a while, the compressed form of
the page might be written to disk, to free space for other data. Thus, at any given time, the buffer pool
might contain both the compressed and uncompressed forms of the page, or only the compressed form
of the page, or neither.

MySQL keeps track of which pages to keep in memory and which to evict using a least-recently-
used (LRU) list, so that hot (frequently accessed) data tends to stay in memory. When compressed
tables are accessed, MySQL uses an adaptive LRU algorithm to achieve an appropriate balance of
compressed and uncompressed pages in memory. This adaptive algorithm is sensitive to whether the
system is running in an I/O-bound or CPU-bound manner. The goal is to avoid spending too much
processing time uncompressing pages when the CPU is busy, and to avoid doing excess I/O when the
CPU has spare cycles that can be used for uncompressing compressed pages (that may already be
in memory). When the system is I/O-bound, the algorithm prefers to evict the uncompressed copy of
a page rather than both copies, to make more room for other disk pages to become memory resident.
When the system is CPU-bound, MySQL prefers to evict both the compressed and uncompressed
page, so that more memory can be used for “hot” pages and reducing the need to uncompress data in
memory only in compressed form.

Compression and the InnoDB Redo Log Files

Before a compressed page is written to a data file, MySQL writes a copy of the page to the redo
log (if it has been recompressed since the last time it was written to the database). This is done to
ensure that redo logs are usable for crash recovery, even in the unlikely case that the zlib library is
upgraded and that change introduces a compatibility problem with the compressed data. Therefore,
some increase in the size of log files, or a need for more frequent checkpoints, can be expected when
using compression. The amount of increase in the log file size or checkpoint frequency depends
on the number of times compressed pages are modified in a way that requires reorganization and
recompression.

Compressed tables require the Barracuda file format. To create a compressed table in a file-per-
table tablespace, innodb_file_per_table must be enabled and innodb_file_format must
be set to Barracuda. There is no dependence on the innodb_file_format setting when creating a
compressed table in a general tablespace. For more information, see Section 14.4.9, “InnoDB General
Tablespaces”. The MySQL Enterprise Backup product supports the Barracuda file format.

14.6.1.6 Compression for OLTP Workloads

Traditionally, the InnoDB compression feature was recommended primarily for read-only or read-
mostly workloads, such as in a data warehouse configuration. The rise of SSD storage devices, which
are fast but relatively small and expensive, makes compression attractive also for OLTP workloads:
high-traffic, interactive web sites can reduce their storage requirements and their I/O operations per
second (IOPS) by using compressed tables with applications that do frequent INSERT, UPDATE, and
DELETE operations.

Configuration options introduced in MySQL 5.6 let you adjust the way compression works for a
particular MySQL instance, with an emphasis on performance and scalability for write-intensive
operations:

• innodb_compression_level lets you turn the degree of compression up or down. A higher
value lets you fit more data onto a storage device, at the expense of more CPU overhead during

InnoDB Table Compression

2055

compression. A lower value lets you reduce CPU overhead when storage space is not critical, or you
expect the data is not especially compressible.

• innodb_compression_failure_threshold_pct specifies a cutoff point for compression
failures during updates to a compressed table. When this threshold is passed, MySQL begins to
leave additional free space within each new compressed page, dynamically adjusting the amount of
free space up to the percentage of page size specified by innodb_compression_pad_pct_max

• innodb_compression_pad_pct_max lets you adjust the maximum amount of space reserved
within each page to record changes to compressed rows, without needing to compress the entire
page again. The higher the value, the more changes can be recorded without recompressing
the page. MySQL uses a variable amount of free space for the pages within each compressed
table, only when a designated percentage of compression operations “fail” at runtime, requiring an
expensive operation to split the compressed page.

Because working with compressed data sometimes involves keeping both compressed and
uncompressed versions of a page in memory at the same time, when using compression with an
OLTP-style workload, be prepared to increase the value of the innodb_buffer_pool_size
configuration option.

14.6.1.7 SQL Compression Syntax Warnings and Errors

This section describes syntax warnings and errors that you may encounter when using the table
compression feature with file-per-table tablespaces and general tablespaces.

SQL Compression Syntax Warnings and Errors for File-Per-Table Tablespaces

When innodb_strict_mode is enabled (the default as of MySQL 5.7.7), specifying
ROW_FORMAT=COMPRESSED or KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE statements
produces the following error if innodb_file_per_table is disabled or if innodb_file_format is
set to Antelope rather than Barracuda.

ERROR 1031 (HY000): Table storage engine for 't1' doesn't have this option

Note

The table is not created if the current configuration does not permit using
compressed tables.

When innodb_strict_mode is disabled, specifying ROW_FORMAT=COMPRESSED or
KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE statements produces the following warnings if
innodb_file_per_table is disabled.

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
Warning	1478	InnoDB: KEY_BLOCK_SIZE requires innodb_file_per_table.
Warning	1478	InnoDB: ignoring KEY_BLOCK_SIZE=4.
Warning	1478	InnoDB: ROW_FORMAT=COMPRESSED requires innodb_file_per_table.
Warning	1478	InnoDB: assuming ROW_FORMAT=DYNAMIC.
+---------+------+---+

Similar warnings are issued if innodb_file_format is set to Antelope rather than Barracuda.

Note

These messages are only warnings, not errors, and the table is created without
compression, as if the options were not specified.

The “non-strict” behavior lets you import a mysqldump file into a database that does not support
compressed tables, even if the source database contained compressed tables. In that case, MySQL
creates the table in ROW_FORMAT=COMPACT instead of preventing the operation.

InnoDB Table Compression

2056

To import the dump file into a new database, and have the tables re-created as they exist in the
original database, ensure the server has the proper settings for the configuration parameters
innodb_file_format and innodb_file_per_table.

The attribute KEY_BLOCK_SIZE is permitted only when ROW_FORMAT is specified as COMPRESSED
or is omitted. Specifying a KEY_BLOCK_SIZE with any other ROW_FORMAT generates a warning
that you can view with SHOW WARNINGS. However, the table is non-compressed; the specified
KEY_BLOCK_SIZE is ignored).

Level Code Message

Warning 1478 InnoDB: ignoring KEY_BLOCK_SIZE=n unless
ROW_FORMAT=COMPRESSED.

If you are running with innodb_strict_mode enabled, the combination of a KEY_BLOCK_SIZE with
any ROW_FORMAT other than COMPRESSED generates an error, not a warning, and the table is not
created.

Table 14.5, “ROW_FORMAT and KEY_BLOCK_SIZE Options” provides an overview the ROW_FORMAT
and KEY_BLOCK_SIZE options that are used with CREATE TABLE or ALTER TABLE.

Table 14.5 ROW_FORMAT and KEY_BLOCK_SIZE Options

Option Usage Notes Description

ROW_FORMAT=
REDUNDANT

Storage format used prior to
MySQL 5.0.3

Less efficient than ROW_FORMAT=COMPACT; for
backward compatibility

ROW_FORMAT=
COMPACT

Default storage format since
MySQL 5.0.3

Stores a prefix of 768 bytes of long column values in
the clustered index page, with the remaining bytes
stored in an overflow page

ROW_FORMAT=
DYNAMIC

File-per-table tablespaces
require innodb_file
_format=Barracuda

Store values within the clustered index page if they
fit; if not, stores only a 20-byte pointer to an overflow
page (no prefix)

ROW_FORMAT=
COMPRESSED

File-per-table tablespaces
require innodb_file
_format=Barracuda

Compresses the table and indexes using zlib

KEY_BLOCK_
SIZE=n

File-per-table tablespaces
require innodb_file
_format=Barracuda

Specifies compressed page size of 1, 2, 4, 8 or 16
kilobytes; implies ROW_FORMAT=COMPRESSED. For
general tablespaces, a KEY_BLOCK_SIZE value equal
to the InnoDB page size is not permitted.

Table 14.6, “CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF”
summarizes error conditions that occur with certain combinations of configuration parameters and
options on the CREATE TABLE or ALTER TABLE statements, and how the options appear in the output
of SHOW TABLE STATUS.

When innodb_strict_mode is OFF, MySQL creates or alters the table, but ignores certain
settings as shown below. You can see the warning messages in the MySQL error log. When
innodb_strict_mode is ON, these specified combinations of options generate errors, and the table
is not created or altered. To see the full description of the error condition, issue the SHOW ERRORS
statement: example:

mysql> CREATE TABLE x (id INT PRIMARY KEY, c INT)

-> ENGINE=INNODB KEY_BLOCK_SIZE=33333;

ERROR 1005 (HY000): Can't create table 'test.x' (errno: 1478)

mysql> SHOW ERRORS;
+-------+------+---+
| Level | Code | Message |

InnoDB Table Compression

2057

+-------+------+---+
| Error | 1478 | InnoDB: invalid KEY_BLOCK_SIZE=33333. |
| Error | 1005 | Can't create table 'test.x' (errno: 1478) |
+-------+------+---+

Table 14.6 CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF

Syntax Warning or Error Condition Resulting ROW_FORMAT,
as shown in SHOW TABLE
STATUS

ROW_FORMAT=REDUNDANT None REDUNDANT

ROW_FORMAT=COMPACT None COMPACT

ROW_FORMAT=COMPRESSED
or
ROW_FORMAT=DYNAMIC
or KEY_BLOCK_SIZE is
specified

Ignored for file-per-table
tablespaces unless both
innodb_file_format=Barracuda
and innodb_file_per_table are
enabled. General tablespaces support
all row formats (with some restrictions)
regardless of innodb_file_format
and innodb_file_per_table settings.
See Section 14.4.9, “InnoDB General
Tablespaces”.

the default row
format for file-per-
table tablespaces;
the specified row
format for general
tablespaces

Invalid KEY_BLOCK_SIZE
is specified (not 1, 2, 4, 8
or 16)

KEY_BLOCK_SIZE is ignored the specified row format, or
the default row format

ROW_FORMAT=COMPRESSED
and valid
KEY_BLOCK_SIZE are
specified

None; KEY_BLOCK_SIZE specified is used COMPRESSED

KEY_BLOCK_SIZE
is specified with
REDUNDANT, COMPACT or
DYNAMIC row format

KEY_BLOCK_SIZE is ignored REDUNDANT, COMPACT or
DYNAMIC

ROW_FORMAT is not one
of REDUNDANT, COMPACT,
DYNAMIC or COMPRESSED

Ignored if recognized by the MySQL
parser. Otherwise, an error is issued.

the default row format or N/A

When innodb_strict_mode is ON, MySQL rejects invalid ROW_FORMAT or KEY_BLOCK_SIZE
parameters and issues errors. When innodb_strict_mode is OFF, MySQL issues warnings instead
of errors for ignored invalid parameters. innodb_strict_mode is ON by default as of MySQL 5.7.7.

When innodb_strict_mode is ON, MySQL rejects invalid ROW_FORMAT or KEY_BLOCK_SIZE
parameters. For compatibility with earlier versions of MySQL, strict mode is not enabled by default;
instead, MySQL issues warnings (not errors) for ignored invalid parameters.

It is not possible to see the chosen KEY_BLOCK_SIZE using SHOW TABLE STATUS. The statement
SHOW CREATE TABLE displays the KEY_BLOCK_SIZE (even if it was ignored when creating the table).
The real compressed page size of the table cannot be displayed by MySQL.

SQL Compression Syntax Warnings and Errors for General Tablespaces

• If FILE_BLOCK_SIZE was not defined for the general tablespace when the tablespace was created,
the tablespace cannot contain compressed tables. If you attempt to add a compressed table, an error
is returned, as shown in the following example:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=COMPRESSED

InnoDB Page Compression

2058

KEY_BLOCK_SIZE=8;
ERROR 1478 (HY000): InnoDB: Tablespace `ts1` cannot contain a COMPRESSED table

• Attempting to add a table with an invalid KEY_BLOCK_SIZE to a general tablespace returns an error,
as shown in the following example:

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t2 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED
KEY_BLOCK_SIZE=4;
ERROR 1478 (HY000): InnoDB: Tablespace `ts2` uses block size 8192 and cannot
contain a table with physical page size 4096

For general tablespaces, the KEY_BLOCK_SIZE of the table must be equal to the
FILE_BLOCK_SIZE of the tablespace divided by 1024. For example, if the FILE_BLOCK_SIZE of
the tablespace is 8192, the KEY_BLOCK_SIZE of the table must be 8.

• Attempting to add a table with an uncompressed row format to a general tablespace configured to
store compressed tables returns an error, as shown in the following example:

mysql> CREATE TABLESPACE `ts3` ADD DATAFILE 'ts3.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t3 (c1 INT PRIMARY KEY) TABLESPACE ts3 ROW_FORMAT=COMPACT;
ERROR 1478 (HY000): InnoDB: Tablespace `ts3` uses block size 8192 and cannot
contain a table with physical page size 16384

innodb_strict_mode is not applicable to general tablespaces. Tablespace management rules
for general tablespaces are strictly enforced independently of innodb_strict_mode. For more
information, see Section 13.1.15, “CREATE TABLESPACE Syntax”.

For more information about using compressed tables with general tablespaces, see Section 14.4.9,
“InnoDB General Tablespaces”.

14.6.2 InnoDB Page Compression

As of MySQL 5.7.8, InnoDB supports page-level compression for tables that reside in file_per_table
tablespaces. This feature is referred to as Transparent Page Compression. Page compression is
enabled by specifying the COMPRESSION attribute with CREATE TABLE or ALTER TABLE. Supported
compression algorithms include Zlib and LZ4.

Supported Platforms

Page compression requires sparse file and hole punching support. Page compression is supported
on Windows with NTFS, and on the following subset of MySQL-supported Linux platforms where the
kernel level provides hole punching support:

• RHEL 7 and derived distributions that use kernel version 3.10.0-123 or higher

• OEL 5.10 (UEK2) kernel version 2.6.39 or higher

• OEL 6.5 (UEK3) kernel version 3.8.13 or higher

• OEL 7.0 kernel version 3.8.13 or higher

• SLE11 kernel version 3.0-x

• SLE12 kernel version 3.12-x

• OES11 kernel version 3.0-x

• Ubuntu 14.0.4 LTS kernel version 3.13 or higher

• Ubuntu 12.0.4 LTS kernel version 3.2 or higher

InnoDB Page Compression

2059

• Debian 7 kernel version 3.2 or higher

Note

All of the available file systems for a given Linux distribution may not support
hole punching.

How Page Compression Works

When a page is written, it is compressed using the specified compression algorithm. The compressed
data is written to disk, where the hole punching mechanism releases empty blocks from the end of the
page. If compression fails, data is written out as-is.

Hole Punch Size on Linux

On Linux systems, the file system block size is the unit size used for hole punching. Therefore, page
compression only works if page data can be compressed to a size that is less than or equal to the
InnoDB page size minus the file system block size. For example, if innodb_page_size=16K and
the file system block size is 4K, page data must compress to less than or equal to 12K to make hole
punching possible.

Hole Punch Size on Windows

On Windows systems, the underlying infrastructure for sparse files is based on NTFS compression.
Hole punching size is the NTFS compression unit, which is 16 times the NTFS cluster size. Cluster
sizes and their compression units are shown in the following table:

Table 14.7 Windows NTFS Cluster Size and Compression Units

Cluster Size Compression Unit

512 Bytes 8 KB

1 KB 16 KB

2 KB 32 KB

4 KB 64 KB

Page compression on Windows systems only works if page data can be compressed to a size that is
less than or equal to the InnoDB page size minus the compression unit size.

The default NTFS cluster size is 4K, for which the compression unit size is 64K. This means that page
compression has no benefit for an out-of-the box Windows NTFS configuration, as the maximum
innodb_page_size is also 64K.

For page compression to work on Windows, the file system must be created with a cluster size
smaller than 4K, and the innodb_page_size must be at least twice the size of the compression
unit. For example, for page compression to work on Windows, you could build the file system with
a cluster size of 512 Bytes (which has a compression unit of 8KB) and initialize InnoDB with an
innodb_page_size value of 16K or greater.

Enabling Page Compression

To enable page compression, specify the COMPRESSION attribute in the CREATE TABLE statement.
For example:

CREATE TABLE t1 (c1 INT) COMPRESSION="zlib";

You can also enable page compression in an ALTER TABLE statement. However, ALTER TABLE ...
COMPRESSION only updates the tablespace compression attribute. Writes to the tablespace that occur
after setting the new compression algorithm use the new setting, but to apply the new compression
algorithm to existing pages, you must rebuild the table using OPTIMIZE TABLE.

ALTER TABLE t1 COMPRESSION="zlib";

InnoDB Page Compression

2060

OPTIMZE TABLE t1;

Disabling Page Compression

To disable page compression, set COMPRESSION=None using ALTER TABLE. Writes to the tablespace
that occur after setting COMPRESSION=None no longer use page compression. To uncompress existing
pages, you must rebuild the table using OPTIMIZE TABLE after setting COMPRESSION=None.

ALTER TABLE t1 COMPRESSION="None";
OPTIMZE TABLE t1;

Page Compression Metadata

Page compression metadata is found in the INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES
table, in four columns that were added with the introduction of the Transparent Page Compression
feature:

• FS_BLOCK_SIZE: The file system block size, which is the unit size used for hole punching.

• FILE_SIZE: The apparent size of the file, which represents the maximum size of the file,
uncompressed.

• ALLOCATED_SIZE: The actual size of the file, which is the amount of space allocated on disk.

• COMPRESSION: The current tablespace setting for page compression (Zlib, Lz4, or None). A table
may contain a mix of pages with different compression settings.

The COMPRESSION column displays incorrect data after a server restart (Bug #78197) and is
removed in 5.7.10. Use SHOW CREATE TABLE to view the current page compression setting.

In the following example, page compression metadata for the employees table is retrieved from the
INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES table.

Create the employees table with Zlib page compression

CREATE TABLE employees (
 emp_no INT NOT NULL,
 birth_date DATE NOT NULL,
 first_name VARCHAR(14) NOT NULL,
 last_name VARCHAR(16) NOT NULL,
 gender ENUM ('M','F') NOT NULL,
 hire_date DATE NOT NULL,
 PRIMARY KEY (emp_no)
) COMPRESSION="zlib";

Insert data (not shown)

Query page compression metadata in INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES

mysql> SELECT SPACE, NAME, FS_BLOCK_SIZE, FILE_SIZE, ALLOCATED_SIZE, COMPRESSION FROM
INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE NAME='employees/employees'\G
*************************** 1. row ***************************
SPACE: 45
NAME: employees/employees
FS_BLOCK_SIZE: 4096
FILE_SIZE: 23068672
ALLOCATED_SIZE: 19415040
COMPRESSION: Zlib

Page compression metadata for the employees table shows that Zlib compression is used. The
apparent file size is 23068672 bytes while the actual file size (with page compression) is 19415040
bytes. The file system block size is 4096 bytes, which is the block size used for hole punching.

Page Compression Limitations and Usage Notes

• Page compression is disabled if the file system block size (or compression unit size on Windows) * 2
> innodb_page_size.

InnoDB File-Format Management

2061

• Page compression is not supported for tables that reside in shared tablespaces, which include the
system tablespace, the temporary table tablespace, and general tablespaces.

• Page compression is not supported for undo log tablespaces.

• Page compression is not supported for redo log pages.

• R-tree pages, which are used for spatial indexes, are not compressed.

• Pages that belong to compressed tables (ROW_FORMAT=COMPRESSED) are left as-is.

• During recovery, updated pages are written out in an uncompressed form.

• Loading a page-compressed tablespace on a server that does not support the compression
algorithm that was used causes an I/O error.

• Before downgrading to an earlier version of MySQL that does not support page compression,
uncompress the tables that use the page compression feature. To uncompress a table, run ALTER
TABLE ... COMPRESSION=None and OPTIMIZE TABLE.

• Page-compressed tablespaces can be copied between Linux and Windows servers if the
compression algorithm that was used is available on both servers.

• Preserving page compression when moving a page-compressed tablespace file from one host to
another requires a utility that preserves sparse files.

• Better page compression may be achieved on Fusion-io hardware with NVMFS than on other
platforms, as NVMFS is designed to take advantage of punch hole functionality.

• Using the page compression feature with a large InnoDB page size and relatively small file system
block size could result in write amplification. For example, a maximum InnoDB page size of 64KB
with a 4KB file system block size may improve compression but may also increase demand on the
buffer pool, leading to increased I/O and potential write amplification.

14.7 InnoDB File-Format Management

As InnoDB evolves, data file formats that are not compatible with prior versions of InnoDB are
sometimes required to support new features. To help manage compatibility in upgrade and downgrade
situations, and systems that run different versions of MySQL, InnoDB uses named file formats.
InnoDB currently supports two named file formats, Antelope and Barracuda.

• Antelope is the original InnoDB file format, which previously did not have a name. It supports the
COMPACT and REDUNDANT row formats for InnoDB tables.

• Barracuda is the newest file format. It supports all InnoDB row formats including the newer
COMPRESSED and DYNAMIC row formats. The features associated with COMPRESSED and
DYNAMIC row formats include compressed tables, off-page storage for long column data, and index
key prefixes up to 3072 bytes (innodb_large_prefix). See Section 14.8, “InnoDB Row Storage
and Row Formats”.

This section discusses enabling file formats for new InnoDB tables, verifying compatibility of different
file formats between MySQL releases, and identifying the file format in use.

InnoDB file format settings do not apply to tables stored in general tablespaces (introduced in MySQL
5.7.6). General tablespaces provide support for all row formats and associated features. For more
information, see Section 14.4.9, “InnoDB General Tablespaces”.

Note

The following file format configuration parameters have new default values as of
MySQL 5.7.7:

Enabling File Formats

2062

• The innodb_file_format default value was changed to Barracuda. The
previous default value was Antelope.

• The innodb_large_prefix default value was changed to ON. The previous
default was OFF.

The following file format configuration parameters are deprecated in MySQL
5.7.7 and may be removed in a future release:

• innodb_file_format

• innodb_file_format_check

• innodb_file_format_max

• innodb_large_prefix

The file format configuration parameters were provided for creating tables
compatible with earlier versions of InnoDB in MySQL 5.1. Now that MySQL
5.1 has reached the end of its product lifecycle, the parameters are no longer
required. Future removal of the innodb_file_format parameter will require
a new mechanism for managing compatibility of InnoDB tables and tablespaces
among different versions of MySQL.

14.7.1 Enabling File Formats

The innodb_file_format configuration option defines the file format used when InnoDB tables are
created in file_per_table tablespaces.

Barracuda is the default innodb_file_format setting as of MySQL 5.7.7. Prior to MySQL 5.7.7,
the default file format is Antelope.

Note

The innodb_file_format configuration option is deprecated and may be
removed in a future release. For more information, see Section 14.7, “InnoDB
File-Format Management”.

You can set the value of innodb_file_format on the command line when you start mysqld, or in
the option file (my.cnf on Unix, my.ini on Windows). You can also change it dynamically with a SET
GLOBAL statement.

mysql> SET GLOBAL innodb_file_format=Barracuda;
Query OK, 0 rows affected (0.00 sec)

Usage notes

• ALTER TABLE operations that recreate InnoDB tables use the current innodb_file_format
setting.

• InnoDB file format settings do not apply to tables stored in general tablespaces. General
tablespaces provide support for all row formats and associated features. For more information, see
Section 14.4.9, “InnoDB General Tablespaces”.

• As of MySQL 5.7.6, the innodb_file_format setting is not applicable when using the
TABLESPACE [=] innodb_system table option with CREATE TABLE or ALTER TABLE to store a
DYNAMIC table in the system tablespace.

• As of MySQL 5.7.9, the innodb_file_format setting is ignored when creating tables that use the
DYNAMIC row format. For more information, see Section 14.8.3, “DYNAMIC and COMPRESSED
Row Formats”.

Verifying File Format Compatibility

2063

14.7.2 Verifying File Format Compatibility

InnoDB incorporates several checks to guard against the possible crashes and data corruptions that
might occur if you run an old release of the MySQL server on InnoDB data files that use a newer file
format. These checks take place when the server is started, and when you first access a table. This
section describes these checks, how you can control them, and error and warning conditions that might
arise.

Backward Compatibility

You only need to consider backward file format compatibility when using a recent version of InnoDB
(MySQL 5.5 and higher with InnoDB) alongside an older version (MySQL 5.1 or earlier, with the built-
in InnoDB rather than the InnoDB Plugin). To minimize the chance of compatibility issues, you can
standardize on the InnoDB Plugin for all your MySQL 5.1 and earlier database servers.

In general, a newer version of InnoDB may create a table or index that cannot safely be read or written
with an older version of InnoDB without risk of crashes, hangs, wrong results or corruptions. InnoDB
includes a mechanism to guard against these conditions, and to help preserve compatibility among
database files and versions of InnoDB. This mechanism lets you take advantage of some new features
of an InnoDB release (such as performance improvements and bug fixes), and still preserve the option
of using your database with an old version of InnoDB, by preventing accidental use of new features that
create downward-incompatible disk files.

If a version of InnoDB supports a particular file format (whether or not that format is the default), you
can query and update any table that requires that format or an earlier format. Only the creation of
new tables using new features is limited based on the particular file format enabled. Conversely, if a
tablespace contains a table or index that uses a file format that is not supported, it cannot be accessed
at all, even for read access.

The only way to “downgrade” an InnoDB tablespace to the earlier Antelope file format is to copy the
data to a new table, in a tablespace that uses the earlier format.

The easiest way to determine the file format of an existing InnoDB tablespace is to examine the
properties of the table it contains, using the SHOW TABLE STATUS command or querying the table
INFORMATION_SCHEMA.TABLES. If the Row_format of the table is reported as 'Compressed' or
'Dynamic', the tablespace containing the table supports the Barracuda format.

Internal Details

Every InnoDB file-per-table tablespace (represented by a *.ibd file) file is labeled with a file format
identifier. The system tablespace (represented by the ibdata files) is tagged with the “highest” file
format in use in a group of InnoDB database files, and this tag is checked when the files are opened.

Creating a compressed table, or a table with ROW_FORMAT=DYNAMIC, updates the file header of
the corresponding file-per-table .ibd file and the table type in the InnoDB data dictionary with the
identifier for the Barracuda file format. From that point forward, the table cannot be used with a version
of InnoDB that does not support the Barracuda file format. To protect against anomalous behavior,
InnoDB performs a compatibility check when the table is opened. (In many cases, the ALTER TABLE
statement recreates a table and thus changes its properties. The special case of adding or dropping
indexes without rebuilding the table is described in InnoDB Fast Index Creation.)

General tablespaces, which are also represented by a *.ibd file, support both Antelope and
Barracuda file formats. For more information about general tablespaces, see Section 14.4.9, “InnoDB
General Tablespaces”.

Definition of ib-file set

To avoid confusion, for the purposes of this discussion we define the term “ib-file set” to mean the set
of operating system files that InnoDB manages as a unit. The ib-file set includes the following files:

http://dev.mysql.com/doc/refman/5.5/en/innodb-create-index.html

Verifying File Format Compatibility

2064

• The system tablespace (one or more ibdata files) that contain internal system information
(including internal catalogs and undo information) and may include user data and indexes.

• Zero or more single-table tablespaces (also called “file per table” files, named *.ibd files).

• InnoDB log files; usually two, ib_logfile0 and ib_logfile1. Used for crash recovery and in
backups.

An “ib-file set” does not include the corresponding .frm files that contain metadata about InnoDB
tables. The .frm files are created and managed by MySQL, and can sometimes get out of sync with
the internal metadata in InnoDB.

Multiple tables, even from more than one database, can be stored in a single “ib-file set”. (In MySQL, a
“database” is a logical collection of tables, what other systems refer to as a “schema” or “catalog”.)

14.7.2.1 Compatibility Check When InnoDB Is Started

To prevent possible crashes or data corruptions when InnoDB opens an ib-file set, it checks that it can
fully support the file formats in use within the ib-file set. If the system is restarted following a crash, or
a “fast shutdown” (i.e., innodb_fast_shutdown is greater than zero), there may be on-disk data
structures (such as redo or undo entries, or doublewrite pages) that are in a “too-new” format for the
current software. During the recovery process, serious damage can be done to your data files if these
data structures are accessed. The startup check of the file format occurs before any recovery process
begins, thereby preventing consistency issues with the new tables or startup problems for the MySQL
server.

Beginning with version InnoDB 1.0.1, the system tablespace records an identifier or tag for
the “highest” file format used by any table in any of the tablespaces that is part of the ib-
file set. Checks against this file format tag are controlled by the configuration parameter
innodb_file_format_check, which is ON by default.

If the file format tag in the system tablespace is newer or higher than the highest version supported by
the particular currently executing software and if innodb_file_format_check is ON, the following
error is issued when the server is started:

InnoDB: Error: the system tablespace is in a
file format that this version doesn't support

You can also set innodb_file_format to a file format name. Doing so prevents InnoDB from
starting if the current software does not support the file format specified. It also sets the “high water
mark” to the value you specify. The ability to set innodb_file_format_check will be useful (with
future releases of InnoDB) if you manually “downgrade” all of the tables in an ib-file set (as described in
Downgrading the InnoDB Storage Engine). You can then rely on the file format check at startup if you
subsequently use an older version of InnoDB to access the ib-file set.

In some limited circumstances, you might want to start the server and use an ib-file set that is in a new
file format that is not supported by the software you are using. If you set the configuration parameter
innodb_file_format_check to OFF, InnoDB opens the database, but issues this warning message
in the error log:

InnoDB: Warning: the system tablespace is in a
file format that this version doesn't support

Note

This is a dangerous setting, as it permits the recovery process to run,
possibly corrupting your database if the previous shutdown was a crash
or “fast shutdown”. You should only set innodb_file_format_check
to OFF if you are sure that the previous shutdown was done with
innodb_fast_shutdown=0, so that essentially no recovery process occurs.

http://dev.mysql.com/doc/refman/5.5/en/innodb-downgrading.html

Verifying File Format Compatibility

2065

The parameter innodb_file_format_check affects only what happens when a database is
opened, not subsequently. Conversely, the parameter innodb_file_format (which enables a
specific format) only determines whether or not a new table can be created in the enabled format and
has no effect on whether or not a database can be opened.

The file format tag is a “high water mark”, and as such it is increased after the server is started, if a
table in a “higher” format is created or an existing table is accessed for read or write (assuming its
format is supported). If you access an existing table in a format higher than the format the running
software supports, the system tablespace tag is not updated, but table-level compatibility checking
applies (and an error is issued), as described in Section 14.7.2.2, “Compatibility Check When a Table
Is Opened”. Any time the high water mark is updated, the value of innodb_file_format_check is
updated as well, so the command SELECT @@innodb_file_format_check; displays the name of
the latest file format known to be used by tables in the currently open ib-file set and supported by the
currently executing software.

14.7.2.2 Compatibility Check When a Table Is Opened

When a table is first accessed, InnoDB (including some releases prior to InnoDB 1.0) checks that
the file format of the tablespace in which the table is stored is fully supported. This check prevents
crashes or corruptions that would otherwise occur when tables using a “too new” data structure are
encountered.

All tables using any file format supported by a release can be read or written (assuming the user has
sufficient privileges). The setting of the system configuration parameter innodb_file_format can
prevent creating a new table that uses a specific file format, even if the file format is supported by a
given release. Such a setting might be used to preserve backward compatibility, but it does not prevent
accessing any table that uses a supported format.

Versions of MySQL older than 5.0.21 cannot reliably use database files created by newer versions if a
new file format was used when a table was created. To prevent various error conditions or corruptions,
InnoDB checks file format compatibility when it opens a file (for example, upon first access to a table).
If the currently running version of InnoDB does not support the file format identified by the table type in
the InnoDB data dictionary, MySQL reports the following error:

ERROR 1146 (42S02): Table 'test.t1' doesn't exist

InnoDB also writes a message to the error log:

InnoDB: table test/t1: unknown table type 33

The table type should be equal to the tablespace flags, which contains the file format version as
discussed in Section 14.7.3, “Identifying the File Format in Use”.

Versions of InnoDB prior to MySQL 4.1 did not include table format identifiers in the database files, and
versions prior to MySQL 5.0.21 did not include a table format compatibility check. Therefore, there is no
way to ensure proper operations if a table in a newer file format is used with versions of InnoDB prior to
5.0.21.

The file format management capability in InnoDB 1.0 and higher (tablespace tagging and run-time
checks) allows InnoDB to verify as soon as possible that the running version of software can properly
process the tables existing in the database.

If you permit InnoDB to open a database containing files in a format it does not support (by setting the
parameter innodb_file_format_check to OFF), the table-level checking described in this section
still applies.

Users are strongly urged not to use database files that contain Barracuda file format tables with
releases of InnoDB older than the MySQL 5.1 with the InnoDB Plugin. It may be possible to rebuild
such tables to use the Antelope format.

Identifying the File Format in Use

2066

14.7.3 Identifying the File Format in Use

If you enable a different file format using the innodb_file_format configuration option, the change
only applies to newly created tables. Also, when you create a new table, the tablespace containing the
table is tagged with the “earliest” or “simplest” file format that is required to support the table's features.
For example, if you enable the Barracuda file format, and create a new table that does not use the
Dynamic or Compressed row format, the new tablespace that contains the table is tagged as using the
Antelope file format .

It is easy to identify the file format used by a given table. The table uses the Antelope file format if the
row format reported by SHOW TABLE STATUS is either Compact or Redundant. The table uses the
Barracuda file format if the row format reported by SHOW TABLE STATUS is either Compressed or
Dynamic.

mysql> SHOW TABLE STATUS\G
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 16384
 Data_free: 0
 Auto_increment: 1
 Create_time: 2014-11-03 13:32:10
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

You can also identify the file format used by a given table or tablespace using InnoDB
INFORMATION_SCHEMA tables. For example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test/t1'\G
*************************** 1. row ***************************
 TABLE_ID: 44
 NAME: test/t1
 FLAG: 1
 N_COLS: 6
 SPACE: 30
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE NAME='test/t1'\G
*************************** 1. row ***************************
 SPACE: 30
 NAME: test/t1
 FLAG: 0
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
ZIP_PAGE_SIZE: 0

14.7.4 Modifying the File Format

Each InnoDB tablespace file (with a name matching *.ibd) is tagged with the file format used to
create its table and indexes. The way to modify the file format is to re-create the table and its indexes.
The easiest way to recreate a table and its indexes is to use the following command on each table that
you want to modify:

InnoDB Row Storage and Row Formats

2067

ALTER TABLE t ROW_FORMAT=format_name;

If you are modifying the file format to downgrade to an older MySQL version, there may be
incompatibilities in table storage formats that require additional steps. For information about
downgrading to a previous MySQL version, see Section 2.11.2, “Downgrading MySQL”.

14.8 InnoDB Row Storage and Row Formats
This section discusses how InnoDB features such as table compression, off-page storage of long
variable-length column values, and large index key prefixes (innodb_large_prefix) are controlled
by the row format of an InnoDB table. It also discusses considerations for choosing the right row
format, and compatibility of row formats between MySQL releases.

14.8.1 Overview of InnoDB Row Storage

The storage for rows and associated columns affects performance for queries and DML operations. As
more rows fit into a single disk page, queries and index lookups can work faster, less cache memory is
required in the InnoDB buffer pool, and less I/O is required to write out updated values for the numeric
and short string columns.

The data in each InnoDB table is divided into pages. The pages that make up each table are arranged
in a tree data structure called a B-tree index. Table data and secondary indexes both use this type of
structure. The B-tree index that represents an entire table is known as the clustered index, which is
organized according to the primary key columns. The nodes of the index data structure contain the
values of all the columns in that row (for the clustered index) or the index columns and the primary key
columns (for secondary indexes).

Variable-length columns are an exception to this rule. Columns such as BLOB and VARCHAR that are
too long to fit on a B-tree page are stored on separately allocated disk pages called overflow pages.
We call such columns off-page columns. The values of these columns are stored in singly-linked lists of
overflow pages, and each such column has its own list of one or more overflow pages. In some cases,
all or a prefix of the long column value is stored in the B-tree, to avoid wasting storage and eliminating
the need to read a separate page.

The following sections describe how to configure the row format of InnoDB tables to control how
variable-length columns values are stored. Row format configuration also determines the availability of
the table compression feature and the large index key prefix feature (innodb_large_prefix).

14.8.2 Specifying the Row Format for a Table

In MySQL 5.7.8 and earlier, rows are stored in COMPACT format by default. As of MySQL 5.7.9, the
default row format is defined by innodb_default_row_format, which has a default value of
DYNAMIC. The default row format is used when the ROW_FORMAT table option is not defined explicitly or
when ROW_FORMAT=DEFAULT is specified.

The row format of a table can be defined explicitly using the ROW_FORMAT table option in a CREATE
TABLE or ALTER TABLE statement. For example:

CREATE TABLE t1 (c1 INT) ROW_FORMAT=DYNAMIC;

An explicitly defined ROW_FORMAT setting overrides the implicit default. Specifying
ROW_FORMAT=DEFAULT is equivalent to using the implicit default.

The innodb_default_row_format option, introduced in MySQL 5.7.9, can be set dynamically:

mysql> SET GLOBAL innodb_default_row_format=DYNAMIC;

Valid innodb_default_row_format options include DYNAMIC, COMPACT, and REDUNDANT. The
COMPRESSED row format, which is not supported for use in the system tablespace, cannot be defined
as the default. It can only be specified explicitly in a CREATE TABLE or ALTER TABLE statement.
Attempting to set innodb_default_row_format to COMPRESSED returns an error:

Specifying the Row Format for a Table

2068

mysql> SET GLOBAL innodb_default_row_format=COMPRESSED;
ERROR 1231 (42000): Variable 'innodb_default_row_format'
can't be set to the value of 'COMPRESSED'

Newly created tables use the row format defined by innodb_default_row_format
when a ROW_FORMAT option is not specified explicitly or when ROW_FORMAT=DEFAULT is
used. For example, the following CREATE TABLE statements use the row format defined by
innodb_default_row_format.

CREATE TABLE t1 (c1 INT);

CREATE TABLE t2 (c1 INT) ROW_FORMAT=DEFAULT;

When a ROW_FORMAT option is not specified explicitly or when ROW_FORMAT=DEFAULT is used, any
operation that rebuilds a table also silently changes the row format of the table to the format defined by
innodb_default_row_format.

Table-rebuilding operations include ALTER TABLE operations that use ALGORITHM=COPY or ALTER
TABLE operations that use ALGORITM=INPLACE where table rebuilding is required. See Table 14.8,
“Summary of Online Status for DDL Operations” for an overview of the online status of DDL operations.
OPTIMIZE TABLE is also a table-rebuilding operation.

The following example demonstrates a table-rebuilding operation that silently changes the row format
of a table created without an explicitly defined row format.

mysql> SELECT @@innodb_default_row_format;
+-----------------------------+
| @@innodb_default_row_format |
+-----------------------------+
| dynamic |
+-----------------------------+

mysql> CREATE TABLE t1 (c1 INT);

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE 'test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 54
 NAME: test/t1
 FLAG: 33
 N_COLS: 4
 SPACE: 35
 FILE_FORMAT: Barracuda
 ROW_FORMAT: Dynamic
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single

mysql> SET GLOBAL innodb_default_row_format=COMPACT;

mysql> ALTER TABLE t1 ADD COLUMN (c2 INT);

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE 'test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 55
 NAME: test/t1
 FLAG: 1
 N_COLS: 5
 SPACE: 36
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single

Consider the following potential issues before changing the row format of existing tables from
REDUNDANT or COMPACT to DYNAMIC.

• The REDUNDANT and COMPACT row format supports a maximum index key prefix length of 767
bytes whereas DYNAMIC and COMPRESSED row formats support an index key prefix length of 3072
bytes if the innodb_large_prefix configuration option is enabled. In a replication environment, if

DYNAMIC and COMPRESSED Row Formats

2069

innodb_default_row_format is set to DYNAMIC on the master and set to COMPACT on the slave,
the following DDL statement, which does not explicitly define a row format, succeeds on the master
but fails on the slave:

CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 VARCHAR(5000), KEY i1(c2(3070)));

For related information, see Section 14.5.7, “Limits on InnoDB Tables”.

• Importing a table that does not explicitly define a row format results in a schema mismatch error if
the innodb_default_row_format setting on the source server differs from the setting on the
destination server. For more information, refer to the limitations outlined in Section 14.4.6, “Copying
File-Per-Table Tablespaces to Another Server”.

To view the row format of a table, issue a SHOW TABLE STATUS statement or query
INFORMATION_SCHEMA.TABLES.

SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE 'test/t1' \G

The row format of an InnoDB table determines its physical row structure. See Section 14.2.7.7,
“Physical Row Structure” for more information.

14.8.3 DYNAMIC and COMPRESSED Row Formats

When a table is created with a DYNAMIC or COMPRESSED row format, long column values are stored
fully off-page, and the clustered index record contains only a 20-byte pointer to the overflow page. By
comparison, the COMPACT row format stores up to the first 768 bytes of variable-length columns values
in the clustered index record along with a 20-byte pointer to the overflow page.

Whether any columns are stored off-page depends on the page size and the total size of the row.
When the row is too long, InnoDB chooses the longest columns for off-page storage until the clustered
index record fits on the B-tree page. TEXT and BLOB columns that are less than or equal to 40 bytes
are always stored in-line.

The DYNAMIC row format maintains the efficiency of storing the entire row in the index node if it fits (as
do the COMPACT and REDUNDANT formats), but the DYNAMIC row format avoids the problem of filling
B-tree nodes with a large number of data bytes of long columns. The DYNAMIC format is based on
the idea that if a portion of a long data value is stored off-page, it is usually most efficient to store all
of the value off-page. With DYNAMIC format, shorter columns are likely to remain in the B-tree node,
minimizing the number of overflow pages needed for any given row.

The COMPRESSED row format uses similar internal details for off-page storage as the DYNAMIC row
format, with additional storage and performance considerations from the table and index data being
compressed and using smaller page sizes. With the COMPRESSED row format, the KEY_BLOCK_SIZE
option controls how much column data is stored in the clustered index, and how much is placed on
overflow pages. For full details about the COMPRESSED row format, see Section 14.6, “InnoDB Table
and Page Compression”.

Both DYNAMIC and COMPRESSED row formats support index key prefixes up to 3072 bytes. This feature
is controlled by the innodb_large_prefix configuration option, which is enabled by default as of
MySQL 5.7.7. See the innodb_large_prefix option description for more information.

Tables that use the COMPRESSED row format can be created in file_per_table tablespaces or
general tablespaces (introduced in MySQL 5.7.6). The system tablespace does not support
the COMPRESSED row format. To store a COMPRESSED table in a file-per-table tablespace,
innodb_file_per_table must be enabled and innodb_file_format must be set to
Barracuda. The innodb_file_per_table and innodb_file_format configuration options are
not applicable to general tablespaces. General tablespaces support all row formats with the caveat that
compressed and uncompressed tables cannot coexist in the same general tablespace due to different
physical page sizes. For more information about general tablespaces, see Section 14.4.9, “InnoDB
General Tablespaces”.

COMPACT and REDUNDANT Row Formats

2070

In MySQL 5.7.5 and earlier, tables that use the DYNAMIC row format can only be stored
in file_per_table tablespaces, requiring that innodb_file_per_table be enabled and
innodb_file_format be set to Barracuda.

As of MySQL 5.7.6, DYNAMIC tables can be stored in file-per-table tablespaces, general tablespaces,
and the system tablespace. To store DYNAMIC tables in the system tablespace, you must use the
TABLESPACE [=] innodb_system table option with CREATE TABLE or ALTER TABLE. The
innodb_file_per_table and innodb_file_format configuration options are not applicable to
general tablespaces, nor are they applicable when using the TABLESPACE [=] innodb_system
table option to store DYNAMIC tables in the system tablespace.

As of MySQL 5.7.9, you can add a DYNAMIC table to the system tablespace by disabling
innodb_file_per_table and using a regular CREATE TABLE or ALTER TABLE statement. The
innodb_file_format setting is ignored. A DYNAMIC table always uses the Barracuda file format.

DYNAMIC and COMPRESSED row formats are variations of the COMPACT row format and therefore
handle CHAR storage in the same way as the COMPACT row format. For more information, see
Section 14.2.7.7, “Physical Row Structure”.

14.8.4 COMPACT and REDUNDANT Row Formats

Early versions of InnoDB used an unnamed file format (now called Antelope) for database files.
The Antelope file format supports the COMPACT or REDUNDANT row formats. With these row formats,
InnoDB stores up to the first 768 bytes of variable-length columns (such as BLOB and VARCHAR) in the
index record within the B-tree node, with the remainder stored on the overflow pages.

To preserve compatibility with earlier versions of InnoDB, COMPACT remained the default row format
up to MySQL 5.7.8. As of MySQL 5.7.9, the default row format is DYNAMIC, which is defined by
the innodb_default_row_format configuration option. See Section 14.8.3, “DYNAMIC and
COMPRESSED Row Formats” for information about the DYNAMIC and COMPRESSED row formats.

With the Antelope file format, if the value of a column is 768 bytes or less, no overflow page is needed,
and some savings in I/O may result, since the value is in the B-tree node. This works well for relatively
short BLOBs, but may cause B-tree nodes to fill with data rather than key values, reducing their
efficiency. Tables with many BLOB columns could cause B-tree nodes to become too full of data,
and contain too few rows, making the entire index less efficient than if the rows were shorter or if the
column values were stored off-page.

For information about the physical row structure of tables that use the REDUNDANT or COMPACT row
format, see Section 14.2.7.7, “Physical Row Structure”.

14.9 InnoDB Disk I/O and File Space Management
As a DBA, you must manage disk I/O to keep the I/O subsystem from becoming saturated, and
manage disk space to avoid filling up storage devices. The ACID design model requires a certain
amount of I/O that might seem redundant, but helps to ensure data reliability. Within these constraints,
InnoDB tries to optimize the database work and the organization of disk files to minimize the amount
of disk I/O. Sometimes, I/O is postponed until the database is not busy, or until everything needs to be
brought to a consistent state, such as during a database restart after a fast shutdown.

This section discusses the main considerations for I/O and disk space with the default kind of MySQL
tables (also known as InnoDB tables):

• Controlling the amount of background I/O used to improve query performance.

• Enabling or disabling features that provide extra durability at the expense of additional I/O.

• Organizing tables into many small files, a few larger files, or a combination of both.

• Balancing the size of redo log files against the I/O activity that occurs when the log files become full.

InnoDB Disk I/O

2071

• How to reorganize a table for optimal query performance.

14.9.1 InnoDB Disk I/O

InnoDB uses asynchronous disk I/O where possible, by creating a number of threads to handle I/O
operations, while permitting other database operations to proceed while the I/O is still in progress. On
Linux and Windows platforms, InnoDB uses the available OS and library functions to perform “native”
asynchronous I/O. On other platforms, InnoDB still uses I/O threads, but the threads may actually wait
for I/O requests to complete; this technique is known as “simulated” asynchronous I/O.

Read-Ahead

If InnoDB can determine there is a high probability that data might be needed soon, it performs read-
ahead operations to bring that data into the buffer pool so that it is available in memory. Making a few
large read requests for contiguous data can be more efficient than making several small, spread-out
requests. There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace
is sequential, it posts in advance a batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process
of being fully read into the buffer pool, it posts the remaining reads to the I/O system.

Doublewrite Buffer

InnoDB uses a novel file flush technique involving a structure called the doublewrite buffer, which
is enabled by default (innodb_doublewrite=ON). It adds safety to recovery following a crash or
power outage, and improves performance on most varieties of Unix by reducing the need for fsync()
operations.

Before writing pages to a data file, InnoDB first writes them to a contiguous tablespace area called
the doublewrite buffer. Only after the write and the flush to the doublewrite buffer has completed
does InnoDB write the pages to their proper positions in the data file. If there is an operating system,
storage subsystem, or mysqld process crash in the middle of a page write (causing a torn page
condition), InnoDB can later find a good copy of the page from the doublewrite buffer during recovery.

14.9.2 File Space Management

The data files that you define in the configuration file form the InnoDB system tablespace. The files
are logically concatenated to form the tablespace. There is no striping in use. You cannot define where
within the tablespace your tables are allocated. In a newly created tablespace, InnoDB allocates space
starting from the first data file.

To avoid the issues that come with storing all tables and indexes inside the system tablespace, you can
turn on the innodb_file_per_table configuration option, which stores each newly created table in
a separate tablespace file (with extension .ibd). For tables stored this way, there is less fragmentation
within the disk file, and when the table is truncated, the space is returned to the operating system
rather than still being reserved by InnoDB within the system tablespace. For more information, see
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”.

As of MySQL 5.7.6, you can also store tables in general tablespaces. General tablespaces are shared
tablespaces created using CREATE TABLESPACE syntax. They can be created outside of the MySQL
data directory, are capable of holding multiple tables, and support tables of all row formats. For more
information, see Section 14.4.9, “InnoDB General Tablespaces”.

Pages, Extents, Segments, and Tablespaces

Each tablespace consists of database pages. Every tablespace in a MySQL instance has the same
page size. By default, all tablespaces have a page size of 16KB; you can reduce the page size to 8KB

InnoDB Checkpoints

2072

or 4KB by specifying the innodb_page_size option when you create the MySQL instance. As of
MySQL 5.7.6, you can also increase the page size to 32KB or 64KB. For more information, refer to the
innodb_page_size documentation.

The pages are grouped into extents of size 1MB for pages up to 16KB in size (64 consecutive 16KB
pages, or 128 8KB pages, or 256 4KB pages). For a page size of 32KB, extent size is 2MB. For page
size of 64KB, extent size is 4MB. The “files” inside a tablespace are called segments in InnoDB.
(These segments are different from the rollback segment, which actually contains many tablespace
segments.)

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it one at a time.
After that, InnoDB starts to allocate whole extents to the segment. InnoDB can add up to 4 extents at
a time to a large segment to ensure good sequentiality of data.

Two segments are allocated for each index in InnoDB. One is for nonleaf nodes of the B-tree, the
other is for the leaf nodes. Keeping the leaf nodes contiguous on disk enables better sequential I/O
operations, because these leaf nodes contain the actual table data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an
InnoDB tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS
statement, InnoDB reports the extents that are definitely free in the tablespace. InnoDB always
reserves some extents for cleanup and other internal purposes; these reserved extents are not
included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether
the freed space becomes available for other users depends on whether the pattern of deletes frees
individual pages or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed
to release the space to other users, but remember that deleted rows are physically removed only
by the purge operation, which happens automatically some time after they are no longer needed for
transaction rollbacks or consistent reads. (See Section 14.2.3, “InnoDB Multi-Versioning”.)

To view information about the tablespace, query the INNODB_SYS_TABLESPACES table.

How Pages Relate to Table Rows

The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB
and TEXT), is slightly less than half of a database page for 4KB, 8KB, 16KB, and 32KB
innodb_page_size settings. For example, the maximum row length is about 8000 bytes for the
default 16KB page size. For an innodb_page_size setting of 64KB, InnoDB restricts row size to
about 16000 bytes. LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row
length, including BLOB and TEXT columns, must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page,
variable-length columns are chosen for external off-page storage until the row fits within half a page.
For a column chosen for off-page storage, InnoDB stores the first 768 bytes locally in the row, and the
rest externally into overflow pages. Each such column has its own list of overflow pages. The 768-byte
prefix is accompanied by a 20-byte value that stores the true length of the column and points into the
overflow list where the rest of the value is stored.

14.9.3 InnoDB Checkpoints

Making your log files very large may reduce disk I/O during checkpointing. It often makes sense to
set the total size of the log files as large as the buffer pool or even larger. Although in the past large
log files could make crash recovery take excessive time, starting with MySQL 5.5, performance
enhancements to crash recovery make it possible to use large log files with fast startup after a crash.
(Strictly speaking, this performance improvement is available for MySQL 5.1 with the InnoDB Plugin
1.0.7 and higher. It is with MySQL 5.5 that this improvement is available in the default InnoDB storage
engine.)

Defragmenting a Table

2073

How Checkpoint Processing Works

InnoDB implements a checkpoint mechanism known as fuzzy checkpointing. InnoDB flushes modified
database pages from the buffer pool in small batches. There is no need to flush the buffer pool in one
single batch, which would disrupt processing of user SQL statements during the checkpointing process.

During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all
modifications to the database before the label are present in the disk image of the database. Then
InnoDB scans the log files forward from the checkpoint, applying the logged modifications to the
database.

14.9.4 Defragmenting a Table

Random insertions into or deletions from a secondary index can cause the index to become
fragmented. Fragmentation means that the physical ordering of the index pages on the disk is not close
to the index ordering of the records on the pages, or that there are many unused pages in the 64-page
blocks that were allocated to the index.

One symptom of fragmentation is that a table takes more space than it “should” take. How much that is
exactly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor
may vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes
more time than it “should” take:

SELECT COUNT(*) FROM t WHERE non_indexed_column <> 12345;

The preceding query requires MySQL to perform a full table scan, the slowest type of query for a large
table.

To speed up index scans, you can periodically perform a “null” ALTER TABLE operation, which causes
MySQL to rebuild the table:

ALTER TABLE tbl_name ENGINE=INNODB

You can also use ALTER TABLE tbl_name FORCE to perform a “null” alter operation that rebuilds
the table.

As of MySQL 5.7.4, both ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE
tbl_name FORCE use online DDL (ALGORITHM=COPY). For more information, see Section 14.10.1,
“Overview of Online DDL”.

Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text
file, drop the table, and reload it from the dump file.

If the insertions into an index are always ascending and records are deleted only from the end, the
InnoDB filespace management algorithm guarantees that fragmentation in the index does not occur.

14.9.5 Reclaiming Disk Space with TRUNCATE TABLE

To reclaim operating system disk space when truncating an InnoDB table, the table must be stored in
its own .ibd file. For a table to be stored in its own .ibd file, innodb_file_per_table must enabled
when the table is created. Additionally, there cannot be a foreign key constraint between the table
being truncated and other tables, otherwise the TRUNCATE TABLE operation fails. A foreign key
constraint between two columns in the same table, however, is permitted.

When a table is truncated, it is dropped and re-created in a new .ibd file, and the freed space is
returned to the operating system. This is in contrast to truncating InnoDB tables that are stored within
the InnoDB system tablespace (tables created when innodb_file_per_table=OFF) and tables

InnoDB and Online DDL

2074

stored in shared general tablespaces, where only InnoDB can use the freed space after the table is
truncated.

The ability to truncate tables and return disk space to the operating system also means that physical
backups can be smaller. Truncating tables that are stored in the system tablespace (tables created
when innodb_file_per_table=OFF) or in a general tablespace leaves blocks of unused space in
the tablespace.

14.10 InnoDB and Online DDL
The online DDL feature enhances many types of ALTER TABLE operations to avoid table copying,
blocking of DML operations while DDL is in progress, or both.

The online DDL feature has the following benefits:

• It improves responsiveness and availability in busy production environments, where making a
table unavailable for minutes or hours whenever you modify its indexes or column definitions is not
practical.

• It lets you adjust the balance between performance and concurrency during the DDL operation, by
choosing whether to block access to the table entirely (LOCK=EXCLUSIVE clause), allow queries
but not DML (LOCK=SHARED clause), or allow full query and DML access to the table (LOCK=NONE
clause). When you omit the LOCK clause or specify LOCK=DEFAULT, MySQL allows as much
concurrency as possible depending on the type of operation.

• Performing changes in-place where possible, rather than creating a new copy of the table, avoids
temporary increases in disk space usage and I/O overhead associated with copying the table and
reconstructing secondary indexes.

14.10.1 Overview of Online DDL

Historically, many DDL operations on InnoDB tables were expensive. Many ALTER TABLE operations
worked by creating a new, empty table defined with the requested table options and indexes, then
copying the existing rows to the new table one-by-one, updating the indexes as the rows were inserted.
After all rows from the original table were copied, the old table was dropped and the copy was renamed
with the name of the original table.

MySQL 5.5, and MySQL 5.1 with the InnoDB Plugin, optimized CREATE INDEX and DROP INDEX
to avoid the table-copying behavior. That feature was known as Fast Index Creation. MySQL 5.6
enhanced many other types of ALTER TABLE operations to avoid copying the table. Another
enhancement allowed SELECT queries and INSERT, UPDATE, and DELETE (DML) statements to
proceed while the table is being altered. In MySQL 5.7, ALTER TABLE RENAME INDEX was also
enhanced to avoid table copying. This combination of features is now known as online DDL.

This mechanism also means that you can generally speed the overall process of creating and loading
a table and associated indexes by creating the table without any secondary indexes, then adding the
secondary indexes after the data is loaded.

Although no syntax changes are required in the CREATE INDEX or DROP INDEX commands, some
factors affect the performance, space usage, and semantics of this operation (see Section 14.10.9,
“Limitations of Online DDL”).

The online DDL enhancements in MySQL 5.6 improved many DDL operations that formerly required a
table copy, blocked DML operations on the table, or both. Table 14.8, “Summary of Online Status for
DDL Operations” shows the variations of the ALTER TABLE statement and shows how the online DDL
feature applies to each.

With the exception of ALTER TABLE partitioning clauses, online DDL operations for partitioned
InnoDB tables follow the same rules that apply to regular InnoDB tables. For more information, see
Section 14.10.8, “Online DDL for Partitioned InnoDB Tables”.

Overview of Online DDL

2075

• The “In-Place?” column shows which operations allow the ALGORITHM=INPLACE clause; the
preferred value is “Yes”.

• The “Copies Table?” column shows which operations are able to avoid the expensive table-copying
operation; the preferred value is “No”. This column is mostly the reverse of the “In-Place?” column,
except that a few operations allow ALGORITHM=INPLACE but still involve some amount of table
copying.

• The “Allows Concurrent DML?” column shows which operations can be performed fully online; the
preferred value is “Yes”. You can specify LOCK=NONE to assert that full concurrency is allowed
during the DDL, but MySQL automatically allows this level of concurrency when possible. When
concurrent DML is allowed, concurrent queries are also always allowed.

• The “Allows Concurrent Queries?” column shows which DDL operations allow queries on the table
while the operation is in progress; the preferred value is “Yes”. Concurrent query is allowed during
all online DDL operations. It is shown with “Yes” listed for all cells, for reference purposes. You can
specify LOCK=SHARED to assert that concurrent queries are allowed during the DDL, but MySQL
automatically allows this level of concurrency when possible.

• The “Notes” column explains any exceptions to the “Yes/No” values of the other columns, such as
when the answer depends on the setting of a configuration option or some other clause in the DDL
statement. The values “Yes*” and “No*” indicate that an answer depends on these additional notes.

Table 14.8 Summary of Online Status for DDL Operations

Operation In-
Place?

Copies
Table?

Allows
Concurrent

DML?

Allows
Concurrent

Query?

Notes

CREATE INDEX, ADD INDEX Yes* No* Yes Yes Some restrictions for FULLTEXT
index; see next row.

ADD FULLTEXT INDEX Yes No* No Yes Creating the first FULLTEXT
index for a table involves a table
copy, unless there is a user-
supplied FTS_DOC_ID column.
Subsequent FULLTEXT indexes
on the same table can be created
in-place.

ADD SPATIAL INDEX Yes No No Yes In-place support was added in
MySQL 5.7.5. Bulk load is not
supported.

RENAME INDEX Yes No Yes Yes Modifies .frm file only, not the
data file.

DROP INDEX Yes No Yes Yes Modifies .frm file only, not the
data file.

OPTIMIZE TABLE Yes Yes Yes Yes Uses ALGORITHM=INPLACE
as of MySQL 5.7.4.
ALGORITHM=COPY is used
if old_alter_table=1
or mysqld --skip-new
option is enabled. OPTIMIZE
TABLE using online DDL
(ALGORITHM=INPLACE) is
not supported for tables with
FULLTEXT indexes.

Set default value for a column Yes No Yes Yes Modifies .frm file only, not the
data file.

Overview of Online DDL

2076

Operation In-
Place?

Copies
Table?

Allows
Concurrent

DML?

Allows
Concurrent

Query?

Notes

Change auto-increment value
for a column

Yes No Yes Yes Modifies a value stored in
memory, not the data file.

Add a foreign key constraint Yes* No* Yes Yes To avoid copying the table,
disable foreign_key_checks
during constraint creation.

Drop a foreign key constraint Yes No Yes Yes The foreign_key_checks
option can be enabled or
disabled.

Rename a column Yes* No* Yes* Yes To allow concurrent DML,
keep the same data type
and only change the column
name. Prior to MySQL 5.7.8,
ALGORITHM=INPLACE is
supported for renaming a virtual
generated column but not for
renaming a stored generated
column. As of MySQL 5.7.8,
ALGORITHM=INPLACE is not
supported for renaming virtual or
stored generated columns.

Add a column Yes* Yes* Yes* Yes Concurrent DML is not
allowed when adding an auto-
increment column. Although
ALGORITHM=INPLACE is
allowed, the data is reorganized
substantially, so it is still
an expensive operation.
ALGORITHM=INPLACE is
supported for adding a virtual
generated column but not for
adding a stored generated
column. Adding a virtual
generated column does not
require a table copy.

Drop a column Yes Yes* Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it
is still an expensive operation.
ALGORITHM=INPLACE is
supported for dropping a
generated column. Dropping a
virtual generated column does not
require a table copy.

Reorder columns Yes Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it is
still an expensive operation.

Change ROW_FORMAT
property

Yes Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it is
still an expensive operation.

Overview of Online DDL

2077

Operation In-
Place?

Copies
Table?

Allows
Concurrent

DML?

Allows
Concurrent

Query?

Notes

Change KEY_BLOCK_SIZE
property

Yes Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it is
still an expensive operation.

Make column NULL Yes Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it is
still an expensive operation.

Make column NOT NULL Yes* Yes Yes Yes STRICT_ALL_TABLES or
STRICT_TRANS_TABLES
SQL_MODE is required for the
operation to succeed. The
operation fails if the column
contains NULL values. The server
prohibits changes to foreign key
columns that have the potential
to cause loss of referential
integrity. For more information,
see Section 13.1.6, “ALTER
TABLE Syntax”. Although
ALGORITHM=INPLACE is
allowed, the data is reorganized
substantially, so it is still an
expensive operation.

Change data type of column No* Yes* No Yes Exception: VARCHAR size may
be increased using online ALTER
TABLE. See InnoDB Online DDL
Column Properties for more
information.

Add primary key Yes* Yes Yes Yes Although ALGORITHM=INPLACE
is allowed, the data is
reorganized substantially, so it
is still an expensive operation.
ALGORITHM=INPLACE is not
allowed under certain conditions
if columns have to be converted
to NOT NULL. See Example 14.9,
“Creating and Dropping the
Primary Key”.

Drop primary key and add
another

Yes Yes Yes Yes ALGORITHM=INPLACE is only
allowed when you add a new
primary key in the same ALTER
TABLE; the data is reorganized
substantially, so it is still an
expensive operation.

Drop primary key No Yes No Yes Restrictions apply when you drop
a primary key primary key without
adding a new one in the same
ALTER TABLE statement.

Convert character set No Yes No Yes Rebuilds the table if the new
character encoding is different.

Overview of Online DDL

2078

Operation In-
Place?

Copies
Table?

Allows
Concurrent

DML?

Allows
Concurrent

Query?

Notes

Specify character set No Yes No Yes Rebuilds the table if the new
character encoding is different.

Rebuild with FORCE option Yes Yes Yes Yes Uses ALGORITHM=INPLACE
as of MySQL 5.7.4.
ALGORITHM=COPY is used
if old_alter_table=1
or mysqld --skip-new
option is enabled. Table
rebuild using online DDL
(ALGORITHM=INPLACE) is
not supported for tables with
FULLTEXT indexes.

Rebuild with “null”
ALTER TABLE ...
ENGINE=INNODB

Yes Yes Yes Yes Uses ALGORITHM=INPLACE
as of MySQL 5.7.4.
ALGORITHM=COPY is used
if old_alter_table=1
or mysqld --skip-new
option is enabled. Table
rebuild using online DDL
(ALGORITHM=INPLACE) is
not supported for tables with
FULLTEXT indexes.

Set table-level persistent
statistics options
(STATS_PERSISTENT,
STATS_AUTO_RECALC
STATS_SAMPLE_PAGES)

Yes No Yes Yes Modifies .frm file only, not the
data file.

The following sections shows the basic syntax, and usage notes related to online DDL, for each of the
major operations that can be performed with concurrent DML, in-place, or both:

Secondary Indexes

• Create secondary indexes: CREATE INDEX name ON table (col_list) or ALTER TABLE
table ADD INDEX name (col_list). (Creating a a FULLTEXT index still requires locking the
table.)

• Drop secondary indexes: DROP INDEX name ON table; or ALTER TABLE table DROP INDEX
name

Creating and dropping secondary indexes on InnoDB tables skips the table-copying behavior, the
same as in MySQL 5.5 and MySQL 5.1 with the InnoDB Plugin.

In MySQL 5.6 and higher, the table remains available for read and write operations while the index
is being created or dropped. The CREATE INDEX or DROP INDEX statement only finishes after all
transactions that are accessing the table are completed, so that the initial state of the index reflects the
most recent contents of the table. Previously, modifying the table while an index is being created or
dropped typically resulted in a deadlock that cancelled the INSERT, UPDATE, or DELETE statement on
the table.

Column Properties

• Set a default value for a column: ALTER TABLE tbl ALTER COLUMN col SET DEFAULT
literal or ALTER TABLE tbl ALTER COLUMN col DROP DEFAULT

Overview of Online DDL

2079

The default values for columns are stored in the .frm file for the table, not the InnoDB data
dictionary.

• Changing the auto-increment value for a column: ALTER TABLE table
AUTO_INCREMENT=next_value;

Especially in a distributed system using replication or sharding, you sometimes reset the auto-
increment counter for a table to a specific value. The next row inserted into the table uses
the specified value for its auto-increment column. You might also use this technique in a data
warehousing environment where you periodically empty all the tables and reload them, and you can
restart the auto-increment sequence from 1.

• Renaming a column: ALTER TABLE tbl CHANGE old_col_name new_col_name datatype

When you keep the same data type and [NOT] NULL attribute, only changing the column name, this
operation can always be performed online.

You can also rename a column that is part of a foreign key constraint. The foreign key definition is
automatically updated to use the new column name. Renaming a column participating in a foreign
key only works with the in-place mode of ALTER TABLE. If you use the ALGORITHM=COPY clause, or
some other condition causes the command to use ALGORITHM=COPY behind the scenes, the ALTER
TABLE statement will fail.

• Extending VARCHAR size using an in-place ALTER TABLE statement, as in this example:

ALTER TABLE t1 ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(255);

The number of length bytes required by a VARCHAR column must remain the same. For VARCHAR
values of 0 to 255, one length byte is required to encode the value. For VARCHAR values of 256 bytes
or more, two length bytes are required. As a result, in-place ALTER TABLE only supports increasing
VARCHAR size from 0 to 255 bytes or increasing VARCHAR size from a value equal to or greater
than 256 bytes. In-place ALTER TABLE does not support increasing VARCHAR size from less than
256 bytes to a value equal to or greater than 256 bytes. In this case, the number of required length
bytes would change from 1 to 2, which is only supported by a table copy (ALGORITHM=COPY). For
example, attempting to change VARCHAR column size from 255 to 256 using in-place ALTER TABLE
would return an error:

ALTER TABLE t1 ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(256);
ERROR 0A000: ALGORITHM=INPLACE is not supported. Reason: Cannot change
column type INPLACE. Try ALGORITHM=COPY.

Decreasing VARCHAR size using in-place ALTER TABLE is not supported. Decreasing VARCHAR size
requires a table copy (ALGORITHM=COPY).

Foreign Keys

• Adding or dropping a foreign key constraint:

ALTER TABLE tbl1 ADD CONSTRAINT fk_name FOREIGN KEY index (col1) REFERENCES tbl2(col2) referential_actions;
ALTER TABLE tbl DROP FOREIGN KEY fk_name;

Dropping a foreign key can be performed online with the foreign_key_checks option enabled or
disabled. Creating a foreign key online requires foreign_key_checks to be disabled.

If you do not know the names of the foreign key constraints on a particular table, issue the following
statement and find the constraint name in the CONSTRAINT clause for each foreign key:

show create table table\G

Overview of Online DDL

2080

Or, query the information_schema.table_constraints table and use the
constraint_name and constraint_type columns to identify the foreign key names.

You can also drop a foreign key and its associated index in a single statement:

ALTER TABLE table DROP FOREIGN KEY constraint, DROP INDEX index;

If foreign keys are already present in the table being altered (that is, it is a child table containing any
FOREIGN KEY ... REFERENCE clauses), additional restrictions apply to online DDL operations, even
those not directly involving the foreign key columns:

• Concurrent DML is disallowed during online DDL operations on such child tables. (This restriction is
being evaluated as a bug and might be lifted.)

• An ALTER TABLE on the child table could also wait for another transaction to commit, if a change to
the parent table caused associated changes in the child table through an ON UPDATE or ON DELETE
clause using the CASCADE or SET NULL parameters.

In the same way, if a table is the parent table in a foreign key relationship, even though it does not
contain any FOREIGN KEY clauses, it could wait for the ALTER TABLE to complete if an INSERT,
UPDATE, or DELETE statement caused an ON UPDATE or ON DELETE action in the child table.

Notes on ALGORITHM=COPY

Any ALTER TABLE operation run with the ALGORITHM=COPY clause prevents concurrent DML
operations. Concurrent queries are still allowed. That is, a table-copying operation always includes
at least the concurrency restrictions of LOCK=SHARED (allow queries but not DML). You can further
restrict concurrency for such operations by specifying LOCK=EXCLUSIVE (prevent DML and queries).

Concurrent DML but Table Copy Still Required

Some other ALTER TABLE operations allow concurrent DML but still require a table copy. However,
the table copy for these operations is faster than it was in MySQL 5.5 and prior.

• Adding, dropping, or reordering columns.

• Adding or dropping a primary key.

• Changing the ROW_FORMAT or KEY_BLOCK_SIZE properties for a table.

• Changing the nullable status for a column.

• OPTIMIZE TABLE

• Rebuilding a table with the FORCE option

• Rebuilding a table using a “null” ALTER TABLE ... ENGINE=INNODB statement

Maintaining CREATE TABLE Statements

As your database schema evolves with new columns, data types, constraints, indexes, and so on, keep
your CREATE TABLE statements up to date with the latest table definitions. Even with the performance
improvements of online DDL, it is more efficient to create stable database structures at the beginning,
rather than creating part of the schema and then issuing ALTER TABLE statements afterward.

The main exception to this guideline is for secondary indexes on tables with large numbers of rows.
It is typically most efficient to create the table with all details specified except the secondary indexes,
load the data, then create the secondary indexes. You can use the same technique with foreign keys
(load the data first, then set up the foreign keys) if you know the initial data is clean and do not need
consistency checks during the loading process.

Performance and Concurrency Considerations for Online DDL

2081

Whatever sequence of CREATE TABLE, CREATE INDEX, ALTER TABLE, and similar statements
went into putting a table together, you can capture the SQL needed to reconstruct the current form of
the table by issuing the statement SHOW CREATE TABLE table\G (uppercase \G required for tidy
formatting). This output shows clauses such as numeric precision, NOT NULL, and CHARACTER SET
that are sometimes added behind the scenes, and you might otherwise leave out when cloning the
table on a new system or setting up foreign key columns with identical type.

14.10.2 Performance and Concurrency Considerations for Online DDL

Online DDL improves several aspects of MySQL operation, such as performance, concurrency,
availability, and scalability:

• Because queries and DML operations on the table can proceed while the DDL is in progress,
applications that access the table are more responsive. Reduced locking and waiting for other
resources all throughout the MySQL server leads to greater scalability, even for operations not
involving the table being altered.

• For in-place operations, by avoiding the disk I/O and CPU cycles to rebuild the table, you minimize
the overall load on the database and maintain good performance and high throughput during the
DDL operation.

• For in-place operations, because less data is read into the buffer pool than if all the data was copied,
you avoid purging frequently accessed data from memory, which formerly could cause a temporary
performance dip after a DDL operation.

If an online operation requires temporary files, InnoDB creates them in the temporary file directory,
not the directory containing the original table. If this directory is not large enough to hold such files,
you may need to set the tmpdir system variable to a different directory. (See Section B.5.3.5, “Where
MySQL Stores Temporary Files”.)

Locking Options for Online DDL

While an InnoDB table is being changed by a DDL operation, the table may or may not be locked,
depending on the internal workings of that operation and the LOCK clause of the ALTER TABLE
statement. By default, MySQL uses as little locking as possible during a DDL operation; you specify
the clause either to make the locking more restrictive than it normally would be (thus limiting concurrent
DML, or DML and queries), or to ensure that some expected degree of locking is allowed for an
operation. If the LOCK clause specifies a level of locking that is not available for that specific kind of
DDL operation, such as LOCK=SHARED or LOCK=NONE while creating or dropping a primary key, the
clause works like an assertion, causing the statement to fail with an error. The following list shows the
different possibilities for the LOCK clause, from the most permissive to the most restrictive:

• For DDL operations with LOCK=NONE, both queries and concurrent DML are allowed. This clause
makes the ALTER TABLE fail if the kind of DDL operation cannot be performed with the requested
type of locking, so specify LOCK=NONE if keeping the table fully available is vital and it is OK to
cancel the DDL if that is not possible. For example, you might use this clause in DDLs for tables
involving customer signups or purchases, to avoid making those tables unavailable by mistakenly
issuing an expensive ALTER TABLE statement.

• For DDL operations with LOCK=SHARED, any writes to the table (that is, DML operations) are
blocked, but the data in the table can be read. This clause makes the ALTER TABLE fail if the kind
of DDL operation cannot be performed with the requested type of locking, so specify LOCK=SHARED
if keeping the table available for queries is vital and it is OK to cancel the DDL if that is not possible.
For example, you might use this clause in DDLs for tables in a data warehouse, where it is OK to
delay data load operations until the DDL is finished, but queries cannot be delayed for long periods.

• For DDL operations with LOCK=DEFAULT, or with the LOCK clause omitted, MySQL uses the lowest
level of locking that is available for that kind of operation, allowing concurrent queries, DML, or both
wherever possible. This is the setting to use when making pre-planned, pre-tested changes that you
know will not cause any availability problems based on the workload for that table.

Performance and Concurrency Considerations for Online DDL

2082

• For DDL operations with LOCK=EXCLUSIVE, both queries and DML operations are blocked. This
clause makes the ALTER TABLE fail if the kind of DDL operation cannot be performed with the
requested type of locking, so specify LOCK=EXCLUSIVE if the primary concern is finishing the DDL in
the shortest time possible, and it is OK to make applications wait when they try to access the table.
You might also use LOCK=EXCLUSIVE if the server is supposed to be idle, to avoid unexpected
accesses to the table.

An online DDL statement for an InnoDB table always waits for currently executing transactions that
are accessing the table to commit or roll back, because it requires exclusive access to the table for a
brief period while the DDL statement is being prepared. Likewise, it requires exclusive access to the
table for a brief time before finishing. Thus, an online DDL statement waits for any transactions that are
started while the DDL is in progress, and query or modify the table, to commit or roll back before the
DDL completes.

Because there is some processing work involved with recording the changes made by concurrent
DML operations, then applying those changes at the end, an online DDL operation could take longer
overall than the old-style mechanism that blocks table access from other sessions. The reduction
in raw performance is balanced against better responsiveness for applications that use the table.
When evaluating the ideal techniques for changing table structure, consider end-user perception of
performance, based on factors such as load times for web pages.

A newly created InnoDB secondary index contains only the committed data in the table at the time the
CREATE INDEX or ALTER TABLE statement finishes executing. It does not contain any uncommitted
values, old versions of values, or values marked for deletion but not yet removed from the old index.

Performance of In-Place versus Table-Copying DDL Operations

The raw performance of an online DDL operation is largely determined by whether the operation is
performed in-place, or requires copying and rebuilding the entire table. See Table 14.8, “Summary of
Online Status for DDL Operations” to see what kinds of operations can be performed in-place, and any
requirements for avoiding table-copy operations.

The performance speedup from in-place DDL applies to operations on secondary indexes, not to the
primary key index. The rows of an InnoDB table are stored in a clustered index organized based on the
primary key, forming what some database systems call an “index-organized table”. Because the table
structure is so closely tied to the primary key, redefining the primary key still requires copying the data.

When an operation on the primary key uses ALGORITHM=INPLACE, even though the data is still
copied, it is more efficient than using ALGORITHM=COPY because:

• No undo logging or associated redo logging is required for ALGORITHM=INPLACE. These operations
add overhead to DDL statements that use ALGORITHM=COPY.

• The secondary index entries are pre-sorted, and so can be loaded in order.

• The change buffer is not used, because there are no random-access inserts into the secondary
indexes.

To judge the relative performance of online DDL operations, you can run such operations
on a big InnoDB table using current and earlier versions of MySQL. You can also run all the
performance tests under the latest MySQL version, simulating the previous DDL behavior for the
“before” results, by setting the old_alter_table system variable. Issue the statement set
old_alter_table=1 in the session, and measure DDL performance to record the “before” figures.
Then set old_alter_table=0 to re-enable the newer, faster behavior, and run the DDL operations
again to record the “after” figures.

For a basic idea of whether a DDL operation does its changes in-place or performs a table copy, look
at the “rows affected” value displayed after the command finishes. For example, here are lines you
might see after doing different types of DDL operations:

• Changing the default value of a column (super-fast, does not affect the table data at all):

SQL Syntax for Online DDL

2083

Query OK, 0 rows affected (0.07 sec)

• Adding an index (takes time, but 0 rows affected shows that the table is not copied):

Query OK, 0 rows affected (21.42 sec)

• Changing the data type of a column (takes substantial time and does require rebuilding all the rows
of the table):

Query OK, 1671168 rows affected (1 min 35.54 sec)

Note

Changing the data type of a column requires rebuilding all the rows of the
table with the exception of changing VARCHAR size, which may be performed
using online ALTER TABLE. See InnoDB Online DDL Column Properties for
more information.

For example, before running a DDL operation on a big table, you might check whether the operation
will be fast or slow as follows:

1. Clone the table structure.

2. Populate the cloned table with a tiny amount of data.

3. Run the DDL operation on the cloned table.

4. Check whether the “rows affected” value is zero or not. A non-zero value means the operation will
require rebuilding the entire table, which might require special planning. For example, you might do
the DDL operation during a period of scheduled downtime, or on each replication slave server one
at a time.

For a deeper understanding of the reduction in MySQL processing, examine the
performance_schema and INFORMATION_SCHEMA tables related to InnoDB before and after DDL
operations, to see the number of physical reads, writes, memory allocations, and so on.

14.10.3 SQL Syntax for Online DDL

Typically, you do not need to do anything special to enable online DDL when using the ALTER TABLE
statement for InnoDB tables. See Table 14.8, “Summary of Online Status for DDL Operations” for
the kinds of DDL operations that can be performed in-place, allowing concurrent DML, or both. Some
variations require particular combinations of configuration settings or ALTER TABLE clauses.

You can control the various aspects of a particular online DDL operation by using the LOCK and
ALGORITHM clauses of the ALTER TABLE statement. These clauses come at the end of the statement,
separated from the table and column specifications by commas. The LOCK clause is useful for fine-
tuning the degree of concurrent access to the table. The ALGORITHM clause is primarily intended for
performance comparisons and as a fallback to the older table-copying behavior in case you encounter
any issues with existing DDL code. For example:

• To avoid accidentally making the table unavailable for reads, writes, or both, specify a clause on the
ALTER TABLE statement such as LOCK=NONE (allow both reads and writes) or LOCK=SHARED (allow
reads). The operation halts immediately if the requested level of concurrency is not available.

• To compare performance, run one statement with ALGORITHM=INPLACE and another with
ALGORITHM=COPY, as an alternative to setting the old_alter_table configuration option.

• To avoid tying up the server with an ALTER TABLE operation that copies the table, include
ALGORITHM=INPLACE. The statement halts immediately if it cannot use the in-place mechanism.

Combining or Separating DDL Statements

2084

See Table 14.8, “Summary of Online Status for DDL Operations” for a list of the DDL operations that
can or cannot be performed in-place.

See Section 14.10.2, “Performance and Concurrency Considerations for Online DDL” for more details
about the LOCK clause. For full examples of using online DDL, see Section 14.10.5, “Examples of
Online DDL”.

14.10.4 Combining or Separating DDL Statements

Before the introduction of online DDL, it was common practice to combine many DDL operations into
a single ALTER TABLE statement. Because each ALTER TABLE statement involved copying and
rebuilding the table, it was more efficient to make several changes to the same table at once, since
those changes could all be done with a single rebuild operation for the table. The downside was that
SQL code involving DDL operations was harder to maintain and to reuse in different scripts. If the
specific changes were different each time, you might have to construct a new complex ALTER TABLE
for each slightly different scenario.

For DDL operations that can be done in-place, as shown in Table 14.8, “Summary of Online Status
for DDL Operations”, now you can separate them into individual ALTER TABLE statements for easier
scripting and maintenance, without sacrificing efficiency. For example, you might take a complicated
statement such as:

ALTER TABLE t1 ADD INDEX i1(c1), ADD UNIQUE INDEX i2(c2),
 CHANGE c4_old_name c4_new_name INTEGER UNSIGNED;

and break it down into simpler parts that can be tested and performed independently, such as:

ALTER TABLE t1 ADD INDEX i1(c1);
ALTER TABLE t1 ADD UNIQUE INDEX i2(c2);
ALTER TABLE t1 CHANGE c4_old_name c4_new_name INTEGER UNSIGNED NOT NULL;

You might still use multi-part ALTER TABLE statements for:

• Operations that must be performed in a specific sequence, such as creating an index followed by a
foreign key constraint that uses that index.

• Operations all using the same specific LOCK clause, that you want to either succeed or fail as a
group.

• Operations that cannot be performed in-place, that is, that still copy and rebuild the table.

• Operations for which you specify ALGORITHM=COPY or old_alter_table=1, to force the table-
copying behavior if needed for precise backward-compatibility in specialized scenarios.

14.10.5 Examples of Online DDL

Here are code examples showing some operations whose performance, concurrency, and scalability
are improved by the latest online DDL enhancements.

• Example 14.1, “Schema Setup Code for Online DDL Experiments” sets up tables named
BIG_TABLE and SMALL_TABLE used in the subsequent examples.

• Example 14.2, “Speed and Efficiency of CREATE INDEX and DROP INDEX” illustrates the
performance aspects of creating and dropping indexes.

• Example 14.3, “Concurrent DML During CREATE INDEX and DROP INDEX” shows queries and
DML statements running during a DROP INDEX operation.

• Example 14.4, “Renaming a Column” demonstrates the speed improvement for renaming a column,
and shows the care needed to keep the data type precisely the same when doing the rename
operation.

Examples of Online DDL

2085

• Example 14.5, “Dropping Foreign Keys” demonstrates how foreign keys work with online DDL.
Because two tables are involved in foreign key operations, there are extra locking considerations.
Thus, tables with foreign keys sometimes have restrictions for online DDL operations.

• Example 14.6, “Changing Auto-Increment Value” demonstrates how auto-increment columns work
with online DDL. Tables with auto-increment columns sometimes have restrictions for online DDL
operations.

• Example 14.7, “Controlling Concurrency with the LOCK Clause” demonstrates the options to permit
or restrict concurrent queries and DML operations while an online DDL operation is in progress. It
shows the situations when the DDL statement might wait, or the concurrent transaction might wait, or
the concurrent transaction might cancel a DML statement due to a deadlock error.

• Example 14.8, “Schema Setup Code for Online DDL Experiments” demonstrates creating and
dropping multiple indexes in a single statement, which can be more efficient than using a separate
statement for each index operation.

• Example 14.9, “Creating and Dropping the Primary Key” demonstrates how it is more efficient to
define a primary key when creating the table, and relatively expensive to add one later.

Example 14.1 Schema Setup Code for Online DDL Experiments

Here is the code that sets up the initial tables used in these demonstrations:

/*
Setup code for the online DDL demonstration:
- Set up some config variables.
- Create 2 tables that are clones of one of the INFORMATION_SCHEMA tables
 that always has some data. The "small" table has a couple of thousand rows.
 For the "big" table, keep doubling the data until it reaches over a million rows.
- Set up a primary key for the sample tables, since we are demonstrating InnoDB aspects.
*/

set autocommit = 0;
set foreign_key_checks = 1;
set global innodb_file_per_table = 1;
set old_alter_table=0;
prompt mysql:

use test;

\! echo "Setting up 'small' table:"
drop table if exists small_table;
create table small_table as select * from information_schema.columns;
alter table small_table add id int unsigned not null primary key auto_increment;
select count(id) from small_table;

\! echo "Setting up 'big' table:"
drop table if exists big_table;
create table big_table as select * from information_schema.columns;
show create table big_table\G

insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
commit;

alter table big_table add id int unsigned not null primary key auto_increment;
select count(id) from big_table;

Running this code gives this output, condensed for brevity and with the most important points bolded:

Examples of Online DDL

2086

Setting up 'small' table:
Query OK, 0 rows affected (0.01 sec)

Query OK, 1678 rows affected (0.13 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Query OK, 1678 rows affected (0.07 sec)
Records: 1678 Duplicates: 0 Warnings: 0

+-----------+
| count(id) |
+-----------+
| 1678 |
+-----------+
1 row in set (0.00 sec)

Setting up 'big' table:
Query OK, 0 rows affected (0.16 sec)

Query OK, 1678 rows affected (0.17 sec)
Records: 1678 Duplicates: 0 Warnings: 0

*************************** 1. row ***************************
 Table: big_table
Create Table: CREATE TABLE `big_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT ''
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Query OK, 1678 rows affected (0.09 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Query OK, 3356 rows affected (0.07 sec)
Records: 3356 Duplicates: 0 Warnings: 0

Query OK, 6712 rows affected (0.17 sec)
Records: 6712 Duplicates: 0 Warnings: 0

Query OK, 13424 rows affected (0.44 sec)
Records: 13424 Duplicates: 0 Warnings: 0

Query OK, 26848 rows affected (0.63 sec)
Records: 26848 Duplicates: 0 Warnings: 0

Query OK, 53696 rows affected (1.72 sec)
Records: 53696 Duplicates: 0 Warnings: 0

Query OK, 107392 rows affected (3.02 sec)
Records: 107392 Duplicates: 0 Warnings: 0

Query OK, 214784 rows affected (6.28 sec)
Records: 214784 Duplicates: 0 Warnings: 0

Examples of Online DDL

2087

Query OK, 429568 rows affected (13.25 sec)
Records: 429568 Duplicates: 0 Warnings: 0

Query OK, 859136 rows affected (28.16 sec)
Records: 859136 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.03 sec)

Query OK, 1718272 rows affected (1 min 9.22 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

+-----------+
| count(id) |
+-----------+
| 1718272 |
+-----------+
1 row in set (1.75 sec)

Example 14.2 Speed and Efficiency of CREATE INDEX and DROP INDEX

Here is a sequence of statements demonstrating the relative speed of CREATE INDEX and DROP
INDEX statements. For a small table, the elapsed time is less than a second whether we use the fast
or slow technique, so we look at the “rows affected” output to verify which operations can avoid the
table rebuild. For a large table, the difference in efficiency is obvious because skipping the table rebuild
saves substantial time.

\! clear

\! echo "=== Create and drop index (small table, new/fast technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/small_table.ibd
create index i_dtyp_small on small_table (data_type), algorithm=inplace;
\! echo "Data size after index created: "
\! du -k data/test/small_table.ibd
drop index i_dtyp_small on small_table, algorithm=inplace;

-- Compare against the older slower DDL.

\! echo "=== Create and drop index (small table, old/slow technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/small_table.ibd
create index i_dtyp_small on small_table (data_type), algorithm=copy;
\! echo "Data size after index created: "
\! du -k data/test/small_table.ibd
drop index i_dtyp_small on small_table, algorithm=copy;

-- In the above example, we examined the "rows affected" number,
-- ideally looking for a zero figure. Let's try again with a larger
-- sample size, where we'll see that the actual time taken can
-- vary significantly.

\! echo "=== Create and drop index (big table, new/fast technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/big_table.ibd
create index i_dtyp_big on big_table (data_type), algorithm=inplace;
\! echo "Data size after index created: "
\! du -k data/test/big_table.ibd
drop index i_dtyp_big on big_table, algorithm=inplace;

\! echo "=== Create and drop index (big table, old/slow technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/big_table.ibd
create index i_dtyp_big on big_table (data_type), algorithm=copy;
\! echo "Data size after index created: "
\! du -k data/test/big_table.ibd

Examples of Online DDL

2088

drop index i_dtyp_big on big_table, algorithm=copy;

Running this code gives this output, condensed for brevity and with the most important points bolded:

Query OK, 0 rows affected (0.00 sec)

=== Create and drop index (small table, new/fast technique) ===

Data size (kilobytes) before index created:
384 data/test/small_table.ibd
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0

Data size after index created:
432 data/test/small_table.ibd
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

=== Create and drop index (small table, old/slow technique) ===

Data size (kilobytes) before index created:
432 data/test/small_table.ibd
Query OK, 1678 rows affected (0.12 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Data size after index created:
448 data/test/small_table.ibd
Query OK, 1678 rows affected (0.10 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

=== Create and drop index (big table, new/fast technique) ===

Data size (kilobytes) before index created:
315392 data/test/big_table.ibd
Query OK, 0 rows affected (33.32 sec)
Records: 0 Duplicates: 0 Warnings: 0

Data size after index created:
335872 data/test/big_table.ibd
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

=== Create and drop index (big table, old/slow technique) ===

Data size (kilobytes) before index created:
335872 data/test/big_table.ibd
Query OK, 1718272 rows affected (1 min 5.01 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

Data size after index created:
348160 data/test/big_table.ibd
Query OK, 1718272 rows affected (46.59 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

Example 14.3 Concurrent DML During CREATE INDEX and DROP INDEX

Here are some snippets of code that are run in separate mysql sessions connected to the same
database, to illustrate DML statements (insert, update, or delete) running at the same time as CREATE
INDEX and DROP INDEX.

/*
CREATE INDEX statement to run against a table while
insert/update/delete statements are modifying the
column being indexed.

Examples of Online DDL

2089

*/

-- Run this script in one session, while simultaneously creating and dropping
-- an index on test/big_table.table_name in another session.

use test;
create index i_concurrent on big_table(table_name);

/*
DROP INDEX statement to run against a table while
insert/update/delete statements are modifying the
column being indexed.
*/

-- Run this script in one session, while simultaneously creating and dropping
-- an index on test/big_table.table_name in another session.

use test;
drop index i_concurrent on big_table;

/*
Some queries and insert/update/delete statements to run against a table
while an index is being created or dropped. Previously, these operations
would have stalled during the index create/drop period and possibly
timed out or deadlocked.
*/

-- Run this script in one session, while simultaneously creating and dropping
-- an index on test/big_table.table_name in another session.

-- In the test instance, that column has about 1.7M rows, with 136 different values.
-- Sample values: COLUMNS (20480), ENGINES (6144), EVENTS (24576), FILES (38912),
-- TABLES (21504), VIEWS (10240).

set autocommit = 0;
use test;

select distinct character_set_name from big_table where table_name = 'FILES';
delete from big_table where table_name = 'FILES';
select distinct character_set_name from big_table where table_name = 'FILES';

-- I'll issue the final rollback interactively, not via script,
-- the better to control the timing.
-- rollback;

Running this code gives this output, condensed for brevity and with the most important points bolded:

mysql: source concurrent_ddl_create.sql
Database changed
Query OK, 0 rows affected (1 min 25.15 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql: source concurrent_ddl_drop.sql
Database changed
Query OK, 0 rows affected (24.98 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql: source concurrent_dml.sql
Query OK, 0 rows affected (0.00 sec)

Database changed
+--------------------+
| character_set_name |
+--------------------+
| NULL |
| utf8 |
+--------------------+
2 rows in set (0.32 sec)

Examples of Online DDL

2090

Query OK, 38912 rows affected (1.84 sec)

Empty set (0.01 sec)

mysql: rollback;
Query OK, 0 rows affected (1.05 sec)

Example 14.4 Renaming a Column

Here is a demonstration of using ALTER TABLE to rename a column. We use the new, fast DDL
mechanism to change the name, then the old, slow DDL mechanism (with old_alter_table=1) to
restore the original column name.

Notes:

• Because the syntax for renaming a column also involves re-specifying the data type, be careful to
specify exactly the same data type to avoid a costly table rebuild. In this case, we checked the output
of show create table table\G and copied any clauses such as CHARACTER SET and NOT
NULL from the original column definition.

• Again, renaming a column for a small table is fast enough that we need to examine the “rows
affected” number to verify that the new DDL mechanism is more efficient than the old one. With a big
table, the difference in elapsed time makes the improvement obvious.

/*
Run through a sequence of 'rename column' statements.
Because this operation involves only metadata, not table data,
it is fast for big and small tables, with new or old DDL mechanisms.
*/

\! clear

\! echo "Rename column (fast technique, small table):"
alter table small_table change `IS_NULLABLE` `NULLABLE` varchar(3) character
 set utf8 not null, algorithm=inplace;
\! echo "Rename back to original name (slow technique):"
alter table small_table change `NULLABLE` `IS_NULLABLE` varchar(3) character
 set utf8 not null, algorithm=copy;

\! echo "Rename column (fast technique, big table):"
alter table big_table change `IS_NULLABLE` `NULLABLE` varchar(3) character
 set utf8 not null, algorithm=inplace;
\! echo "Rename back to original name (slow technique):"
alter table big_table change `NULLABLE` `IS_NULLABLE` varchar(3) character
 set utf8 not null, algorithm=copy;

Running this code gives this output, condensed for brevity and with the most important points bolded:

Rename column (fast technique, small table):
Query OK, 0 rows affected (0.05 sec)

Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0

Rename back to original name (slow technique):
Query OK, 0 rows affected (0.00 sec)

Query OK, 1678 rows affected (0.35 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Rename column (fast technique, big table):
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

Rename back to original name (slow technique):

Examples of Online DDL

2091

Query OK, 0 rows affected (0.00 sec)

Query OK, 1718272 rows affected (1 min 0.00 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

Example 14.5 Dropping Foreign Keys

Here is a demonstration of foreign keys, including improvement to the speed of dropping a foreign key
constraint.

/*
Demonstrate aspects of foreign keys that are or aren't affected by the DDL improvements.
- Create a new table with only a few values to serve as the parent table.
- Set up the 'small' and 'big' tables as child tables using a foreign key.
- Verify that the ON DELETE CASCADE clause makes changes ripple from parent to child tables.
- Drop the foreign key constraints, and optionally associated indexes. (This is the operation that is sped up.)
*/

\! clear

-- Make sure foreign keys are being enforced, and allow
-- rollback after doing some DELETEs that affect both
-- parent and child tables.
set foreign_key_checks = 1;
set autocommit = 0;

-- Create a parent table, containing values that we know are already present
-- in the child tables.
drop table if exists schema_names;
create table schema_names (id int unsigned not null primary key auto_increment, schema_name
 varchar(64) character set utf8 not null, index i_schema (schema_name)) as select distinct
 table_schema schema_name from small_table;

show create table schema_names\G
show create table small_table\G
show create table big_table\G

-- Creating the foreign key constraint still involves a table rebuild when foreign_key_checks=1,
-- as illustrated by the "rows affected" figure.
alter table small_table add constraint small_fk foreign key i_table_schema (table_schema)
 references schema_names(schema_name) on delete cascade;
alter table big_table add constraint big_fk foreign key i_table_schema (table_schema)
 references schema_names(schema_name) on delete cascade;

show create table small_table\G
show create table big_table\G

select schema_name from schema_names order by schema_name;
select count(table_schema) howmany, table_schema from small_table group by table_schema;
select count(table_schema) howmany, table_schema from big_table group by table_schema;

-- big_table is the parent table.
-- schema_names is the parent table.
-- big_table is the child table.
-- (One row in the parent table can have many "children" in the child table.)
-- Changes to the parent table can ripple through to the child table.
-- For example, removing the value 'test' from schema_names.schema_name will
-- result in the removal of 20K or so rows from big_table.

delete from schema_names where schema_name = 'test';

select schema_name from schema_names order by schema_name;
select count(table_schema) howmany, table_schema from small_table group by table_schema;
select count(table_schema) howmany, table_schema from big_table group by table_schema;

-- Because we've turned off autocommit, we can still get back those deleted rows
-- if the DELETE was issued by mistake.
rollback;

Examples of Online DDL

2092

select schema_name from schema_names order by schema_name;
select count(table_schema) howmany, table_schema from small_table group by table_schema;
select count(table_schema) howmany, table_schema from big_table group by table_schema;

-- All of the cross-checking between parent and child tables would be
-- deadly slow if there wasn't the requirement for the corresponding
-- columns to be indexed!

-- But we can get rid of the foreign key using a fast operation
-- that doesn't rebuild the table.
-- If we didn't specify a constraint name when setting up the foreign key, we would
-- have to find the auto-generated name such as 'big_table_ibfk_1' in the
-- output from 'show create table'.

-- For the small table, drop the foreign key and the associated index.
-- Having an index on a small table is less critical.

\! echo "DROP FOREIGN KEY and INDEX from small_table:"
alter table small_table drop foreign key small_fk, drop index small_fk;

-- For the big table, drop the foreign key and leave the associated index.
-- If we are still doing queries that reference the indexed column, the index is
-- very important to avoid a full table scan of the big table.
\! echo "DROP FOREIGN KEY from big_table:"
alter table big_table drop foreign key big_fk;

show create table small_table\G
show create table big_table\G

Running this code gives this output, condensed for brevity and with the most important points bolded:

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Query OK, 4 rows affected (0.03 sec)
Records: 4 Duplicates: 0 Warnings: 0

*************************** 1. row ***************************
 Table: schema_names
Create Table: CREATE TABLE `schema_names` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `schema_name` varchar(64) CHARACTER SET utf8 NOT NULL,
 PRIMARY KEY (`id`),
 KEY `i_schema` (`schema_name`)
) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

*************************** 1. row ***************************
 Table: small_table
Create Table: CREATE TABLE `small_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',

Examples of Online DDL

2093

 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1679 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

*************************** 1. row ***************************
 Table: big_table
Create Table: CREATE TABLE `big_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`),
 KEY `big_fk` (`TABLE_SCHEMA`)
) ENGINE=InnoDB AUTO_INCREMENT=1718273 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Query OK, 1678 rows affected (0.10 sec)
Records: 1678 Duplicates: 0 Warnings: 0

Query OK, 1718272 rows affected (1 min 14.54 sec)
Records: 1718272 Duplicates: 0 Warnings: 0

*************************** 1. row ***************************
 Table: small_table
Create Table: CREATE TABLE `small_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`),
 KEY `small_fk` (`TABLE_SCHEMA`),
 CONSTRAINT `small_fk` FOREIGN KEY (`TABLE_SCHEMA`)
 REFERENCES `schema_names` (`schema_name`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=1679 DEFAULT CHARSET=latin1

Examples of Online DDL

2094

1 row in set (0.12 sec)

*************************** 1. row ***************************
 Table: big_table
Create Table: CREATE TABLE `big_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`),
 KEY `big_fk` (`TABLE_SCHEMA`),
 CONSTRAINT `big_fk` FOREIGN KEY (`TABLE_SCHEMA`)
 REFERENCES `schema_names` (`schema_name`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=1718273 DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

+--------------------+
| schema_name |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |
+--------------------+
4 rows in set (0.00 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
563	information_schema
286	mysql
786	performance_schema
43	test
+---------+--------------------+
4 rows in set (0.01 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
576512	information_schema
292864	mysql
804864	performance_schema
44032	test
+---------+--------------------+
4 rows in set (2.10 sec)

Query OK, 1 row affected (1.52 sec)

+--------------------+
| schema_name |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+

Examples of Online DDL

2095

3 rows in set (0.00 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
563	information_schema
286	mysql
786	performance_schema
+---------+--------------------+
3 rows in set (0.00 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
576512	information_schema
292864	mysql
804864	performance_schema
+---------+--------------------+
3 rows in set (1.74 sec)

Query OK, 0 rows affected (0.60 sec)

+--------------------+
| schema_name |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |
+--------------------+
4 rows in set (0.00 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
563	information_schema
286	mysql
786	performance_schema
43	test
+---------+--------------------+
4 rows in set (0.01 sec)

+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
576512	information_schema
292864	mysql
804864	performance_schema
44032	test
+---------+--------------------+
4 rows in set (1.59 sec)

DROP FOREIGN KEY and INDEX from small_table:
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

DROP FOREIGN KEY from big_table:
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

*************************** 1. row ***************************
 Table: small_table
Create Table: CREATE TABLE `small_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,

Examples of Online DDL

2096

 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1679 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

*************************** 1. row ***************************
 Table: big_table
Create Table: CREATE TABLE `big_table` (
 `TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
 `COLUMN_DEFAULT` longtext CHARACTER SET utf8,
 `IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
 `DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
 `DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
 `CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
 `COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
 `COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`),
 KEY `big_fk` (`TABLE_SCHEMA`)
) ENGINE=InnoDB AUTO_INCREMENT=1718273 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Example 14.6 Changing Auto-Increment Value

Here is an illustration of increasing the auto-increment lower limit for a table column, demonstrating
how this operation now avoids a table rebuild, plus other facts about InnoDB auto-increment columns.

/*
If this script is run after foreign_key.sql, the schema_names table is
already set up. But to allow this script to run multiple times without
running into duplicate ID errors, we set up the schema_names table
all over again.
*/

\! clear

\! echo "=== Adjusting the Auto-Increment Limit for a Table ==="
\! echo

drop table if exists schema_names;
create table schema_names (id int unsigned not null primary key auto_increment,
 schema_name varchar(64) character set utf8 not null, index i_schema (schema_name))
 as select distinct table_schema schema_name from small_table;

\! echo "Initial state of schema_names table."
\! echo "AUTO_INCREMENT is included in SHOW CREATE TABLE output."
\! echo "Note how MySQL reserved a block of IDs."
\! echo "Only 4 IDs are needed in this transaction. The next inserted values get IDs 8 and 9."

Examples of Online DDL

2097

show create table schema_names\G
select * from schema_names order by id;

\! echo "Inserting even a tiny amount of data can produce gaps in the ID sequence."
insert into schema_names (schema_name) values ('eight'), ('nine');

\! echo "Bumping auto-increment lower limit to 20 (fast mechanism):"
alter table schema_names auto_increment=20, algorithm=inplace;

\! echo "Inserting 2 rows that should get IDs 20 and 21:"
insert into schema_names (schema_name) values ('foo'), ('bar');
commit;

\! echo "Bumping auto-increment lower limit to 30 (slow mechanism):"
alter table schema_names auto_increment=30, algorithm=copy;

\! echo "Inserting 2 rows that should get IDs 30 and 31:"
insert into schema_names (schema_name) values ('bletch'),('baz');
commit;

select * from schema_names order by id;

\! echo "Final state of schema_names table."
\! echo "AUTO_INCREMENT value shows the next inserted row would get ID=32."
show create table schema_names\G

Running this code gives this output, condensed for brevity and with the most important points bolded:

=== Adjusting the Auto-Increment Limit for a Table ===

Query OK, 0 rows affected (0.01 sec)

Query OK, 4 rows affected (0.02 sec)
Records: 4 Duplicates: 0 Warnings: 0

Initial state of schema_names table.
AUTO_INCREMENT is included in SHOW CREATE TABLE output.
Note how MySQL reserved a block of IDs.
Only 4 IDs are needed in this transaction. The next inserted values get IDs 8 and 9.
*************************** 1. row ***************************
 Table: schema_names
Create Table: CREATE TABLE `schema_names` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `schema_name` varchar(64) CHARACTER SET utf8 NOT NULL,
 PRIMARY KEY (`id`),
 KEY `i_schema` (`schema_name`)
) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

+----+--------------------+
| id | schema_name |
+----+--------------------+
1	information_schema
2	mysql
3	performance_schema
4	test
+----+--------------------+
4 rows in set (0.00 sec)

Inserting even a tiny amount of data can produce gaps in the ID sequence.
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

Bumping auto-increment lower limit to 20 (fast mechanism):
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

Inserting 2 rows that should get IDs 20 and 21:
Query OK, 2 rows affected (0.00 sec)

Examples of Online DDL

2098

Records: 2 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Bumping auto-increment lower limit to 30 (slow mechanism):
Query OK, 8 rows affected (0.02 sec)
Records: 8 Duplicates: 0 Warnings: 0

Inserting 2 rows that should get IDs 30 and 31:
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.01 sec)

+----+--------------------+
| id | schema_name |
+----+--------------------+
1	information_schema
2	mysql
3	performance_schema
4	test
8	eight
9	nine
20	foo
21	bar
30	bletch
31	baz
+----+--------------------+
10 rows in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Final state of schema_names table.
AUTO_INCREMENT value shows the next inserted row would get ID=32.
*************************** 1. row ***************************
 Table: schema_names
Create Table: CREATE TABLE `schema_names` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `schema_name` varchar(64) CHARACTER SET utf8 NOT NULL,
 PRIMARY KEY (`id`),
 KEY `i_schema` (`schema_name`)
) ENGINE=InnoDB AUTO_INCREMENT=32 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Example 14.7 Controlling Concurrency with the LOCK Clause

This example shows how to use the LOCK clause of the ALTER TABLE statement to allow or deny
concurrent access to the table while an online DDL operation is in progress. The clause has settings
that allow queries and DML statements (LOCK=NONE), just queries (LOCK=SHARED), or no concurrent
access at all (LOCK=EXCLUSIVE).

In one session, we run a succession of ALTER TABLE statements to create and drop an index, using
different values for the LOCK clause to see what happens with waiting or deadlocking in either session.
We are using the same BIG_TABLE table as in previous examples, starting with approximately 1.7
million rows. For illustration purposes, we will index and query the IS_NULLABLE column. (Although in
real life it would be silly to make an index for a tiny column with only 2 distinct values.)

mysql: desc big_table;
+--------------------------+---------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------------------+---------------------+------+-----+---------+----------------+
TABLE_CATALOG	varchar(512)	NO			
TABLE_SCHEMA	varchar(64)	NO			
TABLE_NAME	varchar(64)	NO			
COLUMN_NAME	varchar(64)	NO			
ORDINAL_POSITION	bigint(21) unsigned	NO		0	
COLUMN_DEFAULT	longtext	YES		NULL	

Examples of Online DDL

2099

| IS_NULLABLE | varchar(3) | NO | | | |
...
+--------------------------+---------------------+------+-----+---------+----------------+
21 rows in set (0.14 sec)

mysql: alter table big_table add index i1(is_nullable);
Query OK, 0 rows affected (20.71 sec)

mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.02 sec)

mysql: alter table big_table add index i1(is_nullable), lock=exclusive;
Query OK, 0 rows affected (19.44 sec)

mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.03 sec)

mysql: alter table big_table add index i1(is_nullable), lock=shared;
Query OK, 0 rows affected (16.71 sec)

mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.05 sec)

mysql: alter table big_table add index i1(is_nullable), lock=none;
Query OK, 0 rows affected (12.26 sec)

mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.01 sec)

... repeat statements like the above while running queries ...

... and DML statements at the same time in another session ...

Nothing dramatic happens in the session running the DDL statements. Sometimes, an ALTER TABLE
takes unusually long because it is waiting for another transaction to finish, when that transaction
modified the table during the DDL or queried the table before the DDL:

mysql: alter table big_table add index i1(is_nullable), lock=none;

Query OK, 0 rows affected (59.27 sec)

mysql: -- The previous ALTER took so long because it was waiting for all the concurrent
mysql: -- transactions to commit or roll back.

mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (41.05 sec)

mysql: -- Even doing a SELECT on the table in the other session first causes
mysql: -- the ALTER TABLE above to stall until the transaction
mysql: -- surrounding the SELECT is committed or rolled back.

Here is the log from another session running concurrently, where we issue queries and DML
statements against the table before, during, and after the DDL operations shown in the previous
listings. This first listing shows queries only. We expect the queries to be allowed during DDL
operations using LOCK=NONE or LOCK=SHARED, and for the query to wait until the DDL is finished if the
ALTER TABLE statement includes LOCK=EXCLUSIVE.

mysql: show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.01 sec)

mysql: -- A trial query before any ADD INDEX in the other session:
mysql: -- Note: because autocommit is enabled, each
mysql: -- transaction finishes immediately after the query.
mysql: select distinct is_nullable from big_table;

Examples of Online DDL

2100

+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (4.49 sec)

mysql: -- Index is being created with LOCK=EXCLUSIVE on the ALTER statement.
mysql: -- The query waits until the DDL is finished before proceeding.
mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+

2 rows in set (17.26 sec)

mysql: -- Index is being created with LOCK=SHARED on the ALTER statement.
mysql: -- The query returns its results while the DDL is in progress.
mysql: -- The same thing happens with LOCK=NONE on the ALTER statement.
mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (3.11 sec)

mysql: -- Once the index is created, and with no DDL in progress,
mysql: -- queries referencing the indexed column are very fast:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.20 sec)

mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (0.00 sec)

Now in this concurrent session, we run some transactions including DML statements, or a combination
of DML statements and queries. We use DELETE statements to illustrate predictable, verifiable
changes to the table. Because the transactions in this part can span multiple statements, we run these
tests with autocommit turned off.

mysql: set global autocommit = off;
Query OK, 0 rows affected (0.00 sec)

mysql: -- Count the rows that will be involved in our DELETE statements:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.95 sec)

mysql: -- After this point, any DDL statements back in the other session
mysql: -- stall until we commit or roll back.

Examples of Online DDL

2101

mysql: delete from big_table where is_nullable = 'YES' limit 11648;
Query OK, 11648 rows affected (0.14 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (1.04 sec)

mysql: rollback;
Query OK, 0 rows affected (0.09 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.93 sec)

mysql: -- OK, now we're going to try that during index creation with LOCK=NONE.
mysql: delete from big_table where is_nullable = 'YES' limit 11648;
Query OK, 11648 rows affected (0.21 sec)

mysql: -- We expect that now there will be 400000 'YES' rows left:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (1.25 sec)

mysql: -- In the other session, the ALTER TABLE is waiting before finishing,
mysql: -- because _this_ transaction hasn't committed or rolled back yet.
mysql: rollback;
Query OK, 0 rows affected (0.11 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.19 sec)

mysql: -- The ROLLBACK left the table in the same state we originally found it.
mysql: -- Now let's make a permanent change while the index is being created,
mysql: -- again with ALTER TABLE ... , LOCK=NONE.
mysql: -- First, commit so the DROP INDEX in the other shell can finish;
mysql: -- the previous SELECT started a transaction that accessed the table.
mysql: commit;
Query OK, 0 rows affected (0.00 sec)

mysql: -- Now we add the index back in the other shell, then issue DML in this one
mysql: -- while the DDL is running.
mysql: delete from big_table where is_nullable = 'YES' limit 11648;
Query OK, 11648 rows affected (0.23 sec)

mysql: commit;
Query OK, 0 rows affected (0.01 sec)

mysql: -- In the other shell, the ADD INDEX has finished.
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+

Examples of Online DDL

2102

1 row in set (0.19 sec)

mysql: -- At the point the new index is finished being created, it contains entries
mysql: -- only for the 400000 'YES' rows left when all concurrent transactions are finished.
mysql:
mysql: -- Now we will run a similar test, while ALTER TABLE ... , LOCK=SHARED is running.
mysql: -- We expect a query to complete during the ALTER TABLE, but for the DELETE
mysql: -- to run into some kind of issue.
mysql: commit;
Query OK, 0 rows affected (0.00 sec)

mysql: -- As expected, the query returns results while the LOCK=SHARED DDL is running:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (2.07 sec)

mysql: -- The DDL in the other session is not going to finish until this transaction
mysql: -- is committed or rolled back. If we tried a DELETE now and it waited because
mysql: -- of LOCK=SHARED on the DDL, both transactions would wait forever (deadlock).
mysql: -- MySQL detects this condition and cancels the attempted DML statement.
mysql: delete from big_table where is_nullable = 'YES' limit 100000;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
mysql: -- The transaction here is still going, so in the other shell, the ADD INDEX operation
mysql: -- is waiting for this transaction to commit or roll back.
mysql: rollback;
Query OK, 0 rows affected (0.00 sec)

mysql: -- Now let's try issuing a query and some DML, on one line, while running
mysql: -- ALTER TABLE ... , LOCK=EXCLUSIVE in the other shell.
mysql: -- Notice how even the query is held up until the DDL is finished.
mysql: -- By the time the DELETE is issued, there is no conflicting access
mysql: -- to the table and we avoid the deadlock error.
mysql: select count(*) from big_table where is_nullable = 'YES'; delete from big_table
 where is_nullable = 'YES' limit 100000;
+----------+
| count(*) |
+----------+
| 400000 |
+----------+

1 row in set (15.98 sec)

Query OK, 100000 rows affected (2.81 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 300000 |
+----------+
1 row in set (0.17 sec)

mysql: rollback;
Query OK, 0 rows affected (1.36 sec)

mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (0.19 sec)

mysql: commit;
Query OK, 0 rows affected (0.00 sec)

mysql: -- Next, we try ALTER TABLE ... , LOCK=EXCLUSIVE in the other session
mysql: -- and only issue DML, not any query, in the concurrent transaction here.

Examples of Online DDL

2103

mysql: delete from big_table where is_nullable = 'YES' limit 100000;
Query OK, 100000 rows affected (16.37 sec)

mysql: -- That was OK because the ALTER TABLE did not have to wait for the transaction
mysql: -- here to complete. The DELETE in this session waited until the index was ready.
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 300000 |
+----------+
1 row in set (0.16 sec)

mysql: commit;
Query OK, 0 rows affected (0.00 sec)

In the preceding example listings, we learned that:

• The LOCK clause for ALTER TABLE is set off from the rest of the statement by a comma.

• Online DDL operations might wait before starting, until any prior transactions that access the table
are committed or rolled back.

• Online DDL operations might wait before completing, until any concurrent transactions that access
the table are committed or rolled back.

• While an online DDL operation is running, concurrent queries are relatively straightforward, as long
as the ALTER TABLE statement uses LOCK=NONE or LOCK=SHARED.

• Pay attention to whether autocommit is turned on or off. If it is turned off, be careful to end
transactions in other sessions (even just queries) before performing DDL operations on the table.

• With LOCK=SHARED, concurrent transactions that mix queries and DML could encounter deadlock
errors and have to be restarted after the DDL is finished.

• With LOCK=NONE, concurrent transactions can freely mix queries and DML. The DDL operation waits
until the concurrent transactions are committed or rolled back.

• With LOCK=EXCLUSIVE, concurrent transactions can freely mix queries and DML, but those
transactions wait until the DDL operation is finished before they can access the table.

Example 14.8 Schema Setup Code for Online DDL Experiments

You can create multiple indexes on a table with one ALTER TABLE statement. This is relatively
efficient, because the clustered index of the table needs to be scanned only once (although the data is
sorted separately for each new index). For example:

CREATE TABLE T1(A INT PRIMARY KEY, B INT, C CHAR(1)) ENGINE=InnoDB;
INSERT INTO T1 VALUES (1,2,'a'), (2,3,'b'), (3,2,'c'), (4,3,'d'), (5,2,'e');
COMMIT;
ALTER TABLE T1 ADD INDEX (B), ADD UNIQUE INDEX (C);

The above statements create table T1 with the primary key on column A, insert several rows, then
build two new indexes on columns B and C. If there were many rows inserted into T1 before the ALTER
TABLE statement, this approach is much more efficient than creating all the secondary indexes before
loading the data.

Because dropping InnoDB secondary indexes also does not require any copying of table data, it is
equally efficient to drop multiple indexes with a single ALTER TABLE statement or multiple DROP
INDEX statements:

ALTER TABLE T1 DROP INDEX B, DROP INDEX C;

Examples of Online DDL

2104

or:

DROP INDEX B ON T1;
DROP INDEX C ON T1;

Example 14.9 Creating and Dropping the Primary Key

Restructuring the clustered index for an InnoDB table always requires copying the table data. Thus, it
is best to define the primary key when you create a table, rather than issuing ALTER TABLE ... ADD
PRIMARY KEY later, to avoid rebuilding the table.

Defining a PRIMARY KEY later causes the data to be copied, as in the following example:

CREATE TABLE T2 (A INT, B INT);
INSERT INTO T2 VALUES (NULL, 1);
ALTER TABLE T2 ADD PRIMARY KEY (B);

When you create a UNIQUE or PRIMARY KEY index, MySQL must do some extra work. For UNIQUE
indexes, MySQL checks that the table contains no duplicate values for the key. For a PRIMARY KEY
index, MySQL also checks that none of the PRIMARY KEY columns contains a NULL.

When you add a primary key using the ALGORITHM=COPY clause, MySQL actually converts NULL
values in the associated columns to default values: 0 for numbers, the empty string for character-based
columns and BLOBs, and 0000-00-00 00:00:00 for DATETIME. This is a non-standard behavior that
Oracle recommends you not rely on. Adding a primary key using ALGORITHM=INPLACE is only allowed
when the SQL_MODE setting includes the strict_trans_tables or strict_all_tables flags;
when the SQL_MODE setting is strict, ADD PRIMARY KEY ... , ALGORITHM=INPLACE is allowed,
but the statement can still fail if the requested primary key columns contain any NULL values. The
ALGORITHM=INPLACE behavior is more standard-compliant.

The following examples show the different possibilities for the ADD PRIMARY KEY clause. With the
ALGORITHM=COPY clause, the operation succeeds despite the presence of NULL values in the primary
key columns; the data is silently changed, which could cause problems.

mysql> CREATE TABLE add_pk_via_copy (c1 INT, c2 VARCHAR(10), c3 DATETIME);
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO add_pk_via_copy VALUES (1,'a','2014-11-03 11:01:37'),(NULL,NULL,NULL);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE add_pk_via_copy ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=COPY;
Query OK, 2 rows affected, 3 warnings (0.07 sec)
Records: 2 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
Warning	1265	Data truncated for column 'c1' at row 2
Warning	1265	Data truncated for column 'c2' at row 2
Warning	1265	Data truncated for column 'c3' at row 2
+---------+------+---+
3 rows in set (0.00 sec)

mysql> SELECT * FROM add_pk_via_copy;
+----+----+---------------------+
| c1 | c2 | c3 |
+----+----+---------------------+
| 0 | | 0000-00-00 00:00:00 |
| 1 | a | 2014-11-03 11:01:37 |

Implementation Details of Online DDL

2105

+----+----+---------------------+
2 rows in set (0.00 sec)

With the ALGORITHM=INPLACE clause, the operation could fail for different reasons, because this
setting considers data integrity a high priority: the statement gives an error if the SQL_MODE setting is
not “strict” enough, or if the primary key columns contain any NULL values. Once we address both of
those requirements, the ALTER TABLE operation succeeds.

mysql> CREATE TABLE add_pk_via_inplace (c1 INT, c2 VARCHAR(10), c3 DATETIME);
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO add_pk_via_inplace VALUES (1,'a','2014-11-03 11:01:37'),(NULL,NULL,NULL);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM add_pk_via_inplace;
+------+------+---------------------+
| c1 | c2 | c3 |
+------+------+---------------------+
| 1 | a | 2014-11-03 11:01:37 |
| NULL | NULL | NULL |
+------+------+---------------------+
2 rows in set (0.00 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE add_pk_via_inplace ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=INPLACE;
ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: cannot silently convert NULL
values, as required in this SQL_MODE. Try ALGORITHM=COPY.

mysql> SET sql_mode ='strict_trans_tables';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE add_pk_via_inplace ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=INPLACE;
ERROR 1138 (22004): Invalid use of NULL value
mysql> DELETE FROM add_pk_via_inplace WHERE c1 IS NULL OR c2 IS NULL OR c3 IS NULL;
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM add_pk_via_inplace;
+------+------+---------------------+
| c1 | c2 | c3 |
+------+------+---------------------+
| 1 | a | 2014-11-03 11:01:37 |
+------+------+---------------------+
1 row in set (0.00 sec)

mysql> ALTER TABLE add_pk_via_inplace ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=INPLACE;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

If you create a table without a primary key, InnoDB chooses one for you, which can be the first UNIQUE
key defined on NOT NULL columns, or a system-generated key. To avoid any uncertainty and the
potential space requirement for an extra hidden column, specify the PRIMARY KEY clause as part of
the CREATE TABLE statement.

14.10.6 Implementation Details of Online DDL

Each ALTER TABLE operation for an InnoDB table is governed by several aspects:

• Whether there is any change to the physical representation of the table, or whether it purely a
change to metadata that can be done without touching the table itself.

• Whether the volume of data in the table stays the same, increases, or decreases.

• Whether a change in table data involves the clustered index, secondary indexes, or both.

Implementation Details of Online DDL

2106

• Whether there are any foreign key relationships between the table being altered and some other
table. The mechanics differ depending on whether the foreign_key_checks configuration option
is enabled or disabled.

• Whether the table is partitioned. Partitioning clauses of ALTER TABLE are turned into low-level
operations involving one or more tables, and those operations follow the regular rules for online DDL.

• Whether the table data must be copied, whether the table can be reorganized “in-place”, or a
combination of both.

• Whether the table contains any auto-increment columns.

• What degree of locking is required, either by the nature of the underlying database operations, or a
LOCK clause that you specify in the ALTER TABLE statement.

This section explains how these factors affect the different kinds of ALTER TABLE operations on
InnoDB tables.

Error Conditions for Online DDL

Here are the primary reasons why an online DDL operation could fail:

• If a LOCK clause specifies a low degree of locking (SHARED or NONE) that is not compatible with the
particular type of DDL operation.

• If a timeout occurs while waiting to get an exclusive lock on the table, which is needed briefly during
the initial and final phases of the DDL operation.

• If the tmpdir file system runs out of disk space, while MySQL writes temporary sort files on disk
during index creation.

• If the ALTER TABLE takes so long, and concurrent DML modifies the table so much, that the size
of the temporary online log exceeds the value of the innodb_online_alter_log_max_size
configuration option. This condition causes a DB_ONLINE_LOG_TOO_BIG error.

• If concurrent DML makes changes to the table that are allowed with the original table definition,
but not with the new one. The operation only fails at the very end, when MySQL tries to apply all
the changes from concurrent DML statements. For example, you might insert duplicate values into
a column while a unique index is being created, or you might insert NULL values into a column
while creating a primary key index on that column. The changes made by the concurrent DML take
precedence, and the ALTER TABLE operation is effectively rolled back.

Although the configuration option innodb_file_per_table has a dramatic effect on the
representation for an InnoDB table, all online DDL operations work equally well whether that option is
enabled or disabled, and whether the table is physically located in its own .ibd file or inside the system
tablespace.

InnoDB has two types of indexes: the clustered index representing all the data in the table, and optional
secondary indexes to speed up queries. Since the clustered index contains the data values in its B-tree
nodes, adding or dropping a clustered index does involve copying the data, and creating a new copy
of the table. A secondary index, however, contains only the index key and the value of the primary key.
This type of index can be created or dropped without copying the data in the clustered index. Because
each secondary index contains copies of the primary key values (used to access the clustered index
when needed), when you change the definition of the primary key, all secondary indexes are recreated
as well.

Dropping a secondary index is simple. Only the internal InnoDB system tables and the MySQL data
dictionary tables are updated to reflect the fact that the index no longer exists. InnoDB returns the
storage used for the index to the tablespace that contained it, so that new indexes or additional table
rows can use the space.

How Crash Recovery Works with Online DDL

2107

To add a secondary index to an existing table, InnoDB scans the table, and sorts the rows using
memory buffers and temporary files in order by the values of the secondary index key columns. The B-
tree is then built in key-value order, which is more efficient than inserting rows into an index in random
order. Because the B-tree nodes are split when they fill, building the index in this way results in a
higher fill-factor for the index, making it more efficient for subsequent access.

Primary Key and Secondary Key Indexes

Historically, the MySQL server and InnoDB have each kept their own metadata about table and
index structures. The MySQL server stores this information in .frm files that are not protected by a
transactional mechanism, while InnoDB has its own data dictionary as part of the system tablespace. If
a DDL operation was interrupted by a crash or other unexpected event partway through, the metadata
could be left inconsistent between these two locations, causing problems such as startup errors or
inability to access the table that was being altered. Now that InnoDB is the default storage engine,
addressing such issues is a high priority. These enhancements to DDL operations reduce the window
of opportunity for such issues to occur.

14.10.7 How Crash Recovery Works with Online DDL

Although no data is lost if the server crashes while an ALTER TABLE statement is executing, the crash
recovery process is different for clustered indexes and secondary indexes.

If the server crashes while creating an InnoDB secondary index, upon recovery, MySQL drops any
partially created indexes. You must re-run the ALTER TABLE or CREATE INDEX statement.

When a crash occurs during the creation of an InnoDB clustered index, recovery is more complicated,
because the data in the table must be copied to an entirely new clustered index. Remember that all
InnoDB tables are stored as clustered indexes.

MySQL creates the new clustered index by copying the existing data from the original InnoDB table
to a temporary table that has the desired index structure. Once the data is completely copied to this
temporary table, the original table is renamed with a different temporary table name. The temporary
table comprising the new clustered index is renamed with the name of the original table, and the
original table is dropped from the database.

If a system crash occurs while creating a new clustered index, no data is lost, but you must complete
the recovery process using the temporary tables that exist during the process. Since it is rare to re-
create a clustered index or re-define primary keys on large tables, or to encounter a system crash
during this operation, this manual does not provide information on recovering from this scenario.

14.10.8 Online DDL for Partitioned InnoDB Tables

With the exception of ALTER TABLE partitioning clauses, online DDL operations for partitioned
InnoDB tables follow the same rules that apply to regular InnoDB tables. Online DDL rules are
outlined in Table 14.8, “Summary of Online Status for DDL Operations”.

ALTER TABLE partitioning clauses do not go through the same internal online DDL API as regular
non-partitioned InnoDB tables, and are only allowed in conjunction with ALGORITHM=DEFAULT and
LOCK=DEFAULT.

If you use an ALTER TABLE partitioning clause in an ALTER TABLE statement, the partitioned table
will be “re-partitioned” using the ALTER TABLE COPY algorithm. In other words, a new partitioned table
is created with the new partitioning scheme. The newly created table will include any changes applied
by the ALTER TABLE statement and the table data will be copied into the new table structure.

If you do not change the table's partitioning using ALTER TABLE partitioning clauses or perform
any other partition management in your ALTER TABLE statement, ALTER TABLE will use the
INPLACE algorithm on each table partition. Be aware, however, that when INPLACE ALTER TABLE

Limitations of Online DDL

2108

operations are performed on each partition, there will be increased demand on system resources due
to operations being performed on multiple partitions.

Even though partitioning clauses of the ALTER TABLE statement do not go through the same internal
online DDL API as regular non-partitioned InnoDB tables, MySQL still attempts to minimize data
copying and locking where possible:

• ADD PARTITION and DROP PARTITION for tables partitioned by RANGE or LIST do not copy any
existing data.

• TRUNCATE PARTITION does not copy any existing data, for all types of partitioned tables.

• Concurrent queries are allowed during ADD PARTITION and COALESCE PARTITION for tables
partitioned by HASH or LIST. MySQL copies the data while holding a shared lock.

• For REORGANIZE PARTITION, REBUILD PARTITION, or ADD PARTITION or COALESCE
PARTITION for a table partitioned by LINEAR HASH or LIST, concurrent queries are allowed. Data
from the affected partitions is copied while holding a shared metadata (read) lock at the table level.

Note

Full-text search (FTS) and foreign keys are not supported by InnoDB
partitioned tables. For more information, see Section 12.9.5, “Full-Text
Restrictions” and Section 18.6.2, “Partitioning Limitations Relating to Storage
Engines”.

14.10.9 Limitations of Online DDL

Take the following limitations into account when running online DDL operations:

• During an online DDL operation that copies the table, files are written to the temporary directory
($TMPDIR on Unix, %TEMP% on Windows, or the directory specified by the --tmpdir configuration
variable). Each temporary file is large enough to hold one column in the new table or index, and each
one is removed as soon as it is merged into the final table or index.

• The table is copied, rather than using Fast Index Creation when you create an index on a
TEMPORARY TABLE. This has been reported as MySQL Bug #39833.

• InnoDB handles error cases when users attempt to drop indexes needed for foreign keys. See
Section 14.18.5, “InnoDB Error Codes” for information related to error 1553.

• The ALTER TABLE clause LOCK=NONE is not allowed if there are ON...CASCADE or ON...SET
NULL constraints on the table.

• During each online DDL ALTER TABLE statement, regardless of the LOCK clause, there are brief
periods at the beginning and end requiring an exclusive lock on the table (the same kind of lock
specified by the LOCK=EXCLUSIVE clause). Thus, an online DDL operation might wait before starting
if there is a long-running transaction performing inserts, updates, deletes, or SELECT ... FOR
UPDATE on that table; and an online DDL operation might wait before finishing if a similar long-
running transaction was started while the ALTER TABLE was in progress.

• When running an online ALTER TABLE operation, the thread that runs the ALTER TABLE operation
will apply an “online log” of DML operations that were run concurrently on the same table from other
connection threads. When the DML operations are applied, it is possible to encounter a duplicate
key entry error (ERROR 1062 (23000): Duplicate entry), even if the duplicate entry is only
temporary and would be reverted by a later entry in the “online log”. This is similar to the idea of a
foreign key constraint check in InnoDB in which constraints must hold during a transaction.

• OPTIMIZE TABLE for an InnoDB table is mapped to an ALTER TABLE operation to rebuild the
table and update index statistics and free unused space in the clustered index. Prior to 5.7.4, there is
no online DDL support for this operation. Secondary indexes are not created as efficiently because
keys are inserted in the order they appeared in the primary key. As of 5.7.4, OPTIMIZE TABLE is

InnoDB Startup Options and System Variables

2109

supported with the addition of online DDL support for rebuilding regular and partitioned InnoDB
tables. For additional information, see Section 14.10.1, “Overview of Online DDL”.

• InnoDB tables created before MySQL 5.6 do not support ALTER TABLE ...
ALGORITHM=INPLACE for tables that include temporal columns (DATE, DATETIME or TIMESTAMP)
and have not been rebuilt using ALTER TABLE ... ALGORITHM=COPY. In this case, an ALTER
TABLE ... ALGORITHM=INPLACE operation returns the following error:

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported.
Reason: Cannot change column type INPLACE. Try ALGORITHM=COPY.

• These limitations are generally applicable to online DDL operations on large tables where table
copying is involved:

• There is no mechanism to pause an online DDL operation or to throttle I/O or CPU usage for an
online DDL operation.

• Progress monitoring capability for online DDL operations is limited until MySQL 5.7.6, which
introduces Performance Schema stage events for monitoring ALTER TABLE progress. See
Section 14.13.1, “Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance
Schema”.

• Rollback of an online DDL operation can be expensive should the operation fail.

• Long running online DDL operations can cause replication lag. An online DDL operation
must finish running on the master before it is run on the slave. Also, DML that was processed
concurrently on the master is only processed on the slave after the DDL operation on the slave is
completed (Bug #73196).

• An online ALTER TABLE operation can cause a server exit if the operation uses all of the available
disk space on the file system where the data directory (datadir) resides (Bug #77497). To avoid
this problem, ensure that there is enough disk space to accommodate operations that copy the
table. During these operations, MySQL writes temporary sort files to the temporary directory (--
tmpdir).

For additional information related to running online DDL operations on large tables, see
Section 14.10.2, “Performance and Concurrency Considerations for Online DDL”.

14.11 InnoDB Startup Options and System Variables

• System variables that are true or false can be enabled at server startup by naming them,
or disabled by using a --skip- prefix. For example, to enable or disable the InnoDB
adaptive hash index, you can use --innodb_adaptive_hash_index or --skip-
innodb_adaptive_hash_index on the command line, or innodb_adaptive_hash_index or
skip-innodb_adaptive_hash_index in an option file.

• System variables that take a numeric value can be specified as --var_name=value on the
command line or as var_name=value in option files.

• Many system variables can be changed at runtime (see Section 5.1.5.2, “Dynamic System
Variables”).

• For information about GLOBAL and SESSION variable scope modifiers, refer to the SET statement
documentation.

• Certain options control the locations and layout of the InnoDB data files. Section 14.3, “InnoDB
Configuration” explains how to use these options.

• Some options, which you might not use initially, help tune InnoDB performance characteristics
based on machine capacity and your database workload.

InnoDB Startup Options and System Variables

2110

• For more information on specifying options and system variables, see Section 4.2.3, “Specifying
Program Options”.

Table 14.9 InnoDB Option/Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

foreign_key_checks Yes Both Yes

ignore-builtin-
innodb

Yes Yes Global No

- Variable:
ignore_builtin_innodb

 Yes Global No

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_hash_index_partsYes Yes Yes Global No

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

Innodb_available_undo_logs Yes Global No

innodb_background_drop_list_emptyYes Yes Yes Global Yes

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

innodb_buffer_pool_chunk_sizeYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

InnoDB Startup Options and System Variables

2111

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

Innodb_buffer_pool_resize_status Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global Varies

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compress_debugYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_create_intrinsicYes Yes Yes Session Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

InnoDB Startup Options and System Variables

2112

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_dblwr_writes Yes Global No

innodb_default_row_formatYes Yes Yes Global Yes

innodb_disable_resize_buffer_pool_debugYes Yes Yes Global Yes

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_fill_factor Yes Yes Yes Global Yes

innodb_flush_log_at_timeout Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flush_syncYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_tableYes Yes Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Global Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

Innodb_have_atomic_builtins Yes Global No

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefixYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_checksum_algorithmYes Yes Yes Global Yes

InnoDB Startup Options and System Variables

2113

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_log_checksumsYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_max_undo_log_sizeYes Yes Yes Global Yes

innodb_merge_threshold_set_all_debugYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_files Yes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

innodb_optimize_point_storageYes Yes Yes Session Yes

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

innodb_page_cleanersYes Yes Yes Global No

Innodb_page_size Yes Global No

innodb_page_size Yes Yes Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_rseg_truncate_frequencyYes Yes Yes Global Yes

InnoDB Startup Options and System Variables

2114

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_only Yes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb-status-file Yes Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_debugYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Session Yes

Innodb_truncated_status_writes Yes Global No

InnoDB Command Options

2115

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_log_truncateYes Yes Yes Global Yes

innodb_undo_logs Yes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

mecab_rc_file Yes Yes Yes Global No

ngram_token_size Yes Yes Yes Global No

timed_mutexes Yes Yes Yes Global Yes

unique_checks Yes Both Yes

InnoDB Command Options

• --ignore-builtin-innodb

Deprecated 5.5.22

Command-Line Format --ignore-builtin-innodb

Name ignore_builtin_innodb

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

In MySQL 5.1, this option caused the server to behave as if the built-in InnoDB were not present,
which enabled InnoDB Plugin to be used instead. In MySQL 5.7, InnoDB is the default storage
engine and InnoDB Plugin is not used, so this option is ignored.

• --innodb[=value]

Deprecated 5.7.5

Command-Line Format --innodb[=value]

Type enumeration

Default ON

OFF

ON

Permitted Values

Valid
Values

FORCE

Controls loading of the InnoDB storage engine, if the server was compiled with InnoDB support.
This option has a tristate format, with possible values of OFF, ON, or FORCE. See Section 5.1.8.1,
“Installing and Uninstalling Plugins”.

To disable InnoDB, use --innodb=OFF or --skip-innodb. In this case, because the default
storage engine is InnoDB, the server will not start unless you also use --default-storage-

InnoDB System Variables

2116

engine and --default-tmp-storage-engine to set the default to some other engine for both
permanent and TEMPORARY tables.

As of MySQL 5.7.5, the InnoDB storage engine can no longer be disabled, and the --innodb=OFF
and --skip-innodb options are deprecated and have no effect. Their use results in a warning.
These options will be removed in a future MySQL release.

• --innodb-status-file

Command-Line Format --innodb-status-file

Type booleanPermitted Values

Default OFF

Controls whether InnoDB creates a file named innodb_status.pid in the MySQL data directory.
If enabled, InnoDB periodically writes the output of SHOW ENGINE INNODB STATUS to this file.

By default, the file is not created. To create it, start mysqld with the --innodb-status-file=1
option. The file is deleted during normal shutdown.

• --skip-innodb

Disable the InnoDB storage engine. See the description of --innodb.

InnoDB System Variables

• daemon_memcached_enable_binlog

Command-Line Format --daemon_memcached_enable_binlog=#

Name daemon_memcached_enable_binlog

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default false

See Section 14.17, “InnoDB Integration with memcached” for usage details for this option.

• daemon_memcached_engine_lib_name

Command-Line Format --daemon_memcached_engine_lib_name=library

Name daemon_memcached_engine_lib_name

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default innodb_engine.so

Specifies the shared library that implements the InnoDB memcached plugin.

See Section 14.17, “InnoDB Integration with memcached” for usage details for this option.

• daemon_memcached_engine_lib_path

InnoDB System Variables

2117

Command-Line Format --daemon_memcached_engine_lib_path=directory

Name daemon_memcached_engine_lib_path

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default NULL

The path of the directory containing the shared library that implements the InnoDB memcached
plugin. The default value is NULL, representing the MySQL plugin directory. You should not need to
modify this parameter unless specifying a different storage engine memcached plugin that is located
outside of the MySQL plugin directory.

See Section 14.17, “InnoDB Integration with memcached” for usage details for this option.

• daemon_memcached_option

Command-Line Format --daemon_memcached_option=options

Name daemon_memcached_option

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default

Used to pass space-separated memcached options to the underlying memcached memory object
caching daemon on startup. For example, you might change the port that memcached listens on,
reduce the maximum number of simultaneous connections, change the maximum memory size for a
key/value pair, or enable debugging messages for the error log.

See Section 14.17, “InnoDB Integration with memcached” for usage details for this option. For
information about memcached options, refer to the memcached man page.

• daemon_memcached_r_batch_size

Command-Line Format --daemon_memcached_r_batch_size=#

Name daemon_memcached_r_batch_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 1

Specifies how many memcached read operations (get) to perform before doing a COMMIT to start a
new transaction. Counterpart of daemon_memcached_w_batch_size.

This value is set to 1 by default, so that any changes made to the table through SQL statements
are immediately visible to the memcached operations. You might increase it to reduce the overhead
from frequent commits on a system where the underlying table is only being accessed through the

InnoDB System Variables

2118

memcached interface. If you set the value too large, the amount of undo or redo data could impose
some storage overhead, as with any long-running transaction.

See Section 14.17, “InnoDB Integration with memcached” for usage details for this option.

• daemon_memcached_w_batch_size

Command-Line Format --daemon_memcached_w_batch_size=#

Name daemon_memcached_w_batch_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 1

Specifies how many memcached write operations, such as add, set, or incr, to perform before
doing a COMMIT to start a new transaction. Counterpart of daemon_memcached_r_batch_size.

This value is set to 1 by default, on the assumption that any data being stored is important to
preserve in case of an outage and should immediately be committed. When storing non-critical data,
you might increase this value to reduce the overhead from frequent commits; but then the last N-1
uncommitted write operations could be lost in case of a crash.

See Section 14.17, “InnoDB Integration with memcached” for usage details for this option.

• ignore_builtin_innodb

Deprecated 5.5.22

Command-Line Format --ignore-builtin-innodb

Name ignore_builtin_innodb

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

See the description of --ignore-builtin-innodb under “InnoDB Command Options” earlier in
this section.

• innodb_adaptive_flushing

Command-Line Format --innodb_adaptive_flushing=#

Name innodb_adaptive_flushing

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Specifies whether to dynamically adjust the rate of flushing dirty pages in the InnoDB buffer pool
based on the workload. Adjusting the flush rate dynamically is intended to avoid bursts of I/O activity.

InnoDB System Variables

2119

This setting is enabled by default. See Section 14.3.3.2, “Configuring the Rate of InnoDB Buffer Pool
Flushing” for more information. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB
Disk I/O”.

• innodb_adaptive_flushing_lwm

Command-Line Format --innodb_adaptive_flushing_lwm=#

Name innodb_adaptive_flushing_lwm

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

0

Permitted Values

Max
Value

70

Low water mark representing percentage of redo log capacity at which adaptive flushing is enabled.

• innodb_adaptive_hash_index

Command-Line Format --innodb_adaptive_hash_index=#

Name innodb_adaptive_hash_index

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Whether the InnoDB adaptive hash index is enabled or disabled. It may be desirable, depending
on your workload, to dynamically enable or disable adaptive hash indexing to improve query
performance. Because the adaptive hash index may not be useful for all workloads, conduct
benchmarks with it both enabled and disabled, using realistic workloads. See Section 14.2.7.6,
“Adaptive Hash Indexes” for details.

This variable is enabled by default. You can modify this parameter using the SET GLOBAL
statement, without restarting the server. Changing the setting requires the SUPER privilege. You can
also use --skip-innodb_adaptive_hash_index at server startup to disable it.

Disabling the adaptive hash index empties the hash table immediately. Normal operations can
continue while the hash table is emptied, and executing queries that were using the hash table
access the index B-trees directly instead. When the adaptive hash index is re-enabled, the hash
table is populated again during normal operation.

• innodb_adaptive_hash_index_parts

Introduced 5.7.8

Command-Line Format --innodb_adaptive_hash_index_parts=#

System Variable Name innodb_adaptive_hash_index_parts

InnoDB System Variables

2120

Variable
Scope

Global

Dynamic
Variable

No

Type numeric

Default 8

Min
Value

1

Permitted Values

Max
Value

512

Partitions the adaptive hash index search system. Each index is bound to a specific partition, with
each partition protected by a separate latch.

Prior to MySQL 5.7.8, the adaptive hash index search system was protected by a single latch
(btr_search_latch) which could become a point of contention. With the introduction of the
innodb_adaptive_hash_index_parts option, the search system is partitioned into 8 parts by
default. The maximum setting is 512.

For related information, see Section 14.2.7.6, “Adaptive Hash Indexes”.

• innodb_adaptive_max_sleep_delay

Command-Line Format --innodb_adaptive_max_sleep_delay=#

Name innodb_adaptive_max_sleep_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 150000

Min
Value

0

Permitted Values

Max
Value

1000000

Allows InnoDB to automatically adjust the value of innodb_thread_sleep_delay up or
down according to the current workload. Any non-zero value enables automated, dynamic
adjustment of the innodb_thread_sleep_delay value, up to the maximum value specified in the
innodb_adaptive_max_sleep_delay option. The value represents the number of microseconds.
This option can be useful in busy systems, with greater than 16 InnoDB threads. (In practice, it is
most valuable for MySQL systems with hundreds or thousands of simultaneous connections.)

For more information, see Section 14.3.6, “Configuring Thread Concurrency for InnoDB”.

• innodb_additional_mem_pool_size

Deprecated 5.6.3

Removed 5.7.4

Command-Line Format --innodb_additional_mem_pool_size=#

System Variable Name innodb_additional_mem_pool_size

InnoDB System Variables

2121

Variable
Scope

Global

Dynamic
Variable

No

Type integer

Default 8388608

Min
Value

2097152

Permitted Values

Max
Value

4294967295

The size in bytes of a memory pool InnoDB uses to store data dictionary information and other
internal data structures. The more tables you have in your application, the more memory you allocate
here. If InnoDB runs out of memory in this pool, it starts to allocate memory from the operating
system and writes warning messages to the MySQL error log. The default value is 8MB.

This variable relates to the InnoDB internal memory allocator, which is unused if
innodb_use_sys_malloc is enabled.

innodb_additional_mem_pool_size was deprecated in MySQL 5.6.3 and removed in MySQL
5.7.4.

• innodb_api_bk_commit_interval

Command-Line Format --innodb_api_bk_commit_interval=#

Name innodb_api_bk_commit_interval

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 5

Min
Value

1

Permitted Values

Max
Value

1073741824

How often to auto-commit idle connections that use the InnoDB memcached interface, in seconds.
See Section 14.17, “InnoDB Integration with memcached” for usage details for this option.

• innodb_api_disable_rowlock

Command-Line Format --innodb_api_disable_rowlock=#

Name innodb_api_disable_rowlock

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

InnoDB System Variables

2122

Use this variable to disable row locks when InnoDB memcached performs DML operations. By
default, innodb_api_disable_rowlock is set to OFF which means that memcached requests row
locks for get and set operations. When innodb_api_disable_rowlock is set to ON, memcached
requests a table lock instead of row locks.

The innodb_api_disable_rowlock option is not dynamic. It must be specified on the mysqld
command line or entered in the MySQL configuration file. Configuration takes effect when the plugin
is installed, which you do each time the MySQL server is started.

• innodb_api_enable_binlog

Command-Line Format --innodb_api_enable_binlog=#

Name innodb_api_enable_binlog

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Lets you use the InnoDB memcached plugin with the MySQL binary log. See Section 14.17,
“InnoDB Integration with memcached” for usage details for this option.

• innodb_api_enable_mdl

Command-Line Format --innodb_api_enable_mdl=#

Name innodb_api_enable_mdl

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Locks the table used by the InnoDB memcached plugin, so that it cannot be dropped or altered by
DDL through the SQL interface. See Section 14.17, “InnoDB Integration with memcached” for usage
details for this option.

• innodb_api_trx_level

Command-Line Format --innodb_api_trx_level=#

Name innodb_api_trx_level

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

Lets you control the transaction isolation level on queries processed by the memcached interface.
See Section 14.17, “InnoDB Integration with memcached” for usage details for this option. The
constants corresponding to the familiar names are:

InnoDB System Variables

2123

• 0 = READ UNCOMMITTED

• 1 = READ COMMITTED

• 2 = REPEATABLE READ

• 3 = SERIALIZABLE

• innodb_autoextend_increment

Command-Line Format --innodb_autoextend_increment=#

Name innodb_autoextend_increment

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 64

Min
Value

1

Permitted Values

Max
Value

1000

The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file
when it becomes full. The default value is 64. This variable does not affect file-per-table (.ibd) data
files that are created if you use innodb_file_per_table=1, or general tablespace .ibd data
files. Those files are auto-extending regardless of the value of innodb_autoextend_increment.
The initial extensions are by small amounts, after which extensions occur in increments of 4MB.

• innodb_autoinc_lock_mode

Command-Line Format --innodb_autoinc_lock_mode=#

Name innodb_autoinc_lock_mode

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1

0

1

Permitted Values

Valid
Values

2

The lock mode to use for generating auto-increment values. The permissible values are 0, 1,
or 2, for “traditional”, “consecutive”, or “interleaved” lock mode, respectively. Section 14.5.5,
“AUTO_INCREMENT Handling in InnoDB”, describes the characteristics of these modes.

This variable has a default of 1 (“consecutive” lock mode).

• innodb_background_drop_list_empty

Introduced 5.7.10

InnoDB System Variables

2124

Command-Line Format --innodb_background_drop_list_empty=#

Name innodb_background_drop_list_empty

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enabling the innodb_background_drop_list_empty debug option helps avoid test case
failures by delaying table creation until the background drop list is empty. For example, if test case A
places table t1 on the background drop list, test case B waits until the background drop list is empty
before creating table t1.

• innodb_buffer_pool_chunk_size

Introduced 5.7.5

Command-Line Format --innodb_buffer_pool_chunk_size

Name innodb_buffer_pool_chunk_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 134217728

Min
Value

1048576

Permitted Values

Max
Value

innodb_buffer_pool_size /
innodb_buffer_pool_instances

innodb_buffer_pool_chunk_size defines the chunk size for online InnoDB buffer pool resizing
operations.

As of MySQL 5.7.5, the innodb_buffer_pool_size parameter is dynamic, which allows you
to resize the buffer pool without restarting the server. To avoid copying all buffer pool pages
during resizing operations, the operation is performed in “chunks”. Chunk size is defined by
innodb_buffer_pool_chunk_size. By default, innodb_buffer_pool_chunk_size is
128MB (134217728 bytes). The number of pages contained in a chunk depends on the value of
innodb_page_size. innodb_buffer_pool_chunk_size can be increased or decreased in
units of 1MB (1048576 bytes).

The following conditions apply when altering the innodb_buffer_pool_chunk_size value:

• If innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances
is larger than the current buffer pool size when the buffer pool is initialized,
innodb_buffer_pool_chunk_size is truncated to innodb_buffer_pool_size /
innodb_buffer_pool_instances.

• Buffer pool size must always be a multiple of innodb_buffer_pool_chunk_size *
innodb_buffer_pool_instances. If you alter innodb_buffer_pool_chunk_size,
innodb_buffer_pool_size is automatically adjusted to a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances that is not less
than current buffer pool size. The adjustment occurs when the buffer pool is initialized.

InnoDB System Variables

2125

Important

Care should be taken when changing innodb_buffer_pool_chunk_size,
as changing this value can automatically increase the size of the buffer
pool. Before you change innodb_buffer_pool_chunk_size, calculate
the effect it will have on innodb_buffer_pool_size to ensure that the
resulting buffer pool size is acceptable.

To avoid potential performance issues, the number of chunks (innodb_buffer_pool_size /
innodb_buffer_pool_chunk_size) should not exceed 1000.

See Section 14.3.3.7, “Resizing the InnoDB Buffer Pool Online” for more information.

• innodb_buffer_pool_dump_at_shutdown

Command-Line Format --innodb_buffer_pool_dump_at_shutdown=#

Name innodb_buffer_pool_dump_at_shutdown

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values (<=
5.7.6) Default OFF

Type booleanPermitted Values (>=
5.7.7) Default ON

Specifies whether to record the pages cached in the InnoDB buffer pool when the MySQL server
is shut down, to shorten the warmup process at the next restart. Typically used in combination with
innodb_buffer_pool_load_at_startup. The innodb_buffer_pool_dump_pct option
defines the percentage of most recently used buffer pool pages to dump.

Both innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup are enabled by default as of MySQL 5.7.7.

For related information, see Section 14.3.3.5, “Preloading the InnoDB Buffer Pool for Faster Restart”.

• innodb_buffer_pool_dump_now

Command-Line Format --innodb_buffer_pool_dump_now=#

Name innodb_buffer_pool_dump_now

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Immediately records the pages cached in the InnoDB buffer pool. Typically used in combination with
innodb_buffer_pool_load_now.

For related information, see Section 14.3.3.5, “Preloading the InnoDB Buffer Pool for Faster Restart”.

• innodb_buffer_pool_dump_pct

InnoDB System Variables

2126

Introduced 5.7.2

Command-Line Format --innodb_buffer_pool_dump_pct=#

Name innodb_buffer_pool_dump_pct

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 100

Min
Value

1

Permitted Values (<=
5.7.6)

Max
Value

100

Type integer

Default 25

Min
Value

1

Permitted Values (>=
5.7.7)

Max
Value

100

Specifies the percentage of the most recently used pages for each buffer pool to read out and dump.
The range is 1 to 100. Prior to MySQL 5.7.7, the default value is 100 (dump all pages). As of MySQL
5.7.7, the default value is 25. For example, if there are 4 buffer pools with 100 pages each, and
innodb_buffer_pool_dump_pct is set to 25, the 25 most recently used pages from each buffer
pool are dumped.

The change to the innodb_buffer_pool_dump_pct default value in MySQL 5.7.7
coincides with default value changes for innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup, which are both enabled by default as of MySQL
5.7.7.

• innodb_buffer_pool_filename

Command-Line Format --innodb_buffer_pool_filename=file

Name innodb_buffer_pool_filename

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type file namePermitted Values

Default ib_buffer_pool

Specifies the name of the file that holds the list of tablespace IDs and page IDs produced by
innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now. Tablespace
IDs and page IDs are saved in the following format: space, page_id. By default, the file is located
in the InnoDB data directory.

For related information, see Section 14.3.3.5, “Preloading the InnoDB Buffer Pool for Faster Restart”.

• innodb_buffer_pool_instances

InnoDB System Variables

2127

Command-Line Format --innodb_buffer_pool_instances=#

Name innodb_buffer_pool_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default (autosized)

Min
Value

1

Permitted Values
(Windows, 32-bit
platforms)

Max
Value

64

Type integer

Default 8 (or 1 if innodb_buffer_pool_size < 1GB

Min
Value

1

Permitted Values (Other)

Max
Value

64

The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in
the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency,
by reducing contention as different threads read and write to cached pages. Each page that is stored
in or read from the buffer pool is assigned to one of the buffer pool instances randomly, using a
hashing function. Each buffer pool manages its own free lists, flush lists, LRUs, and all other data
structures connected to a buffer pool, and is protected by its own buffer pool mutex.

This option takes effect only when you set the innodb_buffer_pool_size to a size of 1GB or
more. The total size you specify is divided among all the buffer pools. For best efficiency, specify a
combination of innodb_buffer_pool_instances and innodb_buffer_pool_size so that
each buffer pool instance is at least 1GB.

The default value in on 32-bit Windows systems depends on the value of
innodb_buffer_pool_size, as described below:

• If innodb_buffer_pool_size is greater than 1.3GB, the default for
innodb_buffer_pool_instances is innodb_buffer_pool_size/128MB, with individual
memory allocation requests for each chunk. 1.3GB was chosen as the boundary at which there is
significant risk for 32-bit Windows to be unable to allocate the contiguous address space needed
for a single buffer pool.

• Otherwise, the default is 1.

On all other platforms, the default value is 8 when innodb_buffer_pool_size is greater than or
equal to 1GB. Otherwise, the default is 1.

• innodb_buffer_pool_load_abort

Command-Line Format --innodb_buffer_pool_load_abort=#

Name innodb_buffer_pool_load_abortSystem Variable

Variable
Scope

Global

InnoDB System Variables

2128

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Interrupts the process of restoring InnoDB buffer pool contents triggered by
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now.

For related information, see Section 14.3.3.5, “Preloading the InnoDB Buffer Pool for Faster Restart”.

• innodb_buffer_pool_load_at_startup

Command-Line Format --innodb_buffer_pool_load_at_startup=#

Name innodb_buffer_pool_load_at_startup

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values (<=
5.7.6) Default OFF

Type booleanPermitted Values (>=
5.7.7) Default ON

Specifies that, on MySQL server startup, the InnoDB buffer pool is automatically warmed
up by loading the same pages it held at an earlier time. Typically used in combination with
innodb_buffer_pool_dump_at_shutdown.

Both innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup are enabled by default as of MySQL 5.7.7.

For related information, see Section 14.3.3.5, “Preloading the InnoDB Buffer Pool for Faster Restart”.

• innodb_buffer_pool_load_now

Command-Line Format --innodb_buffer_pool_load_now=#

Name innodb_buffer_pool_load_now

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Immediately warms up the InnoDB buffer pool by loading a set of data pages, without waiting for a
server restart. Can be useful to bring cache memory back to a known state during benchmarking,
or to ready the MySQL server to resume its normal workload after running queries for reports or
maintenance.

For related information, see Section 14.3.3.5, “Preloading the InnoDB Buffer Pool for Faster Restart”.

• innodb_buffer_pool_size

Command-Line Format --innodb_buffer_pool_size=#

InnoDB System Variables

2129

Name innodb_buffer_pool_size

Variable
Scope

Global

System Variable (<=
5.7.4)

Dynamic
Variable

No

Name innodb_buffer_pool_size

Variable
Scope

Global

System Variable (>=
5.7.5)

Dynamic
Variable

Yes

Type integer

Default 134217728

Min
Value

5242880

Permitted Values (32-bit
platforms)

Max
Value

2**32-1

Type integer

Default 134217728

Min
Value

5242880

Permitted Values (64-bit
platforms)

Max
Value

2**64-1

The size in bytes of the buffer pool, the memory area where InnoDB caches table and index data.
The default value is 128MB. The maximum value depends on the CPU architecture; the maximum
is 4294967295 (232-1) on 32-bit systems and 18446744073709551615 (264-1) on 64-bit systems.
On 32-bit systems, the CPU architecture and operating system may impose a lower practical
maximum size than the stated maximum. When the size of the buffer pool is greater than 1GB,
setting innodb_buffer_pool_instances to a value greater than 1 can improve the scalability on
a busy server.

The larger you set the innodb_buffer_pool_size value, the less disk I/O is needed to access
the same data in tables more than once. On a dedicated database server, you might set this to up to
80% of the machine physical memory size. Be prepared to scale back this value if these other issues
occur:

• Competition for physical memory might cause paging in the operating system.

• InnoDB reserves additional memory for buffers and control structures, so that the total allocated
space is approximately 10% greater than the specified size.

• The address space must be contiguous, which can be an issue on Windows systems with DLLs
that load at specific addresses.

• The time to initialize the buffer pool is roughly proportional to its size. On large installations, this
initialization time might be significant. For example, on a modern Linux x86_64 server, initialization
of a 10GB buffer pool takes approximately 6 seconds. See Section 8.10.1, “The InnoDB Buffer
Pool”.

As of MySQL 5.7.5, innodb_buffer_pool_size can be set dynamically, which allows you to
resize the buffer pool without restarting the server. The resizing operation is performed chunks.
Chunk size is configurable using the innodb_buffer_pool_chunk_size configuration option.
The Innodb_buffer_pool_resize_status status variable reports the status of the resizing
operation. See Section 14.3.3.7, “Resizing the InnoDB Buffer Pool Online” for more information.

InnoDB System Variables

2130

• innodb_change_buffer_max_size

Command-Line Format --innodb_change_buffer_max_size=#

Name innodb_change_buffer_max_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 25

Min
Value

0

Permitted Values

Max
Value

50

Maximum size for the InnoDB change buffer, as a percentage of the total size of the buffer pool.
You might increase this value for a MySQL server with heavy insert, update, and delete activity,
or decrease it for a MySQL server with unchanging data used for reporting. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_change_buffering

Command-Line Format --innodb_change_buffering=#

Name innodb_change_buffering

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default all

none

inserts

deletes

changes

purges

Permitted Values

Valid
Values

all

Whether InnoDB performs change buffering, an optimization that delays write operations to
secondary indexes so that the I/O operations can be performed sequentially. The permitted values
are described in the following table. For more information, see Section 14.3.5, “Configuring InnoDB
Change Buffering”. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

Table 14.10 Permitted Values for innodb_change_buffering

Value Description

none Do not buffer any operations.

inserts Buffer insert operations.

deletes Buffer delete marking operations; strictly speaking, the writes that mark
index records for later deletion during a purge operation.

changes Buffer inserts and delete-marking operations.

InnoDB System Variables

2131

Value Description

purges Buffer the physical deletion operations that happen in the background.

all The default. Buffer inserts, delete-marking operations, and purges.

• innodb_change_buffering_debug

Command-Line Format --innodb_change_buffering_debug=#

Name innodb_change_buffering_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Max
Value

2

Sets a debug flag for InnoDB change buffering. A value of 1 forces all changes to the change
buffer. A value of 2 causes a crash at merge. A default value of 0 indicates that the change buffering
debug flag is not set. This option is only available when debugging support is compiled in using the
WITH_DEBUG CMake option.

• innodb_checksum_algorithm

Command-Line Format --innodb_checksum_algorithm=#

Name innodb_checksum_algorithm

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default innodb

innodb

crc32

none

strict_innodb

strict_crc32

Permitted Values (<=
5.7.6)

Valid
Values

strict_none

Type enumeration

Default crc32

innodb

crc32

none

strict_innodb

strict_crc32

Permitted Values (>=
5.7.7)

Valid
Values

strict_none

InnoDB System Variables

2132

Specifies how to generate and verify the checksum stored in each disk block of each InnoDB
tablespace.

The default value for innodb_checksum_algorithm was changed from innodb to crc32 in
MySQL 5.6.6, but switched back to innodb in 5.6.7 for improved compatibility of InnoDB data files
during a downgrade to an earlier MySQL version, and for use with MySQL Enterprise Backup. The
limitations encountered included:

• .ibd files containing CRC32 checksums could cause problems downgrading to MySQL versions
prior to 5.6.3. MySQL 5.6.3 and up recognizes either the new or old checksum values for the
block as correct when reading the block from disk, ensuring that data blocks are compatible during
upgrade and downgrade regardless of the algorithm setting. If data written with new checksum
values is processed by a level of MySQL earlier than 5.6.3, it could be reported as corrupted.

• Versions of MySQL Enterprise Backup up to 3.8.0 do not support backing up tablespaces that
use CRC32 checksums. MySQL Enterprise Backup adds CRC32 checksum support in 3.8.1,
with some limitations. Refer to the MySQL Enterprise Backup 3.8.1 Change History for more
information.

As of MySQL 5.7.7, crc32 is once again the default value for innodb_checksum_algorithm.

innodb_checksum_algorithm replaced the innodb_checksums option in MySQL 5.6.3. The
following values were provided for compatibility, up to and including MySQL 5.7.6:

• innodb_checksums=ON is the same as innodb_checksum_algorithm=innodb.

• innodb_checksums=OFF is the same as innodb_checksum_algorithm=none.

As of MySQl 5.7.7, with a default innodb_checksum_algorithm value of crc32,
innodb_checksums=ON is now the same as innodb_checksum_algorithm=crc32.
innodb_checksums=OFF is still the same as innodb_checksum_algorithm=none.

To avoid conflicts, remove references to innodb_checksums from your configuration file and
MySQL startup scripts.

The value innodb is backward-compatible with all versions of MySQL. The value crc32 uses
an algorithm that is faster to compute the checksum for every modified block, and to check the
checksums for each disk read. It scans blocks 32 bits at a time, which is faster the innodb
checksum algorithm, which scans blocks 8 bits at a time. The value none writes a constant value
in the checksum field rather than computing a value based on the block data. The blocks in a
tablespace can use a mix of old, new, and no checksum values, being updated gradually as the data
is modified; once any blocks in a tablespace are modified to use the crc32 algorithm, the associated
tables cannot be read by earlier versions of MySQL.

The strict_* forms work the same as innodb, crc32, and none, except that InnoDB halts if
it encounters a mix of checksum values in the same tablespace. You can only use these options
in a completely new instance, to set up all tablespaces for the first time. The strict_* settings
are somewhat faster, because they do not need to compute both new and old checksum values to
accept both during disk reads.

Note

As of MySQL 5.7.8, InnoDB no longer halts if it encounters a valid non-
matching checksum. Instead, a message is printed to the error log and
the page is accepted as valid if it matches an innodb, crc32 or none
checksum.

The following table illustrates the difference between the none, innodb, and crc32 option values,
and their strict_ counterparts. none, innodb, and crc32 write the specified type checksum value

InnoDB System Variables

2133

into each data block, but for compatibility accept any of the other checksum values when verifying
a block during a read operation. The strict_ form of each parameter only recognizes one kind of
checksum, which makes verification faster but requires that all InnoDB data files in an instance be
created under the identical innodb_checksum_algorithm value.

Table 14.11 Allowed Settings for innodb_checksum_algorithm

Value Generated checksum (when writing) Allowed checksums (when reading)

none A constant number. Any of the checksums generated by
none, innodb, or crc32.

innodb A checksum calculated in software,
using the original algorithm from
InnoDB.

Any of the checksums generated by
none, innodb, or crc32.

crc32 A checksum calculated using the
crc32 algorithm, possibly done with a
hardware assist.

Any of the checksums generated by
none, innodb, or crc32.

strict_none A constant number Only the checksum generated by
none.

strict_innodb A checksum calculated in software,
using the original algorithm from
InnoDB.

Only the checksum generated by
innodb.

strict_crc32 A checksum calculated using the
crc32 algorithm, possibly done with a
hardware assist.

Only the checksum generated by
crc32.

• innodb_checksums

Deprecated 5.6.3

Command-Line Format --innodb_checksums

Name innodb_checksums

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

InnoDB can use checksum validation on all tablespace pages read from the disk to ensure extra
fault tolerance against hardware faults or corrupted data files. This validation is enabled by default.
Under specialized circumstances (such as when running benchmarks) this extra safety feature can
be disabled with --skip-innodb-checksums. You can specify the method of calculating the
checksum with innodb_checksum_algorithm.

In MySQL 5.6.3 and higher, innodb_checksums is deprecated, replaced by
innodb_checksum_algorithm.

Prior to MySQL 5.7.7, innodb_checksums=ON is the same as
innodb_checksum_algorithm=innodb. As of MySQL 5.7.7, the
innodb_checksum_algorithm default value is crc32, and innodb_checksums=ON is the
same as innodb_checksum_algorithm=crc32. innodb_checksums=OFF is the same as
innodb_checksum_algorithm=none.

It is recommended that you remove any innodb_checksums options from your configuration
files and startup scripts, to avoid conflicts with innodb_checksum_algorithm.

InnoDB System Variables

2134

innodb_checksums=OFF automatically sets innodb_checksum_algorithm=none.
innodb_checksums=ON is ignored and overridden by any other setting for
innodb_checksum_algorithm.

• innodb_cmp_per_index_enabled

Command-Line Format --innodb_cmp_per_index_enabled=#

Name innodb_cmp_per_index_enabled

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type boolean

Default OFF

OFF

Permitted Values

Valid
Values ON

Enables per-index compression-related statistics in the
INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table. Because these statistics can be
expensive to gather, only enable this option on development, test, or slave instances during
performance tuning related to InnoDB compressed tables.

• innodb_commit_concurrency

Command-Line Format --innodb_commit_concurrency=#

Name innodb_commit_concurrency

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1000

The number of threads that can commit at the same time. A value of 0 (the default) permits any
number of transactions to commit simultaneously.

The value of innodb_commit_concurrency cannot be changed at runtime from zero to nonzero
or vice versa. The value can be changed from one nonzero value to another.

• innodb_compress_debug

Introduced 5.7.8

Command-Line Format --innodb_compress_debug=#

Name innodb_compress_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

InnoDB System Variables

2135

Type enumeration

Default none

none

zlib

lz4

Permitted Values

Valid
Values

lz4hc

Compresses all tables using a specified compression algorithm without having to define a
COMPRESSION attribute for each table. This option is only available if debugging support is compiled
in using the WITH_DEBUG CMake option.

• innodb_compression_failure_threshold_pct

Command-Line Format --innodb_compression_failure_threshold_pct=#

Name innodb_compression_failure_threshold_pct

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 5

Min
Value

0

Permitted Values

Max
Value

100

Sets the cutoff point at which MySQL begins adding padding within compressed pages to avoid
expensive compression failures. A value of zero disables the mechanism that monitors compression
efficiency and dynamically adjusts the padding amount.

For more information, see Section 14.6.1.6, “Compression for OLTP Workloads”.

• innodb_compression_level

Command-Line Format --innodb_compression_level=#

Name innodb_compression_level

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 6

Min
Value

0

Permitted Values

Max
Value

9

Specifies the level of zlib compression to use for InnoDB compressed tables and indexes.

For more information, see Section 14.6.1.6, “Compression for OLTP Workloads”.

• innodb_compression_pad_pct_max

InnoDB System Variables

2136

Command-Line Format --innodb_compression_pad_pct_max=#

Name innodb_compression_pad_pct_max

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 50

Min
Value

0

Permitted Values

Max
Value

75

Specifies the maximum percentage that can be reserved as free space within each compressed
page, allowing room to reorganize the data and modification log within the page when a
compressed table or index is updated and the data might be recompressed. Only applies when
innodb_compression_failure_threshold_pct is set to a non-zero value, and the rate of
compression failures passes the cutoff point.

For more information, see Section 14.6.1.6, “Compression for OLTP Workloads”.

• innodb_concurrency_tickets

Command-Line Format --innodb_concurrency_tickets=#

Name innodb_concurrency_tickets

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 5000

Min
Value

1

Permitted Values

Max
Value

4294967295

Determines the number of threads that can enter InnoDB concurrently. A thread is placed in a queue
when it tries to enter InnoDB if the number of threads has already reached the concurrency limit.
When a thread is permitted to enter InnoDB, it is given a number of “free tickets” equal to the value
of innodb_concurrency_tickets, and the thread can enter and leave InnoDB freely until it has
used up its tickets. After that point, the thread again becomes subject to the concurrency check (and
possible queuing) the next time it tries to enter InnoDB. The default value is 5000.

With a small innodb_concurrency_tickets value, small transactions that only need to process
a few rows compete fairly with larger transactions that process many rows. The disadvantage of
a small innodb_concurrency_tickets value is that large transactions must loop through the
queue many times before they can complete, which extends the length of time required to complete
their task.

With a large innodb_concurrency_tickets value, large transactions spend less time waiting
for a position at the end of the queue (controlled by innodb_thread_concurrency) and more
time retrieving rows. Large transactions also require fewer trips through the queue to complete their

InnoDB System Variables

2137

task. The disadvantage of a large innodb_concurrency_tickets value is that too many large
transactions running at the same time can starve smaller transactions by making them wait a longer
time before executing.

With a non-zero innodb_thread_concurrency value, you may need to adjust the
innodb_concurrency_tickets value up or down to find the optimal balance between
larger and smaller transactions. The SHOW ENGINE INNODB STATUS report shows the
number of tickets remaining for an executing transaction in its current pass through the
queue. This data may also be obtained from the TRX_CONCURRENCY_TICKETS column of the
INFORMATION_SCHEMA.INNODB_TRX table.

For more information, see Section 14.3.6, “Configuring Thread Concurrency for InnoDB”.

• innodb_create_intrinsic

Introduced 5.7.5

Removed 5.7.6

Command-Line Format --innodb_create_intrinsic=#

Name innodb_create_intrinsic

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When innodb_create_intrinsic is enabled, CREATE TEMPORY TABLE creates “optimized
temporary tables” instead of normal temporary tables.

An optimized temporary table is a lightweight subclass of temporary table that excludes certain
functionality and benefits from optimizations that makes it faster than a normal temporary table.
Like normal temporary tables, optimized temporary tables are only visible to the current connection,
and are dropped when the connection is terminated. Unlike normal temporary tables, optimized
temporary tables are operational when InnoDB is in read-only mode.

Row format COMPRESSED is not supported. If you attempt to create a compressed optimized
temporary table, the innodb_create_intrinsic=ON setting is ignored and InnoDB creates a
normal temporary table.

Optimized temporary table metadata is not available in the
INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO table.

Undo logging is disabled for optimized temporary tables, which means that rollback is also not
supported.

Atomicity for optimized temporary tables is supported at the row-level, not at the statement level.

Statistics generated by the same workload may differ for intrinsic temporary tables compared to
normal temporary tables, as optimized temporary tables may use a different algorithm to complete
certain types of operations.

innodb_create_intrinsic was removed in MySQL 5.7.6.

• innodb_data_file_path

Command-Line Format --innodb_data_file_path=name

InnoDB System Variables

2138

Name innodb_data_file_path

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default ibdata1:12M:autoextend

The paths to individual InnoDB data files and their sizes. The full directory path to each data file
is formed by concatenating innodb_data_home_dir to each path specified here. The file sizes
are specified KB, MB or GB (1024MB) by appending K, M or G to the size value. If specifying data
file size in kilobytes (KB), do so in multiples of 1024. Otherwise, KB values are rounded off to
nearest megabyte (MB) boundary. The sum of the sizes of the files must be at least slightly larger
than 10MB. If you do not specify innodb_data_file_path, the default behavior is to create
a single auto-extending data file, slightly larger than 12MB, named ibdata1. The size limit of
individual files is determined by your operating system. You can set the file size to more than 4GB
on those operating systems that support big files. You can also use raw disk partitions as data
files. For detailed information on configuring InnoDB tablespace files, see Section 14.3, “InnoDB
Configuration”.

As of MySQL 5.7.8, the following minimum file sizes are enforced for the first system tablespace data
file (ibdata1) to ensure that there is enough space for doublewrite buffer blocks (Bug #20972309):

• For an innodb_page_size value of 16KB or less, the minimum data file size is 3MB.

• For an innodb_page_size value of 32KB, the minimum data file size is 6MB.

• For an innodb_page_size value of 64KB, the minimum data file size is 12MB.

• innodb_data_home_dir

Command-Line Format --innodb_data_home_dir=dir_name

Name innodb_data_home_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The common part of the directory path for all InnoDB data files in the system tablespace. This
setting does not affect the location of file-per-table tablespaces when innodb_file_per_table is
enabled. The default value is the MySQL data directory. If you specify the value as an empty string,
you can use absolute file paths in innodb_data_file_path.

• innodb_default_row_format

Introduced 5.7.9

Command-Line Format --innodb_default_row_format=#

Name innodb_default_row_format

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type enumeration

InnoDB System Variables

2139

Default DYNAMIC

DYNAMIC

COMPACT

Valid
Values

REDUNDANT

The innodb_default_row_format option, introduced in MySQL 5.7.9, defines the default row
format for InnoDB tables (including user-created InnoDB temporary tables). The default setting is
DYNAMIC. Other permitted values are COMPACT and REDUNDANT. The COMPRESSED row format,
which is not supported for use in the system tablespace, cannot be defined as the default.

Newly created tables use the row format defined by innodb_default_row_format when a
ROW_FORMAT option is not specified explicitly or when ROW_FORMAT=DEFAULT is used.

When a ROW_FORMAT option is not specified explicitly or when ROW_FORMAT=DEFAULT is used, any
operation that rebuilds a table also silently changes the row format of the table to the format defined
by innodb_default_row_format. For more information, see Section 14.8.2, “Specifying the Row
Format for a Table”.

Internal InnoDB temporary tables created by the server to process queries use the DYNAMIC row
format, regardless of the innodb_default_row_format setting.

In MySQL 5.7.8 and earlier, the default row format is COMPACT.

• innodb_disable_sort_file_cache

Command-Line Format --innodb_disable_sort_file_cache=#

Name innodb_disable_sort_file_cache

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If enabled, this variable disables the operating system file system cache for merge-sort temporary
files. The effect is to open such files with the equivalent of O_DIRECT.

• innodb_disable_resize_buffer_pool_debug

Introduced 5.7.6

Command-Line Format --innodb_disable_resize_buffer_pool_debug=#

Name innodb_disable_resize_buffer_pool_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Disables resizing of the InnoDB buffer pool. This option is only available if debugging support is
compiled in using the WITH_DEBUG CMake option.

• innodb_doublewrite

InnoDB System Variables

2140

Command-Line Format --innodb-doublewrite

Name innodb_doublewrite

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

If this variable is enabled (the default), InnoDB stores all data twice, first to the doublewrite buffer,
then to the actual data files. This variable can be turned off with --skip-innodb_doublewrite
for benchmarks or cases when top performance is needed rather than concern for data integrity or
possible failures.

• innodb_fast_shutdown

Command-Line Format --innodb_fast_shutdown[=#]

Name innodb_fast_shutdown

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

0

1

Permitted Values

Valid
Values

2

The InnoDB shutdown mode. If the value is 0, InnoDB does a slow shutdown, a full purge and
a change buffer merge before shutting down. If the value is 1 (the default), InnoDB skips these
operations at shutdown, a process known as a fast shutdown. If the value is 2, InnoDB flushes its
logs and shuts down cold, as if MySQL had crashed; no committed transactions are lost, but the
crash recovery operation makes the next startup take longer.

The slow shutdown can take minutes, or even hours in extreme cases where substantial amounts of
data are still buffered. Use the slow shutdown technique before upgrading or downgrading between
MySQL major releases, so that all data files are fully prepared in case the upgrade process updates
the file format.

Use innodb_fast_shutdown=2 in emergency or troubleshooting situations, to get the absolute
fastest shutdown if data is at risk of corruption.

• innodb_fil_make_page_dirty_debug

Command-Line Format --innodb_fil_make_page_dirty_debug=#

Name innodb_fil_make_page_dirty_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

InnoDB System Variables

2141

Default 0

Max
Value

2**32-1

By default, setting innodb_fil_make_page_dirty_debug to the ID of a tablespace immediately
dirties the first page of the tablespace. If innodb_saved_page_number_debug is set to a non-
default value, setting innodb_fil_make_page_dirty_debug dirties the specified page. The
innodb_fil_make_page_dirty_debug option is only available if debugging support is compiled
in using the WITH_DEBUG CMake option.

• innodb_file_format

Deprecated 5.7.7

Command-Line Format --innodb_file_format=#

Name innodb_file_format

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type string

Default Antelope

Antelope

Permitted Values (<=
5.7.6)

Valid
Values Barracuda

Type string

Default Barracuda

Antelope

Permitted Values (>=
5.7.7)

Valid
Values Barracuda

The file format to use for new InnoDB tables. Currently, Antelope and Barracuda are
supported. This setting only applies to tables that have their own file-per-table tablespace,
so for it to have an effect, innodb_file_per_table must be enabled. The Barracuda file
format is required to use Compressed or Dynamic row formats and associated features such as
compression, off-page storage for large variable-length columns, and large index key prefixes (see
innodb_large_prefix). This restriction does not apply to tables stored in general tablespaces.
For more information, see Section 14.4.9, “InnoDB General Tablespaces”.

Be aware that ALTER TABLE operations that recreate InnoDB tables (ALGORITHM=COPY) in file-
per-table tablespaces will use the current innodb_file_format setting (the conditions outlined
above still apply).

The innodb_file_format default value was changed to Barracuda in MySQL 5.7.7. This
change allows Compressed or Dynamic row formats to be used for tables stored in file-per-table
tablespaces.

The innodb_file_format option is also deprecated in MySQL 5.7.7, and will be removed in a
future release. The purpose of the innodb_file_format option was to allow users to downgrade
to the built-in version of InnoDB in MySQL 5.1. Now that MySQL 5.1 has reached the end of its
product lifecycle, downgrade support provided by this option is no longer necessary.

• innodb_file_format_check

Deprecated 5.7.7

Command-Line Format --innodb_file_format_check=#

InnoDB System Variables

2142

Name innodb_file_format_check

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

This variable can be set to 1 or 0 at server startup to enable or disable whether InnoDB
checks the file format tag in the system tablespace (for example, Antelope or Barracuda).
If the tag is checked and is higher than that supported by the current version of InnoDB, an
error occurs and InnoDB does not start. If the tag is not higher, InnoDB sets the value of
innodb_file_format_max to the file format tag.

Note

Despite the default value sometimes being displayed as ON or OFF, always
use the numeric values 1 or 0 to turn this option on or off in your configuration
file or command line.

The innodb_file_format_check option is deprecated in MySQL 5.7.7 together with the
innodb_file_format option. Both options will be removed in a future release.

• innodb_file_format_max

Deprecated 5.7.7

Command-Line Format --innodb_file_format_max=#

Name innodb_file_format_max

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type string

Default Antelope

Antelope

Permitted Values

Valid
Values Barracuda

At server startup, InnoDB sets the value of this variable to the file format tag in the system
tablespace (for example, Antelope or Barracuda). If the server creates or opens a table with a
“higher” file format, it sets the value of innodb_file_format_max to that format.

The innodb_file_format_max option is deprecated in MySQL 5.7.7 together with the
innodb_file_format option. Both options will be removed in a future release.

• innodb_file_per_table

Command-Line Format --innodb_file_per_table

Name innodb_file_per_table

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

InnoDB System Variables

2143

Default ON

When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores the
data and indexes for each newly created table in a separate .ibd file, rather than in the system
tablespace. The storage for these InnoDB tables is reclaimed when the tables are dropped or
truncated. This setting enables several other InnoDB features, such as table compression. See
Section 14.4.4, “InnoDB File-Per-Table Tablespaces” for details about such features as well as
advantages and disadvantages of using per-table tablespaces.

Be aware that enabling innodb_file_per_table also means that an ALTER TABLE operation
will move InnoDB table from the system tablespace to an individual .ibd file in cases where
ALTER TABLE recreates the table (ALGORITHM=COPY). An exception to this rule is for tables
that were placed in the system tablespace using the TABLESPACE=innodb_system option with
CREATE TABLE or ALTER TABLE. These tables are unaffected by the innodb_file_per_table
setting and can only be moved to file-per-table tablespaces using ALTER TABLE ...
TABLESPACE=innodb_file_per_table.

When innodb_file_per_table is disabled, InnoDB stores the data for all tables and indexes
in the ibdata files that make up the system tablespace. This setting reduces the performance
overhead of filesystem operations for operations such as DROP TABLE or TRUNCATE TABLE. It
is most appropriate for a server environment where entire storage devices are devoted to MySQL
data. Because the system tablespace never shrinks, and is shared across all databases in an
instance, avoid loading huge amounts of temporary data on a space-constrained system when
innodb_file_per_table=OFF. Set up a separate instance in such cases, so that you can drop
the entire instance to reclaim the space.

By default, innodb_file_per_table is enabled as of MySQL 5.6.6, disabled before that.
Consider disabling it if backward compatibility with MySQL 5.5 or 5.1 is a concern. This will prevent
ALTER TABLE from moving InnoDB tables from the system tablespace to individual .ibd files.

innodb_file_per_table is dynamic and can be set ON or OFF using SET GLOBAL. You can also
set this parameter in the MySQL configuration file (my.cnf or my.ini) but this requires shutting
down and restarting the server.

Dynamically changing the value of this parameter requires the SUPER privilege and immediately
affects the operation of all connections.

• innodb_fill_factor

Introduced 5.7.5

Command-Line Format --innodb_fill_factor=#

Name innodb_fill_factor

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 100

Min
Value

10

Permitted Values

Max
Value

100

As of MySQL 5.7.5, InnoDB performs a bulk load when creating or rebuilding indexes. This method
of index creation is known as a “sorted index build”.

InnoDB System Variables

2144

innodb_fill_factor defines the percentage of space on each B-tree page that is filled during a
sorted index build, with the remaining space reserved for future index growth. For example, setting
innodb_fill_factor to 80 reserves 20 percent of the space on each B-tree page for future index
growth. Actual percentages may vary. The innodb_fill_factor setting is interpreted as a hint
rather than a hard limit.

As of MySQL 5.7.8, an innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered
index pages free for future index growth (MySQL Bug #74325).

innodb_fill_factor applies to both B-tree leaf and non-leaf pages. It does not apply to external
pages used for TEXT or BLOB entries.

For more information, see Section 14.2.7.8, “Sorted Index Builds”.

• innodb_flush_log_at_timeout

Name innodb_flush_log_at_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

2700

Write and flush the logs every N seconds. innodb_flush_log_at_timeout was introduced
in MySQL 5.6.6. It allows the timeout period between flushes to be increased in order to reduce
flushing and avoid impacting performance of binary log group commit. Prior to MySQL 5.6.6, flushing
frequency was once per second. The default setting for innodb_flush_log_at_timeout is also
once per second.

• innodb_flush_log_at_trx_commit

Command-Line Format --innodb_flush_log_at_trx_commit[=#]

Name innodb_flush_log_at_trx_commit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default 1

0

1

Permitted Values

Valid
Values

2

Controls the balance between strict ACID compliance for commit operations, and higher performance
that is possible when commit-related I/O operations are rearranged and done in batches. You can
achieve better performance by changing the default value, but then you can lose up to a second of
transactions in a crash.

InnoDB System Variables

2145

• The default value of 1 is required for full ACID compliance. With this value, the contents of the
InnoDB log buffer are written out to the log file at each transaction commit and the log file is
flushed to disk.

• With a value of 0, the contents of the InnoDB log buffer are written to the log file approximately
once per second and the log file is flushed to disk. No writes from the log buffer to the log file are
performed at transaction commit. Once-per-second flushing is not 100% guaranteed to happen
every second, due to process scheduling issues. Because the flush to disk operation only occurs
approximately once per second, you can lose up to a second of transactions with any mysqld
process crash.

• With a value of 2, the contents of the InnoDB log buffer are written to the log file after each
transaction commit and the log file is flushed to disk approximately once per second. Once-per-
second flushing is not 100% guaranteed to happen every second, due to process scheduling
issues. Because the flush to disk operation only occurs approximately once per second, you can
lose up to a second of transactions in an operating system crash or a power outage.

• As of MySQL 5.6.6, InnoDB log flushing frequency is controlled by
innodb_flush_log_at_timeout, which allows you to set log flushing frequency to N seconds
(where N is 1 ... 2700, with a default value of 1). However, any mysqld process crash can
erase up to N seconds of transactions.

• DDL changes and other internal InnoDB activities flush the InnoDB log independent of the
innodb_flush_log_at_trx_commit setting.

• InnoDB's crash recovery works regardless of the innodb_flush_log_at_trx_commit setting.
Transactions are either applied entirely or erased entirely.

For durability and consistency in a replication setup that uses InnoDB with transactions:

• If binary logging is enabled, set sync_binlog=1.

• Always set innodb_flush_log_at_trx_commit=1.

Caution

Many operating systems and some disk hardware fool the flush-to-disk
operation. They may tell mysqld that the flush has taken place, even though
it has not. Then the durability of transactions is not guaranteed even with the
setting 1, and in the worst case a power outage can even corrupt InnoDB
data. Using a battery-backed disk cache in the SCSI disk controller or in the
disk itself speeds up file flushes, and makes the operation safer. You can
also try using the Unix command hdparm to disable the caching of disk writes
in hardware caches, or use some other command specific to the hardware
vendor.

• innodb_flush_method

Command-Line Format --innodb_flush_method=name

Name innodb_flush_method

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values (Unix)

Default NULL

InnoDB System Variables

2146

fsync

O_DSYNC

littlesync

nosync

O_DIRECT

Valid
Values

O_DIRECT_NO_FSYNC

Type string

Default NULL

async_unbuffered

normal

Permitted Values
(Windows)

Valid
Values

unbuffered

Defines the method used to flush data to the InnoDB data files and log files, which can affect I/O
throughput.

If innodb_flush_method=NULL on a Unix-like system, the fsync option is used by default. If
innodb_flush_method=NULL on Windows, the async_unbuffered option is used by default.

The innodb_flush_method options for Unix-like systems include:

• fsync: InnoDB uses the fsync() system call to flush both the data and log files. fsync is the
default setting.

• O_DSYNC: InnoDB uses O_SYNC to open and flush the log files, and fsync() to flush the data
files. InnoDB does not use O_DSYNC directly because there have been problems with it on many
varieties of Unix.

• littlesync: This option is used for internal performance testing and is currently unsupported.
Use at your own risk.

• nosync: This option is used for internal performance testing and is currently unsupported. Use at
your own risk.

• O_DIRECT: InnoDB uses O_DIRECT (or directio() on Solaris) to open the data files, and uses
fsync() to flush both the data and log files. This option is available on some GNU/Linux versions,
FreeBSD, and Solaris.

• O_DIRECT_NO_FSYNC: InnoDB uses O_DIRECT during flushing I/O, but skips the fsync()
system call afterwards. This setting is suitable for some types of file systems but not others. For
example, it is not suitable for XFS. If you are not sure whether the file system you use requires
an fsync(), for example to preserve all file metadata, use O_DIRECT instead. This option was
introduced in MySQL 5.6.7 (Bug #11754304, Bug #45892).

The innodb_flush_method options for Windows systems include:

• async_unbuffered: InnoDB uses Windows asynchronous I/O and non-buffered I/O.
async_unbuffered is the default setting on Windows systems.

• normal: InnoDB uses a simulated asynchronous I/O and buffered I/O.

• unbuffered: InnoDB uses a simulated asynchronous I/O and non-buffered I/O.

How each settings affects performance depends on hardware configuration and workload.
Benchmark your particular configuration to decide which setting to use, or whether to keep the
default setting. Examine the Innodb_data_fsyncs status variable to see the overall number of
fsync() calls for each setting. The mix of read and write operations in your workload can affect

InnoDB System Variables

2147

how a setting performs. For example, on a system with a hardware RAID controller and battery-
backed write cache, O_DIRECT can help to avoid double buffering between the InnoDB buffer pool
and the operating system's file system cache. On some systems where InnoDB data and log files
are located on a SAN, the default value or O_DSYNC might be faster for a read-heavy workload with
mostly SELECT statements. Always test this parameter with hardware and workload that reflect your
production environment. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/
O”.

• innodb_flush_neighbors

Command-Line Format --innodb_flush_neighbors

Name innodb_flush_neighbors

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default 1

0

1

Permitted Values

Valid
Values

2

Specifies whether flushing a page from the InnoDB buffer pool also flushes other dirty pages in the
same extent.

• The default value of 1 flushes contiguous dirty pages in the same extent from the buffer pool.

• A setting of 0 turns innodb_flush_neighbors off and no other dirty pages are flushed from the
buffer pool.

• A setting of 2 flushes dirty pages in the same extent from the buffer pool.

When the table data is stored on a traditional HDD storage device, flushing such neighbor pages
in one operation reduces I/O overhead (primarily for disk seek operations) compared to flushing
individual pages at different times. For table data stored on SSD, seek time is not a significant factor
and you can turn this setting off to spread out the write operations. For general I/O tuning advice, see
Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_flush_sync

Introduced 5.7.8

Command-Line Format --innodb_flush_sync=#

Name innodb_flush_sync

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

The innodb_flush_sync parameter, which is enabled by default, causes the
innodb_io_capacity setting to be ignored for bursts of I/O activity that occur at checkpoints. To
adhere to the limit on InnoDB background I/O activity defined by the innodb_io_capacity setting,
disable innodb_flush_sync.

InnoDB System Variables

2148

• innodb_flushing_avg_loops

Command-Line Format --innodb_flushing_avg_loops=#

Name innodb_flushing_avg_loops

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 30

Min
Value

1

Permitted Values

Max
Value

1000

Number of iterations for which InnoDB keeps the previously calculated snapshot of the flushing
state, controlling how quickly adaptive flushing responds to changing workloads. Increasing the
value makes the rate of flush operations change smoothly and gradually as the workload changes.
Decreasing the value makes adaptive flushing adjust quickly to workload changes, which can cause
spikes in flushing activity if the workload increases and decreases suddenly.

• innodb_force_load_corrupted

Command-Line Format --innodb_force_load_corrupted

Name innodb_force_load_corrupted

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Lets InnoDB load tables at startup that are marked as corrupted. Use only during troubleshooting, to
recover data that is otherwise inaccessible. When troubleshooting is complete, turn this setting back
off and restart the server.

• innodb_force_recovery

Command-Line Format --innodb_force_recovery=#

Name innodb_force_recovery

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

6

InnoDB System Variables

2149

The crash recovery mode, typically only changed in serious troubleshooting situations. Possible
values are from 0 to 6. For the meanings of these values and important information about
innodb_force_recovery, see Section 14.18.2, “Forcing InnoDB Recovery”.

Warning

Only set this variable to a value greater than 0 in an emergency situation,
so that you can start InnoDB and dump your tables. As a safety measure,
InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0. Also, as of 5.7.3, an
innodb_force_recovery setting of 4 or greater places InnoDB into read-
only mode.

These restrictions may cause replication administration commands to
fail with an error, as replication options such as --relay-log-info-
repository=TABLE and --master-info-repository=TABLE store
information in tables in InnoDB.

• innodb_ft_aux_table

Command-Line Format --innodb_ft_aux_table=# (>= 5.7.2)

Name innodb_ft_aux_table

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

Specifies the qualified name of an InnoDB table containing a FULLTEXT index. This variable is
intended for diagnostic purposes.

After you set this variable to a name in the format db_name/table_name, the
INFORMATION_SCHEMA tables INNODB_FT_INDEX_TABLE, INNODB_FT_INDEX_CACHE,
INNODB_FT_CONFIG, INNODB_FT_DELETED, and INNODB_FT_BEING_DELETED will show
information about the search index for the specified table.

• innodb_ft_cache_size

Command-Line Format --innodb_ft_cache_size=#

Name innodb_ft_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 8000000

Min
Value

1600000

Permitted Values

Max
Value

80000000

The memory allocated, in bytes, for the InnoDB FULLTEXT search index cache, which holds
a parsed document in memory while creating an InnoDB FULLTEXT index. Index inserts and
updates are only committed to disk when the innodb_ft_cache_size size limit is reached.

InnoDB System Variables

2150

innodb_ft_cache_size defines the cache size on a per table basis. To set a global limit for all
tables, see innodb_ft_total_cache_size.

• innodb_ft_enable_diag_print

Command-Line Format --innodb_ft_enable_diag_print=#

Name innodb_ft_enable_diag_print

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether to enable additional full-text search (FTS) diagnostic output. This option is primarily
intended for advanced FTS debugging and will not be of interest to most users. Output is printed to
the error log and includes information such as:

• FTS index sync progress (when the FTS cache limit is reached). For example:

FTS SYNC for table test, deleted count: 100 size: 10000 bytes
SYNC words: 100

• FTS optimize progress. For example:

FTS start optimize test
FTS_OPTIMIZE: optimize "mysql"
FTS_OPTIMIZE: processed "mysql"

• FTS index build progress. For example:

Number of doc processed: 1000

• For FTS queries, the query parsing tree, word weight, query processing time, and memory usage
are printed. For example:

FTS Search Processing time: 1 secs: 100 millisec: row(s) 10000
Full Search Memory: 245666 (bytes), Row: 10000

• innodb_ft_enable_stopword

Command-Line Format --innodb_ft_enable_stopword=#

Name innodb_ft_enable_stopword

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Specifies that a set of stopwords is associated with an InnoDB FULLTEXT index at the time the
index is created. If the innodb_ft_user_stopword_table option is set, the stopwords are taken
from that table. Else, if the innodb_ft_server_stopword_table option is set, the stopwords are
taken from that table. Otherwise, a built-in set of default stopwords is used.

InnoDB System Variables

2151

• innodb_ft_max_token_size

Command-Line Format --innodb_ft_max_token_size=#

Name innodb_ft_max_token_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 84

Min
Value

10

Permitted Values

Max
Value

84

Type integer

Default 84

Min
Value

10

Permitted Values (<=
5.7.2)

Max
Value

252

Type integer

Default 84

Min
Value

10

Permitted Values (>=
5.7.3)

Max
Value

84

Maximum character length of words that are stored in an InnoDB FULLTEXT index. Setting a limit
on this value reduces the size of the index, thus speeding up queries, by omitting long keywords or
arbitrary collections of letters that are not real words and are not likely to be search terms.

• innodb_ft_min_token_size

Command-Line Format --innodb_ft_min_token_size=#

Name innodb_ft_min_token_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3

Min
Value

0

Permitted Values

Max
Value

16

Minimum length of words that are stored in an InnoDB FULLTEXT index. Increasing this value
reduces the size of the index, thus speeding up queries, by omitting common word that are unlikely
to be significant in a search context, such as the English words “a” and “to”. For content using a CJK
(Chinese, Japanese, Korean) character set, specify a value of 1.

InnoDB System Variables

2152

• innodb_ft_num_word_optimize

Command-Line Format --innodb_ft_num_word_optimize=#

Name innodb_ft_num_word_optimize

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 2000

Number of words to process during each OPTIMIZE TABLE operation on an InnoDB FULLTEXT
index. Because a bulk insert or update operation to a table containing a full-text search index
could require substantial index maintenance to incorporate all changes, you might do a series of
OPTIMIZE TABLE statements, each picking up where the last left off.

• innodb_ft_result_cache_limit

Introduced 5.7.2

Command-Line Format --innodb_ft_result_cache_limit=#

Name innodb_ft_result_cache_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 2000000000

Min
Value

1000000

Permitted Values (>=
5.7.4)

Max
Value

2**32-1

Type integer

Default 2000000000

Min
Value

1000000

Permitted Values (Unix,
32-bit platforms, >= 5.7.2,
<= 5.7.3)

Max
Value

2**32-1

Type integer

Default 2000000000

Min
Value

1000000

Permitted Values (Unix,
64-bit platforms, >= 5.7.2,
<= 5.7.3)

Max
Value

2**64-1

Type integer

Default 2000000000

Permitted Values
(Windows, >= 5.7.2, <=
5.7.3)

Min
Value

1000000

InnoDB System Variables

2153

Max
Value

2**32-1

The InnoDB FULLTEXT search (FTS) query result cache limit (defined in bytes) per FTS query
or per thread. Intermediate and final InnoDB FTS query results are handled in memory. Use
innodb_ft_result_cache_limit to place a size limit on the InnoDB FTS query result cache
to avoid excessive memory consumption in case of very large InnoDB FTS query results (millions
or hundreds of millions of rows, for example). Memory is allocated as required when an FTS query
is processed. If the result cache size limit is reached, an error is returned indicating that the query
exceeds the maximum allowed memory.

As of MySQL 5.7.4, the maximum value of innodb_ft_result_cache_limit for all platform
types and platform bit sizes is 2**32-1. Bug #71554.

• innodb_ft_server_stopword_table

Command-Line Format --innodb_ft_server_stopword_table=db_name/table_name

Name innodb_ft_server_stopword_table

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default NULL

This option is used to specify your own InnoDB FULLTEXT index stopword list for all
InnoDB tables. To configure your own stopword list for a specific InnoDB table, use
innodb_ft_user_stopword_table.

Set innodb_ft_server_stopword_table to the name of the table containing a list of stopwords,
in the format db_name/table_name.

The stopword table must exist before you configure innodb_ft_server_stopword_table.
innodb_ft_enable_stopword must be enabled and innodb_ft_server_stopword_table
option must be configured before you create the FULLTEXT index.

The stopword table must be an InnoDB table, containing a single VARCHAR column named VALUE.

For more information, see Section 12.9.4, “Full-Text Stopwords”.

• innodb_ft_sort_pll_degree

Command-Line Format --innodb_ft_sort_pll_degree=#

Name innodb_ft_sort_pll_degree

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 2

Min
Value

1

Permitted Values

Max
Value

32

InnoDB System Variables

2154

Number of threads used in parallel to index and tokenize text in an InnoDB FULLTEXT index, when
building a search index. See innodb_sort_buffer_size for additional usage information.

• innodb_ft_total_cache_size

Introduced 5.7.2

Command-Line Format --innodb_ft_total_cache_size=#

Name innodb_ft_total_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 640000000

Min
Value

32000000

Permitted Values

Max
Value

1600000000

The total memory allocated, in bytes, for the InnoDB FULLTEXT search index cache for all tables.
Creating numerous tables, each with a full-text search index, could consume a significant portion
of available memory. innodb_ft_total_cache_size, defines a global memory limit for all full-
text search indexes to help avoid excessive memory consumption. If the global limit is reached by an
index operation, a force sync is triggered.

• innodb_ft_user_stopword_table

Command-Line Format --innodb_ft_user_stopword_table=db_name/table_name

Name innodb_ft_user_stopword_table

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default NULL

This option is used to specify your own InnoDB FULLTEXT index stopword list
on a specific table. To configure your own stopword list for all InnoDB tables, use
innodb_ft_server_stopword_table.

Set innodb_ft_user_stopword_table to the name of the table containing a list of stopwords, in
the format db_name/table_name.

The stopword table must exist before you configure innodb_ft_user_stopword_table.
innodb_ft_enable_stopword must be enabled and innodb_ft_user_stopword_table
must be configured before you create the FULLTEXT index.

The stopword table must be an InnoDB table, containing a single VARCHAR column named VALUE.

For more information, see Section 12.9.4, “Full-Text Stopwords”.

• innodb_io_capacity

InnoDB System Variables

2155

Command-Line Format --innodb_io_capacity=#

Name innodb_io_capacity

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 200

Min
Value

100

Permitted Values (32-bit
platforms)

Max
Value

2**32-1

Type integer

Default 200

Min
Value

100

Permitted Values (64-bit
platforms)

Max
Value

2**64-1

The innodb_io_capacity parameter sets an upper limit on the I/O activity performed by the
InnoDB background tasks, such as flushing pages from the buffer pool and merging data from the
change buffer. The default value is 200. For busy systems capable of higher I/O rates, you can
set a higher value at server startup, to help the server handle the background maintenance work
associated with a high rate of row changes.

The innodb_io_capacity limit is a total limit for all buffer pool instances. When dirty pages are
flushed, the innodb_io_capacity limit is divided equally among buffer pool instances.

As of MySQL 5.7.2, the innodb_io_capacity setting is also used to limit the number of buffer
pool load operations per second when there is other I/O activity being performed by InnoDB
background tasks.

For systems with individual 5400 RPM or 7200 RPM drives, you might lower the value to the former
default of 100.

This parameter should be set to approximately the number of I/O operations that the system
can perform per second. Ideally, keep this setting as low as practical, but not so low that these
background activities fall behind. If the value is too high, data is removed from the buffer pool and
insert buffer too quickly to provide significant benefit from the caching.

The value represents an estimated proportion of the I/O operations per second (IOPS) available to
older-generation disk drives that could perform about 100 IOPS. The current default of 200 reflects
that modern storage devices are capable of much higher I/O rates.

In general, you can increase the value as a function of the number of drives used for InnoDB I/O,
particularly fast drives capable of high numbers of IOPS. For example, systems that use multiple
disks or solid-state disks for InnoDB are likely to benefit from the ability to control this parameter.

Although you can specify a very high number, in practice such large values have little if any benefit;
for example, a value of one million would be considered very high.

You can set the innodb_io_capacity value to any number 100 or greater to a maximum defined
by innodb_io_capacity_max. The default value is 200. You can set the value of this parameter

InnoDB System Variables

2156

in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET GLOBAL
command, which requires the SUPER privilege.

The innodb_flush_sync configuration option, introduced in MySQL 5.7.8, causes the
innodb_io_capacity setting to be ignored during bursts of I/O activity that occur at checkpoints.
innodb_flush_sync is enabled by default.

See Section 14.3.8, “Configuring the InnoDB Master Thread I/O Rate” for more information about
the innodb_io_capacity setting. For general information about InnoDB I/O performance, see
Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_io_capacity_max

Command-Line Format --innodb_io_capacity_max=#

Name innodb_io_capacity_max

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default see description

Min
Value

2000

Permitted Values (32-bit
platforms)

Max
Value

2**32-1

Type integer

Default see description

Min
Value

2000

Permitted Values (Unix,
64-bit platforms)

Max
Value

2**64-1

Type integer

Default 2000

Min
Value

2000

Permitted Values
(Windows, 64-bit
platforms)

Max
Value

2**32-1

The limit up to which InnoDB is allowed to extend the innodb_io_capacity setting in case
of emergency. If you specify an innodb_io_capacity setting at startup and do not specify a
value for innodb_io_capacity_max, the innodb_io_capacity_max value defaults to twice
the value of innodb_io_capacity, with a lower limit of 2000. 2000 is also the initial default
innodb_io_capacity_max configuration value.

The innodb_io_capacity_max setting is a total limit for all buffer pool instances.

For a brief period during MySQL 5.6 development, this variable was known as
innodb_max_io_capacity.

• innodb_large_prefix

Deprecated 5.7.7

Command-Line Format --innodb_large_prefix

InnoDB System Variables

2157

Name innodb_large_prefix

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values (<=
5.7.6) Default OFF

Type booleanPermitted Values (>=
5.7.7) Default ON

When this option is enabled, index key prefixes longer than 767 bytes (up to 3072 bytes) are allowed
for InnoDB tables that use the DYNAMIC and COMPRESSED row formats. See Section 14.5.7, “Limits
on InnoDB Tables” for the relevant maximums associated with index key prefixes under various
settings.

For tables using the REDUNDANT and COMPACT row formats, this option does not affect the allowed
index key prefix length.

innodb_large_prefix is enabled by default in MySQL 5.7.7. This change coincides with the
default value change for innodb_file_format, which is set to Barracuda by default in MySQL
5.7.7. Together, these default value changes allow larger index key prefixes to be created when
using ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED. If either option is set to a non-default
value, index key prefixes larger than 767 bytes are silently truncated.

innodb_large_prefix is deprecated in MySQL 5.7.7, and will be removed in a future release.
innodb_large_prefix was introduced in MySQL 5.5 to allow users to disable large index key
prefixes for compatibility with earlier versions of MySQL and InnoDB that do not support large index
key prefixes.

• innodb_limit_optimistic_insert_debug

Command-Line Format --innodb_limit_optimistic_insert_debug=#

Name innodb_limit_optimistic_insert_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

2**32-1

Limits the number of records per B-tree page. A default value of 0 means that no limit is imposed.
This option is only available if debugging support is compiled in using the WITH_DEBUG CMake
option.

• innodb_lock_wait_timeout

Command-Line Format --innodb_lock_wait_timeout=#

System Variable Name innodb_lock_wait_timeout

InnoDB System Variables

2158

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type integer

Default 50

Min
Value

1

Permitted Values

Max
Value

1073741824

The length of time in seconds an InnoDB transaction waits for a row lock before giving up. The
default value is 50 seconds. A transaction that tries to access a row that is locked by another
InnoDB transaction waits at most this many seconds for write access to the row before issuing the
following error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

When a lock wait timeout occurs, the current statement is rolled back (not the entire transaction). To
have the entire transaction roll back, start the server with the --innodb_rollback_on_timeout
option. See also Section 14.18.4, “InnoDB Error Handling”.

You might decrease this value for highly interactive applications or OLTP systems, to display user
feedback quickly or put the update into a queue for processing later. You might increase this value
for long-running back-end operations, such as a transform step in a data warehouse that waits for
other large insert or update operations to finish.

innodb_lock_wait_timeout applies to InnoDB row locks only. A MySQL table lock does not
happen inside InnoDB and this timeout does not apply to waits for table locks.

The lock wait timeout value does not apply to deadlocks, because InnoDB detects them immediately
and rolls back one of the deadlocked transactions.

innodb_lock_wait_timeout can be set at runtime with the SET GLOBAL or SET SESSION
statement. Changing the GLOBAL setting requires the SUPER privilege and affects the operation
of all clients that subsequently connect. Any client can change the SESSION setting for
innodb_lock_wait_timeout, which affects only that client.

• innodb_locks_unsafe_for_binlog

Deprecated 5.6.3

Command-Line Format --innodb_locks_unsafe_for_binlog

Name innodb_locks_unsafe_for_binlog

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

This variable affects how InnoDB uses gap locking for searches and index scans. As of MySQL
5.6.3, innodb_locks_unsafe_for_binlog is deprecated and will be removed in a future MySQL
release.

InnoDB System Variables

2159

Normally, InnoDB uses an algorithm called next-key locking that combines index-row locking with
gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table
index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-level locks
are actually index-record locks. In addition, a next-key lock on an index record also affects the “gap”
before that index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap
preceding the index record. If one session has a shared or exclusive lock on record R in an index,
another session cannot insert a new index record in the gap immediately before R in the index order.
See Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key Locks”.

By default, the value of innodb_locks_unsafe_for_binlog is 0 (disabled), which means that
gap locking is enabled: InnoDB uses next-key locks for searches and index scans. To enable the
variable, set it to 1. This causes gap locking to be disabled: InnoDB uses only index-record locks for
searches and index scans.

Enabling innodb_locks_unsafe_for_binlog does not disable the use of gap locking for
foreign-key constraint checking or duplicate-key checking.

The effect of enabling innodb_locks_unsafe_for_binlog is similar to but not identical to
setting the transaction isolation level to READ COMMITTED:

• Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions,
whereas the isolation level can be set globally for all sessions, or individually per session.

• innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation
level can be set at startup or changed at runtime.

READ COMMITTED therefore offers finer and more flexible control than
innodb_locks_unsafe_for_binlog. For additional details about the effect of isolation level on
gap locking, see Section 13.3.6, “SET TRANSACTION Syntax”.

Enabling innodb_locks_unsafe_for_binlog may cause phantom problems because other
sessions can insert new rows into the gaps when gap locking is disabled. Suppose that there is an
index on the id column of the child table and that you want to read and lock all rows from the table
having an identifier value larger than 100, with the intention of updating some column in the selected
rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is greater than 100. If the locks
set on the index records in that range do not lock out inserts made in the gaps, another session
can insert a new row into the table. Consequently, if you were to execute the same SELECT again
within the same transaction, you would see a new row in the result set returned by the query. This
also means that if new items are added to the database, InnoDB does not guarantee serializability.
Therefore, if innodb_locks_unsafe_for_binlog is enabled, InnoDB guarantees at most
an isolation level of READ COMMITTED. (Conflict serializability is still guaranteed.) For additional
information about phantoms, see Section 14.2.2.5, “Avoiding the Phantom Problem Using Next-Key
Locking”.

Enabling innodb_locks_unsafe_for_binlog has additional effects:

• For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes.
Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
This greatly reduces the probability of deadlocks, but they can still happen.

• For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read,
returning the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads
the row again and this time InnoDB either locks it or waits for a lock on it.

InnoDB System Variables

2160

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

In this case, table has no indexes, so searches and index scans use the hidden clustered index for
record locking (see Section 14.2.7.2, “Clustered and Secondary Indexes”).

Suppose that one client performs an UPDATE using these statements:

SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second client performs an UPDATE by executing these statements following
those of the first client:

SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row,
and then determines whether to modify it. If InnoDB does not modify the row and
innodb_locks_unsafe_for_binlog is enabled, it releases the lock. Otherwise, InnoDB retains
the lock until the end of the transaction. This affects transaction processing as follows.

If innodb_locks_unsafe_for_binlog is disabled, the first UPDATE acquires x-locks and does
not release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because first update has
retained locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If innodb_locks_unsafe_for_binlog is enabled, the first UPDATE acquires x-locks and
releases those for rows that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed
version of each row to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock

• innodb_log_buffer_size

InnoDB System Variables

2161

Command-Line Format --innodb_log_buffer_size=#

Name innodb_log_buffer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 8388608

Min
Value

262144

Permitted Values (<=
5.7.5)

Max
Value

4294967295

Type integer

Default 16777216

Min
Value

1048576

Permitted Values (>=
5.7.6)

Max
Value

4294967295

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. The default value
changed from 8MB to 16MB in 5.7.6 with the introduction of 32k and 64k innodb_page_size
values. A large log buffer enables large transactions to run without a need to write the log to disk
before the transactions commit. Thus, if you have transactions that update, insert, or delete many
rows, making the log buffer larger saves disk I/O. For general I/O tuning advice, see Section 8.5.8,
“Optimizing InnoDB Disk I/O”.

• innodb_log_checksum_algorithm

Introduced 5.7.8

Removed 5.7.9

Command-Line Format --innodb_log_checksum_algorithm=#

Name innodb_log_checksum_algorithm

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default innodb

innodb

crc32

none

strict_innodb

strict_crc32

Permitted Values (>=
5.7.8)

Valid
Values

strict_none

This configuration option was removed in MySQL 5.7.9 and replaced by innodb_log_checksums.

InnoDB System Variables

2162

Specifies how to generate and verify the checksum stored in each redo log disk
block. innodb_log_checksum_algorithm supports same algorithms as
innodb_checksum_algorithm. Previously, only the innodb algorithm was supported for redo log
disk blocks. innodb_log_checksum_algorithm=innodb is the default setting.

The strict_* forms work the same as innodb, crc32, and none, except that InnoDB halts if
it encounters a mix of checksum values in the same redo log. You can only use these options in a
completely new instance. The strict_* settings are somewhat faster, because they do not need to
compute both new and old checksum values to accept both during disk reads.

The following table illustrates the difference between the none, innodb, and crc32 option values,
and their strict_ counterparts. none, innodb, and crc32 write the specified type checksum value
into each data block, but for compatibility accept any of the other checksum values when verifying
a block during a read operation. The strict_ form of each parameter only recognizes one kind of
checksum, which makes verification faster but requires that all InnoDB redo logs in an instance be
created under the identical innodb_log_checksum_algorithm value.

Table 14.12 Allowed Settings for innodb_log_checksum_algorithm

Value Generated checksum (when writing) Allowed checksums (when reading)

none A constant number. Any of the checksums generated by
none, innodb, or crc32.

innodb A checksum calculated in software,
using the original algorithm from
InnoDB.

Any of the checksums generated by
none, innodb, or crc32.

crc32 A checksum calculated using the
crc32 algorithm, possibly done with a
hardware assist.

Any of the checksums generated by
none, innodb, or crc32.

strict_none A constant number Only the checksum generated by
none.

strict_innodb A checksum calculated in software,
using the original algorithm from
InnoDB.

Only the checksum generated by
innodb.

strict_crc32 A checksum calculated using the
crc32 algorithm, possibly done with a
hardware assist.

Only the checksum generated by
crc32.

• innodb_log_checksums

Introduced 5.7.9

Command-Line Format --innodb_log_checksums=#

Name innodb_log_checksums

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Enables or disables checksums for redo log pages. innodb_log_checksums replaces
innodb_log_checksum_algorithm, which was removed in MySQL 5.7.9.

InnoDB System Variables

2163

innodb_log_checksums=ON enables the CRC-32C checksum algorithm for redo log pages. When
innodb_log_checksums is disabled, the contents of the redo log page checksum field are ignored.

Checksums on the redo log header page and redo log checkpoint pages are never disabled.

• innodb_log_compressed_pages

Command-Line Format --innodb_log_compressed_pages=#

Name innodb_log_compressed_pages

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Specifies whether images of re-compressed pages are stored in InnoDB redo logs.

• innodb_log_file_size

Command-Line Format --innodb_log_file_size=#

Name innodb_log_file_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 50331648

Min
Value

1048576

Permitted Values (<=
5.7.10)

Max
Value

512GB / innodb_log_files_in_group

Type integer

Default 50331648

Min
Value

4194304

Permitted Values (>=
5.7.11)

Max
Value

512GB / innodb_log_files_in_group

The size in bytes of each log file in a log group. The combined size of log files
(innodb_log_file_size * innodb_log_files_in_group) cannot exceed a maximum value
that is slightly less than 512GB. A pair of 255 GB log files, for example, would allow you to approach
the limit but not exceed it. The default value is 48MB. Sensible values range from 1MB to 1/N-th
of the size of the buffer pool, where N is the number of log files in the group. The larger the value,
the less checkpoint flush activity is needed in the buffer pool, saving disk I/O. Larger log files also
make crash recovery slower, although improvements to recovery performance in MySQL 5.5 and
higher make the log file size less of a consideration. For general I/O tuning advice, see Section 8.5.8,
“Optimizing InnoDB Disk I/O”.

• innodb_log_files_in_group

Command-Line Format --innodb_log_files_in_group=#

InnoDB System Variables

2164

Name innodb_log_files_in_group

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 2

Min
Value

2

Permitted Values

Max
Value

100

The number of log files in the log group. InnoDB writes to the files in a circular fashion.
The default (and recommended) value is 2. The location of these files is specified by
innodb_log_group_home_dir. The combined size of log files (innodb_log_file_size *
innodb_log_files_in_group) can be up to 512GB.

• innodb_log_group_home_dir

Command-Line Format --innodb_log_group_home_dir=dir_name

Name innodb_log_group_home_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory path to the InnoDB redo log files, whose number is specified by
innodb_log_files_in_group. If you do not specify any InnoDB log variables, the default is to
create two files named ib_logfile0 and ib_logfile1 in the MySQL data directory. Their size is
given by the size of the innodb_log_file_size system variable.

• innodb_log_write_ahead_size

Introduced 5.7.4

Command-Line Format --innodb_log_write_ahead_size=#

Name innodb_log_write_ahead_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 8192

Min
Value

512 (log file block size)

Permitted Values

Max
Value

Equal to innodb_page_size

The write-ahead block size for the redo log, in bytes. To avoid “read-on-write”, set
innodb_log_write_ahead_size to match the operating system or file system cache block size.
Read-on-write occurs when redo log blocks are not entirely cached to the operating system or file

InnoDB System Variables

2165

system due to a mismatch between write-ahead block size for redo logs and operating system or file
system cache block size.

Valid values for innodb_log_write_ahead_size are multiples of the InnoDB log file block size
(2^n). The minimum value is the InnoDB log file block size (512). Write-ahead does not occur when
the minimum value is specified. The maximum value is equal to innodb_page_size. If you specify
a value for innodb_log_write_ahead_size that is larger than the innodb_page_size value,
the innodb_log_write_ahead_size value is truncated to the innodb_page_size value.

Setting the innodb_log_write_ahead_size value too low in relation to the operating system or
file system cache block size will result in “read-on-write”. Setting the value too high may have a slight
impact on fsync performance for log file writes due to several blocks being written at once.

• innodb_lru_scan_depth

Command-Line Format --innodb_lru_scan_depth=#

Name innodb_lru_scan_depth

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

100

Permitted Values (32-bit
platforms)

Max
Value

2**32-1

Type integer

Default 1024

Min
Value

100

Permitted Values (64-bit
platforms)

Max
Value

2**64-1

A parameter that influences the algorithms and heuristics for the flush operation for the InnoDB
buffer pool. Primarily of interest to performance experts tuning I/O-intensive workloads. It specifies,
per buffer pool instance, how far down the buffer pool LRU list the page_cleaner thread scans
looking for dirty pages to flush. This is a background operation performed once a second. If you
have spare I/O capacity under a typical workload, increase the value. If a write-intensive workload
saturates your I/O capacity, decrease the value, especially if you have a large buffer pool. For
general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct

Command-Line Format --innodb_max_dirty_pages_pct=#

Name innodb_max_dirty_pages_pct

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type numericPermitted Values (<=
5.7.4) Default 75

InnoDB System Variables

2166

Min
Value

0

Max
Value

99

Type numeric

Default 75

Min
Value

0

Permitted Values (>=
5.7.5)

Max
Value

99.99

InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages does not exceed
this value. The default value is 75.

The innodb_max_dirty_pages_pct setting establishes a target for flushing activity. It does not
affect the rate of flushing. For information about managing the rate of flushing, see Section 14.3.3.2,
“Configuring the Rate of InnoDB Buffer Pool Flushing”.

For additional information about this variable, see Section 14.3.3.6, “Tuning InnoDB Buffer Pool
Flushing”. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct_lwm

Command-Line Format --innodb_max_dirty_pages_pct_lwm=#

Name innodb_max_dirty_pages_pct_lwm

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type numeric

Default 0

Min
Value

0

Permitted Values (<=
5.7.4)

Max
Value

99

Type numeric

Default 0

Min
Value

0

Permitted Values (>=
5.7.5)

Max
Value

99.99

Low water mark representing percentage of dirty pages where preflushing is enabled to control the
dirty page ratio. The default of 0 disables the pre-flushing behavior entirely. For additional information
about this variable, see Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”.

• innodb_max_purge_lag

Command-Line Format --innodb_max_purge_lag=#

System Variable Name innodb_max_purge_lag

InnoDB System Variables

2167

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

This variable controls how to delay INSERT, UPDATE, and DELETE operations when purge
operations are lagging (see Section 14.2.3, “InnoDB Multi-Versioning”). The default value is 0 (no
delays).

The InnoDB transaction system maintains a list of transactions that have index records delete-
marked by UPDATE or DELETE operations. The length of this list represents the purge_lag value.
When purge_lag exceeds innodb_max_purge_lag, each INSERT, UPDATE, and DELETE
operation is delayed.

To prevent excessive delays in extreme situations where purge_lag becomes huge, you can put a
cap on the amount of delay by setting the innodb_max_purge_lag_delay configuration option.
The delay is computed at the beginning of a purge batch.

A typical setting for a problematic workload might be 1 million, assuming that transactions are small,
only 100 bytes in size, and it is permissible to have 100MB of unpurged InnoDB table rows.

The lag value is displayed as the history list length in the TRANSACTIONS section of InnoDB Monitor
output. For example, if the output includes the following lines, the lag value is 20:

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20

For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_purge_lag_delay

Command-Line Format --innodb_max_purge_lag_delay=#

Name innodb_max_purge_lag_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Min
Value

0

Specifies the maximum delay in milliseconds for the delay imposed by the
innodb_max_purge_lag configuration option. Any non-zero value represents an upper limit on

InnoDB System Variables

2168

the delay period computed from the formula based on the value of innodb_max_purge_lag. The
default of zero means that there is no upper limit imposed on the delay interval.

For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_undo_log_size

Introduced 5.7.5

Command-Line Format --innodb_max_undo_log_size=#

Name innodb_max_undo_log_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1073741824

Min
Value

10485760

Permitted Values

Max
Value

2**64-1

innodb_max_undo_log_size defines a threshold size for undo tablespaces. If
an undo tablespace exceeds the threshold, it can be marked for truncation when
innodb_undo_log_truncate is enabled. The default value is 1024 MiB (1073741824 bytes).

For more information, see Section 14.4.8, “Truncating Undo Logs That Reside in Undo
Tablespaces”.

• innodb_merge_threshold_set_all_debug

Introduced 5.7.6

Command-Line Format --innodb_merge_threshold_set_all_debug=#

Name innodb_merge_threshold_set_all_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 50

Min
Value

1

Permitted Values

Max
Value

50

Overrides the current MERGE_THRESHOLD setting with the specified value for all indexes that are
currently in the dictionary cache. This option is only available if debugging support is compiled in
using the WITH_DEBUG CMake option. For related information, see Section 14.3.12, “Configuring the
Merge Threshold for Index Pages”.

• innodb_monitor_disable

Command-Line Format --innodb_monitor_disable=[counter|module|pattern|all]

InnoDB System Variables

2169

Name innodb_monitor_disable

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

Turns off one or more counters in the INFORMATION_SCHEMA.INNODB_METRICS table. For usage
information, see Section 20.30.20, “The INFORMATION_SCHEMA INNODB_METRICS Table”.

As of MySQL 5.7.8, innodb_monitor_disable='latch' disables statistics collection for SHOW
ENGINE INNODB MUTEX. For more information, see Section 13.7.5.15, “SHOW ENGINE Syntax”.

• innodb_monitor_enable

Command-Line Format --innodb_monitor_enable=[counter|module|pattern|all]

Name innodb_monitor_enable

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

Turns on one or more counters in the INFORMATION_SCHEMA.INNODB_METRICS table. For usage
information, see Section 20.30.20, “The INFORMATION_SCHEMA INNODB_METRICS Table”.

As of MySQL 5.7.8, innodb_monitor_enable='latch' enables statistics collection for SHOW
ENGINE INNODB MUTEX. For more information, see Section 13.7.5.15, “SHOW ENGINE Syntax”.

• innodb_monitor_reset

Command-Line Format --innodb_monitor_reset=[counter|module|pattern|all]

Name innodb_monitor_reset

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

Resets to zero the count value for one or more counters in the
INFORMATION_SCHEMA.INNODB_METRICS table. For usage information, see Section 20.30.20,
“The INFORMATION_SCHEMA INNODB_METRICS Table”.

As of MySQL 5.7.8, innodb_monitor_reset='latch' resets statistics reported by SHOW
ENGINE INNODB MUTEX. For more information, see Section 13.7.5.15, “SHOW ENGINE Syntax”.

• innodb_monitor_reset_all

Command-Line Format --innodb_monitor_reset_all=[counter|module|pattern|
all]

Name innodb_monitor_reset_allSystem Variable

Variable
Scope

Global

InnoDB System Variables

2170

Dynamic
Variable

Yes

Permitted Values Type string

Resets all values (minimum, maximum, and so on) for one or more counters in the
INFORMATION_SCHEMA.INNODB_METRICS table. For usage information, see Section 20.30.20,
“The INFORMATION_SCHEMA INNODB_METRICS Table”.

• innodb_numa_interleave

Introduced 5.7.9

Command-Line Format --innodb_numa_interleave=#

Name innodb_numa_interleave

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Enables the NUMA interleave memory policy for allocation of the InnoDB buffer pool. When
innodb_numa_interleave is enabled, the NUMA memory policy is set to MPOL_INTERLEAVE for
the mysqld process. After the InnoDB buffer pool is allocated, the NUMA memory policy is set back
to MPOL_DEFAULT. For the innodb_numa_interleave option to be available, MySQL must be
compiled on a NUMA-enabled system.

• innodb_old_blocks_pct

Command-Line Format --innodb_old_blocks_pct=#

Name innodb_old_blocks_pct

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 37

Min
Value

5

Permitted Values

Max
Value

95

Specifies the approximate percentage of the InnoDB buffer pool used for the old block sublist. The
range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool). Often used in combination
with innodb_old_blocks_time. See Section 14.3.3.3, “Making the Buffer Pool Scan Resistant”
for more information. See Section 8.10.1, “The InnoDB Buffer Pool” for information about buffer pool
management, such as the LRU algorithm and eviction policies.

• innodb_old_blocks_time

Command-Line Format --innodb_old_blocks_time=#

System Variable Name innodb_old_blocks_time

InnoDB System Variables

2171

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 1000

Min
Value

0

Permitted Values

Max
Value

2**32-1

Non-zero values protect against the buffer pool being filled up by data that is referenced only for a
brief period, such as during a full table scan. Increasing this value offers more protection against full
table scans interfering with data cached in the buffer pool.

Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after
its first access before it can be moved to the new sublist. If the value is 0, a block inserted into the
old sublist moves immediately to the new sublist the first time it is accessed, no matter how soon
after insertion the access occurs. If the value is greater than 0, blocks remain in the old sublist until
an access occurs at least that many ms after the first access. For example, a value of 1000 causes
blocks to stay in the old sublist for 1 second after the first access before they become eligible to
move to the new sublist.

The default value is 1000.

This variable is often used in combination with innodb_old_blocks_pct. See Section 14.3.3.3,
“Making the Buffer Pool Scan Resistant” for more information. See Section 8.10.1, “The InnoDB
Buffer Pool” for information about buffer pool management, such as the LRU algorithm and eviction
policies.

• innodb_online_alter_log_max_size

Command-Line Format --innodb_online_alter_log_max_size=#

Name innodb_online_alter_log_max_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 134217728

Min
Value

65536

Permitted Values

Max
Value

2**64-1

Specifies an upper limit on the size of the temporary log files used during online DDL operations
for InnoDB tables. There is one such log file for each index being created or table being altered.
This log file stores data inserted, updated, or deleted in the table during the DDL operation. The
temporary log file is extended when needed by the value of innodb_sort_buffer_size, up to
the maximum specified by innodb_online_alter_log_max_size. If any temporary log file
exceeds the upper size limit, the ALTER TABLE operation fails and all uncommitted concurrent DML
operations are rolled back. Thus, a large value for this option allows more DML to happen during
an online DDL operation, but also causes a longer period at the end of the DDL operation when the
table is locked to apply the data from the log.

InnoDB System Variables

2172

• innodb_open_files

Command-Line Format --innodb_open_files=#

Name innodb_open_files

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default -1 (autosized)

Min
Value

10

Permitted Values

Max
Value

4294967295

This variable is relevant only if you use multiple InnoDB tablespaces. It specifies the maximum
number of .ibd files that MySQL can keep open at one time. The minimum value is 10. The
default value is 300 if innodb_file_per_table is not enabled, and the higher of 300 and
table_open_cache otherwise.

The file descriptors used for .ibd files are for InnoDB tables only. They are independent of those
specified by the --open-files-limit server option, and do not affect the operation of the table
cache. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_optimize_fulltext_only

Command-Line Format --innodb_optimize_fulltext_only=#

Name innodb_optimize_fulltext_only

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Changes the way the OPTIMIZE TABLE statement operates on InnoDB tables. Intended to be
enabled temporarily, during maintenance operations for InnoDB tables with FULLTEXT indexes.

By default, OPTIMIZE TABLE reorganizes the data in the clustered index of the table. When
this option is enabled, OPTIMIZE TABLE skips this reorganization of the table data, and instead
processes the newly added, deleted, and updated token data for a FULLTEXT index, See
Section 14.2.7.3, “InnoDB FULLTEXT Indexes” for more information about FULLTEXT indexes for
InnoDB tables.

• innodb_optimize_point_storage

Introduced 5.7.5

Removed 5.7.6

Command-Line Format --innodb_optimize_point_storage=#

Name innodb_optimize_point_storageSystem Variable

Variable
Scope

Session

InnoDB System Variables

2173

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enable this variable before creating a column of type POINT to store the POINT data type internally
as variable-length BLOB data.

This variable was removed in MySQL 5.7.6.

• innodb_page_cleaners

Introduced 5.7.4

Command-Line Format --innodb_page_cleaners=#

Name innodb_page_cleaners

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1

Min
Value

1

Permitted Values (<=
5.7.7)

Max
Value

64

Type integer

Default 4

Min
Value

1

Permitted Values (>=
5.7.8)

Max
Value

64

The number of page cleaner threads that flush dirty pages from buffer pool instances. The
page cleaner threads perform flush list and LRU flushing. A single page cleaner thread was
introduced in MySQL 5.6.2 to offload buffer pool flushing work from the InnoDB master thread.
As of MySQL 5.7.4, InnoDB provides support for multiple page cleaner threads. A value of 1
maintains the pre-MySQL 5.7.4 configuration in which there is a single page cleaner thread. When
there are multiple page cleaner threads, buffer pool flushing tasks for each buffer pool instance
are dispatched to idle page cleaner threads. The innodb_page_cleaners default value was
changed from 1 to 4 in MySQL 5.7.8. If the number of page cleaner threads exceeds the number
of buffer pool instances, innodb_page_cleaners is automatically set to the same value as
innodb_buffer_pool_instances.

If your workload is write-IO bound (when flushing dirty pages from buffer pool instances to data files)
and if your system hardware has available capacity, increasing the number of page cleaner threads
may help improve write-IO throughput.

Multi-threaded page cleaner support is extended to shutdown and recovery phases in MySQL 5.7.5.

As of MySQL 5.7.6, the setpriority() system call is used on Linux platforms (where it is
supported and where the mysqld execution user is authorized) to give page_cleaner threads
priority over other MySQL/InnoDB threads to help page flushing keep pace with the current workload.
mysqld execution user authorization can be configured in /etc/security/limits.conf. For

InnoDB System Variables

2174

example, if mysqld is run under the mysql user, you might authorize the mysql user by adding
lines similar to the following to /etc/security/limits.conf:

mysql hard nice -20
mysql soft nice -20

Refer to your Linux operating system documentation for more information.

• innodb_page_size

Command-Line Format --innodb_page_size=#k

Name innodb_page_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type enumeration

Default 16384

4k

8k

16k

4096

8192

Permitted Values (<=
5.7.5)

Valid
Values

16384

Type enumeration

Default 16384

4k

8k

16k

32k

64k

4096

8192

16384

32768

Permitted Values (>=
5.7.6)

Valid
Values

65536

Specifies the page size for all InnoDB tablespaces in a MySQL instance. This value is set when the
instance is created and remains constant afterwards. You can specify page size using the values
64k, 32k, 16k (the default), 8k, or 4k. Alternatively, you can specify page size in bytes (65536,
32768, 16384, 8192, 4096).

Note

Support for 32k and 64k page sizes was added in MySQL 5.7.6. For both
32k and 64k page sizes, the maximum row length is about 16000 bytes.
ROW_FORMAT=COMPRESSED is not supported when innodb_page_size is
set to 32KB or 64KB. For innodb_page_size=32k, extent size is 2MB. For
innodb_page_size=64k, extent size is 4MB. innodb_log_buffer_size

InnoDB System Variables

2175

should be set to at least 16M (which is the default as of MySQL 5.7.6) when
using 32k or 64k page sizes.

The default page size of 16KB and larger is appropriate for a wide range of workloads, particularly for
queries involving table scans and DML operations involving bulk updates. Smaller page sizes might
be more efficient for OLTP workloads involving many small writes, where contention can be an issue
when a single page contains many rows. Smaller pages might also be efficient with SSD storage
devices, which typically use small block sizes. Keeping the InnoDB page size close to the storage
device block size minimizes the amount of unchanged data that is rewritten to disk.

The minimum file size for the first system tablespace data file (ibdata1) differs depending on
the innodb_page_size value. See the innodb_data_file_path option description for more
information.

For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_print_all_deadlocks

Command-Line Format --innodb_print_all_deadlocks=#

Name innodb_print_all_deadlocks

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When this option is enabled, information about all deadlocks in InnoDB user transactions is
recorded in the mysqld error log. Otherwise, you see information about only the last deadlock,
using the SHOW ENGINE INNODB STATUS command. An occasional InnoDB deadlock is not
necessarily an issue, because InnoDB detects the condition immediately, and rolls back one of the
transactions automatically. You might use this option to troubleshoot why deadlocks are happening
if an application does not have appropriate error-handling logic to detect the rollback and retry its
operation. A large number of deadlocks might indicate the need to restructure transactions that
issue DML or SELECT ... FOR UPDATE statements for multiple tables, so that each transaction
accesses the tables in the same order, thus avoiding the deadlock condition.

• innodb_purge_batch_size

Command-Line Format --innodb_purge_batch_size=#

Name innodb_purge_batch_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 300

Min
Value

1

Permitted Values

Max
Value

5000

InnoDB System Variables

2176

The granularity of changes, expressed in units of redo log records, that trigger a purge operation,
flushing the changed buffer pool blocks to disk. This option is intended for tuning performance in
combination with the setting innodb_purge_threads=n, and typical users do not need to modify
it.

• innodb_purge_threads

Command-Line Format --innodb_purge_threads=#

Name innodb_purge_threads

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1

Min
Value

1

Permitted Values (<=
5.7.7)

Max
Value

32

Type integer

Default 4

Min
Value

1

Permitted Values (>=
5.7.8)

Max
Value

32

The number of background threads devoted to the InnoDB purge operation. A minimum value of
1 signifies that the purge operation is always performed by background threads, never as part of
the master thread. Running the purge operation in one or more background threads helps reduce
internal contention within InnoDB, improving scalability. Increasing the value to greater than 1
creates that many separate purge threads, which can improve efficiency on systems where DML
operations are performed on multiple tables. The maximum is 32.

The innodb_purge_threads default value was changed from 1 to 4 in MySQL 5.7.8.

• innodb_purge_rseg_truncate_frequency

Introduced 5.7.5

Command-Line Format --innodb_purge_rseg_truncate_frequency=#

Name innodb_purge_rseg_truncate_frequency

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 128

Min
Value

1

Permitted Values

Max
Value

128

InnoDB System Variables

2177

innodb_purge_rseg_truncate_frequency defines the frequency with which the purge
system frees rollback segments. An undo tablespace cannot be truncated until its rollback segments
are freed. Normally, the purge system frees rollback segments once every 128 times that purge
is invoked. Reducing the innodb_purge_rseg_truncate_frequency value increases the
frequency with which the purge thread frees rollback segments. The default value is 128.

innodb_purge_rseg_truncate_frequency is intended for use with
innodb_undo_log_truncate. For more information, see Section 14.4.8, “Truncating Undo Logs
That Reside in Undo Tablespaces”.

• innodb_random_read_ahead

Command-Line Format --innodb_random_read_ahead=#

Name innodb_random_read_ahead

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enables the random read-ahead technique for optimizing InnoDB I/O.

See Section 14.3.3.1, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)” for details about
the performance considerations for the different types of read-ahead requests. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_read_ahead_threshold

Command-Line Format --innodb_read_ahead_threshold=#

Name innodb_read_ahead_threshold

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 56

Min
Value

0

Permitted Values

Max
Value

64

Controls the sensitivity of linear read-ahead that InnoDB uses to prefetch pages into the buffer pool.
If InnoDB reads at least innodb_read_ahead_threshold pages sequentially from an extent (64
pages), it initiates an asynchronous read for the entire following extent. The permissible range of
values is 0 to 64. A value of 0 disables read-ahead. For the default of 56, InnoDB must read at least
56 pages sequentially from an extent to initiate an asynchronous read for the following extent.

Knowing how many pages are read through this read-ahead mechanism, and how many of them
are evicted from the buffer pool without ever being accessed, can be useful to help fine-tune
the innodb_read_ahead_threshold parameter. As of MySQL 5.5, SHOW ENGINE INNODB
STATUS output displays counter information from the Innodb_buffer_pool_read_ahead and
Innodb_buffer_pool_read_ahead_evicted global status variables. These variables indicate

InnoDB System Variables

2178

the number of pages brought into the buffer pool by read-ahead requests, and the number of such
pages evicted from the buffer pool without ever being accessed respectively. These counters provide
global values since the last server restart.

SHOW ENGINE INNODB STATUS also shows the rate at which the read-ahead pages are read in
and the rate at which such pages are evicted without being accessed. The per-second averages are
based on the statistics collected since the last invocation of SHOW ENGINE INNODB STATUS and
are displayed in the BUFFER POOL AND MEMORY section of the output.

See Section 14.3.3.1, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)” for more
information. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_read_io_threads

Command-Line Format --innodb_read_io_threads=#

Name innodb_read_io_threads

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4

Min
Value

1

Permitted Values

Max
Value

64

The number of I/O threads for read operations in InnoDB. The default value is 4. Its counterpart
for write threads is innodb_write_io_threads. See Section 14.3.7, “Configuring the Number
of Background InnoDB I/O Threads” for more information. For general I/O tuning advice, see
Section 8.5.8, “Optimizing InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can
exceed system limits. Ideally, increase the aio-max-nr setting; as a
workaround, you might reduce the settings for one or both of the MySQL
configuration options.

• innodb_read_only

Command-Line Format --innodb_read_only=#

Name innodb_read_only

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

InnoDB System Variables

2179

Starts the server in read-only mode. For distributing database applications or data sets on read-only
media. Can also be used in data warehouses to share the same data directory between multiple
instances. See Section 14.3.2, “Configuring InnoDB for Read-Only Operation” for usage instructions.

• innodb_replication_delay

Command-Line Format --innodb_replication_delay=#

Name innodb_replication_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

The replication thread delay (in ms) on a slave server if innodb_thread_concurrency is
reached.

• innodb_rollback_on_timeout

Command-Line Format --innodb_rollback_on_timeout

Name innodb_rollback_on_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

In MySQL 5.7, InnoDB rolls back only the last statement on a transaction timeout by default. If --
innodb_rollback_on_timeout is specified, a transaction timeout causes InnoDB to abort and
roll back the entire transaction.

• innodb_rollback_segments

Command-Line Format --innodb_rollback_segments=#

Name innodb_rollback_segments

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 128

Permitted Values

Min
Value

1

InnoDB System Variables

2180

Max
Value

128

Defines how many of the rollback segments in the system tablespace are used for InnoDB
transactions. This setting, while still valid, is replaced by innodb_undo_logs.

• innodb_saved_page_number_debug

Command-Line Format --innodb_saved_page_number_debug=#

Name innodb_saved_page_number_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Max
Value

2**23-1

Saves a page number. Setting the innodb_fil_make_page_dirty_debug option dirties the page
defined by innodb_saved_page_number_debug. The innodb_saved_page_number_debug
option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_sort_buffer_size

Command-Line Format --innodb_sort_buffer_size=#

Name innodb_sort_buffer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1048576

Min
Value

65536

Permitted Values

Max
Value

67108864

Specifies the size of sort buffers used for sorting data during creation of an InnoDB index. The size
specified defines the amount of data filled in memory for an internal sort and written out to disk,
which can be referred to as a “run”. During the merge phase, pairs of buffers of the specified size
are “read in” and merged. The larger the setting, the fewer “runs” and merges there are, which is
important to understand from a tuning perspective.

This sort area is only used for merge sorts during index creation, not during later index maintenance
operations. Buffers are deallocated when index creation completes.

The value of this option also controls the amount by which the temporary log file is extended, to
record concurrent DML during online DDL operations.

Before this setting was made configurable, the size was hardcoded to 1048576 bytes (1MB), and
that value remains the default.

InnoDB System Variables

2181

During an ALTER TABLE or CREATE TABLE statement that creates an index, 3 buffers are
allocated, each with a size defined by this option. Additionally, auxiliary pointers are allocated to rows
in the sort buffer so that the sort can run on pointers (as opposed to moving rows during the sort
operation).

For a typical sort operation, a formula such as this can be used to estimate memory consumption:

(6 /*FTS_NUM_AUX_INDEX*/ * (3*@@global.innodb_sort_buffer_size)
+ 2 * number_of_partitions * number_of_secondary_indexes_created
* (@@global.innodb_sort_buffer_size/dict_index_get_min_size(index)*/)
* 8 /*64-bit sizeof *buf->tuples*/")

“@@global.innodb_sort_buffer_size/dict_index_get_min_size(index)”
indicates the maximum tuples held. “2 * (@@global.innodb_sort_buffer_size/
dict_index_get_min_size(index)/) * 8 /*64-bit size of *buf->tuples*/”
indicates auxiliary pointers allocated.

Note

For 32-bit, multiply by 4 instead of 8.

For parallel sorts on a full-text index, multiply by the innodb_ft_sort_pll_degree setting:

(6 /*FTS_NUM_AUX_INDEX*/ * @@global.innodb_ft_sort_pll_degree)

• innodb_spin_wait_delay

Command-Line Format --innodb_spin_wait_delay=#

Name innodb_spin_wait_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 6

Min
Value

0

Permitted Values

Max
Value

4294967295

The maximum delay between polls for a spin lock. The low-level implementation of this mechanism
varies depending on the combination of hardware and operating system, so the delay does not
correspond to a fixed time interval. The default value is 6. See Section 14.3.9, “Configuring Spin
Lock Polling” for more information.

• innodb_stats_auto_recalc

Command-Line Format --innodb_stats_auto_recalc=#

Name innodb_stats_auto_recalc

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

InnoDB System Variables

2182

Type booleanPermitted Values

Default ON

Causes InnoDB to automatically recalculate persistent statistics after the data in a table is
changed substantially. The threshold value is currently 10% of the rows in the table. This
setting applies to tables created when the innodb_stats_persistent option is enabled,
or where the clause STATS_PERSISTENT=1 is enabled by a CREATE TABLE or ALTER
TABLE statement. The amount of data sampled to produce the statistics is controlled by the
innodb_stats_persistent_sample_pages configuration option.

For additional information about innodb_stats_auto_recalc, see Section 14.3.11.1,
“Configuring Persistent Optimizer Statistics Parameters”.

• innodb_stats_method

Command-Line Format --innodb_stats_method=name

Name innodb_stats_method

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default nulls_equal

nulls_equal

nulls_unequal

Permitted Values

Valid
Values

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for InnoDB tables. This variable has three possible values, nulls_equal, nulls_unequal, and
nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single
value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values
are considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored,
NULL values are ignored.

The method that is used for generating table statistics influences how the optimizer chooses indexes
for query execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

• innodb_stats_on_metadata

Command-Line Format --innodb_stats_on_metadata

Name innodb_stats_on_metadata

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When this variable is enabled, InnoDB updates statistics when metadata statements such
as SHOW TABLE STATUS or when accessing the INFORMATION_SCHEMA.TABLES or
INFORMATION_SCHEMA.STATISTICS tables. (These updates are similar to what happens for
ANALYZE TABLE.) When disabled, InnoDB does not update statistics during these operations.
Leaving this setting disabled can improve access speed for schemas that have a large number of

InnoDB System Variables

2183

tables or indexes. It can also improve the stability of execution plans for queries that involve InnoDB
tables.

To change the setting, issue the statement SET GLOBAL innodb_stats_on_metadata=mode,
where mode is either ON or OFF (or 1 or 0). Changing this setting requires the SUPER privilege and
immediately affects the operation of all connections.

This variable is disabled by default.

• innodb_stats_persistent

Command-Line Format --innodb_stats_persistent=setting

Name innodb_stats_persistent

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type boolean

Default ON

OFF

ON

0

Permitted Values

Valid
Values

1

Specifies whether InnoDB index statistics are persisted to disk. Otherwise, statistics may be
recalculated frequently which can lead to variations in query execution plans. This setting is stored
with each table when the table is created. You can set innodb_stats_persistent at the global
level before creating a table, or use the STATS_PERSISTENT clause of the CREATE TABLE and
ALTER TABLE statements to override the system-wide setting and configure persistent statistics for
individual tables.

For more information about this option, see Section 14.3.11.1, “Configuring Persistent Optimizer
Statistics Parameters”.

• innodb_stats_persistent_sample_pages

Command-Line Format --innodb_stats_persistent_sample_pages=#

Name innodb_stats_persistent_sample_pages

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 20

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. Increasing the value improves the accuracy
of index statistics, which can improve the query execution plan, at the expense of increased I/
O during the execution of ANALYZE TABLE for an InnoDB table. For additional information, see
Section 14.3.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

InnoDB System Variables

2184

Note

Setting a high value for innodb_stats_persistent_sample_pages
could result in lengthy ANALYZE TABLE execution time. To estimate the
number of database pages that will be accessed, see Section 14.3.11.3,
“Estimating ANALYZE TABLE Complexity for InnoDB Tables”.

This option only applies when the innodb_stats_persistent setting is turned on for a table;
when that option is turned off for a table, the innodb_stats_transient_sample_pages setting
applies instead.

• innodb_stats_sample_pages

Deprecated 5.6.3

Command-Line Format --innodb_stats_sample_pages=#

Name innodb_stats_sample_pages

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 8

Min
Value

1

Permitted Values

Max
Value

2**64-1

Deprecated, use innodb_stats_transient_sample_pages instead.

• innodb_stats_transient_sample_pages

Command-Line Format --innodb_stats_transient_sample_pages=#

Name innodb_stats_transient_sample_pages

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 8

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. The default value is 8. Increasing the
value improves the accuracy of index statistics, which can improve the query execution plan, at the
expense of increased I/O when opening an InnoDB table or recalculating statistics. For additional
information, see Section 14.3.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”.

Note

Setting a high value for innodb_stats_transient_sample_pages could
result in lengthy ANALYZE TABLE execution time. To estimate the number
of database pages that will be accessed, see Section 14.3.11.3, “Estimating
ANALYZE TABLE Complexity for InnoDB Tables”.

InnoDB System Variables

2185

This option only applies when the innodb_stats_persistent setting is turned off for a table;
when this option is turned on for a table, the innodb_stats_persistent_sample_pages
setting applies instead. Takes the place of the innodb_stats_sample_pages option. See
Section 14.3.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters” for more
information.

• innodb_status_output

Introduced 5.7.4

Command-Line Format --innodb_status_output

Name innodb_status_output

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enables or disables periodic output for the standard InnoDB Monitor. Also used in combination with
innodb_status_output_locks to enable or disable periodic output for the InnoDB Lock Monitor.
See Section 14.14, “InnoDB Monitors” for additional information.

• innodb_status_output_locks

Introduced 5.7.4

Command-Line Format --innodb_status_output_locks

Name innodb_status_output_locks

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enables or disables the InnoDB Lock Monitor. When enabled, the InnoDB Lock Monitor prints
additional information about locks in SHOW ENGINE INNODB STATUS output and in periodic output
printed to the MySQL error log. Periodic output for the InnoDB Lock Monitor is printed as part of the
standard InnoDB Monitor output. The standard InnoDB Monitor must therefore be enabled for the
InnoDB Lock Monitor to print data to the MySQL error log periodically. See Section 14.14, “InnoDB
Monitors” for more information.

• innodb_strict_mode

Command-Line Format --innodb_strict_mode=#

Name innodb_strict_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values (<=
5.7.6) Default OFF

InnoDB System Variables

2186

Type booleanPermitted Values (>=
5.7.7) Default ON

When innodb_strict_mode is ON, InnoDB returns errors rather than warnings for certain
conditions. As of MySQL 5.7.7, the default value is ON.

Strict mode helps guard against ignored typos and syntax errors in SQL, or other unintended
consequences of various combinations of operational modes and SQL statements. When
innodb_strict_mode is ON, InnoDB raises error conditions in certain cases, rather than
issuing a warning and processing the specified statement (perhaps with unintended behavior).
This is analogous to sql_mode in MySQL, which controls what SQL syntax MySQL accepts, and
determines whether it silently ignores errors, or validates input syntax and data values.

The innodb_strict_mode setting affects the handling of syntax errors for CREATE TABLE, ALTER
TABLE, CREATE INDEX, and OPTIMIZE TABLE statements. innodb_strict_mode also enables
a record size check, so that an INSERT or UPDATE never fails due to the record being too large for
the selected page size.

Oracle recommends enabling innodb_strict_mode when using ROW_FORMAT and
KEY_BLOCK_SIZE clauses on CREATE TABLE, ALTER TABLE, and CREATE INDEX statements.
When innodb_strict_mode is OFF, InnoDB ignores conflicting clauses and creates the table or
index, with only a warning in the message log. The resulting table might have different behavior than
you intended, such as having no compression when you tried to create a compressed table. When
innodb_strict_mode is ON, such problems generate an immediate error and the table or index is
not created, avoiding a troubleshooting session later.

You can turn innodb_strict_mode ON or OFF on the command line when you start mysqld, or in
the configuration file my.cnf or my.ini. You can also enable or disable innodb_strict_mode
at runtime with the statement SET [GLOBAL|SESSION] innodb_strict_mode=mode, where
mode is either ON or OFF. Changing the GLOBAL setting requires the SUPER privilege and affects the
operation of all clients that subsequently connect. Any client can change the SESSION setting for
innodb_strict_mode, and the setting affects only that client.

innodb_strict_mode is not applicable to general tablespaces. Tablespace management rules
for general tablespaces are strictly enforced independently of innodb_strict_mode. For more
information, see Section 13.1.15, “CREATE TABLESPACE Syntax”.

• innodb_support_xa

Deprecated 5.7.10

Command-Line Format --innodb_support_xa

Name innodb_support_xa

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Enables InnoDB support for two-phase commit in XA transactions, causing an extra disk flush for
transaction preparation. This setting is the default. The XA mechanism is used internally and is
essential for any server that has its binary log turned on and is accepting changes to its data from
more than one thread. If you turn it off, transactions can be written to the binary log in a different
order from the one in which the live database is committing them. This can produce different data
when the binary log is replayed in disaster recovery or on a replication slave. Do not turn it off on a

InnoDB System Variables

2187

replication master server unless you have an unusual setup where only one thread is able to change
data.

innodb_support_xa is deprecated and will be removed in a future MySQL release. InnoDB
support for two-phase commit in XA transactions is always enabled as of MySQL 5.7.10. Disabling
innodb_support_xa is no longer permitted as it makes replication unsafe and prevents
performance gains associated with binary log group commit.

• innodb_sync_array_size

Command-Line Format --innodb_sync_array_size=#

Name innodb_sync_array_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

1024

Splits an internal data structure used to coordinate threads, for higher concurrency in workloads
with large numbers of waiting threads. This setting must be configured when the MySQL instance
is starting up, and cannot be changed afterward. Increasing this option value is recommended for
workloads that frequently produce a large number of waiting threads, typically greater than 768.

• innodb_sync_spin_loops

Command-Line Format --innodb_sync_spin_loops=#

Name innodb_sync_spin_loops

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 30

Min
Value

0

Permitted Values

Max
Value

4294967295

The number of times a thread waits for an InnoDB mutex to be freed before the thread is
suspended. The default value is 30.

• innodb_sync_debug

Introduced 5.7.8

Command-Line Format --innodb_sync_debug=#

System Variable Name innodb_sync_debug

InnoDB System Variables

2188

Variable
Scope

Global

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Enables sync debug checking for the InnoDB storage engine. This option is only available if
debugging support is compiled in using the WITH_DEBUG CMake option.

Prior to MySQL 5.7.8, enabling InnoDB sync debug checking required that the Debug Sync facility
be enabled using the ENABLE_DEBUG_SYNC CMake option. This requirement was removed in
MYSQL 5.7.8 with the introduction of the innodb_sync_debug configuration option.

• innodb_table_locks

Command-Line Format --innodb_table_locks

Name innodb_table_locks

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

If autocommit = 0, InnoDB honors LOCK TABLES; MySQL does not return from LOCK
TABLES ... WRITE until all other threads have released all their locks to the table. The default
value of innodb_table_locks is 1, which means that LOCK TABLES causes InnoDB to lock a
table internally if autocommit = 0.

In MySQL 5.7, innodb_table_locks = 0 has no effect for tables locked explicitly with
LOCK TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK
TABLES ... WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.

• innodb_temp_data_file_path

Introduced 5.7.1

Command-Line Format --innodb_temp_data_file_path=file

Name innodb_temp_data_file_path

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default ibtmp1:12M:autoextend

Specifies the path, file name, and file size for InnoDB temporary table tablespace data files. The
full directory path for a file is formed by concatenating innodb_data_home_dir to the path
specified by innodb_temp_data_file_path. File size is specified in KB, MB, or GB (1024MB)
by appending K, M, or G to the size value. The sum of the sizes of the files must be slightly larger
than 12MB. If you do not specify innodb_temp_data_file_path, the default behavior is to create
a single auto-extending temporary table tablespace data file, slightly larger than 12MB, named
ibtmp1. The size limit of individual files is determined by your operating system. You can set the

InnoDB System Variables

2189

file size to more than 4GB on operating systems that support big files. Use of raw disk partitions for
temporary table tablespace data files is not supported.

The name of a InnoDB temporary table tablespace data file cannot be the same as the name of a
InnoDB data file. Any inability or error creating a temporary table tablespace data file is treated as
fatal and server startup will be refused. The temporary table tablespace has a dynamically generated
space ID, which can change on each server restart.

The InnoDB temporary table tablespace is shared by all non-compressed InnoDB temporary tables.
Compressed InnoDB temporary tables reside in per-table tablespace files, which are located in the
temporary file directory defined by tmpdir.

Metadata about active InnoDB temporary tables if found in the
INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO.

• innodb_tmpdir

Introduced 5.7.11

Command-Line Format --innodb_tmpdir=path

Name innodb_tmpdir

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Type directory namePermitted Values

Default NULL

The innodb_tmpdir option is used to define an alternate directory for temporary files that are
created during online ALTER TABLE operations.

A valid value is any directory path other than the MySQL data directory path. If the value is NULL
(the default), temporary files are created in the location defined by the MySQL tmpdir option.
If a directory is specified, existence of the directory and permissions are only checked when the
innodb_tmpdir setting is is configured using a SET statement. If a symlink is provided in a
directory string, the symlink is resolved and stored as an absolute path. The path should not exceed
512 bytes. An online ALTER TABLE operation reports an error if innodb_tmpdir is set to an invalid
directory. innodb_tmpdir overrides the MySQL tmpdir setting but only for online ALTER TABLE
operations.

The FILE privilege is required to configure innodb_tmpdir.

The innodb_tmpdir option was introduced to help avoid overflowing a temporary file directory
located on a tmpfs file system. Such overflows could occur as a result of large temporary files
created during online ALTER TABLE operations.

• innodb_thread_concurrency

Command-Line Format --innodb_thread_concurrency=#

Name innodb_thread_concurrency

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

InnoDB System Variables

2190

Min
Value

0

Max
Value

1000

InnoDB tries to keep the number of operating system threads concurrently inside InnoDB less than
or equal to the limit given by this variable (InnoDB uses operating system threads to process user
transactions). Once the number of threads reaches this limit, additional threads are placed into a
wait state within a “First In, First Out” (FIFO) queue for execution. Threads waiting for locks are not
counted in the number of concurrently executing threads.

The range of this variable is 0 to 1000. A value of 0 (the default) is interpreted as infinite concurrency
(no concurrency checking). Disabling thread concurrency checking enables InnoDB to create as
many threads as it needs. A value of 0 also disables the queries inside InnoDB and queries
in queue counters in the ROW OPERATIONS section of SHOW ENGINE INNODB STATUS
output.

Consider setting this variable if your MySQL instance shares CPU resources with other applications,
or if your workload or number of concurrent users is growing. The correct setting depends on
workload, computing environment, and the version of MySQL that you are running. You will
need to test a range of values to determine the setting that provides the best performance.
innodb_thread_concurrency is a dynamic variable, which allows you to experiment with
different settings on a live test system. If a particular setting performs poorly, you can quickly set
innodb_thread_concurrency back to 0.

Use the following guidelines to help find and maintain an appropriate setting:

• If the number of concurrent user threads for a workload is less than 64, set
innodb_thread_concurrency=0.

• If your workload is consistently heavy or occasionally spikes, start by setting
innodb_thread_concurrency=128, and lowering the value to 96, 80, 64, and so on, until
you find the number of threads that provides the best performance. For example, suppose your
system typically has 40 to 50 users, but periodically the number increases to 60, 70, or even 200.
You find that performance is stable at 80 concurrent users but starts to show a regression above
this number. In this case, you would set innodb_thread_concurrency=80 to avoid impacting
performance.

• If you do not want InnoDB to use more than a certain number of vCPUs for user threads (20
vCPUs for example), set innodb_thread_concurrency to this number (or possibly lower,
depending on performance results). If your goal is to isolate MySQL from other applications,
you may consider binding the mysqld process exclusively to the vCPUs. Be aware, however,
that exclusive binding could result in non-optimal hardware usage if the mysqld process is not
consistently busy. In this case, you might bind the mysqld process to the vCPUs but also allow
other applications to use some or all of the vCPUs.

Note

From an operating system perspective, using a resource management
solution (if available) to manage how CPU time is shared among
applications may be preferable to binding the mysqld process. For
example, you could assign 90% of vCPU time to a given application while
other critical process are not running, and scale that value back to 40%
when other critical processes are running.

• innodb_thread_concurrency values that are too high can cause performance regression due
to increased contention on system internals and resources.

InnoDB System Variables

2191

• In some cases, the optimal innodb_thread_concurrency setting can be smaller than the
number of vCPUs.

• Monitor and analyze your system regularly. Changes to workload, number of users, or computing
environment may require that you adjust the innodb_thread_concurrency setting.

For related information, see Section 14.3.6, “Configuring Thread Concurrency for InnoDB”.

• innodb_trx_purge_view_update_only_debug

Command-Line Format --innodb_trx_purge_view_update_only_debug=#

Name innodb_trx_purge_view_update_only_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Pauses purging of delete-marked records while allowing the purge view to be updated. This option
artificially creates a situation in which the purge view is updated but purges have not yet been
performed. This option is only available if debugging support is compiled in using the WITH_DEBUG
CMake option.

• innodb_trx_rseg_n_slots_debug

Command-Line Format --innodb_trx_rseg_n_slots_debug=#

Name innodb_trx_rseg_n_slots_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Max
Value

1024

Sets a debug flag that limits TRX_RSEG_N_SLOTS to a given value for the
trx_rsegf_undo_find_free function which looks for a free slot for an undo log segment. This
option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_thread_sleep_delay

Command-Line Format --innodb_thread_sleep_delay=#

Name innodb_thread_sleep_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (>=
5.7.4) Default 10000

InnoDB System Variables

2192

Min
Value

0

Max
Value

1000000

Type integer

Default 10000

Min
Value

0

Permitted Values (32-bit
platforms, <= 5.7.3)

Max
Value

4294967295

Type integer

Default 10000

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.7.3)

Max
Value

18446744073709551615

How long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The
default value is 10000. A value of 0 disables sleep. In MySQL 5.6.3 and higher, you can
set the configuration option innodb_adaptive_max_sleep_delay to the highest value
you would allow for innodb_thread_sleep_delay, and InnoDB automatically adjusts
innodb_thread_sleep_delay up or down depending on the current thread-scheduling activity.
This dynamic adjustment helps the thread scheduling mechanism to work smoothly during times
when the system is lightly loaded and when it is operating near full capacity.

For more information, see Section 14.3.6, “Configuring Thread Concurrency for InnoDB”.

• innodb_undo_directory

Command-Line Format --innodb_undo_directory=dir_name

Name innodb_undo_directory

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values (<=
5.7.7) Default .

Permitted Values (>=
5.7.8)

Type directory name

The path where InnoDB creates separate tablespaces for the undo logs. Typically used to place
undo logs on a different storage device. Used in conjunction with innodb_undo_logs and
innodb_undo_tablespaces, which determine the disk layout of the undo logs outside the system
tablespace.

Prior to MySQL 5.7.8, the innodb_undo_directory default value is “.”, which represents the
same directory where InnoDB creates its other log files by default. As of MySQL 5.7.8, there is no
default value (it is NULL). If a path is not specified, undo tablespaces are created in the MySQL data
directory, as defined by datadir.

For more information about configuring separate tablespaces for undo logs, see Section 14.4.7,
“Storing InnoDB Undo Logs in Separate Tablespaces”.

InnoDB System Variables

2193

• innodb_undo_log_truncate

Introduced 5.7.5

Command-Line Format --innodb_undo_log_truncate=#

Name innodb_undo_log_truncate

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When you enable innodb_undo_log_truncate, undo tablespaces that exceed the threshold
value defined by innodb_max_undo_log_size are marked for truncation. Only undo logs
that reside in undo tablespaces can be truncated. Truncation of undo logs that reside in the
system tablespace is not supported. For truncation to occur, there must be at least two undo
tablespaces and two redo-enabled undo logs configured to use the undo tablespaces. This
means that innodb_undo_tablespaces must be set to a value equal to or greater than 2, and
innodb_undo_logs must set to a value equal to or greater than 35.

The innodb_purge_rseg_truncate_frequency configuration option can be used to expedite
truncation of undo tablepaces.

For more information, see Section 14.4.8, “Truncating Undo Logs That Reside in Undo
Tablespaces”.

• innodb_undo_logs

Command-Line Format --innodb_undo_logs=#

Name innodb_undo_logs

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 128

Min
Value

0

Permitted Values

Max
Value

128

Defines the number of undo logs (otherwise referred to as rollback segments) used by InnoDB. The
innodb_undo_logs option replaces innodb_rollback_segments.

As of MySQL 5.7.2, 32 undo logs are reserved for use by temporary tables and are hosted in
the temporary table tablespace (ibtmp1). To allocate additional undo logs for data-modifying
transactions that generate undo records, innodb_undo_logs must be set to a value greater than
32 if undo logs are stored in the system tablespace only. If you have configured separate undo
tablespaces, innodb_undo_logs must be set to a value greater than 33 to allocate additional undo
logs for data-modifying transactions. Each undo log can host up to a maximum of 1024 transactions.

Although you can increase or decrease the number of undo logs used by InnoDB, the number
of undo logs physically present in the system never decreases. Thus you might start with
a low value for this parameter and gradually increase it, to avoid allocating undo logs that

InnoDB System Variables

2194

are not required. If innodb_undo_logs is not set, it defaults to the maximum value of 128.
For the total number of available undo logs, rather than the number of active ones, see the
Innodb_available_undo_logs status variable.

For more information about undo logs, see Section 14.2.3, “InnoDB Multi-Versioning”. For
information about configuring separate tablespaces for undo logs, see Section 14.4.7, “Storing
InnoDB Undo Logs in Separate Tablespaces”.

• innodb_undo_tablespaces

Command-Line Format --innodb_undo_tablespaces=#

Name innodb_undo_tablespaces

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values (<=
5.7.7)

Max
Value

126

Type integer

Default 0

Min
Value

0

Permitted Values (>=
5.7.8)

Max
Value

95

The number of tablespace files that the undo logs are divided between. By default, all undo logs are
part of the system tablespace, and the system tablespace always contains one undo tablespace in
addition to those configured by innodb_undo_tablespaces.

Because undo logs can become large during long-running transactions, having undo logs in multiple
tablespaces reduces the maximum size of any one tablespace. The undo tablespace files are
created in the location defined by innodb_undo_directory, with names in the form of undoN,
where N is a sequential series of integers (including leading zeros). The default size of an undo
tablespace file is 10M. The number of innodb_undo_tablespaces must be set prior to initializing
InnoDB. Attempting to restart InnoDB with a greater number of undo tablespaces than you specified
when you first created the database will result in a failed start and an error stating that InnoDB did
not find the expected number of undo tablespaces.

As MySQL 5.7.2, 32 of 128 undo logs were reserved for temporary tables, as described in
Section 14.2.6, “InnoDB Temporary Table Undo Logs”. One undo log is always allocated to the
system tablespace, which leaves 95 undo logs available for undo tablepaces. This change effectively
reduced the innodb_undo_tablespaces maximum limit from 126 to 95, and in MySQL 5.7.8, the
innodb_undo_tablespaces maximum value was officially reduced to 95.

For information about configuring separate tablespaces for undo logs, see Section 14.4.7, “Storing
InnoDB Undo Logs in Separate Tablespaces”.

• innodb_use_native_aio

Command-Line Format --innodb_use_native_aio=#

InnoDB System Variables

2195

Name innodb_use_native_aio

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

Specifies whether to use the Linux asynchronous I/O subsystem. This variable applies to Linux
systems only, and cannot be changed while the server is running. Normally, you do not need to
touch this option, because it is enabled by default.

As of MySQL 5.5, the asynchronous I/O capability that InnoDB has on Windows systems is available
on Linux systems. (Other Unix-like systems continue to use synchronous I/O calls.) This feature
improves the scalability of heavily I/O-bound systems, which typically show many pending reads/
writes in the output of the command SHOW ENGINE INNODB STATUS\G.

Running with a large number of InnoDB I/O threads, and especially running multiple such instances
on the same server machine, can exceed capacity limits on Linux systems. In this case, you may
receive the following error:

EAGAIN: The specified maxevents exceeds the user's limit of available events.

You can typically address this error by writing a higher limit to /proc/sys/fs/aio-max-nr.

However, if a problem with the asynchronous I/O subsystem in the OS prevents InnoDB
from starting, you can start the server with innodb_use_native_aio=0 disabled (use
innodb_use_native_aio=0 in the option file). This option may also be turned off automatically
during startup if InnoDB detects a potential problem such as a combination of tmpdir location,
tmpfs filesystem, and Linux kernel that does not support AIO on tmpfs.

• innodb_use_sys_malloc

Deprecated 5.6.3

Removed 5.7.4

Command-Line Format --innodb_use_sys_malloc=#

Name innodb_use_sys_malloc

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

Whether InnoDB uses the operating system memory allocator (ON) or its own (OFF). The default
value is ON. See Section 14.3.4, “Configuring the Memory Allocator for InnoDB” for more information.

innodb_use_sys_malloc was deprecated in MySQL 5.6.3 and removed in MySQL 5.7.4.

• innodb_version

The InnoDB version number. In 5.7, the separate numbering for InnoDB does not apply and this
value is the same as for the version variable.

• innodb_write_io_threads

InnoDB INFORMATION_SCHEMA Tables

2196

Command-Line Format --innodb_write_io_threads=#

Name innodb_write_io_threads

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4

Min
Value

1

Permitted Values

Max
Value

64

The number of I/O threads for write operations in InnoDB. The default value is 4. Its counterpart
for read threads is innodb_read_io_threads. See Section 14.3.7, “Configuring the Number
of Background InnoDB I/O Threads” for more information. For general I/O tuning advice, see
Section 8.5.8, “Optimizing InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can
exceed system limits. Ideally, increase the aio-max-nr setting; as a
workaround, you might reduce the settings for one or both of the MySQL
configuration options.

You should also take into consideration the value of sync_binlog, which controls synchronization
of the binary log to disk.

For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

14.12 InnoDB INFORMATION_SCHEMA Tables

This section provides information and usage examples for InnoDB INFORMATION_SCHEMA tables.

InnoDB INFORMATION_SCHEMA tables provide metadata, status information, and statistics about
various aspects of the InnoDB storage engine. You can view a list of InnoDB INFORMATION_SCHEMA
tables by issuing a SHOW TABLES statement on the INFORMATION_SCHEMA database:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB%';

For table definitions, see Section 20.30, “INFORMATION_SCHEMA Tables for InnoDB”. For
general information regarding the MySQL INFORMATION_SCHEMA database, see Chapter 20,
INFORMATION_SCHEMA Tables.

14.12.1 InnoDB INFORMATION_SCHEMA Tables about Compression

There are two pairs of InnoDB INFORMATION_SCHEMA tables about compression that can provide
insight into how well compression is working overall:

• INNODB_CMP and INNODB_CMP_RESET contain information about the number of compression
operations and the amount of time spent performing compression.

• INNODB_CMPMEM and INNODB_CMP_RESET contain information about the way memory is allocated
for compression.

InnoDB INFORMATION_SCHEMA Tables about Compression

2197

14.12.1.1 INNODB_CMP and INNODB_CMP_RESET

The INNODB_CMP and INNODB_CMP_RESET tables contain status information about operations related
to compressed tables, which are described in Section 14.6, “InnoDB Table and Page Compression”.
The PAGE_SIZE column reports the compressed page size.

These two tables have identical contents, but reading from INNODB_CMP_RESET resets the
statistics on compression and uncompression operations. For example, if you archive the output of
INNODB_CMP_RESET every 60 minutes, you see the statistics for each hourly period. If you monitor
the output of INNODB_CMP (making sure never to read INNODB_CMP_RESET), you see the cumulated
statistics since InnoDB was started.

For the table definition, see Section 20.30.1, “The INFORMATION_SCHEMA INNODB_CMP and
INNODB_CMP_RESET Tables”.

14.12.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables contain status information about
compressed pages that reside in the buffer pool. Please consult Section 14.6, “InnoDB Table and
Page Compression” for further information on compressed tables and the use of the buffer pool. The
INNODB_CMP and INNODB_CMP_RESET tables should provide more useful statistics on compression.

Internal Details

InnoDB uses a buddy allocator system to manage memory allocated to pages of various sizes, from
1KB to 16KB. Each row of the two tables described here corresponds to a single page size.

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables have identical contents, but reading from
INNODB_CMPMEM_RESET resets the statistics on relocation operations. For example, if every 60
minutes you archived the output of INNODB_CMPMEM_RESET, it would show the hourly statistics. If you
never read INNODB_CMPMEM_RESET and monitored the output of INNODB_CMPMEM instead, it would
show the cumulated statistics since InnoDB was started.

For the table definition, see Section 20.30.3, “The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables”.

14.12.1.3 Using the Compression Information Schema Tables

Example 14.10 Using the Compression Information Schema Tables

The following is sample output from a database that contains compressed tables (see Section 14.6,
“InnoDB Table and Page Compression”, INNODB_CMP, INNODB_CMP_PER_INDEX, and
INNODB_CMPMEM).

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMP under a light
workload. The only compressed page size that the buffer pool contains is 8K. Compressing or
uncompressing pages has consumed less than a second since the time the statistics were reset,
because the columns COMPRESS_TIME and UNCOMPRESS_TIME are zero.

page size compress
ops

compress ops ok compress time uncompress
ops

uncompress time

1024 0 0 0 0 0

2048 0 0 0 0 0

4096 0 0 0 0 0

8192 1048 921 0 61 0

16384 0 0 0 0 0

InnoDB INFORMATION_SCHEMA Transaction and Locking Tables

2198

According to INNODB_CMPMEM, there are 6169 compressed 8KB pages in the buffer pool. The only
other allocated block size is 64 bytes. The smallest PAGE_SIZE in INNODB_CMPMEM is used for block
descriptors of those compressed pages for which no uncompressed page exists in the buffer pool. We
see that there are 5910 such pages. Indirectly, we see that 259 (6169-5910) compressed pages also
exist in the buffer pool in uncompressed form.

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMPMEM under
a light workload. Some memory is unusable due to fragmentation of the memory allocator for
compressed pages: SUM(PAGE_SIZE*PAGES_FREE)=6784. This is because small memory
allocation requests are fulfilled by splitting bigger blocks, starting from the 16K blocks that are
allocated from the main buffer pool, using the buddy allocation system. The fragmentation is this low
because some allocated blocks have been relocated (copied) to form bigger adjacent free blocks.
This copying of SUM(PAGE_SIZE*RELOCATION_OPS) bytes has consumed less than a second
(SUM(RELOCATION_TIME)=0).

page size pages used pages free relocation ops relocation time

64 5910 0 2436 0

128 0 1 0 0

256 0 0 0 0

512 0 1 0 0

1024 0 0 0 0

2048 0 1 0 0

4096 0 1 0 0

8192 6169 0 5 0

16384 0 0 0 0

14.12.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Tables

Three InnoDB INFORMATION_SCHEMA tables make it easy to monitor transactions and
diagnose possible locking problems. The three tables are INNODB_TRX, INNODB_LOCKS, and
INNODB_LOCK_WAITS.

• INNODB_TRX: Contains information about every transaction currently executing inside InnoDB,
including whether the transaction is waiting for a lock, when the transaction started, and the
particular SQL statement the transaction is executing.

• INNODB_LOCKS: Each transaction in InnoDB that is waiting for another transaction to release a
lock (INNODB_TRX.TRX_STATE='LOCK WAIT') is blocked by exactly one “blocking lock request”.
That blocking lock request is for a row or table lock held by another transaction in an incompatible
mode. The waiting or blocked transaction cannot proceed until the other transaction commits or
rolls back, thereby releasing the requested lock. For every blocked transaction, INNODB_LOCKS
contains one row that describes each lock the transaction has requested, and for which it is waiting.
INNODB_LOCKS also contains one row for each lock that is blocking another transaction, whatever
the state of the transaction that holds the lock ('RUNNING', 'LOCK WAIT', 'ROLLING BACK' or
'COMMITTING'). The lock that is blocking a transaction is always held in a mode (read vs. write,
shared vs. exclusive) incompatible with the mode of requested lock.

• INNODB_LOCK_WAITS: Using this table, you can tell which transactions are waiting for a given
lock, or for which lock a given transaction is waiting. This table contains one or more rows for
each blocked transaction, indicating the lock it has requested and any locks that are blocking that
request. The REQUESTED_LOCK_ID refers to the lock that a transaction is requesting, and the
BLOCKING_LOCK_ID refers to the lock (held by another transaction) that is preventing the first
transaction from proceeding. For any given blocked transaction, all rows in INNODB_LOCK_WAITS
have the same value for REQUESTED_LOCK_ID and different values for BLOCKING_LOCK_ID.

InnoDB INFORMATION_SCHEMA Transaction and Locking Tables

2199

14.12.2.1 Usage Examples for InnoDB Transaction and Locking Tables

Example 14.11 Identifying Blocking Transactions

It is sometimes helpful to be able to identify which transaction is blocking another. You can use the
INFORMATION_SCHEMA tables to find out which transaction is waiting for another, and which resource
is being requested.

Suppose you have the following scenario, with three users running concurrently. Each user (or session)
corresponds to a MySQL thread, and executes one transaction after another. Consider the state of
the system when these users have issued the following commands, but none has yet committed its
transaction:

• User A:

BEGIN;
SELECT a FROM t FOR UPDATE;
SELECT SLEEP(100);

• User B:

SELECT b FROM t FOR UPDATE;

• User C:

SELECT c FROM t FOR UPDATE;

In this scenario, you can use this query to see who is waiting for whom:

SELECT r.trx_id waiting_trx_id,
 r.trx_mysql_thread_id waiting_thread,
 r.trx_query waiting_query,
 b.trx_id blocking_trx_id,
 b.trx_mysql_thread_id blocking_thread,
 b.trx_query blocking_query
 FROM information_schema.innodb_lock_waits w
 INNER JOIN information_schema.innodb_trx b ON
 b.trx_id = w.blocking_trx_id
 INNER JOIN information_schema.innodb_trx r ON
 r.trx_id = w.requesting_trx_id;

waiting
trx id

waiting
thread

waiting query blocking
trx id

blocking
thread

blocking query

A4 6 SELECT b FROM t FOR
UPDATE

A3 5 SELECT SLEEP(100)

A5 7 SELECT c FROM t FOR
UPDATE

A3 5 SELECT SLEEP(100)

A5 7 SELECT c FROM t FOR
UPDATE

A4 6 SELECT b FROM t FOR
UPDATE

In the above result, you can identify users by the “waiting query” or “blocking query”. As you can see:

• User B (trx id 'A4', thread 6) and User C (trx id 'A5', thread 7) are both waiting for User A (trx id
'A3', thread 5).

• User C is waiting for User B as well as User A.

You can see the underlying data in the tables INNODB_TRX, INNODB_LOCKS, and
INNODB_LOCK_WAITS.

InnoDB INFORMATION_SCHEMA Transaction and Locking Tables

2200

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_TRX.

trx
id

trx
state

trx started trx
requested
lock id

trx wait started trx
weight

trx mysql
thread id

trx query

A3 RUN-
NING

2008-01-15
16:44:54

NULL NULL 2 5 SELECT
SLEEP(100)

A4 LOCK
WAIT

2008-01-15
16:45:09

A4:1:3:2 2008-01-15
16:45:09

2 6 SELECT b FROM t
FOR UPDATE

A5 LOCK
WAIT

2008-01-15
16:45:14

A5:1:3:2 2008-01-15
16:45:14

2 7 SELECT c FROM t
FOR UPDATE

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCKS.

lock id lock
trx id

lock
mode

lock type lock table lock index lock
space

lock
page

lock
rec

lock data

A3:1:3:2 A3 X RECORD `test`.`t` `PRIMARY` 1 3 2 0x0200

A4:1:3:2 A4 X RECORD `test`.`t` `PRIMARY` 1 3 2 0x0200

A5:1:3:2 A5 X RECORD `test`.`t` `PRIMARY` 1 3 2 0x0200

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS.

requesting trx id requested lock id blocking trx id blocking lock id

A4 A4:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A4 A4:1:3:2

Example 14.12 More Complex Example of Transaction Data in Information Schema Tables

Sometimes you would like to correlate the internal InnoDB locking information with session-level
information maintained by MySQL. For example, you might like to know, for a given InnoDB
transaction ID, the corresponding MySQL session ID and name of the user that may be holding a lock,
and thus blocking another transaction.

The following output from the INFORMATION_SCHEMA tables is taken from a somewhat loaded system.

As can be seen in the following tables, there are several transactions running.

The following INNODB_LOCKS and INNODB_LOCK_WAITS tables shows that:

• Transaction 77F (executing an INSERT) is waiting for transactions 77E, 77D and 77B to commit.

• Transaction 77E (executing an INSERT) is waiting for transactions 77D and 77B to commit.

• Transaction 77D (executing an INSERT) is waiting for transaction 77B to commit.

• Transaction 77B (executing an INSERT) is waiting for transaction 77A to commit.

• Transaction 77A is running, currently executing SELECT.

• Transaction E56 (executing an INSERT) is waiting for transaction E55 to commit.

• Transaction E55 (executing an INSERT) is waiting for transaction 19C to commit.

• Transaction 19C is running, currently executing an INSERT.

Note that there may be an inconsistency between queries shown in the two tables
INNODB_TRX.TRX_QUERY and PROCESSLIST.INFO. The current transaction ID for a thread, and the

InnoDB INFORMATION_SCHEMA Transaction and Locking Tables

2201

query being executed in that transaction, may be different in these two tables for any given thread. See
Potential Inconsistency with PROCESSLIST Data for an explanation.

The following table shows the contents of INFORMATION_SCHEMA.PROCESSLIST in a system running
a heavy workload.

ID USER HOST DB COMMAND TIME STATE INFO

384 root localhost test Query 10 update insert into t2
values …

257 root localhost test Query 3 update insert into t2
values …

130 root localhost test Query 0 update insert into t2
values …

61 root localhost test Query 1 update insert into t2
values …

8 root localhost test Query 1 update insert into t2
values …

4 root localhost test Query 0 preparing SELECT * FROM
processlist

2 root localhost test Sleep 566 NULL

The following table shows the contents of INFORMATION_SCHEMA.INNODB_TRX in a system running
a heavy workload.

trx
id

trx
state

trx started trx
requested
lock id

trx wait
started

trx
weight

trx
mysql
thread
id

trx query

77F LOCK
WAIT

2008-01-15
13:10:16

77F:806 2008-01-15
13:10:16

1 876 insert into t09
(D, B, C) values
…

77E LOCK
WAIT

2008-01-15
13:10:16

77E:806 2008-01-15
13:10:16

1 875 insert into t09
(D, B, C) values
…

77D LOCK
WAIT

2008-01-15
13:10:16

77D:806 2008-01-15
13:10:16

1 874 insert into t09
(D, B, C) values
…

77B LOCK
WAIT

2008-01-15
13:10:16

77B:733:12:1 2008-01-15
13:10:16

4 873 insert into t09
(D, B, C) values
…

77A RUN-
NING

2008-01-15
13:10:16

NULL NULL 4 872 select b, c from
t09 where …

E56 LOCK
WAIT

2008-01-15
13:10:06

E56:743:6:2 2008-01-15
13:10:06

5 384 insert into t2
values …

E55 LOCK
WAIT

2008-01-15
13:10:06

E55:743:38:2 2008-01-15
13:10:13

965 257 insert into t2
values …

19C RUN-
NING

2008-01-15
13:09:10

NULL NULL 2900 130 insert into t2
values …

E15 RUN-
NING

2008-01-15
13:08:59

NULL NULL 5395 61 insert into t2
values …

51D RUN-
NING

2008-01-15
13:08:47

NULL NULL 9807 8 insert into t2
values …

InnoDB INFORMATION_SCHEMA Transaction and Locking Tables

2202

The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS in a system
running a heavy workload.

requesting trx
id

requested lock id blocking trx id blocking lock id

77F 77F:806 77E 77E:806

77F 77F:806 77D 77D:806

77F 77F:806 77B 77B:806

77E 77E:806 77D 77D:806

77E 77E:806 77B 77B:806

77D 77D:806 77B 77B:806

77B 77B:733:12:1 77A 77A:733:12:1

E56 E56:743:6:2 E55 E55:743:6:2

E55 E55:743:38:2 19C 19C:743:38:2

The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCKS in a system
running a heavy workload.

lock id lock
trx id

lock
mode

lock type lock table lock index lock
space

lock
page

lock
rec

lock data

77F:806 77F AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77E:806 77E AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77D:806 77D AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77B:806 77B AUTO
_INC

TABLE `test`
.`t09`

NULL NULL NULL NULL NULL

77B:733
:12:1

77B X RECORD `test`
.`t09`

`PRIMARY` 733 12 1 supremum
pseudo-
record

77A:733
:12:1

77A X RECORD `test`
.`t09`

`PRIMARY` 733 12 1 supremum
pseudo-
record

E56:743
:6:2

E56 S RECORD `test`
.`t2`

`PRIMARY` 743 6 2 0, 0

E55:743
:6:2

E55 X RECORD `test`
.`t2`

`PRIMARY` 743 6 2 0, 0

E55:743
:38:2

E55 S RECORD `test`
.`t2`

`PRIMARY` 743 38 2 1922,
1922

19C:743
:38:2

19C X RECORD `test`
.`t2`

`PRIMARY` 743 38 2 1922,
1922

14.12.2.2 INNODB_LOCKS and INNODB_LOCK_WAITS Data

When a transaction updates a row in a table, or locks it with SELECT FOR UPDATE, InnoDB
establishes a list or queue of locks on that row. Similarly, InnoDB maintains a list of locks on a table for
table-level locks. If a second transaction wants to update a row or lock a table already locked by a prior
transaction in an incompatible mode, InnoDB adds a lock request for the row to the corresponding
queue. For a lock to be acquired by a transaction, all incompatible lock requests previously entered
into the lock queue for that row or table must be removed (the transactions holding or requesting those
locks either commit or roll back).

InnoDB INFORMATION_SCHEMA System Tables

2203

A transaction may have any number of lock requests for different rows or tables. At any given time,
a transaction may request a lock that is held by another transaction, in which case it is blocked by
that other transaction. The requesting transaction must wait for the transaction that holds the blocking
lock to commit or rollback. If a transaction is not waiting for a lock, it is in a 'RUNNING' state. If a
transaction is waiting for a lock, it is in a 'LOCK WAIT' state.

The INNODB_LOCKS table holds one or more rows for each 'LOCK WAIT' transaction, indicating any
lock requests that are preventing its progress. This table also contains one row describing each lock in
a queue of locks pending for a given row or table. The INNODB_LOCK_WAITS table shows which locks
already held by a transaction are blocking locks requested by other transactions.

14.12.2.3 Data Persistence and Consistency for InnoDB Transaction and Locking Tables

The data exposed by the transaction and locking tables (INNODB_TRX, INNODB_LOCKS, and
INNODB_LOCK_WAITS) represent a glimpse into fast-changing data. This is not like other (user) tables,
where the data changes only when application-initiated updates occur. The underlying data is internal
system-managed data, and can change very quickly.

For performance reasons, and to minimize the chance of misleading JOINs between the InnoDB
transaction and locking INFORMATION_SCHEMA tables, InnoDB collects the required transaction and
locking information into an intermediate buffer whenever a SELECT on any of the tables is issued.
This buffer is refreshed only if more than 0.1 seconds has elapsed since the last time the buffer was
read. The data needed to fill the three tables is fetched atomically and consistently and is saved in this
global internal buffer, forming a point-in-time “snapshot”. If multiple table accesses occur within 0.1
seconds (as they almost certainly do when MySQL processes a join among these tables), then the
same snapshot is used to satisfy the query.

A correct result is returned when you JOIN any of these tables together in a single query, because
the data for the three tables comes from the same snapshot. Because the buffer is not refreshed with
every query of any of these tables, if you issue separate queries against these tables within a tenth of
a second, the results are the same from query to query. On the other hand, two separate queries of the
same or different tables issued more than a tenth of a second apart may see different results, since the
data come from different snapshots.

Because InnoDB must temporarily stall while the transaction and locking data is collected, too frequent
queries of these tables can negatively impact performance as seen by other users.

As these tables contain sensitive information (at least INNODB_LOCKS.LOCK_DATA and
INNODB_TRX.TRX_QUERY), for security reasons, only the users with the PROCESS privilege are
allowed to SELECT from them.

Potential Inconsistency with PROCESSLIST Data

As described in Section 14.12.2.3, “Data Persistence and Consistency for InnoDB Transaction
and Locking Tables”, the data that fills the InnoDB transaction and locking tables (INNODB_TRX,
INNODB_LOCKS and INNODB_LOCK_WAITS) is fetched automatically and saved to an intermediate
buffer that provides a “point-in-time” snapshot. The data across all three tables is consistent when
queried from the same snapshot. However, the underlying data changes so fast that similar glimpses
at other, similarly fast-changing data, may not be in synchrony. Thus, you should be careful when
comparing data in the InnoDB transaction and locking tables with data in the PROCESSLIST table. The
data from the PROCESSLIST table does not come from the same snapshot as the data about locking
and transactions. Even if you issue a single SELECT (joining INNODB_TRX and PROCESSLIST, for
example), the content of those tables is generally not consistent. INNODB_TRX may reference rows
that are not present in PROCESSLIST or the currently executing SQL query of a transaction, shown in
INNODB_TRX.TRX_QUERY may differ from the one in PROCESSLIST.INFO.

14.12.3 InnoDB INFORMATION_SCHEMA System Tables

You can extract metadata about schema objects managed by InnoDB using InnoDB
INFORMATION_SCHEMA system tables. This information comes from the InnoDB internal system
tables (also referred to as the InnoDB data dictionary), which cannot be queried directly like regular

InnoDB INFORMATION_SCHEMA System Tables

2204

InnoDB tables. Traditionally, you would get this type of information using the techniques from
Section 14.14, “InnoDB Monitors”, setting up InnoDB monitors and parsing the output from the SHOW
ENGINE INNODB STATUS command. The InnoDB INFORMATION_SCHEMA table interface allows you
to query this data using SQL.

With the exception of INNODB_SYS_TABLESTATS, for which there is no corresponding internal system
table, InnoDB INFORMATION_SCHEMA system tables are populated with data read directly from
internal InnoDB system tables rather than from metadata that is cached in memory.

InnoDB INFORMATION_SCHEMA system tables include the tables listed below.
INNODB_SYS_DATAFILES and INNODB_SYS_TABLESPACES were added in MySQL 5.6.6 with the
introduction of support for the DATA DIRECTORY='directory' clause of the CREATE TABLE
statement, which allows InnoDB file-per-table tablespaces (.ibd files) to be created in a location
outside the MySQL data directory.

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_SYS%';
+--+
| Tables_in_information_schema (INNODB_SYS%) |
+--+
| INNODB_SYS_DATAFILES |
| INNODB_SYS_TABLESTATS |
| INNODB_SYS_FOREIGN |
| INNODB_SYS_COLUMNS |
| INNODB_SYS_INDEXES |
| INNODB_SYS_FIELDS |
| INNODB_SYS_TABLESPACES |
| INNODB_SYS_FOREIGN_COLS |
| INNODB_SYS_TABLES |
+--+

The table names are indicative of the type of data provided:

• INNODB_SYS_TABLES provides metadata about InnoDB tables, equivalent to the information in the
SYS_TABLES table in the InnoDB data dictionary.

• INNODB_SYS_COLUMNS provides metadata about InnoDB table columns, equivalent to the
information in the SYS_COLUMNS table in the InnoDB data dictionary.

• INNODB_SYS_INDEXES provides metadata about InnoDB indexes, equivalent to the information in
the SYS_INDEXES table in the InnoDB data dictionary.

• INNODB_SYS_FIELDS provides metadata about the key columns (fields) of InnoDB indexes,
equivalent to the information in the SYS_FIELDS table in the InnoDB data dictionary.

• INNODB_SYS_TABLESTATS provides a view of low-level status information about InnoDB tables
that is derived from in-memory data structures. There is no corresponding internal InnoDB system
table.

• INNODB_SYS_DATAFILES provides data file path information for InnoDB file-per-table and general
tablespaces, equivalent to information in the SYS_DATAFILES table in the InnoDB data dictionary.

• INNODB_SYS_TABLESPACES provides metadata about InnoDB file-per-table and general
tablespaces, equivalent to the information in the SYS_TABLESPACES table in the InnoDB data
dictionary.

• INNODB_SYS_FOREIGN provides metadata about foreign keys defined on InnoDB tables, equivalent
to the information in the SYS_FOREIGN table in the InnoDB data dictionary.

• INNODB_SYS_FOREIGN_COLS provides metadata about the columns of foreign keys that are
defined on InnoDB tables, equivalent to the information in the SYS_FOREIGN_COLS table in the
InnoDB data dictionary.

InnoDB INFORMATION_SCHEMA system tables can be joined together through fields such as
TABLE_ID, INDEX_ID, and SPACE, allowing you to easily retrieve all available data for an object you
want to study or monitor.

InnoDB INFORMATION_SCHEMA System Tables

2205

Refer to the InnoDB INFORMATION_SCHEMA documentation for information about the columns of
each table.

Example 14.13 InnoDB INFORMATION_SCHEMA System Tables

This example uses a simple table (t1) with a single index (i1) to demonstrate the type of metadata
found in the InnoDB INFORMATION_SCHEMA system tables.

1. Create a test database and table t1:

mysql> CREATE DATABASE test;

mysql> USE test;

mysql> CREATE TABLE t1 (
col1 INT,
col2 CHAR(10),
col3 VARCHAR(10))
ENGINE = InnoDB;

mysql> CREATE INDEX i1 ON t1(col1);

2. After creating the table t1, query INNODB_SYS_TABLES to locate the metadata for test/t1:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test/t1' \G

*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
 FLAG: 1
 N_COLS: 6
 SPACE: 57
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
...

Table t1 has a TABLE_ID of 71. The FLAG field provides bit level information about table format
and storage characteristics. There are six columns, three of which are hidden columns created by
InnoDB (DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR). The ID of the table's SPACE is 57 (a value
of 0 would indicate that the table resides in the system tablespace). The FILE_FORMAT is Antelope,
and the ROW_FORMAT is Compact. ZIP_PAGE_SIZE only applies to tables with a Compressed row
format.

3. Using the TABLE_ID information from INNODB_SYS_TABLES, query the INNODB_SYS_COLUMNS
table for information about the table's columns.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_COLUMNS where TABLE_ID = 71 \G
*************************** 1. row ***************************
TABLE_ID: 71
 NAME: col1
 POS: 0
 MTYPE: 6
 PRTYPE: 1027
 LEN: 4
*************************** 2. row ***************************
TABLE_ID: 71
 NAME: col2
 POS: 1
 MTYPE: 2
 PRTYPE: 524542
 LEN: 10
*************************** 3. row ***************************
TABLE_ID: 71
 NAME: col3
 POS: 2
 MTYPE: 1
 PRTYPE: 524303
 LEN: 10

InnoDB INFORMATION_SCHEMA System Tables

2206

In addition to the TABLE_ID and column NAME, INNODB_SYS_COLUMNS provides the ordinal
position (POS) of each column (starting from 0 and incrementing sequentially), the column MTYPE or
“main type” (6 = INT, 2 = CHAR, 1 = VARCHAR), the PRTYPE or “precise type” (a binary value with
bits that represent the MySQL data type, character set code, and nullability), and the column length
(LEN).

4. Using the TABLE_ID information from INNODB_SYS_TABLES once again, query
INNODB_SYS_INDEXES for information about the indexes associated with table t1.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_INDEXES WHERE TABLE_ID = 71 \G
*************************** 1. row ***************************
 INDEX_ID: 111
 NAME: GEN_CLUST_INDEX
 TABLE_ID: 71
 TYPE: 1
 N_FIELDS: 0
 PAGE_NO: 3
 SPACE: 57
MERGE_THRESHOLD: 50
*************************** 2. row ***************************
 INDEX_ID: 112
 NAME: i1
 TABLE_ID: 71
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 57
MERGE_THRESHOLD: 50

INNODB_SYS_INDEXES returns data for two indexes. The first index is GEN_CLUST_INDEX, which
is a clustered index created by InnoDB if the table does not have a user-defined clustered index.
The second index (i1) is the user-defined secondary index.

The INDEX_ID is an identifier for the index that is unique across all databases in an instance. The
TABLE_ID identifies the table that the index is associated with. The index TYPE value indicates the
type of index (1 = Clustered Index, 0 = Secondary index). The N_FILEDS value is the number of
fields that comprise the index. PAGE_NO is the root page number of the index B-tree, and SPACE
is the ID of the tablespace where the index resides. A non-zero value indicates that the index does
not reside in the system tablespace. MERGE_THRESHOLD defines a percentage threshold value
for the amount of data in an index page. If the amount of data in an index page falls below the
this value (the default is 50%) when a row is deleted or when a row is shortened by an update
operation, InnoDB attempts to merge the index page with a neighboring index page.

5. Using the INDEX_ID information from INNODB_SYS_INDEXES, query INNODB_SYS_FIELDS for
information about the fields of index i1.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FIELDS where INDEX_ID = 112 \G
*************************** 1. row ***************************
INDEX_ID: 112
 NAME: col1
 POS: 0

INNODB_SYS_FIELDS provides the NAME of the indexed field and its ordinal position within the
index. If the index (i1) had been defined on multiple fields, INNODB_SYS_FIELDS would provide
metadata for each of the indexed fields.

6. Using the SPACE information from INNODB_SYS_TABLES, query INNODB_SYS_TABLESPACES
table for information about the table's tablespace.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE SPACE = 57 \G
*************************** 1. row ***************************
 SPACE: 57
 NAME: test/t1
 FLAG: 0
 FILE_FORMAT: Antelope

InnoDB INFORMATION_SCHEMA System Tables

2207

 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
ZIP_PAGE_SIZE: 0

In addition to the SPACE ID of the tablespace and the NAME of the associated table,
INNODB_SYS_TABLESPACES provides tablespace FLAG data, which is bit level information about
tablespace format and storage characteristics. Also provided are tablespace FILE_FORMAT,
ROW_FORMAT, PAGE_SIZE, and ZIP_PAGE_SIZE data (ZIP_PAGE_SIZE is applicable to
tablespaces with a Compressed row format).

7. Using the SPACE information from INNODB_SYS_TABLES once again, query
INNODB_SYS_DATAFILES for the location of the tablespace data file.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_DATAFILES WHERE SPACE = 57 \G
*************************** 1. row ***************************
SPACE: 57
 PATH: ./test/t1.ibd

The datafile is located in the test directory under MySQL's data directory. If a file-per-
table tablespace were created in a location outside the MySQL data directory using the DATA
DIRECTORY clause of the CREATE TABLE statement, the tablespace PATH would be a fully
qualified directory path.

8. As a final step, insert a row into table t1 (TABLE_ID = 71) and view the data in the
INNODB_SYS_TABLESTATS table. The data in this table is used by the MySQL optimizer to
calculate which index to use when querying an InnoDB table. This information is derived from in-
memory data structures. There is no corresponding internal InnoDB system table.

mysql> INSERT INTO t1 VALUES(5, 'abc', 'def');
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS where TABLE_ID = 71 \G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
STATS_INITIALIZED: Initialized
 NUM_ROWS: 1
 CLUST_INDEX_SIZE: 1
 OTHER_INDEX_SIZE: 0
 MODIFIED_COUNTER: 1
 AUTOINC: 0
 REF_COUNT: 1

The STATS_INITIALIZED field indicates whether or not statistics have been collected for the
table. NUM_ROWS is the current estimated number of rows in the table. The CLUST_INDEX_SIZE
and OTHER_INDEX_SIZE fields report the number of pages on disk that store clustered and
secondary indexes for the table, respectively. The MODIFIED_COUNTER value shows the number of
rows modified by DML operations and cascade operations from foreign keys. The AUTOINC value is
the next number to be issued for any autoincrement-based operation. There are no autoincrement
columns defined on table t1, so the value is 0. The REF_COUNT value is a counter. When the
counter reaches 0, it signifies that the table metadata can be evicted from the table cache.

Example 14.14 Foreign Key INFORMATION_SCHEMA System Tables

The INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables provide data about foreign
key relationships. This example uses a parent table and child table with a foreign key relationship to
demonstrate the data found in the INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables.

1. Create the test database with parent and child tables:

mysql> CREATE DATABASE test;

mysql> USE test;

mysql> CREATE TABLE parent (id INT NOT NULL,
 -> PRIMARY KEY (id)) ENGINE=INNODB;

InnoDB INFORMATION_SCHEMA System Tables

2208

mysql> CREATE TABLE child (id INT, parent_id INT,
 -> INDEX par_ind (parent_id),
 -> CONSTRAINT fk1
 -> FOREIGN KEY (parent_id) REFERENCES parent(id)
 -> ON DELETE CASCADE) ENGINE=INNODB;

2. After the parent and child tables are created, query INNODB_SYS_FOREIGN and locate the foreign
key data for the test/child and test/parent foreign key relationship:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

Metadata includes the foreign key ID (fk1), which is named for the CONSTRAINT that was
defined on the child table. The FOR_NAME is the name of the child table where the foreign key
is defined. REF_NAME is the name of the parent table (the “referenced” table). N_COLS is the
number of columns in the foreign key index. TYPE is a numerical value representing bit flags that
provide additional information about the foreign key column. In this case, the TYPE value is 1,
which indicates that the ON DELETE CASCADE option was specified for the foreign key. See the
INNODB_SYS_FOREIGN table definition for more information about TYPE values.

3. Using the foreign key ID, query INNODB_SYS_FOREIGN_COLS to view data about the columns of
the foreign key.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN_COLS WHERE ID = 'test/fk1' \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

FOR_COL_NAME is the name of the foreign key column in the child table, and REF_COL_NAME is the
name of the referenced column in the parent table. The POS value is the ordinal position of the key
field within the foreign key index, starting at zero.

Example 14.15 Joining InnoDB INFORMATION_SCHEMA System Tables

This example demonstrates joining three InnoDB INFORMATION_SCHEMA system tables
(INNODB_SYS_TABLES, INNODB_SYS_TABLESPACES, and INNODB_SYS_TABLESTATS) to gather
file format, row format, page size, and index size information about tables in the employees sample
database.

The following table name aliases are used to shorten the query string:

• INFORMATION_SCHEMA.INNODB_SYS_TABLES: a

• INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES: b

• INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS: c

An IF() control flow function is used to account for compressed tables. If a table is compressed, the
index size is calculated using ZIP_PAGE_SIZE rather than PAGE_SIZE. CLUST_INDEX_SIZE and
OTHER_INDEX_SIZE, which are reported in bytes, are divided by 1024*1024 to provide index sizes in
megabytes (MBs). MB values are rounded to zero decimal spaces using the ROUND() function.

mysql> SELECT a.NAME, a.FILE_FORMAT, a.ROW_FORMAT,
 @page_size :=
 IF(a.ROW_FORMAT='Compressed',
 b.ZIP_PAGE_SIZE, b.PAGE_SIZE)
 AS page_size,
 ROUND((@page_size * c.CLUST_INDEX_SIZE)

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

2209

 /(1024*1024)) AS pk_mb,
 ROUND((@page_size * c.OTHER_INDEX_SIZE)
 /(1024*1024)) AS secidx_mb
FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES a
INNER JOIN INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES b on a.NAME = b.NAME
INNER JOIN INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS c on b.NAME = c.NAME
WHERE a.NAME LIKE 'employees/%'
ORDER BY a.NAME DESC;
+------------------------+-------------+------------+-----------+-------+-----------+
| NAME | FILE_FORMAT | ROW_FORMAT | page_size | pk_mb | secidx_mb |
+------------------------+-------------+------------+-----------+-------+-----------+
employees/titles	Antelope	Compact	16384	20	11
employees/salaries	Antelope	Compact	16384	91	33
employees/employees	Antelope	Compact	16384	15	0
employees/dept_manager	Antelope	Compact	16384	0	0
employees/dept_emp	Antelope	Compact	16384	12	10
employees/departments	Antelope	Compact	16384	0	0
+------------------------+-------------+------------+-----------+-------+-----------+

14.12.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

With the introduction of FULLTEXT index support for InnoDB tables in MySQL 5.6.4, the following
tables were added to the INFORMATION_SCHEMA database:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_FT%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_FT%) |
+---+
| INNODB_FT_CONFIG |
| INNODB_FT_BEING_DELETED |
| INNODB_FT_DELETED |
| INNODB_FT_DEFAULT_STOPWORD |
| INNODB_FT_INDEX_TABLE |
| INNODB_FT_INDEX_CACHE |
+---+

Table Overview

• INNODB_FT_CONFIG: Displays metadata about the FULLTEXT index and associated processing for
an InnoDB table.

• INNODB_FT_BEING_DELETED: Provides a snapshot of the INNODB_FT_DELETED table that
is only used during an OPTIMIZE TABLE maintenance operation. When OPTIMIZE TABLE is
run, the INNODB_FT_BEING_DELETED table is emptied, and DOC_IDs are removed from the
INNODB_FT_DELETED table. Because the contents of INNODB_FT_BEING_DELETED typically
have a short lifetime, this table has limited utility for monitoring or debugging. For information about
running OPTIMIZE TABLE on tables with FULLTEXT indexes, see Section 12.9.6, “Fine-Tuning
MySQL Full-Text Search”.

• INNODB_FT_DELETED: Records rows that are deleted from the FULLTEXT index for an InnoDB
table. To avoid expensive index reorganization during DML operations for an InnoDB FULLTEXT
index, the information about newly deleted words is stored separately, filtered out of search results
when you perform a text search, and removed from the main search index only when you run
OPTIMIZE TABLE.

• INNODB_FT_DEFAULT_STOPWORD: Holds a list of stopwords that are used by default when creating
a FULLTEXT index.

For information about the INNODB_FT_DEFAULT_STOPWORD table, see Section 12.9.4, “Full-Text
Stopwords”.

• INNODB_FT_INDEX_TABLE: Contains data about the inverted index used to process text searches
against the FULLTEXT index.

• INNODB_FT_INDEX_CACHE: Contains token information about newly inserted rows in a FULLTEXT
index. To avoid expensive index reorganization during DML operations, the information about newly

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

2210

indexed words is stored separately, and combined with the main search index only when OPTIMIZE
TABLE is run, when the server is shut down, or when the cache size exceeds a limit defined by
innodb_ft_cache_size or innodb_ft_total_cache_size.

Note

With the exception of the INNODB_FT_DEFAULT_STOPWORD table, you must
set the innodb_ft_aux_table configuration variable to the name of the table
(database_name/table_name) that contains the FULLTEXT index. Otherwise,
the InnoDB FULLTEXT index INFORMATION_SCHEMA tables appear empty.

Example 14.16 InnoDB FULLTEXT Index INFORMATION_SCHEMA Tables

This example uses a table with a FULLTEXT index to demonstrate the data contained in the FULLTEXT
index INFORMATION_SCHEMA tables.

1. Create a table with a FULLTEXT index and insert some data:

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we will show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

2. Set the innodb_ft_aux_table variable to the name of the table with the FULLTEXT index. If this
variable is not set, the InnoDB FULLTEXT INFORMATION_SCHEMA tables appear empty, with the
exception of the INNODB_FT_DEFAULT_STOPWORD table.

SET GLOBAL innodb_ft_aux_table = 'test/articles';

3. Query the INNODB_FT_INDEX_CACHE table, which shows information about newly inserted rows
in a FULLTEXT index. To avoid expensive index reorganization during DML operations, data for
newly inserted rows remains in the FULLTEXT index cache until OPTIMIZE TABLE is run (or until
the server is shutdown or cache limits are exceeded).

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
+------------+--------------+-------------+-----------+--------+----------+
| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |
+------------+--------------+-------------+-----------+--------+----------+
1001	5	5	1	5	0
after	3	3	1	3	22
comparison	6	6	1	6	44
configured	7	7	1	7	20
database	2	6	2	2	31
+------------+--------------+-------------+-----------+--------+----------+

4. Enable innodb_optimize_fulltext_only and run OPTIMIZE TABLE on the table that
contains the FULLTEXT index. This operation flushes the contents of the FULLTEXT index cache to
the main FULLTEXT index. innodb_optimize_fulltext_only changes the way the OPTIMIZE
TABLE statement operates on InnoDB tables, and is intended to be enabled temporarily, during
maintenance operations on InnoDB tables with FULLTEXT indexes.

mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;
Query OK, 0 rows affected (0.00 sec)

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

2211

| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

5. Query the INNODB_FT_INDEX_TABLE table to view information about data in the main FULLTEXT
index, including information about the data that was just flushed from the FULLTEXT index cache.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 5;
+------------+--------------+-------------+-----------+--------+----------+
| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |
+------------+--------------+-------------+-----------+--------+----------+
1001	5	5	1	5	0
after	3	3	1	3	22
comparison	6	6	1	6	44
configured	7	7	1	7	20
database	2	6	2	2	31
+------------+--------------+-------------+-----------+--------+----------+

The INNODB_FT_INDEX_CACHE table is now empty since the OPTIMIZE TABLE operation flushed
the FULLTEXT index cache.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
Empty set (0.00 sec)

6. Delete some records from the test/articles table.

mysql> DELETE FROM test.articles WHERE id < 4;
Query OK, 3 rows affected (0.11 sec)

7. Query the INNODB_FT_DELETED table. This table records rows that are deleted from the
FULLTEXT index. To avoid expensive index reorganization during DML operations, information
about newly deleted records is stored separately, filtered out of search results when you do a text
search, and removed from the main search index when you run OPTIMIZE TABLE.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
+--------+
| DOC_ID |
+--------+
| 2 |
| 3 |
| 4 |
+--------+

8. Run OPTIMIZE TABLE to remove the deleted records.

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

The INNODB_FT_DELETED table should now appear empty.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
Empty set (0.00 sec)

9. Query the INNODB_FT_CONFIG table. This table contains metadata about the FULLTEXT index
and related processing:

• optimize_checkpoint_limit is the number of seconds after which an OPTIMIZE TABLE
run will stop.

• synced_doc_id is the next DOC_ID to be issued.

• stopword_table_name is the database/table name for a user-defined stopword table. This
field appears empty if there is no user-defined stopword table.

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

2212

• use_stopword indicates whether or not a stopword table is used, which is defined when the
FULLTEXT index is created.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_CONFIG;
+---------------------------+-------+
| KEY | VALUE |
+---------------------------+-------+
optimize_checkpoint_limit	180
synced_doc_id	8
stopword_table_name	
use_stopword	1
+---------------------------+-------+

14.12.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables

The InnoDB INFORMATION_SCHEMA buffer pool tables provide buffer pool status information and
metadata about the pages within the InnoDB buffer pool. The tables were introduced in MySQL 5.6.2
and later backported to MySQL 5.5 (in MySQL 5.5.28) and MySQL 5.1 (in MySQL 5.1.66).

The InnoDB INFORMATION_SCHEMA buffer pool tables include those listed below:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_BUFFER%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_BUFFER%) |
+---+
| INNODB_BUFFER_PAGE_LRU |
| INNODB_BUFFER_PAGE |
| INNODB_BUFFER_POOL_STATS |
+---+

Table Overview

• INNODB_BUFFER_PAGE: Holds information about each page in the InnoDB buffer pool.

• INNODB_BUFFER_PAGE_LRU: Holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered in the LRU list that determines which pages to evict from the
buffer pool when it becomes full. The INNODB_BUFFER_PAGE_LRU table has the same columns
as the INNODB_BUFFER_PAGE table, except that the INNODB_BUFFER_PAGE_LRU table has an
LRU_POSITION column instead of a BLOCK_ID column.

• INNODB_BUFFER_POOL_STATS: Provides buffer pool status information. Much of the same
information is provided by SHOW ENGINE INNODB STATUS output, or may be obtained using
InnoDB buffer pool server status variables.

Warning

Querying the INNODB_BUFFER_PAGE table or INNODB_BUFFER_PAGE_LRU
table can introduce significant performance overhead. Do not query these
tables on a production system unless you are aware of the performance impact
that your query may have, and have determined it to be acceptable. To avoid
impacting performance, reproduce the issue you want to investigate on a test
instance and run your queries on the test instance.

Example 14.17 Querying System Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages that contain system data by excluding pages where
the TABLE_NAME value is either NULL or includes a slash “/” or period “.” in the table name, which
indicates a user-defined table.

SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);
+----------+
| COUNT(*) |
+----------+
| 1516 |

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

2213

+----------+

This query returns the approximate number of pages that contain system data, the total number of
buffer pool pages, and an approximate percentage of pages that contain system data.

SELECT
(SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0)
) AS system_pages,
(
SELECT COUNT(*)
FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
(
SELECT ROUND((system_pages/total_pages) * 100)
) AS system_page_percentage;
+--------------+-------------+------------------------+
| system_pages | total_pages | system_page_percentage |
+--------------+-------------+------------------------+
| 295 | 8192 | 4 |
+--------------+-------------+------------------------+

The type of system data in the buffer pool can be determined by querying the PAGE_TYPE value. For
example, the following query returns eight distinct PAGE_TYPE values among the pages that contain
system data:

mysql> SELECT DISTINCT PAGE_TYPE FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);
+-------------------+
| PAGE_TYPE |
+-------------------+
| SYSTEM |
| IBUF_BITMAP |
| UNKNOWN |
| FILE_SPACE_HEADER |
| INODE |
| UNDO_LOG |
| ALLOCATED |
+-------------------+

Example 14.18 Querying User Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages containing user data by counting pages where the
TABLE_NAME value is NOT NULL and NOT LIKE '%INNODB_SYS_TABLES%'.

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NOT NULL AND TABLE_NAME NOT LIKE '%INNODB_SYS_TABLES%';
+----------+
| COUNT(*) |
+----------+
| 7897 |
+----------+

This query returns the approximate number of pages that contain user data, the total number of buffer
pool pages, and an approximate percentage of pages that contain user data.

mysql> SELECT
(SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NOT NULL AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0)
) AS user_pages,
(
SELECT COUNT(*)
FROM information_schema.INNODB_BUFFER_PAGE
) AS total_pages,
(
SELECT ROUND((user_pages/total_pages) * 100)
) AS user_page_percentage;
+------------+-------------+----------------------+
| user_pages | total_pages | user_page_percentage |
+------------+-------------+----------------------+
| 7897 | 8192 | 96 |

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

2214

+------------+-------------+----------------------+

This query identifies user-defined tables with pages in the buffer pool:

mysql> SELECT DISTINCT TABLE_NAME FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NOT NULL AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0)
AND TABLE_NAME NOT LIKE '`mysql`.`innodb_%';
+-------------------------+
| TABLE_NAME |
+-------------------------+
| `employees`.`salaries` |
| `employees`.`employees` |
+-------------------------+

Example 14.19 Querying Index Data in the INNODB_BUFFER_PAGE Table

For information about index pages, query the INDEX_NAME column using the name of the index. For
example, the following query returns the number of pages and total data size of pages for the emp_no
index that is defined on the employees.salaries table:

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
ROUND(SUM(IF(COMPRESSED_SIZE = 0, @@global.innodb_page_size, COMPRESSED_SIZE))/1024/1024)
AS 'Total Data (MB)'
FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE INDEX_NAME='emp_no' AND TABLE_NAME = '`employees`.`salaries`';
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no | 1609 | 25 |
+------------+-------+-----------------+

This query returns the number of pages and total data size of pages for all indexes defined on the
employees.salaries table:

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
ROUND(SUM(IF(COMPRESSED_SIZE = 0, @@global.innodb_page_size, COMPRESSED_SIZE))/1024/1024)
AS 'Total Data (MB)'
FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME = '`employees`.`salaries`'
GROUP BY INDEX_NAME;
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no | 1608 | 25 |
| PRIMARY | 6086 | 95 |
+------------+-------+-----------------+

Example 14.20 Querying LRU_POSITION Data in the INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered that determines which pages to evict from the buffer pool when it
becomes full. The definition for this page is the same as for INNODB_BUFFER_PAGE, except this table
has an LRU_POSITION column instead of a BLOCK_ID column.

This query counts the number of positions at a specific location in the LRU list occupied by pages of
the employees.employees table.

mysql> SELECT COUNT(LRU_POSITION) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU
WHERE TABLE_NAME='`employees`.`employees`' AND LRU_POSITION < 3072;
+---------------------+
| COUNT(LRU_POSITION) |
+---------------------+
| 548 |
+---------------------+

Example 14.21 Querying the INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides information similar to SHOW ENGINE INNODB
STATUS and InnoDB buffer pool status variables.

mysql> SELECT * FROM information_schema.INNODB_BUFFER_POOL_STATS \G

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

2215

*************************** 1. row ***************************
 POOL_ID: 0
 POOL_SIZE: 8192
 FREE_BUFFERS: 1
 DATABASE_PAGES: 8173
 OLD_DATABASE_PAGES: 3014
 MODIFIED_DATABASE_PAGES: 0
 PENDING_DECOMPRESS: 0
 PENDING_READS: 0
 PENDING_FLUSH_LRU: 0
 PENDING_FLUSH_LIST: 0
 PAGES_MADE_YOUNG: 15907
 PAGES_NOT_MADE_YOUNG: 3803101
 PAGES_MADE_YOUNG_RATE: 0
 PAGES_MADE_NOT_YOUNG_RATE: 0
 NUMBER_PAGES_READ: 3270
 NUMBER_PAGES_CREATED: 13176
 NUMBER_PAGES_WRITTEN: 15109
 PAGES_READ_RATE: 0
 PAGES_CREATE_RATE: 0
 PAGES_WRITTEN_RATE: 0
 NUMBER_PAGES_GET: 33069332
 HIT_RATE: 0
 YOUNG_MAKE_PER_THOUSAND_GETS: 0
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
 NUMBER_PAGES_READ_AHEAD: 2713
 NUMBER_READ_AHEAD_EVICTED: 0
 READ_AHEAD_RATE: 0
 READ_AHEAD_EVICTED_RATE: 0
 LRU_IO_TOTAL: 0
 LRU_IO_CURRENT: 0
 UNCOMPRESS_TOTAL: 0
 UNCOMPRESS_CURRENT: 0

For comparison, SHOW ENGINE INNODB STATUS output and InnoDB buffer pool status variable
output is shown below, based on the same data set.

For more information about SHOW ENGINE INNODB STATUS output, see Section 14.14.3, “InnoDB
Standard Monitor and Lock Monitor Output”.

mysql> SHOW ENGINE INNODB STATUS \G
...

BUFFER POOL AND MEMORY

Total large memory allocated 137428992
Dictionary memory allocated 579084
Buffer pool size 8192
Free buffers 1
Database pages 8173
Old database pages 3014
Modified db pages 0
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 15907, not young 3803101
0.00 youngs/s, 0.00 non-youngs/s
Pages read 3270, created 13176, written 15109
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
No buffer pool page gets since the last printout
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 8173, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
...

For status variable descriptions, see Section 5.1.6, “Server Status Variables”.

mysql> SHOW STATUS LIKE 'Innodb_buffer%';
+---------------------------------------+-------------+
| Variable_name | Value |
+---------------------------------------+-------------+
| Innodb_buffer_pool_dump_status | not started |
| Innodb_buffer_pool_load_status | not started |

InnoDB INFORMATION_SCHEMA Metrics Table

2216

Innodb_buffer_pool_resize_status	not started
Innodb_buffer_pool_pages_data	8173
Innodb_buffer_pool_bytes_data	133906432
Innodb_buffer_pool_pages_dirty	0
Innodb_buffer_pool_bytes_dirty	0
Innodb_buffer_pool_pages_flushed	15109
Innodb_buffer_pool_pages_free	1
Innodb_buffer_pool_pages_misc	18
Innodb_buffer_pool_pages_total	8192
Innodb_buffer_pool_read_ahead_rnd	0
Innodb_buffer_pool_read_ahead	2713
Innodb_buffer_pool_read_ahead_evicted	0
Innodb_buffer_pool_read_requests	33069332
Innodb_buffer_pool_reads	558
Innodb_buffer_pool_wait_free	0
Innodb_buffer_pool_write_requests	11985961
+---------------------------------------+-------------+

14.12.6 InnoDB INFORMATION_SCHEMA Metrics Table

The INNODB_METRICS table, introduced in MySQL 5.6.2, consolidates all InnoDB performance and
resource-related counters into a single INFORMATION_SCHEMA table.

The columns of the INNODB_METRICS table are shown in the following example. For a description of
each column, see Section 20.30.20, “The INFORMATION_SCHEMA INNODB_METRICS Table”.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts" \G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 46273
 MAX_COUNT: 46273
 MIN_COUNT: NULL
 AVG_COUNT: 492.2659574468085
 COUNT_RESET: 46273
MAX_COUNT_RESET: 46273
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-11-28 16:07:53
 TIME_DISABLED: NULL
 TIME_ELAPSED: 94
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Enabling, Disabling, and Resetting Counters

You can enable, disable, and reset counters using the following configuration options:

• innodb_monitor_enable: Enables one or more counters.

SET GLOBAL innodb_monitor_enable = [counter-name|module_name|pattern|all];

• innodb_monitor_disable: Disables one or more counters.

SET GLOBAL innodb_monitor_disable = [counter-name|module_name|pattern|all];

• innodb_monitor_reset: Resets the count value for one or more counters to zero.

SET GLOBAL innodb_monitor_reset = [counter-name|module_name|pattern|all];

• innodb_monitor_reset_all: Resets all values for one or more counters. A counter must be
disabled before using innodb_monitor_reset_all.

SET GLOBAL innodb_monitor_reset_all = [counter-name|module_name|pattern|all];

You can also enable counters and counter modules at startup using the MySQL server configuration
file. For example, to enable the log module, metadata_table_handles_opened and

InnoDB INFORMATION_SCHEMA Metrics Table

2217

metadata_table_handles_closed counters, enter the following line in the [mysqld] section of
your my.cnf configuration file.

[mysqld]
innodb_monitor_enable = module_recovery,metadata_table_handles_opened,metadata_table_handles_closed

When enabling multiple counters or modules in your configuration file, you must specify the
innodb_monitor_enable configuration option followed by counter and module names separated by
a comma, as shown in the example above. Only the innodb_monitor_enable option can be used in
your configuration file. The disable and reset configuration options are only supported on the command
line.

Note

Because each counter imposes some degree of runtime overhead on the
server, typically you enable more counters on test and development servers
during experimentation and benchmarking, and only enable counters on
production servers to diagnose known issues or monitor aspects that are likely
to be bottlenecks for a particular server and workload.

Counters

The counters represented in the INNODB_METRICS table are subject to change, so for the most up-to-
date list, query a running MySQL server. The list below shows counters that are available as of MySQL
5.7.6.

Counters that are enabled by default correspond to those used by SHOW ENGINE INNODB STATUS.
Counters used by SHOW ENGINE INNODB STATUS are always “on” at a system level but you can
disable these counters for the INNODB_METRICS table, as required. Also, counter status is not
persistent. Unless specified otherwise, counters revert to their default enabled or disabled status when
the server is restarted.

If you run programs that would be affected by additions or changes to the INNODB_METRICS table, it
is recommended that you review releases notes and query the INNODB_METRICS table for the new
release prior to upgrading.

mysql> SELECT name, subsystem, status FROM INFORMATION_SCHEMA.INNODB_METRICS ORDER BY NAME;
+--+---------------------+----------+
| name | subsystem | status |
+--+---------------------+----------+
adaptive_hash_pages_added	adaptive_hash_index	disabled
adaptive_hash_pages_removed	adaptive_hash_index	disabled
adaptive_hash_rows_added	adaptive_hash_index	disabled
adaptive_hash_rows_deleted_no_hash_entry	adaptive_hash_index	disabled
adaptive_hash_rows_removed	adaptive_hash_index	disabled
adaptive_hash_rows_updated	adaptive_hash_index	disabled
adaptive_hash_searches	adaptive_hash_index	enabled
adaptive_hash_searches_btree	adaptive_hash_index	enabled
buffer_data_reads	buffer	enabled
buffer_data_written	buffer	enabled
buffer_flush_adaptive	buffer	disabled
buffer_flush_adaptive_avg_pass	buffer	disabled
buffer_flush_adaptive_avg_time_est	buffer	disabled
buffer_flush_adaptive_avg_time_slot	buffer	disabled
buffer_flush_adaptive_avg_time_thread	buffer	disabled
buffer_flush_adaptive_pages	buffer	disabled
buffer_flush_adaptive_total_pages	buffer	disabled
buffer_flush_avg_page_rate	buffer	disabled
buffer_flush_avg_pass	buffer	disabled
buffer_flush_avg_time	buffer	disabled
buffer_flush_background	buffer	disabled
buffer_flush_background_pages	buffer	disabled
buffer_flush_background_total_pages	buffer	disabled
buffer_flush_batches	buffer	disabled
buffer_flush_batch_num_scan	buffer	disabled
buffer_flush_batch_pages	buffer	disabled
buffer_flush_batch_scanned	buffer	disabled

InnoDB INFORMATION_SCHEMA Metrics Table

2218

buffer_flush_batch_scanned_per_call	buffer	disabled
buffer_flush_batch_total_pages	buffer	disabled
buffer_flush_lsn_avg_rate	buffer	disabled
buffer_flush_neighbor	buffer	disabled
buffer_flush_neighbor_pages	buffer	disabled
buffer_flush_neighbor_total_pages	buffer	disabled
buffer_flush_n_to_flush_by_age	buffer	disabled
buffer_flush_n_to_flush_requested	buffer	disabled
buffer_flush_pct_for_dirty	buffer	disabled
buffer_flush_pct_for_lsn	buffer	disabled
buffer_flush_sync	buffer	disabled
buffer_flush_sync_pages	buffer	disabled
buffer_flush_sync_total_pages	buffer	disabled
buffer_flush_sync_waits	buffer	disabled
buffer_LRU_batches_evict	buffer	disabled
buffer_LRU_batches_flush	buffer	disabled
buffer_LRU_batch_evict_pages	buffer	disabled
buffer_LRU_batch_evict_total_pages	buffer	disabled
buffer_LRU_batch_flush_avg_pass	buffer	disabled
buffer_LRU_batch_flush_avg_time_est	buffer	disabled
buffer_LRU_batch_flush_avg_time_slot	buffer	disabled
buffer_LRU_batch_flush_avg_time_thread	buffer	disabled
buffer_LRU_batch_flush_pages	buffer	disabled
buffer_LRU_batch_flush_total_pages	buffer	disabled
buffer_LRU_batch_num_scan	buffer	disabled
buffer_LRU_batch_scanned	buffer	disabled
buffer_LRU_batch_scanned_per_call	buffer	disabled
buffer_LRU_get_free_loops	buffer	disabled
buffer_LRU_get_free_search	Buffer	disabled
buffer_LRU_get_free_waits	buffer	disabled
buffer_LRU_search_num_scan	buffer	disabled
buffer_LRU_search_scanned	buffer	disabled
buffer_LRU_search_scanned_per_call	buffer	disabled
buffer_LRU_single_flush_failure_count	Buffer	disabled
buffer_LRU_single_flush_num_scan	buffer	disabled
buffer_LRU_single_flush_scanned	buffer	disabled
buffer_LRU_single_flush_scanned_per_call	buffer	disabled
buffer_LRU_unzip_search_num_scan	buffer	disabled
buffer_LRU_unzip_search_scanned	buffer	disabled
buffer_LRU_unzip_search_scanned_per_call	buffer	disabled
buffer_pages_created	buffer	enabled
buffer_pages_read	buffer	enabled
buffer_pages_written	buffer	enabled
buffer_page_read_blob	buffer_page_io	disabled
buffer_page_read_fsp_hdr	buffer_page_io	disabled
buffer_page_read_ibuf_bitmap	buffer_page_io	disabled
buffer_page_read_ibuf_free_list	buffer_page_io	disabled
buffer_page_read_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_read_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_read_index_inode	buffer_page_io	disabled
buffer_page_read_index_leaf	buffer_page_io	disabled
buffer_page_read_index_non_leaf	buffer_page_io	disabled
buffer_page_read_other	buffer_page_io	disabled
buffer_page_read_system_page	buffer_page_io	disabled
buffer_page_read_trx_system	buffer_page_io	disabled
buffer_page_read_undo_log	buffer_page_io	disabled
buffer_page_read_xdes	buffer_page_io	disabled
buffer_page_read_zblob	buffer_page_io	disabled
buffer_page_read_zblob2	buffer_page_io	disabled
buffer_page_written_blob	buffer_page_io	disabled
buffer_page_written_fsp_hdr	buffer_page_io	disabled
buffer_page_written_ibuf_bitmap	buffer_page_io	disabled
buffer_page_written_ibuf_free_list	buffer_page_io	disabled
buffer_page_written_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_written_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_written_index_inode	buffer_page_io	disabled
buffer_page_written_index_leaf	buffer_page_io	disabled
buffer_page_written_index_non_leaf	buffer_page_io	disabled
buffer_page_written_other	buffer_page_io	disabled
buffer_page_written_system_page	buffer_page_io	disabled
buffer_page_written_trx_system	buffer_page_io	disabled
buffer_page_written_undo_log	buffer_page_io	disabled

InnoDB INFORMATION_SCHEMA Metrics Table

2219

buffer_page_written_xdes	buffer_page_io	disabled
buffer_page_written_zblob	buffer_page_io	disabled
buffer_page_written_zblob2	buffer_page_io	disabled
buffer_pool_bytes_data	buffer	enabled
buffer_pool_bytes_dirty	buffer	enabled
buffer_pool_pages_data	buffer	enabled
buffer_pool_pages_dirty	buffer	enabled
buffer_pool_pages_free	buffer	enabled
buffer_pool_pages_misc	buffer	enabled
buffer_pool_pages_total	buffer	enabled
buffer_pool_reads	buffer	enabled
buffer_pool_read_ahead	buffer	enabled
buffer_pool_read_ahead_evicted	buffer	enabled
buffer_pool_read_requests	buffer	enabled
buffer_pool_size	server	enabled
buffer_pool_wait_free	buffer	enabled
buffer_pool_write_requests	buffer	enabled
compression_pad_decrements	compression	disabled
compression_pad_increments	compression	disabled
compress_pages_compressed	compression	disabled
compress_pages_decompressed	compression	disabled
ddl_background_drop_indexes	ddl	disabled
ddl_background_drop_tables	ddl	disabled
ddl_log_file_alter_table	ddl	disabled
ddl_online_create_index	ddl	disabled
ddl_pending_alter_table	ddl	disabled
ddl_sort_file_alter_table	ddl	disabled
dml_deletes	dml	enabled
dml_inserts	dml	enabled
dml_reads	dml	disabled
dml_updates	dml	enabled
file_num_open_files	file_system	enabled
ibuf_merges	change_buffer	enabled
ibuf_merges_delete	change_buffer	enabled
ibuf_merges_delete_mark	change_buffer	enabled
ibuf_merges_discard_delete	change_buffer	enabled
ibuf_merges_discard_delete_mark	change_buffer	enabled
ibuf_merges_discard_insert	change_buffer	enabled
ibuf_merges_insert	change_buffer	enabled
ibuf_size	change_buffer	enabled
icp_attempts	icp	disabled
icp_match	icp	disabled
icp_no_match	icp	disabled
icp_out_of_range	icp	disabled
index_page_discards	index	disabled
index_page_merge_attempts	index	disabled
index_page_merge_successful	index	disabled
index_page_reorg_attempts	index	disabled
index_page_reorg_successful	index	disabled
index_page_splits	index	disabled
innodb_activity_count	server	enabled
innodb_background_drop_table_usec	server	disabled
innodb_checkpoint_usec	server	disabled
innodb_dblwr_pages_written	server	enabled
innodb_dblwr_writes	server	enabled
innodb_dict_lru_count	server	disabled
innodb_dict_lru_usec	server	disabled
innodb_ibuf_merge_usec	server	disabled
innodb_log_flush_usec	server	disabled
innodb_master_active_loops	server	disabled
innodb_master_idle_loops	server	disabled
innodb_master_purge_usec	server	disabled
innodb_master_thread_sleeps	server	disabled
innodb_mem_validate_usec	server	disabled
innodb_page_size	server	enabled
innodb_rwlock_sx_os_waits	server	enabled
innodb_rwlock_sx_spin_rounds	server	enabled
innodb_rwlock_sx_spin_waits	server	enabled
innodb_rwlock_s_os_waits	server	enabled
innodb_rwlock_s_spin_rounds	server	enabled
innodb_rwlock_s_spin_waits	server	enabled
innodb_rwlock_x_os_waits	server	enabled

InnoDB INFORMATION_SCHEMA Metrics Table

2220

innodb_rwlock_x_spin_rounds	server	enabled
innodb_rwlock_x_spin_waits	server	enabled
lock_deadlocks	lock	enabled
lock_rec_locks	lock	disabled
lock_rec_lock_created	lock	disabled
lock_rec_lock_removed	lock	disabled
lock_rec_lock_requests	lock	disabled
lock_rec_lock_waits	lock	disabled
lock_row_lock_current_waits	lock	enabled
lock_row_lock_time	lock	enabled
lock_row_lock_time_avg	lock	enabled
lock_row_lock_time_max	lock	enabled
lock_row_lock_waits	lock	enabled
lock_table_locks	lock	disabled
lock_table_lock_created	lock	disabled
lock_table_lock_removed	lock	disabled
lock_table_lock_waits	lock	disabled
lock_timeouts	lock	enabled
log_checkpoints	recovery	disabled
log_lsn_buf_pool_oldest	recovery	disabled
log_lsn_checkpoint_age	recovery	disabled
log_lsn_current	recovery	disabled
log_lsn_last_checkpoint	recovery	disabled
log_lsn_last_flush	recovery	disabled
log_max_modified_age_async	recovery	disabled
log_max_modified_age_sync	recovery	disabled
log_num_log_io	recovery	disabled
log_padded	recovery	enabled
log_pending_checkpoint_writes	recovery	disabled
log_pending_log_flushes	recovery	disabled
log_waits	recovery	enabled
log_writes	recovery	enabled
log_write_requests	recovery	enabled
metadata_table_handles_closed	metadata	disabled
metadata_table_handles_opened	metadata	disabled
metadata_table_reference_count	metadata	disabled
os_data_fsyncs	os	enabled
os_data_reads	os	enabled
os_data_writes	os	enabled
os_log_bytes_written	os	enabled
os_log_fsyncs	os	enabled
os_log_pending_fsyncs	os	enabled
os_log_pending_writes	os	enabled
os_pending_reads	os	disabled
os_pending_writes	os	disabled
purge_del_mark_records	purge	disabled
purge_dml_delay_usec	purge	disabled
purge_invoked	purge	disabled
purge_resume_count	purge	disabled
purge_stop_count	purge	disabled
purge_undo_log_pages	purge	disabled
purge_upd_exist_or_extern_records	purge	disabled
trx_active_transactions	transaction	disabled
trx_commits_insert_update	transaction	disabled
trx_nl_ro_commits	transaction	disabled
trx_rollbacks	transaction	disabled
trx_rollbacks_savepoint	transaction	disabled
trx_rollback_active	transaction	disabled
trx_ro_commits	transaction	disabled
trx_rseg_current_size	transaction	disabled
trx_rseg_history_len	transaction	enabled
trx_rw_commits	transaction	disabled
trx_undo_slots_cached	transaction	disabled
trx_undo_slots_used	transaction	disabled
+--+---------------------+----------+
235 rows in set (0.01 sec)

Counter Modules

The module names correspond to, but are not identical to, the values from the SUBSYSTEM column of
the INNODB_METRICS table. Rather enabling, disabling, or resetting counters individually, you can use

InnoDB INFORMATION_SCHEMA Metrics Table

2221

module names to quickly enable, disable, or reset all counters for a particular subsystem. For example,
use module_dml to enable all counters associated with the dml subsystem.

mysql> SET GLOBAL innodb_monitor_enable = module_dml;

mysql> SELECT name, subsystem, status FROM INFORMATION_SCHEMA.INNODB_METRICS
WHERE subsystem ='dml';
+-------------+-----------+---------+
| name | subsystem | status |
+-------------+-----------+---------+
dml_reads	dml	enabled
dml_inserts	dml	enabled
dml_deletes	dml	enabled
dml_updates	dml	enabled
+-------------+-----------+---------+

Here are the values you can use for module_name with the innodb_monitor_enable and related
configuration options, along with the corresponding SUBSYSTEM names:

• module_metadata (subsystem = metadata)

• module_lock (subsystem = lock)

• module_buffer (subsystem = buffer)

• module_buf_page (subsystem = buffer_page_io)

• module_os (subsystem = os)

• module_trx (subsystem = transaction)

• module_purge (subsystem = purge)

• module_compress (subsystem = compression)

• module_file (subsystem = file_system)

• module_index (subsystem = index)

• module_adaptive_hash (subsystem = adaptive_hash_index)

• module_ibuf_system (subsystem = change_buffer)

• module_srv (subsystem = server)

• module_ddl (subsystem = ddl)

• module_dml (subsystem = dml)

• module_log (subsystem = recovery)

• module_icp (subsystem = icp)

Example 14.22 Working with INNODB_METRICS Table Counters

This example demonstrates enabling, disabling, and resetting a counter, and querying counter data in
the INNODB_METRICS table.

1. Create a simple InnoDB table:

mysql> USE test;
Database changed

mysql> CREATE TABLE t1 (c1 INT) ENGINE=INNODB;
Query OK, 0 rows affected (0.02 sec)

2. Enable the dml_inserts counter.

InnoDB INFORMATION_SCHEMA Metrics Table

2222

mysql> SET GLOBAL innodb_monitor_enable = dml_inserts;
Query OK, 0 rows affected (0.01 sec)

A description of the dml_inserts counter can be found in the COMMENT column of the
INNODB_METRICS table:

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts";
+-------------+-------------------------+
| NAME | COMMENT |
+-------------+-------------------------+
| dml_inserts | Number of rows inserted |
+-------------+-------------------------+

3. Query the INNODB_METRICS table for the dml_inserts counter data. Because no DML
operations have been performed, the counter values are zero or NULL. The TIME_ENABLED and
TIME_ELAPSED values indicate when the counter was last enabled and how many seconds have
elapsed since this time.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts" \G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 0
 MAX_COUNT: 0
 MIN_COUNT: NULL
 AVG_COUNT: 0
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 28
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

4. Insert three rows of data into the table.

mysql> INSERT INTO t1 values(1);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 values(2);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 values(3);
Query OK, 1 row affected (0.00 sec)

5. Query the INNODB_METRICS table again for the dml_inserts counter data. A number of counter
values have now incremented including COUNT, MAX_COUNT, AVG_COUNT, and COUNT_RESET.
Refer to the INNODB_METRICS table definition for descriptions of these values.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.046153846153846156
 COUNT_RESET: 3
MAX_COUNT_RESET: 3
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 65
 TIME_RESET: NULL

InnoDB INFORMATION_SCHEMA Metrics Table

2223

 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

6. Reset the dml_inserts counter, and query the INNODB_METRICS table again for the
dml_inserts counter data. The “%_RESET” values that were reported previously, such as
COUNT_RESET and MAX_RESET, are set back to zero. Values such as COUNT, MAX_COUNT, and
AVG_COUNT, which cumulatively collect data from the time the counter is enabled, are unaffected
by the reset.

mysql> SET GLOBAL innodb_monitor_reset = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.03529411764705882
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: 0
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 85
 TIME_RESET: 2014-12-04 14:19:44
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

7. To reset all counter values, you must first disable the counter. Disabling the counter sets the
STATUS value to disbaled.

mysql> SET GLOBAL innodb_monitor_disable = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.030612244897959183
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: 0
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: 2014-12-04 14:20:06
 TIME_ELAPSED: 98
 TIME_RESET: NULL
 STATUS: disabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Note

Wildcard match is supported for counter and module names. For example,
instead of specifying the full dml_inserts counter name, you can specify
“dml_i%”. You can also enable, disable, or reset multiple counters or
modules at once using a wildcard match. For example, specify “dml_%” to
enable, disable, or reset all counters that begin with “dml_%.”

8. After the counter is disabled, you can reset all counter values using the
innodb_monitor_reset_all option. All values are set to zero or NULL.

InnoDB INFORMATION_SCHEMA Temporary Table Information Table

2224

mysql> SET GLOBAL innodb_monitor_reset_all = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 0
 MAX_COUNT: NULL
 MIN_COUNT: NULL
 AVG_COUNT: NULL
 COUNT_RESET: 0
MAX_COUNT_RESET: NULL
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: NULL
 TIME_DISABLED: NULL
 TIME_ELAPSED: NULL
 TIME_RESET: NULL
 STATUS: disabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

14.12.7 InnoDB INFORMATION_SCHEMA Temporary Table Information
Table

The INNODB_TEMP_TABLE_INFO table, introduced in MySQL 5.7.1, provides users with a snapshot
of active InnoDB temporary tables. The table contains metadata about all user and system-created
temporary tables that are active within a given InnoDB instance with the exception of optimized
temporary tables that are used internally by InnoDB.

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_TEMP%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_TEMP%) |
+---+
| INNODB_TEMP_TABLE_INFO |
+---+

For the table definition, see Section 20.30.27, “The INFORMATION_SCHEMA
INNODB_TEMP_TABLE_INFO Table”.

Example 14.23 INNODB_TEMP_TABLE_INFO

This example demonstrates characteristics of the INNODB_TEMP_TABLE_INFO table.

1. Create a simple InnoDB temporary table with a single column:

mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;
Query OK, 0 rows affected (0.00 sec)

2. Query the INNODB_TEMP_TABLE_INFO table to view the temporary table's metadata.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 194
 NAME: #sql7a79_1_0
 N_COLS: 4
 SPACE: 182
PER_TABLE_TABLESPACE: FALSE
 IS_COMPRESSED: FALSE

The TABLE_ID is a unique identifier for the temporary table. The NAME column displays the
system-generated name for the temporary table, which is prefixed with “#sql”. The number of
columns (N_COLS) is 4 rather than 1 because InnoDB always creates three hidden table columns
(DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR). PER_TABLE_TABLESPACE and IS_COMPRESSED
only report TRUE for compressed temporary tables.

Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES

2225

3. Create a compressed temporary table. Before you do so, ensure that innodb_file_format is
set to Barracuda, which is required to create tables with a compressed row format.

mysql> SET GLOBAL innodb_file_format="Barracuda";
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TEMPORARY TABLE t2 (c1 INT) ROW_FORMAT=COMPRESSED ENGINE=INNODB;
Query OK, 0 rows affected (0.01 sec)

4. Query the INNODB_TEMP_TABLE_INFO table again.

mysql> CREATE TEMPORARY TABLE t2 (c1 INT) ROW_FORMAT=COMPRESSED ENGINE=INNODB;
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 195
 NAME: #sql7a79_1_1
 N_COLS: 4
 SPACE: 183
PER_TABLE_TABLESPACE: TRUE
 IS_COMPRESSED: TRUE
*************************** 2. row ***************************
 TABLE_ID: 194
 NAME: #sql7a79_1_0
 N_COLS: 4
 SPACE: 182
PER_TABLE_TABLESPACE: FALSE
 IS_COMPRESSED: FALSE

PER_TABLE_TABLESPACE and IS_COMPRESSED report TRUE for the compressed temporary table.
The SPACE ID for the compressed temporary table is different because compressed temporary
tables are created in separate per-table tablespaces. Non-compressed temporary tables share a
single tablespace (ibtmp1, by default) and report the same SPACE ID.

5. Restart MySQL and query the INNODB_TEMP_TABLE_INFO table.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
Empty set (0.00 sec)

An empty set is returned because the INNODB_TEMP_TABLE_INFO table and the data within it are
not persisted to disk on server shutdown.

6. Create a new temporary table.

mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;
Query OK, 0 rows affected (0.00 sec)

7. Query the INNODB_TEMP_TABLE_INFO table to view the temporary table's metadata.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 196
 NAME: #sql7b0e_1_0
 N_COLS: 4
 SPACE: 184
PER_TABLE_TABLESPACE: FALSE
 IS_COMPRESSED: FALSE

The SPACE ID is new because it is dynamically generated on server restart.

14.12.8 Retrieving InnoDB Tablespace Metadata from
INFORMATION_SCHEMA.FILES

As of MySQL 5.7.8, the INFORMATION_SCHEMA.FILES table provides metadata about all InnoDB
tablespace types including file-per-table tablespaces, general tablespaces, the system tablespace,
temporary table tablespaces, and undo tablespaces (if present).

Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES

2226

This section provides InnoDB-specific usage examples. For more information about data provided by
the INFORMATION_SCHEMA.FILES table, see Section 20.8, “The INFORMATION_SCHEMA FILES
Table”.

Note

The INNODB_SYS_TABLESPACES and INNODB_SYS_DATAFILES tables also
provide metadata about InnoDB tablespaces, but data is limited to file-per-table
and general tablespaces.

This query retrieves metadata about the InnoDB system tablespace from fields of
the INFORMATION_SCHEMA.FILES table that are pertinent to InnoDB tablespaces.
INFORMATION_SCHEMA.FILES fields that are not relevant to InnoDB always return NULL, and are
excluded from the query.

mysql> SELECT FILE_ID, FILE_NAME, FILE_TYPE, TABLESPACE_NAME, FREE_EXTENTS,
TOTAL_EXTENTS, EXTENT_SIZE, INITIAL_SIZE, MAXIMUM_SIZE, AUTOEXTEND_SIZE, DATA_FREE, STATUS ENGINE
FROM INFORMATION_SCHEMA.FILES WHERE TABLESPACE_NAME LIKE 'innodb_system' \G
*************************** 1. row ***************************
 FILE_ID: 0
 FILE_NAME: ./ibdata1
 FILE_TYPE: TABLESPACE
TABLESPACE_NAME: innodb_system
 FREE_EXTENTS: 0
 TOTAL_EXTENTS: 12
 EXTENT_SIZE: 1048576
 INITIAL_SIZE: 12582912
 MAXIMUM_SIZE: NULL
AUTOEXTEND_SIZE: 67108864
 DATA_FREE: 4194304
 ENGINE: NORMAL

This query retrieves the FILE_ID (equivalent to the space ID) and the FILE_NAME (which includes
path information) for InnoDB file-per-table and general tablespaces. File-per-table and general
tablespaces have a .ibd file extension.

mysql> SELECT FILE_ID, FILE_NAME FROM INFORMATION_SCHEMA.FILES
WHERE FILE_NAME LIKE '%.ibd%' ORDER BY FILE_ID;
 +---------+---------------------------------------+
 | FILE_ID | FILE_NAME |
 +---------+---------------------------------------+
 | 2 | ./mysql/plugin.ibd |
 | 3 | ./mysql/servers.ibd |
 | 4 | ./mysql/help_topic.ibd |
 | 5 | ./mysql/help_category.ibd |
 | 6 | ./mysql/help_relation.ibd |
 | 7 | ./mysql/help_keyword.ibd |
 | 8 | ./mysql/time_zone_name.ibd |
 | 9 | ./mysql/time_zone.ibd |
 | 10 | ./mysql/time_zone_transition.ibd |
 | 11 | ./mysql/time_zone_transition_type.ibd |
 | 12 | ./mysql/time_zone_leap_second.ibd |
 | 13 | ./mysql/innodb_table_stats.ibd |
 | 14 | ./mysql/innodb_index_stats.ibd |
 | 15 | ./mysql/slave_relay_log_info.ibd |
 | 16 | ./mysql/slave_master_info.ibd |
 | 17 | ./mysql/slave_worker_info.ibd |
 | 18 | ./mysql/gtid_executed.ibd |
 | 19 | ./mysql/server_cost.ibd |
 | 20 | ./mysql/engine_cost.ibd |
 | 21 | ./sys/sys_config.ibd |
 | 23 | ./test/t1.ibd |
 | 26 | /home/user/test/test/t2.ibd |
 +---------+---------------------------------------+

This query retrieves the FILE_ID and FILE_NAME for InnoDB temporary table tablespaces.
Temporary table tablespace file names are prefixed by ibtmp.

mysql> SELECT FILE_ID, FILE_NAME FROM INFORMATION_SCHEMA.FILES

InnoDB Integration with MySQL Performance Schema

2227

WHERE FILE_NAME LIKE '%ibtmp%';
+---------+-----------+
| FILE_ID | FILE_NAME |
+---------+-----------+
| 22 | ./ibtmp1 |
+---------+-----------+

Similarly, InnoDB undo tablespace file names are prefixed by undo. The following query returns the
FILE_ID and FILE_NAME for InnoDB undo tablespaces, if separate undo tablespaces are configured.

mysql> SELECT FILE_ID, FILE_NAME FROM INFORMATION_SCHEMA.FILES
WHERE FILE_NAME LIKE '%undo%';

14.13 InnoDB Integration with MySQL Performance Schema
This section provides a brief introduction to InnoDB integration with Performance Schema. For
comprehensive Performance Schema documentation, see Chapter 21, MySQL Performance Schema.

You can profile certain internal InnoDB operations using the MySQL Performance Schema feature.
This type of tuning is primarily for expert users who evaluate optimization strategies to overcome
performance bottlenecks. DBAs can also use this feature for capacity planning, to see whether their
typical workload encounters any performance bottlenecks with a particular combination of CPU, RAM,
and disk storage; and if so, to judge whether performance can be improved by increasing the capacity
of some part of the system.

To use this feature to examine InnoDB performance:

• You must be generally familiar with how to use the Performance Schema feature. For example, you
should know how enable instruments and consumers, and how to query performance_schema
tables to retrieve data. For an introductory overview, see Section 21.1, “Performance Schema Quick
Start”.

• You should be familiar with Performance Schema instruments that are available for InnoDB. To view
InnoDB-related instruments, you can query the setup_instruments table for instrument names
that contain 'innodb'.

mysql> SELECT * FROM setup_instruments WHERE NAME LIKE '%innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	NO	NO
wait/synch/mutex/innodb/innobase_share_mutex	NO	NO
wait/synch/mutex/innodb/autoinc_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_mutex	NO	NO
wait/synch/mutex/innodb/cache_last_read_mutex	NO	NO
wait/synch/mutex/innodb/dict_foreign_err_mutex	NO	NO
wait/synch/mutex/innodb/dict_sys_mutex	NO	NO
wait/synch/mutex/innodb/recalc_pool_mutex	NO	NO
wait/synch/mutex/innodb/file_format_max_mutex	NO	NO
...		
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
stage/innodb/alter table (end)	YES	YES
stage/innodb/alter table (flush)	YES	YES
stage/innodb/alter table (insert)	YES	YES
stage/innodb/alter table (log apply index)	YES	YES
stage/innodb/alter table (log apply table)	YES	YES
stage/innodb/alter table (merge sort)	YES	YES
stage/innodb/alter table (read PK and internal sort)	YES	YES
stage/innodb/buffer pool load	YES	YES
memory/innodb/buf_buf_pool	NO	NO
memory/innodb/dict_stats_bg_recalc_pool_t	NO	NO
memory/innodb/dict_stats_index_map_t	NO	NO
memory/innodb/dict_stats_n_diff_on_level	NO	NO
memory/innodb/other	NO	NO
memory/innodb/row_log_buf	NO	NO

InnoDB Integration with MySQL Performance Schema

2228

memory/innodb/row_merge_sort	NO	NO
memory/innodb/std	NO	NO
memory/innodb/sync_debug_latches	NO	NO
memory/innodb/trx_sys_t::rw_trx_ids	NO	NO
...
+---+---------+-------+
155 rows in set (0.00 sec)

For additional information about the instrumented InnoDB objects, you can query Performance
Schema instances tables, which provide additional information about instrumented objects. Instance
tables relevant to InnoDB include:

• The mutex_instances table

• The rwlock_instances table

• The cond_instances table

• The file_instances table

Note

Mutexes and RW-locks related to the InnoDB buffer pool are not included in
this coverage; the same applies to the output of the SHOW ENGINE INNODB
MUTEX command.

For example, to view information about instrumented InnoDB file objects seen by the Performance
Schema when executing file I/O instrumentation, you might issue the following query:

mysql> SELECT * FROM file_instances WHERE EVENT_NAME LIKE '%innodb%'\G
*************************** 1. row ***************************
 FILE_NAME: /path/to/mysql-5.7/data/ibdata1
EVENT_NAME: wait/io/file/innodb/innodb_data_file
OPEN_COUNT: 3
*************************** 2. row ***************************
 FILE_NAME: /path/to/mysql-5.7/data/ib_logfile0
EVENT_NAME: wait/io/file/innodb/innodb_log_file
OPEN_COUNT: 2
*************************** 3. row ***************************
 FILE_NAME: /path/to/mysql-5.7/data/ib_logfile1
EVENT_NAME: wait/io/file/innodb/innodb_log_file
OPEN_COUNT: 2
*************************** 4. row ***************************
 FILE_NAME: /path/to/mysql-5.7/data/mysql/engine_cost.ibd
EVENT_NAME: wait/io/file/innodb/innodb_data_file
OPEN_COUNT: 3
...

• You should be familiar with performance_schema tables that store InnoDB event data. Tables
relevant to InnoDB-related events include:

• The Wait Event tables, which store wait events.

• The Summary tables, which provide aggregated information for terminated events over time.
Summary tables include file I/O summary tables, which aggregate information about I/O
operations.

• Stage Event tables, which store event data for InnoDB ALTER TABLE and buffer pool load
operations. For more information, see Section 14.13.1, “Monitoring ALTER TABLE Progress for
InnoDB Tables Using Performance Schema”, and Monitoring Buffer Pool Load Progress Using
Performance Schema.

If you are only interested in InnoDB-related objects, use the clause WHERE EVENT_NAME LIKE
'%innodb%' or WHERE NAME LIKE '%innodb%' (as required) when querying these tables.

Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema

2229

14.13.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using
Performance Schema

As of MySQL 5.7.6, you can monitor ALTER TABLE progress for InnoDB tables using Performance
Schema.

There are seven stage events that represent different phases of ALTER TABLE. Each stage event
reports a running total of WORK_COMPLETED and WORK_ESTIMATED for the overall ALTER TABLE
operation as it progresses through its different phases. WORK_ESTIMATED is calculated using a formula
that takes into account all of the work that ALTER TABLE performs, and may be revised during ALTER
TABLE processing. WORK_COMPLETED and WORK_ESTIMATED values are an abstract representation of
all of the work performed by ALTER TABLE.

In order of occurrence, ALTER TABLE stage events include:

• stage/innodb/alter table (read PK and internal sort): This stage is active
when ALTER TABLE is in the reading-primary-key phase. It starts with WORK_COMPLETED=0 and
WORK_ESTIMATED set to the estimated number of pages in the primary key. When the stage is
completed, WORK_ESTIMATED is updated to the actual number of pages in the primary key.

• stage/innodb/alter table (merge sort): This stage is repeated for each index added by
the ALTER TABLE operation.

• stage/innodb/alter table (insert): This stage is repeated for each index added by the
ALTER TABLE operation.

• stage/innodb/alter table (log apply index): This stage includes the application of DML
log generated while ALTER TABLE was running.

• stage/innodb/alter table (flush): Before this stage begins, WORK_ESTIMATED is updated
with a more accurate estimate, based on the length of the flush list.

• stage/innodb/alter table (log apply table): This stage includes the application
of concurrent DML log generated while ALTER TABLE was running. The duration of this phase
depends on the extent of table changes. This phase is instant if no concurrent DML was run on the
table.

• stage/innodb/alter table (end): Includes any remaining work that appeared after the flush
phase, such as reapplying DML that was executed on the table while ALTER TABLE was running.

Note

InnoDB ALTER TABLE stage events do not currently account for the addition of
spatial indexes.

ALTER TABLE Monitoring Example Using Performance Schema

The following example demonstrates how to enable the stage/innodb/alter table% stage
event instruments and related consumer tables to monitor ALTER TABLE progress. For information
about Performance Schema stage event instruments and related consumers, see Section 21.9.5,
“Performance Schema Stage Event Tables”.

1. Enable the stage/innodb/alter% instruments:

mysql> UPDATE setup_instruments SET ENABLED = 'YES' WHERE NAME LIKE 'stage/innodb/alter%';
Query OK, 7 rows affected (0.00 sec)
Rows matched: 7 Changed: 7 Warnings: 0

2. Enable the stage event consumer tables, which include events_stages_current,
events_stages_history, and events_stages_history_long.

mysql> UPDATE setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%stages%';
Query OK, 3 rows affected (0.00 sec)

Monitoring InnoDB Mutex Waits Using Performance Schema

2230

Rows matched: 3 Changed: 3 Warnings: 0

3. Run an ALTER TABLE operation. In this example, a middle_name column is added to the
employees table of the employees sample database.

mysql> ALTER TABLE employees.employees ADD COLUMN middle_name varchar(14) AFTER first_name;
Query OK, 0 rows affected (9.27 sec)
Records: 0 Duplicates: 0 Warnings: 0

4. Check the progress of the ALTER TABLE operation by querying the Performance Schema
events_stages_current table. The stage event shown differs depending on which ALTER
TABLE phase is currently in progress. The WORK_COMPLETED column shows the work completed.
The WORK_ESTIMATED column provides an estimate of the remaining work.

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED FROM events_stages_current;
+--+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+--+----------------+----------------+
| stage/innodb/alter table (read PK and internal sort) | 280 | 1245 |
+--+----------------+----------------+
1 row in set (0.01 sec)

The events_stages_current table returns an empty set if the ALTER TABLE operation has
completed. In this case, you can check the events_stages_history table to view event data for
the completed operation. For example:

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED FROM events_stages_history;
+--+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+--+----------------+----------------+
stage/innodb/alter table (read PK and internal sort)	886	1213
stage/innodb/alter table (flush)	1213	1213
stage/innodb/alter table (log apply table)	1597	1597
stage/innodb/alter table (end)	1597	1597
stage/innodb/alter table (log apply table)	1981	1981
+--+----------------+----------------+
5 rows in set (0.00 sec)

As shown above, the WORK_ESTIMATED value was revised during ALTER TABLE processing.
The estimated work after completion of the initial stage is 1213. When ALTER TABLE processing
completed, WORK_ESTIMATED was set to the actual value, which is 1981.

14.13.2 Monitoring InnoDB Mutex Waits Using Performance Schema

A mutex is a synchronization mechanism used in the code to enforce that only one thread at a given
time can have access to a common resource. When two or more threads executing in the server need
to access the same resource, the threads compete against each other. The first thread to obtain a lock
on the mutex causes the other threads to wait until the lock is released.

For InnoDB mutexes that are instrumented, mutex waits can be monitored using Performance
Schema. Wait event data collected in Performance Schema tables can help identify mutexes with the
most waits or the greatest total wait time, for example.

The following example demonstrates how to enable InnoDB mutex wait instruments, how to enable
associated consumers, and how to query wait event data.

1. To view available InnoDB mutex wait instruments, query the Performance Schema
setup_instruments table, as shown below. All InnoDB mutex wait instruments are disabled by
default.

mysql> SELECT * FROM performance_schema.setup_instruments
WHERE NAME LIKE '%wait/synch/mutex/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
| wait/synch/mutex/innodb/commit_cond_mutex | NO | NO |

Monitoring InnoDB Mutex Waits Using Performance Schema

2231

wait/synch/mutex/innodb/innobase_share_mutex	NO	NO
wait/synch/mutex/innodb/autoinc_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_mutex	NO	NO
wait/synch/mutex/innodb/cache_last_read_mutex	NO	NO
wait/synch/mutex/innodb/dict_foreign_err_mutex	NO	NO
wait/synch/mutex/innodb/dict_sys_mutex	NO	NO
wait/synch/mutex/innodb/recalc_pool_mutex	NO	NO
wait/synch/mutex/innodb/file_format_max_mutex	NO	NO
wait/synch/mutex/innodb/fil_system_mutex	NO	NO
wait/synch/mutex/innodb/flush_list_mutex	NO	NO
wait/synch/mutex/innodb/fts_bg_threads_mutex	NO	NO
wait/synch/mutex/innodb/fts_delete_mutex	NO	NO
wait/synch/mutex/innodb/fts_optimize_mutex	NO	NO
wait/synch/mutex/innodb/fts_doc_id_mutex	NO	NO
wait/synch/mutex/innodb/log_flush_order_mutex	NO	NO
wait/synch/mutex/innodb/hash_table_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_bitmap_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex	NO	NO
wait/synch/mutex/innodb/log_sys_mutex	NO	NO
wait/synch/mutex/innodb/page_zip_stat_per_index_mutex	NO	NO
wait/synch/mutex/innodb/purge_sys_pq_mutex	NO	NO
wait/synch/mutex/innodb/recv_sys_mutex	NO	NO
wait/synch/mutex/innodb/recv_writer_mutex	NO	NO
wait/synch/mutex/innodb/redo_rseg_mutex	NO	NO
wait/synch/mutex/innodb/noredo_rseg_mutex	NO	NO
wait/synch/mutex/innodb/rw_lock_list_mutex	NO	NO
wait/synch/mutex/innodb/rw_lock_mutex	NO	NO
wait/synch/mutex/innodb/srv_dict_tmpfile_mutex	NO	NO
wait/synch/mutex/innodb/srv_innodb_monitor_mutex	NO	NO
wait/synch/mutex/innodb/srv_misc_tmpfile_mutex	NO	NO
wait/synch/mutex/innodb/srv_monitor_file_mutex	NO	NO
wait/synch/mutex/innodb/buf_dblwr_mutex	NO	NO
wait/synch/mutex/innodb/trx_undo_mutex	NO	NO
wait/synch/mutex/innodb/trx_pool_mutex	NO	NO
wait/synch/mutex/innodb/trx_pool_manager_mutex	NO	NO
wait/synch/mutex/innodb/srv_sys_mutex	NO	NO
wait/synch/mutex/innodb/lock_mutex	NO	NO
wait/synch/mutex/innodb/lock_wait_mutex	NO	NO
wait/synch/mutex/innodb/trx_mutex	NO	NO
wait/synch/mutex/innodb/srv_threads_mutex	NO	NO
wait/synch/mutex/innodb/rtr_active_mutex	NO	NO
wait/synch/mutex/innodb/rtr_match_mutex	NO	NO
wait/synch/mutex/innodb/rtr_path_mutex	NO	NO
wait/synch/mutex/innodb/rtr_ssn_mutex	NO	NO
wait/synch/mutex/innodb/trx_sys_mutex	NO	NO
wait/synch/mutex/innodb/zip_pad_mutex	NO	NO
+---+---------+-------+
49 rows in set (0.02 sec)

2. Some InnoDB mutex instances are created at server startup and are only instrumented if the
associated instrument is also enabled at server startup. To ensure that all InnoDB mutex instances
are instrumented and enabled, add the following performance-schema-instrument rule to
your MySQL configuration file:

performance-schema-instrument='wait/synch/mutex/innodb/%=ON'

If you do not require wait event data for all InnoDB mutexes, you can disable specific instruments
by adding additional performance-schema-instrument rules to your MySQL configuration file.
For example, to disable InnoDB mutex wait event instruments related to full-text search, add the
following rule:

performance-schema-instrument='wait/synch/mutex/innodb/fts%=OFF'

Monitoring InnoDB Mutex Waits Using Performance Schema

2232

Note

Rules with a longer prefix such as wait/synch/mutex/innodb/fts%
take precedence over rules with shorter prefixes such as wait/synch/
mutex/innodb/%.

After adding the performance-schema-instrument rules to your configuration file, restart the
server. All the InnoDB mutexes except for those related to full text search are enabled. To verify,
query the setup_instruments table. The ENABLED and TIMED columns should be set to YES for
the instruments that you enabled.

mysql> SELECT * FROM performance_schema.setup_instruments
WHERE NAME LIKE '%wait/synch/mutex/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	YES	YES
wait/synch/mutex/innodb/innobase_share_mutex	YES	YES
wait/synch/mutex/innodb/autoinc_mutex	YES	YES
...		
wait/synch/mutex/innodb/zip_pad_mutex	YES	YES
+---+---------+-------+
49 rows in set (0.00 sec)

3. Enable wait event consumers by updating the setup_consumers table. Wait event consumers are
disabled by default.

mysql> UPDATE performance_schema.setup_consumers SET enabled = 'YES'
WHERE name like 'events_waits%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

You can verify that wait event consumers are enabled by querying the setup_consumers table.
The events_waits_current, events_waits_history, and events_waits_history_long
consumers should be enabled.

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+
15 rows in set (0.00 sec)

4. Once instruments and consumers are enabled, run the workload that you want to monitor. In this
example, the mysqlslap load emulation client is used to simulate a workload.

shell> ./mysqlslap --auto-generate-sql --concurrency=100 --iterations=10 --number-of-queries=1000
--number-char-cols=6 --number-int-cols=6;

5. Query the wait event data. In this example, wait event data is queried from the
events_waits_summary_global_by_event_name table which aggregates data found in the
events_waits_current, events_waits_history, and events_waits_history_long

Monitoring InnoDB Mutex Waits Using Performance Schema

2233

tables. Data is summarized by event name (EVENT_NAME), which is the name of the instrument that
produced the event. Summarized data includes:

• COUNT_STAR

The number of summarized wait events.

• SUM_TIMER_WAIT

The total wait time of the summarized timed wait events.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed wait events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed wait events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed wait events.

The following query returns the instrument name (EVENT_NAME), the number of wait events
(COUNT_STAR), and the total wait time for the events for that instrument (SUM_TIMER_WAIT).
Because waits are timed in picoseconds (trillionths of a second) by default, wait times are divided
by 1000000000 to show wait times in milliseconds. Data is presented in descending order, by the
number of summarized wait events (COUNT_STAR). You can adjust the ORDER BY clause to order
the data by total wait time.

mysql> SELECT EVENT_NAME, COUNT_STAR, SUM_TIMER_WAIT/1000000000 SUM_TIMER_WAIT_MS
FROM performance_schema.events_waits_summary_global_by_event_name
WHERE SUM_TIMER_WAIT > 0 AND EVENT_NAME LIKE 'wait/synch/mutex/innodb/%'
ORDER BY COUNT_STAR DESC;
+--+------------+-------------------+
| EVENT_NAME | COUNT_STAR | SUM_TIMER_WAIT_MS |
+--+------------+-------------------+
wait/synch/mutex/innodb/os_mutex	78831	10.3283
wait/synch/mutex/innodb/log_sys_mutex	41488	6510.3233
wait/synch/mutex/innodb/trx_sys_mutex	29770	1107.9687
wait/synch/mutex/innodb/lock_mutex	24212	104.0724
wait/synch/mutex/innodb/trx_mutex	22756	1.9421
wait/synch/mutex/innodb/rseg_mutex	20333	3.6220
wait/synch/mutex/innodb/dict_sys_mutex	13422	2.2284
wait/synch/mutex/innodb/mutex_list_mutex	12694	344.1164
wait/synch/mutex/innodb/fil_system_mutex	9208	0.9542
wait/synch/mutex/innodb/rw_lock_list_mutex	8304	0.1794
wait/synch/mutex/innodb/trx_undo_mutex	6190	0.6801
wait/synch/mutex/innodb/buf_pool_mutex	2869	29.4623
wait/synch/mutex/innodb/innobase_share_mutex	2005	0.1349
wait/synch/mutex/innodb/flush_list_mutex	1274	0.1300
wait/synch/mutex/innodb/file_format_max_mutex	1016	0.0469
wait/synch/mutex/innodb/purge_sys_bh_mutex	1004	0.0326
wait/synch/mutex/innodb/buf_dblwr_mutex	640	0.0437
wait/synch/mutex/innodb/log_flush_order_mutex	437	0.0510
wait/synch/mutex/innodb/recv_sys_mutex	394	0.0202
wait/synch/mutex/innodb/srv_sys_mutex	169	0.5259
wait/synch/mutex/innodb/lock_wait_mutex	154	0.1172
wait/synch/mutex/innodb/ibuf_mutex	9	0.0027
wait/synch/mutex/innodb/srv_innodb_monitor_mutex	2	0.0009
wait/synch/mutex/innodb/ut_list_mutex	1	0.0001
wait/synch/mutex/innodb/recv_writer_mutex	1	0.0005
+--+------------+-------------------+
25 rows in set (0.01 sec)

InnoDB Monitors

2234

Note

The preceding result set includes wait event data produced during
the startup process. To exclude this data, you can truncate the
events_waits_summary_global_by_event_name table immediately
after startup and before running your workload. However, the truncate
operation itself may produce a negligible amount wait event data.

mysql> TRUNCATE performance_schema.events_waits_summary_global_by_event_name;

14.14 InnoDB Monitors
InnoDB monitors provide information about the InnoDB internal state. This information is useful for
performance tuning.

14.14.1 InnoDB Monitor Types

There are four types of InnoDB monitors:

• The standard InnoDB Monitor displays the following types of information:

• Table and record locks held by each active transaction.

• Lock waits of a transaction.

• Semaphore waits of threads.

• Pending file I/O requests.

• Buffer pool statistics.

• Purge and change buffer merge activity of the main InnoDB thread.

• The InnoDB Lock Monitor prints additional lock information as part of the standard InnoDB Monitor
output.

• The InnoDB Tablespace Monitor prints a list of file segments in the shared tablespace and validates
the tablespace allocation data structures.

• The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.

Note

The Tablespace Monitor and Table Monitor were deprecated in MySQL
5.6.3 and have been removed in MySQL 5.7.4. For the Tablespace Monitor,
equivalent functionality will be introduced before the GA release of MySQL
5.7. For the Table Monitor, equivalent information can be obtained from
InnoDB INFORMATION_SCHEMA tables.

For additional information about InnoDB monitors, see:

• Mark Leith: InnoDB Table and Tablespace Monitors

14.14.2 Enabling InnoDB Monitors

When you enable InnoDB monitors for periodic output, InnoDB writes their output to the mysqld
server standard error output (stderr). In this case, no output is sent to clients. When switched on,
InnoDB monitors print data about every 15 seconds. Server output usually is directed to the error log
(see Section 5.2.2, “The Error Log”). This data is useful in performance tuning. On Windows, start the
server from a command prompt in a console window with the --console option if you want to direct
the output to the window rather than to the error log.

http://www.markleith.co.uk/?p=25

Enabling InnoDB Monitors

2235

InnoDB sends diagnostic output to stderr or to files rather than to stdout or fixed-size memory
buffers, to avoid potential buffer overflows. As a side effect, the output of SHOW ENGINE INNODB
STATUS is written to a status file in the MySQL data directory every fifteen seconds. The name of
the file is innodb_status.pid, where pid is the server process ID. InnoDB removes the file
for a normal shutdown. If abnormal shutdowns have occurred, instances of these status files may
be present and must be removed manually. Before removing them, you might want to examine
them to see whether they contain useful information about the cause of abnormal shutdowns. The
innodb_status.pid file is created only if the configuration option innodb-status-file=1 is set.

InnoDB monitors should be enabled only when you actually want to see monitor information because
output generation does result in some performance decrement. Also, if you enable monitor output, your
error log may become quite large if you forget to disable it later.

Note

To assist with troubleshooting, InnoDB temporarily enables standard
InnoDB Monitor output under certain conditions. For more information, see
Section 14.18, “InnoDB Troubleshooting”.

Each monitor begins with a header containing a timestamp and the monitor name. For example:

=====================================
2014-10-16 18:37:29 0x7fc2a95c1700 INNODB MONITOR OUTPUT
=====================================

The header for the standard InnoDB Monitor (INNODB MONITOR OUTPUT) is also used for the Lock
Monitor because the latter produces the same output with the addition of extra lock information.

Enabling an InnoDB monitor for periodic output involves using a CREATE TABLE statement to create a
specially named InnoDB table that is associated with the monitor. For example, to enable the standard
InnoDB Monitor, you would create an InnoDB table named innodb_monitor.

Using CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through
MySQL's SQL parser. The only things that matter are the table name and that it be an InnoDB table.
The structure of the table is not relevant. If you shut down the server, the monitor does not restart
automatically when you restart the server. Drop the monitor table and issue a new CREATE TABLE
statement to start the monitor.

Note

The CREATE TABLE method of enabling InnoDB monitors was
removed in MySQL 5.7.4. Use the innodb_status_output and
innodb_status_output_locks system variables to enable the standard
InnoDB Monitor and InnoDB Lock Monitor.

The PROCESS privilege is required to enable and disable InnoDB Monitors.

Enabling the Standard InnoDB Monitor

Prior to MySQL 5.7.4, enable the standard InnoDB Monitor for periodic output by creating the
innodb_monitor table:

CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB Monitor, drop the table:

DROP TABLE innodb_monitor;

As of MySQL 5.7.4, enable the standard InnoDB Monitor by setting the innodb_status_output
system variable to ON.

Enabling InnoDB Monitors

2236

set GLOBAL innodb_status_output=ON;

To disable the standard InnoDB Monitor, set innodb_status_output to OFF.

When you shut down the server, the innodb_status_output variable is set to the default OFF
value.

Obtaining Standard InnoDB Monitor Output On Demand

As an alternative to enabling the standard InnoDB Monitor for periodic output, you can obtain standard
InnoDB Monitor output on demand using the SHOW ENGINE INNODB STATUS SQL statement, which
fetches the output to your client program. If you are using the mysql interactive client, the output is
more readable if you replace the usual semicolon statement terminator with \G:

mysql> SHOW ENGINE INNODB STATUS\G

SHOW ENGINE INNODB STATUS output also includes InnoDB Lock Monitor data if the InnoDB Lock
Monitor is enabled.

Enabling the InnoDB Lock Monitor

Prior to MySQL 5.7.4, enable the InnoDB Lock Monitor for periodic output by creating the
innodb_lock_monitor table:

CREATE TABLE innodb_lock_monitor (a INT) ENGINE=INNODB;

To disable the InnoDB Lock Monitor, drop the table:

DROP TABLE innodb_lock_monitor;

InnoDBLock Monitor data is printed with the standard InnoDB Monitor output. Both the InnoDB
standard Monitor and InnoDB Lock Monitor must be enabled to have InnoDBLock Monitor data printed
periodically.

As of MySQL 5.7.4, you can also enable the InnoDB Lock Monitor by setting the
innodb_status_output_locks system variable to ON. As with the CREATE TABLE method for
enabling InnoDB Monitors, both the InnoDB standard Monitor and InnoDB Lock Monitor must be
enabled to have InnoDBLock Monitor data printed periodically:

set GLOBAL innodb_status_output=ON;
set GLOBAL innodb_status_output_locks=ON;

When you shut down the server, the innodb_status_output and
innodb_status_output_locks variables are set to the default OFF value.

To disable the InnoDB Lock Monitor, set innodb_status_output_locks to OFF. Set
innodb_status_output to OFF to also disable the standard InnoDB Monitor.

Note

To enable the InnoDB Lock Monitor for SHOW ENGINE INNODB STATUS
output, you are only required to enable innodb_status_output_locks.

Enabling the InnoDB Tablespace Monitor

To enable the InnoDB Tablespace Monitor for periodic output, create the
innodb_tablespace_monitor table:

CREATE TABLE innodb_tablespace_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB Tablespace Monitor, drop the table:

InnoDB Standard Monitor and Lock Monitor Output

2237

DROP TABLE innodb_tablespace_monitor;

Note

The Tablespace Monitor was removed in MySQL 5.7.4. InnoDB tablespace
metadata can be obtained from INFORMATION_SCHEMA tables.

Enabling the InnoDB Table Monitor

To enable the InnoDB Table Monitor for periodic output, create the innodb_table_monitor table:

CREATE TABLE innodb_table_monitor (a INT) ENGINE=INNODB;

To disable the InnoDB Table Monitor, drop the table:

DROP TABLE innodb_table_monitor;

Note

The Tablespace Monitor was removed in MySQL 5.7.4. InnoDB tablespace
metadata can be obtained from INFORMATION_SCHEMA tables.

14.14.3 InnoDB Standard Monitor and Lock Monitor Output

The Lock Monitor is the same as the standard Monitor except that it includes additional lock
information. Enabling either monitor for periodic output turns on the same output stream, but the stream
includes extra information if the Lock Monitor is enabled. For example, if you enable the standard
InnoDB Monitor and InnoDB Lock Monitor, that turns on a single output stream. The stream includes
extra lock information until you disable the Lock Monitor.

Example InnoDB Monitor output (as of MySQL 5.7.6):

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
 Type: InnoDB
 Name:
Status:
=====================================
2014-10-16 18:37:29 0x7fc2a95c1700 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 20 seconds

BACKGROUND THREAD

srv_master_thread loops: 38 srv_active, 0 srv_shutdown, 252 srv_idle
srv_master_thread log flush and writes: 290

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 119
OS WAIT ARRAY INFO: signal count 103
Mutex spin waits 0, rounds 0, OS waits 0
RW-shared spins 38, rounds 76, OS waits 38
RW-excl spins 2, rounds 9383715, OS waits 3
RW-sx spins 0, rounds 0, OS waits 0
Spin rounds per wait: 0.00 mutex, 2.00 RW-shared, 4691857.50 RW-excl,
0.00 RW-sx

LATEST FOREIGN KEY ERROR

2014-10-16 18:35:18 0x7fc2a95c1700 Transaction:
TRANSACTION 1814, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1136, 3 row lock(s), undo log entries 3
MySQL thread id 2, OS thread handle 140474041767680, query id 74 localhost

InnoDB Standard Monitor and Lock Monitor Output

2238

root update
INSERT INTO child VALUES
 (NULL, 1)
 , (NULL, 2)
 , (NULL, 3)
 , (NULL, 4)
 , (NULL, 5)
 , (NULL, 6)
Foreign key constraint fails for table `mysql`.`child`:
,
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent`
 (`id`) ON DELETE CASCADE ON UPDATE CASCADE
Trying to add in child table, in index par_ind tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 80000003; asc ;;
 1: len 4; hex 80000003; asc ;;

But in parent table `mysql`.`parent`, in index PRIMARY,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000004; asc ;;
 1: len 6; hex 00000000070a; asc ;;
 2: len 7; hex aa0000011d0134; asc 4;;

LATEST DETECTED DEADLOCK

2014-10-16 18:36:30 0x7fc2a95c1700
*** (1) TRANSACTION:
TRANSACTION 1824, ACTIVE 9 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 1136, 1 row lock(s)
MySQL thread id 3, OS thread handle 140474041501440, query id 80 localhost
root updating
DELETE FROM t WHERE i = 1
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 35 page no 3 n bits 72 index GEN_CLUST_INDEX of table
`mysql`.`t` trx id 1824 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info
bits 0
 0: len 6; hex 000000000200; asc ;;
 1: len 6; hex 00000000071f; asc ;;
 2: len 7; hex b80000012b0110; asc + ;;
 3: len 4; hex 80000001; asc ;;

*** (2) TRANSACTION:
TRANSACTION 1825, ACTIVE 29 sec starting index read
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1136, 3 row lock(s)
MySQL thread id 2, OS thread handle 140474041767680, query id 81 localhost
root updating
DELETE FROM t WHERE i = 1
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 35 page no 3 n bits 72 index GEN_CLUST_INDEX of table
`mysql`.`t` trx id 1825 lock mode S
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info
bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000200; asc ;;
 1: len 6; hex 00000000071f; asc ;;
 2: len 7; hex b80000012b0110; asc + ;;
 3: len 4; hex 80000001; asc ;;

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 35 page no 3 n bits 72 index GEN_CLUST_INDEX of table
`mysql`.`t` trx id 1825 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info
bits 0
 0: len 6; hex 000000000200; asc ;;
 1: len 6; hex 00000000071f; asc ;;

InnoDB Standard Monitor and Lock Monitor Output

2239

 2: len 7; hex b80000012b0110; asc + ;;
 3: len 4; hex 80000001; asc ;;

*** WE ROLL BACK TRANSACTION (1)

TRANSACTIONS

Trx id counter 1950
Purge done for trx's n:o < 1933 undo n:o < 0 state: running but idle
History list length 23
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 421949033065200, not started
0 lock struct(s), heap size 1136, 0 row lock(s)
---TRANSACTION 421949033064280, not started
0 lock struct(s), heap size 1136, 0 row lock(s)
---TRANSACTION 1949, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
8 lock struct(s), heap size 1136, 1850 row lock(s), undo log entries 17415
MySQL thread id 4, OS thread handle 140474041235200, query id 176 localhost
root update
INSERT INTO `salaries` VALUES (55723,39746,'1997-02-25','1998-02-25'),
(55723,40758,'1998-02-25','1999-02-25'),(55723,44559,'1999-02-25','2000-02-25'),
(55723,44081,'2000-02-25','2001-02-24'),(55723,44112,'2001-02-24','2001-08-16'),
(55724,46461,'1996-12-06','1997-12-06'),(55724,48916,'1997-12-06','1998-12-06'),
(55724,51269,'1998-12-06','1999-12-06'),(55724,51932,'1999-12-06','2000-12-05'),
(55724,52617,'2000-12-05','2001-12-05'),(55724,56658,'2001-12-05','9999-01-01'),
(55725,40000,'1993-01-30','1994-01-30'),(55725,41472,'1994-01-30','1995-01-30'),
(55725,45293,'1995-01-30','1996-01-30'),(55725,473

FILE I/O

I/O thread 0 state: waiting for completed aio requests (insert buffer thread)
I/O thread 1 state: waiting for completed aio requests (log thread)
I/O thread 2 state: waiting for completed aio requests (read thread)
I/O thread 3 state: waiting for completed aio requests (read thread)
I/O thread 4 state: waiting for completed aio requests (read thread)
I/O thread 5 state: waiting for completed aio requests (read thread)
I/O thread 6 state: waiting for completed aio requests (write thread)
I/O thread 7 state: waiting for completed aio requests (write thread)
I/O thread 8 state: waiting for completed aio requests (write thread)
I/O thread 9 state: waiting for completed aio requests (write thread)
Pending normal aio reads: 0 [0, 0, 0, 0] , aio writes: 0 [0, 0, 0, 0] ,
 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
224 OS file reads, 5770 OS file writes, 803 OS fsyncs
0.00 reads/s, 0 avg bytes/read, 264.84 writes/s, 23.05 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:
 insert 0, delete mark 0, delete 0
Hash table size 4425293, node heap has 444 buffer(s)
68015.25 hash searches/s, 106259.24 non-hash searches/s

LOG

Log sequence number 165913808
Log flushed up to 164814979
Pages flushed up to 141544038
Last checkpoint at 130503656
0 pending log flushes, 0 pending chkp writes
258 log i/o's done, 6.65 log i/o's/second

BUFFER POOL AND MEMORY

Total large memory allocated 2198863872
Dictionary memory allocated 776332
Buffer pool size 131072
Free buffers 124908

InnoDB Standard Monitor and Lock Monitor Output

2240

Database pages 5720
Old database pages 2071
Modified db pages 910
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 4, not young 0
0.10 youngs/s, 0.00 non-youngs/s
Pages read 197, created 5523, written 5060
0.00 reads/s, 190.89 creates/s, 244.94 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not
0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read
ahead 0.00/s
LRU len: 5720, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

INDIVIDUAL BUFFER POOL INFO

---BUFFER POOL 0
Buffer pool size 65536
Free buffers 62412
Database pages 2899
Old database pages 1050
Modified db pages 449
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 3, not young 0
0.05 youngs/s, 0.00 non-youngs/s
Pages read 107, created 2792, written 2586
0.00 reads/s, 92.65 creates/s, 122.89 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 2899, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
---BUFFER POOL 1
Buffer pool size 65536
Free buffers 62496
Database pages 2821
Old database pages 1021
Modified db pages 461
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 1, not young 0
0.05 youngs/s, 0.00 non-youngs/s
Pages read 90, created 2731, written 2474
0.00 reads/s, 98.25 creates/s, 122.04 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 2821, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
0 read views open inside InnoDB
Process ID=35909, Main thread ID=140471692396288, state: sleeping
Number of rows inserted 1526363, updated 0, deleted 3, read 11
52671.72 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s

END OF INNODB MONITOR OUTPUT
============================

Standard InnoDB Monitor output is limited to 1MB when produced using the SHOW ENGINE INNODB
STATUS statement. This limit does not apply to output written to the server's error output.

Some notes on the output sections:

Status

InnoDB Standard Monitor and Lock Monitor Output

2241

This section shows the timestamp, the monitor name, and the number of seconds that per-second
averages are based on. The number of seconds is the elapsed time between the current time and the
last time InnoDB Monitor output was printed.

BACKGROUND THREAD

The srv_master_thread lines shows work done by the main background thread.

SEMAPHORES

This section reports threads waiting for a semaphore and statistics on how many times threads have
needed a spin or a wait on a mutex or a rw-lock semaphore. A large number of threads waiting for
semaphores may be a result of disk I/O, or contention problems inside InnoDB. Contention can be
due to heavy parallelism of queries or problems in operating system thread scheduling. Setting the
innodb_thread_concurrency system variable smaller than the default value might help in such
situations. The Spin rounds per wait line shows the number of spinlock rounds per OS wait for a
mutex.

The line that reports mutex spin waits, rounds, and OS waits information was removed from SHOW
ENGINE INNODB STATUS output in MySQL 5.7.8. Mutex metrics are reported by SHOW ENGINE
INNODB MUTEX.

LATEST FOREIGN KEY ERROR

This section provides information about the most recent foreign key constraint error. It is not present if
no such error has occurred. The contents include the statement that failed as well as information about
the constraint that failed and the referenced and referencing tables.

LATEST DETECTED DEADLOCK

This section provides information about the most recent deadlock. It is not present if no deadlock has
occurred. The contents show which transactions are involved, the statement each was attempting to
execute, the locks they have and need, and which transaction InnoDB decided to roll back to break
the deadlock. The lock modes reported in this section are explained in Section 14.2.2.1, “InnoDB Lock
Modes”.

TRANSACTIONS

If this section reports lock waits, your applications might have lock contention. The output can also help
to trace the reasons for transaction deadlocks.

FILE I/O

This section provides information about threads that InnoDB uses to perform various types of I/O. The
first few of these are dedicated to general InnoDB processing. The contents also display information
for pending I/O operations and statistics for I/O performance.

The number of these threads are controlled by the innodb_read_io_threads and
innodb_write_io_threads parameters. See Section 14.11, “InnoDB Startup Options and System
Variables”.

INSERT BUFFER AND ADAPTIVE HASH INDEX

This section shows the status of the InnoDB insert buffer (also referred to as the change buffer) and
the adaptive hash index.

Change buffer status information includes:

• size: The number of pages used within the change buffer. Change buffer size is equal to seg size
- (1 + free list len). The 1 + value represents the change buffer header page.

• free list len: The number of pages free within the change buffer.

InnoDB Tablespace Monitor Output

2242

• seg size: The size of the change buffer, in pages.

• merges: The total number of change buffer merges.

• merged operations - insert: The number of inserted records merged.

• merged operations - delete mark: The number of deleted records merged.

• merged operations - delete: The number of purge records merged.

• discarded operations - insert: The number of insert merge operations discarded.

• discarded operations - delete mark: The number of delete merge operations discarded.

• discarded operations - delete: The number of purge merge operations discarded.

For related information, see Section 14.2.7.5, “Change Buffer”.

Adaptive hash index status information includes:

• Hash table size: The total number of array cells allocated to the adaptive hash index.

• node heap has # buffer(s): The total number of pages allocated to the adaptive hash index.

• hash searches/s: The per second average of searches satisfied by the adaptive hash index.

• non-hash searches/s: The per second average of searches not satisfied by the adaptive hash
index.

For related information, see Section 14.2.7.6, “Adaptive Hash Indexes”.

LOG

This section displays information about the InnoDB log. The contents include the current log sequence
number, how far the log has been flushed to disk, and the position at which InnoDB last took a
checkpoint. (See Section 14.9.3, “InnoDB Checkpoints”.) The section also displays information about
pending writes and write performance statistics.

BUFFER POOL AND MEMORY

This section gives you statistics on pages read and written. You can calculate from these numbers how
many data file I/O operations your queries currently are doing.

For additional information about the operation of the buffer pool, see Section 8.10.1, “The InnoDB
Buffer Pool”.

ROW OPERATIONS

This section shows what the main thread is doing, including the number and performance rate for each
type of row operation.

14.14.4 InnoDB Tablespace Monitor Output

Note

The Tablespace Monitor was removed in MySQL 5.7.4. InnoDB tablespace
metadata can be obtained from INFORMATION_SCHEMA tables.

The InnoDB Tablespace Monitor prints information about the file segments in the shared tablespace
and validates the tablespace allocation data structures. The Tablespace Monitor does not describe file-
per-table tablespaces created with the innodb_file_per_table option.

Example InnoDB Tablespace Monitor output:

InnoDB Tablespace Monitor Output

2243

==
090408 21:28:09 INNODB TABLESPACE MONITOR OUTPUT
==
FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845
SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14
SEGMENT id 0 2 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 3 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0
SEGMENT id 0 488 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 17 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 171 space 0; page 2; res 592 used 481; full ext 7
fragm pages 16; free extents 0; not full extents 2: pages 17
SEGMENT id 0 172 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 173 space 0; page 2; res 96 used 44; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 12
...
SEGMENT id 0 601 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
NUMBER of file segments: 73
Validating tablespace
Validation ok

END OF INNODB TABLESPACE MONITOR OUTPUT
=======================================

The Tablespace Monitor output includes information about the shared tablespace as a whole, followed
by a list containing a breakdown for each segment within the tablespace.

In this example using the default page size, the tablespace consists of database pages that are 16KB
each. The pages are grouped into extents of size 1MB (64 consecutive pages).

The initial part of the output that displays overall tablespace information has this format:

FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845

Overall tablespace information includes these values:

• id: The tablespace ID. A value of 0 refers to the shared tablespace.

• size: The current tablespace size in pages.

• free limit: The minimum page number for which the free list has not been initialized. Pages at or
above this limit are free.

• free extents: The number of free extents.

• not full frag extents, used pages: The number of fragment extents that are not completely
filled, and the number of pages in those extents that have been allocated.

• full frag extents: The number of completely full fragment extents.

• first seg id not used: The first unused segment ID.

InnoDB Table Monitor Output

2244

Individual segment information has this format:

SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0

Segment information includes these values:

id: The segment ID.

space, page: The tablespace number and page within the tablespace where the segment “inode” is
located. A tablespace number of 0 indicates the shared tablespace. InnoDB uses inodes to keep track
of segments in the tablespace. The other fields displayed for a segment (id, res, and so forth) are
derived from information in the inode.

res: The number of pages allocated (reserved) for the segment.

used: The number of allocated pages in use by the segment.

full ext: The number of extents allocated for the segment that are completely used.

fragm pages: The number of initial pages that have been allocated to the segment.

free extents: The number of extents allocated for the segment that are completely unused.

not full extents: The number of extents allocated for the segment that are partially used.

pages: The number of pages used within the not-full extents.

When a segment grows, it starts as a single page, and InnoDB allocates the first pages for it one at a
time, up to 32 pages (this is the fragm pages value). After that, InnoDB allocates complete extents.
InnoDB can add up to 4 extents at a time to a large segment to ensure good sequentiality of data.

For the example segment shown earlier, it has 32 fragment pages, plus 2 full extents (64 pages each),
for a total of 160 pages used out of 160 pages allocated. The following segment has 32 fragment
pages and one partially full extent using 14 pages for a total of 46 pages used out of 96 pages
allocated:

SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14

It is possible for a segment that has extents allocated to it to have a fragm pages value less than 32
if some of the individual pages have been deallocated subsequent to extent allocation.

14.14.5 InnoDB Table Monitor Output

Note

The InnoDB Table Monitor was removed in MySQL 5.7.4. Equivalent
information can be obtained from InnoDB INFORMATION_SCHEMA tables. See
Section 20.30, “INFORMATION_SCHEMA Tables for InnoDB”.

The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.

The output contains one section per table. The SYS_FOREIGN and SYS_FOREIGN_COLS sections are
for internal data dictionary tables that maintain information about foreign keys. There are also sections
for the Table Monitor table and each user-created InnoDB table. Suppose that the following two tables
have been created in the test database:

CREATE TABLE parent
(
 par_id INT NOT NULL,

InnoDB Table Monitor Output

2245

 fname CHAR(20),
 lname CHAR(20),
 PRIMARY KEY (par_id),
 UNIQUE INDEX (lname, fname)
) ENGINE = INNODB;

CREATE TABLE child
(
 par_id INT NOT NULL,
 child_id INT NOT NULL,
 name VARCHAR(40),
 birth DATE,
 weight DECIMAL(10,2),
 misc_info VARCHAR(255),
 last_update TIMESTAMP,
 PRIMARY KEY (par_id, child_id),
 INDEX (name),
 FOREIGN KEY (par_id) REFERENCES parent (par_id)
 ON DELETE CASCADE
 ON UPDATE CASCADE
) ENGINE = INNODB;

Then the Table Monitor output will look something like this (reformatted slightly):

===
090420 12:09:32 INNODB TABLE MONITOR OUTPUT
===

TABLE: name SYS_FOREIGN, id 0 11, columns 7, indexes 3, appr.rows 1
 COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
 FOR_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 REF_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 N_COLS: DATA_INT len 4;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name ID_IND, id 0 11, fields 1/6, uniq 1, type 3
 root page 46, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: ID DB_TRX_ID DB_ROLL_PTR FOR_NAME REF_NAME N_COLS
 INDEX: name FOR_IND, id 0 12, fields 1/2, uniq 2, type 0
 root page 47, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: FOR_NAME ID
 INDEX: name REF_IND, id 0 13, fields 1/2, uniq 2, type 0
 root page 48, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: REF_NAME ID

TABLE: name SYS_FOREIGN_COLS, id 0 12, columns 7, indexes 1, appr.rows 1
 COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
 POS: DATA_INT len 4;
 FOR_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 REF_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name ID_IND, id 0 14, fields 2/6, uniq 2, type 3
 root page 49, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: ID POS DB_TRX_ID DB_ROLL_PTR FOR_COL_NAME REF_COL_NAME

TABLE: name test/child, id 0 14, columns 10, indexes 2, appr.rows 201
 COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 child_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 name: DATA_VARCHAR prtype 524303 len 40;
 birth: DATA_INT DATA_BINARY_TYPE len 3;
 weight: DATA_FIXBINARY DATA_BINARY_TYPE len 5;
 misc_info: DATA_VARCHAR prtype 524303 len 255;
 last_update: DATA_INT DATA_UNSIGNED DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name PRIMARY, id 0 17, fields 2/9, uniq 2, type 3
 root page 52, appr.key vals 201, leaf pages 5, size pages 6
 FIELDS: par_id child_id DB_TRX_ID DB_ROLL_PTR name birth weight misc_info last_update
 INDEX: name name, id 0 18, fields 1/3, uniq 3, type 0
 root page 53, appr.key vals 210, leaf pages 1, size pages 1

InnoDB Table Monitor Output

2246

 FIELDS: name par_id child_id
 FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
 REFERENCES test/parent (par_id)

TABLE: name test/innodb_table_monitor, id 0 15, columns 4, indexes 1, appr.rows 0
 COLUMNS: i: DATA_INT DATA_BINARY_TYPE len 4;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name GEN_CLUST_INDEX, id 0 19, fields 0/4, uniq 1, type 1
 root page 193, appr.key vals 0, leaf pages 1, size pages 1
 FIELDS: DB_ROW_ID DB_TRX_ID DB_ROLL_PTR i

TABLE: name test/parent, id 0 13, columns 6, indexes 2, appr.rows 299
 COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 fname: DATA_CHAR prtype 524542 len 20;
 lname: DATA_CHAR prtype 524542 len 20;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name PRIMARY, id 0 15, fields 1/5, uniq 1, type 3
 root page 50, appr.key vals 299, leaf pages 2, size pages 3
 FIELDS: par_id DB_TRX_ID DB_ROLL_PTR fname lname
 INDEX: name lname, id 0 16, fields 2/3, uniq 2, type 2
 root page 51, appr.key vals 300, leaf pages 1, size pages 1
 FIELDS: lname fname par_id
 FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
 REFERENCES test/parent (par_id)

END OF INNODB TABLE MONITOR OUTPUT
==================================

For each table, Table Monitor output contains a section that displays general information about the
table and specific information about its columns, indexes, and foreign keys.

The general information for each table includes the table name (in db_name/tbl_name format except
for internal tables), its ID, the number of columns and indexes, and an approximate row count.

The COLUMNS part of a table section lists each column in the table. Information for each column
indicates its name and data type characteristics. Some internal columns are added by InnoDB, such
as DB_ROW_ID (row ID), DB_TRX_ID (transaction ID), and DB_ROLL_PTR (a pointer to the rollback/
undo data).

• DATA_xxx: These symbols indicate the data type. There may be multiple DATA_xxx symbols for a
given column.

• prtype: The column's “precise” type. This field includes information such as the column data type,
character set code, nullability, signedness, and whether it is a binary string. This field is described in
the innobase/include/data0type.h source file.

• len: The column length in bytes.

Each INDEX part of the table section provides the name and characteristics of one table index:

• name: The index name. If the name is PRIMARY, the index is a primary key. If the name is
GEN_CLUST_INDEX, the index is the clustered index that is created automatically if the table
definition doesn't include a primary key or non-NULL unique index. See Section 14.2.7.2, “Clustered
and Secondary Indexes”.

• id: The index ID.

• fields: The number of fields in the index, as a value in m/n format:

• m is the number of user-defined columns; that is, the number of columns you would see in the
index definition in a CREATE TABLE statement.

• n is the total number of index columns, including those added internally. For the clustered index,
the total includes the other columns in the table definition, plus any columns added internally. For

InnoDB Backup and Recovery

2247

a secondary index, the total includes the columns from the primary key that are not part of the
secondary index.

• uniq: The number of leading fields that are enough to determine index values uniquely.

• type: The index type. This is a bit field. For example, 1 indicates a clustered index and 2 indicates a
unique index, so a clustered index (which always contains unique values), will have a type value of
3. An index with a type value of 0 is neither clustered nor unique. The flag values are defined in the
innobase/include/dict0mem.h source file.

• root page: The index root page number.

• appr. key vals: The approximate index cardinality.

• leaf pages: The approximate number of leaf pages in the index.

• size pages: The approximate total number of pages in the index.

• FIELDS: The names of the fields in the index. For a clustered index that was generated
automatically, the field list begins with the internal DB_ROW_ID (row ID) field. DB_TRX_ID and
DB_ROLL_PTR are always added internally to the clustered index, following the fields that comprise
the primary key. For a secondary index, the final fields are those from the primary key that are not
part of the secondary index.

The end of the table section lists the FOREIGN KEY definitions that apply to the table. This information
appears whether the table is a referencing or referenced table.

14.15 InnoDB Backup and Recovery
The key to safe database management is making regular backups. Depending on your data volume,
number of MySQL servers, and database workload, you can use these techniques, alone or in
combination: hot backup with MySQL Enterprise Backup; cold backup by copying files while the
MySQL server is shut down; physical backup for fast operation (especially for restore); logical backup
with mysqldump for smaller data volumes or to record the structure of schema objects.

Hot Backups

The mysqlbackup command, part of the MySQL Enterprise Backup component, lets you back up a
running MySQL instance, including InnoDB and MyISAM tables, with minimal disruption to operations
while producing a consistent snapshot of the database. When mysqlbackup is copying InnoDB
tables, reads and writes to both InnoDB and MyISAM tables can continue. During the copying of
MyISAM tables, reads (but not writes) to those tables are permitted. MySQL Enterprise Backup can
also create compressed backup files, and back up subsets of tables and databases. In conjunction
with MySQL’s binary log, users can perform point-in-time recovery. MySQL Enterprise Backup is part
of the MySQL Enterprise subscription. For more details, see Section 25.2, “MySQL Enterprise Backup
Overview”.

Cold Backups

If you can shut down your MySQL server, you can make a binary backup that consists of all files used
by InnoDB to manage its tables. Use the following procedure:

1. Do a slow shutdown of the MySQL server and make sure that it stops without errors.

2. Copy all InnoDB data files (ibdata files and .ibd files) into a safe place.

3. Copy all the .frm files for InnoDB tables to a safe place.

4. Copy all InnoDB log files (ib_logfile files) to a safe place.

5. Copy your my.cnf configuration file or files to a safe place.

Alternative Backup Types

2248

Alternative Backup Types

In addition to making binary backups as just described, regularly make dumps of your tables with
mysqldump. A binary file might be corrupted without you noticing it. Dumped tables are stored
into text files that are human-readable, so spotting table corruption becomes easier. Also, because
the format is simpler, the chance for serious data corruption is smaller. mysqldump also has a --
single-transaction option for making a consistent snapshot without locking out other clients. See
Section 7.3.1, “Establishing a Backup Policy”.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy of
your database at database sites requiring high availability.

Performing Recovery

To recover your InnoDB database to the present from the time at which the binary backup was made,
you must run your MySQL server with binary logging turned on, even before taking the backup. To
achieve point-in-time recovery after restoring a backup, you can apply changes from the binary log that
occurred after the backup was made. See Section 7.5, “Point-in-Time (Incremental) Recovery Using
the Binary Log”.

To recover from a crash of your MySQL server, the only requirement is to restart it. InnoDB
automatically checks the logs and performs a roll-forward of the database to the present. InnoDB
automatically rolls back uncommitted transactions that were present at the time of the crash. During
recovery, mysqld displays output something like this:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

If your database becomes corrupted or disk failure occurs, you must perform the recovery using a
backup. In the case of corruption, first find a backup that is not corrupted. After restoring the base
backup, do a point-in-time recovery from the binary log files using mysqlbinlog and mysql to restore
the changes that occurred after the backup was made.

In some cases of database corruption, it is enough just to dump, drop, and re-create one or a few
corrupt tables. You can use the CHECK TABLE SQL statement to check whether a table is corrupt,
although CHECK TABLE naturally cannot detect every possible kind of corruption. You can use the
Tablespace Monitor to check the integrity of the file space management inside the tablespace files.

In some cases, apparent database page corruption is actually due to the operating system corrupting
its own file cache, and the data on disk may be okay. It is best first to try restarting your computer.
Doing so may eliminate errors that appeared to be database page corruption. If MySQL still has trouble
starting because of InnoDB consistency problems, see Section 14.18.2, “Forcing InnoDB Recovery”
for steps to start the instance in a diagnostic mode where you can dump the data.

The InnoDB Recovery Process

2249

14.15.1 The InnoDB Recovery Process

InnoDB crash recovery consists of several steps:

• Applying the redo log: Redo log application is the first step and is performed during initialization,
before accepting any connections. If all changes were flushed from the buffer pool to the tablespaces
(ibdata* and *.ibd files) at the time of the shutdown or crash, the redo log application can be
skipped. If the redo log files are missing at startup, InnoDB skips the redo log application.

Removing redo logs to speed up the recovery process is not recommended, even if some data loss
is acceptable. Removing redo logs should only be considered an option after a clean shutdown is
performed, with innodb_fast_shutdown set to 0 or 1.

• Rolling back incomplete transactions: Any transactions that were active at the time of crash or fast
shutdown. The time it takes to roll back an incomplete transaction can be three or four times the
amount of time a transaction is active before it is interrupted, depending on server load.

You cannot cancel transactions that are in the process of being rolled back. In extreme cases, when
rolling back transactions is expected to take an exceptionally long time, it may be faster to start
InnoDB with an innodb_force_recovery setting of 3 or greater. See Section 14.18.2, “Forcing
InnoDB Recovery” for more information.

• Change buffer merge: Applying changes from the change buffer (part of the system tablespace) to
leaf pages of secondary indexes, as the index pages are read to the buffer pool.

• Purge: Deleting delete-marked records that are no longer visible for any active transaction.

The steps that follow redo log application do not depend on the redo log (other than for logging the
writes) and are performed in parallel with normal processing. Of these, only rollback of incomplete
transactions is special to crash recovery. The insert buffer merge and the purge are performed during
normal processing.

After redo log application, InnoDB attempts to accept connections as early as possible, to reduce
downtime. As part of crash recovery, InnoDB rolls back any transactions that were not committed or
in XA PREPARE state when the server crashed. The rollback is performed by a background thread,
executed in parallel with transactions from new connections. Until the rollback operation is completed,
new connections may encounter locking conflicts with recovered transactions.

In most situations, even if the MySQL server was killed unexpectedly in the middle of heavy activity,
the recovery process happens automatically and no action is needed from the DBA. If a hardware
failure or severe system error corrupted InnoDB data, MySQL might refuse to start. In that case, see
Section 14.18.2, “Forcing InnoDB Recovery” for the steps to troubleshoot such an issue.

For information about the binary log and InnoDB crash recovery, see Section 5.2.4, “The Binary Log”.

14.15.2 Tablespace Discovery During Crash Recovery

If, during crash recovery, InnoDB encounters redo logs written after the last log checkpoint, redo logs
must be applied to tablespace files that have changed since the last log checkpoint.

Prior to MySQL 5.7.5, tablespace files were referenced in redo logs by a space_id, which is a
numeric identifier. In the file system, however, file-per-table tablespaces are known by a *.ibd file
name, which required that InnoDB construct a “space_id-filename” map in order to apply the redo logs.
To construct a map, InnoDB would traverse the data directory, reading the first page of each *.ibd
file. This process could result in unnecessary downtime for MySQL instances with numerous *.ibd
files.

In MySQL 5.6.6, the introduction of support for the CREATE TABLE DATA DIRECTORY clause
for file-per-table tablespaces further complicated “tablespace discovery”. The DATA DIRECTORY
enhancement introduced .isl files as placeholders that point to the actual location of *.ibd files.

InnoDB and MySQL Replication

2250

In MySQL 5.7.5, instead of reading the first page of all $datadir/*/*.ibd files and checking
the contents of $datadir/*/*.isl files before applying redo logs, a new redo log record type
(MLOG_FILE_NAME) identifies tablespaces that have been modified since the last checkpoint. Benefits
of the MLOG_FILE_NAME redo log record type include:

• Elimination of file system scans prior to redo log application. The MLOG_FILE_NAME redo log
record provides the information necessary to identify tablespaces that have changed since the last
checkpoint.

• Only *.ibd files modified since the last checkpoint are accessed.

• *.ibd files that are not attached to the InnoDB instance are ignored when redo logs are applied.

• InnoDB no longer silently discards redo log records for missing *.ibd files unless there is an
MLOG_FILE_DELETE record in the redo log. For example, if a file rename fails, resulting in a
“missing” *.ibd file, you can manually rename the file and restart crash recovery. Missing *.ibd
files are ignored in innodb_force_recovery mode.

• The entire redo log is read from the last checkpoint to the detected logical end of the log. If
tablespace files that are referenced in the scanned portion of the redo log are missing, startup is
refused, avoiding potential version mismatch failures during redo log processing.

• Failure scenarios related to inconsistent *.isl files are eliminated. *.isl files are now only used
after redo log apply, when opening tables.

In MySQL 5.7.6, two discovery searches for tablespaces were added with the introduction of InnoDB
general tablespaces.

• The first search traverses SYS_TABLESPACES and related entries in SYS_DATAFILES, in the
internal data dictionary. All previously created general tablespaces are opened, including general
tablespaces that are empty.

• The second search traverses SYS_TABLES, in the internal data dictionary. For tables with a SPACE
ID greater than 0, the SPACE ID is looked up in SYS_DATAFILES to ensure that the tablespace is
opened.

14.16 InnoDB and MySQL Replication

MySQL replication works for InnoDB tables as it does for MyISAM tables. It is also possible to use
replication in a way where the storage engine on the slave is not the same as the original storage
engine on the master. For example, you can replicate modifications to an InnoDB table on the master
to a MyISAM table on the slave.

To set up a new slave for a master, make a copy of the InnoDB tablespace and the log
files, as well as the .frm files of the InnoDB tables, and move the copies to the slave. If the
innodb_file_per_table option is enabled, copy the .ibd files as well. For the proper procedure to
do this, see Section 14.15, “InnoDB Backup and Recovery”.

To make a new slave without taking down the master or an existing slave, use the MySQL Enterprise
Backup product. If you can shut down the master or an existing slave, take a cold backup of the
InnoDB tablespaces and log files and use that to set up a slave.

Transactions that fail on the master do not affect replication at all. MySQL replication is based on the
binary log where MySQL writes SQL statements that modify data. A transaction that fails (for example,
because of a foreign key violation, or because it is rolled back) is not written to the binary log, so it is
not sent to slaves. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

Replication and CASCADE. Cascading actions for InnoDB tables on the master are replicated
on the slave only if the tables sharing the foreign key relation use InnoDB on both the master and
slave. This is true whether you are using statement-based or row-based replication. Suppose that you

InnoDB and MySQL Replication

2251

have started replication, and then create two tables on the master using the following CREATE TABLE
statements:

CREATE TABLE fc1 (
 i INT PRIMARY KEY,
 j INT
) ENGINE = InnoDB;

CREATE TABLE fc2 (
 m INT PRIMARY KEY,
 n INT,
 FOREIGN KEY ni (n) REFERENCES fc1 (i)
 ON DELETE CASCADE
) ENGINE = InnoDB;

Suppose that the slave does not have InnoDB support enabled. If this is the case, then the tables
on the slave are created, but they use the MyISAM storage engine, and the FOREIGN KEY option is
ignored. Now we insert some rows into the tables on the master:

master> INSERT INTO fc1 VALUES (1, 1), (2, 2);
Query OK, 2 rows affected (0.09 sec)
Records: 2 Duplicates: 0 Warnings: 0

master> INSERT INTO fc2 VALUES (1, 1), (2, 2), (3, 1);
Query OK, 3 rows affected (0.19 sec)
Records: 3 Duplicates: 0 Warnings: 0

At this point, on both the master and the slave, table fc1 contains 2 rows, and table fc2 contains 3
rows, as shown here:

master> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

master> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

slave> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

slave> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

InnoDB Integration with memcached

2252

Now suppose that you perform the following DELETE statement on the master:

master> DELETE FROM fc1 WHERE i=1;
Query OK, 1 row affected (0.09 sec)

Due to the cascade, table fc2 on the master now contains only 1 row:

master> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 2 | 2 |
+---+---+
1 row in set (0.00 sec)

However, the cascade does not propagate on the slave because on the slave the DELETE for fc1
deletes no rows from fc2. The slave's copy of fc2 still contains all of the rows that were originally
inserted:

slave> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
1	1
3	1
2	2
+---+---+
3 rows in set (0.00 sec)

This difference is due to the fact that the cascading deletes are handled internally by the InnoDB
storage engine, which means that none of the changes are logged.

14.17 InnoDB Integration with memcached
The memcached daemon is frequently used as an in-memory caching layer in front of a MySQL
database server. With the introduction of the InnoDB memcached plugin, MySQL now allows direct
access to InnoDB tables using the memcached protocol and client libraries.

The InnoDB memcached plugin provides an integrated memcached daemon that can automatically
store and retrieve data from InnoDB tables, turning the MySQL server into a fast “key-value store”.
Instead of formulating queries in SQL, you can perform simple get, set, and increment operations that
avoid the performance overhead of SQL parsing and constructing a query optimization plan. You can
also access the same InnoDB tables through SQL for convenience, complex queries, bulk operations,
application compatibility, and other strengths of traditional database software.

This “NoSQL-style” interface uses the memcached API to speed up database operations, letting
InnoDB handle memory caching using its buffer pool mechanism. Data modified through memcached
operations such as ADD, SET, INCR are stored to disk, using InnoDB mechanisms such as change
buffering, the doublewrite buffer, and crash recovery. The combination of memcached simplicity
and InnoDB reliability and consistency provides users with the best of both worlds, as explained in
Section 14.17.1, “Benefits of the InnoDB / memcached Combination”. For architectural details about
how the components fit together, see Section 14.17.2, “Architecture of InnoDB and memcached
Integration”.

14.17.1 Benefits of the InnoDB / memcached Combination

This section outlines advantages of the memcached interface to InnoDB tables introduced in
Section 14.17, “InnoDB Integration with memcached”. The combination of InnoDB tables and
memcached offers advantages over using either by themselves:

• Direct access to the InnoDB storage engine avoids the parsing and planning overhead of SQL.

Architecture of InnoDB and memcached Integration

2253

• Running memcached in the same process space as the MySQL server avoids the network overhead
of passing requests back and forth.

• Data that is written using the memcached protocol is transparently written to an InnoDB table,
without going through the MySQL SQL layer. You can control the frequency of writes to achieve
higher raw performance when updating non-critical data.

• Data that is requested through the memcached protocol is transparently queried from an InnoDB
table, without going through the MySQL SQL layer.

• Subsequent requests for the same data is served from the InnoDB buffer pool. The buffer pool
handles the in-memory caching. You can tune the performance of data-intensive operations using
the familiar InnoDB configuration options.

• Data can be unstructured or structured, depending on the type of application. You can make an all-
new table for the data, or map the NoSQL-style processing to one or more existing tables.

• InnoDB can handle composing and decomposing multiple column values into a single memcached
item value, reducing the amount of string parsing and concatenation required in your application. For
example, you might store a string value 2|4|6|8 in the memcached cache, and InnoDB splits that
value based on a separator character, then stores the result into four numeric columns.

• The transfer between memory and disk is handled automatically, simplifying application logic.

• Data is stored in a MySQL database to protect against crashes, outages, and corruption.

• You can still access the underlying table through SQL, for reporting, analysis, ad hoc queries, bulk
loading, multi-step transactional computations, set operations such as union and intersection, and
other operations well suited to the expressiveness and flexibility of SQL.

• You can ensure high availability of the NoSQL data by using this feature on a master server in
combination with MySQL replication.

• The integration of memcached with MySQL provides a painless way to make the in-memory data
persistent, so you can use it for more significant kinds of data. You can put more add, incr, and
similar write operations into your application, without worrying that the data could disappear at any
moment. You can stop and start the memcached server without losing updates made to the cached
data. To guard against unexpected outages, you can take advantage of InnoDB crash recovery,
replication, and backup procedures.

• The way InnoDB does fast primary key lookups is a natural fit for memcached single-item queries.
The direct, low-level database access path used by the memcached plugin is much more efficient for
key-value lookups than equivalent SQL queries.

• The serialization features of memcached, which can turn complex data structures, binary files, or
even code blocks into storeable strings, offer a simple way to get such objects into a database.

• Because you can access the underlying data through SQL, you can produce reports, search or
update across multiple keys, and call functions such as AVG() and MAX() on the memcached data.
All of these operations are expensive or complicated with the standalone memcached.

• You do not need to manually load data into memcached at startup. As particular keys are requested
by an application, the values are retrieved from the database automatically, and cached in memory
using the InnoDB buffer pool.

• Because memcached consumes relatively little CPU, and its memory footprint is easy to control, it
can run comfortably alongside a MySQL instance on the same system.

• Because data consistency is enforced by the mechanisms used for regular InnoDB tables, you do
not have to worry about stale memcached data or fallback logic to query the database in the case of
a missing key.

14.17.2 Architecture of InnoDB and memcached Integration

Architecture of InnoDB and memcached Integration

2254

This section describes how the memcached daemon is integrated into the MySQL Server.

When integrated with MySQL Server, memcached is implemented as a MySQL plugin daemon,
accessing the InnoDB storage engine directly and bypassing the SQL layer:

Features provided in the current release:

• memcached as a daemon plugin of mysqld: both mysqld and memcached run in the same process
space, with very low latency access to data.

• Direct access to InnoDB tables, bypassing the SQL parser, the optimizer, and even the Handler API
layer.

• Standard memcached protocols, both the text-based protocol and the binary protocol. The InnoDB +
memcached combination passes all 55 compatibility tests from the memcapable command.

• Multi-column support: you can map multiple columns into the “value” part of the key/value store, with
column values delimited by a user-specified separator character.

• By default, you use the memcached protocol to read and write data directly to InnoDB, and let
MySQL manage the in-memory caching through the InnoDB buffer pool. The default settings
represent the combination of high reliability with the fewest surprises for database applications. For
example, the default settings avoid uncommitted data on the database side, or stale data returned for
memcached get requests.

• Advanced users can configure the system as a traditional memcached server, with all data cached
only in the memcached default engine (memory), or use a combination of the “memcached default
engine” (memory caching) and the InnoDB memcached engine (InnoDB as backend persistent
storage).

• You can control how often data is passed back and forth between InnoDB and
memcached operations through the innodb_api_bk_commit_interval,

Architecture of InnoDB and memcached Integration

2255

daemon_memcached_r_batch_size, and daemon_memcached_w_batch_size configuration
options. Both the batch size options default to a value of 1 for maximum reliability.

• You can specify memcached configuration options through the MySQL configuration variable
daemon_memcached_option. For example, you might change the port that memcached listens on,
reduce the maximum number of simultaneous connections, change the maximum memory size for a
key/value pair, or enable debugging messages for the error log.

• A configuration option innodb_api_trx_level lets you control the transaction isolation level
on queries processed by the memcached interface. Although memcached has no concept of
transactions, you might use this property to control how soon memcached sees changes caused by
SQL statements, if you issue DML statements on the same table that memcached interfaces with. By
default, it is set to READ UNCOMMITTED.

• Another configuration option is innodb_api_enable_mdl. “MDL” stands for “metadata locking”.
This basically locks the table from the MySQL level, so that the mapped table cannot be dropped or
altered by DDL through the SQL interface. Without the lock, the table can be dropped from MySQL
layer, but will be kept in the InnoDB storage until memcached or any other user stops using it.

Differences Between Using memcached Standalone or with InnoDB

MySQL users might already be familiar with using memcached along with MySQL, as described in
Section 16.3, “Using MySQL with memcached”. This section describes the similarities and differences
between the information in that section, and when using the InnoDB integration features of the
memcached that is built into MySQL. The link at the start of each item goes to the associated
information about the traditional memcached server.

• Installation: Because the memcached library comes with the MySQL server, installation and setup
are straightforward. You run a SQL script to set up a table for memcached to use, issue a one-time
install plugin statement to enable memcached, and add to the MySQL configuration file or
startup script any desired memcached options, for example to use a different port. You might still
install the regular memcached distribution to get the additional utilities such as memcp, memcat, and
memcapable.

• Deployment: It is typical to run large numbers of low-capacity memcached servers. Because the
InnoDB + memcached combination has a 1:1 ratio between database and memcached servers,
the typical deployment involves a smaller number of moderate or high-powered servers, machines
that were already running MySQL. The benefit of this server configuration is more for improving the
efficiency of each individual database server than in tapping into unused memory or distributing
lookups across large numbers of servers. In the default configuration, very little memory is used
for memcached, and the in-memory lookups are served from the InnoDB buffer pool, which
automatically caches the most recently used and most frequently used data. As in a traditional
MySQL server instance, keep the value of the innodb_buffer_pool_size configuration option
as high as practical (without causing paging at the OS level), so that as much of the workload as
possible is done in memory.

• Expiry: By default (that is, with the caching policy innodb_only), the latest data from the InnoDB
table is always returned, so the expiry options have no practical effect. If you change the caching
policy to caching or cache-only, the expiry options work as usual, but requested data might be
stale if it was updated in the underlying table before it expires from the memory cache.

• Namespaces: memcached is like a single giant directory, where to keep files from conflicting with
each other you might give them elaborate names with prefixes and suffixes. The integrated InnoDB
/ memcached server lets you use these same naming conventions for keys, with one addition. Key
names of the format @@table_id.key.table_id are decoded to reference a specific a table,
using mapping data from the innodb_memcache.containers table. The key is looked up in or
written to the specified table.

The @@ notation only works for individual calls to the get, add, and set functions, not the others
such as incr or delete. To designate the default table for all subsequent memcached operations

Architecture of InnoDB and memcached Integration

2256

within a session, perform a get request using the @@ notation and a table ID, but without the key
portion. For example:

get @@table_x

Subsequent get, set, incr, delete and other operations use the table designated by table_x in
the innodb_memcache.containers.name column.

• Hashing and distribution: The default configuration, with the caching policy innodb_only, is
suitable for the traditional deployment configuration where all data is available on all servers, such as
a set of replication slave servers.

If you physically divide the data, as in a sharded configuration, you can split the data across
several machines running the InnoDB and memcached combined server, and use the traditional
memcached hashing mechanism to route requests to a particular machine. On the MySQL side,
typically you would let all the data be inserted by add requests to memcached so the appropriate
values were stored in the database on the appropriate server.

These types of deployment best practices are still being codified.

• Memory usage: By default (with the caching policy innodb_only), the memcached protocol passes
information back and forth with InnoDB tables, and the fixed-size InnoDB buffer pool handles the
in-memory lookups rather than memcached memory usage growing and shrinking. Relatively little
memory is used on the memcached side.

If you switch the caching policy to caching or cache-only, the normal rules of memcached
memory usage apply. Memory for the memcached data values is allocated in terms of “slabs”. You
can control the slab size and maximum memory used for memcached.

Either way, you can monitor and troubleshoot the integrated memcached daemon using the familiar
statistics system, accessed through the standard protocol, for example over a telnet session.
Because extra utilities are not included with the integrated daemon, to use the memcached-tool
script, install a full memcached distribution.

• Thread usage: MySQL threads and memcached threads must co-exist on the same server, so any
limits imposed on threads by the operating system apply to this total number.

• Log usage: Because the memcached daemon is run alongside the MySQL server and writes to
stderr, the -v, -vv, and -vvv options for logging write their output to the MySQL error log.

• memcached operations: All the familiar operations such as get, set, add, and delete are
available. Serialization (that is, the exact string format to represent complex data structures) depends
on the language interface.

• Using memcached as a MySQL front end: That is what the InnoDB integration with memcached is
all about. Putting these components together improves the performance of your application. Making
InnoDB handle data transfers between memory and disk simplifies the logic of your application.

• Utilities: The MySQL server includes the libmemcached library but not the additional command-line
utilities. To get the commands such as memcp, memcat, and memcapable commands, install a full
memcached distribution. When memrm and memflush remove items from the cache, they are also
removed from the underlying InnoDB table.

• Programming interfaces: You can access the MySQL server through the InnoDB and memcached
combination using the same language as always: C and C++, Java, Perl, Python, PHP, and
Ruby. Specify the server hostname and port as with any other memcached server. By default, the
integrated memcached server listens on the same port as usual, 11211. You can use both the
text and binary protocols. You can customize the behavior of the memcached functions at runtime.

Getting Started with InnoDB Memcached Plugin

2257

Serialization (that is, the exact string format to represent complex data structures) depends on the
language interface.

• Frequently asked questions: MySQL has had an extensive memcached FAQ for several releases.
In MySQL 5.7, the answers are largely the same, except that using InnoDB tables as a storage
medium for memcached data means that you can use this combination for more write-intensive
applications than before, rather than as a read-only cache.

For a more detailed look at the workings of this feature, see Section 14.17.7, “Internals of the InnoDB
memcached Plugin”.

14.17.3 Getting Started with InnoDB Memcached Plugin

This section describes the steps to activate the InnoDB / memcached integration on a MySQL Server.
Because the memcached daemon is tightly integrated with the MySQL Server to avoid network traffic
and minimize latency, you perform this process on each MySQL instance that uses this feature.

Note

Before setting up the memcached interface for any data, consult
Section 14.17.4, “Security Considerations for the InnoDB memcached Plugin” to
understand the security procedures needed to prevent unauthorized access.

14.17.3.1 Prerequisites for the InnoDB memcached Plugin

Before you set up the plugin and the internal tables, verify that your server has the required
prerequisite software.

Platform Support

The memcached Daemon Plugin is only supported on Linux, Solaris, and OS X platforms.

Software Prerequisites

You must have libevent installed, since it is required by memcached. The way to get this library is
different if you use the MySQL installer or build from source:

• If you installed using the MySQL installer, the libevent library is not included in the installation.
Use the installation method for your operating system to install libevent 1.4.3 or later: for
example, depending on the operating system, you might use the command apt-get, yum, or port
install. For example, on Ubuntu Linux:

sudo apt-get install libevent-dev

• If you install from a source code release, libevent 1.4.3 is bundled with the package and is located
at the top level of the MySQL source code directory. If you use this bundled version of libevent, no
action is required. If you want to use a local system version of libevent you must build MySQL with
the -DWITH_LIBEVENT build option set to system or yes.

Prerequisites When Building MySQL from Source

When you build MySQL server, you must build with -DWITH_INNODB_MEMCACHED=ON. This build
option generates two shared libraries in the MySQL plugin directory (plugin_dir) that are required to
run InnoDB memcached:

• libmemcached.so: the memcached daemon plugin to MySQL.

• innodb_engine.so: an InnoDB API plugin to memcached.

14.17.3.2 Installing and Configuring the InnoDB memcached Plugin

Setting Up Required Tables

Getting Started with InnoDB Memcached Plugin

2258

To configure the memcached plugin so it can interact with InnoDB tables, run the
innodb_memcached_config.sql configuration script to install the necessary tables used behind the
scenes:

mysql> source MYSQL_HOME/share/innodb_memcached_config.sql

This is a one-time operation. The tables remain in place if you later disable and re-enable
the memcached support. For information about the layout and purpose of these tables, see
Section 14.17.7, “Internals of the InnoDB memcached Plugin”.

Installing the Daemon Plugin

To activate the daemon plugin, use the install plugin statement, just as when installing any other
MySQL plugin:

mysql> install plugin daemon_memcached soname "libmemcached.so";

Once the plugin is installed this way, it is automatically activated each time the MySQL server is booted
or restarted.

Disabling the Daemon Plugin

When making major changes to the plugin configuration, you might need to turn off the plugin. To do
so, issue the following statement:

mysql> uninstall plugin daemon_memcached;

To re-enable it, issue the preceding install plugin statement again. All the previous configuration
settings, internal tables, and data are preserved when the plugin is restarted this way.

For additional information about enabling and disabling plugins, see Section 5.1.8.1, “Installing and
Uninstalling Plugins”.

Specifying memcached Configuration Options

If you have any memcached specific configuration parameters, specify them on the mysqld
command line or enter them in the MySQL configuration file, encoded in the argument to the
daemon_memcached_option MySQL configuration option. The memcached configuration options
take effect when the plugin is installed, which you do each time the MySQL server is started.

For example, to make memcached listen on port 11222 instead of the default port 11211, add -
p11222 to the MySQL configuration option daemon_memcached_option:

mysqld --daemon_memcached_option="-p11222"

You can add other memcached command line options to the daemon_memcached_option string.
The other configuration options are:

• daemon_memcached_engine_lib_name (default innodb_engine.so)

• daemon_memcached_engine_lib_path (default NULL, representing the plugin directory).

• daemon_memcached_r_batch_size, batch commit size for read operations (get). It specifies
after how many memcached read operations the system automatically does a commit. By default,

Getting Started with InnoDB Memcached Plugin

2259

this is set to 1 so that every get request can access the very latest committed data in the InnoDB
table, whether the data was updated through memcached or by SQL. When its value is greater
than 1, the counter for read operations is incremented once for every get call. The flush_all call
resets both the read and write counters.

• daemon_memcached_w_batch_size, batch commit for any write operations (set, replace,
append, prepend, incr, decr, and so on) By default, this is set as 1, so that no uncommitted
data is lost in case of an outage, and any SQL queries on the underlying table can access the very
latest data. When its value is greater than 1, the counter for write operations is incremented once for
every add, set, incr, decr, and delete call. The flush_all call resets both the read and write
counters.

By default, you do not need to change anything with the first two configuration options. Those options
allow you to load any other storage engine for memcached (such as the NDB memcached engine).

Again, please note that you will have these configuration parameters in your MySQL configuration file
or MySQL boot command line. They take effect when you load the memcached plugin.

Summary

Now you have everything set up. You can directly interact with InnoDB tables through the memcached
interface. To verify that the feature is working properly, see Section 14.17.3.3, “Verifying the InnoDB
and memcached Setup”.

14.17.3.3 Verifying the InnoDB and memcached Setup

Now that everything is set up, you can experiment with the InnoDB and memcached combination:

Here is an example using the Unix, Linux, or OS X command shell:

Point memcached-related commands at the memcached attached to the mysqld process.
export MEMCACHED_SERVERS=127.0.0.1:11211
Store the contents of a modestly sized text file in memcached, with the data passed
to MySQL and stored in a table. The key is the basename of the file, 'mime.types'.
memcp /etc/apache2/mime.types
Retrieve the data we just stored, from the memory cache.
memcat mime.types

Here is an example using telnet to send memcached commands and receive results through the
ASCII protocol:

telnet 127.0.0.1 11211
set a11 10 0 9
123456789
STORED
get a11
VALUE a11 0 9
123456789
END
quit

To prove that all the same data has been stored in MySQL, connect to the MySQL server and issue:

mysql> select * from test.demo_test;

Now, shut down the MySQL server, which also shuts off the integrated memcached server. Further
attempts to access the memcached data now fail with a connection error. Normally, the memcached
data would disappear at this point, and you would write application logic to load the data back into

Security Considerations for the InnoDB memcached Plugin

2260

memory when memcached was restarted. But the MySQL / memcached integration automates this
process:

• Restart the MySQL server.

• Now any memcat commands or get operations once again return the key/value pairs you stored in
the earlier memcached session. When a key is requested and the associated value is not already in
the memory cache, it is automatically queried from the MySQL table, by default test.demo_test.

14.17.4 Security Considerations for the InnoDB memcached Plugin

Caution

Consult this section before deploying the InnoDB memcached plugin on any
production servers, or even test servers if the MySQL instance contains any
sensitive information.

Because memcached does not use an authentication mechanism by default, and the optional SASL
authentication is not as strong as traditional DBMS security measures, make sure to keep only non-
sensitive data in the MySQL instance using the InnoDB memcached plugin, and wall off any servers
using this configuration from potential intruders. Do not allow memcached access to such servers from
the Internet, only from within a firewalled intranet, ideally from a subnet whose membership you can
restrict.

14.17.4.1 Password-Protecting the memcached Interface through SASL

SASL support gives you the capability to protect your MySQL database from unauthenticated access
through memcached clients. This section explains the steps to enable this option. The steps to enable
such support are almost identical to those you would do to enable SASL for a traditional memcached
server.

Background Info

SASL stands for “Simple Authentication and Security Layer”, a standard for adding authentication
support to connection-based protocols. memcached added SASL support starting in its 1.4.3 release.

SASL authentication is only supported with the binary protocol.

For the InnoDB + memcached combination, the table that stores the memcached data must be
registered in the container system table. And memcached clients can only access such a registered
table. Even though the DBA can add access restrictions on a table that is registered with the
memcached plugin, they have no control over who can access it through memcached applications. This
is why we provide a means (through SASL) to control who can access InnoDB tables associated with
the memcached plugin.

The following section shows how to build, enable, and test an SASL-enabled InnoDB memcached
plugin.

Steps to Build and Enable SASL in InnoDB Memcached Plugin

By default, SASL-enabled InnoDB memcached is not included in the release package, since it relies
on building memcached with SASL libraries. To enable this feature, download the MySQL source and
rebuild the InnoDB memcached plugin after downloading the SASL libraries:

1. First, get the SASL development and utility libraries. For example, on Ubuntu, you can get these
libraries through:

sudo apt-get -f install libsasl2-2 sasl2-bin libsasl2-2 libsasl2-dev libsasl2-modules

2. Then build the InnoDB memcached plugin (shared libraries) with SASL capability, by adding
ENABLE_MEMCACHED_SASL=1 to the cmake options. In addition, memcached provides a simple

Writing Applications for the InnoDB memcached Interface

2261

cleartext password support, which is easier to use for testing. To enable this, set the option
ENABLE_MEMCACHED_SASL_PWDB=1.

Overall, you will add following three options to the cmake:

cmake ... -DWITH_INNODB_MEMCACHED=1
 -DENABLE_MEMCACHED_SASL=1 -DENABLE_MEMCACHED_SASL_PWDB=1

3. The third step is to install the InnoDB memcached plugin as before, as explained in
Section 14.17.3, “Getting Started with InnoDB Memcached Plugin”.

4. As previously mentioned, memcached provides a simple cleartext password support through SASL,
which will be used for this demo.

a. Create a user named testname and its password as testpasswd in a file:

echo "testname:testpasswd:::::::" >/home/jy/memcached-sasl-db

b. Let memcached know about it by setting the environment variable MEMCACHED_SASL_PWDB:

export MEMCACHED_SASL_PWDB=/home/jy/memcached-sasl-db

c. Also tell memcached that it is a cleartext password:

echo "mech_list: plain" > /home/jy/work2/msasl/clients/memcached.conf
export SASL_CONF_PATH=/home/jy/work2/msasl/clients

5. Then reboot the server, and add a daemon_memcached_option option -S to enable SASL:

mysqld ... --daemon_memcached_option="-S"

6. Now the setup is complete. To test it, you might need an SASL-enabled client, such as this SASL-
enabled libmemcached.

memcp --servers=localhost:11211 --binary --username=testname
 --password=testpasswd myfile.txt

memcat --servers=localhost:11211 --binary --username=testname
 --password=testpasswd myfile.txt

Without appropriate user name or password, the above operation is rejected with the error
message memcache error AUTHENTICATION FAILURE. Otherwise, the operation succeed.
You can also examine the cleartext password set in the memcached-sasl-db file to verify it.

There are other methods to test SASL authentication with memcached. But the one described above is
the most straightforward.

14.17.5 Writing Applications for the InnoDB memcached Interface

Typically, writing an application for the InnoDB memcached interface involves some degree of
rewriting or adapting existing code that uses MySQL or the memcached API:

• Instead of many memcached servers running on low-powered machines, you have the same
number of memcached servers as MySQL servers, running on relatively high-powered machines
with substantial disk storage and memory. You might reuse some existing code that works with the
memcached API, but some adaptation is likely needed due to the different server configuration.

https://code.launchpad.net/~trond-norbye/libmemcached/sasl
https://code.launchpad.net/~trond-norbye/libmemcached/sasl

Writing Applications for the InnoDB memcached Interface

2262

• The data stored through this interface all goes into VARCHAR, TEXT, or BLOB columns, and must be
converted to do numeric operations. You can do the conversion on the application side, or by using
the CAST() function in queries.

• Coming from a database background, you might be used to general-purpose SQL tables with many
columns. The tables accessed by the memcached code likely have only a few or even just a single
column holding data values.

• You might adapt parts of your application that do single-row queries, inserts, updates, or deletes,
to squeeze more performance out of critical sections of code. Both queries (read) and DML (write)
operations can be substantially faster when performed through the memcached interface. The
speedup for writes is typically greater than the speedup for reads, so you might focus on adapting
the code that performs logging or records interactive choices on a web site.

The following sections explore these aspects in more detail.

14.17.5.1 Adapting an Existing MySQL Schema for a memcached Application

Consider these aspects of memcached applications when adapting an existing MySQL schema or
application to use the memcached interface:

• memcached keys cannot contain spaces or newlines, because those characters are used as
separators in the ASCII protocol. If you are using lookup values that contain spaces, transform or
hash them into values without spaces before using them as keys in calls to add(), set(), get()
and so on. Although theoretically those characters are allowed in keys in programs that use the
binary protocol, you should always restrict the characters used in keys to ensure compatibility with a
broad range of clients.

• If you have a short numeric primary key column in an InnoDB table, you can use that as the unique
lookup key for memcached by converting the integer to a string value. If the memcached server is
being used for more than one application, or with more than one InnoDB table, consider modifying
the name to make sure it is unique. For example, you might prepend the table name, or the database
name and the table name, before the numeric value.

Note

As of MySQL 5.7.3, the InnoDB memcached plugin supports inserts and
reads on mapped InnoDB tables that have an INTEGER defined as the
primary key.

• You cannot use a partitioned table for data queried or stored through the memcached interface.

• The memcached protocol passes numeric values around as strings. To store numeric values in the
underlying InnoDB table, for example to implement counters that can be used in SQL functions such
as SUM() or AVG():

• Use VARCHAR columns with enough characters to hold all the digits of the largest expected
number (and additional characters if appropriate for the negative sign, decimal point, or both).

• In any query that performs arithmetic using the column values, use the CAST() function to convert
from string to integer or other numeric type. For example:

-- Alphabetic entries are returned as zero.
select cast(c2 as unsigned integer) from demo_test;
-- Since there could be numeric values of 0, can't disqualify them.
-- Test the string values to find the ones that are integers, and average only those.
select avg(cast(c2 as unsigned integer)) from demo_test
 where c2 between '0' and '9999999999';
-- Views let you hide the complexity of queries. The results are already converted;
-- no need to repeat conversion functions and WHERE clauses each time.
create view numbers as select c1 key, cast(c2 as unsigned integer) val
 from demo_test where c2 between '0' and '9999999999';
select sum(val) from numbers;

Writing Applications for the InnoDB memcached Interface

2263

Note that any alphabetic values in the result set are turned into 0 by the call to CAST(). When
using functions such as AVG() that depend on the number of rows in the result set, include WHERE
clauses to filter out any non-numeric values.

• If the InnoDB column you use as a key can be longer than 250 bytes, hash it to a value that is less
than 250 bytes.

• To use an existing table with the memcached interface, define an entry for it in the
innodb_memcache.containers table. To make that the table the default for all requests relayed
through memcached, specify the value default in the name column, then restart the MySQL server
to make that change take effect. If you are using multiple tables for different classes of memcached
data, set up multiple entries in the innodb_memcache.containers table with name values of your
choosing, then issue a memcached request of the form get @@name or set @@name within the
application to switch the table used for subsequent requests through the memcached API.

For an example of using a table other than the predefined test.demo_test table, see
Example 14.24, “Specifying the Table and Column Mapping for an InnoDB + memcached
Application”. For the required layout and meaning of the columns in such a table, see
Section 14.17.7, “Internals of the InnoDB memcached Plugin”.

• To use multiple MySQL column values with memcached key/value pairs, in the
innodb_memcache.containers entry associated with the MySQL table, specify in the
value_columns field several column names separated by comma, semicolon, space, or pipe
characters; for example, col1,col2,col3 or col1|col2|col3.

Concatenate the column values into a single string using the pipe character as a separator, before
passing that string to memcached add or set calls. The string is unpacked automatically into the
various columns. Each get call returns a single string with the column values, also delimited by the
pipe separator character. you unpack those values using the appropriate syntax depending on your
application language.

Example 14.24 Specifying the Table and Column Mapping for an InnoDB + memcached
Application

Here is an example showing how to use your own table for a MySQL application going through the
InnoDB memcached plugin for data manipulation.

First, we set up a table to hold some country data: the population, area in metric units, and 'R' or 'L'
indicating if people drive on the right or on the left.

use test;

CREATE TABLE `multicol` (
 `country` varchar(128) NOT NULL DEFAULT '',
 `population` varchar(10) DEFAULT NULL,
 `area_sq_km` varchar(9) DEFAULT NULL,
 `drive_side` varchar(1) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 `c4` bigint(20) unsigned DEFAULT NULL,
 `c5` int(11) DEFAULT NULL,
 PRIMARY KEY (`country`),
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Now we make a descriptor for this table so that the InnoDB memcached plugin knows how to access
it:

• The sample entry in the CONTAINERS table has a name column 'aaa'; we set up another identifier
'bbb'. If we made a single master table for all memcached applications to use, we would make the
ID 'default' and skip the @@ requests to switch tables.

• We specify the test.multicol table. The schema name is stored in one column and the table
name is stored in another column.

Writing Applications for the InnoDB memcached Interface

2264

• The key column will be our unique country value. That column was specified as the primary key
when we created the table above, so we also specify the index name 'PRIMARY' here.

• Rather than a single column to hold a composite data value, we will divide the data among three
table columns, so we specify a comma-separated list of those columns that will be used when storing
or retrieving values.

• And for the flags, expire, and CAS values, we specify corresponding columns based on the settings
from the sample table demo.test. These values are typically not significant in applications using the
InnoDB memcached plugin, because MySQL keeps the data synchronized and there is no need to
worry about data expiring or being stale.

insert into innodb_memcache.containers
 (name,db_schema,db_table,key_columns,value_columns,flags,cas_column,
 expire_time_column,unique_idx_name_on_key)
values
 ('bbb','test','multicol','country','population,area_sq_km,drive_side',
 'c3','c4','c5','PRIMARY');

commit;

Here is a sample Python program showing how we would access this table from a program:

• No database authorization is needed, since all data manipulation is done through the memcached
interface. All we need to know is the port number the memcached daemon is listening to on the local
system.

• We load sample values for a few arbitrary countries. (Area and population figures from Wikipedia.)

• To make the program use the multicol table, we call the switch_table() function that does a
dummy GET or SET request using @@ notation. The name in the request is bbb, which is the value
we stored in innodb_memcache.containers.name. (In a real application, we would use a more
descriptive name. This example just illustrates that you specify a table identifier, not the table name,
with the GET @@... request.

• The utility functions to insert and query the data demonstrate how we might turn a Python data
structure into pipe-separated values for sending to MySQL with ADD or SET requests, and unpack
the pipe-separated values returned by GET requests. This extra processing is only required when
mapping the single memcached value to multiple MySQL table columns.

import sys, os
import memcache

def connect_to_memcached():
 memc = memcache.Client(['127.0.0.1:11211'], debug=0);
 print "Connected to memcached."
 return memc

def banner(message):
 print
 print "=" * len(message)
 print message
 print "=" * len(message)

country_data = [
("Canada","34820000","9984670","R"),
("USA","314242000","9826675","R"),
("Ireland","6399152","84421","L"),
("UK","62262000","243610","L"),
("Mexico","113910608","1972550","R"),
("Denmark","5543453","43094","R"),
("Norway","5002942","385252","R"),
("UAE","8264070","83600","R"),
("India","1210193422","3287263","L"),
("China","1347350000","9640821","R"),

Writing Applications for the InnoDB memcached Interface

2265

]

def switch_table(memc,table):
 key = "@@" + table
 print "Switching default table to '" + table + "' by issuing GET for '" + key + "'."
 result = memc.get(key)

def insert_country_data(memc):
 banner("Inserting initial data via memcached interface")
 for item in country_data:
 country = item[0]
 population = item[1]
 area = item[2]
 drive_side = item[3]

 key = country
 value = "|".join([population,area,drive_side])
 print "Key = " + key
 print "Value = " + value

 if memc.add(key,value):
 print "Added new key, value pair."
 else:
 print "Updating value for existing key."
 memc.set(key,value)

def query_country_data(memc):
 banner("Retrieving data for all keys (country names)")
 for item in country_data:
 key = item[0]
 result = memc.get(key)
 print "Here is the result retrieved from the database for key " + key + ":"
 print result
 (m_population, m_area, m_drive_side) = result.split("|")
 print "Unpacked population value: " + m_population
 print "Unpacked area value : " + m_area
 print "Unpacked drive side value: " + m_drive_side

if __name__ == '__main__':

 memc = connect_to_memcached()
 switch_table(memc,"bbb")
 insert_country_data(memc)
 query_country_data(memc)

 sys.exit(0)

Here are some SQL queries to illustrate the state of the MySQL data after the script is run, and show
how you could access the same data directly through SQL, or from an application written in any
language using the appropriate MySQL Connector or API.

The table descriptor 'bbb' is in place, allowing us to switch to the multicol table by issuing a
memcached request GET @bbb:

mysql: use innodb_memcache;
Database changed

mysql: select * from containers;
+------+-----------+-----------+-------------+----------------------------------+-------+------------+--------------------+------------------------+
| name | db_schema | db_table | key_columns | value_columns | flags | cas_column | expire_time_column | unique_idx_name_on_key |
+------+-----------+-----------+-------------+----------------------------------+-------+------------+--------------------+------------------------+
| aaa | test | demo_test | c1 | c2 | c3 | c4 | c5 | PRIMARY |
| bbb | test | multicol | country | population,area_sq_km,drive_side | c3 | c4 | c5 | PRIMARY |
+------+-----------+-----------+-------------+----------------------------------+-------+------------+--------------------+------------------------+
2 rows in set (0.01 sec)

After running the script, the data is in the multicol table, available for traditional MySQL queries or
DML statements:

Writing Applications for the InnoDB memcached Interface

2266

mysql: use test;
Database changed

mysql: select * from multicol;
+---------+------------+------------+------------+------+------+------+
| country | population | area_sq_km | drive_side | c3 | c4 | c5 |
+---------+------------+------------+------------+------+------+------+
Canada	34820000	9984670	R	0	11	0
China	1347350000	9640821	R	0	20	0
Denmark	5543453	43094	R	0	16	0
India	1210193422	3287263	L	0	19	0
Ireland	6399152	84421	L	0	13	0
Mexico	113910608	1972550	R	0	15	0
Norway	5002942	385252	R	0	17	0
UAE	8264070	83600	R	0	18	0
UK	62262000	243610	L	0	14	0
USA	314242000	9826675	R	0	12	0
+---------+------------+------------+------------+------+------+------+
10 rows in set (0.00 sec)

mysql: desc multicol;
+------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------------+------+-----+---------+-------+
country	varchar(128)	NO	PRI		
population	varchar(10)	YES		NULL	
area_sq_km	varchar(9)	YES		NULL	
drive_side	varchar(1)	YES		NULL	
c3	int(11)	YES		NULL	
c4	bigint(20) unsigned	YES		NULL	
c5	int(11)	YES		NULL	
+------------+---------------------+------+-----+---------+-------+
7 rows in set (0.01 sec)

Allow sufficient size to hold all necessary digits, decimal points, sign characters, leading zeros, and
so on when defining the length for columns that will be treated as numbers. Too-long values in a
string column such as a VARCHAR are truncated by removing some characters, which might produce a
nonsensical numeric value.

We can produce reports through SQL queries, doing calculations and tests across any columns, not
just the country key column. (Because these examples use data from only a few countries, the
numbers are for illustration purposes only.) Here, we find the average population of countries where
people drive on the right, and the average size of countries whose names start with “U”:

mysql: select avg(population) from multicol where drive_side = 'R';
+-------------------+
| avg(population) |
+-------------------+
| 261304724.7142857 |
+-------------------+
1 row in set (0.00 sec)

mysql: select sum(area_sq_km) from multicol where country like 'U%';
+-----------------+
| sum(area_sq_km) |
+-----------------+
| 10153885 |
+-----------------+
1 row in set (0.00 sec)

Because the population and area_sq_km columns store character data rather than strongly typed
numeric data, functions such as avg() and sum() work by converting each value to a number first.
This approach does not work for operators such as < or >: for example, when comparing character-
based values, 9 > 1000, which is not you expect from a clause such as ORDER BY population
DESC. For the most accurate type treatment, perform queries against views that cast numeric columns
to the appropriate types. This technique lets you issue very simple SELECT * queries from your
database applications, while ensuring that all casting, filtering, and ordering is correct. Here, we make
a view that can be queried to find the top 3 countries in descending order of population, with the results

Writing Applications for the InnoDB memcached Interface

2267

always reflecting the latest data from the multicol table, and with the population and area figures
always treated as numbers:

mysql: create view populous_countries as
 select
 country,
 cast(population as unsigned integer) population,
 cast(area_sq_km as unsigned integer) area_sq_km,
 drive_side from multicol
 order by cast(population as unsigned integer) desc
 limit 3;
Query OK, 0 rows affected (0.01 sec)

mysql: select * from populous_countries;
+---------+------------+------------+------------+
| country | population | area_sq_km | drive_side |
+---------+------------+------------+------------+
China	1347350000	9640821	R
India	1210193422	3287263	L
USA	314242000	9826675	R
+---------+------------+------------+------------+
3 rows in set (0.00 sec)

mysql: desc populous_countries;
+------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------------+------+-----+---------+-------+
country	varchar(128)	NO			
population	bigint(10) unsigned	YES		NULL	
area_sq_km	int(9) unsigned	YES		NULL	
drive_side	varchar(1)	YES		NULL	
+------------+---------------------+------+-----+---------+-------+
4 rows in set (0.02 sec)

14.17.5.2 Adapting an Existing memcached Application for the Integrated memcached
Daemon

Consider these aspects of MySQL and InnoDB tables when adapting an existing memcached
application to use the MySQL integration:

• If you have key values longer than a few bytes, you might find it more efficient to use a numeric auto-
increment column for the primary key in the InnoDB table, and create a unique secondary index on
the column holding the memcached key values. This is because InnoDB performs best for large-
scale insertions if the primary key values are added in sorted order (as they are with auto-increment
values), and the primary key values are duplicated in each secondary index, which can take up
unnecessary space when the primary key is a long string value.

• If you store several different classes of information in memcached, you might set up a
separate InnoDB table for each kind of data. Define additional table identifiers in the
innodb_memcache.containers table, and use the notation @@table_id.key to store or
retrieve items from different tables. Physically dividing the items lets you tune the characteristics of
each table for best space utilization, performance, and reliability. For example, you might enable
compression for a table that holds blog posts, but not for one that holds thumbnail images. You might
back up one table more frequently than another because it holds critical data. You might create
additional secondary indexes on tables that are frequently used to generate reports through SQL.

• Preferably, set up a stable set of table definitions for use with the memcached interface and leave
them in place permanently. Changes to the containers table take effect the next time that table
is queried. The entries in that table are processed at startup, and are consulted whenever an
unrecognized table ID is requested by the @@ notation. Thus, new entries are visible as soon as you
try to use the associated table ID, but changes to existing entries require a server restart before they
take effect.

• When you use the default caching policy innodb_only, your calls to add(), set(), incr(), and
so on can succeed but still trigger debugging messages such as while expecting 'STORED',

Writing Applications for the InnoDB memcached Interface

2268

got unexpected response 'NOT_STORED. This is because in the innodb_only configuration,
new and updated values are sent directly to the InnoDB table without being saved in the memory
cache.

14.17.5.3 Tuning Performance of the InnoDB memcached Plugin

Because using InnoDB in combination with memcached involves writing all data to disk, whether
immediately or sometime later, understand that raw performance is expected to be somewhat lower
than using memcached by itself. Focus your tuning goals for the InnoDB memcached plugin on
achieving higher performance than equivalent SQL operations.

Benchmarks suggest that both queries and DML operations (inserts, updates, and deletes) are faster
going through the memcached interface than with traditional SQL. DML operations typically see a
larger speedup. Thus, the types of applications you might adapt to use the memcached interface
first are those that are write-intensive. You might also use MySQL as a data store for types of write-
intensive applications that formerly used some fast, lightweight mechanism where reliability was not a
priority.

Adapting SQL Queries

The types of queries that are most suited to the simple GET request style are those with a single
clause, or a set of AND conditions, in the WHERE clause:

SQL:
select col from tbl where key = 'key_value';

memcached:
GET key_value

SQL:
select col from tbl where col1 = val1 and col2 = val2 and col3 = val3;

memcached:
Since you must always know these 3 values to look up the key,
combine them into a unique string and use that as the key
for all ADD, SET, and GET operations.
key_value = val1 + ":" + val2 + ":" + val3
GET key_value

SQL:
select 'key exists!' from tbl
 where exists (select col1 from tbl where key = 'key_value') limit 1;

memcached:
Test for existence of key by asking for its value and checking if the call succeeds,
ignoring the value itself. For existence checking, you typically only store a very
short value such as "1".
GET key_value

Taking Advantage of System Memory

For best performance, deploy the InnoDB memcached plugin on machines that are configured like
typical database servers: in particular, with the majority of system RAM devoted to the InnoDB buffer
pool through the innodb_buffer_pool_size configuration option. For systems with multi-gigabyte
buffer pools, consider raising the value of the innodb_buffer_pool_instances configuration
option for maximum throughput when most operations involve data already cached in memory.

Reducing Redundant I/O

InnoDB has a number of settings that let you choose the balance between high reliability in case of
a crash, and the amount of I/O overhead during high write workloads. For example, consider setting
the configuration options innodb_doublewrite=0 and innodb_flush_log_at_trx_commit=2.
Measure the performance with different settings for the innodb_flush_method option. If the binary
log is not turned on for the server, use the setting innodb_support_xa=0.

Writing Applications for the InnoDB memcached Interface

2269

Note

innodb_support_xa is deprecated and will be removed in a future release.
As of MySQL 5.7.10, InnoDB support for two-phase commit in XA transactions
is always enabled and disabling innodb_support_xa is no longer permitted.

For other ways to reduce or tune I/O for table operations, see Section 8.5.8, “Optimizing InnoDB Disk I/
O”.

Reducing Transactional Overhead

The default value of 1 for the configuration options daemon_memcached_r_batch_size and
daemon_memcached_w_batch_size is intended for maximum reliability of results and safety of
stored or updated data.

Depending on the type of application, you might increase one or both of these settings to
reduce the overhead of frequent commit operations. On a busy system, you might increase
daemon_memcached_r_batch_size, knowing that changes to the data made through SQL
might not become visible to memcached immediately (that is, until N more get operations were
processed). When processing data where every write operation must be reliably stored, you would
leave daemon_memcached_w_batch_size set to 1. You might increase it when processing large
numbers of updates intended to only be used for statistical analysis, where it is not critical if the last N
updates are lost in case of a crash.

For example, imagine a system that monitors traffic crossing a busy bridge, recording approximately
100,000 vehicles each day. If the application simply counts different types of vehicles to analyze traffic
patterns, it might change daemon_memcached_w_batch_size from 1 to 100, reducing the I/O
overhead for commit operations by 99%. In case of an unexpected outage, only a maximum of 100
records could be lost, which might be an acceptable margin of error. If instead the application was
doing automated toll collection for each car, it would keep daemon_memcached_w_batch_size set
to 1 to ensure that every toll record was immediately saved to disk.

Because of the way InnoDB organizes the memcached key values on disk, if you have a large number
of keys to create, it can be faster to sort all the data items by the key value in your application and add
them in sorted order, rather than creating them in arbitrary order.

The memslap command, which is part of the regular memcached distribution but not included with the
MySQL server, can be useful for benchmarking different configurations. It can also be used to generate
sample key/value pairs that you can use in your own benchmarking. See libmemcached Command-
Line Utilities for details.

14.17.5.4 Controlling Transactional Behavior of the InnoDB memcached Plugin

Unlike with the traditional memcached, with the InnoDB + memcached combination you can control
how “durable” are the data values produced through calls to add, set, incr, and so on. Because
MySQL places a high priority on durability and consistency of data, by default all data written through
the memcached interface is always stored to disk, and calls to get always return the most recent value
from disk. Although this default setting does not give the highest possible raw performance, it is still
very fast compared to the traditional SQL interface for InnoDB tables.

As you gain experience with this feature, you can make the decision to relax the durability settings for
non-critical classes of data, at the risk of possibly losing some updated values in case of an outage, or
returning data that is slightly out-of-date.

Frequency of Commits

One tradeoff between durability and raw performance is how frequently new and changed data is
committed. If the data is critical, you want it to be committed immediately so that it is safe in case of
any crash or outage. If the data is less critical, such as counters that would be reset after a crash, or
debugging or logging data where you could afford to lose a few seconds worth, you might prefer the
higher raw throughput that comes with less frequent commits.

Writing Applications for the InnoDB memcached Interface

2270

When a memcached operation causes an insert, update, or delete in the underlying
InnoDB table, that change might be committed to the underlying table instantly (if
daemon_memcached_w_batch_size=1) or some time later (if that configuration option value
is greater than 1). In either case, the change cannot be rolled back. If you increase the value of
daemon_memcached_w_batch_size=1 to avoid high I/O overhead during busy times, commits could
become very infrequent when the workload decreases. As a safety measure, a background thread
automatically commits changes made through the memcached API at regular intervals. The interval
is controlled by the innodb_api_bk_commit_interval configuration option, and by default is 5
seconds.

When a memcached operation causes an insert or update in the underlying InnoDB table, the changed
data is immediately visible to other memcached requests because the new value remains in the
memory cache, even if it is not committed yet on the MySQL side.

Transaction Isolation

When a memcached operation such as get or incr causes a query or DML operation in the
underlying InnoDB table, you can control whether it sees the very latest data written to the table,
only data that has been committed, or other variations of transaction isolation level. You control this
feature through the innodb_api_trx_level configuration option. The numeric values specified
with this option correspond to the familiar isolation level names such as REPEATABLE READ. See the
description of the innodb_api_trx_level option for the full list.

The stricter the isolation level, the more certain you can be that the data you retrieve will not be rolled
back or changed suddenly so that a subsequent query sees a different value. But that strictness comes
with greater locking overhead that can cause waits. For a NoSQL-style application that does not use
long-running transactions, you can typically stay with the default isolation level or switch to a less strict
one.

Disabling Row Locks for memcached DML Operations

The innodb_api_disable_rowlock option can be used to disable row locks when InnoDB
memcached performs DML operations. By default, innodb_api_disable_rowlock is set
to OFF which means that memcached requests row locks for get and set operations. When
innodb_api_disable_rowlock is set to ON, memcached requests a table lock instead of row locks.

The innodb_api_disable_rowlock option is not dynamic. It must be specified at startup on the
mysqld command line or entered in the MySQL configuration file.

Allowing or Disallowing DDL

By default, you can perform DDL operations such as ALTER TABLE on the tables being used by
the InnoDB memcached plugin. To avoid potential slowdowns when these tables are being used
for high-throughput applications, you can disable DDL operations on these tables by turning on the
innodb_api_enable_mdl configuration option at startup. This option is less appropriate when you
are accessing the same underlying tables through both the memcached interface and SQL, because it
blocks CREATE INDEX statements on the tables, which could be important for configuring the system
to run reporting queries.

Data Stored on Disk, in Memory, or Both

Table innodb_memcache.cache_policies specifies whether to store data written through the
memcached on disk (innodb_only, the default); to store the data in memory only, as in the traditional
memcached (cache-only); or both (caching).

With the caching setting, if memcached cannot find a key in memory, it searches for the value in an
InnoDB table. Values returned from get calls under the caching setting could be out-of-date, if they
were updated on disk in the InnoDB table but not yet expired from the memory cache.

The caching policy can be set independently for get, set (including incr and decr), delete, and
flush operations. For example:

Writing Applications for the InnoDB memcached Interface

2271

• You might allow get and set operations to query or update a table and the memcached memory
cache at the same time (through the caching setting), while making delete, flush, or both
operate only on the in-memory copy (through the cache_only setting). That way, deleting or
flushing an item just expires it from the cache, and the latest value is returned from the InnoDB table
the next time the item is requested.

mysql> desc innodb_memcache.cache_policies;
+---------------+---+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+---+------+-----+---------+-------+
policy_name	varchar(40)	NO	PRI	NULL	
get_policy	enum('innodb_only','cache_only','caching','disabled')	NO		NULL	
set_policy	enum('innodb_only','cache_only','caching','disabled')	NO		NULL	
delete_policy	enum('innodb_only','cache_only','caching','disabled')	NO		NULL	
flush_policy	enum('innodb_only','cache_only','caching','disabled')	NO		NULL	
+---------------+---+------+-----+---------+-------+

mysql> select * from innodb_memcache.cache_policies;
+--------------+-------------+-------------+---------------+--------------+
| policy_name | get_policy | set_policy | delete_policy | flush_policy |
+--------------+-------------+-------------+---------------+--------------+
| cache_policy | innodb_only | innodb_only | innodb_only | innodb_only |
+--------------+-------------+-------------+---------------+--------------+

mysql> update innodb_memcache.cache_policies set set_policy = 'caching'
 -> where policy_name = 'cache_policy';

The cache_policies values are only read at startup, and are tightly integrated with the operation of
the memcached plugin. After changing any of the values in this table, uninstall the plugin and reinstall
it:

mysql> uninstall plugin daemon_memcached;
Query OK, 0 rows affected (2.00 sec)
mysql> install plugin daemon_memcached soname "libmemcached.so";
Query OK, 0 rows affected (0.00 sec)

14.17.5.5 Adapting DML Statements to memcached Operations

Benchmarks suggest that the InnoDB memcached plugin speeds up DML operations (inserts, updates,
and deletes) more than it speeds up queries. You might focus your initial development efforts on write-
intensive applications that are I/O-bound, and look for opportunities to use MySQL for new kinds of
write-intensive applications.

•
INSERT INTO t1 (key,val) VALUES (some_key,some_value);
SELECT val FROM t1 WHERE key = some_key;
UPDATE t1 SET val = new_value WHERE key = some_key;
UPDATE t1 SET val = val + x WHERE key = some_key;
DELETE FROM t1 WHERE key = some_key;

Single-row DML statements are the most straightforward kinds of statements to turn into memcached
operations: INSERT becomes add, UPDATE becomes set, incr or decr, and DELETE becomes
delete. When issued through the memcached interface, these operations are guaranteed to affect
only 1 row because key is unique within the table.

In the preceding SQL examples, t1 refers to the table currently being used by the InnoDB
memcached plugin based on the configuration settings in the innodb_memcache.containers
table, key refers to the column listed under key_columns, and val refers to the column listed
under value_columns.

•

Using the InnoDB memcached Plugin with Replication

2272

TRUNCATE TABLE t1;
DELETE FROM t1;

Corresponds to the flush_all operation, when t1 is configured as the table for memcached
operations as in the previous step. Removes all the rows in the table.

14.17.5.6 Performing DML and DDL Statements on the Underlying InnoDB Table

You can access the InnoDB table (by default, test.demo_test) through the standard SQL interfaces.
However, there are some restrictions:

• When query a table through SQL that is also being accessed through the memcached interface,
remember that memcached operations can be configured to be committed periodically rather than
after every write operation. This behavior is controlled by the daemon_memcached_w_batch_size
option. If this option is set to a value greater than 1, use READ UNCOMMITTED queries to find the
just-inserted rows:

mysql> set session TRANSACTION ISOLATION LEVEL read uncommitted;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from demo_test;
+------+------+------+------+-----------+------+------+------+------+------+------+
| cx | cy | c1 | cz | c2 | ca | CB | c3 | cu | c4 | C5 |
+------+------+------+------+-----------+------+------+------+------+------+------+
| NULL | NULL | a11 | NULL | 123456789 | NULL | NULL | 10 | NULL | 3 | NULL |
+------+------+------+------+-----------+------+------+------+------+------+------+
1 row in set (0.00 sec)

• When modifying a table using SQL that is also accessed through the memcached interface, you can
configure memcached operations to start a new transaction periodically rather than for every read
operation. This behavior is controlled by the daemon_memcached_r_batch_size option. If this
option is set to a value greater than 1, changes made to the table using SQL are not immediately
visible to memcached operations.

• The InnoDB table is locked IS (shared intention) or IX (exclusive intentional) for all
operations in a transaction. If you increase daemon_memcached_r_batch_size and
daemon_memcached_w_batch_size substantially from their default value of 1, the table is most
likely intentionally locked between each operation, preventing you from running DDL statements on
the table.

14.17.6 Using the InnoDB memcached Plugin with Replication

Because the InnoDB memcached daemon plugin supports the MySQL binary log, any updates made
on a master server through the memcached interface can be replicated for backup, balancing intensive
read workloads, and high availability. All memcached commands are supported for binary logging.

You do not need to set up the InnoDB memcached plugin on the slave servers. In this configuration,
the primary advantage is increased write throughput on the master. The speed of the replication
mechanism is not affected.

The following sections show how to use the binary log capability, to use the InnoDB memcached
plugin along with MySQL replication. It assumes you have already done the basic setup described in
Section 14.17.3, “Getting Started with InnoDB Memcached Plugin”.

Enable InnoDB Memcached Binary Log with innodb_api_enable_binlog:

• To use the InnoDB memcached plugin with the MySQL binary log, enable the
innodb_api_enable_binlog configuration option on the master server. This option can only be
set at server boot time. You must also enable the MySQL binary log on the master server with the --

Using the InnoDB memcached Plugin with Replication

2273

log-bin option. You can add these options to your server configuration file such as my.cnf, or on
the mysqld command line.

mysqld ... --log-bin -–innodb_api_enable_binlog=1

• Then configure your master and slave server, as described in Section 17.1.2, “Setting Up Binary Log
File Position Based Replication”.

• Use mysqldump to create a master data snapshot, and sync it to the slave server.

master shell: mysqldump --all-databases --lock-all-tables > dbdump.db
slave shell: mysql < dbdump.db

• On the master server, issue show master status to obtain the Master Binary Log Coordinates:

mysql> show master status;

• On the slave server, use a change master to statement to set up a slave server with the above
coordinates:

mysql> CHANGE MASTER TO
 MASTER_HOST='localhost',
 MASTER_USER='root',
 MASTER_PASSWORD='',
 MASTER_PORT = 13000,
 MASTER_LOG_FILE='0.000001,
 MASTER_LOG_POS=114;

• Then start the slave:

mysql> start slave;

If the error log prints output similar to the following, the slave is ready for replication:

2013-09-24T13:04:38.639684Z 49 [Note] Slave I/O thread: connected to
master 'root@localhost:13000', replication started in log '0.000001'
at position 114

Test with the memcached telnet Interface

To test the server with the above replication setup, we use the memcached telnet interface, and also
query the master and slave servers using SQL to verify the results.

In our configuration setup SQL, one example table demo_test is created in the test database for use
by memcached. We will use this default table for the demonstrations:

• Use set to insert a record, key test1, value t1, and flag 10:

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 2
t1
STORED

Using the InnoDB memcached Plugin with Replication

2274

In the master server, you can see that the row is inserted. c1 maps to the key, c2 maps to the value,
c3 is the flag, c4 is the cas value, and c5 is the expiration.

mysql> select * from test.demo_test;

c1 c2 c3 c4 c5

test1 t1 10 2 0

1 row in set (0.00 sec)

In the slave server, you will see the same record is inserted by replication:

mysql> select * from test.demo_test;

c1 c2 c3 c4 c5

test1 t1 10 2 0

1 row in set (0.00 sec)

• Use set command to update the key test1 to a new value new:

Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 3
new
STORED

From the slave server, the update is replicated (notice the cas value also updated):

mysql> select * from test.demo_test;

c1 c2 c3 c4 c5

test1 new 10 3 0

1 row in set (0.00 sec)

• Delete the record with a delete command:

Connected to 127.0.0.1.
Escape character is '^]'.
delete test1
DELETED

When the delete is replicated to the slave, the record on the slave is also deleted:

Using the InnoDB memcached Plugin with Replication

2275

mysql> select * from test.demo_test;
Empty set (0.00 sec)

• Truncate the table with the flush_all command.

First, insert two records by telnetting to the master server:

Connected to 127.0.0.1.
Escape character is '^]'
set test2 10 0 5
again
STORED
set test3 10 0 6
again1
STORED

In the slave server, confirm these two records are replicated:

mysql> select * from test.demo_test;

c1 c2 c3 c4 c5

test2 again 10 5 0

test3 again1 10 6 0

2 rows in set (0.00 sec)

Call flush_all in the telnet interface to truncate the table:

Connected to 127.0.0.1.
Escape character is '^]'.
flush_all
OK

Then check that the truncation operation is replicated on the slave server:

mysql> select * from test.demo_test;
Empty set (0.00 sec)

All memcached commands are supported in terms of replication.

Notes for the InnoDB Memcached Binlog

Binlog Format:

• Most memcached operations are mapped to DML statements (analogous to insert, delete, update).
Since there is no actual SQL statement being processed by the MySQL server, all memcached
commands (except for flush_all) use Row-Based Replication (RBR) logging. This is independent
of any server binlog_format setting.

• The memcached flush_all command is mapped to the TRUNCATE TABLE command. Since
DDL commands can only use statement-based logging, this flush_all command is replicated by
sending a TRUNCATE TABLE statement.

Transactions:

Internals of the InnoDB memcached Plugin

2276

• The concept of transactions has not typically been part of memcached applications. We use
daemon_memcached_r_batch_size and daemon_memcached_w_batch_size to control
the read and write transaction batch size for performance considerations. These settings do not
affect replication: each SQL operation on the underlying table is replicated right after successful
completion.

• The default value of daemon_memcached_w_batch_size is 1, so each memcached write
operation is committed immediately. This default setting incurs a certain amount of performance
overhead, to avoid any inconsistency in the data visible on the master and slave servers.
The replicated records will always be available immediately on the slave server. If you set
daemon_memcached_w_batch_size greater than 1, records inserted or updated through the
memcached interface are not immediately visible on the master server; to view these records on the
master server before they are committed, issue set transaction isolation level read
uncommitted.

14.17.7 Internals of the InnoDB memcached Plugin

InnoDB API for the InnoDB memcached Plugin

The InnoDB memcached engine accesses InnoDB through InnoDB APIs. Most of the APIs are
directly adopted from embedded InnoDB. InnoDB API functions are passed to InnoDB memcached
as “callback functions”. InnoDB API functions access the InnoDB table directly, and are mostly DML
operations except for the TRUNCATE TABLE operation.

All memcached commands, listed below, are implemented through the InnoDB memcached API. The
following table outlines how each memcached command is mapped to a DML operation.

Table 14.13 memcached Commands and Associated DML Operation

memcached
Command

DML Operation

get a read/fetch command

set a search followed by an insertion or update (depending on whether or not a key
exists)

add a search followed by an insertion or update

replace a search followed by an update

append a search followed by an update (appends data to the result before update)

prepend a search followed by an update (prepends data to the result before update)

incr a search followed by an update

decr a search followed by an update

delete a search followed by a deletion

flush_all truncate table

Underlying Tables Used by the InnoDB memcached Plugin

This section describes the underlying tables used by the InnoDB memcached plugin.

The innodb_memcached_config.sql configuration script installs three tables required by the
InnoDB memcached plugin. The tables are created in a dedicated innodb_memcache database:

mysql> USE innodb_memcache;
Database changed
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_innodb_memcache |

Internals of the InnoDB memcached Plugin

2277

+---------------------------+
| cache_policies |
| config_options |
| containers |
+---------------------------+
3 rows in set (0.01 sec)

containers Table

The containers table is the most important of the three tables. Entries in this table are “containers”
for InnoDB tables that are used to store memcached values. The containers map the columns of the
InnoDB table to the values outlined in the table below. This mapping is necessary for memcached to
work with InnoDB tables.

The containers table has a default entry for the test.demo_test table. To use the InnoDB
memcached plugin with your own InnoDB table, you must add an entry for your table to the
containers table.

Table 14.14 containers Columns

Column Description

name The name given to the container.

db_schema The name of the database in which the InnoDB
table resides. This is a required value.

db_table The name of the InnoDB table that stores
memcached values. This is a required value.

key_columns The column in the InnoDB table that contains
lookup key values for memcached operations. This
is a required value.

value_columns The columns (one or more) in the InnoDB
table that store memcached data. Multiple
columns can be specified using the
separator character that is specified in the
innodb_memcached.config_options table.
By default, the separator is a pipe character (“|”).
To specify multiple columns, separate them with
the defined separator character. For example:
col1|col2|col3. This is a required value.

flags Specifies the columns in the InnoDB table that
are used as flags (a user-defined numeric value
that is stored and retrieved along with the main
value) for memcached. A flag value can be used
as a column specifier for some operations (such as
incr, prepend) if memcached value is mapped
to multiple columns, so that an operation is
performed on a specified column. For example, if
you have mapped a value to 3 columns, and only
want the increment operation performed on one
of these columns, you can use flags to specify
which column will be used for these operations. If
you do not use the flags column, set its value to
0 to indicate that it is unused.

cas_column The column in the InnoDB table that stores
compare-and-swap (cas) values. The
cas_column value and expire_time_column
value are related to the way memcached hashes
requests to different servers and caches data in

Internals of the InnoDB memcached Plugin

2278

Column Description
memory. Because the InnoDB memcached plugin
is tightly integrated with a single memcached
daemon, and the in-memory caching mechanism
is handled by MySQL and the buffer pool,
these columns are rarely needed in this type of
deployment. If you do not use these columns, set
their value to 0 to indicate that the columns are
unused.

expire_time_column The column in the InnoDB table that stores
expiration values. The cas_column value and
expire_time_column value are related to the
way memcached hashes requests to different
servers and caches data in memory. Because the
InnoDB memcached plugin is tightly integrated
with a single memcached daemon, and the in-
memory caching mechanism is handled by MySQL
and the buffer pool, these columns are rarely
needed in this type of deployment. If you do not
use these columns, set their value to 0 to indicate
that the columns are unused. As of MySQL 5.7.8,
maximum expire time is defined as INT_MAX32 or
2147483647 seconds (approximately 68 years).

unique_idx_name_on_key The name of the index on the key column. It must
be a unique index. It can be the primary key or a
secondary index. Preferably, make the key column
the primary key of the InnoDB table. Doing so
saves a lookup step over using a secondary index
for this column. You cannot make a covering index
for memcached lookups; InnoDB returns an error
if you try to define a composite secondary index
over both the key and value columns.

containers Table Column Constraints

• You must supply a value for db_schema, db_name, key_columns, value_columns and
unique_idx_name_on_key. Otherwise, the setup will fail. Specify 0 for flags, cas_column, and
expire_time_column if they are unused. Failing to do so could cause your setup to fail.

• key_columns: The maximum limit for a memcached key is 250 characters, which is enforced by
memcached. If a mapped key longer than the maximum limit is used, the operation will fail. The
mapped key must be a non-Null CHAR or VARCHAR type.

• value_columns: Must be mapped to a CHAR, VARCHAR, or BLOB column. There is no length
restriction and the value can be NULL.

• cas_column: The cas value is a 64 bit integer. It must be mapped to a BIGINT of at least 8 bytes.
If you do not use this column, set its value to 0 to indicate that it is unused.

• expiration_time_column: Must mapped to an INTEGER of at least 4 bytes. Expiration time is
defined as a 32-bit integer for Unix time (the number of seconds since January 1, 1970, as a 32-bit
value), or the number of seconds starting from the current time. For the latter, the number of seconds
may not exceed 60*60*24*30 (the number of seconds in 30 days). If the number sent by a client is
larger, the server will consider it to be a real Unix time value rather than an offset from the current
time. If you do not use this column, set its value to 0 to indicate that it is unused.

• flags: Must be mapped to an INTEGER of at least 32-bits and can be NULL. If you do not use this
column, set its value to 0 to indicate that it is unused.

Internals of the InnoDB memcached Plugin

2279

A pre-check is performed at plugin load time to enforce column constraints. If any mismatches are
found, the plugin will not load.

cache_policies Table

The cache_policies table defines a cache policy for your InnoDB memcached setup. You can
specify individual policies for get, set, delete, and flush operations within a single cache policy.
The default setting for all operations is innodb_only.

• innodb_only: Use InnoDB as the data store of memcached.

• cache-only: Use the traditional memcached engine as the data store.

• caching: Use both InnoDB and the traditional memcached engine as data stores. In this case, if
memcached cannot find a key in memory, it searches for the value in an InnoDB table.

• disable: Disable caching.

Table 14.15 cache_policies Columns

Column Description

policy_name Name of the cache policy. The default cache
policy name is cache_policy.

get_policy The cache policy for get operations. Valid values
are innodb_only, cache-only, caching, or
disabled. The default setting is innodb_only.

set_policy The cache policy for set operations. Valid values
are innodb_only, cache-only, caching, or
disabled. The default setting is innodb_only.

delete_policy The cache policy for delete operations. Valid
values are innodb_only, cache-only,
caching, or disabled. The default setting is
innodb_only.

flush_policy The cache policy for flush operations. Valid values
are innodb_only, cache-only, caching, or
disabled. The default setting is innodb_only.

config_options Table

The config_options table stores memcached-related settings that can be changed at runtime, using
SQL. Supported configuration options are separator and table_map_delimiter:

Table 14.16 config_options Columns

Column Description

Name Name of the memcached-related configuration
option. The following configuration options are
supported through the config_options table:

• separator: Used to separate values of a
long string into separate values when there are
multiple value_columns defined. By default,
the separator is a | character. For example,
if you defined col1, col2 as value columns,
and you define | as the separator, you can
issue the following command in memcached to
insert values into col1 and col2 respectively:

set keyx 10 0 19

Internals of the InnoDB memcached Plugin

2280

Column Description
valuecolx|valuecoly

valuecol1x is stored in col1 and
valuecoly is stored in col2.

• table_map_delimiter: The character
separating the schema name and the table
name when you use the @@ notation in a
key name to access a key in a specific
table. For example, @@t1.some_key and
@@t2.some_key have the same key value, but
are stored in different tables.

Value The value assigned to the memcached-related
configuration option.

Multiple-column Mapping

• During plugin initialization, when InnoDB memcached is configured with information defined in the
containers table, each mapped column that is parsed from value_columns is verified against
the mapped table. If multiple columns are mapped, there is a check to ensure that each column
exists and is the right type.

• At run-time, for memcached insert operations, if there are more delimiters in the value than the
number of mapped columns, only the number of mapped values are taken. For example, if there are
6 mapped columns and 7 delimited values are provided, only the first 6 delimited values are taken.
The 7th delimited value is ignored.

• If there are fewer delimited values than mapped columns, unfilled columns are set to NULL. If an
unfilled column cannot be NULL, the insert will fail.

• If a table has more columns than mapped values, the extra columns do not affect output results.

Example Tables

The innodb_memcached_config.sql configuration script creates a table demo_test in the test
database as an example. It also allows the InnoDB memcached plugin to work immediately, without
creating any additional tables.

The entries in the container table define which column is used for what purpose as described above:

mysql> select * from innodb_memcache.containers;
+------+-----------+-----------+-------------+---------------+-------+------------+--------------------+------------------------+
| name | db_schema | db_table | key_columns | value_columns | flags | cas_column | expire_time_column | unique_idx_name_on_key |
+------+-----------+-----------+-------------+---------------+-------+------------+--------------------+------------------------+
| aaa | test | demo_test | c1 | c2 | c3 | c4 | c5 | PRIMARY |
+------+-----------+-----------+-------------+---------------+-------+------------+--------------------+------------------------+
1 row in set (0.00 sec)

mysql> desc test.demo_test;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
c1	varchar(32)	NO	PRI		
c2	varchar(1024)	YES		NULL	
c3	int(11)	YES		NULL	
c4	bigint(20) unsigned	YES		NULL	
c5	int(11)	YES		NULL	
+-------+---------------------+------+-----+---------+-------+
5 rows in set (0.01 sec)

Troubleshooting the InnoDB memcached Plugin

2281

When no table ID is requested through the @@ notation in the key name:

• If a row has a name value of default, the corresponding table is used by the memcached plugin.
Thus, when you make your first entry in innodb_memcache.containers to move beyond the
demo_test table, use a name value of default.

• If there is no innodb_memcache.containers.name value of default, the row with the first
name value in alphabetical order is used.

14.17.8 Troubleshooting the InnoDB memcached Plugin

The following list shows some potential issues you might encounter using the InnoDB memcached
plugin, and solutions or workarounds where available:

• If you see this error in your MySQL error log, the server might fail to start:

failed to set rlimit for open files. Try running as root or requesting
smaller maxconns value.

The error message is actually from the memcached daemon. One solution is to raise the OS limit for
the number of open files. The command varies depending on the operating system. For example,
here are the commands to check and increase the limit on several operating systems:

Linux
$ ulimit -n
1024
ulimit -n 4096
$ ulimit -n
4096

OS X Lion (10.6)
$ ulimit -n
256
ulimit -n 4096
$ ulimit -n
4096

The other solution is to reduce the number of concurrent connections available for the memcached
daemon, using the -c option which defaults to 1024. Encode that memcached option using the
MySQL option daemon_memcached_option inside the MySQL configuration file:

[mysqld]
...
loose-daemon_memcached_option='-c 64'

• To troubleshoot problems where the memcached daemon is unable to store data in or retrieve data
from the InnoDB table, specify the memcached option -vvv through the MySQL configuration
option daemon_memcached_option. Examine the MySQL error log for debug output related to
memcached operations.

• If the column specified to hold the memcached item values is the wrong data type, such as a numeric
type instead of a string type, attempts to store key/value pairs will fail with no specific error code or
message.

• If the daemon_memcached plugin causes any issues with starting the MySQL server, disable it
during troubleshooting by adding this line under the [mysqld] group in your MySQL configuration
file:

Troubleshooting the InnoDB memcached Plugin

2282

daemon_memcached=OFF

For example, if you run the install plugin command before running the
innodb_memcached_config.sql configuration script to set up the necessary database and
tables, the server might crash and be unable to start. Or, if you set up an incorrect entry in the
innodb_memcache.containers table, the server might be unable to start.

To permanently turn off the memcached plugin for a MySQL instance, issue the following command:

mysql> uninstall plugin daemon_memcached;

• If you run more than one instance of MySQL on the same machine, with the memcached daemon
plugin enabled in each, make sure to specify a unique memcached port for each one using the
daemon_memcached_option configuration option.

• You might find that a SQL statement cannot find an expected table, or there is no data in the table,
but memcached API calls still work and retrieve the expected data. This can happen if you do not
set up the entry in the innodb_memcache.containers table, or do not switch to that table by
issuing a GET or SET request with the key @@table_id, or make a change to an existing entry in
innodb_memcache.containers without restarting the MySQL server afterward. The free-form
storage mechanism is flexible enough that your requests to store or retrieve a multi-column value like
col1|col2|col3 will usually still work, even if the daemon is using the test.demo_test table
which stores all the data within a single column.

• When defining your own InnoDB table for use with InnoDB memcached, and columns in
your table are defined as NOT NULL, ensure that values are supplied for the NOT NULL
columns when inserting a descriptor for the InnoDB table into the memcached containers table
(innodb_memcached.containers). If your descriptor INSERT statement contains fewer delimited
values than there are mapped columns, unfilled columns are set to NULL. Attempting to insert a
NULL value into a NOT NULL column causes the INSERT to fail, which may only become evident
after you reinitialize the InnoDB memcached plugin to apply changes to the containers table.

• If cas_column and expire_time_column of the innodb_memcached.containers table are
set to NULL, the following error will be returned when attempting to load the memcached plugin:

InnoDB_Memcached: column 6 in the entry for config table 'containers' in
database 'innodb_memcache' has an invalid NULL value.

The memcached plugin rejects usage of NULL in the cas_column and expire_time_column
columns. Set the value of these columns to 0 if the columns are unused.

• As the length of the memcached key and values increase, you encounter size and length limits at
different points:

• When the key exceeds 250 bytes in size, memcached operations return an error. This is currently
a fixed limit within memcached.

• You might encounter InnoDB-related limits when the value exceeds 768 bytes in size, or 3072
bytes in size, or the InnoDB row size limit which depends on innodb_page_size setting. These
limits primarily apply if you intend to create an index on the value column to run report-generating
queries on that column from SQL. See Section 14.5.7, “Limits on InnoDB Tables” for details.

• The maximum size for the combination of the key and the value is 1 MB.

• If you share configuration files across MySQL servers with different versions, using the latest
configuration options for the memcached plugin could cause startup errors for older MySQL versions.
To avoid compatibility problems, use the loose forms of these option names, for example loose-
daemon_memcached_option='-c 64' instead of daemon_memcached_option='-c 64'.

InnoDB Troubleshooting

2283

• There is no restriction or check in place to validate character set settings. memcached stores and
retrieves keys and values in bytes and is therefore not character set sensitive. However, you must
ensure that the memcached client and the MySQL table use the same character set.

14.18 InnoDB Troubleshooting

The following general guidelines apply to troubleshooting InnoDB problems:

• When an operation fails or you suspect a bug, look at the MySQL server error log (see Section 5.2.2,
“The Error Log”).

• If the failure is related to a deadlock, run with the innodb_print_all_deadlocks option enabled
so that details about each InnoDB deadlock are printed to the MySQL server error log.

• Issues relating to the InnoDB data dictionary include failed CREATE TABLE statements
(orphaned table files), inability to open .InnoDB files, and system cannot find the path
specified errors. For information about these sorts of problems and errors, see Section 14.18.3,
“Troubleshooting InnoDB Data Dictionary Operations”.

• When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather
than through mysqld_safe or as a Windows service. You can then see what mysqld prints to the
console, and so have a better grasp of what is going on. On Windows, start mysqld with the --
console option to direct the output to the console window.

• Enable the InnoDB Monitors to obtain information about a problem (see Section 14.14, “InnoDB
Monitors”). If the problem is performance-related, or your server appears to be hung, you should
enable the standard Monitor to print information about the internal state of InnoDB. If the problem
is with locks, enable the Lock Monitor. If the problem is in creation of tables or other data dictionary
operations, enable the Table Monitor to print the contents of the InnoDB internal data dictionary. To
see tablespace information enable the Tablespace Monitor.

InnoDB temporarily enables standard InnoDB Monitor output under the following conditions:

• A long semaphore wait

• InnoDB cannot find free blocks in the buffer pool

• Over 67% of the buffer pool is occupied by lock heaps or the adaptive hash index

• If you suspect that a table is corrupt, run CHECK TABLE on that table.

14.18.1 Troubleshooting InnoDB I/O Problems

The troubleshooting steps for InnoDB I/O problems depend on when the problem occurs: during
startup of the MySQL server, or during normal operations when a DML or DDL statement fails due to
problems at the file system level.

Initialization Problems

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, delete all files
created by InnoDB: all ibdata files and all ib_logfile files. If you already created some InnoDB
tables, also delete the corresponding .frm files for these tables, and any .ibd files if you are using
multiple tablespaces, from the MySQL database directories. Then try the InnoDB database creation
again. For easiest troubleshooting, start the MySQL server from a command prompt so that you see
what is happening.

Runtime Problems

If InnoDB prints an operating system error during a file operation, usually the problem has one of the
following solutions:

Forcing InnoDB Recovery

2284

• Make sure the InnoDB data file directory and the InnoDB log directory exist.

• Make sure mysqld has access rights to create files in those directories.

• Make sure mysqld can read the proper my.cnf or my.ini option file, so that it starts with the
options that you specified.

• Make sure the disk is not full and you are not exceeding any disk quota.

• Make sure that the names you specify for subdirectories and data files do not clash.

• Doublecheck the syntax of the innodb_data_home_dir and innodb_data_file_path values.
In particular, any MAX value in the innodb_data_file_path option is a hard limit, and exceeding
that limit causes a fatal error.

14.18.2 Forcing InnoDB Recovery

To investigate database page corruption, you might dump your tables from the database with
SELECT ... INTO OUTFILE. Usually, most of the data obtained in this way is intact. Serious
corruption might cause SELECT * FROM tbl_name statements or InnoDB background operations
to crash or assert, or even cause InnoDB roll-forward recovery to crash. In such cases, you can use
the innodb_force_recovery option to force the InnoDB storage engine to start up while preventing
background operations from running, so that you can dump your tables. For example, you can add the
following line to the [mysqld] section of your option file before restarting the server:

[mysqld]
innodb_force_recovery = 1

Warning

Only set innodb_force_recovery to a value greater than 0 in an emergency
situation, so that you can start InnoDB and dump your tables. Before doing
so, ensure that you have a backup copy of your database in case you need to
recreate it. Values of 4 or greater can permanently corrupt data files. Only use
an innodb_force_recovery setting of 4 or greater on a production server
instance after you have successfully tested the setting on separate physical
copy of your database. When forcing InnoDB recovery, you should always start
with innodb_force_recovery=1 and only increase the value incrementally,
as necessary.

innodb_force_recovery is 0 by default (normal startup without forced recovery). The permissible
nonzero values for innodb_force_recovery are 1 to 6. A larger value includes the functionality of
lesser values. For example, a value of 3 includes all of the functionality of values 1 and 2.

If you are able to dump your tables with an innodb_force_recovery value of 3 or less, then you
are relatively safe that only some data on corrupt individual pages is lost. A value of 4 or greater is
considered dangerous because data files can be permanently corrupted. A value of 6 is considered
drastic because database pages are left in an obsolete state, which in turn may introduce more
corruption into B-trees and other database structures.

As a safety measure, InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0. As of MySQL 5.7.3, an innodb_force_recovery
setting of 4 or greater places InnoDB in read-only mode.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Lets the server run even if it detects a corrupt page. Tries to make SELECT * FROM tbl_name
jump over corrupt index records and pages, which helps in dumping tables.

• 2 (SRV_FORCE_NO_BACKGROUND)

Troubleshooting InnoDB Data Dictionary Operations

2285

Prevents the master thread and any purge threads from running. If a crash would occur during the
purge operation, this recovery value prevents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Does not run transaction rollbacks after crash recovery.

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevents insert buffer merge operations. If they would cause a crash, does not do them. Does not
calculate table statistics. This value can permanently corrupt data files. After using this value, be
prepared to drop and recreate all secondary indexes. As of MySQL 5.7.3, sets InnoDB to read-only.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Does not look at undo logs when starting the database: InnoDB treats even incomplete transactions
as committed. This value can permanently corrupt data files. As of MySQL 5.7.3, sets InnoDB to
read-only.

• 6 (SRV_FORCE_NO_LOG_REDO)

Does not do the redo log roll-forward in connection with recovery. This value can permanently
corrupt data files. Leaves database pages in an obsolete state, which in turn may introduce more
corruption into B-trees and other database structures. As of MySQL 5.7.3, sets InnoDB to read-only.

You can SELECT from tables to dump them. With an innodb_force_recovery value of 3 or
less you can DROP or CREATE tables. As of MySQL 5.7.9, DROP TABLE is also supported with an
innodb_force_recovery value greater than 3.

If you know that a given table is causing a crash on rollback, you can drop it. If you encounter a
runaway rollback caused by a failing mass import or ALTER TABLE, you can kill the mysqld process
and set innodb_force_recovery to 3 to bring the database up without the rollback, and then DROP
the table that is causing the runaway rollback.

If corruption within the table data prevents you from dumping the entire table contents, a query with
an ORDER BY primary_key DESC clause might be able to dump the portion of the table after the
corrupted part.

If a high innodb_force_recovery value is required to start InnoDB, there may be corrupted data
structures that could cause complex queries (queries containing WHERE, ORDER BY, or other clauses)
to fail. In this case, you may only be able to run basic SELECT * FROM t queries.

14.18.3 Troubleshooting InnoDB Data Dictionary Operations

Information about table definitions is stored both in the .frm files, and in the InnoDB data dictionary. If
you move .frm files around, or if the server crashes in the middle of a data dictionary operation, these
sources of information can become inconsistent.

If a data dictionary corruption or consistency issue prevents you from starting InnoDB, see
Section 14.18.2, “Forcing InnoDB Recovery” for information about manual recovery.

Problem with CREATE TABLE

A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this occurs,
look in the server's error log. If the log says that the table already exists inside the InnoDB internal data
dictionary, you have an orphaned table inside the InnoDB tablespace files that has no corresponding
.frm file. The error message looks like this:

InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file

Troubleshooting InnoDB Data Dictionary Operations

2286

InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.
InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.

You can drop the orphaned table by following the instructions given in the error message. If you are still
unable to use DROP TABLE successfully, the problem may be due to name completion in the mysql
client. To work around this problem, start the mysql client with the --skip-auto-rehash option
and try DROP TABLE again. (With name completion on, mysql tries to construct a list of table names,
which fails when a problem such as just described exists.)

Problem Opening Table

Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot open a
.InnoDB file:

ERROR 1016: Can't open file: 'child2.InnoDB'. (errno: 1)

In the error log you can find a message like this:

InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?

This means that there is an orphaned .frm file without a corresponding table inside InnoDB. You can
drop the orphaned .frm file by deleting it manually.

Orphaned Intermediate Tables

If MySQL crashes in the middle of an ALTER TABLE operation, you may be left with an orphaned
intermediate table. Intermediate table names begin with “#sql-”. In your data directory you will see an
#sql-*.ibd file and possibly an accompanying #sql-*.frm file. The intermediate table is also listed
in Table Monitor output and referenced in InnoDB INFORMATION_SCHEMA tables.

Removing an orphaned intermediate table requires a table format file (a .frm file) that matches
the table schema defined in the #sql-*.ibd file (it must have the same columns and indexes).
Depending on when the crash occurred during the ALTER TABLE operation, the orphaned
#sql-*.ibd file could have a pre-ALTER or post-ALTER schema definition, and the data in the
accompanying #sql-*.frm file (if present) may or may not match.

To remove the orphaned intermediate table, perform the following steps:

1. Determine if the #sql-*.ibd file has a pre-ALTER or post-ALTER schema definition. You can view
the columns and indexes of the intermediate table by querying InnoDB INFORMATION_SCHEMA
tables. INNODB_SYS_TABLES provides the TABLE_ID for the intermediate table, which
you can use to retrieve column and index information from INNODB_SYS_COLUMNS, and
INNODB_SYS_INDEXES.

2. Once you have determined if the #sql-*.ibd file has a pre-ALTER or post-ALTER schema
definition, create a matching #sql-*.frm file in a different database directory. For example, if
an intermediate table has a post-ALTER schema definition, create an .frm file that matches the
altered schema definition:

mysql> CREATE TABLE tmp LIKE employees.salaries; ALTER TABLE tmp DROP COLUMN to_date;
Query OK, 0 rows affected (0.02 sec)

Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

Troubleshooting InnoDB Data Dictionary Operations

2287

3. Copy the .frm file to the database directory where the orphaned table is located and rename it to
match the name of the #sql-*.ibd file

shell> cp tmp.frm employees/#sql-ib87.frm

4. Drop the intermediate table by issuing a DROP TABLE statement, prefixing the name of the table
with #mysql50# and enclosing the table name in backticks. For example:

mysql> DROP TABLE `#mysql50##sql-ib87`;
Query OK, 0 rows affected (0.01 sec)

The #mysql50# prefix tells MySQL to ignore file name safe encoding introduced in MySQL
5.1. Enclosing the table name in backticks is required to perform SQL statements on table names
with special characters such as “#”.

5. If there is a leftover #sql-*.frm file, drop it. MySQL reports an “unknown table” error, which can
be ignored.

mysql> DROP TABLE `#mysql50##sql-36ab_2`;
ERROR 1051 (42S02): Unknown table 'employees.#mysql50##sql-36ab_2'

Restoring Orphaned File-Per-Table ibd Files

This procedure describes how to restore orphaned file_per_table .ibd files to another MySQL
instance. You might use this procedure if the system tablespace is lost or unrecoverable and you want
to restore .idb file backups on a new MySQL instance.

The procedure is not supported for general tablespace .ibd files.

The procedure assumes that you only have .ibd file backups, you are recovering to the same version
of MySQL that initially created the orphaned .idb files, and that .idb file backups are clean. See
Section 14.5.2, “Moving or Copying InnoDB Tables to Another Machine” for information about creating
clean backups.

Tablespace copying limitations outlined in Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server” are applicable to this procedure.

1. On the new MySQL instance, recreate the table in a database of the same name.

mysql> CREATE DATABASE sakila;

mysql> USE sakila;

mysql> CREATE TABLE actor (
 -> actor_id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 -> first_name VARCHAR(45) NOT NULL,
 -> last_name VARCHAR(45) NOT NULL,
 -> last_update TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 -> PRIMARY KEY (actor_id),
 -> KEY idx_actor_last_name (last_name)
 ->)ENGINE=InnoDB DEFAULT CHARSET=utf8;

2. Discard the tablespace of the newly created table.

mysql> ALTER TABLE sakila.actor DISCARD TABLESPACE;

3. Copy the orphaned .idb file from your backup directory to the new database directory.

shell> cp /backup_directory/actor.ibd path/to/mysql-5.7/data/sakila/

4. Ensure that the .ibd file has the necessary file permissions.

5. Import the orphaned .ibd file. A warning is issued indicating that InnoDB will attempt to import the
file without schema verification.

mysql> ALTER TABLE sakila.actor IMPORT TABLESPACE; SHOW WARNINGS;

InnoDB Error Handling

2288

Query OK, 0 rows affected, 1 warning (0.15 sec)

Warning | 1810 | InnoDB: IO Read error: (2, No such file or directory)
Error opening './sakila/actor.cfg', will attempt to import
without schema verification

6. Query the table to verify that the .ibd file was successfully restored.

mysql> SELECT COUNT(*) FROM sakila.actor;
+----------+
| count(*) |
+----------+
| 200 |
+----------+

14.18.4 InnoDB Error Handling

The following items describe how InnoDB performs error handling. InnoDB sometimes rolls back only
the statement that failed, other times it rolls back the entire transaction.

• If you run out of file space in a tablespace, a MySQL Table is full error occurs and InnoDB
rolls back the SQL statement.

• A transaction deadlock causes InnoDB to roll back the entire transaction. Retry the whole
transaction when this happens.

A lock wait timeout causes InnoDB to roll back only the single statement that was waiting for the lock
and encountered the timeout. (To have the entire transaction roll back, start the server with the --
innodb_rollback_on_timeout option.) Retry the statement if using the current behavior, or the
entire transaction if using --innodb_rollback_on_timeout.

Both deadlocks and lock wait timeouts are normal on busy servers and it is necessary for
applications to be aware that they may happen and handle them by retrying. You can make them
less likely by doing as little work as possible between the first change to data during a transaction
and the commit, so the locks are held for the shortest possible time and for the smallest possible
number of rows. Sometimes splitting work between different transactions may be practical and
helpful.

When a transaction rollback occurs due to a deadlock or lock wait timeout, it cancels the effect of the
statements within the transaction. But if the start-transaction statement was START TRANSACTION
or BEGIN statement, rollback does not cancel that statement. Further SQL statements become part
of the transaction until the occurrence of COMMIT, ROLLBACK, or some SQL statement that causes
an implicit commit.

• A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in
your statement.

• A row too long error rolls back the SQL statement.

• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine
level), and they roll back the corresponding SQL statement. Locks are not released in a rollback of a
single SQL statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW
PROCESSLIST displays Rolling back in the State column for the relevant connection.

14.18.5 InnoDB Error Codes

The following is a nonexhaustive list of common InnoDB-specific errors that you may encounter, with
information about why each occurs and how to resolve the problem.

• 1005 (ER_CANT_CREATE_TABLE)

InnoDB Error Codes

2289

Cannot create table. If the error message refers to error 150, table creation failed because a foreign
key constraint was not correctly formed. If the error message refers to error −1, table creation
probably failed because the table includes a column name that matched the name of an internal
InnoDB table.

• 1016 (ER_CANT_OPEN_FILE)

Cannot find the InnoDB table from the InnoDB data files, although the .frm file for the table exists.
See Section 14.18.3, “Troubleshooting InnoDB Data Dictionary Operations”.

• 1114 (ER_RECORD_FILE_FULL)

InnoDB has run out of free space in the tablespace. Reconfigure the tablespace to add a new data
file.

• 1205 (ER_LOCK_WAIT_TIMEOUT)

Lock wait timeout expired. The statement that waited too long was rolled back (not the entire
transaction). You can increase the value of the innodb_lock_wait_timeout configuration option
if SQL statements should wait longer for other transactions to complete, or decrease it if too many
long-running transactions are causing locking problems and reducing concurrency on a busy system.

• 1206 (ER_LOCK_TABLE_FULL)

The total number of locks exceeds the amount of memory InnoDB devotes to managing locks.
To avoid this error, increase the value of innodb_buffer_pool_size. Within an individual
application, a workaround may be to break a large operation into smaller pieces. For example, if the
error occurs for a large INSERT, perform several smaller INSERT operations.

• 1213 (ER_LOCK_DEADLOCK)

The transaction encountered a deadlock and was automatically rolled back so that your application
could take corrective action. To recover from this error, run all the operations in this transaction
again. A deadlock occurs when requests for locks arrive in inconsistent order between transactions.
The transaction that was rolled back released all its locks, and the other transaction can now get all
the locks it requested. Thus when you re-run the transaction that was rolled back, it might have to
wait for other transactions to complete, but typically the deadlock does not recur. If you encounter
frequent deadlocks, make the sequence of locking operations (LOCK TABLES, SELECT ... FOR
UPDATE, and so on) consistent between the different transactions or applications that experience the
issue. See Section 14.2.2.10, “How to Cope with Deadlocks” for details.

• 1216 (ER_NO_REFERENCED_ROW)

You are trying to add a row but there is no parent row, and a foreign key constraint fails. Add the
parent row first.

• 1217 (ER_ROW_IS_REFERENCED)

You are trying to delete a parent row that has children, and a foreign key constraint fails. Delete the
children first.

• ERROR 1553 (HY000): Cannot drop index 'fooIdx': needed in a foreign key
constraint

This error message is reported when you attempt to drop the last index that can enforce a particular
referential constraint.

For optimal performance with DML statements, InnoDB requires an index to exist on foreign key
columns, so that UPDATE and DELETE operations on a parent table can easily check whether
corresponding rows exist in the child table. MySQL creates or drops such indexes automatically
when needed, as a side-effect of CREATE TABLE, CREATE INDEX, and ALTER TABLE statements.

InnoDB Error Codes

2290

When you drop an index, InnoDB checks whether the index is not used for checking a foreign key
constraint. It is still OK to drop the index if there is another index that can be used to enforce the
same constraint. InnoDB prevents you from dropping the last index that can enforce a particular
referential constraint.

2291

Chapter 15 Alternative Storage Engines

Table of Contents
15.1 Setting the Storage Engine .. 2294
15.2 The MyISAM Storage Engine .. 2295

15.2.1 MyISAM Startup Options .. 2297
15.2.2 Space Needed for Keys ... 2299
15.2.3 MyISAM Table Storage Formats ... 2299
15.2.4 MyISAM Table Problems .. 2302

15.3 The MEMORY Storage Engine .. 2303
15.4 The CSV Storage Engine .. 2307

15.4.1 Repairing and Checking CSV Tables ... 2308
15.4.2 CSV Limitations ... 2309

15.5 The ARCHIVE Storage Engine .. 2309
15.6 The BLACKHOLE Storage Engine ... 2310
15.7 The MERGE Storage Engine ... 2312

15.7.1 MERGE Table Advantages and Disadvantages .. 2315
15.7.2 MERGE Table Problems ... 2315

15.8 The FEDERATED Storage Engine ... 2317
15.8.1 FEDERATED Storage Engine Overview .. 2317
15.8.2 How to Create FEDERATED Tables .. 2318
15.8.3 FEDERATED Storage Engine Notes and Tips .. 2321
15.8.4 FEDERATED Storage Engine Resources .. 2322

15.9 The EXAMPLE Storage Engine ... 2323
15.10 Other Storage Engines .. 2323
15.11 Overview of MySQL Storage Engine Architecture .. 2323

15.11.1 Pluggable Storage Engine Architecture .. 2324
15.11.2 The Common Database Server Layer .. 2324

Storage engines are MySQL components that handle the SQL operations for different table types.
InnoDB is the default and most general-purpose storage engine, and Oracle recommends using it
for tables except for specialized use cases. (The CREATE TABLE statement in MySQL 5.7 creates
InnoDB tables by default.)

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

To determine which storage engines your server supports, use the SHOW ENGINES statement. The
value in the Support column indicates whether an engine can be used. A value of YES, NO, or
DEFAULT indicates that an engine is available, not available, or available and currently set as the
default storage engine.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES

MySQL 5.7 Supported Storage Engines

2292

 Savepoints: YES
*************************** 3. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
...

This chapter covers use cases for special-purpose MySQL storage engines. It does not cover the
default InnoDB storage engine or the NDB storage engine which are covered in Chapter 14, The
InnoDB Storage Engine, and MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4. For advanced
users, this chapter also contains a description of the pluggable storage engine architecture (see
Section 15.11, “Overview of MySQL Storage Engine Architecture”).

For information about storage engine support offered in commercial MySQL Server binaries, see
MySQL Enterprise Server 5.7, on the MySQL Web site. The storage engines available might depend
on which edition of Enterprise Server you are using.

For answers to commonly asked questions about MySQL storage engines, see Section A.2, “MySQL
5.7 FAQ: Storage Engines”.

MySQL 5.7 Supported Storage Engines

• InnoDB: The default storage engine in MySQL 5.7. InnoDB is a transaction-safe (ACID compliant)
storage engine for MySQL that has commit, rollback, and crash-recovery capabilities to protect user
data. InnoDB row-level locking (without escalation to coarser granularity locks) and Oracle-style
consistent nonlocking reads increase multi-user concurrency and performance. InnoDB stores user
data in clustered indexes to reduce I/O for common queries based on primary keys. To maintain data
integrity, InnoDB also supports FOREIGN KEY referential-integrity constraints. For more information
about InnoDB, see Chapter 14, The InnoDB Storage Engine.

• MyISAM: These tables have a small footprint. Table-level locking limits the performance in read/write
workloads, so it is often used in read-only or read-mostly workloads in Web and data warehousing
configurations.

• Memory: Stores all data in RAM, for fast access in environments that require quick lookups of non-
critical data. This engine was formerly known as the HEAP engine. Its use cases are decreasing;
InnoDB with its buffer pool memory area provides a general-purpose and durable way to keep most
or all data in memory, and NDBCLUSTER provides fast key-value lookups for huge distributed data
sets.

• CSV: Its tables are really text files with comma-separated values. CSV tables let you import or dump
data in CSV format, to exchange data with scripts and applications that read and write that same
format. Because CSV tables are not indexed, you typically keep the data in InnoDB tables during
normal operation, and only use CSV tables during the import or export stage.

• Archive: These compact, unindexed tables are intended for storing and retrieving large amounts of
seldom-referenced historical, archived, or security audit information.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://www.mysql.com/products/enterprise/server.html

MySQL 5.7 Supported Storage Engines

2293

• Blackhole: The Blackhole storage engine accepts but does not store data, similar to the Unix /
dev/null device. Queries always return an empty set. These tables can be used in replication
configurations where DML statements are sent to slave servers, but the master server does not keep
its own copy of the data.

• Merge: Enables a MySQL DBA or developer to logically group a series of identical MyISAM tables
and reference them as one object. Good for VLDB environments such as data warehousing.

• Federated: Offers the ability to link separate MySQL servers to create one logical database from
many physical servers. Very good for distributed or data mart environments.

• Example: This engine serves as an example in the MySQL source code that illustrates how to begin
writing new storage engines. It is primarily of interest to developers. The storage engine is a “stub”
that does nothing. You can create tables with this engine, but no data can be stored in them or
retrieved from them.

You are not restricted to using the same storage engine for an entire server or schema. You can
specify the storage engine for any table. For example, an application might use mostly InnoDB
tables, with one CSV table for exporting data to a spreadsheet and a few MEMORY tables for temporary
workspaces.

Choosing a Storage Engine

The various storage engines provided with MySQL are designed with different use cases in mind. The
following table provides an overview of some storage engines provided with MySQL:

Table 15.1 Storage Engines Feature Summary

Feature MyISAM Memory InnoDB Archive NDB

Storage
limits

256TB RAM 64TB None 384EB

TransactionsNo No Yes No Yes

Locking
granularity

Table Table Row Row Row

MVCC No No Yes No No

Geospatial
data type
support

Yes No Yes Yes Yes

Geospatial
indexing
support

Yes No Yesa No No

B-tree
indexes

Yes Yes Yes No No

T-tree
indexes

No No No No Yes

Hash
indexes

No Yes Nob No Yes

Full-text
search
indexes

Yes No Yesc No No

Clustered
indexes

No No Yes No No

Data
caches

No N/A Yes No Yes

Setting the Storage Engine

2294

Feature MyISAM Memory InnoDB Archive NDB

Index
caches

Yes N/A Yes No Yes

Compressed
data

Yesd No Yese Yes No

Encrypted
dataf

Yes Yes Yes Yes Yes

Cluster
database
support

No No No No Yes

Replication
supportg

Yes Yes Yes Yes Yes

Foreign
key
support

No No Yes No No

Backup /
point-
in-time
recoveryh

Yes Yes Yes Yes Yes

Query
cache
support

Yes Yes Yes Yes Yes

Update
statistics
for data
dictionary

Yes Yes Yes Yes Yes

aInnoDB support for geospatial indexing is available in MySQL 5.7.5 and higher.
bInnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.
cInnoDB support for FULLTEXT indexes is available in MySQL 5.6.4 and higher.
dCompressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format
with MyISAM are read only.
eCompressed InnoDB tables require the InnoDB Barracuda file format.
fImplemented in the server (via encryption functions), rather than in the storage engine.
gImplemented in the server, rather than in the storage engine.
hImplemented in the server, rather than in the storage engine.

15.1 Setting the Storage Engine

When you create a new table, you can specify which storage engine to use by adding an ENGINE table
option to the CREATE TABLE statement:

-- ENGINE=INNODB not needed unless you have set a different
-- default storage engine.
CREATE TABLE t1 (i INT) ENGINE = INNODB;
-- Simple table definitions can be switched from one to another.
CREATE TABLE t2 (i INT) ENGINE = CSV;
CREATE TABLE t3 (i INT) ENGINE = MEMORY;

When you omit the ENGINE option, the default storage engine is used. The default engine is InnoDB
in MySQL 5.7. You can specify the default engine by using the --default-storage-engine server
startup option, or by setting the default-storage-engine option in the my.cnf configuration file.

You can set the default storage engine for the current session by setting the
default_storage_engine variable:

The MyISAM Storage Engine

2295

SET default_storage_engine=NDBCLUSTER;

The storage engine for TEMPORARY tables created with CREATE TEMPORARY TABLE can be set
separately from the engine for permanent tables by setting the default_tmp_storage_engine,
either at startup or at runtime.

When MySQL is installed on Windows using the MySQL Configuration Wizard, the InnoDB or MyISAM
storage engine can be selected as the default. See The Database Usage Dialog.

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates
the new engine:

ALTER TABLE t ENGINE = InnoDB;

See Section 13.1.14, “CREATE TABLE Syntax”, and Section 13.1.6, “ALTER TABLE Syntax”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL
instead creates a table using the default storage engine. For example, in a replication setup, perhaps
your master server uses InnoDB tables for maximum safety, but the slave servers use other storage
engines for speed at the expense of durability or concurrency.

By default, a warning is generated whenever CREATE TABLE or ALTER TABLE cannot use the default
storage engine. To prevent confusing, unintended behavior if the desired engine is unavailable, enable
the NO_ENGINE_SUBSTITUTION SQL mode. If the desired engine is unavailable, this setting produces
an error instead of a warning, and the table is not created or altered. See Section 5.1.7, “Server SQL
Modes”.

For new tables, MySQL always creates an .frm file to hold the table and column definitions. The
table's index and data may be stored in one or more other files, depending on the storage engine.
The server creates the .frm file above the storage engine level. Individual storage engines create
any additional files required for the tables that they manage. If a table name contains special
characters, the names for the table files contain encoded versions of those characters as described in
Section 9.2.3, “Mapping of Identifiers to File Names”.

15.2 The MyISAM Storage Engine

MyISAM is based on the older (and no longer available) ISAM storage engine but has many useful
extensions.

Table 15.2 MyISAM Storage Engine Features

Storage limits 256TB Transactions No Locking granularity Table

MVCC No Geospatial data
type support

Yes Geospatial indexing
support

Yes

B-tree indexes Yes T-tree indexes No Hash indexes No

Full-text search
indexes

Yes Clustered indexes No Data caches No

Index caches Yes Compressed data Yesa Encrypted datab Yes

Cluster database
support

No Replication
supportc

Yes Foreign key support No

Backup / point-in-
time recoveryd

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aCompressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format
with MyISAM are read only.
bImplemented in the server (via encryption functions), rather than in the storage engine.
cImplemented in the server, rather than in the storage engine.
dImplemented in the server, rather than in the storage engine.

http://dev.mysql.com/doc/refman/5.5/en/mysql-config-wizard-database-usage.html

The MyISAM Storage Engine

2296

Each MyISAM table is stored on disk in three files. The files have names that begin with the table name
and have an extension to indicate the file type. An .frm file stores the table format. The data file has
an .MYD (MYData) extension. The index file has an .MYI (MYIndex) extension.

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MYISAM;

In MySQL 5.7, it is normally necessary to use ENGINE to specify the MyISAM storage engine because
InnoDB is the default engine.

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can
also compress MyISAM tables with myisampack to take up much less space. See Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”, Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”, and Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM
Tables”.

MyISAM tables have the following characteristics:

• All data values are stored with the low byte first. This makes the data machine and operating
system independent. The only requirements for binary portability are that the machine uses two's-
complement signed integers and IEEE floating-point format. These requirements are widely used
among mainstream machines. Binary compatibility might not be applicable to embedded systems,
which sometimes have peculiar processors.

There is no significant speed penalty for storing data low byte first; the bytes in a table row normally
are unaligned and it takes little more processing to read an unaligned byte in order than in reverse
order. Also, the code in the server that fetches column values is not time critical compared to other
code.

• All numeric key values are stored with the high byte first to permit better index compression.

• Large files (up to 63-bit file length) are supported on file systems and operating systems that support
large files.

• There is a limit of (232)2 (1.844E+19) rows in a MyISAM table.

• The maximum number of indexes per MyISAM table is 64.

The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes. This can also be changed by changing the source and
recompiling. For the case of a key longer than 250 bytes, a larger key block size than the default of
1024 bytes is used.

• When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the
index tree is split so that the high node only contains one key. This improves space utilization in the
index tree.

• Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically
updates this column for INSERT and UPDATE operations. This makes AUTO_INCREMENT columns
faster (at least 10%). Values at the top of the sequence are not reused after being deleted. (When an
AUTO_INCREMENT column is defined as the last column of a multiple-column index, reuse of values
deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be reset with
ALTER TABLE or myisamchk.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is
done by automatically combining adjacent deleted blocks and by extending blocks if the next block is
deleted.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file,
you can INSERT new rows into it at the same time that other threads are reading from the table. A

Additional Resources

2297

free block can occur as a result of deleting rows or an update of a dynamic length row with more
data than its current contents. When all free blocks are used up (filled in), future inserts become
concurrent again. See Section 8.11.3, “Concurrent Inserts”.

• You can put the data file and index file in different directories on different physical devices to get
more speed with the DATA DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE.
See Section 13.1.14, “CREATE TABLE Syntax”.

• BLOB and TEXT columns can be indexed.

• NULL values are permitted in indexed columns. This takes 0 to 1 bytes per key.

• Each character column can have a different character set. See Section 10.1, “Character Set
Support”.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If
mysqld is started with the --myisam-recover-options option, MyISAM tables are automatically
checked when opened, and are repaired if the table wasn't closed properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myisamchk
--fast checks only those tables that don't have this mark.

• myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.

• myisampack can pack BLOB and VARCHAR columns.

MyISAM also supports the following features:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two bytes.

• Tables with VARCHAR columns may have fixed or dynamic row length.

• The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.

• Arbitrary length UNIQUE constraints.

Additional Resources

• A forum dedicated to the MyISAM storage engine is available at http://forums.mysql.com/list.php?21.

15.2.1 MyISAM Startup Options

The following options to mysqld can be used to change the behavior of MyISAM tables. For additional
information, see Section 5.1.3, “Server Command Options”.

Table 15.3 MyISAM Option/Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

bulk_insert_buffer_sizeYes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

delay-key-write Yes Yes Global Yes

- Variable:
delay_key_write

 Yes Global Yes

have_rtree_keys Yes Global No

key_buffer_size Yes Yes Yes Global Yes

log-isam Yes Yes

myisam-block-
size

Yes Yes

http://forums.mysql.com/list.php?21

MyISAM Startup Options

2298

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam-recover-
options

Yes Yes

- Variable:
myisam_recover_options

myisam_recover_options Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

skip-concurrent-
insert

Yes Yes

- Variable:
concurrent_insert

tmp_table_size Yes Yes Yes Both Yes

• --myisam-recover-options=mode

Set the mode for automatic recovery of crashed MyISAM tables.

• --delay-key-write=ALL

Don't flush key buffers between writes for any MyISAM table.

Note

If you do this, you should not access MyISAM tables from another program
(such as from another MySQL server or with myisamchk) when the tables
are in use. Doing so risks index corruption. Using --external-locking
does not eliminate this risk.

The following system variables affect the behavior of MyISAM tables. For additional information, see
Section 5.1.4, “Server System Variables”.

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization.

Note

This is a limit per thread!

• myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be
larger than this value, the index is created using the key cache instead, which is slower. The value is
given in bytes.

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

Space Needed for Keys

2299

Automatic recovery is activated if you start mysqld with the --myisam-recover-options option.
In this case, when the server opens a MyISAM table, it checks whether the table is marked as crashed
or whether the open count variable for the table is not 0 and you are running the server with external
locking disabled. If either of these conditions is true, the following happens:

• The server checks the table for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the
data file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the server
tries again, this time re-creating the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by row
without sorting). This method should be able to repair any type of error and has low disk space
requirements.

If the recovery wouldn't be able to recover all rows from previously completed statements and you
didn't specify FORCE in the value of the --myisam-recover-options option, automatic repair aborts
with an error message in the error log:

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

If the automatic recovery value includes BACKUP, the recovery process creates files with names of the
form tbl_name-datetime.BAK. You should have a cron script that automatically moves these files
from the database directories to backup media.

15.2.2 Space Needed for Keys

MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as
(key_length+4)/0.67, summed over all keys. This is for the worst case when all keys are inserted
in sorted order and the table doesn't have any compressed keys.

String indexes are space compressed. If the first index part is a string, it is also prefix compressed.
Space compression makes the index file smaller than the worst-case figure if a string column has a lot
of trailing space or is a VARCHAR column that is not always used to the full length. Prefix compression
is used on keys that start with a string. Prefix compression helps if there are many strings with an
identical prefix.

In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table option
when you create the table. Numbers are stored with the high byte first, so this helps when you have
many integer keys that have an identical prefix.

15.2.3 MyISAM Table Storage Formats

MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen
automatically depending on the type of columns you are using. The third, compressed format, can be
created only with the myisampack utility (see Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”).

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you
can force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option.

See Section 13.1.14, “CREATE TABLE Syntax”, for information about ROW_FORMAT.

MyISAM Table Storage Formats

2300

You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack; see
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, for more information.

15.2.3.1 Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length
columns (VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to
corruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file
can be found on disk: To look up a row based on a row number in the index, multiply the row number
by the row length to calculate the row position. Also, when scanning a table, it is very easy to read a
constant number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format
MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it
can usually reclaim all rows except the partially written one. MyISAM table indexes can always be
reconstructed based on the data rows.

Note

Fixed-length row format is only available for tables without BLOB or TEXT
columns. Creating a table with these columns with an explicit ROW_FORMAT
clause will not raise an error or warning; the format specification will be ignored.

Static-format tables have these characteristics:

• CHAR and VARCHAR columns are space-padded to the specified column width, although the column
type is not altered. BINARY and VARBINARY columns are padded with 0x00 bytes to the column
width.

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because rows are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk
space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than dynamic-format tables.

15.2.3.2 Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR,
VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table option.

Dynamic format is a little more complex than static format because each row has a header that
indicates how long it is. A row can become fragmented (stored in noncontiguous pieces) when it is
made longer as a result of an update.

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length
columns that you access or change frequently in a table that also contains some variable-length
columns, it might be a good idea to move the variable-length columns to other tables just to avoid
fragmentation.

Dynamic-format tables have these characteristics:

• All string columns are dynamic except those with a length less than four.

• Each row is preceded by a bitmap that indicates which columns contain the empty string (for string
columns) or zero (for numeric columns). This does not include columns that contain NULL values. If
a string column has a length of zero after trailing space removal, or a numeric column has a value of

MyISAM Table Storage Formats

2301

zero, it is marked in the bitmap and not saved to disk. Nonempty strings are saved as a length byte
plus the string contents.

• Much less disk space usually is required than for fixed-length tables.

• Each row uses only as much space as is required. However, if a row becomes larger, it is split into
as many pieces as are required, resulting in row fragmentation. For example, if you update a row
with information that extends the row length, the row becomes fragmented. In this case, you may
have to run OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use
myisamchk -ei to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented
into many pieces and links (fragments) may be missing.

• The expected row length for dynamic-sized rows is calculated using the following expression:

3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an
enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in
the same link. If not, another link is created. You can find the number of links using myisamchk -
ed. All links may be removed with OPTIMIZE TABLE or myisamchk -r.

15.2.3.3 Compressed Table Characteristics

Compressed storage format is a read-only format that is generated with the myisampack tool.
Compressed tables can be uncompressed with myisamchk.

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is helpful when
using slow disks (such as CD-ROMs).

• Each row is compressed separately, so there is very little access overhead. The header for a row
takes up one to three bytes depending on the biggest row in the table. Each column is compressed
differently. There is usually a different Huffman tree for each column. Some of the compression types
are:

• Suffix space compression.

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

• If values in an integer column have a small range, the column is stored using the smallest possible
type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte)
if all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the data type is converted to ENUM.

• A column may use any combination of the preceding compression types.

• Can be used for fixed-length or dynamic-length rows.

Note

While a compressed table is read only, and you cannot therefore update or add
rows in the table, DDL (Data Definition Language) operations are still valid. For

MyISAM Table Problems

2302

example, you may still use DROP to drop the table, and TRUNCATE TABLE to
empty the table.

15.2.4 MyISAM Table Problems

The file format that MySQL uses to store data has been extensively tested, but there are always
circumstances that may cause database tables to become corrupted. The following discussion
describes how this can happen and how to handle it.

15.2.4.1 Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL
statement are written before the statement returns), you can still get corrupted tables if any of the
following events occur:

• The mysqld process is killed in the middle of a write.

• An unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware failures.

• You are using an external program (such as myisamchk) to modify a table that is being modified by
the server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a
corrupted MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check
or repair a table with the myisamchk command. See Section 13.7.2.2, “CHECK TABLE Syntax”,
Section 13.7.2.5, “REPAIR TABLE Syntax”, and Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

If your tables become corrupted frequently, you should try to determine why this is happening. The
most important thing to know is whether the table became corrupted as a result of a server crash. You
can verify this easily by looking for a recent restarted mysqld message in the error log. If there is
such a message, it is likely that table corruption is a result of the server dying. Otherwise, corruption
may have occurred during normal operation. This is a bug. You should try to create a reproducible test
case that demonstrates the problem. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”, and
Section 24.5, “Debugging and Porting MySQL”.

15.2.4.2 Problems from Tables Not Being Closed Properly

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a
table has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it
means that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the
table.

The counter works as follows:

The MEMORY Storage Engine

2303

• The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because a FLUSH TABLES operation was performed
or because there is no room in the table cache), the counter is decremented if the table has been
updated at any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

• To avoid problems with interaction with other processes that might check the table, the counter is not
decremented on close if it was zero.

In other words, the counter can become incorrect only under these conditions:

• A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (The table may still be okay because
MySQL always issues writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the same
time that it was in use by mysqld.

• Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK
TABLE on the table while it was in use by another server. In this setup, it is safe to use CHECK
TABLE, although you might get the warning from other servers. However, REPAIR TABLE should
be avoided because when one server replaces the data file with a new one, this is not known to the
other servers.

In general, it is a bad idea to share a data directory among multiple servers. See Section 5.3,
“Running Multiple MySQL Instances on One Machine”, for additional discussion.

15.3 The MEMORY Storage Engine

The MEMORY storage engine (formerly known as HEAP) creates special-purpose tables with contents
that are stored in memory. Because the data is vulnerable to crashes, hardware issues, or power
outages, only use these tables as temporary work areas or read-only caches for data pulled from other
tables.

Table 15.4 MEMORY Storage Engine Features

Storage limits RAM Transactions No Locking granularity Table

MVCC No Geospatial data
type support

No Geospatial indexing
support

No

B-tree indexes Yes T-tree indexes No Hash indexes Yes

Full-text search
indexes

No Clustered indexes No Data caches N/A

Index caches N/A Compressed data No Encrypted dataa Yes

Cluster database
support

No Replication
supportb

Yes Foreign key support No

Backup / point-in-
time recoveryc

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aImplemented in the server (via encryption functions), rather than in the storage engine.
bImplemented in the server, rather than in the storage engine.
cImplemented in the server, rather than in the storage engine.

When to Use MEMORY or MySQL Cluster. Developers looking to deploy applications that use
the MEMORY storage engine for important, highly available, or frequently updated data should consider

Performance Characteristics

2304

whether MySQL Cluster is a better choice. A typical use case for the MEMORY engine involves these
characteristics:

• Operations involving transient, non-critical data such as session management or caching. When the
MySQL server halts or restarts, the data in MEMORY tables is lost.

• In-memory storage for fast access and low latency. Data volume can fit entirely in memory without
causing the operating system to swap out virtual memory pages.

• A read-only or read-mostly data access pattern (limited updates).

MySQL Cluster offers the same features as the MEMORY engine with higher performance levels, and
provides additional features not available with MEMORY:

• Row-level locking and multiple-thread operation for low contention between clients.

• Scalability even with statement mixes that include writes.

• Optional disk-backed operation for data durability.

• Shared-nothing architecture and multiple-host operation with no single point of failure, enabling
99.999% availability.

• Automatic data distribution across nodes; application developers need not craft custom sharding or
partitioning solutions.

• Support for variable-length data types (including BLOB and TEXT) not supported by MEMORY.

For a white paper with more detailed comparison of the MEMORY storage engine and MySQL Cluster,
see Scaling Web Services with MySQL Cluster: An Alternative to the MySQL Memory Storage Engine.
This white paper includes a performance study of the two technologies and a step-by-step guide
describing how existing MEMORY users can migrate to MySQL Cluster.

Performance Characteristics

MEMORY performance is constrained by contention resulting from single-thread execution and table
lock overhead when processing updates. This limits scalability when load increases, particularly for
statement mixes that include writes.

Despite the in-memory processing for MEMORY tables, they are not necessarily faster than InnoDB
tables on a busy server, for general-purpose queries, or under a read/write workload. In particular, the
table locking involved with performing updates can slow down concurrent usage of MEMORY tables from
multiple sessions.

Depending on the kinds of queries performed on a MEMORY table, you might create indexes as either
the default hash data structure (for looking up single values based on a unique key), or a general-
purpose B-tree data structure (for all kinds of queries involving equality, inequality, or range operators
such as less than or greater than). The following sections illustrate the syntax for creating both kinds
of indexes. A common performance issue is using the default hash indexes in workloads where B-tree
indexes are more efficient.

Physical Characteristics of MEMORY Tables

The MEMORY storage engine associates each table with one disk file, which stores the table definition
(not the data). The file name begins with the table name and has an extension of .frm.

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts.
No overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows
are put in a linked list and are reused when you insert new data into the table. MEMORY tables also
have none of the problems commonly associated with deletes plus inserts in hashed tables.

http://www.mysql.com/why-mysql/white-papers/mysql-wp_cluster-7.0_Cluster_MEMORY.php

DDL Operations for MEMORY Tables

2305

• MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are
stored using a fixed length.

• MEMORY tables cannot contain BLOB or TEXT columns.

• MEMORY includes support for AUTO_INCREMENT columns.

• Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY
table.

DDL Operations for MEMORY Tables

To create a MEMORY table, specify the clause ENGINE=MEMORY on the CREATE TABLE statement.

CREATE TABLE t (i INT) ENGINE = MEMORY;

As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by
default, which makes them very fast for single-value lookups, and very useful for creating temporary
tables. However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables
themselves continue to exist because their definitions are stored in .frm files on disk, but they are
empty when the server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
 -> SELECT ip,SUM(downloads) AS down
 -> FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which
has a default value of 16MB. To enforce different size limits for MEMORY tables, change the value of
this variable. The value in effect for CREATE TABLE, or a subsequent ALTER TABLE or TRUNCATE
TABLE, is the value used for the life of the table. A server restart also sets the maximum size of existing
MEMORY tables to the global max_heap_table_size value. You can set the size for individual tables
as described later in this section.

Indexes

The MEMORY storage engine supports both HASH and BTREE indexes. You can specify one or the other
for a given index by adding a USING clause as shown here:

CREATE TABLE lookup
 (id INT, INDEX USING HASH (id))
 ENGINE = MEMORY;
CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

For general characteristics of B-tree and hash indexes, see Section 8.3.1, “How MySQL Uses
Indexes”.

MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length
of 3072 bytes.

If a MEMORY table hash index has a high degree of key duplication (many index entries containing the
same value), updates to the table that affect key values and all deletes are significantly slower. The
degree of this slowdown is proportional to the degree of duplication (or, inversely proportional to the
index cardinality). You can use a BTREE index to avoid this problem.

User-Created and Temporary Tables

2306

MEMORY tables can have nonunique keys. (This is an uncommon feature for implementations of hash
indexes.)

Columns that are indexed can contain NULL values.

User-Created and Temporary Tables

MEMORY table contents are stored in memory, which is a property that MEMORY tables share with
internal temporary tables that the server creates on the fly while processing queries. However, the two
types of tables differ in that MEMORY tables are not subject to storage conversion, whereas internal
temporary tables are:

• If an internal temporary table becomes too large, the server automatically converts it to on-disk
storage, as described in Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• User-created MEMORY tables are never converted to disk tables.

Loading Data

To populate a MEMORY table when the MySQL server starts, you can use the --init-file option. For
example, you can put statements such as INSERT INTO ... SELECT or LOAD DATA INFILE into
this file to load the table from a persistent data source. See Section 5.1.3, “Server Command Options”,
and Section 13.2.6, “LOAD DATA INFILE Syntax”.

MEMORY Tables and Replication

A server's MEMORY tables become empty when it is shut down and restarted. If the server is a
replication master, its slaves are not aware that these tables have become empty, so you see out-of-
date content if you select data from the tables on the slaves. To synchronize master and slave MEMORY
tables, when a MEMORY table is used on a master for the first time since it was started, a DELETE
statement is written to the master's binary log, to empty the table on the slaves also. The slave still has
outdated data in the table during the interval between the master's restart and its first use of the table.
To avoid this interval when a direct query to the slave could return stale data, use the --init-file
option to populate the MEMORY table on the master at startup.

Managing Memory Use

The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only
when the entire table is deleted. Memory that was previously used for deleted rows is re-used for
new rows within the same table. To free all the memory used by a MEMORY table when you no longer
require its contents, execute DELETE or TRUNCATE TABLE to remove all rows, or remove the table
altogether using DROP TABLE. To free up the memory used by deleted rows, use ALTER TABLE
ENGINE=MEMORY to force a table rebuild.

The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char
pointer size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum
size of MEMORY tables. To control the maximum size for individual tables, set the session value of
this variable before creating each table. (Do not change the global max_heap_table_size value
unless you intend the value to be used for MEMORY tables created by all clients.) The following example
creates two MEMORY tables, with a maximum size of 1MB and 2MB, respectively:

Additional Resources

2307

mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)

mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)

Both tables revert to the server's global max_heap_table_size value if the server restarts.

You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to
provide a hint about the number of rows you plan to store in them. This does not enable the table to
grow beyond the max_heap_table_size value, which still acts as a constraint on maximum table
size. For maximum flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as
high as the value to which you want each MEMORY table to be able to grow.

Additional Resources

A forum dedicated to the MEMORY storage engine is available at http://forums.mysql.com/list.php?92.

15.4 The CSV Storage Engine

The CSV storage engine stores data in text files using comma-separated values format.

The CSV storage engine is always compiled into the MySQL server.

To examine the source for the CSV engine, look in the storage/csv directory of a MySQL source
distribution.

When you create a CSV table, the server creates a table format file in the database directory. The file
begins with the table name and has an .frm extension. The storage engine also creates a data file.
Its name begins with the table name and has a .CSV extension. The data file is a plain text file. When
you store data into the table, the storage engine saves it into the data file in comma-separated values
format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
 -> ENGINE = CSV;
Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
+------+------------+
| i | c |
+------+------------+
| 1 | record one |
| 2 | record two |
+------+------------+
2 rows in set (0.00 sec)

Creating a CSV table also creates a corresponding Metafile that stores the state of the table and the
number of rows that exist in the table. The name of this file is the same as the name of the table with
the extension CSM.

If you examine the test.CSV file in the database directory created by executing the preceding
statements, its contents should look like this:

http://forums.mysql.com/list.php?92

Repairing and Checking CSV Tables

2308

"1","record one"
"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel or
StarOffice Calc.

15.4.1 Repairing and Checking CSV Tables

The CSV storage engines supports the CHECK and REPAIR statements to verify and if possible repair a
damaged CSV table.

When running the CHECK statement, the CSV file will be checked for validity by looking for the correct
field separators, escaped fields (matching or missing quotation marks), the correct number of fields
compared to the table definition and the existence of a corresponding CSV metafile. The first invalid
row discovered will report an error. Checking a valid table produces output like that shown below:

mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------+
1 row in set (0.00 sec)

A check on a corrupted table returns a fault:

mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | error | Corrupt |
+--------------+-------+----------+----------+
1 row in set (0.01 sec)

If the check fails, the table is marked as crashed (corrupt). Once a table has been marked as
corrupt, it is automatically repaired when you next run CHECK or execute a SELECT statement. The
corresponding corrupt status and new status will be displayed when running CHECK:

mysql> check table csvtest;
+--------------+-------+----------+----------------------------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------------------------+
| test.csvtest | check | warning | Table is marked as crashed |
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------------------------+
2 rows in set (0.08 sec)

To repair a table you can use REPAIR, this copies as many valid rows from the existing CSV data
as possible, and then replaces the existing CSV file with the recovered rows. Any rows beyond the
corrupted data are lost.

mysql> repair table csvtest;
+--------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+--------+----------+----------+
| test.csvtest | repair | status | OK |
+--------------+--------+----------+----------+
1 row in set (0.02 sec)

Warning

During repair, only the rows from the CSV file up to the first damaged row are
copied to the new table. All other rows from the first damaged row to the end of
the table are removed, even valid rows.

CSV Limitations

2309

15.4.2 CSV Limitations

The CSV storage engine does not support indexing.

Partitioning is not supported for tables using the CSV storage engine.

All tables that you create using the CSV storage engine must have the NOT NULL attribute on all
columns. However, for backward compatibility, you can continue to use tables with nullable columns
that were created in previous MySQL releases. (Bug #32050)

15.5 The ARCHIVE Storage Engine

The ARCHIVE storage engine produces special-purpose tables that store large amounts of unindexed
data in a very small footprint.

Table 15.5 ARCHIVE Storage Engine Features

Storage limits None Transactions No Locking granularity Row

MVCC No Geospatial data
type support

Yes Geospatial indexing
support

No

B-tree indexes No T-tree indexes No Hash indexes No

Full-text search
indexes

No Clustered indexes No Data caches No

Index caches No Compressed data Yes Encrypted dataa Yes

Cluster database
support

No Replication
supportb

Yes Foreign key support No

Backup / point-in-
time recoveryc

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aImplemented in the server (via encryption functions), rather than in the storage engine.
bImplemented in the server, rather than in the storage engine.
cImplemented in the server, rather than in the storage engine.

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine
if you build MySQL from source, invoke CMake with the -DWITH_ARCHIVE_STORAGE_ENGINE option.

To examine the source for the ARCHIVE engine, look in the storage/archive directory of a MySQL
source distribution.

You can check whether the ARCHIVE storage engine is available with the SHOW ENGINES statement.

When you create an ARCHIVE table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. The storage engine creates other files,
all having names beginning with the table name. The data file has an extension of .ARZ. An .ARN file
may appear during optimization operations.

The ARCHIVE engine supports INSERT and SELECT, but not DELETE, REPLACE, or UPDATE. It
does support ORDER BY operations, BLOB columns, and basically all but spatial data types (see
Section 11.5.1, “Spatial Data Types”). The ARCHIVE engine uses row-level locking.

The ARCHIVE engine supports the AUTO_INCREMENT column attribute. The AUTO_INCREMENT
column can have either a unique or nonunique index. Attempting to create an index on any other
column results in an error. The ARCHIVE engine also supports the AUTO_INCREMENT table option in
CREATE TABLE statements to specify the initial sequence value for a new table or reset the sequence
value for an existing table, respectively.

ARCHIVE does not support inserting a value into an AUTO_INCREMENT column less than the current
maximum column value. Attempts to do so result in an ER_DUP_KEY error.

Additional Resources

2310

The ARCHIVE engine ignores BLOB columns if they are not requested and scans past them while
reading.

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data
compression (see http://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack
it into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). The engine
also supports CHECK TABLE. There are several types of insertions that are used:

• An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as
necessary. The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur.

• A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which
case it can be seen partially. A SELECT never causes a flush of a bulk insert unless a normal insert
occurs while it is loading.

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT
operation performs a complete table scan: When a SELECT occurs, it finds out how many rows are
currently available and reads that number of rows. SELECT is performed as a consistent read. Note
that lots of SELECT statements during insertion can deteriorate the compression, unless only bulk or
delayed inserts are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR
TABLE. The number of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate.
See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”, Section 13.7.2.5, “REPAIR TABLE Syntax”, and
Section 13.7.5.36, “SHOW TABLE STATUS Syntax”.

Additional Resources

• A forum dedicated to the ARCHIVE storage engine is available at http://forums.mysql.com/list.php?
112.

15.6 The BLACKHOLE Storage Engine

The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does
not store it. Retrievals always return an empty result:

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
Empty set (0.00 sec)

To enable the BLACKHOLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_BLACKHOLE_STORAGE_ENGINE option.

To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source
distribution.

When you create a BLACKHOLE table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. There are no other files associated
with the table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index
declarations in the table definition.

You can check whether the BLACKHOLE storage engine is available with the SHOW ENGINES
statement.

http://www.zlib.net/
http://forums.mysql.com/list.php?112
http://forums.mysql.com/list.php?112

The BLACKHOLE Storage Engine

2311

Inserts into a BLACKHOLE table do not store any data, but if statement based binary logging is enabled,
the SQL statements are logged and replicated to slave servers. This can be useful as a repeater or
filter mechanism.

Note

When using the row based format for the binary log, updates and deletes
are skipped, and neither logged nor applied. For this reason, you should use
STATEMENT for the binary logging format, and not ROW or MIXED.

Suppose that your application requires slave-side filtering rules, but transferring all binary log data to
the slave first results in too much traffic. In such a case, it is possible to set up on the master host a
“dummy” slave process whose default storage engine is BLACKHOLE, depicted as follows:

The master writes to its binary log. The “dummy” mysqld process acts as a slave, applying the desired
combination of replicate-do-* and replicate-ignore-* rules, and writes a new, filtered binary
log of its own. (See Section 17.1.6, “Replication and Binary Logging Options and Variables”.) This
filtered log is provided to the slave.

The dummy process does not actually store any data, so there is little processing overhead incurred
by running the additional mysqld process on the replication master host. This type of setup can be
repeated with additional replication slaves.

INSERT triggers for BLACKHOLE tables work as expected. However, because the BLACKHOLE table
does not actually store any data, UPDATE and DELETE triggers are not activated: The FOR EACH ROW
clause in the trigger definition does not apply because there are no rows.

Other possible uses for the BLACKHOLE storage engine include:

• Verification of dump file syntax.

• Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE
with and without binary logging enabled.

• BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance
bottlenecks not related to the storage engine itself.

The BLACKHOLE engine is transaction-aware, in the sense that committed transactions are written to
the binary log and rolled-back transactions are not.

Blackhole Engine and Auto Increment Columns

The MERGE Storage Engine

2312

The Blackhole engine is a no-op engine. Any operations performed on a table using Blackhole will have
no effect. This should be born in mind when considering the behavior of primary key columns that auto
increment. The engine will not automatically increment field values, and does not retain auto increment
field state. This has important implications in replication.

Consider the following replication scenario where all three of the following conditions apply:

1. On a master server there is a blackhole table with an auto increment field that is a primary key.

2. On a slave the same table exists but using the MyISAM engine.

3. Inserts are performed into the master's table without explicitly setting the auto increment value in
the INSERT statement itself or through using a SET INSERT_ID statement.

In this scenario replication will fail with a duplicate entry error on the primary key column.

In statement based replication, the value of INSERT_ID in the context event will always be the same.
Replication will therefore fail due to trying insert a row with a duplicate value for a primary key column.

In row based replication, the value that the engine returns for the row always be the same for each
insert. This will result in the slave attempting to replay two insert log entries using the same value for
the primary key column, and so replication will fail.

Column Filtering

When using row-based replication, (binlog_format=ROW), a slave where the last columns are
missing from a table is supported, as described in the section Section 17.4.1.10, “Replication with
Differing Table Definitions on Master and Slave”.

This filtering works on the slave side, that is, the columns are copied to the slave before they are
filtered out. There are at least two cases where it is not desirable to copy the columns to the slave:

1. If the data is confidential, so the slave server should not have access to it.

2. If the master has many slaves, filtering before sending to the slaves may reduce network traffic.

Master column filtering can be achieved using the BLACKHOLE engine. This is carried out in a
way similar to how master table filtering is achieved - by using the BLACKHOLE engine and the --
replicate-do-table or --replicate-ignore-table option.

The setup for the master is:

CREATE TABLE t1 (public_col_1, ..., public_col_N,
 secret_col_1, ..., secret_col_M) ENGINE=MyISAM;

The setup for the trusted slave is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=BLACKHOLE;

The setup for the untrusted slave is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=MyISAM;

15.7 The MERGE Storage Engine
The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM
tables that can be used as one. “Identical” means that all tables have identical column and index
information. You cannot merge MyISAM tables in which the columns are listed in a different order, do
not have exactly the same columns, or have the indexes in different order. However, any or all of the
MyISAM tables can be compressed with myisampack. See Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”. Differences in table options such as AVG_ROW_LENGTH,
MAX_ROWS, or PACK_KEYS do not matter.

The MERGE Storage Engine

2313

An alternative to a MERGE table is a partitioned table, which stores partitions of a single table in
separate files. Partitioning enables some operations to be performed more efficiently and is not limited
to the MyISAM storage engine. For more information, see Chapter 18, Partitioning.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with
the table name and have an extension to indicate the file type. An .frm file stores the table format,
and an .MRG file contains the names of the underlying MyISAM tables that should be used as one. The
tables do not have to be in the same database as the MERGE table.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT,
DELETE, and UPDATE privileges on the MyISAM tables that you map to a MERGE table.

Note

The use of MERGE tables entails the following security issue: If a user has
access to MyISAM table t, that user can create a MERGE table m that accesses
t. However, if the user's privileges on t are subsequently revoked, the user can
continue to access t by doing so through m.

Use of DROP TABLE with a MERGE table drops only the MERGE specification. The underlying tables are
not affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) option that indicates which
MyISAM tables to use. You can optionally specify an INSERT_METHOD option to control how inserts
into the MERGE table take place. Use a value of FIRST or LAST to cause inserts to be made in the first
or last underlying table, respectively. If you specify no INSERT_METHOD option or if you specify it with a
value of NO, inserts into the MERGE table are not permitted and attempts to do so result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> CREATE TABLE t2 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (
 -> a INT NOT NULL AUTO_INCREMENT,
 -> message CHAR(20), INDEX(a))
 -> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

Column a is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the MERGE table.
There it is indexed but not as a PRIMARY KEY because a MERGE table cannot enforce uniqueness over
the set of underlying tables. (Similarly, a column with a UNIQUE index in the underlying tables should
be indexed in the MERGE table but not as a UNIQUE index.)

After creating the MERGE table, you can use it to issue queries that operate on the group of tables as a
whole:

mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
1	Testing
2	table
3	t1
1	Testing
2	table
3	t2
+---+---------+

Additional Resources

2314

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following
methods:

• DROP the MERGE table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

It is also possible to use ALTER TABLE ... UNION=() (that is, with an empty UNION clause)
to remove all of the underlying tables. However, in this case, the table is effectively empty and
inserts fail because there is no underlying table to take new rows. Such a table might be useful as a
template for creating new MERGE tables with CREATE TABLE ... LIKE.

The underlying table definitions and indexes must conform closely to the definition of the MERGE table.
Conformance is checked when a table that is part of a MERGE table is opened, not when the MERGE
table is created. If any table fails the conformance checks, the operation that triggered the opening of
the table fails. This means that changes to the definitions of tables within a MERGE may cause a failure
when the MERGE table is accessed. The conformance checks applied to each table are:

• The underlying table and the MERGE table must have the same number of columns.

• The column order in the underlying table and the MERGE table must match.

• Additionally, the specification for each corresponding column in the parent MERGE table and the
underlying tables are compared and must satisfy these checks:

• The column type in the underlying table and the MERGE table must be equal.

• The column length in the underlying table and the MERGE table must be equal.

• The column of the underlying table and the MERGE table can be NULL.

• The underlying table must have at least as many indexes as the MERGE table. The underlying table
may have more indexes than the MERGE table, but cannot have fewer.

Note

A known issue exists where indexes on the same columns must be in
identical order, in both the MERGE table and the underlying MyISAM table. See
Bug #33653.

Each index must satisfy these checks:

• The index type of the underlying table and the MERGE table must be the same.

• The number of index parts (that is, multiple columns within a compound index) in the index
definition for the underlying table and the MERGE table must be the same.

• For each index part:

• Index part lengths must be equal.

• Index part types must be equal.

• Index part languages must be equal.

• Check whether index parts can be NULL.

If a MERGE table cannot be opened or used because of a problem with an underlying table, CHECK
TABLE displays information about which table caused the problem.

Additional Resources

• A forum dedicated to the MERGE storage engine is available at http://forums.mysql.com/list.php?93.

http://forums.mysql.com/list.php?93

MERGE Table Advantages and Disadvantages

2315

15.7.1 MERGE Table Advantages and Disadvantages

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into separate
tables, compress some of them with myisampack, and then create a MERGE table to use them as
one.

• Obtain more speed. You can split a large read-only table based on some criteria, and then put
individual tables on different disks. A MERGE table structured this way could be much faster than
using a single large table.

• Perform more efficient searches. If you know exactly what you are looking for, you can search in just
one of the underlying tables for some queries and use a MERGE table for others. You can even have
many different MERGE tables that use overlapping sets of tables.

• Perform more efficient repairs. It is easier to repair individual smaller tables that are mapped to a
MERGE table than to repair a single large table.

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because it
uses the indexes of the individual tables. As a result, MERGE table collections are very fast to create
or remap. (You must still specify the index definitions when you create a MERGE table, even though
no indexes are created.)

• If you have a set of tables from which you create a large table on demand, you can instead create a
MERGE table from them on demand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a
collection of MyISAM tables is not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that
single table. There should be no really notable performance impact from doing this (only a couple of
indirect calls and memcpy() calls for each read).

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

• Some MyISAM features are unavailable in MERGE tables. For example, you cannot create FULLTEXT
indexes on MERGE tables. (You can create FULLTEXT indexes on the underlying MyISAM tables, but
you cannot search the MERGE table with a full-text search.)

• If the MERGE table is nontemporary, all underlying MyISAM tables must be nontemporary. If the
MERGE table is temporary, the MyISAM tables can be any mix of temporary and nontemporary.

• MERGE tables use more file descriptors than MyISAM tables. If 10 clients are using a MERGE table that
maps to 10 tables, the server uses (10 × 10) + 10 file descriptors. (10 data file descriptors for each of
the 10 clients, and 10 index file descriptors shared among the clients.)

• Index reads are slower. When you read an index, the MERGE storage engine needs to issue a read
on all underlying tables to check which one most closely matches a given index value. To read
the next index value, the MERGE storage engine needs to search the read buffers to find the next
value. Only when one index buffer is used up does the storage engine need to read the next index
block. This makes MERGE indexes much slower on eq_ref searches, but not much slower on ref
searches. For more information about eq_ref and ref, see Section 13.8.2, “EXPLAIN Syntax”.

15.7.2 MERGE Table Problems

The following are known problems with MERGE tables:

• In versions of MySQL Server prior to 5.1.23, it was possible to create temporary merge tables with
nontemporary child MyISAM tables.

MERGE Table Problems

2316

From versions 5.1.23, MERGE children were locked through the parent table. If the parent was
temporary, it was not locked and so the children were not locked either. Parallel use of the MyISAM
tables corrupted them.

• If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the
underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the
altered table, which then uses the specified storage engine.

• The INSERT_METHOD table option for a MERGE table indicates which underlying MyISAM table to use
for inserts into the MERGE table. However, use of the AUTO_INCREMENT table option for that MyISAM
table has no effect for inserts into the MERGE table until at least one row has been inserted directly
into the MyISAM table.

• A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an
INSERT, the data goes into the first or last MyISAM table (as determined by the INSERT_METHOD
option). MySQL ensures that unique key values remain unique within that MyISAM table, but not over
all the underlying tables in the collection.

• Because the MERGE engine cannot enforce uniqueness over the set of underlying tables, REPLACE
does not work as expected. The two key facts are:

• REPLACE can detect unique key violations only in the underlying table to which it is going to write
(which is determined by the INSERT_METHOD option). This differs from violations in the MERGE
table itself.

• If REPLACE detects a unique key violation, it will change only the corresponding row in the
underlying table it is writing to; that is, the first or last table, as determined by the INSERT_METHOD
option.

Similar considerations apply for INSERT ... ON DUPLICATE KEY UPDATE.

• MERGE tables do not support partitioning. That is, you cannot partition a MERGE table, nor can any of
a MERGE table's underlying MyISAM tables be partitioned.

• You should not use ANALYZE TABLE, REPAIR TABLE, OPTIMIZE TABLE, ALTER TABLE, DROP
TABLE, DELETE without a WHERE clause, or TRUNCATE TABLE on any of the tables that are mapped
into an open MERGE table. If you do so, the MERGE table may still refer to the original table and yield
unexpected results. To work around this problem, ensure that no MERGE tables remain open by
issuing a FLUSH TABLES statement prior to performing any of the named operations.

The unexpected results include the possibility that the operation on the MERGE table will report table
corruption. If this occurs after one of the named operations on the underlying MyISAM tables, the
corruption message is spurious. To deal with this, issue a FLUSH TABLES statement after modifying
the MyISAM tables.

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the
MERGE storage engine's table mapping is hidden from the upper layer of MySQL. Windows does not
permit open files to be deleted, so you first must flush all MERGE tables (with FLUSH TABLES) or
drop the MERGE table before dropping the table.

• The definition of the MyISAM tables and the MERGE table are checked when the tables are accessed
(for example, as part of a SELECT or INSERT statement). The checks ensure that the definitions of
the tables and the parent MERGE table definition match by comparing column order, types, sizes and
associated indexes. If there is a difference between the tables, an error is returned and the statement
fails. Because these checks take place when the tables are opened, any changes to the definition
of a single table, including column changes, column ordering, and engine alterations will cause the
statement to fail.

• The order of indexes in the MERGE table and its underlying tables should be the same. If you use
ALTER TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER TABLE

The FEDERATED Storage Engine

2317

to add a nonunique index on the MERGE table, the index ordering is different for the tables if there
was already a nonunique index in the underlying table. (This happens because ALTER TABLE
puts UNIQUE indexes before nonunique indexes to facilitate rapid detection of duplicate keys.)
Consequently, queries on tables with such indexes may return unexpected results.

• If you encounter an error message similar to ERROR 1017 (HY000): Can't find file:
'tbl_name.MRG' (errno: 2), it generally indicates that some of the underlying tables do not
use the MyISAM storage engine. Confirm that all of these tables are MyISAM.

• The maximum number of rows in a MERGE table is 264 (~1.844E+19; the same as for a MyISAM
table). It is not possible to merge multiple MyISAM tables into a single MERGE table that would have
more than this number of rows.

• Use of underlying MyISAM tables of differing row formats with a parent MERGE table is currently
known to fail. See Bug #32364.

• You cannot change the union list of a nontemporary MERGE table when LOCK TABLES is in effect.
The following does not work:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;

However, you can do this with a temporary MERGE table.

• You cannot create a MERGE table with CREATE ... SELECT, neither as a temporary MERGE table,
nor as a nontemporary MERGE table. For example:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;

Attempts to do this result in an error: tbl_name is not BASE TABLE.

• In some cases, differing PACK_KEYS table option values among the MERGE and underlying
tables cause unexpected results if the underlying tables contain CHAR or BINARY columns. As a
workaround, use ALTER TABLE to ensure that all involved tables have the same PACK_KEYS value.
(Bug #50646)

15.8 The FEDERATED Storage Engine

The FEDERATED storage engine lets you access data from a remote MySQL database without using
replication or cluster technology. Querying a local FEDERATED table automatically pulls the data from
the remote (federated) tables. No data is stored on the local tables.

To include the FEDERATED storage engine if you build MySQL from source, invoke CMake with the -
DWITH_FEDERATED_STORAGE_ENGINE option.

The FEDERATED storage engine is not enabled by default in the running server; to enable FEDERATED,
you must start the MySQL server binary using the --federated option.

To examine the source for the FEDERATED engine, look in the storage/federated directory of a
MySQL source distribution.

15.8.1 FEDERATED Storage Engine Overview

When you create a table using one of the standard storage engines (such as MyISAM, CSV or
InnoDB), the table consists of the table definition and the associated data. When you create a
FEDERATED table, the table definition is the same, but the physical storage of the data is handled on a
remote server.

A FEDERATED table consists of two elements:

How to Create FEDERATED Tables

2318

• A remote server with a database table, which in turn consists of the table definition (stored in the
.frm file) and the associated table. The table type of the remote table may be any type supported by
the remote mysqld server, including MyISAM or InnoDB.

• A local server with a database table, where the table definition matches that of the corresponding
table on the remote server. The table definition is stored within the .frm file. However, there is no
data file on the local server. Instead, the table definition includes a connection string that points to
the remote table.

When executing queries and statements on a FEDERATED table on the local server, the operations that
would normally insert, update or delete information from a local data file are instead sent to the remote
server for execution, where they update the data file on the remote server or return matching rows from
the remote server.

The basic structure of a FEDERATED table setup is shown in Figure 15.1, “FEDERATED Table
Structure”.

Figure 15.1 FEDERATED Table Structure

When a client issues an SQL statement that refers to a FEDERATED table, the flow of information
between the local server (where the SQL statement is executed) and the remote server (where the
data is physically stored) is as follows:

1. The storage engine looks through each column that the FEDERATED table has and constructs an
appropriate SQL statement that refers to the remote table.

2. The statement is sent to the remote server using the MySQL client API.

3. The remote server processes the statement and the local server retrieves any result that the
statement produces (an affected-rows count or a result set).

4. If the statement produces a result set, each column is converted to internal storage engine format
that the FEDERATED engine expects and can use to display the result to the client that issued the
original statement.

The local server communicates with the remote server using MySQL client C API functions. It invokes
mysql_real_query() to send the statement. To read a result set, it uses mysql_store_result()
and fetches rows one at a time using mysql_fetch_row().

15.8.2 How to Create FEDERATED Tables

To create a FEDERATED table you should follow these steps:

1. Create the table on the remote server. Alternatively, make a note of the table definition of an
existing table, perhaps using the SHOW CREATE TABLE statement.

How to Create FEDERATED Tables

2319

2. Create the table on the local server with an identical table definition, but adding the connection
information that links the local table to the remote table.

For example, you could create the following table on the remote server:

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=MyISAM
DEFAULT CHARSET=latin1;

To create the local table that will be federated to the remote table, there are two options available.
You can either create the local table and specify the connection string (containing the server name,
login, password) to be used to connect to the remote table using the CONNECTION, or you can use an
existing connection that you have previously created using the CREATE SERVER statement.

Important

When you create the local table it must have an identical field definition to the
remote table.

Note

You can improve the performance of a FEDERATED table by adding indexes to
the table on the host. The optimization will occur because the query sent to the
remote server will include the contents of the WHERE clause and will be sent to
the remote server and subsequently executed locally. This reduces the network
traffic that would otherwise request the entire table from the server for local
processing.

15.8.2.1 Creating a FEDERATED Table Using CONNECTION

To use the first method, you must specify the CONNECTION string after the engine type in a CREATE
TABLE statement. For example:

CREATE TABLE federated_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

Note

CONNECTION replaces the COMMENT used in some previous versions of MySQL.

The CONNECTION string contains the information required to connect to the remote server containing
the table that will be used to physically store the data. The connection string specifies the server name,
login credentials, port number and database/table information. In the example, the remote table is on
the server remote_host, using port 9306. The name and port number should match the host name
(or IP address) and port number of the remote MySQL server instance you want to use as your remote
table.

How to Create FEDERATED Tables

2320

The format of the connection string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Where:

• scheme: A recognized connection protocol. Only mysql is supported as the scheme value at this
point.

• user_name: The user name for the connection. This user must have been created on the remote
server, and must have suitable privileges to perform the required actions (SELECT, INSERT,
UPDATE, and so forth) on the remote table.

• password: (Optional) The corresponding password for user_name.

• host_name: The host name or IP address of the remote server.

• port_num: (Optional) The port number for the remote server. The default is 3306.

• db_name: The name of the database holding the remote table.

• tbl_name: The name of the remote table. The name of the local and the remote table do not have to
match.

Sample connection strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'

15.8.2.2 Creating a FEDERATED Table Using CREATE SERVER

If you are creating a number of FEDERATED tables on the same server, or if you want to simplify the
process of creating FEDERATED tables, you can use the CREATE SERVER statement to define the
server connection parameters, just as you would with the CONNECTION string.

The format of the CREATE SERVER statement is:

CREATE SERVER
server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

The server_name is used in the connection string when creating a new FEDERATED table.

For example, to create a server connection identical to the CONNECTION string:

CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

You would use the following statement:

CREATE SERVER fedlink
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'fed_user', HOST 'remote_host', PORT 9306, DATABASE 'federated');

To create a FEDERATED table that uses this connection, you still use the CONNECTION keyword, but
specify the name you used in the CREATE SERVER statement.

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),

FEDERATED Storage Engine Notes and Tips

2321

 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='fedlink/test_table';

The connection name in this example contains the name of the connection (fedlink) and the name
of the table (test_table) to link to, separated by a slash. If you specify only the connection name
without a table name, the table name of the local table is used instead.

For more information on CREATE SERVER, see Section 13.1.13, “CREATE SERVER Syntax”.

The CREATE SERVER statement accepts the same arguments as the CONNECTION string. The
CREATE SERVER statement updates the rows in the mysql.servers table. See the following table for
information on the correspondence between parameters in a connection string, options in the CREATE
SERVER statement, and the columns in the mysql.servers table. For reference, the format of the
CONNECTION string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Description CONNECTION string CREATE SERVER
option

mysql.servers
column

Connection scheme scheme wrapper_name Wrapper

Remote user user_name USER Username

Remote password password PASSWORD Password

Remote host host_name HOST Host

Remote port port_num PORT Port

Remote database db_name DATABASE Db

15.8.3 FEDERATED Storage Engine Notes and Tips

You should be aware of the following points when using the FEDERATED storage engine:

• FEDERATED tables may be replicated to other slaves, but you must ensure that the slave servers are
able to use the user/password combination that is defined in the CONNECTION string (or the row in
the mysql.servers table) to connect to the remote server.

The following items indicate features that the FEDERATED storage engine does and does not support:

• The remote server must be a MySQL server.

• The remote table that a FEDERATED table points to must exist before you try to access the table
through the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create a
loop.

• A FEDERATED table does not support indexes in the usual sense; because access to the table data
is handled remotely, it is actually the remote table that makes use of indexes. This means that, for a
query that cannot use any indexes and so requires a full table scan, the server fetches all rows from
the remote table and filters them locally. This occurs regardless of any WHERE or LIMIT used with
this SELECT statement; these clauses are applied locally to the returned rows.

Queries that fail to use indexes can thus cause poor performance and network overload. In addition,
since returned rows must be stored in memory, such a query can also lead to the local server
swapping, or even hanging.

FEDERATED Storage Engine Resources

2322

• Care should be taken when creating a FEDERATED table since the index definition from an equivalent
MyISAM or other table may not be supported. For example, creating a FEDERATED table with an
index prefix on VARCHAR, TEXT or BLOB columns will fail. The following definition in MyISAM is valid:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;

The key prefix in this example is incompatible with the FEDERATED engine, and the equivalent
statement will fail:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED
 CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';

If possible, you should try to separate the column and index definition when creating tables on both
the remote server and the local server to avoid these index issues.

• Internally, the implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, TRUNCATE TABLE,
and indexes. It does not support ALTER TABLE, or any Data Definition Language statements that
directly affect the structure of the table, other than DROP TABLE. The current implementation does
not use prepared statements.

• FEDERATED accepts INSERT ... ON DUPLICATE KEY UPDATE statements, but if a duplicate-key
violation occurs, the statement fails with an error.

• Performance on a FEDERATED table when performing bulk inserts (for example, on a INSERT
INTO ... SELECT ... statement) is slower than with other table types because each selected
row is treated as an individual INSERT statement on the FEDERATED table.

• Transactions are not supported.

• FEDERATED performs bulk-insert handling such that multiple rows are sent to the remote table
in a batch. This provides a performance improvement and enables the remote table to perform
improvement. Also, if the remote table is transactional, it enables the remote storage engine
to perform statement rollback properly should an error occur. This capability has the following
limitations:

• The size of the insert cannot exceed the maximum packet size between servers. If the insert
exceeds this size, it is broken into multiple packets and the rollback problem can occur.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reason for
this is that this table must work like a data file that would never be written to by anything other than
the database system. The integrity of the data in the local table could be breached if there was any
change to the remote database.

• When using a CONNECTION string, you cannot use an '@' character in the password. You can get
round this limitation by using the CREATE SERVER statement to create a server connection.

• The insert_id and timestamp options are not propagated to the data provider.

• Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the
remote table.

• FEDERATED tables do not work with the query cache.

• User-defined partitioning is not supported for FEDERATED tables.

15.8.4 FEDERATED Storage Engine Resources

The following additional resources are available for the FEDERATED storage engine:

The EXAMPLE Storage Engine

2323

• A forum dedicated to the FEDERATED storage engine is available at http://forums.mysql.com/list.php?
105.

15.9 The EXAMPLE Storage Engine

The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example
in the MySQL source code that illustrates how to begin writing new storage engines. As such, it is
primarily of interest to developers.

To enable the EXAMPLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_EXAMPLE_STORAGE_ENGINE option.

To examine the source for the EXAMPLE engine, look in the storage/example directory of a MySQL
source distribution.

When you create an EXAMPLE table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. No other files are created. No data can
be stored into the table. Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)

mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't »
 have this option

mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

15.10 Other Storage Engines

Other storage engines may be available from third parties and community members that have used the
Custom Storage Engine interface.

Third party engines are not supported by MySQL. For further information, documentation, installation
guides, bug reporting or for any help or assistance with these engines, please contact the developer of
the engine directly.

For more information on developing a customer storage engine that can be used with the Pluggable
Storage Engine Architecture, see MySQL Internals: Writing a Custom Storage Engine.

15.11 Overview of MySQL Storage Engine Architecture

The MySQL pluggable storage engine architecture enables a database professional to select a
specialized storage engine for a particular application need while being completely shielded from the
need to manage any specific application coding requirements. The MySQL server architecture isolates
the application programmer and DBA from all of the low-level implementation details at the storage
level, providing a consistent and easy application model and API. Thus, although there are different
capabilities across different storage engines, the application is shielded from these differences.

The pluggable storage engine architecture provides a standard set of management and support
services that are common among all underlying storage engines. The storage engines themselves
are the components of the database server that actually perform actions on the underlying data that is
maintained at the physical server level.

This efficient and modular architecture provides huge benefits for those wishing to specifically
target a particular application need—such as data warehousing, transaction processing, or high

http://forums.mysql.com/list.php?105
http://forums.mysql.com/list.php?105
http://dev.mysql.com/doc/internals/en/custom-engine.html

Pluggable Storage Engine Architecture

2324

availability situations—while enjoying the advantage of utilizing a set of interfaces and services that are
independent of any one storage engine.

The application programmer and DBA interact with the MySQL database through Connector APIs and
service layers that are above the storage engines. If application changes bring about requirements
that demand the underlying storage engine change, or that one or more storage engines be added to
support new needs, no significant coding or process changes are required to make things work. The
MySQL server architecture shields the application from the underlying complexity of the storage engine
by presenting a consistent and easy-to-use API that applies across storage engines.

15.11.1 Pluggable Storage Engine Architecture

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

Plugging in a Storage Engine

Before a storage engine can be used, the storage engine plugin shared library must be loaded into
MySQL using the INSTALL PLUGIN statement. For example, if the EXAMPLE engine plugin is named
example and the shared library is named ha_example.so, you load it with the following statement:

mysql> INSTALL PLUGIN example SONAME 'ha_example.so';

To install a pluggable storage engine, the plugin file must be located in the MySQL plugin directory,
and the user issuing the INSTALL PLUGIN statement must have INSERT privilege for the
mysql.plugin table.

The shared library must be located in the MySQL server plugin directory, the location of which is given
by the plugin_dir system variable.

Unplugging a Storage Engine

To unplug a storage engine, use the UNINSTALL PLUGIN statement:

mysql> UNINSTALL PLUGIN example;

If you unplug a storage engine that is needed by existing tables, those tables become inaccessible, but
will still be present on disk (where applicable). Ensure that there are no tables using a storage engine
before you unplug the storage engine.

15.11.2 The Common Database Server Layer

A MySQL pluggable storage engine is the component in the MySQL database server that is
responsible for performing the actual data I/O operations for a database as well as enabling and
enforcing certain feature sets that target a specific application need. A major benefit of using specific
storage engines is that you are only delivered the features needed for a particular application, and
therefore you have less system overhead in the database, with the end result being more efficient and
higher database performance. This is one of the reasons that MySQL has always been known to have
such high performance, matching or beating proprietary monolithic databases in industry standard
benchmarks.

From a technical perspective, what are some of the unique supporting infrastructure components that
are in a storage engine? Some of the key feature differentiations include:

• Concurrency: Some applications have more granular lock requirements (such as row-level locks)
than others. Choosing the right locking strategy can reduce overhead and therefore improve overall
performance. This area also includes support for capabilities such as multi-version concurrency
control or “snapshot” read.

The Common Database Server Layer

2325

• Transaction Support: Not every application needs transactions, but for those that do, there are very
well defined requirements such as ACID compliance and more.

• Referential Integrity: The need to have the server enforce relational database referential integrity
through DDL defined foreign keys.

• Physical Storage: This involves everything from the overall page size for tables and indexes as well
as the format used for storing data to physical disk.

• Index Support: Different application scenarios tend to benefit from different index strategies. Each
storage engine generally has its own indexing methods, although some (such as B-tree indexes) are
common to nearly all engines.

• Memory Caches: Different applications respond better to some memory caching strategies than
others, so although some memory caches are common to all storage engines (such as those used
for user connections or MySQL's high-speed Query Cache), others are uniquely defined only when a
particular storage engine is put in play.

• Performance Aids: This includes multiple I/O threads for parallel operations, thread concurrency,
database checkpointing, bulk insert handling, and more.

• Miscellaneous Target Features: This may include support for geospatial operations, security
restrictions for certain data manipulation operations, and other similar features.

Each set of the pluggable storage engine infrastructure components are designed to offer a selective
set of benefits for a particular application. Conversely, avoiding a set of component features helps
reduce unnecessary overhead. It stands to reason that understanding a particular application's set of
requirements and selecting the proper MySQL storage engine can have a dramatic impact on overall
system efficiency and performance.

2326

2327

Chapter 16 High Availability and Scalability

Table of Contents
16.1 Using MySQL within an Amazon EC2 Instance ... 2329

16.1.1 Setting Up MySQL on an EC2 AMI ... 2330
16.1.2 EC2 Instance Limitations .. 2331
16.1.3 Deploying a MySQL Database Using EC2 ... 2331

16.2 Using ZFS Replication .. 2334
16.2.1 Using ZFS for File System Replication .. 2336
16.2.2 Configuring MySQL for ZFS Replication .. 2336
16.2.3 Handling MySQL Recovery with ZFS ... 2337

16.3 Using MySQL with memcached ... 2337
16.3.1 Installing memcached ... 2338
16.3.2 Using memcached .. 2340
16.3.3 Developing a memcached Application .. 2358
16.3.4 Getting memcached Statistics ... 2383
16.3.5 memcached FAQ ... 2391

Data is the currency of today's web, mobile, social, enterprise and cloud applications. Ensuring data is
always available is a top priority for any organization. Minutes of downtime can result in significant loss
of revenue and reputation.

There is no “one size fits all” approach to delivering High Availability (HA). Unique application
attributes, business requirements, operational capabilities and legacy infrastructure can all influence
HA technology selection. And technology is only one element in delivering HA: people and processes
are just as critical as the technology itself.

MySQL is deployed into many applications demanding availability and scalability. Availability refers to
the ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL,
the operating system, or the hardware and maintenance activity that may otherwise cause downtime.
Scalability refers to the ability to spread both the database and the load of your application queries
across multiple MySQL servers.

Because each application has different operational and availability requirements, MySQL offers a
range of certified and supported solutions, delivering the appropriate levels of High Availability (HA)
and scalability to meet service level requirements. Such solutions extend from replication, through
virtualization and geographically redundant, multi-data center solutions delivering 99.999% uptime.

Selecting the right high availability solution for an application largely depends on:

• The level of availability required.

• The type of application being deployed.

• Accepted best practices within your own environment.

The primary solutions supported by MySQL include:

• MySQL Replication. Learn more: Chapter 17, Replication.

• MySQL Fabric. Learn more: MySQL Fabric.

• MySQL Cluster. Learn more: MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4.

• Oracle Clusterware Agent for MySQL. Learn more about Oracle Clusterware.

• MySQL with Solaris Cluster. Learn more about Solaris Cluster.

http://dev.mysql.com/doc/mysql-utilities/1.5/en/fabric.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/overview/index.html
http://www.oracle.com/technetwork/server-storage/solaris-cluster/overview/index.html

2328

Further options are available using third-party solutions.

Each architecture used to achieve highly available database services is differentiated by the levels of
uptime it offers. These architectures can be grouped into three main categories:

• Data Replication.

• Clustered & Virtualized Systems.

• Shared-Nothing, Geographically-Replicated Clusters.

As illustrated in the following figure, each of these architectures offers progressively higher levels of
uptime, which must be balanced against potentially greater levels of cost and complexity that each can
incur. Simply deploying a high availability architecture is not a guarantee of actually delivering HA. In
fact, a poorly implemented and maintained shared-nothing cluster could easily deliver lower levels of
availability than a simple data replication solution.

Figure 16.1 Tradeoffs: Cost and Complexity versus Availability

The following table compares the HA and Scalability capabilities of the various MySQL solutions:

Table 16.1 Feature Comparison of MySQL HA Solutions

Requirement MySQL Replication MySQL Cluster

Availability

Platform Support All Supported by MySQL
Server (http://www.mysql.com/
support/supportedplatforms/
database.html)

All Supported by MySQL Cluster
(http://www.mysql.com/support/
supportedplatforms/cluster.html)

Automated IP Failover No Depends on Connector and
Configuration

Automated Database Failover No Yes

Automatic Data
Resynchronization

No Yes

Typical Failover Time User / Script Dependent 1 Second and Less

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/support/supportedplatforms/cluster.html

Using MySQL within an Amazon EC2 Instance

2329

Requirement MySQL Replication MySQL Cluster

Synchronous Replication No, Asynchronous and
Semisynchronous

Yes

Shared Storage No, Distributed No, Distributed

Geographic redundancy support Yes Yes, via MySQL Replication

Update Schema On-Line No Yes

Scalability

Number of Nodes One Master, Multiple Slaves 255

Built-in Load Balancing Reads, via MySQL Replication Yes, Reads and Writes

Supports Read-Intensive
Workloads

Yes Yes

Supports Write-Intensive
Workloads

Yes, via Application-Level
Sharding

Yes, via Auto-Sharding

Scale On-Line (add nodes,
repartition, etc.)

No Yes

16.1 Using MySQL within an Amazon EC2 Instance

The Amazon Elastic Compute Cloud (EC2) service provides virtual servers that you can build and
deploy to run a variety of different applications and services, including MySQL. The EC2 service is
based around the Xen framework, supporting x86, Linux based, platforms with individual instances of
a virtual machine referred to as an Amazon Machine Image (AMI). You have complete (root) access
to the AMI instance that you create, enabling you to configure and install your AMI in any way you
choose.

To use EC2, you create an AMI based on the configuration and applications that you intend to use,
and upload the AMI to the Amazon Simple Storage Service (S3). From the S3 resource, you can
deploy one or more copies of the AMI to run as an instance within the EC2 environment. The EC2
environment provides management and control of the instance and contextual information about the
instance while it is running.

Because you can create and control the AMI, the configuration, and the applications, you can deploy
and create any environment you choose. This includes a basic MySQL server in addition to more
extensive replication, HA and scalability scenarios that enable you to take advantage of the EC2
environment, and the ability to deploy additional instances as the demand for your MySQL services and
applications grow.

To aid the deployment and distribution of work, three different Amazon EC2 instances are available,
small (identified as m1.small), large (m1.large) and extra large (m1.xlarge). The different types
provide different levels of computing power measured in EC2 computer units (ECU). A summary of the
different instance configurations is shown in the following table.

EC2 Attribute Small Large Extra Large

Platform 32-bit 64-bit 64-bit

CPU cores 1 2 4

ECUs 1 4 8

RAM 1.7GB 7.5GB 15GB

Storage 150GB 840GB 1680GB

I/O Performance Medium High High

The typical model for deploying and using MySQL within the EC2 environment is to create a basic
AMI that you can use to hold your database data and application. Once the basic environment for

Setting Up MySQL on an EC2 AMI

2330

your database and application has been created you can then choose to deploy the AMI to a suitable
instance. Here the flexibility of having an AMI that can be re-deployed from the small to the large or
extra large EC2 instance makes it easy to upgrade the hardware environment without rebuilding your
application or database stack.

To get started with MySQL on EC2, including information on how to set up and install MySQL within
an EC2 installation and how to port and migrate your data to the running instance, see Section 16.1.1,
“Setting Up MySQL on an EC2 AMI”.

For tips and advice on how to create a scalable EC2 environment using MySQL, including guides on
setting up replication, see Section 16.1.3, “Deploying a MySQL Database Using EC2”.

16.1.1 Setting Up MySQL on an EC2 AMI

There are many different ways of setting up an EC2 AMI with MySQL, including using any of the pre-
configured AMIs supplied by Amazon.

The default Getting Started AMI provided by Amazon uses Fedora Core 4, and you can install MySQL
by using yum:

shell> yum install mysql

This installs both the MySQL server and the Perl DBD::mysql driver for the Perl DBI API.

Alternatively, you can use one of the AMIs that include MySQL within the standard installation.

Finally, you can also install a standard version of MySQL downloaded from the MySQL Web site. The
installation process and instructions are identical to any other installation of MySQL on Linux. See
Chapter 2, Installing and Upgrading MySQL.

The standard configuration for MySQL places the data files in the default location, /var/lib/mysql.
The default data directory on an EC2 instance is /mnt (although on the large and extra large instance
you can alter this configuration). You must edit /etc/my.cnf to set the datadir option to point to the
larger storage area.

Important

The first time you use the main storage location within an EC2 instance it needs
to be initialized. The initialization process starts automatically the first time you
write to the device. You can start using the device right away, but the write
performance of the new device is significantly lower on the initial writes until the
initialization process has finished.

To avoid this problem when setting up a new instance, you should start the
initialization process before populating your MySQL database. One way to do
this is to use dd to write to the file system:

root-shell> dd if=/dev/zero of=initialize bs=1024M count=50

The preceding creates a 50GB on the file system and starts the initialization
process. Delete the file once the process has finished.

The initialization process can be time-consuming. On the small instance,
initialization takes between two and three hours. For the large and extra large
drives, the initialization can be 10 or 20 hours, respectively.

In addition to configuring the correct storage location for your MySQL data files, also consider setting
the following other settings in your instance before you save the instance configuration for deployment:

EC2 Instance Limitations

2331

• Set the MySQL server ID, so that when you use it for replication, the ID information is set correctly.

• Enabling binary logging, so that replication can be initialized without starting and stopping the server.

• Set the caching and memory parameters for your storage engines. There are no limitations or
restrictions on what storage engines you use in your EC2 environment. Choose a configuration,
possibly using one of the standard configurations provided with MySQL appropriate for the instance
on which you expect to deploy. The large and extra large instances have RAM that can be dedicated
to caching. Be aware that if you choose to install memcached on the servers as part of your
application stack you must ensure there is enough memory for both MySQL and memcached.

Once you have configured your AMI with MySQL and the rest of your application stack, save the AMI
so that you can deploy and reuse the instance.

Once you have your application stack configured in an AMI, populating your MySQL database with
data should be performed by creating a dump of your database using mysqldump, transferring the
dump to the EC2 instance, and then reloading the information into the EC2 instance database.

Before using your instance with your application in a production situation, be aware of the limitations
of the EC2 instance environment. See Section 16.1.2, “EC2 Instance Limitations”. To begin using your
MySQL AMI, consult the notes on deployment. See Section 16.1.3, “Deploying a MySQL Database
Using EC2”.

16.1.2 EC2 Instance Limitations

Be aware of the following limitations of the EC2 instances before deploying your applications. Although
these shouldn't affect your ability to deploy within the Amazon EC2 environment, they may alter the
way you setup and configure your environment to support your application.

• Data stored within instances is not persistent. If you create an instance and populate the instance
with data, then the data only remains in place while the machine is running, and does not survive a
reboot. If you shut down the instance, any data it contained is lost.

To ensure that you do not lose information, take regular backups using mysqldump. If the data
being stored is critical, consider using replication to keep a “live” backup of your data in the event
of a failure. When creating a backup, write the data to the Amazon S3 service to avoid the transfer
charges applied when copying data offsite.

• EC2 instances are not persistent. If the hardware on which an instance is running fails, the instance
is shut down. This can lead to loss of data or service.

However, if you use EBS, you can attach an EBS storage volume to an EC2 instance, and that EBS
volume is persistent. Like a disk, an EBS volume can fail, but it is possible to create point-in-time
snapshots of the volume. Snapshots are persisted to Amazon S3 and can be used to restore data in
the event of volume failure.

• To replicate your EC2 instances to a non-EC2 environment, be aware of the transfer costs to and
from the EC2 service. Data transfer between different EC2 instances is free, so using replication
within the EC2 environment does not incur additional charges.

• Certain HA features are either not directly supported, or have limiting factors or problems that could
reduce their utility. For example, using DRBD or MySQL Cluster might not work. The default storage
configuration is also not redundant. You can use software-based RAID to improve redundancy, but
this implies a further performance hit.

16.1.3 Deploying a MySQL Database Using EC2

Because you cannot guarantee the uptime and availability of your EC2 instances, when deploying
MySQL within the EC2 environment, use an approach that enables you to easily distribute work among

Deploying a MySQL Database Using EC2

2332

your EC2 instances. There are a number of ways of doing this. Using sharding techniques, where you
split the application across multiple servers dedicating specific blocks of your dataset and users to
different servers is an effective way of doing this. As a general rule, it is easier to create more EC2
instances to support more users than to upgrade the instance to a larger machine.

The EC2 architecture works best when you treat the EC2 instances as temporary, cache-based
solutions, rather than as a long-term, high availability solution. In addition to using multiple machines,
take advantage of other services, such as memcached to provide additional caching for your
application to help reduce the load on the MySQL server so that it can concentrate on writes. On the
large and extra large instances within EC2, the RAM available can provide a large memory cache for
data.

Most types of scale-out topology that you would use with your own hardware can be used and applied
within the EC2 environment. However, use the limitations and advice already given to ensure that any
potential failures do not lose you any data. Also, because the relative power of each EC2 instance is so
low, be prepared to alter your application to use sharding and add further EC2 instances to improve the
performance of your application.

For example, take the typical scale-out environment shown following, where a single master replicates
to one or more slaves (three in this example), with a web server running on each replication slave.

You can reproduce this structure completely within the EC2 environment, using an EC2 instance for the
master, and one instance for each of the web and MySQL slave servers.

Note

Within the EC2 environment, internal (private) IP addresses used by the EC2
instances are constant. Always use these internal addresses and names
when communicating between instances. Only use public IP addresses when
communicating with the outside world - for example, when publicizing your
application.

To ensure reliability of your database, add at least one replication slave dedicated to providing an
active backup and storage to the Amazon S3 facility. You can see an example of this in the following
topology.

Deploying a MySQL Database Using EC2

2333

Using memcached within your EC2 instances should provide better performance. The large and extra
large instances have a significant amount of RAM. To use memcached in your application, when
loading information from the database, first check whether the item exists in the cache. If the data you
are looking for exists in the cache, use it. If not, reload the data from the database and populate the
cache.

Sharding divides up data in your entire database by allocating individual machines or machine groups
to provide a unique set of data according to an appropriate group. For example, you might put all users
with a surname ending in the letters A-D onto a single server. When a user connects to the application
and their surname is known, queries can be redirected to the appropriate MySQL server.

When using sharding with EC2, separate the web server and MySQL server into separate EC2
instances, and then apply the sharding decision logic into your application. Once you know which
MySQL server you should be using for accessing the data you then distribute queries to the
appropriate server. You can see a sample of this in the following illustration.

Using ZFS Replication

2334

Warning

With sharding and EC2, be careful that the potential for failure of an instance
does not affect your application. If the EC2 instance that provides the MySQL
server for a particular shard fails, then all of the data on that shard becomes
unavailable.

16.2 Using ZFS Replication

To support high availability environments, providing an instant copy of the information on both the
currently active machine and the hot backup is a critical part of the HA solution. There are many
solutions to this problem, such as Chapter 17, Replication.

The ZFS file system provides functionality to create a snapshot of the file system contents, transfer
the snapshot to another machine, and extract the snapshot to recreate the file system. You can create
a snapshot at any time, and you can create as many snapshots as you like. By continually creating,
transferring, and restoring snapshots, you can provide synchronization between one or more machines
in a fashion similar to DRBD.

The following example shows a simple Solaris system running with a single ZFS pool, mounted at /
scratchpool:

Filesystem size used avail capacity Mounted on
/dev/dsk/c0d0s0 4.6G 3.7G 886M 82% /
/devices 0K 0K 0K 0% /devices
ctfs 0K 0K 0K 0% /system/contract
proc 0K 0K 0K 0% /proc
mnttab 0K 0K 0K 0% /etc/mnttab
swap 1.4G 892K 1.4G 1% /etc/svc/volatile
objfs 0K 0K 0K 0% /system/object

Using ZFS Replication

2335

/usr/lib/libc/libc_hwcap1.so.1
 4.6G 3.7G 886M 82% /lib/libc.so.1
fd 0K 0K 0K 0% /dev/fd
swap 1.4G 40K 1.4G 1% /tmp
swap 1.4G 28K 1.4G 1% /var/run
/dev/dsk/c0d0s7 26G 913M 25G 4% /export/home
scratchpool 16G 24K 16G 1% /scratchpool

The MySQL data is stored in a directory on /scratchpool. To help demonstrate some of the basic
replication functionality, there are also other items stored in /scratchpool as well:

total 17
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/
drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/

To create a snapshot of the file system, you use zfs snapshot, specifying the pool and the snapshot
name:

root-shell> zfs snapshot scratchpool@snap1

To list the snapshots already taken:

root-shell> zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
scratchpool@snap1 0 - 24.5K -
scratchpool@snap2 0 - 24.5K -

The snapshots themselves are stored within the file system metadata, and the space required to keep
them varies as time goes on because of the way the snapshots are created. The initial creation of a
snapshot is very quick, because instead of taking an entire copy of the data and metadata required to
hold the entire snapshot, ZFS records only the point in time and metadata of when the snapshot was
created.

As more changes to the original file system are made, the size of the snapshot increases because
more space is required to keep the record of the old blocks. If you create lots of snapshots, say one
per day, and then delete the snapshots from earlier in the week, the size of the newer snapshots might
also increase, as the changes that make up the newer state have to be included in the more recent
snapshots, rather than being spread over the seven snapshots that make up the week.

You cannot directly back up the snapshots because they exist within the file system metadata rather
than as regular files. To get the snapshot into a format that you can copy to another file system, tape,
and so on, you use the zfs send command to create a stream version of the snapshot.

For example, to write the snapshot out to a file:

root-shell> zfs send scratchpool@snap1 >/backup/scratchpool-snap1

Or tape:

root-shell> zfs send scratchpool@snap1 >/dev/rmt/0

You can also write out the incremental changes between two snapshots using zfs send:

root-shell> zfs send scratchpool@snap1 scratchpool@snap2 >/backup/scratchpool-changes

To recover a snapshot, you use zfs recv, which applies the snapshot information either to a new file
system, or to an existing one.

Using ZFS for File System Replication

2336

16.2.1 Using ZFS for File System Replication

Because zfs send and zfs recv use streams to exchange data, you can use them to replicate
information from one system to another by combining zfs send, ssh, and zfs recv.

For example, to copy a snapshot of the scratchpool file system to a new file system called
slavepool on a new server, you would use the following command. This sequence combines the
snapshot of scratchpool, the transmission to the slave machine (using ssh with login credentials),
and the recovery of the snapshot on the slave using zfs recv:

root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

The first part of the pipeline, zfs send scratchpool@snap1, streams the snapshot. The
ssh command, and the command that it executes on the other server, pfexec zfs recv -F
slavepool, receives the streamed snapshot data and writes it to slavepool. In this instance, I've
specified the -F option which forces the snapshot data to be applied, and is therefore destructive. This
is fine, as I'm creating the first version of my replicated file system.

On the slave machine, the replicated file system contains the exact same content:

root-shell> ls -al /slavepool/
total 23
drwxr-xr-x 6 root root 7 Nov 8 09:13 ./
drwxr-xr-x 29 root root 34 Nov 9 07:06 ../
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/
drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/

Once a snapshot has been created, to synchronize the file system again, you create a new snapshot
and then use the incremental snapshot feature of zfs send to send the changes between the two
snapshots to the slave machine again:

root-shell> zfs send -i scratchpool@snapshot1 scratchpool@snapshot2 |ssh id@host pfexec zfs recv slavepool

This operation only succeeds if the file system on the slave machine has not been modified at all. You
cannot apply the incremental changes to a destination file system that has changed. In the example
above, the ls command would cause problems by changing the metadata, such as the last access
time for files or directories.

To prevent changes on the slave file system, set the file system on the slave to be read-only:

root-shell> zfs set readonly=on slavepool

Setting readonly means that you cannot change the file system on the slave by normal means,
including the file system metadata. Operations that would normally update metadata (like our ls)
silently perform their function without attempting to update the file system state.

In essence, the slave file system is nothing but a static copy of the original file system. However, even
when configured to be read-only, a file system can have snapshots applied to it. With the file system
set to read only, re-run the initial copy:

root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

Now you can make changes to the original file system and replicate them to the slave.

16.2.2 Configuring MySQL for ZFS Replication

Configuring MySQL on the source file system is a case of creating the data on the file system that
you intend to replicate. The configuration file in the example below has been updated to use /
scratchpool/mysql-data as the data directory, and now you can initialize the tables:

Handling MySQL Recovery with ZFS

2337

root-shell> mysql_install_db --defaults-file=/etc/mysql/5.5/my.cnf --user=mysql

To synchronize the initial information, perform a new snapshot and then send an incremental snapshot
to the slave using zfs send:

root-shell> zfs snapshot scratchpool@snap2
root-shell> zfs send -i scratchpool@snap1 scratchpool@snap2|ssh id@host pfexec zfs recv slavepool

Doublecheck that the slave has the data by looking at the MySQL data directory on the slavepool:

root-shell> ls -al /slavepool/mysql-data/

Now you can start up MySQL, create some data, and then replicate the changes using zfs send/
zfs recv to the slave to synchronize the changes.

The rate at which you perform the synchronization depends on your application and environment.
The limitation is the speed required to perform the snapshot and then to send the changes over the
network.

To automate the process, create a script that performs the snapshot, send, and receive operation, and
use cron to synchronize the changes at set times or intervals.

16.2.3 Handling MySQL Recovery with ZFS

When using ZFS replication to provide a constant copy of your data, ensure that you can recover your
tables, either manually or automatically, in the event of a failure of the original system.

In the event of a failure, follow this sequence:

1. Stop the script on the master, if it is still up and running.

2. Set the slave file system to be read/write:

root-shell> zfs set readonly=off slavepool

3. Start up mysqld on the slave. If you are using InnoDB, you get auto-recovery, if it is needed,
to make sure the table data is correct, as shown here when I started up from our mid-INSERT
snapshot:

InnoDB: The log sequence number in ibdata files does not match
InnoDB: the log sequence number in the ib_logfiles!
081109 15:59:59 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
081109 16:00:03 InnoDB: Started; log sequence number 0 1142807951
081109 16:00:03 [Note] /slavepool/mysql-5.0.67-solaris10-i386/bin/mysqld: ready for connections.
Version: '5.0.67' socket: '/tmp/mysql.sock' port: 3306 MySQL Community Server (GPL)

Use InnoDB tables and a regular synchronization schedule to reduce the risk for significant data
loss. On MyISAM tables, you might need to run REPAIR TABLE, and you might even have lost some
information.

16.3 Using MySQL with memcached
memcached is a simple, highly scalable key-based cache that stores data and objects wherever
dedicated or spare RAM is available for quick access by applications, without going through layers of
parsing or disk I/O. To use, you run the memcached command on one or more hosts and then use the
shared cache to store objects. For more usage instructions, see Section 16.3.2, “Using memcached”

Installing memcached

2338

Benefits of using memcached include:

• Because all information is stored in RAM, the access speed is faster than loading the information
each time from disk.

• Because the “value” portion of the key-value pair does not have any data type restrictions, you can
cache data such as complex structures, documents, images, or a mixture of such things.

• If you use the in-memory cache to hold transient information, or as a read-only cache for information
also stored in a database, the failure of any memcached server is not critical. For persistent data, you
can fall back to an alternative lookup method using database queries, and reload the data into RAM
on a different server.

The typical usage environment is to modify your application so that information is read from the cache
provided by memcached. If the information is not in memcached, then the data is loaded from the
MySQL database and written into the cache so that future requests for the same object benefit from the
cached data.

For a typical deployment layout, see Figure 16.2, “memcached Architecture Overview”.

Figure 16.2 memcached Architecture Overview

In the example structure, any of the clients can contact one of the memcached servers to request a
given key. Each client is configured to talk to all of the servers shown in the illustration. Within the
client, when the request is made to store the information, the key used to reference the data is hashed
and this hash is then used to select one of the memcached servers. The selection of the memcached
server takes place on the client before the server is contacted, keeping the process lightweight.

The same algorithm is used again when a client requests the same key. The same key generates
the same hash, and the same memcached server is selected as the source for the data. Using this
method, the cached data is spread among all of the memcached servers, and the cached information
is accessible from any client. The result is a distributed, memory-based, cache that can return
information, particularly complex data and structures, much faster than natively reading the information
from the database.

The data held within a traditional memcached server is never stored on disk (only in RAM, which
means there is no persistence of data), and the RAM cache is always populated from the backing store
(a MySQL database). If a memcached server fails, the data can always be recovered from the MySQL
database.

16.3.1 Installing memcached

You can build and install memcached from the source code directly, or you can use an existing
operating system package or installation.

Installing memcached from a Binary Distribution

Installing memcached

2339

To install memcached on a Red Hat, or Fedora host, use yum:

root-shell> yum install memcached

Note

On CentOS, you may be able to obtain a suitable RPM from another source, or
use the source tarball.

To install memcached on a Debian or Ubuntu host, use apt-get:

root-shell> apt-get install memcached

To install memcached on a Gentoo host, use emerge:

root-shell> emerge install memcached

Building memcached from Source

On other Unix-based platforms, including Solaris, AIX, HP-UX and OS X, and Linux distributions not
mentioned already, you must install from source. For Linux, make sure you have a 2.6-based kernel,
which includes the improved epoll interface. For all platforms, ensure that you have libevent 1.1 or
higher installed. You can obtain libevent from libevent web page.

You can obtain the source for memcached from memcached Web site.

To build memcached, follow these steps:

1. Extract the memcached source package:

shell> gunzip -c memcached-1.2.5.tar.gz | tar xf -

2. Change to the memcached-1.2.5 directory:

shell> cd memcached-1.2.5

3. Run configure

shell> ./configure

Some additional options you might specify to the configure:

• --prefix

To specify a different installation directory, use the --prefix option:

shell> ./configure --prefix=/opt

The default is to use the /usr/local directory.

• --with-libevent

If you have installed libevent and configure cannot find the library, use the --with-
libevent option to specify the location of the installed library.

• --enable-64bit

To build a 64-bit version of memcached (which enables you to use a single instance with a large
RAM allocation), use --enable-64bit.

http://www.monkey.org/~provos/libevent/
http://www.danga.com/memcached

Using memcached

2340

• --enable-threads

To enable multi-threading support in memcached, which improves the response times on servers
with a heavy load, use --enable-threads. You must have support for the POSIX threads
within your operating system to enable thread support. For more information on the threading
support, see Section 16.3.2.7, “memcached Thread Support”.

• --enable-dtrace

memcached includes a range of DTrace threads that can be used to monitor and benchmark
a memcached instance. For more information, see Section 16.3.2.5, “Using memcached and
DTrace”.

4. Run make to build memcached:

shell> make

5. Run make install to install memcached:

shell> make install

16.3.2 Using memcached

To start using memcached, start the memcached service on one or more servers. Running memcached
sets up the server, allocates the memory and starts listening for connections from clients.

Note

You do not need to be a privileged user (root) to run memcached except to
listen on one of the privileged TCP/IP ports (below 1024). You must, however,
use a user that has not had their memory limits restricted using setrlimit or
similar.

To start the server, run memcached as a nonprivileged (that is, non-root) user:

shell> memcached

By default, memcached uses the following settings:

• Memory allocation of 64MB

• Listens for connections on all network interfaces, using port 11211

• Supports a maximum of 1024 simultaneous connections

Typically, you would specify the full combination of options that you want when starting memcached,
and normally provide a startup script to handle the initialization of memcached. For example, the
following line starts memcached with a maximum of 1024MB RAM for the cache, listening on port
11211 on the IP address 192.168.0.110, running as a background daemon:

shell> memcached -d -m 1024 -p 11211 -l 192.168.0.110

To ensure that memcached is started up on boot, check the init script and configuration parameters.

memcached supports the following options:

• -u user

If you start memcached as root, use the -u option to specify the user for executing memcached:

Using memcached

2341

shell> memcached -u memcache

• -m memory

Set the amount of memory allocated to memcached for object storage. Default is 64MB.

To increase the amount of memory allocated for the cache, use the -m option to specify the amount
of RAM to be allocated (in megabytes). The more RAM you allocate, the more data you can store
and therefore the more effective your cache is.

Warning

Do not specify a memory allocation larger than your available RAM. If you
specify too large a value, then some RAM allocated for memcached uses
swap space, and not physical RAM. This may lead to delays when storing
and retrieving values, because data is swapped to disk, instead of storing the
data directly in RAM.

You can use the output of the vmstat command to get the free memory, as
shown in free column:

shell> vmstat
kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr s1 s2 -- -- in sy cs us sy id
0 0 0 5170504 3450392 2 7 2 0 0 0 4 0 0 0 0 296 54 199 0 0 100

For example, to allocate 3GB of RAM:

shell> memcached -m 3072

On 32-bit x86 systems where you are using PAE to access memory above the 4GB limit, you cannot
allocate RAM beyond the maximum process size. You can get around this by running multiple
instances of memcached, each listening on a different port:

shell> memcached -m 1024 -p11211
shell> memcached -m 1024 -p11212
shell> memcached -m 1024 -p11213

Note

On all systems, particularly 32-bit, ensure that you leave enough room for
both memcached application in addition to the memory setting. For example,
if you have a dedicated memcached host with 4GB of RAM, do not set the
memory size above 3500MB. Failure to do this may cause either a crash or
severe performance issues.

• -l interface

Specify a network interface/address to listen for connections. The default is to listen on all available
address (INADDR_ANY).

shell> memcached -l 192.168.0.110

Support for IPv6 address support was added in memcached 1.2.5.

• -p port

Specify the TCP port to use for connections. Default is 18080.

shell> memcached -p 18080

Using memcached

2342

• -U port

Specify the UDP port to use for connections. Default is 11211, 0 switches UDP off.

shell> memcached -U 18080

• -s socket

Specify a Unix socket to listen on.

If you are running memcached on the same server as the clients, you can disable the network
interface and use a local Unix socket using the -s option:

shell> memcached -s /tmp/memcached

Using a Unix socket automatically disables network support, and saves network ports (allowing more
ports to be used by your web server or other process).

• -a mask

Specify the access mask to be used for the Unix socket, in octal. Default is 0700.

• -c connections

Specify the maximum number of simultaneous connections to the memcached service. The default is
1024.

shell> memcached -c 2048

Use this option, either to reduce the number of connections (to prevent overloading memcached
service) or to increase the number to make more effective use of the server running memcached
server.

• -t threads

Specify the number of threads to use when processing incoming requests.

By default, memcached is configured to use 4 concurrent threads. The threading improves the
performance of storing and retrieving data in the cache, using a locking system to prevent different
threads overwriting or updating the same values. To increase or decrease the number of threads,
use the -t option:

shell> memcached -t 8

• -d

Run memcached as a daemon (background) process:

shell> memcached -d

• -r

Maximize the size of the core file limit. In the event of a failure, this attempts to dump the entire
memory space to disk as a core file, up to any limits imposed by setrlimit.

• -M

Return an error to the client when the memory has been exhausted. This replaces the normal
behavior of removing older items from the cache to make way for new items.

Using memcached

2343

• -k

Lock down all paged memory. This reserves the memory before use, instead of allocating new slabs
of memory as new items are stored in the cache.

Note

There is a user-level limit on how much memory you can lock. Trying to
allocate more than the available memory fails. You can set the limit for the
user you started the daemon with (not for the -u user user) within the shell
by using ulimit -S -l NUM_KB

• -v

Verbose mode. Prints errors and warnings while executing the main event loop.

• -vv

Very verbose mode. In addition to information printed by -v, also prints each client command and
the response.

• -vvv

Extremely verbose mode. In addition to information printed by -vv, also show the internal state
transitions.

• -h

Print the help message and exit.

• -i

Print the memcached and libevent license.

• -I mem

Specify the maximum size permitted for storing an object within the memcached instance. The size
supports a unit postfix (k for kilobytes, m for megabytes). For example, to increase the maximum
supported object size to 32MB:

shell> memcached -I 32m

The maximum object size you can specify is 128MB, the default remains at 1MB.

This option was added in 1.4.2.

• -b

Set the backlog queue limit. The backlog queue configures how many network connections can be
waiting to be processed by memcached. Increasing this limit may reduce errors received by the client
that it is not able to connect to the memcached instance, but does not improve the performance of
the server. The default is 1024.

• -P pidfile

Save the process ID of the memcached instance into file.

• -f

Set the chunk size growth factor. When allocating new memory chunks, the allocated size of new
chunks is determined by multiplying the default slab size by this factor.

Using memcached

2344

To see the effects of this option without extensive testing, use the -vv command-line option to show
the calculated slab sizes. For more information, see Section 16.3.2.8, “memcached Logs”.

• -n bytes

The minimum space allocated for the key+value+flags information. The default is 48 bytes.

• -L

On systems that support large memory pages, enables large memory page use. Using large memory
pages enables memcached to allocate the item cache in one large chunk, which can improve the
performance by reducing the number misses when accessing memory.

• -C

Disable the use of compare and swap (CAS) operations.

This option was added in memcached 1.3.x.

• -D char

Set the default character to be used as a delimiter between the key prefixes and IDs. This is used for
the per-prefix statistics reporting (see Section 16.3.4, “Getting memcached Statistics”). The default
is the colon (:). If this option is used, statistics collection is turned on automatically. If not used, you
can enable stats collection by sending the stats detail on command to the server.

This option was added in memcached 1.3.x.

• -R num

Sets the maximum number of requests per event process. The default is 20.

• -B protocol

Set the binding protocol, that is, the default memcached protocol support for client connections.
Options are ascii, binary or auto. Automatic (auto) is the default.

This option was added in memcached 1.4.0.

16.3.2.1 memcached Deployment

When using memcached you can use a number of different potential deployment strategies and
topologies. The exact strategy to use depends on your application and environment. When developing
a system for deploying memcached within your system, keep in mind the following points:

• memcached is only a caching mechanism. It shouldn't be used to store information that you cannot
otherwise afford to lose and then load from a different location.

• There is no security built into the memcached protocol. At a minimum, make sure that the servers
running memcached are only accessible from inside your network, and that the network ports being
used are blocked (using a firewall or similar). If the information on the memcached servers that is
being stored is any sensitive, then encrypt the information before storing it in memcached.

• memcached does not provide any sort of failover. Because there is no communication between
different memcached instances. If an instance fails, your application must capable of removing it from
the list, reloading the data and then writing data to another memcached instance.

• Latency between the clients and the memcached can be a problem if you are using different physical
machines for these tasks. If you find that the latency is a problem, move the memcached instances to
be on the clients.

• Key length is determined by the memcached server. The default maximum key size is 250 bytes.

Using memcached

2345

• Try to use at least two memcached instances, especially for multiple clients, to avoid having a single
point of failure. Ideally, create as many memcached nodes as possible. When adding and removing
memcached instances from a pool, the hashing and distribution of key/value pairs may be affected.
For information on how to avoid problems, see Section 16.3.2.4, “memcached Hashing/Distribution
Types”.

16.3.2.2 Using Namespaces

The memcached cache is a very simple massive key/value storage system, and as such there is no
way of compartmentalizing data automatically into different sections. For example, if you are storing
information by the unique ID returned from a MySQL database, then storing the data from two different
tables could run into issues because the same ID might be valid in both tables.

Some interfaces provide an automated mechanism for creating namespaces when storing information
into the cache. In practice, these namespaces are merely a prefix before a given ID that is applied
every time a value is stored or retrieve from the cache.

You can implement the same basic principle by using keys that describe the object and the unique
identifier within the key that you supply when the object is stored. For example, when storing user data,
prefix the ID of the user with user: or user-.

Note

Using namespaces or prefixes only controls the keys stored/retrieved. There is
no security within memcached, and therefore no way to enforce that a particular
client only accesses keys with a particular namespace. Namespaces are only
useful as a method of identifying data and preventing corruption of key/value
pairs.

16.3.2.3 Data Expiry

There are two types of data expiry within a memcached instance. The first type is applied at the point
when you store a new key/value pair into the memcached instance. If there is not enough space within
a suitable slab to store the value, then an existing least recently used (LRU) object is removed (evicted)
from the cache to make room for the new item.

The LRU algorithm ensures that the object that is removed is one that is either no longer in active
use or that was used so long ago that its data is potentially out of date or of little value. However, in
a system where the memory allocated to memcached is smaller than the number of regularly used
objects required in the cache, a lot of expired items could be removed from the cache even though they
are in active use. You use the statistics mechanism to get a better idea of the level of evictions (expired
objects). For more information, see Section 16.3.4, “Getting memcached Statistics”.

You can change this eviction behavior by setting the -M command-line option when starting
memcached. This option forces an error to be returned when the memory has been exhausted, instead
of automatically evicting older data.

The second type of expiry system is an explicit mechanism that you can set when a key/value pair is
inserted into the cache, or when deleting an item from the cache. Using an expiration time can be a
useful way of ensuring that the data in the cache is up to date and in line with your application needs
and requirements.

A typical scenario for explicitly setting the expiry time might include caching session data for a user
when accessing a Web site. memcached uses a lazy expiry mechanism where the explicit expiry time
that has been set is compared with the current time when the object is requested. Only objects that
have not expired are returned.

You can also set the expiry time when explicitly deleting an object from the cache. In this case, the
expiry time is really a timeout and indicates the period when any attempts to set the value for a given
key are rejected.

Using memcached

2346

16.3.2.4 memcached Hashing/Distribution Types

The memcached client interface supports a number of different distribution algorithms that are used in
multi-server configurations to determine which host should be used when setting or getting data from
a given memcached instance. When you get or set a value, a hash is constructed from the supplied
key and then used to select a host from the list of configured servers. Because the hashing mechanism
uses the supplied key as the basis for the hash, the same server is selected during both set and get
operations.

You can think of this process as follows. Given an array of servers (a, b, and c), the client uses a
hashing algorithm that returns an integer based on the key being stored or retrieved. The resulting
value is then used to select a server from the list of servers configured in the client. Most standard
client hashing within memcache clients uses a simple modulus calculation on the value against the
number of configured memcached servers. You can summarize the process in pseudocode as:

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash($key);
$chosen = $value % length(@memcservers);

Replacing the above with values:

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash('myid');
$chosen = 7009 % 3;

In the above example, the client hashing algorithm chooses the server at index 1 (7009 % 3 = 1),
and store or retrieve the key and value with that server.

Note

This selection and hashing process is handled automatically by the memcached
client you are using; you need only provide the list of memcached servers to
use.

You can see a graphical representation of this below in Figure 16.3, “memcached Hash Selection”.

Figure 16.3 memcached Hash Selection

The same hashing and selection process takes place during any operation on the specified key within
the memcached client.

Using this method provides a number of advantages:

• The hashing and selection of the server to contact is handled entirely within the client. This
eliminates the need to perform network communication to determine the right machine to contact.

• Because the determination of the memcached server occurs entirely within the client, the server can
be selected automatically regardless of the operation being executed (set, get, increment, etc.).

Using memcached

2347

• Because the determination is handled within the client, the hashing algorithm returns the same value
for a given key; values are not affected or reset by differences in the server environment.

• Selection is very fast. The hashing algorithm on the key value is quick and the resulting selection of
the server is from a simple array of available machines.

• Using client-side hashing simplifies the distribution of data over each memcached server. Natural
distribution of the values returned by the hashing algorithm means that keys are automatically spread
over the available servers.

Providing that the list of servers configured within the client remains the same, the same stored key
returns the same value, and therefore selects the same server.

However, if you do not use the same hashing mechanism then the same data may be recorded
on different servers by different interfaces, both wasting space on your memcached and leading to
potential differences in the information.

Note

One way to use a multi-interface compatible hashing mechanism is to use the
libmemcached library and the associated interfaces. Because the interfaces
for the different languages (including C, Ruby, Perl and Python) use the same
client library interface, they always generate the same hash code from the ID.

The problem with client-side selection of the server is that the list of the servers (including their
sequential order) must remain consistent on each client using the memcached servers, and the servers
must be available. If you try to perform an operation on a key when:

• A new memcached instance has been added to the list of available instances

• A memcached instance has been removed from the list of available instances

• The order of the memcached instances has changed

When the hashing algorithm is used on the given key, but with a different list of servers, the hash
calculation may choose a different server from the list.

If a new memcached instance is added into the list of servers, as new.memc is in the example below,
then a GET operation using the same key, myid, can result in a cache-miss. This is because the same
value is computed from the key, which selects the same index from the array of servers, but index 2
now points to the new server, not the server c.memc where the data was originally stored. This would
result in a cache miss, even though the key exists within the cache on another memcached instance.

Figure 16.4 memcached Hash Selection with New memcached instance

This means that servers c.memc and new.memc both contain the information for key myid, but the
information stored against the key in eachs server may be different in each instance. A more significant
problem is a much higher number of cache-misses when retrieving data, as the addition of a new

Using memcached

2348

server changes the distribution of keys, and this in turn requires rebuilding the cached data on the
memcached instances, causing an increase in database reads.

The same effect can occur if you actively manage the list of servers configured in your clients, adding
and removing the configured memcached instances as each instance is identified as being available.
For example, removing a memcached instance when the client notices that the instance can no longer
be contacted can cause the server selection to fail as described here.

To prevent this causing significant problems and invalidating your cache, you can select the hashing
algorithm used to select the server. There are two common types of hashing algorithm, consistent and
modula.

With consistent hashing algorithms, the same key when applied to a list of servers always uses the
same server to store or retrieve the keys, even if the list of configured servers changes. This means
that you can add and remove servers from the configure list and always use the same server for a
given key. There are two types of consistent hashing algorithms available, Ketama and Wheel. Both
types are supported by libmemcached, and implementations are available for PHP and Java.

Any consistent hashing algorithm has some limitations. When you add servers to an existing list of
configured servers, keys are distributed to the new servers as part of the normal distribution. When you
remove servers from the list, the keys are re-allocated to another server within the list, meaning that
the cache needs to be re-populated with the information. Also, a consistent hashing algorithm does not
resolve the issue where you want consistent selection of a server across multiple clients, but where
each client contains a different list of servers. The consistency is enforced only within a single client.

With a modula hashing algorithm, the client selects a server by first computing the hash and then
choosing a server from the list of configured servers. As the list of servers changes, so the server
selected when using a modula hashing algorithm also changes. The result is the behavior described
above; changes to the list of servers mean that different servers are selected when retrieving data,
leading to cache misses and increase in database load as the cache is re-seeded with information.

If you use only a single memcached instance for each client, or your list of memcached servers
configured for a client never changes, then the selection of a hashing algorithm is irrelevant, as it has
no noticeable effect.

If you change your servers regularly, or you use a common set of servers that are shared among a
large number of clients, then using a consistent hashing algorithm should help to ensure that your
cache data is not duplicated and the data is evenly distributed.

16.3.2.5 Using memcached and DTrace

memcached includes a number of different DTrace probes that can be used to monitor the operation of
the server. The probes included can monitor individual connections, slab allocations, and modifications
to the hash table when a key/value pair is added, updated, or removed.

For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

Support for DTrace probes was added to memcached 1.2.6 includes a number of DTrace probes that
can be used to help monitor your application. DTrace is supported on Solaris 10, OpenSolaris, OS X
10.5 and FreeBSD. To enable the DTrace probes in memcached, build from source and use the --
enable-dtrace option. For more information, see Section 16.3.1, “Installing memcached”.

The probes supported by memcached are:

• conn-allocate(connid)

Fired when a connection object is allocated from the connection pool.

• connid: The connection ID.

• conn-release(connid)

http://docs.oracle.com/cd/E19253-01/819-5488/

Using memcached

2349

Fired when a connection object is released back to the connection pool.

Arguments:

• connid: The connection ID.

• conn-create(ptr)

Fired when a new connection object is being created (that is, there are no free connection objects in
the connection pool).

Arguments:

• ptr: A pointer to the connection. object

• conn-destroy(ptr)

Fired when a connection object is being destroyed.

Arguments:

• ptr: A pointer to the connection object.

• conn-dispatch(connid, threadid)

Fired when a connection is dispatched from the main or connection-management thread to a worker
thread.

Arguments:

• connid: The connection ID.

• threadid: The thread ID.

• slabs-allocate(size, slabclass, slabsize, ptr)

Allocate memory from the slab allocator.

Arguments:

• size: The requested size.

• slabclass: The allocation is fulfilled in this class.

• slabsize: The size of each item in this class.

• ptr: A pointer to allocated memory.

• slabs-allocate-failed(size, slabclass)

Failed to allocate memory (out of memory).

Arguments:

• size: The requested size.

• slabclass: The class that failed to fulfill the request.

• slabs-slabclass-allocate(slabclass)

Fired when a slab class needs more space.

Arguments:

Using memcached

2350

• slabclass: The class that needs more memory.

• slabs-slabclass-allocate-failed(slabclass)

Failed to allocate memory (out of memory).

Arguments:

• slabclass: The class that failed to grab more memory.

• slabs-free(size, slabclass, ptr)

Release memory.

Arguments:

• size: The amount of memory to release, in bytes.

• slabclass: The class the memory belongs to.

• ptr: A pointer to the memory to release.

• assoc-find(key, depth)

Fired when we have searched the hash table for a named key. These two elements provide an
insight into how well the hash function operates. Traversals are a sign of a less optimal function,
wasting CPU capacity.

Arguments:

• key: The key searched for.

• depth: The depth in the list of hash table.

• assoc-insert(key, nokeys)

Fired when a new item has been inserted.

Arguments:

• key: The key just inserted.

• nokeys: The total number of keys currently being stored, including the key for which insert was
called.

• assoc-delete(key, nokeys)

Fired when a new item has been removed.

Arguments:

• key: The key just deleted.

• nokeys: The total number of keys currently being stored, excluding the key for which delete was
called.

• item-link(key, size)

Fired when an item is being linked in the cache.

Arguments:

• key: The items key.

Using memcached

2351

• size: The size of the data.

• item-unlink(key, size)

Fired when an item is being deleted.

Arguments:

• key: The items key.

• size: The size of the data.

• item-remove(key, size)

Fired when the refcount for an item is reduced.

Arguments:

• key: The item's key.

• size: The size of the data.

• item-update(key, size)

Fired when the "last referenced" time is updated.

Arguments:

• key: The item's key.

• size: The size of the data.

• item-replace(oldkey, oldsize, newkey, newsize)

Fired when an item is being replaced with another item.

Arguments:

• oldkey: The key of the item to replace.

• oldsize: The size of the old item.

• newkey: The key of the new item.

• newsize: The size of the new item.

• process-command-start(connid, request, size)

Fired when the processing of a command starts.

Arguments:

• connid: The connection ID.

• request: The incoming request.

• size: The size of the request.

• process-command-end(connid, response, size)

Fired when the processing of a command is done.

Arguments:

Using memcached

2352

• connid: The connection ID.

• response: The response to send back to the client.

• size: The size of the response.

• command-get(connid, key, size)

Fired for a get command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• command-gets(connid, key, size, casid)

Fired for a gets command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• casid: The casid for the item.

• command-add(connid, key, size)

Fired for a add command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-set(connid, key, size)

Fired for a set command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-replace(connid, key, size)

Fired for a replace command.

Arguments:

• connid: The connection ID.

Using memcached

2353

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-prepend(connid, key, size)

Fired for a prepend command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-append(connid, key, size)

Fired for a append command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-cas(connid, key, size, casid)

Fired for a cas command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• casid: The cas ID requested.

• command-incr(connid, key, val)

Fired for incr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• val: The new value.

• command-decr(connid, key, val)

Fired for decr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

Using memcached

2354

• val: The new value.

• command-delete(connid, key, exptime)

Fired for a delete command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• exptime: The expiry time.

16.3.2.6 Memory Allocation within memcached

When you first start memcached, the memory that you have configured is not automatically allocated.
Instead, memcached only starts allocating and reserving physical memory once you start saving
information into the cache.

When you start to store data into the cache, memcached does not allocate the memory for the data
on an item by item basis. Instead, a slab allocation is used to optimize memory usage and prevent
memory fragmentation when information expires from the cache.

With slab allocation, memory is reserved in blocks of 1MB. The slab is divided up into a number of
blocks of equal size. When you try to store a value into the cache, memcached checks the size of the
value that you are adding to the cache and determines which slab contains the right size allocation for
the item. If a slab with the item size already exists, the item is written to the block within the slab.

If the new item is bigger than the size of any existing blocks, then a new slab is created, divided up into
blocks of a suitable size. If an existing slab with the right block size already exists, but there are no free
blocks, a new slab is created. If you update an existing item with data that is larger than the existing
block allocation for that key, then the key is re-allocated into a suitable slab.

For example, the default size for the smallest block is 88 bytes (40 bytes of value, and the default 48
bytes for the key and flag data). If the size of the first item you store into the cache is less than 40
bytes, then a slab with a block size of 88 bytes is created and the value stored.

If the size of the data that you intend to store is larger than this value, then the block size is increased
by the chunk size factor until a block size large enough to hold the value is determined. The block size
is always a function of the scale factor, rounded up to a block size which is exactly divisible into the
chunk size.

For a sample of the structure, see Figure 16.5, “Memory Allocation in memcached”.

Figure 16.5 Memory Allocation in memcached

The result is that you have multiple pages allocated within the range of memory allocated to
memcached. Each page is 1MB in size (by default), and is split into a different number of chunks,
according to the chunk size required to store the key/value pairs. Each instance has multiple pages

Using memcached

2355

allocated, and a page is always created when a new item needs to be created requiring a chunk of a
particular size. A slab may consist of multiple pages, and each page within a slab contains an equal
number of chunks.

The chunk size of a new slab is determined by the base chunk size combined with the chunk size
growth factor. For example, if the initial chunks are 104 bytes in size, and the default chunk size growth
factor is used (1.25), then the next chunk size allocated would be the best power of 2 fit for 104*1.25,
or 136 bytes.

Allocating the pages in this way ensures that memory does not get fragmented. However, depending
on the distribution of the objects that you store, it may lead to an inefficient distribution of the slabs and
chunks if you have significantly different sized items. For example, having a relatively small number of
items within each chunk size may waste a lot of memory with just few chunks in each allocated page.

You can tune the growth factor to reduce this effect by using the -f command line option, which adapts
the growth factor applied to make more effective use of the chunks and slabs allocated. For information
on how to determine the current slab allocation statistics, see Section 16.3.4.2, “memcached Slabs
Statistics”.

If your operating system supports it, you can also start memcached with the -L command line option.
This option preallocates all the memory during startup using large memory pages. This can improve
performance by reducing the number of misses in the CPU memory cache.

16.3.2.7 memcached Thread Support

If you enable the thread implementation within when building memcached from source, then
memcached uses multiple threads in addition to the libevent system to handle requests.

When enabled, the threading implementation operates as follows:

• Threading is handled by wrapping functions within the code to provide basic protection from updating
the same global structures at the same time.

• Each thread uses its own instance of the libevent to help improve performance.

• TCP/IP connections are handled with a single thread listening on the TCP/IP socket. Each
connection is then distributed to one of the active threads on a simple round-robin basis. Each
connection then operates solely within this thread while the connection remains open.

• For UDP connections, all the threads listen to a single UDP socket for incoming requests. Threads
that are not currently dealing with another request ignore the incoming packet. One of the remaining,
nonbusy, threads reads the request and sends the response. This implementation can lead to
increased CPU load as threads wake from sleep to potentially process the request.

Using threads can increase the performance on servers that have multiple CPU cores available, as the
requests to update the hash table can be spread between the individual threads. To minimize overhead
from the locking mechanism employed, experiment with different thread values to achieve the best
performance based on the number and type of requests within your given workload.

16.3.2.8 memcached Logs

If you enable verbose mode, using the -v, -vv, or -vvv options, then the information output by
memcached includes details of the operations being performed.

Without the verbose options, memcached normally produces no output during normal operating.

• Output when using -v

The lowest verbosity level shows you:

• Errors and warnings

• Transient errors

Using memcached

2356

• Protocol and socket errors, including exhausting available connections

• Each registered client connection, including the socket descriptor number and the protocol used.

For example:

32: Client using the ascii protocol
33: Client using the ascii protocol

The socket descriptor is only valid while the client remains connected. Non-persistent connections
may not be effectively represented.

Examples of the error messages output at this level include:

<%d send buffer was %d, now %d
Can't listen for events on fd %d
Can't read from libevent pipe
Catastrophic: event fd doesn't match conn fd!
Couldn't build response
Couldn't realloc input buffer
Couldn't update event
Failed to build UDP headers
Failed to read, and not due to blocking
Too many open connections
Unexpected state %d

• Output when using -vv

When using the second level of verbosity, you get more detailed information about protocol
operations, keys updated, chunk and network operatings and details.

During the initial start-up of memcached with this level of verbosity, you are shown the sizes of the
individual slab classes, the chunk sizes, and the number of entries per slab. These do not show the
allocation of the slabs, just the slabs that would be created when data is added. You are also given
information about the listen queues and buffers used to send information. A sample of the output
generated for a TCP/IP based system with the default memory and growth factors is given below:

shell> memcached -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 104 perslab 10082
slab class 3: chunk size 136 perslab 7710
slab class 4: chunk size 176 perslab 5957
slab class 5: chunk size 224 perslab 4681
slab class 6: chunk size 280 perslab 3744
slab class 7: chunk size 352 perslab 2978
slab class 8: chunk size 440 perslab 2383
slab class 9: chunk size 552 perslab 1899
slab class 10: chunk size 696 perslab 1506
slab class 11: chunk size 872 perslab 1202
slab class 12: chunk size 1096 perslab 956
slab class 13: chunk size 1376 perslab 762
slab class 14: chunk size 1720 perslab 609
slab class 15: chunk size 2152 perslab 487
slab class 16: chunk size 2696 perslab 388
slab class 17: chunk size 3376 perslab 310
slab class 18: chunk size 4224 perslab 248
slab class 19: chunk size 5280 perslab 198
slab class 20: chunk size 6600 perslab 158
slab class 21: chunk size 8256 perslab 127
slab class 22: chunk size 10320 perslab 101
slab class 23: chunk size 12904 perslab 81
slab class 24: chunk size 16136 perslab 64
slab class 25: chunk size 20176 perslab 51
slab class 26: chunk size 25224 perslab 41
slab class 27: chunk size 31536 perslab 33

Using memcached

2357

slab class 28: chunk size 39424 perslab 26
slab class 29: chunk size 49280 perslab 21
slab class 30: chunk size 61600 perslab 17
slab class 31: chunk size 77000 perslab 13
slab class 32: chunk size 96256 perslab 10
slab class 33: chunk size 120320 perslab 8
slab class 34: chunk size 150400 perslab 6
slab class 35: chunk size 188000 perslab 5
slab class 36: chunk size 235000 perslab 4
slab class 37: chunk size 293752 perslab 3
slab class 38: chunk size 367192 perslab 2
slab class 39: chunk size 458992 perslab 2
<26 server listening (auto-negotiate)
<29 server listening (auto-negotiate)
<30 send buffer was 57344, now 2097152
<31 send buffer was 57344, now 2097152
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)

Using this verbosity level can be a useful way to check the effects of the growth factor used on slabs
with different memory allocations, which in turn can be used to better tune the growth factor to suit
the data you are storing in the cache. For example, if you set the growth factor to 4 (quadrupling the
size of each slab):

shell> memcached -f 4 -m 1g -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 320 perslab 3276
slab class 3: chunk size 1280 perslab 819
slab class 4: chunk size 5120 perslab 204
slab class 5: chunk size 20480 perslab 51
slab class 6: chunk size 81920 perslab 12
slab class 7: chunk size 327680 perslab 3
...

During use of the cache, this verbosity level also prints out detailed information on the storage
and recovery of keys and other information. An example of the output during a typical set/get and
increment/decrement operation is shown below.

32: Client using the ascii protocol
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key
>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key

Developing a memcached Application

2358

>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key1 1 36

>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545

During client communication, for each line, the initial character shows the direction of flow of
the information. The < for communication from the client to the memcached server and > for
communication back to the client. The number is the numeric socket descriptor for the connection.

• Output when using -vvv

This level of verbosity includes the transitions of connections between different states in the event
library while reading and writing content to/from the clients. It should be used to diagnose and
identify issues in client communication. For example, you can use this information to determine
if memcached is taking a long time to return information to the client, during the read of the client
operation or before returning and completing the operation. An example of the typical sequence for a
set operation is provided below:

<32 new auto-negotiating client connection
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_parse_cmd
32: Client using the ascii protocol
<32 set my_key 0 0 10
32: going from conn_parse_cmd to conn_nread
> NOT FOUND my_key
>32 STORED
32: going from conn_nread to conn_write
32: going from conn_write to conn_new_cmd
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_closing
<32 connection closed.

All of the verbosity levels in memcached are designed to be used during debugging or examination of
issues. The quantity of information generated, particularly when using -vvv, is significant, particularly
on a busy server. Also be aware that writing the error information out, especially to disk, may negate
some of the performance gains you achieve by using memcached. Therefore, use in production or
deployment environments is not recommended.

16.3.3 Developing a memcached Application

A number of language interfaces let applications store and retrieve information with memcached
servers. You can write memcached applications in popular languages such as Perl, PHP, Python,
Ruby, C, and Java.

Data stored into a memcached server is referred to by a single string (the key), with storage into the
cache and retrieval from the cache using the key as the reference. The cache therefore operates
like a large associative array or hash table. It is not possible to structure or otherwise organize the
information stored in the cache. To emulate database notions such as multiple tables or composite
key values, you must encode the extra information into the strings used as keys. For example, to store
or look up the address corresponding to a specific latitude and longitude, you might turn those two
numeric values into a single comma-separated string to use as a key.

Developing a memcached Application

2359

16.3.3.1 Basic memcached Operations

The interface to memcached supports the following methods for storing and retrieving information in the
cache, and these are consistent across all the different APIs, although the language specific mechanics
might be different:

• get(key): Retrieves information from the cache. Returns the value associated with the key if the
specified key exists. Returns NULL, nil, undefined, or the closest equivalent in the corresponding
language, if the specified key does not exist.

• set(key, value [, expiry]): Sets the item associated with a key in the cache to the specified
value. This either updates an existing item if the key already exists, or adds a new key/value pair if
the key doesn't exist. If the expiry time is specified, then the item expires (and is deleted) when the
expiry time is reached. The time is specified in seconds, and is taken as a relative time if the value is
less than 30 days (30*24*60*60), or an absolute time (epoch) if larger than this value.

• add(key, value [, expiry]): Adds the key and associated value to the cache, if the specified
key does not already exist.

• replace(key, value [, expiry]): Replaces the item associated with the specified key, only
if the key already exists. The new value is given by the value parameter.

• delete(key [, time]): Deletes the key and its associated item from the cache. If you supply a
time, then adding another item with the specified key is blocked for the specified period.

• incr(key , value): Increments the item associated with the key by the specified value.

• decr(key , value): Decrements the item associated with the key by the specified value.

• flush_all: Invalidates (or expires) all the current items in the cache. Technically they still exist
(they are not deleted), but they are silently destroyed the next time you try to access them.

In all implementations, most or all of these functions are duplicated through the corresponding native
language interface.

When practical, use memcached to store full items, rather than caching a single column value from the
database. For example, when displaying a record about an object (invoice, user history, or blog post),
load all the data for the associated entry from the database, and compile it into the internal structure
that would normally be required by the application. Save the complete object in the cache.

Complex data structures cannot be stored directly. Most interfaces serialize the data for you, that is,
put it in a textual form that can reconstruct the original pointers and nesting. Perl uses Storable, PHP
uses serialize, Python uses cPickle (or Pickle) and Java uses the Serializable interface.
In most cases, the serialization interface used is customizable. To share data stored in memcached
instances between different language interfaces, consider using a common serialization solution such
as JSON (Javascript Object Notation).

16.3.3.2 Using memcached as a MySQL Caching Layer

When using memcached to cache MySQL data, your application must retrieve data from the database
and load the appropriate key-value pairs into the cache. Then, subsequent lookups can be done
directly from the cache.

Because MySQL has its own in-memory caching mechanisms for queried data, such as the InnoDB
buffer pool and the MySQL query cache, look for opportunities beyond loading individual column values
or rows into the cache. Prefer to cache composite values, such as those retrieved from multiple tables
through a join query, or result sets assembled from multiple rows.

Caution

Limit the information in the cache to non-sensitive data, because there is no
security required to access or update the information within a memcached

Developing a memcached Application

2360

instance. Anybody with access to the machine has the ability to read, view
and potentially update the information. To keep the data secure, encrypt the
information before caching it. To restrict the users capable of connecting to the
server, either disable network access, or use IPTables or similar techniques to
restrict access to the memcached ports to a select set of hosts.

You can introduce memcached to an existing application, even if caching was not part of the original
design. In many languages and environments the changes to the application will be just a few lines,
first to attempt to read from the cache when loading data, fall back to the old method if the information
is not cached, and to update the cache with information once the data has been read.

The general sequence for using memcached in any language as a caching solution for MySQL is as
follows:

1. Request the item from the cache.

2. If the item exists, use the item data.

3. If the item does not exist, load the data from MySQL, and store the value into the cache. This
means the value is available to the next client that requests it from the cache.

For a flow diagram of this sequence, see Figure 16.6, “Typical memcached Application Flowchart”.

Figure 16.6 Typical memcached Application Flowchart

Adapting Database Best Practices to memcached Applications

The most direct way to cache MySQL data is to use a 2-column table, where the first column is a
primary key. Because of the uniqueness requirements for memcached keys, make sure your database
schema makes appropriate use of primary keys and unique constraints.

If you combine multiple column values into a single memcached item value, choose data types to
make it easy to parse the value back into its components, for example by using a separator character
between numeric values.

The queries that map most easily to memcached lookups are those with a single WHERE clause, using
an = or IN operator. For complicated WHERE clauses, or those using operators such as <, >, BETWEEN,
or LIKE, memcached does not provide a simple or efficient way to scan through or filter the keys

Developing a memcached Application

2361

or associated values, so typically you perform those operations as SQL queries on the underlying
database.

16.3.3.3 Using libmemcached with C and C++

The libmemcached library provides both C and C++ interfaces to memcached and is also the
basis for a number of different additional API implementations, including Perl, Python and Ruby.
Understanding the core libmemcached functions can help when using these other interfaces.

The C library is the most comprehensive interface library for memcached and provides functions and
operational systems not always exposed in interfaces not based on the libmemcached library.

The different functions can be divided up according to their basic operation. In addition to functions
that interface to the core API, a number of utility functions provide extended functionality, such as
appending and prepending data.

To build and install libmemcached, download the libmemcached package, run configure, and
then build and install:

shell> tar xjf libmemcached-0.21.tar.gz
shell> cd libmemcached-0.21
shell> ./configure
shell> make
shell> make install

On many Linux operating systems, you can install the corresponding libmemcached package through
the usual yum, apt-get, or similar commands.

To build an application that uses the library, first set the list of servers. Either directly manipulate the
servers configured within the main memcached_st structure, or separately populate a list of servers,
and then add this list to the memcached_st structure. The latter method is used in the following
example. Once the server list has been set, you can call the functions to store or retrieve data. A
simple application for setting a preset value to localhost is provided here:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
 memcached_server_st *servers = NULL;
 memcached_st *memc;
 memcached_return rc;
 char *key= "keystring";
 char *value= "keyvalue";

 memcached_server_st *memcached_servers_parse (char *server_strings);
 memc= memcached_create(NULL);

 servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
 rc= memcached_server_push(memc, servers);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Added server successfully\n");
 else
 fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

 rc= memcached_set(memc, key, strlen(key), value, strlen(value), (time_t)0, (uint32_t)0);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Key stored successfully\n");
 else
 fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));

Developing a memcached Application

2362

 return 0;
}

To test the success of an operation, use the return value, or populated result code, for a given function.
The value is always set to MEMCACHED_SUCCESS if the operation succeeded. In the event of a failure,
use the memcached_strerror() function to translate the result code into a printable string.

To build the application, specify the memcached library:

shell> gcc -o memc_basic memc_basic.c -lmemcached

Running the above sample application, after starting a memcached server, should return a success
message:

shell> memc_basic
Added server successfully
Key stored successfully

libmemcached Base Functions

The base libmemcached functions let you create, destroy and clone the main memcached_st
structure that is used to interface with the memcached servers. The main functions are defined below:

memcached_st *memcached_create (memcached_st *ptr);

Creates a new memcached_st structure for use with the other libmemcached API functions. You
can supply an existing, static, memcached_st structure, or NULL to have a new structured allocated.
Returns a pointer to the created structure, or NULL on failure.

void memcached_free (memcached_st *ptr);

Frees the structure and memory allocated to a previously created memcached_st structure.

memcached_st *memcached_clone(memcached_st *clone, memcached_st *source);

Clones an existing memcached structure from the specified source, copying the defaults and list of
servers defined in the structure.

libmemcached Server Functions

The libmemcached API uses a list of servers, stored within the memcached_server_st structure,
to act as the list of servers used by the rest of the functions. To use memcached, you first create the
server list, and then apply the list of servers to a valid libmemcached object.

Because the list of servers, and the list of servers within an active libmemcached object can be
manipulated separately, you can update and manage server lists while an active libmemcached
interface is running.

The functions for manipulating the list of servers within a memcached_st structure are:

memcached_return
 memcached_server_add (memcached_st *ptr,
 char *hostname,
 unsigned int port);

Adds a server, using the given hostname and port into the memcached_st structure given in ptr.

memcached_return

Developing a memcached Application

2363

 memcached_server_add_unix_socket (memcached_st *ptr,
 char *socket);

Adds a Unix socket to the list of servers configured in the memcached_st structure.

unsigned int memcached_server_count (memcached_st *ptr);

Returns a count of the number of configured servers within the memcached_st structure.

memcached_server_st *
 memcached_server_list (memcached_st *ptr);

Returns an array of all the defined hosts within a memcached_st structure.

memcached_return
 memcached_server_push (memcached_st *ptr,
 memcached_server_st *list);

Pushes an existing list of servers onto list of servers configured for a current memcached_st structure.
This adds servers to the end of the existing list, and duplicates are not checked.

The memcached_server_st structure can be used to create a list of memcached servers which can
then be applied individually to memcached_st structures.

memcached_server_st *
 memcached_server_list_append (memcached_server_st *ptr,
 char *hostname,
 unsigned int port,
 memcached_return *error);

Adds a server, with hostname and port, to the server list in ptr. The result code is handled by the
error argument, which should point to an existing memcached_return variable. The function returns
a pointer to the returned list.

unsigned int memcached_server_list_count (memcached_server_st *ptr);

Returns the number of the servers in the server list.

void memcached_server_list_free (memcached_server_st *ptr);

Frees the memory associated with a server list.

memcached_server_st *memcached_servers_parse (char *server_strings);

Parses a string containing a list of servers, where individual servers are separated by a comma, space,
or both, and where individual servers are of the form server[:port]. The return value is a server list
structure.

libmemcached Set Functions

The set-related functions within libmemcached provide the same functionality as the core functions
supported by the memcached protocol. The full definition for the different functions is the same for
all the base functions (add, replace, prepend, append). For example, the function definition for
memcached_set() is:

memcached_return
 memcached_set (memcached_st *ptr,
 const char *key,

Developing a memcached Application

2364

 size_t key_length,
 const char *value,
 size_t value_length,
 time_t expiration,
 uint32_t flags);

The ptr is the memcached_st structure. The key and key_length define the key name and length,
and value and value_length the corresponding value and length. You can also set the expiration
and optional flags. For more information, see Controlling libmemcached Behaviors.

This table outlines the remainder of the set-related libmemcached functions and the equivalent core
functions supported by the memcached protocol.

libmemcached Function Equivalent Core Function

memcached_set(memc, key, key_length,
value, value_length, expiration,
flags)

Generic set() operation.

memcached_add(memc, key, key_length,
value, value_length, expiration,
flags)

Generic add() function.

memcached_replace(memc, key,
key_length, value, value_length,
expiration, flags)

Generic replace().

memcached_prepend(memc, key,
key_length, value, value_length,
expiration, flags)

Prepends the specified value before the current
value of the specified key.

memcached_append(memc, key,
key_length, value, value_length,
expiration, flags)

Appends the specified value after the current
value of the specified key.

memcached_cas(memc, key, key_length,
value, value_length, expiration,
flags, cas)

Overwrites the data for a given key as long as the
corresponding cas value is still the same within
the server.

memcached_set_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the generic set(), but has the option
of an additional master key that can be used to
identify an individual server.

memcached_add_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the generic add(), but has the option
of an additional master key that can be used to
identify an individual server.

memcached_replace_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the generic replace(), but has the
option of an additional master key that can be
used to identify an individual server.

memcached_prepend_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_prepend(), but has
the option of an additional master key that can be
used to identify an individual server.

memcached_append_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_append(), but has
the option of an additional master key that can be
used to identify an individual server.

memcached_cas_by_key(memc,
master_key, master_key_length, key,

Similar to the memcached_cas(), but has the
option of an additional master key that can be
used to identify an individual server.

Developing a memcached Application

2365

libmemcached Function Equivalent Core Function
key_length, value, value_length,
expiration, flags)

The by_key methods add two further arguments that define the master key, to be used and applied
during the hashing stage for selecting the servers. You can see this in the following definition:

memcached_return
 memcached_set_by_key(memcached_st *ptr,
 const char *master_key,
 size_t master_key_length,
 const char *key,
 size_t key_length,
 const char *value,
 size_t value_length,
 time_t expiration,
 uint32_t flags);

All the functions return a value of type memcached_return, which you can compare against the
MEMCACHED_SUCCESS constant.

libmemcached Get Functions

The libmemcached functions provide both direct access to a single item, and a multiple-key request
mechanism that provides much faster responses when fetching a large number of keys simultaneously.

The main get-style function, which is equivalent to the generic get() is memcached_get(). This
function returns a string pointer, pointing to the value associated with the specified key.

char *memcached_get (memcached_st *ptr,
 const char *key, size_t key_length,
 size_t *value_length,
 uint32_t *flags,
 memcached_return *error);

A multi-key get, memcached_mget(), is also available. Using a multiple key get operation is much
quicker to do in one block than retrieving the key values with individual calls to memcached_get(). To
start the multi-key get, call memcached_mget():

memcached_return
 memcached_mget (memcached_st *ptr,
 char **keys, size_t *key_length,
 unsigned int number_of_keys);

The return value is the success of the operation. The keys parameter should be an array of strings
containing the keys, and key_length an array containing the length of each corresponding key.
number_of_keys is the number of keys supplied in the array.

To fetch the individual values, use memcached_fetch() to get each corresponding value.

char *memcached_fetch (memcached_st *ptr,
 const char *key, size_t *key_length,
 size_t *value_length,
 uint32_t *flags,
 memcached_return *error);

The function returns the key value, with the key, key_length and value_length parameters being
populated with the corresponding key and length information. The function returns NULL when there
are no more values to be returned. A full example, including the populating of the key data and the
return of the information is provided here.

Developing a memcached Application

2366

#include <stdio.h>
#include <sstring.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
 memcached_server_st *servers = NULL;
 memcached_st *memc;
 memcached_return rc;
 char *keys[]= {"huey", "dewey", "louie"};
 size_t key_length[3];
 char *values[]= {"red", "blue", "green"};
 size_t value_length[3];
 unsigned int x;
 uint32_t flags;

 char return_key[MEMCACHED_MAX_KEY];
 size_t return_key_length;
 char *return_value;
 size_t return_value_length;

 memc= memcached_create(NULL);

 servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
 rc= memcached_server_push(memc, servers);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Added server successfully\n");
 else
 fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

 for(x= 0; x < 3; x++)
 {
 key_length[x] = strlen(keys[x]);
 value_length[x] = strlen(values[x]);

 rc= memcached_set(memc, keys[x], key_length[x], values[x],
 value_length[x], (time_t)0, (uint32_t)0);
 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Key %s stored successfully\n",keys[x]);
 else
 fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));
 }

 rc= memcached_mget(memc, keys, key_length, 3);

 if (rc == MEMCACHED_SUCCESS)
 {
 while ((return_value= memcached_fetch(memc, return_key, &return_key_length,
 &return_value_length, &flags, &rc)) != NULL)
 {
 if (rc == MEMCACHED_SUCCESS)
 {
 fprintf(stderr,"Key %s returned %s\n",return_key, return_value);
 }
 }
 }

 return 0;
}

Running the above application produces the following output:

shell> memc_multi_fetch
Added server successfully
Key huey stored successfully
Key dewey stored successfully
Key louie stored successfully
Key huey returned red

Developing a memcached Application

2367

Key dewey returned blue
Key louie returned green

Controlling libmemcached Behaviors

The behavior of libmemcached can be modified by setting one or more behavior flags. These can
either be set globally, or they can be applied during the call to individual functions. Some behaviors
also accept an additional setting, such as the hashing mechanism used when selecting servers.

To set global behaviors:

memcached_return
 memcached_behavior_set (memcached_st *ptr,
 memcached_behavior flag,
 uint64_t data);

To get the current behavior setting:

uint64_t
 memcached_behavior_get (memcached_st *ptr,
 memcached_behavior flag);

The following table describes libmemcached behavior flags.

Behavior Description

MEMCACHED_BEHAVIOR_NO_BLOCK Caused libmemcached to use asynchronous I/O.

MEMCACHED_BEHAVIOR_TCP_NODELAY Turns on no-delay for network sockets.

MEMCACHED_BEHAVIOR_HASH Without a value, sets the default hashing algorithm
for keys to use MD5. Other valid values include
MEMCACHED_HASH_DEFAULT, MEMCACHED_HASH_MD5,
MEMCACHED_HASH_CRC, MEMCACHED_HASH_FNV1_64,
MEMCACHED_HASH_FNV1A_64,
MEMCACHED_HASH_FNV1_32, and
MEMCACHED_HASH_FNV1A_32.

MEMCACHED_BEHAVIOR_DISTRIBUTIONChanges the method of selecting the server
used to store a given value. The default method
is MEMCACHED_DISTRIBUTION_MODULA.
You can enable consistent hashing by setting
MEMCACHED_DISTRIBUTION_CONSISTENT.
MEMCACHED_DISTRIBUTION_CONSISTENT
is an alias for the value
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA.

MEMCACHED_BEHAVIOR_CACHE_LOOKUPSCache the lookups made to the DNS service. This can
improve the performance if you are using names instead of
IP addresses for individual hosts.

MEMCACHED_BEHAVIOR_SUPPORT_CAS Support CAS operations. By default, this is disabled because
it imposes a performance penalty.

MEMCACHED_BEHAVIOR_KETAMA Sets the default distribution to
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA and
the hash to MEMCACHED_HASH_MD5.

MEMCACHED_BEHAVIOR_POLL_TIMEOUTModify the timeout value used by poll(). Supply a signed
int pointer for the timeout value.

MEMCACHED_BEHAVIOR_BUFFER_REQUESTSBuffers IO requests instead of them being sent. A get
operation, or closing the connection causes the data to be
flushed.

MEMCACHED_BEHAVIOR_VERIFY_KEY Forces libmemcached to verify that a specified key is valid.

Developing a memcached Application

2368

Behavior Description

MEMCACHED_BEHAVIOR_SORT_HOSTS If set, hosts added to the list of configured hosts for a
memcached_st structure are placed into the host list in
sorted order. This breaks consistent hashing if that behavior
has been enabled.

MEMCACHED_BEHAVIOR_CONNECT_TIMEOUTIn nonblocking mode this changes the value of the timeout
during socket connection.

libmemcached Command-Line Utilities

In addition to the main C library interface, libmemcached also includes a number of command-line
utilities that can be useful when working with and debugging memcached applications.

All of the command-line tools accept a number of arguments, the most critical of which is servers,
which specifies the list of servers to connect to when returning information.

The main tools are:

• memcat: Display the value for each ID given on the command line:

shell> memcat --servers=localhost hwkey
Hello world

• memcp: Copy the contents of a file into the cache, using the file name as the key:

shell> echo "Hello World" > hwkey
shell> memcp --servers=localhost hwkey
shell> memcat --servers=localhost hwkey
Hello world

• memrm: Remove an item from the cache:

shell> memcat --servers=localhost hwkey
Hello world
shell> memrm --servers=localhost hwkey
shell> memcat --servers=localhost hwkey

• memslap: Test the load on one or more memcached servers, simulating get/set and multiple client
operations. For example, you can simulate the load of 100 clients performing get operations:

shell> memslap --servers=localhost --concurrency=100 --flush --test=get
memslap --servers=localhost --concurrency=100 --flush --test=get Threads connecting to servers 100
 Took 13.571 seconds to read data

• memflush: Flush (empty) the contents of the memcached cache.

shell> memflush --servers=localhost

16.3.3.4 Using MySQL and memcached with Perl

The Cache::Memcached module provides a native interface to the Memcache protocol, and provides
support for the core functions offered by memcached. Install the module using your operating system's
package management system, or using CPAN:

root-shell> perl -MCPAN -e 'install Cache::Memcached'

To use memcached from Perl through the Cache::Memcached module, first create a new
Cache::Memcached object that defines the list of servers and other parameters for the connection.

Developing a memcached Application

2369

The only argument is a hash containing the options for the cache interface. For example, to create a
new instance that uses three memcached servers:

use Cache::Memcached;

my $cache = new Cache::Memcached {
 'servers' => [
 '192.168.0.100:11211',
 '192.168.0.101:11211',
 '192.168.0.102:11211',
],
};

Note

When using the Cache::Memcached interface with multiple servers, the API
automatically performs certain operations across all the servers in the group.
For example, getting statistical information through Cache::Memcached
returns a hash that contains data on a host-by-host basis, as well as
generalized statistics for all the servers in the group.

You can set additional properties on the cache object instance when it is created by specifying the
option as part of the option hash. Alternatively, you can use a corresponding method on the instance:

• servers or method set_servers(): Specifies the list of the servers to be used. The servers list
should be a reference to an array of servers, with each element as the address and port number
combination (separated by a colon). You can also specify a local connection through a Unix socket
(for example /tmp/sock/memcached). To specify the server with a weight (indicating how much
more frequently the server should be used during hashing), specify an array reference with the
memcached server instance and a weight number. Higher numbers give higher priority.

• compress_threshold or method set_compress_threshold(): Specifies the threshold when
values are compressed. Values larger than the specified number are automatically compressed
(using zlib) during storage and retrieval.

• no_rehash or method set_norehash(): Disables finding a new server if the original choice is
unavailable.

• readonly or method set_readonly(): Disables writes to the memcached servers.

Once the Cache::Memcached object instance has been configured, you can use the set() and
get() methods to store and retrieve information from the memcached servers. Objects stored in the
cache are automatically serialized and deserialized using the Storable module.

The Cache::Memcached interface supports the following methods for storing/retrieving data, and
relate to the generic methods as shown in the table.

Cache::Memcached Function Equivalent Generic Method

get() Generic get().

get_multi(keys) Gets multiple keys from memcache using just
one query. Returns a hash reference of key/value
pairs.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

Developing a memcached Application

2370

Cache::Memcached Function Equivalent Generic Method

decr() Generic decr().

Below is a complete example for using memcached with Perl and the Cache::Memcached module:

#!/usr/bin/perl

use Cache::Memcached;
use DBI;
use Data::Dumper;

Configure the memcached server

my $cache = new Cache::Memcached {
 'servers' => [
 'localhost:11211',
],
 };

Get the film name from the command line
memcached keys must not contain spaces, so create
a key name by replacing spaces with underscores

my $filmname = shift or die "Must specify the film name\n";
my $filmkey = $filmname;
$filmkey =~ s/ /_/;

Load the data from the cache

my $filmdata = $cache->get($filmkey);

If the data wasn't in the cache, then we load it from the database

if (!defined($filmdata))
{
 $filmdata = load_filmdata($filmname);

 if (defined($filmdata))
 {

Set the data into the cache, using the key

 if ($cache->set($filmkey,$filmdata))
 {
 print STDERR "Film data loaded from database and cached\n";
 }
 else
 {
 print STDERR "Couldn't store to cache\n";
 }
 }
 else
 {
 die "Couldn't find $filmname\n";
 }
}
else
{
 print STDERR "Film data loaded from Memcached\n";
}

sub load_filmdata
{
 my ($filmname) = @_;

 my $dsn = "DBI:mysql:database=sakila;host=localhost;port=3306";

 $dbh = DBI->connect($dsn, 'sakila','password');

 my ($filmbase) = $dbh->selectrow_hashref(sprintf('select * from film where title = %s',

Developing a memcached Application

2371

 $dbh->quote($filmname)));

 if (!defined($filmname))
 {
 return (undef);
 }

 $filmbase->{stars} =
 $dbh->selectall_arrayref(sprintf('select concat(first_name," ",last_name) ' .
 'from film_actor left join (actor) ' .
 'on (film_actor.actor_id = actor.actor_id) ' .
 ' where film_id=%s',
 $dbh->quote($filmbase->{film_id})));

 return($filmbase);
}

The example uses the Sakila database, obtaining film data from the database and writing a composite
record of the film and actors to memcached. When calling it for a film does not exist, you get this result:

shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from database and cached

When accessing a film that has already been added to the cache:

shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from Memcached

16.3.3.5 Using MySQL and memcached with Python

The Python memcache module interfaces to memcached servers, and is written in pure Python (that is,
without using one of the C APIs). You can download and install a copy from Python Memcached.

To install, download the package and then run the Python installer:

python setup.py install
running install
running bdist_egg
running egg_info
creating python_memcached.egg-info
...
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing python_memcached-1.43-py2.4.egg
creating /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Extracting python_memcached-1.43-py2.4.egg to /usr/lib64/python2.4/site-packages
Adding python-memcached 1.43 to easy-install.pth file

Installed /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Processing dependencies for python-memcached==1.43
Finished processing dependencies for python-memcached==1.43

Once installed, the memcache module provides a class-based interface to your memcached servers.
When you store Python data structures as memcached items, they are automatically serialized (turned
into string values) using the Python cPickle or pickle modules.

To create a new memcache interface, import the memcache module and create a new instance of the
memcache.Client class. For example, if the memcached daemon is running on localhost using the
default port:

import memcache
memc = memcache.Client(['127.0.0.1:11211'])

The first argument is an array of strings containing the server and port number for each memcached
instance to use. To enable debugging, set the optional debug parameter to 1.

http://www.tummy.com/Community/software/python-memcached/

Developing a memcached Application

2372

By default, the hashing mechanism used to divide the items among multiple servers is crc32. To
change the function used, set the value of memcache.serverHashFunction to the alternate function
to use. For example:

from zlib import adler32
memcache.serverHashFunction = adler32

Once you have defined the servers to use within the memcache instance, the core functions provide
the same functionality as in the generic interface specification. The following table provides a summary
of the supported functions:

Python memcache Function Equivalent Generic Function

get() Generic get().

get_multi(keys) Gets multiple values from the supplied array of
keys. Returns a hash reference of key/value
pairs.

set() Generic set().

set_multi(dict [, expiry [,
key_prefix]])

Sets multiple key/value pairs from the supplied
dict.

add() Generic add().

replace() Generic replace().

prepend(key, value [, expiry]) Prepends the supplied value to the value of the
existing key.

append(key, value [, expiry[) Appends the supplied value to the value of the
existing key.

delete() Generic delete().

delete_multi(keys [, expiry [,
key_prefix]])

Deletes all the keys from the hash matching each
string in the array keys.

incr() Generic incr().

decr() Generic decr().

Note

Within the Python memcache module, all the *_multi()functions support an
optional key_prefix parameter. If supplied, then the string is used as a prefix
to all key lookups. For example, if you call:

memc.get_multi(['a','b'], key_prefix='users:')

The function retrieves the keys users:a and users:b from the servers.

Here is an example showing the storage and retrieval of information to a memcache instance, loading
the raw data from MySQL:

import sys
import MySQLdb
import memcache

memc = memcache.Client(['127.0.0.1:11211'], debug=1);

try:
 conn = MySQLdb.connect (host = "localhost",
 user = "sakila",
 passwd = "password",
 db = "sakila")
except MySQLdb.Error, e:

Developing a memcached Application

2373

 print "Error %d: %s" % (e.args[0], e.args[1])
 sys.exit (1)

popularfilms = memc.get('top5films')

if not popularfilms:
 cursor = conn.cursor()
 cursor.execute('select film_id,title from film order by rental_rate desc limit 5')
 rows = cursor.fetchall()
 memc.set('top5films',rows,60)
 print "Updated memcached with MySQL data"
else:
 print "Loaded data from memcached"
 for row in popularfilms:
 print "%s, %s" % (row[0], row[1])

When executed for the first time, the data is loaded from the MySQL database and stored to the
memcached server.

shell> python memc_python.py
Updated memcached with MySQL data

Because the data is automatically serialized using cPickle/pickle, when you load the data back
from memcached, you can use the object directly. In the example above, the information stored to
memcached is in the form of rows from a Python DB cursor. When accessing the information (within
the 60 second expiry time), the data is loaded from memcached and dumped:

shell> python memc_python.py
Loaded data from memcached
2, ACE GOLDFINGER
7, AIRPLANE SIERRA
8, AIRPORT POLLOCK
10, ALADDIN CALENDAR
13, ALI FOREVER

The serialization and deserialization happens automatically. Because serialization of Python data may
be incompatible with other interfaces and languages, you can change the serialization module used
during initialization. For example, you might use JSON format when you store complex data structures
using a script written in one language, and access them in a script written in a different language.

16.3.3.6 Using MySQL and memcached with PHP

PHP provides support for the Memcache functions through a PECL extension. To enable the PHP
memcache extensions, build PHP using the --enable-memcache option to configure when
building from source.

If you are installing on a Red Hat-based server, you can install the php-pecl-memcache RPM:

root-shell> yum --install php-pecl-memcache

On Debian-based distributions, use the php-memcache package.

To set global runtime configuration options, specify the configuration option values within your
php.ini file. The following table provides the name, default value, and a description for each global
runtime configuration option.

Configuration option Default Description

memcache.allow_failover 1 Specifies whether another server in the list
should be queried if the first server selected
fails.

memcache.max_failover_attempts20 Specifies the number of servers to try before
returning a failure.

Developing a memcached Application

2374

Configuration option Default Description

memcache.chunk_size 8192 Defines the size of network chunks used to
exchange data with the memcached server.

memcache.default_port 11211 Defines the default port to use when
communicating with the memcached servers.

memcache.hash_strategy standard Specifies which hash strategy to use. Set to
consistent to enable servers to be added
or removed from the pool without causing the
keys to be remapped to other servers. When
set to standard, an older (modula) strategy
is used that potentially uses different servers
for storage.

memcache.hash_function crc32 Specifies which function to use when
mapping keys to servers. crc32 uses the
standard CRC32 hash. fnv uses the FNV-1a
hashing algorithm.

To create a connection to a memcached server, create a new Memcache object and then specify the
connection options. For example:

<?php

$cache = new Memcache;
$cache->connect('localhost',11211);
?>

This opens an immediate connection to the specified server.

To use multiple memcached servers, you need to add servers to the memcache object using
addServer():

bool Memcache::addServer (string $host [, int $port [, bool $persistent
 [, int $weight [, int $timeout [, int $retry_interval
 [, bool $status [, callback $failure_callback
]]]]]]])

The server management mechanism within the php-memcache module is a critical part of the interface
as it controls the main interface to the memcached instances and how the different instances are
selected through the hashing mechanism.

To create a simple connection to two memcached instances:

<?php

$cache = new Memcache;
$cache->addServer('192.168.0.100',11211);
$cache->addServer('192.168.0.101',11211);
?>

In this scenario, the instance connection is not explicitly opened, but only opened when you try to store
or retrieve a value. To enable persistent connections to memcached instances, set the $persistent
argument to true. This is the default setting, and causes the connections to remain open.

To help control the distribution of keys to different instances, use the global
memcache.hash_strategy setting. This sets the hashing mechanism used to select. You can also
add another weight to each server, which effectively increases the number of times the instance entry
appears in the instance list, therefore increasing the likelihood of the instance being chosen over other
instances. To set the weight, set the value of the $weight argument to more than one.

Developing a memcached Application

2375

The functions for setting and retrieving information are identical to the generic functional interface
offered by memcached, as shown in this table:

PECL memcache Function Generic Function

get() Generic get().

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

increment() Generic incr().

decrement() Generic decr().

A full example of the PECL memcache interface is provided below. The code loads film data from the
Sakila database when the user provides a film name. The data stored into the memcached instance is
recorded as a mysqli result row, and the API automatically serializes the information for you.

<?php

$memc = new Memcache;
$memc->addServer('localhost','11211');

if(empty($_POST['film'])) {
?>
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Simple Memcache Lookup</title>
 </head>
 <body>
 <form method="post">
 <p>Film: <input type="text" size="20" name="film"></p>
 <input type="submit">
 </form>
 <hr/>
<?php

} else {

 echo "Loading data...\n";

 $film = htmlspecialchars($_POST['film'], ENT_QUOTES, 'UTF-8');
 $mfilms = $memc->get($film);

 if ($mfilms) {

 printf("<p>Film data for %s loaded from memcache</p>", $mfilms['title']);

 foreach (array_keys($mfilms) as $key) {
 printf("<p>%s: %s</p>", $key, $mfilms[$key]);
 }

 } else {

 $mysqli = mysqli('localhost','sakila','password','sakila');

 if (mysqli_connect_error()) {
 sprintf("Database error: (%d) %s", mysqli_connect_errno(), mysqli_connect_error());
 exit;
 }

 $sql = sprintf('SELECT * FROM film WHERE title="%s"', $mysqli->real_escape_string($film));

 $result = $mysqli->query($sql);

Developing a memcached Application

2376

 if (!$result) {
 sprintf("Database error: (%d) %s", $mysqli->errno, $mysqli->error);
 exit;
 }

 $row = $result->fetch_assoc();

 $memc->set($row['title'], $row);

 printf("<p>Loaded (%s) from MySQL</p>", htmlspecialchars($row['title'], ENT_QUOTES, 'UTF-8');
 }
}
?>
 </body>
</html>

With PHP, the connections to the memcached instances are kept open as long as the PHP and
associated Apache instance remain running. When adding or removing servers from the list in a
running instance (for example, when starting another script that mentions additional servers), the
connections are shared, but the script only selects among the instances explicitly configured within the
script.

To ensure that changes to the server list within a script do not cause problems, make sure to use the
consistent hashing mechanism.

16.3.3.7 Using MySQL and memcached with Ruby

There are a number of different modules for interfacing to memcached within Ruby. The Ruby-
MemCache client library provides a native interface to memcached that does not require any external
libraries, such as libmemcached. You can obtain the installer package from http://www.deveiate.org/
projects/RMemCache.

To install, extract the package and then run install.rb:

shell> install.rb

If you have RubyGems, you can install the Ruby-MemCache gem:

shell> gem install Ruby-MemCache
Bulk updating Gem source index for: http://gems.rubyforge.org
Install required dependency io-reactor? [Yn] y
Successfully installed Ruby-MemCache-0.0.1
Successfully installed io-reactor-0.05
Installing ri documentation for io-reactor-0.05...
Installing RDoc documentation for io-reactor-0.05...

To use a memcached instance from within Ruby, create a new instance of the MemCache object.

require 'memcache'
memc = MemCache::new '192.168.0.100:11211'

You can add a weight to each server to increase the likelihood of the server being selected during
hashing by appending the weight count to the server host name/port string:

require 'memcache'
memc = MemCache::new '192.168.0.100:11211:3'

To add servers to an existing list, you can append them directly to the MemCache object:

memc += ["192.168.0.101:11211"]

http://www.deveiate.org/projects/RMemCache
http://www.deveiate.org/projects/RMemCache

Developing a memcached Application

2377

To set data into the cache, you can just assign a value to a key within the new cache object, which
works just like a standard Ruby hash object:

memc["key"] = "value"

Or to retrieve the value:

print memc["key"]

For more explicit actions, you can use the method interface, which mimics the main memcached API
functions, as summarized in the following table:

Ruby MemCache Method Equivalent memcached API Functions

get() Generic get().

get_hash(keys) Get the values of multiple keys, returning the
information as a hash of the keys and their values.

set() Generic set().

set_many(pairs) Set the values of the keys and values in the hash
pairs.

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

16.3.3.8 Using MySQL and memcached with Java

The com.danga.MemCached class within Java provides a native interface to memcached instances.
You can obtain the client from https://github.com/gwhalin/Memcached-Java-Client/downloads. The
Java class uses hashes that are compatible with libmemcached, so you can mix and match Java and
libmemcached applications accessing the same memcached instances. The serialization between
Java and other interfaces are not compatible. If this is a problem, use JSON or a similar nonbinary
serialization format.

On most systems, you can download the package and use the jar directly.

To use the com.danga.MemCached interface, you create a MemCachedClient instance and then
configure the list of servers by configuring the SockIOPool. Through the pool specification you set up
the server list, weighting, and the connection parameters to optimized the connections between your
client and the memcached instances that you configure.

Generally, you can configure the memcached interface once within a single class, then use this
interface throughout the rest of your application.

For example, to create a basic interface, first configure the MemCachedClient and base
SockIOPool settings:

public class MyClass {

 protected static MemCachedClient mcc = new MemCachedClient();

 static {

 String[] servers =
 {
 "localhost:11211",
 };

https://github.com/gwhalin/Memcached-Java-Client/downloads

Developing a memcached Application

2378

 Integer[] weights = { 1 };

 SockIOPool pool = SockIOPool.getInstance();

 pool.setServers(servers);
 pool.setWeights(weights);

In the above sample, the list of servers is configured by creating an array of the memcached instances
to use. You can then configure individual weights for each server.

The remainder of the properties for the connection are optional, but you can set the connection
numbers (initial connections, minimum connections, maximum connections, and the idle timeout) by
setting the pool parameters:

pool.setInitConn(5);
pool.setMinConn(5);
pool.setMaxConn(250);
pool.setMaxIdle(1000 * 60 * 60 * 6

Once the parameters have been configured, initialize the connection pool:

pool.initialize();

The pool, and the connection to your memcached instances should now be ready to use.

To set the hashing algorithm used to select the server used when storing a given key, use
pool.setHashingAlg():

pool.setHashingAlg(SockIOPool.NEW_COMPAT_HASH);

Valid values are NEW_COMPAT_HASH, OLD_COMPAT_HASH and NATIVE_HASH are also basic modula
hashing algorithms. For a consistent hashing algorithm, use CONSISTENT_HASH. These constants are
equivalent to the corresponding hash settings within libmemcached.

The following table outlines the Java com.danga.MemCached methods and the equivalent generic
methods in the memcached interface specification.

Java com.danga.MemCached Method Equivalent Generic Method

get() Generic get().

getMulti(keys) Get the values of multiple keys, returning
the information as Hash map using
java.lang.String for the keys and
java.lang.Object for the corresponding
values.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

16.3.3.9 Using the memcached TCP Text Protocol

Communicating with a memcached server can be achieved through either the TCP or UDP protocols.
When using the TCP protocol, you can use a simple text based interface for the exchange of
information.

Developing a memcached Application

2379

When communicating with memcached, you can connect to the server using the port configured for the
server. You can open a connection with the server without requiring authorization or login. As soon as
you have connected, you can start to send commands to the server. When you have finished, you can
terminate the connection without sending any specific disconnection command. Clients are encouraged
to keep their connections open to decrease latency and improve performance.

Data is sent to the memcached server in two forms:

• Text lines, which are used to send commands to the server, and receive responses from the server.

• Unstructured data, which is used to receive or send the value information for a given key. Data is
returned to the client in exactly the format it was provided.

Both text lines (commands and responses) and unstructured data are always terminated with the string
\r\n. Because the data being stored may contain this sequence, the length of the data (returned by
the client before the unstructured data is transmitted should be used to determine the end of the data.

Commands to the server are structured according to their operation:

• Storage commands: set, add, replace, append, prepend, cas

Storage commands to the server take the form:

command key [flags] [exptime] length [noreply]

Or when using compare and swap (cas):

cas key [flags] [exptime] length [casunique] [noreply]

Where:

• command: The command name.

• set: Store value against key

• add: Store this value against key if the key does not already exist

• replace: Store this value against key if the key already exists

• append: Append the supplied value to the end of the value for the specified key. The flags
and exptime arguments should not be used.

• prepend: Append value currently in the cache to the end of the supplied value for the specified
key. The flags and exptime arguments should not be used.

• cas: Set the specified key to the supplied value, only if the supplied casunique matches.
This is effectively the equivalent of change the information if nobody has updated it since I last
fetched it.

• key: The key. All data is stored using a the specific key. The key cannot contain control characters
or whitespace, and can be up to 250 characters in size.

• flags: The flags for the operation (as an integer). Flags in memcached are transparent. The
memcached server ignores the contents of the flags. They can be used by the client to indicate
any type of information. In memcached 1.2.0 and lower the value is a 16-bit integer value. In
memcached 1.2.1 and higher the value is a 32-bit integer.

• exptime: The expiry time, or zero for no expiry.

• length: The length of the supplied value block in bytes, excluding the terminating \r\n
characters.

Developing a memcached Application

2380

• casunique: A unique 64-bit value of an existing entry. This is used to compare against the
existing value. Use the value returned by the gets command when issuing cas updates.

• noreply: Tells the server not to reply to the command.

For example, to store the value abcdef into the key xyzkey, you would use:

set xyzkey 0 0 6\r\nabcdef\r\n

The return value from the server is one line, specifying the status or error information. For more
information, see Table 16.3, “memcached Protocol Responses”.

• Retrieval commands: get, gets

Retrieval commands take the form:

get key1 [key2 keyn]
gets key1 [key2 ... keyn]

You can supply multiple keys to the commands, with each requested key separated by whitespace.

The server responds with an information line of the form:

VALUE key flags bytes [casunique]

Where:

• key: The key name.

• flags: The value of the flag integer supplied to the memcached server when the value was
stored.

• bytes: The size (excluding the terminating \r\n character sequence) of the stored value.

• casunique: The unique 64-bit integer that identifies the item.

The information line is immediately followed by the value data block. For example:

get xyzkey\r\n
VALUE xyzkey 0 6\r\n
abcdef\r\n

If you have requested multiple keys, an information line and data block is returned for each key
found. If a requested key does not exist in the cache, no information is returned.

• Delete commands: delete

Deletion commands take the form:

delete key [time] [noreply]

Where:

• key: The key name.

• time: The time in seconds (or a specific Unix time) for which the client wishes the server to refuse
add or replace commands on this key. All add, replace, get, and gets commands fail during
this period. set operations succeed. After this period, the key is deleted permanently and all
commands are accepted.

Developing a memcached Application

2381

If not supplied, the value is assumed to be zero (delete immediately).

• noreply: Tells the server not to reply to the command.

Responses to the command are either DELETED to indicate that the key was successfully removed,
or NOT_FOUND to indicate that the specified key could not be found.

• Increment/Decrement: incr, decr

The increment and decrement commands change the value of a key within the server without
performing a separate get/set sequence. The operations assume that the currently stored value is a
64-bit integer. If the stored value is not a 64-bit integer, then the value is assumed to be zero before
the increment or decrement operation is applied.

Increment and decrement commands take the form:

incr key value [noreply]
decr key value [noreply]

Where:

• key: The key name.

• value: An integer to be used as the increment or decrement value.

• noreply: Tells the server not to reply to the command.

The response is:

• NOT_FOUND: The specified key could not be located.

• value: The new value associated with the specified key.

Values are assumed to be unsigned. For decr operations, the value is never decremented below 0.
For incr operations, the value wraps around the 64-bit maximum.

• Statistics commands: stats

The stats command provides detailed statistical information about the current status of the
memcached instance and the data it is storing.

Statistics commands take the form:

STAT [name] [value]

Where:

• name: The optional name of the statistics to return. If not specified, the general statistics are
returned.

• value: A specific value to be used when performing certain statistics operations.

The return value is a list of statistics data, formatted as follows:

STAT name value

The statistics are terminated with a single line, END.

For more information, see Section 16.3.4, “Getting memcached Statistics”.

Developing a memcached Application

2382

For reference, a list of the different commands supported and their formats is provided below.

Table 16.2 memcached Command Reference

Command Command Formats

set set key flags exptime length, set key flags exptime
length noreply

add add key flags exptime length, add key flags exptime
length noreply

replace replace key flags exptime length, replace key flags
exptime length noreply

append append key length, append key length noreply

prepend prepend key length, prepend key length noreply

cas cas key flags exptime length casunique, cas key flags
exptime length casunique noreply

get get key1 [key2 ... keyn]

gets

delete delete key, delete key noreply, delete key expiry, delete
key expiry noreply

incr incr key, incr key noreply, incr key value, incr key value
noreply

decr decr key, decr key noreply, decr key value, decr key value
noreply

stat stat, stat name, stat name value

When sending a command to the server, the response from the server is one of the settings in the
following table. All response values from the server are terminated by \r\n:

Table 16.3 memcached Protocol Responses

String Description

STORED Value has successfully been stored.

NOT_STORED The value was not stored, but not because of an error. For commands
where you are adding a or updating a value if it exists (such as add and
replace), or where the item has already been set to be deleted.

EXISTS When using a cas command, the item you are trying to store already exists
and has been modified since you last checked it.

NOT_FOUND The item you are trying to store, update or delete does not exist or has
already been deleted.

ERROR You submitted a nonexistent command name.

CLIENT_ERROR
errorstring

There was an error in the input line, the detail is contained in
errorstring.

SERVER_ERROR
errorstring

There was an error in the server that prevents it from returning the
information. In extreme conditions, the server may disconnect the client after
this error occurs.

VALUE keys flags
length

The requested key has been found, and the stored key, flags and data
block are returned, of the specified length.

DELETED The requested key was deleted from the server.

STAT name value A line of statistics data.

Getting memcached Statistics

2383

String Description

END The end of the statistics data.

16.3.4 Getting memcached Statistics

The memcached system has a built-in statistics system that collects information about the data being
stored into the cache, cache hit ratios, and detailed information on the memory usage and distribution
of information through the slab allocation used to store individual items. Statistics are provided at
both a basic level that provide the core statistics, and more specific statistics for specific areas of the
memcached server.

This information can be useful to ensure that you are getting the correct level of cache and memory
usage, and that your slab allocation and configuration properties are set at an optimal level.

The stats interface is available through the standard memcached protocol, so the reports can be
accessed by using telnet to connect to the memcached. The supplied memcached-tool includes
support for obtaining the Section 16.3.4.2, “memcached Slabs Statistics” and Section 16.3.4.1,
“memcached General Statistics” information. For more information, see Section 16.3.4.6, “Using
memcached-tool”.

Alternatively, most of the language API interfaces provide a function for obtaining the statistics from the
server.

For example, to get the basic stats using telnet:

shell> telnet localhost 11211
Trying ::1...
Connected to localhost.
Escape character is '^]'.
stats
STAT pid 23599
STAT uptime 675
STAT time 1211439587
STAT version 1.2.5
STAT pointer_size 32
STAT rusage_user 1.404992
STAT rusage_system 4.694685
STAT curr_items 32
STAT total_items 56361
STAT bytes 2642
STAT curr_connections 53
STAT total_connections 438
STAT connection_structures 55
STAT cmd_get 113482
STAT cmd_set 80519
STAT get_hits 78926
STAT get_misses 34556
STAT evictions 0
STAT bytes_read 6379783
STAT bytes_written 4860179
STAT limit_maxbytes 67108864
STAT threads 1
END

When using Perl and the Cache::Memcached module, the stats() function returns information
about all the servers currently configured in the connection object, and total statistics for all the
memcached servers as a whole.

For example, the following Perl script obtains the stats and dumps the hash reference that is returned:

use Cache::Memcached;
use Data::Dumper;

my $memc = new Cache::Memcached;

Getting memcached Statistics

2384

$memc->set_servers(\@ARGV);

print Dumper($memc->stats());

When executed on the same memcached as used in the Telnet example above we get a hash
reference with the host by host and total statistics:

$VAR1 = {
 'hosts' => {
 'localhost:11211' => {
 'misc' => {
 'bytes' => '2421',
 'curr_connections' => '3',
 'connection_structures' => '56',
 'pointer_size' => '32',
 'time' => '1211440166',
 'total_items' => '410956',
 'cmd_set' => '588167',
 'bytes_written' => '35715151',
 'evictions' => '0',
 'curr_items' => '31',
 'pid' => '23599',
 'limit_maxbytes' => '67108864',
 'uptime' => '1254',
 'rusage_user' => '9.857805',
 'cmd_get' => '838451',
 'rusage_system' => '34.096988',
 'version' => '1.2.5',
 'get_hits' => '581511',
 'bytes_read' => '46665716',
 'threads' => '1',
 'total_connections' => '3104',
 'get_misses' => '256940'
 },
 'sizes' => {
 '128' => '16',
 '64' => '15'
 }
 }
 },
 'self' => {},
 'total' => {
 'cmd_get' => 838451,
 'bytes' => 2421,
 'get_hits' => 581511,
 'connection_structures' => 56,
 'bytes_read' => 46665716,
 'total_items' => 410956,
 'total_connections' => 3104,
 'cmd_set' => 588167,
 'bytes_written' => 35715151,
 'curr_items' => 31,
 'get_misses' => 256940
 }
 };

The statistics are divided up into a number of distinct sections, and then can be requested by adding
the type to the stats command. Each statistics output is covered in more detail in the following
sections.

• General statistics, see Section 16.3.4.1, “memcached General Statistics”.

• Slab statistics (slabs), see Section 16.3.4.2, “memcached Slabs Statistics”.

• Item statistics (items), see Section 16.3.4.3, “memcached Item Statistics”.

• Size statistics (sizes), see Section 16.3.4.4, “memcached Size Statistics”.

• Detailed status (detail), see Section 16.3.4.5, “memcached Detail Statistics”.

Getting memcached Statistics

2385

16.3.4.1 memcached General Statistics

The output of the general statistics provides an overview of the performance and use of the
memcached instance. The statistics returned by the command and their meaning is shown in the
following table.

The following terms are used to define the value type for each statistics value:

• 32u: 32-bit unsigned integer

• 64u: 64-bit unsigned integer

• 32u:32u: Two 32-bit unsigned integers separated by a colon

• String: Character string

Statistic Data type Description Version

pid 32u Process ID of the memcached instance.

uptime 32u Uptime (in seconds) for this memcached instance.

time 32u Current time (as epoch).

version string Version string of this instance.

pointer_size string Size of pointers for this host specified in bits (32 or 64).

rusage_user 32u:32u Total user time for this instance
(seconds:microseconds).

rusage_system 32u:32u Total system time for this instance
(seconds:microseconds).

curr_items 32u Current number of items stored by this instance.

total_items 32u Total number of items stored during the life of this
instance.

bytes 64u Current number of bytes used by this server to store
items.

curr_connections32u Current number of open connections.

total_connections32u Total number of connections opened since the server
started running.

connection_structures32u Number of connection structures allocated by the
server.

cmd_get 64u Total number of retrieval requests (get operations).

cmd_set 64u Total number of storage requests (set operations).

get_hits 64u Number of keys that have been requested and found
present.

get_misses 64u Number of items that have been requested and not
found.

delete_hits 64u Number of keys that have been deleted and found
present.

1.3.x

delete_misses 64u Number of items that have been delete and not found. 1.3.x

incr_hits 64u Number of keys that have been incremented and found
present.

1.3.x

incr_misses 64u Number of items that have been incremented and not
found.

1.3.x

decr_hits 64u Number of keys that have been decremented and
found present.

1.3.x

Getting memcached Statistics

2386

Statistic Data type Description Version

decr_misses 64u Number of items that have been decremented and not
found.

1.3.x

cas_hits 64u Number of keys that have been compared and
swapped and found present.

1.3.x

cas_misses 64u Number of items that have been compared and
swapped and not found.

1.3.x

cas_badvalue 64u Number of keys that have been compared and
swapped, but the comparison (original) value did not
match the supplied value.

1.3.x

evictions 64u Number of valid items removed from cache to free
memory for new items.

bytes_read 64u Total number of bytes read by this server from network.

bytes_written 64u Total number of bytes sent by this server to network.

limit_maxbytes 32u Number of bytes this server is permitted to use for
storage.

threads 32u Number of worker threads requested.

conn_yields 64u Number of yields for connections (related to the -R
option).

1.4.0

The most useful statistics from those given here are the number of cache hits, misses, and evictions.

A large number of get_misses may just be an indication that the cache is still being populated
with information. The number should, over time, decrease in comparison to the number of cache
get_hits. If, however, you have a large number of cache misses compared to cache hits after an
extended period of execution, it may be an indication that the size of the cache is too small and you
either need to increase the total memory size, or increase the number of the memcached instances to
improve the hit ratio.

A large number of evictions from the cache, particularly in comparison to the number of items stored
is a sign that your cache is too small to hold the amount of information that you regularly want to keep
cached. Instead of items being retained in the cache, items are being evicted to make way for new
items keeping the turnover of items in the cache high, reducing the efficiency of the cache.

16.3.4.2 memcached Slabs Statistics

To get the slabs statistics, use the stats slabs command, or the API equivalent.

The slab statistics provide you with information about the slabs that have created and allocated for
storing information within the cache. You get information both on each individual slab-class and total
statistics for the whole slab.

STAT 1:chunk_size 104
STAT 1:chunks_per_page 10082
STAT 1:total_pages 1
STAT 1:total_chunks 10082
STAT 1:used_chunks 10081
STAT 1:free_chunks 1
STAT 1:free_chunks_end 10079
STAT 9:chunk_size 696
STAT 9:chunks_per_page 1506
STAT 9:total_pages 63
STAT 9:total_chunks 94878
STAT 9:used_chunks 94878
STAT 9:free_chunks 0
STAT 9:free_chunks_end 0
STAT active_slabs 2

Getting memcached Statistics

2387

STAT total_malloced 67083616
END

Individual stats for each slab class are prefixed with the slab ID. A unique ID is given to each allocated
slab from the smallest size up to the largest. The prefix number indicates the slab class number in
relation to the calculated chunk from the specified growth factor. Hence in the example, 1 is the first
chunk size and 9 is the 9th chunk allocated size.

The parameters returned for each chunk size and a description of each parameter are provided in the
following table.

Statistic Description Version

chunk_size Space allocated to each chunk within this slab class.

chunks_per_page Number of chunks within a single page for this slab class.

total_pages Number of pages allocated to this slab class.

total_chunks Number of chunks allocated to the slab class.

used_chunks Number of chunks allocated to an item..

free_chunks Number of chunks not yet allocated to items.

free_chunks_end Number of free chunks at the end of the last allocated page.

get_hits Number of get hits to this chunk 1.3.x

cmd_set Number of set commands on this chunk 1.3.x

delete_hits Number of delete hits to this chunk 1.3.x

incr_hits Number of increment hits to this chunk 1.3.x

decr_hits Number of decrement hits to this chunk 1.3.x

cas_hits Number of CAS hits to this chunk 1.3.x

cas_badval Number of CAS hits on this chunk where the existing value did not
match

1.3.x

mem_requested The true amount of memory of memory requested within this
chunk

1.4.1

The following additional statistics cover the information for the entire server, rather than on a chunk by
chunk basis:

Statistic Description Version

active_slabs Total number of slab classes allocated.

total_malloced Total amount of memory allocated to slab pages.

The key values in the slab statistics are the chunk_size, and the corresponding total_chunks
and used_chunks parameters. These given an indication of the size usage of the chunks within the
system. Remember that one key/value pair is placed into a chunk of a suitable size.

From these stats, you can get an idea of your size and chunk allocation and distribution. If you store
many items with a number of largely different sizes, consider adjusting the chunk size growth factor
to increase in larger steps to prevent chunk and memory wastage. A good indication of a bad growth
factor is a high number of different slab classes, but with relatively few chunks actually in use within
each slab. Increasing the growth factor creates fewer slab classes and therefore makes better use of
the allocated pages.

16.3.4.3 memcached Item Statistics

To get the items statistics, use the stats items command, or the API equivalent.

Getting memcached Statistics

2388

The items statistics give information about the individual items allocated within a given slab class.

STAT items:2:number 1
STAT items:2:age 452
STAT items:2:evicted 0
STAT items:2:evicted_nonzero 0
STAT items:2:evicted_time 2
STAT items:2:outofmemory 0
STAT items:2:tailrepairs 0
...
STAT items:27:number 1
STAT items:27:age 452
STAT items:27:evicted 0
STAT items:27:evicted_nonzero 0
STAT items:27:evicted_time 2
STAT items:27:outofmemory 0
STAT items:27:tailrepairs 0

The prefix number against each statistics relates to the corresponding chunk size, as returned by the
stats slabs statistics. The result is a display of the number of items stored within each chunk within
each slab size, and specific statistics about their age, eviction counts, and out of memory counts. A
summary of the statistics is given in the following table.

Statistic Description

number The number of items currently stored in this slab class.

age The age of the oldest item within the slab class, in seconds.

evicted The number of items evicted to make way for new entries.

evicted_time The time of the last evicted entry

evicted_nonzero The time of the last evicted non-zero entry 1.4.0

outofmemory The number of items for this slab class that have triggered an out
of memory error (only value when the -M command line option is
in effect).

tailrepairs Number of times the entries for a particular ID need repairing

Item level statistics can be used to determine how many items are stored within a given slab and their
freshness and recycle rate. You can use this to help identify whether there are certain slab classes that
are triggering a much larger number of evictions that others.

16.3.4.4 memcached Size Statistics

To get size statistics, use the stats sizes command, or the API equivalent.

The size statistics provide information about the sizes and number of items of each size within the
cache. The information is returned as two columns, the first column is the size of the item (rounded up
to the nearest 32 byte boundary), and the second column is the count of the number of items of that
size within the cache:

96 35
128 38
160 807
192 804
224 410
256 222
288 83
320 39
352 53
384 33
416 64
448 51

Getting memcached Statistics

2389

480 30
512 54
544 39
576 10065

Caution

Running this statistic locks up your cache as each item is read from the cache
and its size calculated. On a large cache, this may take some time and prevent
any set or get operations until the process completes.

The item size statistics are useful only to determine the sizes of the objects you are storing. Since the
actual memory allocation is relevant only in terms of the chunk size and page size, the information is
only useful during a careful debugging or diagnostic session.

16.3.4.5 memcached Detail Statistics

For memcached 1.3.x and higher, you can enable and obtain detailed statistics about the get, set,
and del operations on theindividual keys stored in the cache, and determine whether the attempts hit
(found) a particular key. These operations are only recorded while the detailed stats analysis is turned
on.

To enable detailed statistics, you must send the stats detail on command to the memcached
server:

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail on
OK

Individual statistics are recorded for every get, set and del operation on a key, including keys that
are not currently stored in the server. For example, if an attempt is made to obtain the value of key
abckey and it does not exist, the get operating on the specified key are recorded while detailed
statistics are in effect, even if the key is not currently stored. The hits, that is, the number of get or
del operations for a key that exists in the server are also counted.

To turn detailed statistics off, send the stats detail off command to the memcached server:

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail on
OK

To obtain the detailed statistics recorded during the process, send the stats detail dump
command to the memcached server:

stats detail dump
PREFIX hykkey get 0 hit 0 set 1 del 0
PREFIX xyzkey get 0 hit 0 set 1 del 0
PREFIX yukkey get 1 hit 0 set 0 del 0
PREFIX abckey get 3 hit 3 set 1 del 0
END

You can use the detailed statistics information to determine whether your memcached clients are using
a large number of keys that do not exist in the server by comparing the hit and get or del counts.
Because the information is recorded by key, you can also determine whether the failures or operations
are clustered around specific keys.

Getting memcached Statistics

2390

16.3.4.6 Using memcached-tool

The memcached-tool, located within the scripts directory within the memcached source directory.
The tool provides convenient access to some reports and statistics from any memcached instance.

The basic format of the command is:

shell> ./memcached-tool hostname:port [command]

The default output produces a list of the slab allocations and usage. For example:

shell> memcached-tool localhost:11211 display
 # Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
 1 80B 93s 1 20 no 0 0 0
 2 104B 93s 1 16 no 0 0 0
 3 136B 1335s 1 28 no 0 0 0
 4 176B 1335s 1 24 no 0 0 0
 5 224B 1335s 1 32 no 0 0 0
 6 280B 1335s 1 34 no 0 0 0
 7 352B 1335s 1 36 no 0 0 0
 8 440B 1335s 1 46 no 0 0 0
 9 552B 1335s 1 58 no 0 0 0
 10 696B 1335s 1 66 no 0 0 0
 11 872B 1335s 1 89 no 0 0 0
 12 1.1K 1335s 1 112 no 0 0 0
 13 1.3K 1335s 1 145 no 0 0 0
 14 1.7K 1335s 1 123 no 0 0 0
 15 2.1K 1335s 1 198 no 0 0 0
 16 2.6K 1335s 1 199 no 0 0 0
 17 3.3K 1335s 1 229 no 0 0 0
 18 4.1K 1335s 1 248 yes 36 2 0
 19 5.2K 1335s 2 328 no 0 0 0
 20 6.4K 1335s 2 316 yes 387 1 0
 21 8.1K 1335s 3 381 yes 492 1 0
 22 10.1K 1335s 3 303 yes 598 2 0
 23 12.6K 1335s 5 405 yes 605 1 0
 24 15.8K 1335s 6 384 yes 766 2 0
 25 19.7K 1335s 7 357 yes 908 170 0
 26 24.6K 1336s 7 287 yes 1012 1 0
 27 30.8K 1336s 7 231 yes 1193 169 0
 28 38.5K 1336s 4 104 yes 1323 169 0
 29 48.1K 1336s 1 21 yes 1287 1 0
 30 60.2K 1336s 1 17 yes 1093 169 0
 31 75.2K 1337s 1 13 yes 713 168 0
 32 94.0K 1337s 1 10 yes 278 168 0
 33 117.5K 1336s 1 3 no 0 0 0

This output is the same if you specify the command as display:

shell> memcached-tool localhost:11211 display
 # Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
 1 80B 93s 1 20 no 0 0 0
 2 104B 93s 1 16 no 0 0 0
...

The output shows a summarized version of the output from the slabs statistics. The columns provided
in the output are shown below:

• #: The slab number

• Item_Size: The size of the slab

• Max_age: The age of the oldest item in the slab

• Pages: The number of pages allocated to the slab

memcached FAQ

2391

• Count: The number of items in this slab

• Full?: Whether the slab is fully populated

• Evicted: The number of objects evicted from this slab

• Evict_Time: The time (in seconds) since the last eviction

• OOM: The number of items that have triggered an out of memory error

You can also obtain a dump of the general statistics for the server using the stats command:

shell> memcached-tool localhost:11211 stats
#localhost:11211 Field Value
 accepting_conns 1
 bytes 162
 bytes_read 485
 bytes_written 6820
 cas_badval 0
 cas_hits 0
 cas_misses 0
 cmd_flush 0
 cmd_get 4
 cmd_set 2
 conn_yields 0
 connection_structures 11
 curr_connections 10
 curr_items 2
 decr_hits 0
 decr_misses 1
 delete_hits 0
 delete_misses 0
 evictions 0
 get_hits 4
 get_misses 0
 incr_hits 0
 incr_misses 2
 limit_maxbytes 67108864
 listen_disabled_num 0
 pid 12981
 pointer_size 32
 rusage_system 0.013911
 rusage_user 0.011876
 threads 4
 time 1255518565
 total_connections 20
 total_items 2
 uptime 880
 version 1.4.2

16.3.5 memcached FAQ

16.3.5.1 Can memcached be run on a Windows environment? .. 2392
16.3.5.2 What is the maximum size of an object you can store in memcached? Is that

configurable? ... 2392
16.3.5.3 Is it true memcached will be much more effective with db-read-intensive applications than

with db-write-intensive applications? ... 2392
16.3.5.4 Is there any overhead in not using persistent connections? If persistent is always

recommended, what are the downsides (for example, locking up)? 2392
16.3.5.5 How is an event such as a crash of one of the memcached servers handled by the

memcached client? .. 2392
16.3.5.6 What is a recommended hardware configuration for a memcached server? 2393
16.3.5.7 Is memcached more effective for video and audio as opposed to textual read/writes? 2393
16.3.5.8 Can memcached work with ASPX? ... 2393
16.3.5.9 How expensive is it to establish a memcache connection? Should those connections be

pooled? ... 2393

memcached FAQ

2392

16.3.5.10 How is the data handled when the memcached server is down? 2393
16.3.5.11 How are auto-increment columns in the MySQL database coordinated across multiple

instances of memcached? ... 2393
16.3.5.12 Is compression available? ... 2393
16.3.5.13 Can we implement different types of memcached as different nodes in the same server,

so can there be deterministic and non-deterministic in the same server? 2393
16.3.5.14 What are best practices for testing an implementation, to ensure that it improves

performance, and to measure the impact of memcached configuration changes? And
would you recommend keeping the configuration very simple to start? 2394

16.3.5.1.Can memcached be run on a Windows environment?

No. Currently memcached is available only on the Unix/Linux platform. There is an unofficial port
available, see http://www.codeplex.com/memcachedproviders.

16.3.5.2.What is the maximum size of an object you can store in memcached? Is that configurable?

The default maximum object size is 1MB. In memcached 1.4.2 and later, you can change the
maximum size of an object using the -I command line option.

For versions before this, to increase this size, you have to re-compile memcached. You can
modify the value of the POWER_BLOCK within the slabs.c file within the source.

In memcached 1.4.2 and higher, you can configure the maximum supported object size by using
the -I command-line option. For example, to increase the maximum object size to 5MB:

$ memcached -I 5m

If an object is larger than the maximum object size, you must manually split it. memcached is
very simple: you give it a key and some data, it tries to cache it in RAM. If you try to store more
than the default maximum size, the value is just truncated for speed reasons.

16.3.5.3.Is it true memcached will be much more effective with db-read-intensive applications than with
db-write-intensive applications?

Yes. memcached plays no role in database writes, it is a method of caching data already read
from the database in RAM.

16.3.5.4.Is there any overhead in not using persistent connections? If persistent is always recommended,
what are the downsides (for example, locking up)?

If you don't use persistent connections when communicating with memcached, there will be a
small increase in the latency of opening the connection each time. The effect is comparable to
use nonpersistent connections with MySQL.

In general, the chance of locking or other issues with persistent connections is minimal, because
there is very little locking within memcached. If there is a problem, eventually your request will
time out and return no result, so your application will need to load from MySQL again.

16.3.5.5.How is an event such as a crash of one of the memcached servers handled by the memcached
client?

There is no automatic handling of this. If your client fails to get a response from a server, code a
fallback mechanism to load the data from the MySQL database.

The client APIs all provide the ability to add and remove memcached instances on the fly. If
within your application you notice that memcached server is no longer responding, you can
remove the server from the list of servers, and keys will automatically be redistributed to another
memcached server in the list. If retaining the cache content on all your servers is important,
make sure you use an API that supports a consistent hashing algorithm. For more information,
see Section 16.3.2.4, “memcached Hashing/Distribution Types”.

http://www.codeplex.com/memcachedproviders

memcached FAQ

2393

16.3.5.6.What is a recommended hardware configuration for a memcached server?

memcached has a very low processing overhead. All that is required is spare physical RAM
capacity. A memcached server does not require a dedicated machine. If you have web,
application, or database servers that have spare RAM capacity, then use them with memcached.

To build and deploy a dedicated memcached server, use a relatively low-power CPU, lots of
RAM, and one or more Gigabit Ethernet interfaces.

16.3.5.7.Is memcached more effective for video and audio as opposed to textual read/writes?

memcached works equally well for all kinds of data. To memcached, any value you store is
just a stream of data. Remember, though, that the maximum size of an object you can store in
memcached is 1MB, but can be configured to be larger by using the -I option in memcached
1.4.2 and later, or by modifying the source in versions before 1.4.2. If you plan on using
memcached with audio and video content, you will probably want to increase the maximum
object size. Also remember that memcached is a solution for caching information for reading. It
shouldn't be used for writes, except when updating the information in the cache.

16.3.5.8.Can memcached work with ASPX?

There are ports and interfaces for many languages and environments. ASPX relies on an
underlying language such as C# or VisualBasic, and if you are using ASP.NET then there
is a C# memcached library. For more information, see https://sourceforge.net/projects/
memcacheddotnet/.

16.3.5.9.How expensive is it to establish a memcache connection? Should those connections be pooled?

Opening the connection is relatively inexpensive, because there is no security, authentication
or other handshake taking place before you can start sending requests and getting results.
Most APIs support a persistent connection to a memcached instance to reduce the latency.
Connection pooling would depend on the API you are using, but if you are communicating
directly over TCP/IP, then connection pooling would provide some small performance benefit.

16.3.5.10.How is the data handled when the memcached server is down?

The behavior is entirely application dependent. Most applications fall back to loading the data
from the database (just as if they were updating the memcached information). If you are using
multiple memcached servers, you might also remove a downed server from the list to prevent
it from affecting performance. Otherwise, the client will still attempt to communicate with the
memcached server that corresponds to the key you are trying to load.

16.3.5.11.How are auto-increment columns in the MySQL database coordinated across multiple instances
of memcached?

They aren't. There is no relationship between MySQL and memcached unless your application
(or, if you are using the MySQL UDFs for memcached, your database definition) creates one.

If you are storing information based on an auto-increment key into multiple instances of
memcached, the information is only stored on one of the memcached instances anyway. The
client uses the key value to determine which memcached instance to store the information. It
doesn't store the same information across all the instances, as that would be a waste of cache
memory.

16.3.5.12.Is compression available?

Yes. Most of the client APIs support some sort of compression, and some even allow you to
specify the threshold at which a value is deemed appropriate for compression during storage.

16.3.5.13.Can we implement different types of memcached as different nodes in the same server, so can
there be deterministic and non-deterministic in the same server?

https://sourceforge.net/projects/memcacheddotnet/
https://sourceforge.net/projects/memcacheddotnet/

memcached FAQ

2394

Yes. You can run multiple instances of memcached on a single server, and in your client
configuration you choose the list of servers you want to use.

16.3.5.14.What are best practices for testing an implementation, to ensure that it improves performance,
and to measure the impact of memcached configuration changes? And would you recommend
keeping the configuration very simple to start?

The best way to test the performance is to start up a memcached instance. First, modify your
application so that it stores the data just before the data is about to be used or displayed into
memcached. Since the APIs handle the serialization of the data, it should just be a one-line
modification to your code. Then, modify the start of the process that would normally load that
information from MySQL with the code that requests the data from memcached. If the data
cannot be loaded from memcached, default to the MySQL process.

All of the changes required will probably amount to just a few lines of code. To get the best
benefit, make sure you cache entire objects (for example, all the components of a web page,
blog post, discussion thread, and so on), rather than using memcached as a simple cache of
individual rows of MySQL tables.

Keeping the configuration simple at the start, or even over the long term, is easy with
memcached. Once you have the basic structure up and running, often the only ongoing change
is to add more servers into the list of servers used by your applications. You don't need to
manage the memcached servers, and there is no complex configuration; just add more servers
to the list and let the client API and the memcached servers make the decisions.

2395

Chapter 17 Replication

Table of Contents
17.1 Configuring Replication .. 2396

17.1.1 Binary Log File Position Based Replication Configuration Overview 2397
17.1.2 Setting Up Binary Log File Position Based Replication .. 2397
17.1.3 Replication with Global Transaction Identifiers .. 2406
17.1.4 MySQL Multi-Source Replication ... 2416
17.1.5 Changing Replication Modes on Online Servers ... 2420
17.1.6 Replication and Binary Logging Options and Variables ... 2426
17.1.7 Common Replication Administration Tasks .. 2510

17.2 Replication Implementation .. 2513
17.2.1 Replication Formats .. 2514
17.2.2 Replication Implementation Details .. 2521
17.2.3 Replication Channels .. 2522
17.2.4 Replication Relay and Status Logs .. 2525
17.2.5 How Servers Evaluate Replication Filtering Rules ... 2531

17.3 Replication Solutions ... 2538
17.3.1 Using Replication for Backups .. 2539
17.3.2 Using Replication with Different Master and Slave Storage Engines 2542
17.3.3 Using Replication for Scale-Out .. 2543
17.3.4 Replicating Different Databases to Different Slaves .. 2544
17.3.5 Improving Replication Performance ... 2546
17.3.6 Switching Masters During Failover .. 2547
17.3.7 Setting Up Replication Using SSL ... 2549
17.3.8 Semisynchronous Replication ... 2550
17.3.9 Delayed Replication .. 2555

17.4 Replication Notes and Tips .. 2556
17.4.1 Replication Features and Issues ... 2556
17.4.2 Replication Compatibility Between MySQL Versions ... 2582
17.4.3 Upgrading a Replication Setup .. 2583
17.4.4 Troubleshooting Replication .. 2584
17.4.5 How to Report Replication Bugs or Problems ... 2585

Replication enables data from one MySQL database server (the master) to be copied to one or more
MySQL database servers (the slaves). Replication is asynchronous by default; slaves do not need to
be connected permanently to receive updates from the master. Depending on the configuration, you
can replicate all databases, selected databases, or even selected tables within a database.

Advantages of replication in MySQL include:

• Scale-out solutions - spreading the load among multiple slaves to improve performance. In this
environment, all writes and updates must take place on the master server. Reads, however, may
take place on one or more slaves. This model can improve the performance of writes (since the
master is dedicated to updates), while dramatically increasing read speed across an increasing
number of slaves.

• Data security - because data is replicated to the slave, and the slave can pause the replication
process, it is possible to run backup services on the slave without corrupting the corresponding
master data.

• Analytics - live data can be created on the master, while the analysis of the information can take
place on the slave without affecting the performance of the master.

• Long-distance data distribution - you can use replication to create a local copy of data for a remote
site to use, without permanent access to the master.

Configuring Replication

2396

For information on how to use replication in such scenarios, see Section 17.3, “Replication Solutions”.

MySQL 5.7 supports different methods of replication. The traditional method is based on replicating
events from the master's binary log, and requires the log files and positions in them to be synchronized
between master and slave. The newer method based on global transaction identifiers (GTIDs) is
transactional and therefore does not require working with log files or positions within these files, which
greatly simplifies many common replication tasks. Replication using GTIDs guarantees consistency
between master and slave as long as all transactions committed on the master have also been
applied on the slave. For more information about GTIDs and GTID-based replication in MySQL, see
Section 17.1.3, “Replication with Global Transaction Identifiers”. For information on using binary log file
position based replication, see Section 17.1, “Configuring Replication”.

Replication in MySQL supports different types of synchronization. The original type of synchronization
is one-way, asynchronous replication, in which one server acts as the master, while one or more
other servers act as slaves. In MySQL 5.7, semisynchronous replication is supported in addition to
the built-in asynchronous replication. With semisynchronous replication, a commit performed on the
master blocks before returning to the session that performed the transaction until at least one slave
acknowledges that it has received and logged the events for the transaction; see Section 17.3.8,
“Semisynchronous Replication”. MySQL 5.7 also supports delayed replication such that a slave server
deliberately lags behind the master by at least a specified amount of time; see Section 17.3.9, “Delayed
Replication”. For scenarios where synchronous replication is required, use MySQL Cluster (see MySQL
Cluster NDB 7.3 and MySQL Cluster NDB 7.4).

There are a number of solutions available for setting up replication between servers, and the best
method to use depends on the presence of data and the engine types you are using. For more
information on the available options, see Section 17.1.2, “Setting Up Binary Log File Position Based
Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates
entire SQL statements, and Row Based Replication (RBR), which replicates only the changed rows.
You can also use a third variety, Mixed Based Replication (MBR). For more information on the different
replication formats, see Section 17.2.1, “Replication Formats”.

Replication is controlled through a number of different options and variables. For more information, see
Section 17.1.6, “Replication and Binary Logging Options and Variables”.

You can use replication to solve a number of different problems, including performance, supporting
the backup of different databases, and as part of a larger solution to alleviate system failures. For
information on how to address these issues, see Section 17.3, “Replication Solutions”.

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and potential problems and their
resolution, see Section 17.4, “Replication Notes and Tips”. For answers to some questions often asked
by those who are new to MySQL Replication, see Section A.13, “MySQL 5.7 FAQ: Replication”.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are
recorded and replicated, see Section 17.2, “Replication Implementation”.

17.1 Configuring Replication
This section describes how to configure the different types of replication available in MySQL and
includes the setup and configuration required for a replication environment, including step-by-step
instructions for creating a new replication environment. The major components of this section are:

• For a guide to setting up two or more servers for replication using binary log file positions,
Section 17.1.2, “Setting Up Binary Log File Position Based Replication”, deals with the configuration
of the servers and provides methods for copying data between the master and slaves.

• For a guide to setting up two or more servers for replication using GTID transactions, Section 17.1.3,
“Replication with Global Transaction Identifiers”, deals with the configuration of the servers.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Binary Log File Position Based Replication Configuration Overview

2397

• Events in the binary log are recorded using a number of formats. These are referred to as statement-
based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication
(MIXED), uses SBR or RBR replication automatically to take advantage of the benefits of both
SBR and RBR formats when appropriate. The different formats are discussed in Section 17.2.1,
“Replication Formats”.

• Detailed information on the different configuration options and variables that apply to replication is
provided in Section 17.1.6, “Replication and Binary Logging Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However, for
advice on common tasks that you may want to execute, see Section 17.1.7, “Common Replication
Administration Tasks”.

17.1.1 Binary Log File Position Based Replication Configuration Overview

This section describes replication between MySQL servers based on the binary log file position
method, where the MySQL instance operating as the master (the source of the database changes)
writes updates and changes as “events” to the binary log. The information in the binary log is stored
in different logging formats according to the database changes being recorded. Slaves are configured
to read the binary log from the master and to execute the events in the binary log on the slave's local
database.

Each slave receives a copy of the entire contents of the binary log. It is the responsibility of the slave to
decide which statements in the binary log should be executed. Unless you specify otherwise, all events
in the master binary log are executed on the slave. If required, you can configure the slave to process
only events that apply to particular databases or tables.

Important

You cannot configure the master to log only certain events.

Each slave keeps a record of the binary log coordinates: the file name and position within the file that
it has read and processed from the master. This means that multiple slaves can be connected to the
master and executing different parts of the same binary log. Because the slaves control this process,
individual slaves can be connected and disconnected from the server without affecting the master's
operation. Also, because each slave records the current position within the binary log, it is possible for
slaves to be disconnected, reconnect and then resume processing.

The master and each slave must be configured with a unique ID (using the server-id [2426] option).
In addition, each slave must be configured with information about the master host name, log file name,
and position within that file. These details can be controlled from within a MySQL session using the
CHANGE MASTER TO statement on the slave. The details are stored within the slave's master info
repository, which can be either a file or a table (see Section 17.2.4, “Replication Relay and Status
Logs”).

17.1.2 Setting Up Binary Log File Position Based Replication

This section describes how to set up a MySQL server to use binary log file position based replication.
There are a number of different methods for setting up replication, and the exact method to use
depends on how you are setting up replication, and whether you already have data within your master
database.

There are some generic tasks that are common to all setups:

• On the master, you must enable binary logging and configure a unique server ID. This might require
a server restart. See Section 17.1.2.1, “Setting the Replication Master Configuration”.

• On each slave that you want to connect to the master, you must configure a unique server ID. This
might require a server restart. See Setting the Replication Slave Configuration.

Setting Up Binary Log File Position Based Replication

2398

• Optionally, create a separate user for your slaves to use during authentication with the master when
reading the binary log for replication. See Section 17.1.2.2, “Creating a User for Replication”.

• Before creating a data snapshot or starting the replication process, on the master you should record
the current position in the binary log. You need this information when configuring the slave so
that the slave knows where within the binary log to start executing events. See Section 17.1.2.3,
“Obtaining the Replication Master Binary Log Coordinates”.

• If you already have data on the master and want to use it to synchronize the slave, you need to
create a data snapshot to copy the data to the slave. The storage engine you are using has an
impact on how you create the snapshot. When you are using MyISAM, you must stop processing
statements on the master to obtain a read-lock, then obtain its current binary log coordinates and
dump its data, before permitting the master to continue executing statements. If you do not stop the
execution of statements, the data dump and the master status information will not match, resulting
in inconsistent or corrupted databases on the slaves. For more information on replicating a MyISAM
master, see Section 17.1.2.3, “Obtaining the Replication Master Binary Log Coordinates”. If you are
using InnoDB, you do not need a read-lock and a transaction that is long enough to transfer the data
snapshot is sufficient. For more information, see Section 14.16, “InnoDB and MySQL Replication”.

• Configure the slave with settings for connecting to the master, such as the host name, login
credentials, and binary log file name and position. See Setting the Master Configuration on the
Slave.

Note

Certain steps within the setup process require the SUPER privilege. If you do not
have this privilege, it might not be possible to enable replication.

After configuring the basic options, select your scenario:

• To set up replication for a fresh installation of a master and slaves that contain no data, see Setting
Up Replication between a New Master and Slaves.

• To set up replication of a new master using the data from an existing MySQL server, see Setting Up
Replication with Existing Data.

• To add replication slaves to an existing replication environment, see Section 17.1.2.6, “Adding
Slaves to a Replication Environment”.

Before administering MySQL replication servers, read this entire chapter and try all statements
mentioned in Section 13.4.1, “SQL Statements for Controlling Master Servers”, and Section 13.4.2,
“SQL Statements for Controlling Slave Servers”. Also familiarize yourself with the replication startup
options described in Section 17.1.6, “Replication and Binary Logging Options and Variables”.

17.1.2.1 Setting the Replication Master Configuration

To configure a master to use binary log file position based replication, you must enable binary logging
and establish a unique server ID. If this has not already been done, a server restart is required.

Binary logging must be enabled on the master because the binary log is the basis for replicating
changes from the master to its slaves. If binary logging is not enabled on the master using the log-
bin option, replication is not possible.

Each server within a replication group must be configured with a unique server ID. This ID is used to
identify individual servers within the group, and must be a positive integer between 1 and (232)−1. How
you organize and select the numbers is your choice.

To configure the binary log and server ID options, shut down the MySQL server and edit the my.cnf or
my.ini file. Within the [mysqld] section of the configuration file, add the log-bin and server-id
options. If these options already exist, but are commented out, uncomment the options and alter them

Setting Up Binary Log File Position Based Replication

2399

according to your needs. For example, to enable binary logging using a log file name prefix of mysql-
bin, and configure a server ID of 1, use these lines:

[mysqld]
log-bin=mysql-bin
server-id=1

After making the changes, restart the server.

Note

The following options have an impact on this procedure:

• if you omit server-id [2426] (or set it explicitly to its default value of 0), the
master refuses any connections from slaves.

• For the greatest possible durability and consistency in a
replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the
master my.cnf file.

• Ensure that the skip-networking option is not enabled on your replication
master. If networking has been disabled, the slave can not communicate with
the master and replication fails.

17.1.2.2 Creating a User for Replication

Each slave connects to the master using a MySQL user name and password, so there must be a user
account on the master that the slave can use to connect. Any account can be used for this operation,
providing it has been granted the REPLICATION SLAVE privilege. You can choose to create a different
account for each slave, or connect to the master using the same account for each slave.

Although you do not have to create an account specifically for replication, you should be aware that the
replication user name and password are stored in plain text in the master info repository file or table
(see Section 17.2.4.2, “Slave Status Logs”). Therefore, you may want to create a separate account
that has privileges only for the replication process, to minimize the possibility of compromise to other
accounts.

To create a new account, use CREATE USER. To grant this account the privileges required for
replication, use the GRANT statement. If you create an account solely for the purposes of replication,
that account needs only the REPLICATION SLAVE privilege. For example, to set up a new user,
repl, that can connect for replication from any host within the mydomain.com domain, issue these
statements on the master:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.mydomain.com';

See Section 13.7.1, “Account Management Statements”, for more information on statements for
manipulation of user accounts.

17.1.2.3 Obtaining the Replication Master Binary Log Coordinates

To configure the slave to start the replication process at the correct point, you need the master's
current coordinates within its binary log.

If the master has been running previously without binary logging enabled, the log file name and position
values displayed by SHOW MASTER STATUS or mysqldump --master-data are empty. In that
case, the values that you need to use later when specifying the slave's log file and position are the
empty string ('') and 4.

Setting Up Binary Log File Position Based Replication

2400

If the master has been binary logging previously, use this procedure to obtain the master binary log
coordinates:

Warning

This procedure uses FLUSH TABLES WITH READ LOCK, which blocks
COMMIT operations for InnoDB tables.

1. Start a session on the master by connecting to it with the command-line client, and flush all tables
and block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

Warning

Leave the client from which you issued the FLUSH TABLES statement
running so that the read lock remains in effect. If you exit the client, the lock
is released.

2. In a different session on the master, use the SHOW MASTER STATUS statement to determine the
current binary log file name and position:

mysql > SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 | 73 | test | manual,mysql |
+------------------+----------+--------------+------------------+

The File column shows the name of the log file and the Position column shows the position
within the file. In this example, the binary log file is mysql-bin.000003 and the position is 73.
Record these values. You need them later when you are setting up the slave. They represent the
replication coordinates at which the slave should begin processing new updates from the master.

You now have the information you need to enable the slave to start reading from the binary log in the
correct place to start replication.

The next step depends on whether you have existing data on the master. Choose one of the following
options:

• If you have existing data that needs be to synchronized with the slave before you start replication,
leave the client running so that the lock remains in place. This prevents any further changes
being made, so that the data copied to the slave is in synchrony with the master. Proceed to
Section 17.1.2.4, “Choosing a Method for Data Snapshots”.

• If you are setting up a new master and slave replication group, you can exit the first session to
release the read lock. See Setting Up Replication between a New Master and Slaves for how to
proceed.

17.1.2.4 Choosing a Method for Data Snapshots

If the master database contains existing data it is necessary to copy this data to each slave. There are
different ways to dump the data from the master database. The following sections describe possible
options.

To select the appropriate method of dumping the database, choose between these options:

• Use the mysqldump tool to create a dump of all the databases you want to replicate. This is the
recommended method, especially when using InnoDB.

• If your database is stored in binary portable files, you can copy the raw data files to a slave. This can
be more efficient than using mysqldump and importing the file on each slave, because it skips the

Setting Up Binary Log File Position Based Replication

2401

overhead of updating indexes as the INSERT statements are replayed. With storage engines such as
InnoDB this is not recommended.

Creating a Data Snapshot Using mysqldump

To create a snapshot of the data in an existing master database, use the mysqldump tool. Once the
data dump has been completed, import this data into the slave before starting the replication process.

The following example dumps all databases to a file named dbdump.db, and includes the --master-
data option which automatically appends the CHANGE MASTER TO statement required on the slave to
start the replication process:

shell> mysqldump --all-databases --master-data > dbdump.db

Note

If you do not use --master-data, then it is necessary to lock all tables in a
separate session manually. See Section 17.1.2.3, “Obtaining the Replication
Master Binary Log Coordinates”.

It is possible to exclude certain databases from the dump using the mysqldump tool. If you want to
choose which databases to include in the dump, do not use --all-databases. Choose one of these
options:

• Exclude all the tables in the database using --ignore-table option.

• Name only those databases which you want dumped using the --databases option.

For more information, see Section 4.5.4, “mysqldump — A Database Backup Program”.

To import the data, either copy the dump file to the slave, or access the file from the master when
connecting remotely to the slave.

Creating a Data Snapshot Using Raw Data Files

This section describes how to create a data snapshot using the raw files which make up the database.
Employing this method with a table using a storage engine that has complex caching or logging
algorithms requires extra steps to produce a perfect “point in time” snapshot: the initial copy command
could leave out cache information and logging updates, even if you have acquired a global read lock.
How the storage engine responds to this depends on its crash recovery abilities.

If you use InnoDB tables, you can use the mysqlbackup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This command records the log name and offset
corresponding to the snapshot to be used on the slave. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise subscription. See Section 25.2, “MySQL
Enterprise Backup Overview” for detailed information.

This method also does not work reliably if the master and slave have different values for
ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having
full-text indexes.

Assuming the above exceptions do not apply to your database, use the cold backup technique to
obtain a reliable binary snapshot of InnoDB tables: do a slow shutdown of the MySQL Server, then
copy the data files manually.

To create a raw data snapshot of MyISAM tables when your MySQL data files exist on a single
file system, you can use standard file copy tools such as cp or copy, a remote copy tool such as
scp or rsync, an archiving tool such as zip or tar, or a file system snapshot tool such as dump.
If you are replicating only certain databases, copy only those files that relate to those tables. For

Setting Up Binary Log File Position Based Replication

2402

InnoDB, all tables in all databases are stored in the system tablespace files, unless you have the
innodb_file_per_table option enabled.

The following files are not required for replication:

• Files relating to the mysql database.

• The master info repository file, if used (see Section 17.2.4, “Replication Relay and Status Logs”).

• The master's binary log files.

• Any relay log files.

Depending on whether you are using InnoDB tables or not, choose one of the following:

If you are using InnoDB tables, and also to get the most consistent results with a raw data snapshot,
shut down the master server during the process, as follows:

1. Acquire a read lock and get the master's status. See Section 17.1.2.3, “Obtaining the Replication
Master Binary Log Coordinates”.

2. In a separate session, shut down the master server:

shell> mysqladmin shutdown

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

4. Restart the master server.

If you are not using InnoDB tables, you can get a snapshot of the system from a master without
shutting down the server as described in the following steps:

1. Acquire a read lock and get the master's status. See Section 17.1.2.3, “Obtaining the Replication
Master Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, release the lock:

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, copy the files to each slave before starting
the slave replication process.

17.1.2.5 Setting Up Replication Slaves

The following sections describe how to set up slaves. Before you proceed, ensure that you have:

• Configured the MySQL master with the necessary configuration properties. See Section 17.1.2.1,
“Setting the Replication Master Configuration”.

Setting Up Binary Log File Position Based Replication

2403

• Obtained the master status information. See Section 17.1.2.3, “Obtaining the Replication Master
Binary Log Coordinates”.

• On the master, released the read lock:

mysql> UNLOCK TABLES;

Setting the Replication Slave Configuration

Each replication slave must have a unique server ID. If this has not already been done, this part of
slave setup requires a server restart.

If the slave server ID is not already set, or the current value conflicts with the value that you have
chosen for the master server, shut down the slave server and edit the [mysqld] section of the
configuration file to specify a unique server ID. For example:

[mysqld]
server-id=2

After making the changes, restart the server.

If you are setting up multiple slaves, each one must have a unique server-id [2426] value that
differs from that of the master and from any of the other slaves.

Note

If you omit server-id [2426] (or set it explicitly to its default value of 0), the
slave refuses to connect to a master.

You do not have to enable binary logging on the slave for replication to be set up. However, if you
enable binary logging on the slave, you can use the slave's binary log for data backups and crash
recovery, and also use the slave as part of a more complex replication topology. For example, where
this slave then acts as a master to other slaves.

Setting the Master Configuration on the Slave

To set up the slave to communicate with the master for replication, configure the slave with the
necessary connection information. To do this, execute the following statement on the slave, replacing
the option values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_host_name',
 -> MASTER_USER='replication_user_name',
 -> MASTER_PASSWORD='replication_password',
 -> MASTER_LOG_FILE='recorded_log_file_name',
 -> MASTER_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the
master MySQL server using TCP/IP.

The CHANGE MASTER TO statement has other options as well. For example, it is possible to set up
secure replication using SSL. For a full list of options, and information about the maximum permissible
length for the string-valued options, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”.

The next steps depend on whether you have existing data to import to the slave or not. See
Section 17.1.2.4, “Choosing a Method for Data Snapshots” for more information. Choose one of the
following:

Setting Up Binary Log File Position Based Replication

2404

• If you have a snapshot of a database to import, see Setting Up Replication between a New Master
and Slaves.

• If you do not have a snapshot of a database to import, see Setting Up Replication between a New
Master and Slaves.

Setting Up Replication between a New Master and Slaves

When there is no snapshot of a previous database to import, configure the slave to start the replication
from the new master.

To set up replication between a master and a new slave:

1. Start up the MySQL slave and connect to it.

2. Execute a CHANGE MASTER TO statement to set the master replication server configuration. See
Setting the Master Configuration on the Slave.

Perform these slave setup steps on each slave.

This method can also be used if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading
the data into a new master, the data is automatically replicated to the slaves.

If you are setting up a new replication environment using the data from a different existing database
server to create a new master, run the dump file generated from that server on the new master. The
database updates are automatically propagated to the slaves:

shell> mysql -h master < fulldb.dump

Setting Up Replication with Existing Data

When setting up replication with existing data, transfer the snapshot from the master to the slave
before starting replication. The process for importing data to the slave depends on how you created the
snapshot of data on the master.

Choose one of the following:

If you used mysqldump:

1. Start the slave, using the --skip-slave-start option so that replication does not start.

2. Import the dump file:

shell> mysql < fulldb.dump

If you created a snapshot using the raw data files:

1. Extract the data files into your slave data directory. For example:

shell> tar xvf dbdump.tar

You may need to set permissions and ownership on the files so that the slave server can access
and modify them.

2. Start the slave, using the --skip-slave-start option so that replication does not start.

3. Configure the slave with the replication coordinates from the master. This tells the slave the binary
log file and position within the file where replication needs to start. Also, configure the slave with the

Setting Up Binary Log File Position Based Replication

2405

login credentials and host name of the master. For more information on the CHANGE MASTER TO
statement required, see Setting the Master Configuration on the Slave.

4. Start the slave threads:

mysql> START SLAVE;

After you have performed this procedure, the slave connects to the master and replicates any updates
that have occurred on the master since the snapshot was taken.

If you have forgotten to set the server-id [2426] option for the master, slaves cannot connect to it.

If you have forgotten to set the server-id [2426] option for the slave, you get the following error in
the slave's error log:

Warning: You should set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this MySQL server will
not act as a slave.

You also find error messages in the slave's error log if it is not able to replicate for any other reason.

The slave uses information stored in its master info repository to keep track of how much of the
master's binary log it has processed. The repository can be in the form of files or a table, as determined
by the value set for --master-info-repository. When a slave runs with --master-info-
repository=FILE, you can find in its data directory two files, named master.info and relay-
log.info. If --master-info-repository=TABLE instead, this information is saved in the table
master_slave_info in the mysql database. In either case, do not remove or edit the files or table
unless you know exactly what you are doing and fully understand the implications. Even in that case,
it is preferred that you use the CHANGE MASTER TO statement to change replication parameters.
The slave can use the values specified in the statement to update the status files automatically. See
Section 17.2.4, “Replication Relay and Status Logs”, for more information.

Note

The contents of the master info repository override some of the server options
specified on the command line or in my.cnf. See Section 17.1.6, “Replication
and Binary Logging Options and Variables”, for more details.

A single snapshot of the master suffices for multiple slaves. To set up additional slaves, use the same
master snapshot and follow the slave portion of the procedure just described.

17.1.2.6 Adding Slaves to a Replication Environment

You can add another slave to an existing replication configuration without stopping the master. Instead,
set up the new slave by making a copy of an existing slave, except that you configure the new slave
with a different server-id [2426] value.

To duplicate an existing slave:

1. Shut down the existing slave:

shell> mysqladmin shutdown

2. Copy the data directory from the existing slave to the new slave. You can do this by creating an
archive using tar or WinZip, or by performing a direct copy using a tool such as cp or rsync.
Ensure that you also copy the log files and relay log files.

A common problem that is encountered when adding new replication slaves is that the new slave
fails with a series of warning and error messages like these:

Replication with Global Transaction Identifiers

2406

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a slave and has his hostname
changed!! Please use '--relay-log=new_slave_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] Failed to open the relay log './old_slave_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure

This situation can occur if the --relay-log option is not specified, as the relay log files contain
the host name as part of their file names. This is also true of the relay log index file if the --relay-
log-index option is not used. See Section 17.1.6, “Replication and Binary Logging Options and
Variables”, for more information about these options.

To avoid this problem, use the same value for --relay-log on the new slave that was
used on the existing slave. If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin. If this is not possible, copy the existing slave's relay
log index file to the new slave and set the --relay-log-index option on the new slave to match
what was used on the existing slave. If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.index. Alternatively, if you have already tried to start
the new slave after following the remaining steps in this section and have encountered errors like
those described previously, then perform the following steps:

a. If you have not already done so, issue a STOP SLAVE on the new slave.

If you have already started the existing slave again, issue a STOP SLAVE on the existing slave
as well.

b. Copy the contents of the existing slave's relay log index file into the new slave's relay log index
file, making sure to overwrite any content already in the file.

c. Proceed with the remaining steps in this section.

3. Copy the master info and relay log info repositories (see Section 17.2.4, “Replication Relay and
Status Logs”) from the existing slave to the new slave. These hold the current log coordinates for
the master's binary log and the slave's relay log.

4. Start the existing slave.

5. On the new slave, edit the configuration and give the new slave a unique server-id [2426] not
used by the master or any of the existing slaves.

6. Start the new slave. The slave uses the information in its master info repository to start the
replication process.

17.1.3 Replication with Global Transaction Identifiers

This section explains transaction-based replication using global transaction identifiers (GTIDs). When
using GTIDs, each transaction can be identified and tracked as it is committed on the originating server
and applied by any slaves; this means that it is not necessary when using GTIDs to refer to log files
or positions within those files when starting a new slave or failing over to a new master, which greatly
simplifies these tasks. Because GTID-based replication is completely transaction-based, it is simple
to determine whether masters and slaves are consistent; as long as all transactions committed on a
master are also committed on a slave, consistency between the two is guaranteed. You can use either
statement-based or row-based replication with GTIDs (see Section 17.2.1, “Replication Formats”);
however, for best results, we recommend that you use the row-based format.

This section discusses the following topics:

• How GTIDs are defined and created, and how they are represented in the MySQL Server (see
Section 17.1.3.1, “GTID Concepts”).

Replication with Global Transaction Identifiers

2407

• A general procedure for setting up and starting GTID-based replication (see Section 17.1.3.2,
“Setting Up Replication Using GTIDs”).

• Suggested methods for provisioning new replication servers when using GTIDs (see
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”).

• Restrictions and limitations that you should be aware of when using GTID-based replication (see
Section 17.1.3.4, “Restrictions on Replication with GTIDs”).

For information about MySQL Server options and variables relating to GTID-based replication, see
Section 17.1.6.5, “Global Transaction ID Options and Variables”. See also Section 12.17, “Functions
Used with Global Transaction IDs”, which describes SQL functions supported by MySQL 5.7 for use
with GTIDs.

17.1.3.1 GTID Concepts

A global transaction identifier (GTID) is a unique identifier created and associated with each transaction
committed on the server of origin (master). This identifier is unique not only to the server on which
it originated, but is unique across all servers in a given replication setup. There is a 1-to-1 mapping
between all transactions and all GTIDs.

The following paragraphs provide a basic description of GTIDs. More advanced concepts are covered
later in the following sections:

• GTID Sets

• The mysql.gtid_executed Table

• mysql.gtid_executed Table Compression

A GTID is represented as a pair of coordinates, separated by a colon character (:), as shown here:

GTID = source_id:transaction_id

The source_id identifies the originating server. Normally, the server's server_uuid [2426] is used
for this purpose. The transaction_id is a sequence number determined by the order in which the
transaction was committed on this server; for example, the first transaction to be committed has 1
as its transaction_id, and the tenth transaction to be committed on the same originating server
is assigned a transaction_id of 10. It is not possible for a transaction to have 0 as a sequence
number in a GTID. For example, the twenty-third transaction to be committed originally on the server
with the UUID 3E11FA47-71CA-11E1-9E33-C80AA9429562 has this GTID:

3E11FA47-71CA-11E1-9E33-C80AA9429562:23

This format is used to represent GTIDs in the output of statements such as SHOW SLAVE STATUS
as well as in the binary log. They can also be seen when viewing the log file with mysqlbinlog --
base64-output=DECODE-ROWS or in the output from SHOW BINLOG EVENTS.

As written in the output of statements such as SHOW MASTER STATUS or SHOW SLAVE STATUS, a
sequence of GTIDs originating from the same server may be collapsed into a single expression, as
shown here.

3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5

The example just shown represents the first through fifth transactions originating on the MySQL Server
whose server_uuid [2426] is 3E11FA47-71CA-11E1-9E33-C80AA9429562.

This format is also used to supply the argument required by the START SLAVE options
SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS.

Replication with Global Transaction Identifiers

2408

GTID Sets

A GTID set is a set of global transaction identifiers which is represented as shown here:

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9|A-F]

interval:
 n[-n]

 (n >= 1)

GTID sets are used in the MySQL Server in several ways. For example, the values stored by the
gtid_executed and gtid_purged system variables are represented as GTID sets. In addition, the
functions GTID_SUBSET() and GTID_SUBTRACT() require GTID sets as input. When GTID sets are
returned from server variables, UUIDs are in alphabetical order and numeric intervals are merged and
in ascending order.

GTIDs are always preserved between master and slave. This means that you can always determine
the source for any transaction applied on any slave by examining its binary log. In addition, once a
transaction with a given GTID is committed on a given server, any subsequent transaction having the
same GTID is ignored by that server. Thus, a transaction committed on the master can be applied no
more than once on the slave, which helps to guarantee consistency.

When GTIDs are in use, the slave has no need for any nonlocal data, such as the name of a file on
the master and a position within that file. All necessary information for synchronizing with the master
is obtained directly from the replication data stream. GTIDs replace the file-offset pairs previously
required to determine points for starting, stopping, or resuming the flow of data between master and
slave. therefore, do not include MASTER_LOG_FILE or MASTER_LOG_POS options in the CHANGE
MASTER TO statement used to direct a slave to replicate from a given master; instead it is necessary
only to enable the MASTER_AUTO_POSITION option. For the exact steps needed to configure and start
masters and slaves using GTID-based replication, see Section 17.1.3.2, “Setting Up Replication Using
GTIDs”.

The generation and life cycle of a GTID consist of the following steps:

1. A transaction is executed and committed on the master.

This transaction is assigned a GTID using the master's UUID and the smallest nonzero transaction
sequence number not yet used on this server; the GTID is written to the master's binary log
(immediately preceding the transaction itself in the log).

2. After the binary log data is transmitted to the slave and stored in the slave's relay log (using
established mechanisms for this process—see Section 17.2, “Replication Implementation”, for
details), the slave reads the GTID and sets the value of its gtid_next system variable as this
GTID. This tells the slave that the next transaction must be logged using this GTID.

It is important to note that the slave sets gtid_next in a session context.

3. The slave verifies that this GTID has not already been used to log a transaction in its own binary
log. If this GTID has not been used, the slave then writes the GTID, applies the transaction, and
writes the transaction to its binary log. By reading and checking the transaction's GTID first, before

Replication with Global Transaction Identifiers

2409

processing the transaction itself, the slave guarantees not only that no previous transaction having
this GTID has been applied on the slave, but also that no other session has already read this
GTID but has not yet committed the associated transaction. In other words, multiple clients are not
permitted to apply the same transaction concurrently.

4. Because gtid_next is not empty, the slave does not attempt to generate a GTID for this
transaction but instead writes the GTID stored in this variable—that is, the GTID obtained from the
master—immediately preceding the transaction in its binary log.

The mysql.gtid_executed Table

Beginning with MySQL 5.7.5, GTIDs are stored in a table named gtid_executed, in the mysql
database. A row in this table contains, for each GTID or set of GTIDs that it represents, the UUID of the
originating server, and the starting and ending transaction IDs of the set; for a row referencing only a
single GTID, these last two values are the same.

The mysql.gtid_executed table is created (if it does not already exist) when the MySQL Server is
installed or upgraded, using a CREATE TABLE statement similar to that shown here:

CREATE TABLE gtid_executed (
 source_uuid CHAR(36) NOT NULL,
 interval_start BIGINT(20) NOT NULL,
 interval_end BIGINT(20) NOT NULL,
 PRIMARY KEY (source_uuid, interval_start)
)

Warning

As with other MySQL system tables, do not attempt to create or modify this
table yourself.

GTIDs are stored in the mysql.gtid_executed table only when gtid_mode is ON or
ON_PERMISSIVE. GTIDs are stored in this table without regard to whether binary logging is enabled.
However, the manner in which they are stored differs depending on whether log_bin is ON or OFF:

• If binary logging is disabled (log_bin is OFF), the server stores the GTID belonging to each
transaction together with the transaction in the table.

In addition, when binary logging is disabled, this table is compressed periodically at a user-
configurable rate; see mysql.gtid_executed Table Compression, for more information.

• If binary logging is enabled (log_bin is ON), then in addition to storing the GTIDs in
mysql.gtid_executed, whenever the binary log is rotated or the server is shut down, the server
writes GTIDs for all transactions that were written into the previous binary log into the new binary log.

In the event of the server stopping unexpectedly, the set of GTIDs from the previous binary log is not
saved in the mysql.gtid_executed table. In this case, these GTIDs are added to the table and to
the set of GTIDs in the gtid_executed system variable during recovery.

The mysql.gtid_executed table is reset by RESET MASTER.

mysql.gtid_executed Table Compression

Over the course of time, the mysql.gtid_executed table can become filled with many rows referring
to individual GTIDs that originate on the same server, and whose transaction IDs make up a sequence,
similar to what is shown here:

mysql> SELECT * FROM mysql.gtid_executed;
+--------------------------------------+----------------+--------------+

Replication with Global Transaction Identifiers

2410

| source_uuid | interval_start | interval_end |
|--------------------------------------+----------------+--------------|
3E11FA47-71CA-11E1-9E33-C80AA9429562	37	37
3E11FA47-71CA-11E1-9E33-C80AA9429562	38	38
3E11FA47-71CA-11E1-9E33-C80AA9429562	39	39
3E11FA47-71CA-11E1-9E33-C80AA9429562	40	40
3E11FA47-71CA-11E1-9E33-C80AA9429562	41	41
3E11FA47-71CA-11E1-9E33-C80AA9429562	42	42
3E11FA47-71CA-11E1-9E33-C80AA9429562	43	43
...

Considerable space can be saved if this table is compressed periodically by replacing each such set of
rows with a single row that spans the entire interval of transaction identifiers, like this:

+--------------------------------------+----------------+--------------+
| source_uuid | interval_start | interval_end |
|--------------------------------------+----------------+--------------|
| 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 37 | 43 |
...

When GTIDs are enabled, the server performs this type of compression on the
mysql.gtid_executed table periodically. You can control the number of transactions that are
allowed to elapse before the table is compressed, and thus the compression rate, by setting the
executed_gtids_compression_period system variable. This variable's default value is 1000; this
means that, by default, compression of the table is performed after each 1000 transactions. Setting
executed_gtid_compression_period to 0 prevents the compression from being performed at all;
however, you should be prepared for a potentially large increase in the amount of disk space that may
be required by the gtid_executed table if you do this.

Note

When binary logging is enabled, the value of
executed_gtids_compression_period is not used and the
mysql.gtid_executed table is compressed on each binary log rotation.

Compression of the mysql.gtid_executed table is performed by a dedicated foreground thread that
is created whenever GTIDs are enabled on the server. This thread is not listed in the output of SHOW
PROCESSLIST, but it can be viewed as a row in the threads table, as shown here:

mysql> SELECT * FROM PERFORMANCE_SCHEMA.THREADS WHERE NAME LIKE '%gtid%'\G
*************************** 1. row ***************************
 THREAD_ID: 21
 NAME: thread/sql/compress_gtid_table
 TYPE: FOREGROUND
 PROCESSLIST_ID: 139635685943104
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: Daemon
 PROCESSLIST_TIME: 611
 PROCESSLIST_STATE: Suspending
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES

This thread has the name thread/sql/compress_gtid_table, and normally sleeps until
executed_gtids_compression_period transactions have been executed, then wakes up to
perform compression of the mysql.gtid_executed table as described previously. It then sleeps until
another executed_gtids_compression_period transactions have taken place, then wakes up
to perform the compression again, repeating this loop indefinitely. Setting this value to 0 when binary
logging is disabled means that the thread always sleeps and never wakes up.

Replication with Global Transaction Identifiers

2411

17.1.3.2 Setting Up Replication Using GTIDs

This section describes a process for configuring and starting GTID-based replication in MySQL 5.7.
This is a “cold start” procedure that assumes either that you are starting the replication master for
the first time, or that it is possible to stop it; for information about provisioning replication slaves using
GTIDs from a running master, see Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”. For
information about changing GTID mode on servers online, see Section 17.1.5, “Changing Replication
Modes on Online Servers”.

The key steps in this startup process for the simplest possible GTID replication topology—consisting of
one master and one slave—are as follows:

1. If replication is already running, synchronize both servers by making them read-only.

2. Stop both servers.

3. Restart both servers with GTIDs enabled and the correct options configured.

The mysqld options necessary to start the servers as described are discussed in the example that
follows later in this section.

4. Instruct the slave to use the master as the replication data source and to use auto-positioning, and
then start the slave.

The SQL statements needed to accomplish this step are described in the example that follows later
in this section.

5. Enable read mode again on both servers, so that they can accept updates.

In the following example, two servers are already running as master and slave, using MySQL's binary
log position-based replication protocol. If you are starting with new servers, see Section 17.1.2.2,
“Creating a User for Replication” for information about adding a specific user for replication connections
and Section 17.1.2.1, “Setting the Replication Master Configuration” for information about setting the
server-id. The following examples show how to use startup options when running mysqld. Alternatively
you can store startup options in an option file, see Section 4.2.6, “Using Option Files” for more
information.

Most of the steps that follow require the use of the MySQL root account or another MySQL user
account that has the SUPER privilege. mysqladmin shutdown requires either the SUPER privilege or
the SHUTDOWN privilege.

Step 1: Synchronize the servers. Make the servers read-only. To do this, enable the read_only
system variable by executing the following statement on both servers:

mysql> SET @@global.read_only = ON;

Then, allow the slave to catch up with the master. It is extremely important that you make sure the
slave has processed all updates before continuing.

Step 2: Stop both servers. Stop each server using mysqladmin as shown here, where username
is the user name for a MySQL user having sufficient privileges to shut down the server:

shell> mysqladmin -uusername -p shutdown

Then supply this user's password at the prompt.

Step 3: Restart both servers with GTIDs enabled. To enable GTID-based replication, each server
must be started with GTID mode enabled, by setting the --gtid-mode option to ON, and with the
--enforce-gtid-consistency option enabled to ensure that only statements which are safe for

Replication with Global Transaction Identifiers

2412

GTID-based replication are logged. In addition, you should start the slave with the --skip-slave-
start option before configuring the slave settings. For more information on GTID related options, see
Section 17.1.6.5, “Global Transaction ID Options and Variables”.

It is not mandatory to have binary logging enabled in order to use GTIDs due to the addition of the
The mysql.gtid_executed Table in MySQL 5.7.5. This means that you can have slave servers using
GTIDs but without binary logging. Masters must always have binary logging enabled in order to be able
to replicate. For example, to start a slave with GTIDs enabled but without binary logging, use at least
these options:

shell> mysqld --gtid-mode=ON --enforce-gtid-consistency &

In MySQL 5.7.4 and earlier, binary logging is required to use GTIDs and both master and slave servers
must be started with at least these options:

shell> mysqld --gtid-mode=ON --log-bin --enforce-gtid-consistency &

Depending on your configuration, supply additional options to mysqld.

Step 4: Direct the slave to use the master. Tell the slave to use the master as the replication data
source, and to use GTID-based auto-positioning rather than file-based positioning. Execute a CHANGE
MASTER TO statement on the slave, using the MASTER_AUTO_POSITION option to tell the slave that
transactions will be identified by GTIDs.

You may also need to supply appropriate values for the master's host name and port number as well as
the user name and password for a replication user account which can be used by the slave to connect
to the master; if these have already been set prior to Step 1 and no further changes need to be made,
the corresponding options can safely be omitted from the statement shown here.

mysql> CHANGE MASTER TO
 > MASTER_HOST = host,
 > MASTER_PORT = port,
 > MASTER_USER = user,
 > MASTER_PASSWORD = password,
 > MASTER_AUTO_POSITION = 1;

Neither the MASTER_LOG_FILE option nor the MASTER_LOG_POS option may be used with
MASTER_AUTO_POSITION set equal to 1. Attempting to do so causes the CHANGE MASTER TO
statement to fail with an error. (If you need to revert from GTID-based replication to replication based
on files and positions, the slave uses the current values from the master info log to reconnect to the
master. To change the values being used, set one or both of these options in a CHANGE MASTER TO
statement.)

Assuming that the CHANGE MASTER TO statement has succeeded, you can then start the slave, like
this:

mysql> START SLAVE;

Step 5: Disable read-only mode. Allow the master to begin accepting updates once again by
running the following statement:

mysql> SET @@global.read_only = OFF;

GTID-based replication should now be running, and you can begin (or resume) activity on the master
as before. Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”, discusses creation of new slaves
when using GTIDs.

17.1.3.3 Using GTIDs for Failover and Scaleout

Replication with Global Transaction Identifiers

2413

There are a number of techniques when using MySQL Replication with Global Transaction Identifiers
(GTIDs) for provisioning a new slave which can then be used for scaleout, being promoted to master as
necessary for failover. This section describes the following techniques:

• Simple replication

• Copying data and transactions to the slave

• Injecting empty transactions

• Excluding transactions with gtid_purged

• Restoring GTID mode slaves

Global transaction identifiers were added to MySQL Replication for the purpose of simplifying in
general management of the replication data flow and of failover activities in particular. Each identifier
uniquely identifies a set of binary log events that together make up a transaction. GTIDs play a key role
in applying changes to the database: the server automatically skips any transaction having an identifier
which the server recognizes as one that it has processed before. This behavior is critical for automatic
replication positioning and correct failover.

The mapping between identifiers and sets of events comprising a given transaction is captured in the
binary log. This poses some challenges when provisioning a new server with data from another existing
server. To reproduce the identifier set on the new server, it is necessary to copy the identifiers from
the old server to the new one, and to preserve the relationship between the identifiers and the actual
events. This is neccessary for restoring a slave that is immediately available as a candidate to become
a new master on failover or switchover.

Simple replication. The easiest way to reproduce all identifiers and transactions on a new server
is to make the new server into the slave of a master that has the entire execution history, and enable
global transaction identifiers on both servers. See Section 17.1.3.2, “Setting Up Replication Using
GTIDs”, for more information.

Once replication is started, the new server copies the entire binary log from the master and thus
obtains all information about all GTIDs.

This method is simple and effective, but requires the slave to read the binary log from the master; it
can sometimes take a comparatively long time for the new slave to catch up with the master, so this
method is not suitable for fast failover or restoring from backup. This section explains how to avoid
fetching all of the execution history from the master by copying binary log files to the new server.

Copying data and transactions to the slave. Playing back the entire transaction history can
be time-consuming, and represents a major bottleneck when setting up a new replication slave. To
eliminate this requirement, a snapshot of the data set, the binary logs and the global transaction
information the master contains is imported to the slave. The binary log is played back, after which
replication can be started, allowing the slave to become current with any remaining transactions.

There are several variants of this method, the difference being in the manner in which data dumps and
transactions from binary logs are transfered to the slave, as outlined here:

Data Set Transaction History

• Use the mysql client to import a dump
file created with mysqldump. Use the --
master-data option to include binary logging
information and --set-gtid-purged to AUTO
(the default) or ON, to include information about
executed transactions. You should have --
gtid-mode=ON while importing the dump on
the slave.

If gtid_mode is not ON, restart the server with
GTID mode enabled.

• Import the binary log using mysqlbinlog, with
the --read-from-remote-server and --
read-from-remote-master options.

Replication with Global Transaction Identifiers

2414

Data Set Transaction History
• Stop the slave, copy the contents of the

master's data directory to the slave's data
directory, then restart the slave.

• Copy the master's binary log files to the slave.
You can make copies from the slave using
mysqlbinlog --read-from-remote-
server --raw. These can be read in to the
slave in either of the following ways:

• Update the slave's binlog.index file to
point to the copied log files. Then execute a
CHANGE MASTER TO statement in the mysql
client to point to the first log file, and START
SLAVE to read them.

• Use mysqlbinlog > file (without the
--raw option) to export the binary log files
to SQL files that can be processed by the
mysql client.

See also Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary Log Files”.

This method has the advantage that a new server is available almost immediately; only those
transactions that were committed while the snapshot or dump file was being replayed still need to
be obtained from the existing master. This means that the slave's availability is not instantanteous—
but only a relatively short amount of time should be required for the slave to catch up with these few
remaining transactions.

Copying over binary logs to the target server in advance is usually faster than reading the entire
transaction execution history from the master in real time. However, it may not always be feasible to
move these files to the target when required, due to size or other considerations. The two remaining
methods for provisioning a new slave discussed in this section use other means to transfer information
about transactions to the new slave.

Injecting empty transactions. The master's global gtid_executed variable contains the set
of all transactions executed on the master. Rather than copy the binary logs when taking a snapshot
to provision a new server, you can instead note the content of gtid_executed on the server from
which the snapshot was taken. Before adding the new server to the replication chain, simply commit
an empty transaction on the new server for each transaction identifier contained in the master's
gtid_executed, like this:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';

BEGIN;
COMMIT;

SET GTID_NEXT='AUTOMATIC';

Once all transaction identifiers have been reinstated in this way using empty transactions, you must
flush and purge the slave's binary logs, as shown here, where N is the nonzero suffix of the current
binary log file name:

FLUSH LOGS;
PURGE BINARY LOGS TO 'master-bin.00000N';

You should do this to prevent this server from flooding the replication stream with false transactions in
the event that it is later promoted to master. (The FLUSH LOGS statement forces the creation of a new
binary log file; PURGE BINARY LOGS purges the empty transactions, but retains their identifiers.)

This method creates a server that is essentially a snapshot, but in time is able to become a master
as its binary log history converges with that of the replication stream (that is, as it catches up with the

Replication with Global Transaction Identifiers

2415

master or masters). This outcome is similar in effect to that obtained using the remaining provisioning
method, which we discuss in the next few paragraphs.

Excluding transactions with gtid_purged. The master's global gtid_purged variable contains
the set of all transactions that have been purged from the master's binary log. As with the method
discussed previously (see Injecting empty transactions), you can record the value of gtid_executed
on the server from which the snapshot was taken (in place of copying the binary logs to the new
server). Unlike the previous method, there is no need to commit empty transactions (or to issue PURGE
BINARY LOGS); instead, you can set gtid_purged on the slave directly, based on the value of
gtid_executed on the server from which the backup or snapshot was taken.

As with the method using empty transactions, this method creates a server that is functionally a
snapshot, but in time is able to become a master as its binary log history converges with that of the
replication master or group.

Restoring GTID mode slaves. When restoring a slave in a GTID based replication setup that has
encountered an error, injecting an empty transaction may not solve the problem because an event
does not have a GTID.

Use mysqlbinlog to find the next transaction, which is probably the first transaction in the next log file
after the event. Copy everything up to the COMMIT for that transaction, being sure to include the SET
@@SESSION.GTID_NEXT. Even if you are not using row-based replication, you can still run binary log
row events in the command line client.

Stop the slave and run the transaction you copied. The mysqlbinlog output sets the delimiter to /*!
*/;, so set it back:

 mysql> DELIMITER ;

Restart replication from the correct position automatically:

 mysql> SET GTID_NEXT=automatic;
 mysql> RESET SLAVE;
 mysql> START SLAVE;

17.1.3.4 Restrictions on Replication with GTIDs

Because GTID-based replication is dependent on transactions, some features otherwise available in
MySQL are not supported when using it. This section provides information about restrictions on and
limitations of replication with GTIDs.

Updates involving nontransactional storage engines. When using GTIDs, updates to tables
using nontransactional storage engines such as MyISAM cannot be made in the same statement or
transaction as updates to tables using transactional storage engines such as InnoDB.

This restriction is due to the fact that updates to tables that use a nontransactional storage engine
mixed with updates to tables that use a transactional storage engine within the same transaction can
result in multiple GTIDs being assigned to the same transaction.

Such problems can also occur when the master and the slave use different storage engines for their
respective versions of the same table, where one storage engine is transactional and the other is not.

In any of the cases just mentioned, the one-to-one correspondence between transactions and GTIDs is
broken, with the result that GTID-based replication cannot function correctly.

CREATE TABLE ... SELECT statements. CREATE TABLE ... SELECT is not safe for statement-
based replication. When using row-based replication, this statement is actually logged as two separate

MySQL Multi-Source Replication

2416

events—one for the creation of the table, and another for the insertion of rows from the source table
into the new table just created. When this statement is executed within a transaction, it is possible
in some cases for these two events to receive the same transaction identifier, which means that the
transaction containing the inserts is skipped by the slave. Therefore, CREATE TABLE ... SELECT is
not supported when using GTID-based replication.

Temporary tables. CREATE TEMPORARY TABLE and DROP TEMPORARY TABLE statements are
not supported inside transactions when using GTIDs (that is, when the server was started with the --
enforce-gtid-consistency option). It is possible to use these statements with GTIDs enabled, but
only outside of any transaction, and only with autocommit=1.

Preventing execution of unsupported statements. To prevent execution of statements that
would cause GTID-based replication to fail, all servers must be started with the --enforce-gtid-
consistency option when enabling GTIDs. This causes statements of any of the types discussed
previously in this section to fail with an error.

For information about other required startup options when enabling GTIDs, see Section 17.1.3.2,
“Setting Up Replication Using GTIDs”.

sql_slave_skip_counter is not supported when using GTIDs. If you need to skip transactions, use
the value of the master's gtid_executed variable instead; see Injecting empty transactions, for more
information.

GTID mode and mysqldump. It is possible to import a dump made using mysqldump into a
MySQL Server running with GTID mode enabled, provided that there are no GTIDs in the target
server's binary log.

GTID mode and mysql_upgrade. It is possible but is not recommended to use mysql_upgrade
on a MySQL Server running with --gtid-mode=ON, since mysql_upgrade can make changes to
system tables that use the MyISAM storage engine, which is nontransactional.

17.1.4 MySQL Multi-Source Replication

This section describes MySQL Multi-Source Replication, included in MySQL 5.7.6 and later. Multi-
source replication enables you to replicate from multiple immediate masters in parallel. This section
describes multi-source replication, and how to configure, monitor and troubleshoot it.

17.1.4.1 MySQL Multi-Source Replication Overview

MySQL Multi-Source Replication enables a replication slave to receive transactions from multiple
sources simultaneously. Multi-source replication can be used to back up multiple servers to a
single server, to merge table shards, and consolidate data from multiple servers to a single server.
Multi-source replication does not implement any conflict detection or resolution when applying the
transactions, and those tasks are left to the application if required. In a multi-source replication
topology, a slave creates a replication channel for each master that it should receive transactions from.
See Section 17.2.3, “Replication Channels”. The following sections describe how to set up multi-source
replication.

17.1.4.2 Multi-Source Replication Tutorials

This section provides tutorials on how to configure masters and slaves for multi-source replication, and
how to start, stop and reset multi-source slaves.

Configuring Multi-Source Replication

This section explains how to configure a multi-source replication topology, and provides details
about configuring masters and slaves. Such a topology requires at least two masters and one slave
configured.

MySQL Multi-Source Replication

2417

Masters in a multi-source replication topology can be configured to use either global transaction
identifier (GTID) based replication, or binary log position-based replication. See Section 17.1.3.2,
“Setting Up Replication Using GTIDs” for how to configure a master using GTID based replication. See
Section 17.1.2.1, “Setting the Replication Master Configuration” for how to configure a master using file
position based replication.

Slaves in a multi-source replication topology require TABLE based repositories. Multi-source replication
is not compatible with FILE based repositories. The type of repository being used by mysqld can be
configured either at startup, or dynamically.

To configure the type of repository used by a replication slave at startup, start mysqld with the
following options:

--master-info-repository=TABLE --relay-log-info-repository=TABLE

To modify an existing replication slave that is using a FILE repository to use TABLE repositories,
convert the existing replication repositories dynamically by running the following commands:

STOP SLAVE;
SET GLOBAL master_info_repository = 'TABLE';
SET GLOBAL relay_log_info_repository = 'TABLE';

Adding a GTID Based Master to a Multi-Source Replication Slave

This section assumes you have enabled GTID based transactions on the master using
gtid_mode=ON, enabled a replication user, and ensured that the slave is using TABLE based
replication repositories. Use the CHANGE MASTER TO statement to add a new master to a channel
by using a FOR CHANNEL channel clause. For more information on replication channels, see
Section 17.2.3, “Replication Channels”

For example, to add a new master with the host name master1 using port 3451 to a channel called
master-1:

CHANGE MASTER TO MASTER_HOST='master1', MASTER_USER='rpl', MASTER_PORT=3451, MASTER_PASSWORD='', \
MASTER_AUTO_POSITION = 1 FOR CHANNEL 'master-1';

Multi-source replication is compatible with auto-positioning. See Section 13.4.2.1, “CHANGE MASTER
TO Syntax” for more information.

Repeat this process for each extra master that you want to add to a channel, changing the host name,
port and channel as appropriate.

Adding a Binary Log Based Master to a Multi-Source Replication Slave

This section assumes you have enabled binary logging on the master using --log-bin, enabled
a replication user, noted the current binary log position, and ensured that the slave is using
TABLE based replication repositories. You need to know the current MASTER_LOG_FILE and
MASTER_LOG_POSITION. Use the CHANGE MASTER TO statement to add a new master to a channel
by specifying a FOR CHANNEL channel clause. For example, to add a new master with the host
name master1 using port 3451 to a channel called master-1:

CHANGE MASTER TO MASTER_HOST='master1', MASTER_USER='rpl', MASTER_PORT=3451, MASTER_PASSWORD='' \
MASTER_LOG_FILE='master1-bin.000006', MASTER_LOG_POS=628 FOR CHANNEL 'master-1';

Repeat this process for each extra master that you want to add to a channel, changing the host name,
port and channel as appropriate.

Starting Multi-Source Replication Slaves

MySQL Multi-Source Replication

2418

Once you have added all of the channels you want to use as replication masters, use a START SLAVE
thread_types statement to start replication. When you have enabled multiple channels on a slave,
you can choose to either start all channels, or select a specific channel to start.

• To start all currently configured replication channels:

START SLAVE thread_types;

• To start only a named channel, use a FOR CHANNEL channel clause:

START SLAVE thread_types FOR CHANNEL channel;

Use the thread_types option to choose specific threads you want the above statements to start on
the slave. See Section 13.4.2.6, “START SLAVE Syntax” for more information.

Stopping Multi-Source Replication Slaves

The STOP SLAVE statement can be used to stop a multi-source replication slave. By default, if you use
the STOP SLAVE statement on a multi-source replication slave all channels are stopped. Optionally,
use the FOR CHANNEL channel clause to stop only a specific channel.

• To stop all currently configured replication channels:

STOP SLAVE thread_types;

• To stop only a named channel, use a FOR CHANNEL channel clause:

STOP SLAVE thread_types FOR CHANNEL channel;

Use the thread_types option to choose specific threads you want the above statements to stop on
the slave. See Section 13.4.2.7, “STOP SLAVE Syntax” for more information.

Resetting Multi-Source Replication Slaves

The RESET SLAVE statement can be used to reset a multi-source replication slave. By default, if you
use the RESET SLAVE statement on a multi-source replication slave all channels are reset. Optionally,
use the FOR CHANNEL channel clause to reset only a specific channel.

• To reset all currently configured replication channels:

RESET SLAVE;

• To reset only a named channel, use a FOR CHANNEL channel clause:

RESET SLAVE FOR CHANNEL channel;

See Section 13.4.2.4, “RESET SLAVE Syntax” for more information.

17.1.4.3 Multi-Source Replication Monitoring

To monitor the status of replication channels the following options exist:

• Using the replication Performance Schema tables. The first column of these tables is
Channel_Name. This enables you to write complex queries based on Channel_Name as a key. See
Section 21.9.10, “Performance Schema Replication Tables”.

• Using SHOW SLAVE STATUS FOR CHANNEL channel_name. By default, if the FOR CHANNEL
channel_name clause is not used, this statement shows the slave status for all channels with

MySQL Multi-Source Replication

2419

one row per channel. The identifier channel_name is added as a column in the result set. If a
FOR CHANNEL channel_name clause is provided, the results show the status of only the named
replication channel.

Note

The SHOW VARIABLES statement does not work with multiple replication
channels. The information that was available through these variables has been
migrated to the replication performance tables. Using a SHOW VARIABLES
statement in a topology with multiple channels shows the status of only the
default channel.

Monitoring Channels Using Performance Schema Tables

This section explains how to use the replication Performance Schema tables to monitor channels. You
can choose to monitor all channels, or a subset of the existing channels.

To monitor the connection status of all channels:

mysql> SELECT * FROM replication_connection_status\G;
*************************** 1. row ***************************
CHANNEL_NAME: master1
GROUP_NAME:
SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
*************************** 2. row ***************************
CHANNEL_NAME: master2
GROUP_NAME:
SOURCE_UUID: 7475e474-a223-11e4-a978-0811960cc264
THREAD_ID: 26
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 7475e474-a223-11e4-a978-0811960cc264:4-6
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
2 rows in set (0.00 sec)

In the above output there are two channels enabled, and as shown by the CHANNEL_NAME field they
are called master1 and master2.

The addition of the CHANNEL_NAME field enables you to query the Performance Schema tables
for a specific channel. To monitor the connection status of a named channel, use a WHERE
channel_name=channel clause:

mysql> SELECT * FROM replication_connection_status WHERE channel_name='master1'\G
*************************** 1. row ***************************
CHANNEL_NAME: master1
GROUP_NAME:
SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0

Changing Replication Modes on Online Servers

2420

LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
1 row in set (0.00 sec)

Similarly, the WHERE channel_name=channel clause can be used to monitor the other replication
Performance Schema tables for a specific channel. For more information, see Section 21.9.10,
“Performance Schema Replication Tables”.

17.1.4.4 Multi-Source Replication Error Messages

New error codes and messages have been added to MySQL 5.7.6 to provide information about
errors encountered in a multi-source replication topology. These error codes and messages are only
emitted when multi-source replication is enabled, and provide information related to the channel which
generated the error. For example:

Slave is already running and Slave is already stopped have been replaced
with Replication thread(s) for channel channel_name are already running
and Replication threads(s) for channel channel_name are already stopped
respectively.

The server log messages have also been changed to indicate which channel the log messages relate
to. This makes debugging and tracing easier.

17.1.5 Changing Replication Modes on Online Servers

This section describes how to change the mode of replication being used without having to take the
server offline. This is new functionality added in MySQL 5.7.6.

17.1.5.1 Replication Mode Concepts

To be able to safely configure the replication mode of an online server it is important to understand
some key concepts of replication. This section explains these concepts and is essential reading before
attempting to modify the replication mode of an online server.

The modes of replication available in MySQL rely on different techniques for identifying transactions
which are logged. The types of transactions used by replication are as follows:

• GTID transactions are identified by a global transaction identifier (GTID) in the form UUID:NUMBER.
Every GTID transaction in a log is always preceded by a Gtid_log_event. GTID transactions can
be addressed using either the GTID or using the file name and position.

• Anonymous transactions do not have a GTID assigned, and MySQL 5.7.6 and later ensures that
every anonymous transaction in a log is preceded by an Anonymous_gtid_log_event. In
previous versions, anonymous transactions were not preceded by any particular event. Anonymous
transactions can only be addressed using file name and position.

When using GTIDs you can take advantage of auto-positioning and automatic fail-over, as well as use
WAIT_FOR_EXECUTED_GTID_SET(), session_track_gtids, and monitor replicated transactions
using Performance Schema tables. With GTIDs enabled you cannot use sql_slave_skip_counter,
instead use empty transactions.

The changes introduced by MySQL 5.7.6 mean that transactions in a relay log that was received
from a master running a previous version of MySQL may not be preceded by any particular event
at all, but after being replayed and logged in the slave's binary log, they are preceded with an
Anonymous_gtid_log_event.

The ability to configure the replication mode online means that the gtid_mode and
enforce_gtid_consistency variables are now both dynamic and can be set by SUPER from
a top-level statement. In previous versions, both of these variables could only be configured using

Changing Replication Modes on Online Servers

2421

the appropriate option at server start, meaning that changes to the replication mode required a
server restart. In all versions gtid_mode could be set to ON or OFF, which corresponded to whether
GTIDs were used to identify transactions or not. When gtid_mode=ON it is not possible to replicate
anonymous transactions, and when gtid_mode=OFF only anonymous transactions can be replicated.
As of MySQL 5.7.6, the gtid_mode variable has two additional states, OFF_PERMISSIVE and
ON_PERMISSIVE. When gtid_mode=OFF_PERMISSIVE then new transactions are anonymous
while permitting replicated transactions to be either GTID or anonymous transactions. When
gtid_mode=ON_PERMISSIVE then new transactions use GTIDs while permitting replicated
transactions to be either GTID or anonymous transactions. This means it is possible to have a
replication topology that has servers using both anonymous and GTID transactions. For example a
master with gtid_mode=ON could be replicating to a slave with gtid_mode=ON_PERMISSIVE. The
valid values for gtid_mode are as follows and in this order:

• OFF

• OFF_PERMISSIVE

• ON_PERMISSIVE

• ON

It is important to note that the state of gtid_mode can only be changed by one step at a time based
on the above order. For example, if gtid_mode is currently set to OFF_PERMISSIVE, it is possible
to change to OFF or ON_PERMISSIVE but not to ON. This is to ensure that the process of changing
from anonymous transactions to GTID transactions online is correctly handled by the server. When you
switch between gtid_mode=ON and gtid_mode=OFF, the GTID state (in other words the value of
gtid_executed) is persistent. This ensures that the GTID set that has been applied by the server is
always retained, regardless of changes between types of gtid_mode.

As part of the changes introduced by MySQL 5.7.6, the fields related to GTIDs have been modified
so that they display the correct information regardless of the currently selected gtid_mode.
This means that fields which display GTID sets, such as gtid_executed, gtid_purged,
RECEIVED_TRANSACTION_SET in the replication_connection_status Performance Schema
table, and the GTID related results of SHOW SLAVE STATUS, now return the empty string when
there are no GTIDs present. Fields that display a single GTID, such as CURRENT_TRANSACTION
in the replication_applier_status_by_worker Performance Schema table, now display
ANONYMOUS when GTID transactions are not being used.

Replication from a master using gtid_mode=ON provides the ability to use auto-positioning, configured
using the CHANGE MASTER TO MASTER_AUTO_POSITION = 1; statement. The replication topology
being used impacts on whether it is possible to enable auto-positioning or not, as this feature relies on
GTIDs and is not compatible with anonymous transactions. An error is generated if auto-positioning
is enabled and an anonymous transaction is encountered. It is strongly recommended to ensure
there are no anonymous transactions remaining in the topology before enabling auto-positioning, see
Section 17.1.5.2, “Enabling GTID Transactions Online”. The valid combinations of gtid_mode and
auto-positioning on master and slave are shown in the following table, where the master's gtid_mode
is shown on the horizontal and the slave's gtid_mode is on the vertical:

Table 17.1 Valid Combinations of Master and Slave gtid_mode

Master/Slave
gtid_mode

OFF OFF_PERMISSIVE ON_PERMISSIVE ON

OFF Y Y N N

OFF_PERMISSIVE Y Y Y Y*

ON_PERMISSIVE Y Y Y Y*

ON N N Y Y*

In the above table, the entries are:

Changing Replication Modes on Online Servers

2422

• Y: the gtid_mode of master and slave is compatible

• N: the gtid_mode of master and slave is not compatible

• *: auto-positioning can be used

The currently selected gtid_mode also impacts on the gtid_next variable. The following table
shows the behavior of the server for the different values of gtid_mode and gtid_next.

Table 17.2 Valid Combinations of gtid_mode and gtid_next

gtid_next AUTOMATIC

binary log
on

AUTOMATIC

binary log off

ANONYMOUS UUID:NUMBER

OFF ANONYMOUSANONYMOUS ANONYMOUS Error

OFF_PERMISSIVE ANONYMOUSANONYMOUS ANONYMOUS UUID:NUMBER

ON_PERMISSIVE New GTID ANONYMOUS ANONYMOUS UUID:NUMBER

ON New GTID ANONYMOUS Error UUID:NUMBER

In the above table, the entries are:

• ANONYMOUS: generate an anonymous transaction.

• Error: generate an error and fail to execute SET GTID_NEXT.

• UUID:NUMBER: generate a GTID with the specified UUID:NUMBER.

• New GTID: generate a GTID with an automatically generated number.

When the binary log is off and gtid_next is set to AUTOMATIC, then no GTID is generated. This is
consistent with the behavior of previous versions.

17.1.5.2 Enabling GTID Transactions Online

This section describes how to enable GTID transactions, and optionally auto-positioning, on servers
that are already online and using anonymous transactions. This procedure does not require taking the
server offline and is suited to use in production. However, if you have the possibility to take the servers
offline when enabling GTID transactions that process is easier.

Before you start, ensure that the servers meet the following pre-conditions:

• All servers in your topology must use MySQL 5.7.6 or later. You cannot enable GTID transactions
online on any single server unless all servers which are in the topology are using this version.

• All servers have gtid_mode set to the default value OFF.

The following procedure can be paused at any time and later resumed where it was, or reversed by
jumping to the corresponding step of Section 17.1.5.3, “Disabling GTID Transactions Online”, the
online procedure to disable GTIDs. This makes the procedure fault-tolerant because any unrelated
issues that may appear in the middle of the procedure can be handled as usual, and then the
procedure continued where it was left off.

Note

It is crucial that you complete every step before continuing to the next step.

To enable GTID transactions:

Changing Replication Modes on Online Servers

2423

1. On each server, execute:

SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = WARN;

Let the server run for a while with your normal workload and monitor the logs. If this step causes
any warnings in the log, adjust your application so that it only uses GTID-compatible features and
does not generate any warnings.

Important

This is the first important step. You must ensure that no warnings are being
generated in the error logs before going to the next step.

2. On each server, execute:

SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = ON;

3. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF_PERMISSIVE;

It does not matter which server executes this statement first, but it is important that all servers
complete this step before any server begins the next step.

4. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON_PERMISSIVE;

It does not matter which server executes this statement first.

5. On each server, wait until the status variable ONGOING_ANONYMOUS_TRANSACTION_COUNT is
zero. This can be checked using:

SHOW STATUS LIKE 'ONGOING_ANONYMOUS_TRANSACTION_COUNT';

Note

On a replication slave, it is theoretically possible that this shows zero and
then non-zero again. This is not a problem, it suffices that it shows zero
once.

6. Wait for all transactions generated up to step 5 to replicate to all servers. You can do this without
stopping updates: the only important thing is that all anonymous transactions get replicated.

See Section 17.1.5.4, “Verifying Replication of Anonymous Transactions” for one method of
checking that all anonymous transactions have replicated to all servers.

7. If you use binary logs for anything other than replication, for example point in time backup and
restore, wait until you do not need the old binary logs having transactions without GTIDs.

For instance, after step 6 has completed, you can execute FLUSH LOGS on the server where you
are taking backups. Then either explicitly take a backup or wait for the next iteration of any periodic
backup routine you may have set up.

Ideally, wait for the server to purge all binary logs that existed when step 6 was completed. Also
wait for any backup taken before step 6 to expire.

Important

This is the second important point. It is vital to understand that binary logs
containing anonymous transactions, without GTIDs cannot be used after the
next step. After this step, you must be sure that transactions without GTIDs
do not exist anywhere in the topology.

Changing Replication Modes on Online Servers

2424

8. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON;

9. On each server, add gtid-mode=ON to my.cnf.

You are now guaranteed that all transactions have a GTID (except transactions generated in step
5 or earlier, which have already been processed). To start using the GTID protocol so that you can
later perform automatic fail-over, execute the following on each slave. Optionally, if you use multi-
source replication, do this for each channel and include the FOR CHANNEL channel clause:

STOP SLAVE [FOR CHANNEL 'channel'];
CHANGE MASTER TO MASTER_AUTO_POSITION = 1 [FOR CHANNEL 'channel'];
START SLAVE [FOR CHANNEL 'channel'];

17.1.5.3 Disabling GTID Transactions Online

This section describes how to disable GTID transactions on servers that are already online. This
procedure does not require taking the server offline and is suited to use in production. However, if you
have the possibility to take the servers offline when disabling GTIDs mode that process is easier.

The process is similar to enabling GTID transactions while the server is online, but reversing the steps.
The only thing that differs is the point at which you wait for logged transactions to replicate.

Before you start, ensure that the servers meet the following pre-conditions:

• All servers in your topology must use MySQL 5.7.6 or later. You cannot disable GTID transactions
online on any single server unless all servers which are in the topology are using this version.

• All servers have gtid_mode set to ON.

1. Execute the following on each slave, and if you using multi-source replication, do it for each
channel and include the FOR CHANNEL channel clause:

STOP SLAVE [FOR CHANNEL 'channel'];
CHANGE MASTER TO MASTER_AUTO_POSITION = 0, MASTER_LOG_FILE = file, \
MASTER_LOG_POS = position [FOR CHANNEL 'channel'];
START SLAVE [FOR CHANNEL 'channel'];

2. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON_PERMISSIVE;

3. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF_PERMISSIVE;

4. On each server, wait until the variable @@GLOBAL.GTID_OWNED is equal to the empty string.
This can be checked using:

SELECT @@GLOBAL.GTID_OWNED;

On a replication slave, it is theoretically possible that this is empty and then nonempty again. This is
not a problem, it suffices that it is empty once.

5. Wait for all transactions that currently exist in any binary log to replicate to all slaves. See
Section 17.1.5.4, “Verifying Replication of Anonymous Transactions” for one method of checking
that all anonymous transactions have replicated to all servers.

6. If you use binary logs for anything else than replication, for example to do point in time backup or
restore: wait until you do not need the old binary logs having GTID transactions.

Changing Replication Modes on Online Servers

2425

For instance, after step 5 has completed, you can execute FLUSH LOGS on the server where you
are taking the backup. Then either explicitly take a backup or wait for the next iteration of any
periodic backup routine you may have set up.

Ideally, wait for the server to purge all binary logs that existed when step 5 was completed. Also
wait for any backup taken before step 5 to expire.

Important

This is the one important point during this procedure. It is important to
understand that logs containing GTID transactions cannot be used after the
next step. Before proceeding you must be sure that GTID transactions do
not exist anywhere in the topology.

7. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF;

8. On each server, set gtid-mode=OFF in my.cnf.

If you want to set enforce_gtid_consistency=OFF, you can do so now. Optionally add
enforce_gtid_consistency=OFF to your configuration file.

If you want to downgrade to an earlier version of MySQL, you can do so now, using the normal
downgrade procedure.

17.1.5.4 Verifying Replication of Anonymous Transactions

This section explains how to monitor a replication topology and verify that all anonymous transactions
have been replicated. This is helpful when changing the replication mode online as you can verify that it
is safe to change to GTID transactions.

There are several possible ways to wait for transactions to replicate:

The simplest method, which works regardless of your topology but relies on timing is as follows: if you
are sure that the slave never lags more than N seconds, just wait for a bit more than N seconds. Or
wait for a day, or whatever time period you consider safe for your deployment.

A safer method in the sense that it does not depend on timing: if you only have a master with one or
more slaves, do the following:

1. On the master, execute:

SHOW MASTER STATUS;

Note down the values in the File and Position column.

2. On every slave, use the file and position information from the master to execute:

SELECT MASTER_POS_WAIT(file, position);

If you have a master and multiple levels of slaves, or in other words you have slaves of slaves, repeat
step 2 on each level, starting from the master, then all the direct slaves, then all the slaves of slaves,
and so on.

If you use a circular replication topology where multiple servers may have write clients, perform step 2
for each master-slave connection, until you have completed the full circle. Repeat the whole process so
that you do the full circle twice.

For example, suppose you have three servers A, B, and C, replicating in a circle so that A -> B -> C ->
A. The procedure is then:

Replication and Binary Logging Options and Variables

2426

• Do step 1 on A and step 2 on B.

• Do step 1 on B and step 2 on C.

• Do step 1 on C and step 2 on A.

• Do step 1 on A and step 2 on B.

• Do step 1 on B and step 2 on C.

• Do step 1 on C and step 2 on A.

17.1.6 Replication and Binary Logging Options and Variables

The following sections contain information about mysqld options and server variables that are used in
replication and for controlling the binary log. Options and variables for use on replication masters and
replication slaves are covered separately, as are options and variables relating to binary logging and
global transaction identifiers (GTIDs). A set of quick-reference tables providing basic information about
these options and variables is also included.

 Of particular importance is the --server-id [2426] option.

Command-Line Format --server-id=#

Name server_id

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

This option is common to both master and slave replication servers, and is used in replication to
enable master and slave servers to identify themselves uniquely. For additional information, see
Section 17.1.6.2, “Replication Master Options and Variables”, and Section 17.1.6.3, “Replication Slave
Options and Variables”.

On the master and each slave, you must use the --server-id [2426] option to establish a unique
replication ID in the range from 1 to 232 − 1. “Unique”, means that each ID must be different from every
other ID in use by any other replication master or slave. For example, server-id=3.

In MySQL 5.7.2 and earlier, if you start a master server without using --server-id [2426] to set its
ID, the default ID is 0. In this case, the master refuses connections from all slaves, slaves refuse to
connect to the master, and the server sets the server_id system variable to 1. In MySQL 5.7.3 and
later, the --server-id must be used if binary logging is enabled, and a value of 0 is not changed by
the server. If you specify --server-id [2426] without an argument, the effect is the same as using
0. In either case, if the server_id is 0, binary logging takes place, but slaves cannot connect to the
master, nor can any other servers connect to it as slaves. (Bug #11763963, Bug #56718)

For more information, see Setting the Replication Slave Configuration.

 server_uuid [2426]

In MySQL 5.7, the server generates a true UUID in addition to the --server-id [2426] supplied by
the user. This is available as the global, read-only variable server_uuid [2426].

Replication and Binary Logging Options and Variables

2427

Note

The presence of the server_uuid [2426] system variable in MySQL 5.7
does not change the requirement for setting a unique --server-id [2426]
for each MySQL server as part of preparing and running MySQL replication, as
described earlier in this section.

Name server_uuid [2426]

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

When starting, the MySQL server automatically obtains a UUID as follows:

1. Attempt to read and use the UUID written in the file data_dir/auto.cnf (where data_dir is
the server's data directory).

2. If data_dir/auto.cnf is not found, generate a new UUID and save it to this file, creating the file
if necessary.

The auto.cnf file has a format similar to that used for my.cnf or my.ini files. In MySQL 5.7,
auto.cnf has only a single [auto] section containing a single server_uuid [2426] setting and
value; the file's contents appear similar to what is shown here:

[auto]
server_uuid=8a94f357-aab4-11df-86ab-c80aa9429562

Important

The auto.cnf file is automatically generated; do not attempt to write or modify
this file.

When using MySQL replication, masters and slaves know each other's UUIDs. The value of a slave's
UUID can be seen in the output of SHOW SLAVE HOSTS. Once START SLAVE has been executed, the
value of the master's UUID is available on the slave in the output of SHOW SLAVE STATUS.

Note

Issuing a STOP SLAVE or RESET SLAVE statement does not reset the master's
UUID as used on the slave.

A server's server_uuid is also used in GTIDs for transactions originating on that server. For more
information, see Section 17.1.3, “Replication with Global Transaction Identifiers”.

When starting, the slave I/O thread generates an error and aborts if its master's UUID is equal to its
own unless the --replicate-same-server-id option has been set. In addition, the slave I/O
thread generates a warning if either of the following is true:

• No master having the expected server_uuid [2426] exists.

• The master's server_uuid [2426] has changed, although no CHANGE MASTER TO statement has
ever been executed.

17.1.6.1 Replication and Binary Logging Option and Variable Reference

The following tables list basic information about the MySQL command-line options and system
variables applicable to replication and the binary log.

Replication and Binary Logging Options and Variables

2428

Table 17.3 Summary of Replication options and variables in MySQL 5.7

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

abort-slave-event-count

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

binlog_gtid_simple_recovery

Yes Yes No

Yes Global No

DESCRIPTION: Controls how binary logs are iterated during GTID recovery

Com_change_master

No No Yes

No Both No

DESCRIPTION: Count of CHANGE MASTER TO statements

Com_show_master_status

No No Yes

No Both No

DESCRIPTION: Count of SHOW MASTER STATUS statements

Com_show_new_master

No No Yes

No Both No

DESCRIPTION: Count of SHOW NEW MASTER statements

Com_show_slave_hosts

No No Yes

No Both No

DESCRIPTION: Count of SHOW SLAVE HOSTS statements

Com_show_slave_status

No No Yes

No Both No

DESCRIPTION: Count of SHOW SLAVE STATUS statements

Com_show_slave_status_nonblocking

No No Yes

No Both No

DESCRIPTION: Count of SHOW SLAVE STATUS NONBLOCKING statements

Com_slave_start

No No Yes

No Both No

DESCRIPTION: Count of START SLAVE statements

Com_slave_stop

Replication and Binary Logging Options and Variables

2429

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No No Yes

No Both No

DESCRIPTION: Count of STOP SLAVE statements

disconnect-slave-event-count

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

enforce-gtid-consistency

Yes Yes No

Yes Global Yes

DESCRIPTION: Prevents execution of statements that cannot be logged in a transactionally safe
manner

enforce_gtid_consistency

Yes Yes No

Yes Global Yes

DESCRIPTION: Prevents execution of statements that cannot be logged in a transactionally safe
manner

executed-gtids-compression-period

Yes No No

Yes No

DESCRIPTION: Deprecated and will be removed in a future version. Use the renamed gtid-executed-
compression-period instead.

executed_gtids_compression_period

No Yes No

No Global Yes

DESCRIPTION: Deprecated and will be removed in a future version. Use the renamed
gtid_executed_compression_period instead.

gtid-executed-compression-period

Yes No No

Yes No

DESCRIPTION: Compress gtid_executed table each time this many transactions have occurred. 0
means never compress this table. Applies only when binary logging is disabled.

gtid-mode

Yes Yes No

Yes Global Yes

DESCRIPTION: Controls whether GTID based logging is enabled and what type of transactions the
logs can contain

gtid_executed

No Yes No

No Global No

Replication and Binary Logging Options and Variables

2430

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Global: All GTIDs in the binary log (global) or current transaction (session). Read-
only.

gtid_executed_compression_period

No Yes No

No Global Yes

DESCRIPTION: Compress gtid_executed table each time this many transactions have occurred. 0
means never compress this table. Applies only when binary logging is disabled.

gtid_mode

No Yes No

No Global Yes

DESCRIPTION: Controls whether GTID based logging is enabled and what type of transactions the
logs can contain

gtid_next

No Yes No

No Session Yes

DESCRIPTION: Specifies the GTID for the next statement to execute. See documentation for details.

gtid_owned

No Yes No

No Both No

DESCRIPTION: The set of GTIDs owned by this client (session), or by all clients, together with the
thread ID of the owner (global). Read-only.

gtid_purged

No Yes No

No Global Yes

DESCRIPTION: The set of all groups that have been purged from the binary log.

init_slave

Yes Yes No

Yes Global Yes

DESCRIPTION: Statements that are executed when a slave connects to a master

log-slave-updates

Yes Yes No

Yes Global No

DESCRIPTION: This option tells the slave to log the updates performed by its SQL thread to its own
binary log

log_slave_updates

Yes Yes No

Yes Global No

DESCRIPTION: Tells whether the slave should log the updates performed by its SQL thread to its
own binary log. Read-only; set using the --log-slave-updates server option.

master-info-file

Replication and Binary Logging Options and Variables

2431

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes No No

Yes No

DESCRIPTION: The location and name of the file that remembers the master and where the I/O
replication thread is in the master's binary logs

master-info-repository

Yes No No

Yes No

DESCRIPTION: Whether to write master status information and replication I/O thread location in the
master's binary logs to a file or table.

master-retry-count

Yes No No

Yes No

DESCRIPTION: Number of tries the slave will make to connect to the master before giving up

master_info_repository

Yes Yes No

Yes Global Yes

DESCRIPTION: Whether to write master status information and replication I/O thread location in the
master's binary logs to a file or table.

relay-log

Yes Yes No

Yes Global No

DESCRIPTION: The location and base name to use for relay logs

relay-log-index

Yes Yes No

Yes Global No

DESCRIPTION: The location and name to use for the file that keeps a list of the last relay logs

relay-log-info-file

Yes No No

Yes No

DESCRIPTION: The location and name of the file that remembers where the SQL replication thread
is in the relay logs

relay-log-info-repository

Yes No No

Yes No

DESCRIPTION: Whether to write the replication SQL thread's location in the relay logs to a file or a
table.

relay-log-recovery

Yes No No

Yes No

Replication and Binary Logging Options and Variables

2432

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Enables automatic recovery of relay log files from master at startup

relay_log_basename

No Yes No

No Global No

DESCRIPTION: Complete path to relay log, including filename

relay_log_index

Yes Yes No

Yes Global No

DESCRIPTION: The name of the relay log index file.

relay_log_info_file

Yes Yes No

Yes Global No

DESCRIPTION: The name of the file in which the slave records information about the relay logs.

relay_log_info_repository

No Yes No

No Global Yes

DESCRIPTION: Whether to write the replication SQL thread's location in the relay logs to a file or a
table.

relay_log_purge

Yes Yes No

Yes Global Yes

DESCRIPTION: Determines whether relay logs are purged

relay_log_recovery

Yes Yes No

Yes Global Yes

DESCRIPTION: Whether automatic recovery of relay log files from master at startup is enabled; must
be enabled for a crash-proof slave.

relay_log_space_limit

Yes Yes No

Yes Global No

DESCRIPTION: Maximum space to use for all relay logs

replicate-do-db

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread to restrict replication to the specified database

replicate-do-table

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread to restrict replication to the specified table

Replication and Binary Logging Options and Variables

2433

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

replicate-ignore-db

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread not to replicate to the specified database

replicate-ignore-table

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread not to replicate to the specified table

replicate-rewrite-db

Yes No No

Yes No

DESCRIPTION: Updates to a database with a different name than the original

replicate-same-server-id

Yes No No

Yes No

DESCRIPTION: In replication, if set to 1, do not skip events having our server id

replicate-wild-do-table

Yes No No

Yes No

DESCRIPTION: Tells the slave thread to restrict replication to the tables that match the specified
wildcard pattern

replicate-wild-ignore-table

Yes No No

Yes No

DESCRIPTION: Tells the slave thread not to replicate to the tables that match the given wildcard
pattern

report-host

Yes Yes No

Yes Global No

DESCRIPTION: Host name or IP of the slave to be reported to the master during slave registration

report-password

Yes Yes No

Yes Global No

DESCRIPTION: An arbitrary password that the slave server should report to the master. Not the
same as the password for the MySQL replication user account

report-port

Yes Yes No

Yes Global No

DESCRIPTION: Port for connecting to slave reported to the master during slave registration

Replication and Binary Logging Options and Variables

2434

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

report-user

Yes Yes No

Yes Global No

DESCRIPTION: An arbitrary user name that a slave server should report to the master. Not the same
as the name used with the MySQL replication user account.

Rpl_semi_sync_master_clients

No No Yes

No Global No

DESCRIPTION: Number of semisynchronous slaves

rpl_semi_sync_master_enabled

No Yes No

No Global Yes

DESCRIPTION: Whether semisynchronous replication is enabled on master

Rpl_semi_sync_master_net_avg_wait_time

No No Yes

No Global No

DESCRIPTION: The average time the master waited for a slave reply

Rpl_semi_sync_master_net_wait_time

No No Yes

No Global No

DESCRIPTION: The total time the master waited for slave replies

Rpl_semi_sync_master_net_waits

No No Yes

No Global No

DESCRIPTION: The total number of times the master waited for slave replies

Rpl_semi_sync_master_no_times

No No Yes

No Global No

DESCRIPTION: Number of times the master turned off semisynchronous replication

Rpl_semi_sync_master_no_tx

No No Yes

No Global No

DESCRIPTION: Number of commits not acknowledged successfully

Rpl_semi_sync_master_status

No No Yes

No Global No

DESCRIPTION: Whether semisynchronous replication is operational on master

Rpl_semi_sync_master_timefunc_failures

Replication and Binary Logging Options and Variables

2435

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No No Yes

No Global No

DESCRIPTION: Number of times the master failed when calling time functions

rpl_semi_sync_master_timeout

No Yes No

No Global Yes

DESCRIPTION: Number of milliseconds to wait for slave acknowledgment

rpl_semi_sync_master_trace_level

No Yes No

No Global Yes

DESCRIPTION: The semisynchronous replication debug trace level on the master

Rpl_semi_sync_master_tx_avg_wait_time

No No Yes

No Global No

DESCRIPTION: The average time the master waited for each transaction

Rpl_semi_sync_master_tx_wait_time

No No Yes

No Global No

DESCRIPTION: The total time the master waited for transactions

Rpl_semi_sync_master_tx_waits

No No Yes

No Global No

DESCRIPTION: The total number of times the master waited for transactions

rpl_semi_sync_master_wait_for_slave_count

No Yes No

No Global Yes

DESCRIPTION: How many slave acknowledgments the master must receive per transaction before
proceeding

rpl_semi_sync_master_wait_no_slave

No Yes No

No Global Yes

DESCRIPTION: Whether master waits for timeout even with no slaves

rpl_semi_sync_master_wait_point

No Yes No

No Global Yes

DESCRIPTION: The wait point for slave transaction receipt acknowledgment

Rpl_semi_sync_master_wait_pos_backtraverse

No No Yes

Replication and Binary Logging Options and Variables

2436

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No Global No

DESCRIPTION: The total number of times the master waited for an event with binary coordinates
lower than events waited for previously

Rpl_semi_sync_master_wait_sessions

No No Yes

No Global No

DESCRIPTION: Number of sessions currently waiting for slave replies

Rpl_semi_sync_master_yes_tx

No No Yes

No Global No

DESCRIPTION: Number of commits acknowledged successfully

rpl_semi_sync_slave_enabled

No Yes No

No Global Yes

DESCRIPTION: Whether semisynchronous replication is enabled on slave

Rpl_semi_sync_slave_status

No No Yes

No Global No

DESCRIPTION: Whether semisynchronous replication is operational on slave

rpl_semi_sync_slave_trace_level

No Yes No

No Global Yes

DESCRIPTION: The semisynchronous replication debug trace level on the slave

rpl_stop_slave_timeout

Yes Yes No

Yes Global Yes

DESCRIPTION: Set the number of seconds that STOP SLAVE waits before timing out.

server_uuid [2426]

No Yes No

No Global No

DESCRIPTION: The server's globally unique ID, automatically (re)generated at server start

show-slave-auth-info

Yes No No

Yes No

DESCRIPTION: Show user name and password in SHOW SLAVE HOSTS on this master

simplified_binlog_gtid_recovery

Yes Yes No

Yes Global No

Replication and Binary Logging Options and Variables

2437

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Controls how binary logs are iterated during GTID recovery

skip-slave-start

Yes No No

Yes No

DESCRIPTION: If set, slave is not autostarted

slave-checkpoint-group

Yes No No

Yes No

DESCRIPTION: Maximum number of transactions processed by a multi-threaded slave before a
checkpoint operation is called to update progress status. Not supported by MySQL Cluster.

slave-checkpoint-period

Yes No No

Yes No

DESCRIPTION: Update progress status of multi-threaded slave and flush relay log info to disk after
this number of milliseconds. Not supported by MySQL Cluster.

slave-load-tmpdir

Yes Yes No

Yes Global No

DESCRIPTION: The location where the slave should put its temporary files when replicating a LOAD
DATA INFILE statement

slave-max-allowed-packet

Yes No No

Yes No

DESCRIPTION: Maximum size, in bytes, of a packet that can be sent from a replication master to a
slave; overrides max_allowed_packet.

slave_net_timeout

Yes Yes No

Yes Global Yes

DESCRIPTION: Number of seconds to wait for more data from a master/slave connection before
aborting the read

slave-parallel-type

Yes No No

Yes No

DESCRIPTION: Tells the slave to use database partioning (DATABASE) or timestamp information
(LOGICAL_CLOCK) from the master to parallelize transactions. The default is DATABASE.

slave-parallel-workers

Yes No No

Yes No

DESCRIPTION: Number of worker threads for executing events in parallel. Set to 0 (the default) to
disable slave multi-threading. Not supported by MySQL Cluster.

Replication and Binary Logging Options and Variables

2438

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

slave-pending-jobs-size-max

Yes No No

No No

DESCRIPTION: Maximum size of slave worker queues holding events not yet applied.

slave-rows-search-algorithms

Yes No No

Yes No

DESCRIPTION: Determines search algorithms used for slave update batching. Any 2 or 3 from the
list INDEX_SEARCH, TABLE_SCAN, HASH_SCAN; the default is TABLE_SCAN,INDEX_SCAN.

slave-skip-errors

Yes Yes No

Yes Global No

DESCRIPTION: Tells the slave thread to continue replication when a query returns an error from the
provided list

slave_checkpoint_group

Yes Yes No

Yes Global Yes

DESCRIPTION: Maximum number of transactions processed by a multi-threaded slave before a
checkpoint operation is called to update progress status. Not supported by MySQL Cluster.

slave_checkpoint_period

Yes Yes No

Yes Global Yes

DESCRIPTION: Update progress status of multi-threaded slave and flush relay log info to disk after
this number of milliseconds. Not supported by MySQL Cluster.

slave_compressed_protocol

Yes Yes No

Yes Global Yes

DESCRIPTION: Use compression on master/slave protocol

slave_exec_mode

Yes Yes No

Yes Global Yes

DESCRIPTION: Allows for switching the slave thread between IDEMPOTENT mode (key and some
other errors suppressed) and STRICT mode; STRICT mode is the default, except for MySQL Cluster,
where IDEMPOTENT is always used

Slave_heartbeat_period

No No Yes

No Global No

DESCRIPTION: The slave's replication heartbeat interval, in seconds

slave_max_allowed_packet

No Yes No

Replication and Binary Logging Options and Variables

2439

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No Global Yes

DESCRIPTION: Maximum size, in bytes, of a packet that can be sent from a replication master to a
slave; overrides max_allowed_packet.

Slave_open_temp_tables

No No Yes

No Global No

DESCRIPTION: Number of temporary tables that the slave SQL thread currently has open

slave_parallel_type

No Yes No

No Global Yes

DESCRIPTION: Tells the slave to use database partioning (DATABASE) or information
(LOGICAL_CLOCK) from master to parallelize transactions. The default is DATABASE.

slave_parallel_workers

Yes Yes No

No Global Yes

DESCRIPTION: Number of worker threads for executing events in parallel. Set to 0 (the default) to
disable slave multi-threading. Not supported by MySQL Cluster.

slave_pending_jobs_size_max

No Yes No

No Global Yes

DESCRIPTION: Maximum size of slave worker queues holding events not yet applied.

slave_preserve_commit_order

Yes Yes No

No Global Yes

DESCRIPTION: Ensures that all commits by slave workers happen in the same order as on the
master to maintain consistency when using parallel worker threads.

Slave_retried_transactions

No No Yes

No Global No

DESCRIPTION: The total number of times since startup that the replication slave SQL thread has
retried transactions

slave_rows_search_algorithms

No Yes No

No Global Yes

DESCRIPTION: Determines search algorithms used for slave update batching. Any 2 or 3 from the
list INDEX_SEARCH, TABLE_SCAN, HASH_SCAN; the default is TABLE_SCAN,INDEX_SCAN.

Slave_running

No No Yes

No Global No

DESCRIPTION: The state of this server as a replication slave (slave I/O thread status)

Replication and Binary Logging Options and Variables

2440

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

slave_transaction_retries

Yes Yes No

Yes Global Yes

DESCRIPTION: Number of times the slave SQL thread will retry a transaction in case it failed with a
deadlock or elapsed lock wait timeout, before giving up and stopping

slave_type_conversions

Yes Yes No

Yes Global No

DESCRIPTION: Controls type conversion mode on replication slave. Value is a list of zero or more
elements from the list: ALL_LOSSY, ALL_NON_LOSSY. Set to an empty string to disallow type
conversions between master and slave.

sql_slave_skip_counter

No Yes No

No Global Yes

DESCRIPTION: Number of events from the master that a slave server should skip. Not compatible
with GTID replication.

sync_binlog

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronously flush binary log to disk after every #th event

sync_master_info

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronize master.info to disk after every #th event.

sync_relay_log

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronize relay log to disk after every #th event.

sync_relay_log_info

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronize relay.info file to disk after every #th event.

Section 17.1.6.2, “Replication Master Options and Variables”, provides more detailed information about
options and variables relating to replication master servers. For more information about options and
variables relating to replication slaves, see Section 17.1.6.3, “Replication Slave Options and Variables”.

Replication and Binary Logging Options and Variables

2441

Table 17.4 Summary of Binary Logging options and variables in MySQL 5.7

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

binlog-checksum

Yes No No

Yes No

DESCRIPTION: Enable/disable binary log checksums

binlog-do-db

Yes No No

Yes No

DESCRIPTION: Limits binary logging to specific databases

binlog_format

Yes Yes No

Yes Both Yes

DESCRIPTION: Specifies the format of the binary log

binlog-ignore-db

Yes No No

Yes No

DESCRIPTION: Tells the master that updates to the given database should not be logged to the
binary log

binlog-row-event-max-size

Yes No No

Yes No

DESCRIPTION: Binary log max event size

binlog-rows-query-log-events

Yes No No

Yes No

DESCRIPTION: Enables logging of rows query log events when using row-based logging. Disabled
by default. Do not enable when producing logs for pre-5.6.2 slaves/readers.

Binlog_cache_disk_use

No No Yes

No Global No

DESCRIPTION: Number of transactions that used a temporary file instead of the binary log cache

binlog_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Size of the cache to hold the SQL statements for the binary log during a transaction

Binlog_cache_use

No No Yes

No Global No

DESCRIPTION: Number of transactions that used the temporary binary log cache

Replication and Binary Logging Options and Variables

2442

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

binlog_checksum

No Yes No

No Global Yes

DESCRIPTION: Enable/disable binary log checksums

binlog_direct_non_transactional_updates

Yes Yes No

Yes Both Yes

DESCRIPTION: Causes updates using statement format to nontransactional engines to be written
directly to binary log. See documentation before using.

binlog_error_action

Yes Yes No

Yes Both Yes

DESCRIPTION: Controls what happens when the server cannot write to the binary log.

binlog_group_commit_sync_delay

Yes Yes No

Yes Global Yes

DESCRIPTION: Sets the number of microseconds to wait before synchronizing transactions to disk.

binlog_group_commit_sync_no_delay_count

Yes Yes No

Yes Global Yes

DESCRIPTION: Sets the maximum number of transactions to wait for before aborting the current
delay specified by binlog_group_commit_sync_delay.

binlog_max_flush_queue_time

No Yes No

No Global Yes

DESCRIPTION: How long to read transactions before flushing to binary log

binlog_order_commits

No Yes No

No Global Yes

DESCRIPTION: Whether to commit in same order as writes to binary log

binlog_row_image

Yes Yes No

Yes Both Yes

DESCRIPTION: Use full or minimal images when logging row changes. Allowed values are full,
minimal, and noblob.

binlog_rows_query_log_events

No Yes No

No Both Yes

Replication and Binary Logging Options and Variables

2443

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: When TRUE, enables logging of rows query log events in row-based logging mode.
FALSE by default. Do not enable when producing logs for pre-5.6.2 replication slaves or other
readers.

Binlog_stmt_cache_disk_use

No No Yes

No Global No

DESCRIPTION: Number of nontransactional statements that used a temporary file instead of the
binary log statement cache

binlog_stmt_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Size of the cache to hold nontransactional statements for the binary log during a
transaction

Binlog_stmt_cache_use

No No Yes

No Global No

DESCRIPTION: Number of statements that used the temporary binary log statement cache

binlogging_impossible_mode

Yes Yes No

Yes Both Yes

DESCRIPTION: Deprecated and will be removed in a future version. Use the renamed
binlog_error_action instead.

Com_show_binlog_events

No No Yes

No Both No

DESCRIPTION: Count of SHOW BINLOG EVENTS statements

Com_show_binlogs

No No Yes

No Both No

DESCRIPTION: Count of SHOW BINLOGS statements

log-bin-use-v1-row-events

Yes Yes No

Yes Global No

DESCRIPTION: Use version 1 binary log row events

log_bin_basename

No Yes No

No Global No

DESCRIPTION: Complete path to binary log, including filename

log_bin_use_v1_row_events

Replication and Binary Logging Options and Variables

2444

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes Yes No

Yes Global No

DESCRIPTION: Shows whether server is using version 1 binary log row events

master-verify-checksum

Yes No No

Yes No

DESCRIPTION: Cause master to examine checksums when reading from the binary log

master_verify_checksum

No Yes No

No Global Yes

DESCRIPTION: Cause master to read checksums from binary log.

max-binlog-dump-events

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

max_binlog_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Can be used to restrict the total size used to cache a multi-statement transaction

max_binlog_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Binary log will be rotated automatically when size exceeds this value

max_binlog_stmt_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Can be used to restrict the total size used to cache all nontransactional statements
during a transaction

slave-sql-verify-checksum

Yes No No

Yes No

DESCRIPTION: Cause slave to examine checksums when reading from the relay log

slave_sql_verify_checksum

No Yes No

No Global Yes

DESCRIPTION: Cause slave to examine checksums when reading from relay log.

sporadic-binlog-dump-fail

Yes No No

Replication and Binary Logging Options and Variables

2445

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

Section 17.1.6.4, “Binary Logging Options and Variables”, provides more detailed information about
options and variables relating to binary logging. For additional general information about the binary log,
see Section 5.2.4, “The Binary Log”.

For information about the sql_log_bin and sql_log_off variables, see Section 5.1.4, “Server
System Variables”.

For a table showing all command-line options, system and status variables used with mysqld, see
Section 5.1.1, “Server Option and Variable Reference”.

17.1.6.2 Replication Master Options and Variables

This section describes the server options and system variables that you can use on replication master
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the master and each slave, you must use the server-id [2426] option to establish a unique
replication ID. For each server, you should pick a unique positive integer in the range from 1 to 232 −
1, and each ID must be different from every other ID in use by any other replication master or slave.
Example: server-id=3.

For options used on the master for controlling binary logging, see Section 17.1.6.4, “Binary Logging
Options and Variables”.

System Variables Used on Replication Masters

The following system variables are used to control replication masters:

• auto_increment_increment

Name auto_increment_increment

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

65535

auto_increment_increment and auto_increment_offset are intended for use with master-
to-master replication, and can be used to control the operation of AUTO_INCREMENT columns. Both
variables have global and session values, and each can assume an integer value between 1 and
65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set
to 1 instead. Attempting to set the value of either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of

Replication and Binary Logging Options and Variables

2446

auto_increment_increment or auto_increment_offset to a noninteger value produces an
error, and the actual value of the variable remains unchanged.

Note

auto_increment_increment is intended for use with MySQL Cluster,
which is not currently supported in MySQL 5.7.

These two variables affect AUTO_INCREMENT column behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc1
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
 Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column
value. Consider the following, assuming that these statements are executed during the same
session as the example given in the description for auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+

Replication and Binary Logging Options and Variables

2447

2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+
4 rows in set (0.02 sec)

When the value of auto_increment_offset is greater than that of
auto_increment_increment, the value of auto_increment_offset is ignored.

If either of these variables is changed, and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column,
and the next value inserted is the least value in the series that is greater than the maximum existing
value in the AUTO_INCREMENT column. The series is calculated like this:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |

Replication and Binary Logging Options and Variables

2448

| 65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset generate
the series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The highest value present in the col column
prior to the INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the
inserted values for col begin at that point and the results are as shown for the SELECT query.

It is not possible to restrict the effects of these two variables to a single table; these variables control
the behavior of all AUTO_INCREMENT columns in all tables on the MySQL server. If the global
value of either variable is set, its effects persist until the global value is changed or overridden by
setting the session value, or until mysqld is restarted. If the local value is set, the new value affects
AUTO_INCREMENT columns for all tables into which new rows are inserted by the current user for the
duration of the session, unless the values are changed during that session.

The default value of auto_increment_increment is 1. See Section 17.4.1.1, “Replication and
AUTO_INCREMENT”.

• auto_increment_offset

Name auto_increment_offset

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

65535

This variable has a default value of 1. For more information, see the description for
auto_increment_increment.

Note

auto_increment_offset is intended for use with MySQL Cluster, which is
not currently supported in MySQL 5.7.

17.1.6.3 Replication Slave Options and Variables

This section explains the server options and system variables that apply to slave replication servers
and contains the following:

Startup Options for Replication Slaves

Options for Logging Slave Status to Tables

Obsolete Replication Slave Options

System Variables Used on Replication Slaves

Specify the options either on the command line or in an option file. Many of the options can be set while
the server is running by using the CHANGE MASTER TO statement. Specify system variable values
using SET.

http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#replication-optvars-slaves-obsolete

Replication and Binary Logging Options and Variables

2449

Server ID. On the master and each slave, you must use the server-id [2426] option to establish
a unique replication ID in the range from 1 to 232 − 1. “Unique” means that each ID must be different
from every other ID in use by any other replication master or slave. Example my.cnf file:

[mysqld]
server-id=3

Startup Options for Replication Slaves

This section explains startup options for controlling replication slave servers. Many of these options
can be set while the server is running by using the CHANGE MASTER TO statement. Others, such as
the --replicate-* options, can be set only when the slave server starts. Replication-related system
variables are discussed later in this section.

• --log-slave-updates

Command-Line Format --log-slave-updates

Name log_slave_updates

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Normally, a slave does not write any updates that are received from a master server to its own binary
log. This option causes the slave to write the updates performed by its SQL thread to its own binary
log. For this option to have any effect, the slave must also be started with the --log-bin option to
enable binary logging. --log-slave-updates is used when you want to chain replication servers.
For example, you might want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the master for the slave B, and B serves as the master for the slave C. For this to
work, B must be both a master and a slave. You must start both A and B with --log-bin to enable
binary logging, and B with the --log-slave-updates option so that updates received from A are
logged by B to its binary log.

• --log-slow-slave-statements

Removed 5.7.1

Command-Line Format --log-slow-slave-statements (5.7.0)

Type booleanPermitted Values

Default OFF

When the slow query log is enabled, this option enables logging for queries that have taken more
than long_query_time seconds to execute on the slave.

This command-line option was removed in MySQL 5.7.1 and replaced by the
log_slow_slave_statements system variable. The system variable can be set on the command
line or in option files the same way as the option, so there is no need for any changes at server
startup, but the system variable also makes it possible to examine or set the value at runtime.

• --log-warnings[=level]

Deprecated 5.7.2

Replication and Binary Logging Options and Variables

2450

Command-Line Format --log-warnings[=#]

Name log_warnings

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (32-bit
platforms, <= 5.7.1)

Max
Value

4294967295

Type integer

Default 2

Min
Value

0

Permitted Values (32-bit
platforms, >= 5.7.2)

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.7.1)

Max
Value

18446744073709551615

Type integer

Default 2

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.7.2)

Max
Value

18446744073709551615

Note

As of MySQL 5.7.2, the log_error_verbosity system variable is
preferred over, and should be used instead of, the --log-warnings
option or log_warnings system variable. For more information, see the
descriptions of log_error_verbosity and log_warnings. The --log-
warnings command-line option and log_warnings system variable are
deprecated and will be removed in a future MySQL release.

Causes the server to record more messages to the error log about what it is doing. With respect
to replication, the server generates warnings that it succeeded in reconnecting after a network or
connection failure, and provides information about how each slave thread started. This option is
enabled (1) by default; to disable it, use --log-warnings=0. If the value is greater than 1, aborted
connections are written to the error log, and access-denied errors for new connection attempts are
written. See Section B.5.2.11, “Communication Errors and Aborted Connections”.

Note

The effects of this option are not limited to replication. It produces warnings
across a spectrum of server activities.

Replication and Binary Logging Options and Variables

2451

• --master-info-file=file_name

Command-Line Format --master-info-file=file_name

Type file namePermitted Values

Default master.info

The name to use for the file in which the slave records information about the master. The default
name is master.info in the data directory. For information about the format of this file, see
Section 17.2.4.2, “Slave Status Logs”.

• --master-retry-count=count

Deprecated 5.6.1

Command-Line Format --master-retry-count=#

Type integer

Default 86400

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 86400

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The number of times that the slave tries to connect to the master before giving up. Reconnects are
attempted at intervals set by the MASTER_CONNECT_RETRY option of the CHANGE MASTER TO
statement (default 60). Reconnects are triggered when data reads by the slave time out according to
the --slave-net-timeout option. The default value is 86400. A value of 0 means “infinite”; the
slave attempts to connect forever.

This option is deprecated and will be removed in a future MySQL release. Applications should be
updated to use the MASTER_RETRY_COUNT option of the CHANGE MASTER TO statement instead.

• --max-relay-log-size=size

Command-Line Format --max_relay_log_size=#

Name max_relay_log_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1073741824

Replication and Binary Logging Options and Variables

2452

The size at which the server rotates relay log files automatically. If this value is nonzero, the relay
log is rotated automatically when its size exceeds this value. If this value is zero (the default), the
size at which relay log rotation occurs is determined by the value of max_binlog_size. For more
information, see Section 17.2.4.1, “The Slave Relay Log”.

• --relay-log=file_name

Command-Line Format --relay-log=file_name

Name relay_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The base name for the relay log. For the default replication channel, the default base name for relay
logs is host_name-relay-bin. For non-default replication channels, the default base name for
relay logs is host_name-channel-relay-bin, where channel is the name of the replication
channel recorded in this relay log. The server writes the file in the data directory unless the base
name is given with a leading absolute path name to specify a different directory. The server creates
relay log files in sequence by adding a numeric suffix to the base name.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply
a value; the default base name is used only if the option is not actually specified. If you use the --
relay-log option without specifying a value, unexpected behavior is likely to result; this behavior
depends on the other options used, the order in which they are specified, and whether they are
specified on the command line or in an option file. For more information about how MySQL handles
server options, see Section 4.2.3, “Specifying Program Options”.

If you specify this option, the value specified is also used as the base name for the relay log index
file. You can override this behavior by specifying a different relay log index file base name using the
--relay-log-index option.

When the server reads an entry from the index file, it checks whether the entry contains a relative
path. If it does, the relative part of the path is replaced with the absolute path set using the --
relay-log option. An absolute path remains unchanged; in such a case, the index must be edited
manually to enable the new path or paths to be used. Previously, manual intervention was required
whenever relocating the binary log or relay log files. (Bug #11745230, Bug #12133)

You may find the --relay-log option useful in performing the following tasks:

• Creating relay logs whose names are independent of host names.

• If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease max_relay_log_size.

• To increase speed by using load-balancing between disks.

You can obtain the relay log file name (and path) from the relay_log_basename system variable.

• --relay-log-index=file_name

Command-Line Format --relay-log-index=file_name

Name relay_log_indexSystem Variable

Variable
Scope

Global

Replication and Binary Logging Options and Variables

2453

Dynamic
Variable

No

Permitted Values Type file name

The name to use for the relay log index file. The default name is host_name-relay-bin.index in
the data directory, where host_name is the name of the server. For the default replication channel,
the default name is host_name-relay-bin.index. For non-default replication channels, the
default name is host_name-channel-relay-bin.index, where channel is the name of the
replication channel recorded in this relay log index.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply
a value; the default base name is used only if the option is not actually specified. If you use the --
relay-log-index option without specifying a value, unexpected behavior is likely to result; this
behavior depends on the other options used, the order in which they are specified, and whether
they are specified on the command line or in an option file. For more information about how MySQL
handles server options, see Section 4.2.3, “Specifying Program Options”.

If you specify this option, the value specified is also used as the base name for the relay logs. You
can override this behavior by specifying a different relay log file base name using the --relay-log
option.

• --relay-log-info-file=file_name

Command-Line Format --relay-log-info-file=file_name

Type file namePermitted Values

Default relay-log.info

The name to use for the file in which the slave records information about the relay logs. The default
name is relay-log.info in the data directory. For information about the format of this file, see
Section 17.2.4.2, “Slave Status Logs”.

• --relay-log-purge={0|1}

Command-Line Format --relay_log_purge

Name relay_log_purge

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay_log_purge = N. Disabling purging of relay logs when using the --relay-log-recovery
option risks data consistency and is therefore not crash-safe.

• --relay-log-recovery={0|1}

Command-Line Format --relay-log-recovery

Type booleanPermitted Values

Default FALSE

Enables automatic relay log recovery immediately following server startup. The recovery process
creates a new relay log file, initializes the SQL thread position to this new relay log, and initializes the

Replication and Binary Logging Options and Variables

2454

I/O thread to the SQL thread position. Reading of the relay log from the master then continues. This
should be used following a crash on the replication slave to ensure that no possibly corrupted relay
logs are processed. The default value is 0 (disabled).

To provide a crash-proof slave, this option must be enabled (set to 1), --relay-log-info-
repository must be set to TABLE, and relay-log-purge must be enabled. Enabling the --
relay-log-recovery option when relay-log-purge is disabled risks reading the relay log from
files that were not purged, leading to data inconsistency, and is therefore not crash-safe. See Crash-
safe replication, for more information.

When using a multi-threaded slave (in other words slave_parallel_workers is greater than 0),
inconsistencies such as gaps can occur in the sequence of transactions that have been executed
from the relay log. Enabling the --relay-log-recovery option when there are inconsistencies
causes an error and the option has no effect. The solution in this situation is to issue START SLAVE
UNTIL SQL_AFTER_MTS_GAPS, which brings the server to a more consistent state, then issue
RESET SLAVE to remove the relay logs. See Section 17.4.1.34, “Replication and Transaction
Inconsistencies” for more information.

• --relay-log-space-limit=size

Command-Line Format --relay_log_space_limit=#

Name relay_log_space_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

This option places an upper limit on the total size in bytes of all relay logs on the slave. A value of 0
means “no limit.” This is useful for a slave server host that has limited disk space. When the limit is
reached, the I/O thread stops reading binary log events from the master server until the SQL thread
has caught up and deleted some unused relay logs. Note that this limit is not absolute: There are
cases where the SQL thread needs more events before it can delete relay logs. In that case, the I/
O thread exceeds the limit until it becomes possible for the SQL thread to delete some relay logs
because not doing so would cause a deadlock. You should not set --relay-log-space-limit to
less than twice the value of --max-relay-log-size (or --max-binlog-size if --max-relay-
log-size is 0). In that case, there is a chance that the I/O thread waits for free space because
--relay-log-space-limit is exceeded, but the SQL thread has no relay log to purge and is
unable to satisfy the I/O thread. This forces the I/O thread to ignore --relay-log-space-limit
temporarily.

• --replicate-do-db=db_name

Replication and Binary Logging Options and Variables

2455

Command-Line Format --replicate-do-db=name

Permitted Values Type string

Creates a replication filter using the name of a database. In MySQL 5.7.3 and later, such filters can
also be created using CHANGE REPLICATION FILTER REPLICATE_DO_DB. The precise effect
of this filtering depends on whether statement-based or row-based replication is in use, and are
described in the next several paragraphs.

Statement-based replication. Tell the slave SQL thread to restrict replication to statements
where the default database (that is, the one selected by USE) is db_name. To specify more than
one database, use this option multiple times, once for each database; however, doing so does not
replicate cross-database statements such as UPDATE some_db.some_table SET foo='bar'
while a different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list then the list will be treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If
the slave is started with --replicate-do-db=sales and you issue the following statements on
the master, the UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “check just the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Row-based replication. Tells the slave SQL thread to restrict replication to database db_name.
Only tables belonging to db_name are changed; the current database has no effect on this. Suppose
that the slave is started with --replicate-do-db=sales and row-based replication is in effect,
and then the following statements are run on the master:

USE prices;
UPDATE sales.february SET amount=amount+100;

The february table in the sales database on the slave is changed in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, issuing the following
statements on the master has no effect on the slave when using row-based replication and --
replicate-do-db=sales:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects
would still not be replicated.

Another important difference in how --replicate-do-db is handled in statement-based replication
as opposed to row-based replication occurs with regard to statements that refer to multiple
databases. Suppose that the slave is started with --replicate-do-db=db1, and the following
statements are executed on the master:

USE db1;

Replication and Binary Logging Options and Variables

2456

UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

If you are using statement-based replication, then both tables are updated on the slave. However,
when using row-based replication, only table1 is affected on the slave; since table2 is in a
different database, table2 on the slave is not changed by the UPDATE. Now suppose that, instead
of the USE db1 statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

In this case, the UPDATE statement would have no effect on the slave when using statement-based
replication. However, if you are using row-based replication, the UPDATE would change table1 on
the slave, but not table2—in other words, only tables in the database named by --replicate-
do-db are changed, and the choice of default database has no effect on this behavior.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-do-db
affects binary logging, and the effects of the replication format on how --
replicate-do-db affects replication behavior are the same as those of the
logging format on the behavior of --binlog-do-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-ignore-db=db_name

Command-Line Format --replicate-ignore-db=name

Permitted Values Type string

Creates a replication filter using the name of a database. In MySQL 5.7.3 and later, such filters can
also be created using CHANGE REPLICATION FILTER REPLICATE_IGNORE_DB. As with --
replicate-do-db, the precise effect of this filtering depends on whether statement-based or row-
based replication is in use, and are described in the next several paragraphs.

Statement-based replication. Tells the slave SQL thread not to replicate any statement where
the default database (that is, the one selected by USE) is db_name.

Row-based replication. Tells the slave SQL thread not to update any tables in the database
db_name. The default database has no effect.

When using statement-based replication, the following example does not work as you might expect.
Suppose that the slave is started with --replicate-ignore-db=sales and you issue the
following statements on the master:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies
only to the default database (determined by the USE statement). Because the sales database
was specified explicitly in the statement, the statement has not been filtered. However, when using
row-based replication, the UPDATE statement's effects are not propagated to the slave, and the
slave's copy of the sales.january table is unchanged; in this instance, --replicate-ignore-
db=sales causes all changes made to tables in the master's copy of the sales database to be
ignored by the slave.

Replication and Binary Logging Options and Variables

2457

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, if you supply a comma separated list then the list
will be treated as the name of a single database.

You should not use this option if you are using cross-database updates and you do not want these
updates to be replicated. See Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.
% instead. See Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-ignore-
db affects binary logging, and the effects of the replication format on how --
replicate-ignore-db affects replication behavior are the same as those
of the logging format on the behavior of --binlog-ignore-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-do-table=db_name.tbl_name

Command-Line Format --replicate-do-table=name

Permitted Values Type string

Creates a replication filter by telling the slave SQL thread to restrict replication to a given table. To
specify more than one table, use this option multiple times, once for each table. This works for both
cross-database updates and default database updates, in contrast to --replicate-do-db. See
Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_DO_TABLE statement.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the --replicate-*-db options.

• --replicate-ignore-table=db_name.tbl_name

Command-Line Format --replicate-ignore-table=name

Permitted Values Type string

Creates a replication filter by telling the slave SQL thread not to replicate any statement that updates
the specified table, even if any other tables might be updated by the same statement. To specify
more than one table to ignore, use this option multiple times, once for each table. This works for
cross-database updates, in contrast to --replicate-ignore-db. See Section 17.2.5, “How
Servers Evaluate Replication Filtering Rules”.

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_IGNORE_TABLE statement.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the --replicate-*-db options.

• --replicate-rewrite-db=from_name->to_name

Command-Line Format --replicate-rewrite-db=old_name->new_name

Permitted Values Type string

Replication and Binary Logging Options and Variables

2458

Tells the slave to create a replication filter that translates the default database (that is, the one
selected by USE) to to_name if it was from_name on the master. Only statements involving
tables are affected (not statements such as CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), and only if from_name is the default database on the master. To specify multiple
rewrites, use this option multiple times. The server uses the first one with a from_name value that
matches. The database name translation is done before the --replicate-* rules are tested.

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_REWRITE_DB statement.

Statements in which table names are qualified with database names when using this option do not
work with table-level replication filtering options such as --replicate-do-table. Suppose we
have a database named a on the master, one named b on the slave, each containing a table t, and
have started the master with --replicate-rewrite-db='a->b'. At a later point in time, we
execute DELETE FROM a.t. In this case, no relevant filtering rule works, for the reasons shown
here:

1. --replicate-do-table=a.t does not work because the slave has table t in database b.

2. --replicate-do-table=b.t does not match the original statement and so is ignored.

3. --replicate-do-table=*.t is handled identically to --replicate-do-table=a.t, and
thus does not work, either.

Similarly, the --replication-rewrite-db option does not work with cross-database updates.

If you use this option on the command line and the “>” character is special to your command
interpreter, quote the option value. For example:

shell> mysqld --replicate-rewrite-db="olddb->newdb"

• --replicate-same-server-id

Command-Line Format --replicate-same-server-id

Type booleanPermitted Values

Default FALSE

To be used on slave servers. Usually you should use the default setting of 0, to prevent infinite loops
caused by circular replication. If set to 1, the slave does not skip events having its own server ID.
Normally, this is useful only in rare configurations. Cannot be set to 1 if --log-slave-updates is
used. By default, the slave I/O thread does not write binary log events to the relay log if they have the
slave's server ID (this optimization helps save disk usage). If you want to use --replicate-same-
server-id, be sure to start the slave with this option before you make the slave read its own events
that you want the slave SQL thread to execute.

• --replicate-wild-do-table=db_name.tbl_name

Command-Line Format --replicate-wild-do-table=name

Permitted Values Type string

Creates a replication filter by telling the slave thread to restrict replication to statements where any
of the updated tables match the specified database and table name patterns. Patterns can contain
the “%” and “_” wildcard characters, which have the same meaning as for the LIKE pattern-matching
operator. To specify more than one table, use this option multiple times, once for each table. This
works for cross-database updates. See Section 17.2.5, “How Servers Evaluate Replication Filtering
Rules”.

Replication and Binary Logging Options and Variables

2459

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_WILD_DO_TABLE statement.

This option applies to tables, views, and triggers. It does not apply to stored procedures and
functions, or events. To filter statements operating on the latter objects, use one or more of the --
replicate-*-db options.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a table
where the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-
level statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if
you use --replicate-wild-do-table=foo%.%, database-level statements are replicated if the
database name matches the pattern foo%.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not
replicate tables from the my1ownAABCdb database, you should escape the “_” and “%” characters
like this: --replicate-wild-do-table=my_own\%db. If you use the option on the command
line, you might need to double the backslashes or quote the option value, depending on your
command interpreter. For example, with the bash shell, you would need to type --replicate-
wild-do-table=my_own\\%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Command-Line Format --replicate-wild-ignore-table=name

Permitted Values Type string

Creates a replication filter which keeps the slave thread from replicating a statement in which any
table matches the given wildcard pattern. To specify more than one table to ignore, use this option
multiple times, once for each table. This works for cross-database updates. See Section 17.2.5,
“How Servers Evaluate Replication Filtering Rules”.

In MySQL 5.7.3 and later, you can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_WILD_IGNORE_TABLE statement.

Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates that use a
table where the database name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the --replicate-wild-do-
table option. The rules for including literal wildcard characters in the option value are the same as
for --replicate-wild-ignore-table as well.

• --report-host=host_name

Command-Line Format --report-host=host_name

Name report_host

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The host name or IP address of the slave to be reported to the master during slave registration. This
value appears in the output of SHOW SLAVE HOSTS on the master server. Leave the value unset if
you do not want the slave to register itself with the master.

Replication and Binary Logging Options and Variables

2460

Note

It is not sufficient for the master to simply read the IP address of the slave
from the TCP/IP socket after the slave connects. Due to NAT and other
routing issues, that IP may not be valid for connecting to the slave from the
master or other hosts.

• --report-password=password

Command-Line Format --report-password=name

Name report_password

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The account password of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-
info option is given.

Although the name of this option might imply otherwise, --report-password is not connected to
the MySQL user privilege system and so is not necessarily (or even likely to be) the same as the
password for the MySQL replication user account.

• --report-port=slave_port_num

Command-Line Format --report-port=#

Name report_port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default [slave_port]

Min
Value

0

Permitted Values

Max
Value

65535

The TCP/IP port number for connecting to the slave, to be reported to the master during slave
registration. Set this only if the slave is listening on a nondefault port or if you have a special tunnel
from the master or other clients to the slave. If you are not sure, do not use this option.

The default value for this option is the port number actually used by the slave (Bug #13333431). This
is also the default value displayed by SHOW SLAVE HOSTS.

• --report-user=user_name

Command-Line Format --report-user=name

Name report_userSystem Variable

Variable
Scope

Global

Replication and Binary Logging Options and Variables

2461

Dynamic
Variable

No

Permitted Values Type string

The account user name of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-
info option is given.

Although the name of this option might imply otherwise, --report-user is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the name
of the MySQL replication user account.

• --show-slave-auth-info

Command-Line Format --show-slave-auth-info

Type booleanPermitted Values

Default FALSE

Display slave user names and passwords in the output of SHOW SLAVE HOSTS on the master server
for slaves started with the --report-user and --report-password options.

• --slave-checkpoint-group=#

Command-Line Format --slave-checkpoint-group=#

Type integer

Default 512

Min
Value

32

Max
Value

524280

Permitted Values

Block
Size

8

Sets the maximum number of transactions that can be processed by a multi-threaded slave before a
checkpoint operation is called to update its status as shown by SHOW SLAVE STATUS. Setting this
option has no effect on slaves for which multi-threading is not enabled.

This option works in combination with the --slave-checkpoint-period option in such a way
that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this option is 32, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to
a value that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before
storing the value. (Exception: No such rounding is performed by the debug server.) Regardless of
how the server was built, the default value is 512, and the maximum allowed value is 524280.

• --slave-checkpoint-period=#

Command-Line Format --slave-checkpoint-period=#

Type integer

Default 300

Permitted Values

Min
Value

1

Replication and Binary Logging Options and Variables

2462

Max
Value

4G

Sets the maximum time (in milliseconds) that is allowed to pass before a checkpoint operation is
called to update the status of a multi-threaded slave as shown by SHOW SLAVE STATUS. Setting this
option has no effect on slaves for which multi-threading is not enabled.

This option works in combination with the --slave-checkpoint-group option in such a way that,
when either limit is exceeded, the checkpoint is executed and the counters tracking both the number
of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this option is 1, unless the server was built using -DWITH_DEBUG, in
which case the minimum value is 0. Regardless of how the server was built, the default value is 300,
and the maximum possible value is 4294967296 (4GB).

• --slave-parallel-workers

Command-Line Format --slave-parallel-workers=#

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1024

Sets the number of slave applier threads for executing replication transactions in parallel. When set
to 0 (the default) parallel execution is disabled and the slave uses a single applier thread. Setting
this variable to a number greater than 0 creates a multi-threaded slave with this number of applier
threads. When the slave is multi-threaded and parallel execution is enabled, there is one coordinator
thread and multiple applier threads. The way which transactions are distributed among threads is
configured by slave_parallel_type. For more information see slave-parallel-workers.

• --slave-pending-jobs-size-max=#

Command-Line Format --slave-pending-jobs-size-max=#

Type integer

Default 16M

Min
Value

1024

Max
Value

18EB

Permitted Values

Block
Size

1024

For multi-threaded slaves, this option sets the maximum amount of memory (in bytes) available to
slave worker queues holding events not yet applied. Setting this option has no effect on slaves for
which multi-threading is not enabled.

The minimum possible value for this option is 1024; the default is 16MB. The maximum possible
value is 18446744073709551615 (16 exabytes). Values that are not exact multiples of 1024 are
rounded down to the next-highest multiple of 1024 prior to being stored.

Replication and Binary Logging Options and Variables

2463

Important

The value for this option must not be less than the master's value for
max_allowed_packet; otherwise a slave worker queue may become full
while there remain events coming from the master to be processed.

• --skip-slave-start

Command-Line Format --skip-slave-start

Type booleanPermitted Values

Default FALSE

Tells the slave server not to start the slave threads when the server starts. To start the threads later,
use a START SLAVE statement.

• --slave_compressed_protocol={0|1}

Command-Line Format --slave_compressed_protocol

Name slave_compressed_protocol

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If this option is set to 1, use compression for the slave/master protocol if both the slave and the
master support it. The default is 0 (no compression).

• --slave-load-tmpdir=dir_name

Command-Line Format --slave-load-tmpdir=dir_name

Name slave_load_tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /tmp

The name of the directory where the slave creates temporary files. This option is by default equal
to the value of the tmpdir system variable. When the slave SQL thread replicates a LOAD DATA
INFILE statement, it extracts the file to be loaded from the relay log into temporary files, and then
loads these into the table. If the file loaded on the master is huge, the temporary files on the slave
are huge, too. Therefore, it might be advisable to use this option to tell the slave to put temporary
files in a directory located in some file system that has a lot of available space. In that case, the relay
logs are huge as well, so you might also want to use the --relay-log option to place the relay logs
in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-
based file system) because the temporary files used to replicate LOAD DATA INFILE must survive
machine restarts. The directory also should not be one that is cleared by the operating system during
the system startup process.

Replication and Binary Logging Options and Variables

2464

• slave-max-allowed-packet=bytes

Command-Line Format --slave-max-allowed-packet=#

Type integer

Default 1073741824

Min
Value

1024

Permitted Values

Max
Value

1073741824

This option sets the maximum packet size in bytes for the slave SQL and I/O threads, so that large
updates using row-based replication do not cause replication to fail because an update exceeded
max_allowed_packet. (Bug #12400221, Bug #60926)

The corresponding server variable slave_max_allowed_packet always has a value that is a
positive integer multiple of 1024; if you set it to some value that is not such a multiple, the value is
automatically rounded down to the next highest multiple of 1024. (For example, if you start the server
with --slave-max-allowed-packet=10000, the value used is 9216; setting 0 as the value
causes 1024 to be used.) A truncation warning is issued in such cases.

The maximum (and default) value is 1073741824 (1 GB); the minimum is 1024.

• --slave-net-timeout=seconds

Command-Line Format --slave-net-timeout=#

Name slave_net_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 3600

Permitted Values

Min
Value

1

Type integer

Default 60

Permitted Values (>=
5.7.7)

Min
Value

1

The number of seconds to wait for more data from the master before the slave considers the
connection broken, aborts the read, and tries to reconnect. The first retry occurs immediately after
the timeout. The interval between retries is controlled by the MASTER_CONNECT_RETRY option for
the CHANGE MASTER TO statement, and the number of reconnection attempts is limited by the --
master-retry-count option. Prior to MySQL 5.7.7, the default was 3600 seconds (one hour). In
MySQL 5.7.7 and later the default is 60 (one minute).

• --slave-parallel-type=type

Introduced 5.7.2

Command-Line Format --slave-parallel-type=type

Type enumerationPermitted Values

Default DATABASE

Replication and Binary Logging Options and Variables

2465

DATABASEValid
Values LOGICAL_CLOCK

When using a multi-threaded slave (slave_parallel_workers is greater than 0), this option
specifies the policy used to decide which transactions are allowed to execute in parallel on the slave.
The possible values are:

• DATABASE: Transactions that update different databases are applied in parallel. This value is only
appropriate if data is partitioned into multiple databases which are being updated independently
and concurrently on the master. Only recommended if there are no cross-database constraints, as
such constraints may be violated on the slave.

• LOGICAL_CLOCK: Transactions that are part of the same binary log group commit on a master are
applied in parallel on a slave. There are no cross-database constraints, and data does not need to
be partitioned into multiple databases.

Regardless of the value of this variable, there is no special configuration required on the master.
When slave_preserve_commit_order=1, you can only use LOGICAL_CLOCK. If your replication
topology uses multiple levels of slaves, LOGICAL_CLOCK may achieve less parallelization for each
level the slave is away from the master.

• slave-rows-search-algorithms=list

Command-Line Format --slave-rows-search-algorithms=list

Type set

Default TABLE_SCAN,INDEX_SCAN

TABLE_SCAN,INDEX_SCAN

INDEX_SCAN,HASH_SCAN

TABLE_SCAN,HASH_SCAN

Permitted Values

Valid
Values

TABLE_SCAN,INDEX_SCAN,HASH_SCAN (equivalent to
INDEX_SCAN,HASH_SCAN)

When preparing batches of rows for row-based logging and replication, this option controls how the
rows are searched for matches—that is, whether or not hashing is used for searches using a primary
or unique key, some other key, or no key at all. This option takes a comma-separated list of any 2
(or possibly 3) values from the list INDEX_SCAN, TABLE_SCAN, HASH_SCAN. The list need not be
quoted, but must contain no spaces, whether or not quotes are used. Possible combinations (lists)
and their effects are shown in the following table:

Index used / option
value

INDEX_SCAN,HASH_SCAN
or
INDEX_SCAN,TABLE_SCAN,HASH_SCAN

INDEX_SCAN,TABLE_SCANTABLE_SCAN,HASH_SCAN

Primary key or unique
key

Index scan Index scan Hash scan over index

(Other) Key Hash scan over index Index scan Hash scan over index

No index Hash scan Table scan Hash scan

The order in which the algorithms are specified in the list does not make any difference in the order
in which they are displayed by a SELECT or SHOW VARIABLES statement (which is the same as
that used in the table just shown previously).The default value is TABLE_SCAN,INDEX_SCAN, which
means that all searches that can use indexes do use them, and searches without any indexes use
table scans.

Specifying INDEX_SCAN,TABLE_SCAN,HASH_SCAN has the same effect as specifying
INDEX_SCAN,HASH_SCAN. To use hashing for any searches that does not use a primary or

Replication and Binary Logging Options and Variables

2466

unique key, set this option to INDEX_SCAN,HASH_SCAN. To force hashing for all searches, set it to
TABLE_SCAN,HASH_SCAN.

Note

There is only a performance advantage for INDEX_SCAN and HASH_SCAN
if the row events are big enough. The size of row events is configured using
--binlog-row-event-max-size. For example, suppose a DELETE
statement which deletes 25,000 rows generates large Delete_row_event
events. In this case if slave_rows_search_algorithms is set to
INDEX_SCAN or HASH_SCAN there is a performance improvement. However,
if there are 25,000 DELETE statements and each is represented by a separate
event then setting slave_rows_search_algorithms to INDEX_SCAN or
HASH_SCAN provides no performance improvement while executing these
separate events.

• --slave-skip-errors=[err_code1,err_code2,...|all|ddl_exist_errors]

Command-Line Format --slave-skip-errors=name

Name slave_skip_errors

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default OFF

OFF

[list of error codes]

Permitted Values

Valid
Values

all

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Normally, replication stops when an error occurs on the slave, which gives you the opportunity to
resolve the inconsistency in the data manually. This option causes the slave SQL thread to continue
replication when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no
bugs in your replication setup and client programs, and no bugs in MySQL itself, an error that
stops replication should never occur. Indiscriminate use of this option results in slaves becoming
hopelessly out of synchrony with the master, with you having no idea why this has occurred.

Replication and Binary Logging Options and Variables

2467

For error codes, you should use the numbers provided by the error message in your slave error
log and in the output of SHOW SLAVE STATUS. Appendix B, Errors, Error Codes, and Common
Problems, lists server error codes.

You can also (but should not) use the very nonrecommended value of all to cause the slave to
ignore all error messages and keeps going regardless of what happens. Needless to say, if you use
all, there are no guarantees regarding the integrity of your data. Please do not complain (or file bug
reports) in this case if the slave's data is not anywhere close to what it is on the master. You have
been warned.

MySQL 5.7 supports an additional shorthand value ddl_exist_errors, which is equivalent to the
error code list 1007,1008,1050,1051,1054,1060,1061,1068,1094,1146.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all
--slave-skip-errors=ddl_exist_errors

• --slave-sql-verify-checksum={0|1}

Command-Line Format --slave-sql-verify-checksum=value

Type boolean

Default 0

0

Permitted Values

Valid
Values 1

When this option is enabled, the slave examines checksums read from the relay log, in the event of a
mismatch, the slave stops with an error. Disabled by default.

The following options are used internally by the MySQL test suite for replication testing and debugging.
They are not intended for use in a production setting.

• --abort-slave-event-count

Command-Line Format --abort-slave-event-count=#

Type integer

Default 0

Permitted Values

Min
Value

0

When this option is set to some positive integer value other than 0 (the default) it affects replication
behavior as follows: After the slave SQL thread has started, value log events are permitted to be
executed; after that, the slave SQL thread does not receive any more events, just as if the network
connection from the master were cut. The slave thread continues to run, and the output from SHOW
SLAVE STATUS displays Yes in both the Slave_IO_Running and the Slave_SQL_Running
columns, but no further events are read from the relay log.

• --disconnect-slave-event-count

Command-Line Format --disconnect-slave-event-count=#

Type integerPermitted Values

Default 0

Replication and Binary Logging Options and Variables

2468

Options for Logging Slave Status to Tables

MySQL 5.7 supports logging of replication slave status information to tables rather than files. Writing of
the master info log and the relay log info log can be configured separately using the two server options
listed here:

• --master-info-repository={FILE|TABLE}

Command-Line Format --master-info-repository=FILE|TABLE

Type string

Default FILE

FILE

Permitted Values

Valid
Values TABLE

This option causes the server to write its master info log to a file or a table. The name of the file
defaults to master.info; you can change the name of the file using the --master-info-file
server option.

The default value for this option is FILE. If you use TABLE, the log is written to the
slave_master_info table in the mysql database.

• --relay-log-info-repository={FILE|TABLE}

Command-Line Format --relay-log-info-repository=FILE|TABLE

Type string

Default FILE

FILE

Permitted Values

Valid
Values TABLE

This option causes the server to log its relay log info to a file or a table. The name of the file defaults
to relay-log.info; you can change the name of the file using the --relay-log-info-file
server option.

The default value for this option is FILE. If you use TABLE, the log is written to the
slave_relay_log_info table in the mysql database.

For replication to be crash-safe, this option must be set to TABLE; in additon, the --relay-log-
recovery option must be enabled. See Crash-safe replication, for more information.

The info log tables and their contents are considered local to a given MySQL Server. They are not
replicated, and changes to them are not written to the binary log.

For more information, see Section 17.2.4, “Replication Relay and Status Logs”.

System Variables Used on Replication Slaves

The following list describes system variables for controlling replication slave servers. They can be set
at server startup and some of them can be changed at runtime using SET. Server options used with
replication slaves are listed earlier in this section.

• slave_allow_batching

Command-Line Format --slave-allow-batching

Name slave_allow_batchingSystem Variable

Variable
Scope

Global

Replication and Binary Logging Options and Variables

2469

Dynamic
Variable

Yes

Type booleanPermitted Values

Default off

Whether or not batched updates are enabled on replication slaves.

• init_slave

Command-Line Format --init-slave=name

Name init_slave

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

This variable is similar to init_connect, but is a string to be executed by a slave server each time
the SQL thread starts. The format of the string is the same as for the init_connect variable. The
setting of this variable takes effect for subsequent START SLAVE statements.

Note

The SQL thread sends an acknowledgment to the client before it executes
init_slave. Therefore, it is not guaranteed that init_slave has been
executed when START SLAVE returns. See Section 13.4.2.6, “START SLAVE
Syntax”, for more information.

• log_slow_slave_statements

Introduced 5.7.1

Name log_slow_slave_statements

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When the slow query log is enabled, this variable enables logging for queries that have taken more
than long_query_time seconds to execute on the slave. This variable was added in MySQL 5.7.1.
Setting this variable has no immediate effect. The state of the variable applies on all subsequent
START SLAVE commands.

• master_info_repository

Command-Line Format --master-info-repository=FILE|TABLE

Name master_info_repository

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

Replication and Binary Logging Options and Variables

2470

Default FILE

FILEValid
Values TABLE

The setting of this variable determines whether the slave logs master status and connection
information to a FILE (master.info), or to a TABLE (mysql.slave_master_info). You can
only change the value of this variable when no replication threads are executing.

The setting of this variable also has a direct influence on the effect had by the setting of the
sync_master_info system variable; see that variable's description for further information.

This variable must be set to TABLE before configuring multiple replication channels. If you are using
multiple replication channels then you cannot set this variable back to FILE.

• relay_log

Command-Line Format --relay-log=file_name

Name relay_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The base name of the relay log file, with no paths and no file extension. By default relay-log.
The file name of individual files for the default replication channel is relay-log.XXXXXX, and for
additional replication channels is relay-log-channel.XXXXXX.

• relay_log_basename

Name relay_log_basename

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default datadir + '/' + hostname + '-relay-bin'

Holds the name and complete path to the relay log file.

• relay_log_index

Command-Line Format --relay-log-index

Name relay_log_index

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default *host_name*-relay-bin.index

Replication and Binary Logging Options and Variables

2471

The name of the relay log index file for the default replication channel. The default name is
host_name-relay-bin.index in the data directory, where host_name is the name of the slave
server.

• relay_log_info_file

Command-Line Format --relay-log-info-file=file_name

Name relay_log_info_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default relay-log.info

The name of the file in which the slave records information about the relay logs, when
relay_log_info_repository=FILE. If relay_log_info_repository=TABLE, it is the file
name that would be used in case the repository was changed to FILE). The default name is relay-
log.info in the data directory.

• relay_log_info_repository

Name relay_log_info_repository

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type string

Default FILE

FILE

Permitted Values

Valid
Values TABLE

This variable determines whether the slave's position in the relay logs is written to a FILE (relay-
log.info) or to a TABLE (mysql.slave_relay_log_info). You can only change the value of
this variable when no replication threads are executing.

The setting of this variable also has a direct influence on the effect had by the setting of the
sync_relay_log_info system variable; see that variable's description for further information.

This variable must be set to TABLE before configuring multiple replication channels. If you are using
multiple replication channels then you cannot set this variable back to FILE.

• relay_log_recovery

Command-Line Format --relay-log-recovery

Name relay_log_recovery

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default FALSE

Replication and Binary Logging Options and Variables

2472

Enables automatic relay log recovery immediately following server startup. The recovery process
creates a new relay log file, initializes the SQL thread position to this new relay log, and initializes the
I/O thread to the SQL thread position. Reading of the relay log from the master then continues. In
MySQL 5.7, this global variable is read-only; its value can be changed by starting the slave with the
--relay-log-recovery option, which should be used following a crash on the replication slave to
ensure that no possibly corrupted relay logs are processed, and must be used in order to guarantee
a crash-proof slave. The default value is 0 (disabled).

This variable also interacts with relay-log-purge, which controls purging of logs when they are
no longer needed. Enabling the --relay-log-recovery option when relay-log-purge is
disabled risks reading the relay log from files that were not purged, leading to data inconsistency,
and is therefore not crash-safe.

When relay_log_recovery is enabled and the slave has stopped due to errors encountered
while running in multi-threaded mode, you can use START SLAVE UNTIL SQL_AFTER_MTS_GAPS
to ensure that all gaps are processed before switching back to single-threaded mode or executing a
CHANGE MASTER TO statement.

• rpl_stop_slave_timeout

Introduced 5.7.2

Command-Line Format --rpl-stop-slave-timeout=seconds

Name rpl_stop_slave_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 31536000

Min
Value

2

Permitted Values

Max
Value

31536000

In MySQL 5.7.2 and later, you can control the length of time (in seconds) that STOP SLAVE waits
before timing out by setting this variable. This can be used to avoid deadlocks between STOP SLAVE
and other slave SQL statements using different client connections to the slave. The maximum and
default value of rpl_stop_slave_timeout is 31536000 seconds (1 year). The minimum is 2
seconds. Changes to this variable take effect for subsequent STOP SLAVE statements. This variable
affects only the client that issues a STOP SLAVE statement. When the timeout is reached, the
issuing client stops waiting for the slave threads to stop, but the slave threads continue to try to stop.

• slave_checkpoint_group

Command-Line Format --slave-checkpoint-group=#

Name slave_checkpoint_group=#

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 512

Replication and Binary Logging Options and Variables

2473

Min
Value

32

Max
Value

524280

Block
Size

8

Sets the maximum number of transactions that can be processed by a multi-threaded slave before a
checkpoint operation is called to update its status as shown by SHOW SLAVE STATUS. Setting this
variable has no effect on slaves for which multi-threading is not enabled. Setting this variable has no
immediate effect. The state of the variable applies on all subsequent START SLAVE commands.

This variable works in combination with the slave_checkpoint_period system variable in such
a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both
the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 32, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to
a value that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before
storing the value. (Exception: No such rounding is performed by the debug server.) Regardless of
how the server was built, the default value is 512, and the maximum allowed value is 524280.

• slave_checkpoint_period

Command-Line Format --slave-checkpoint-period=#

Name slave_checkpoint_period=#

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 300

Min
Value

1

Permitted Values

Max
Value

4G

Sets the maximum time (in milliseconds) that is allowed to pass before a checkpoint operation is
called to update the status of a multi-threaded slave as shown by SHOW SLAVE STATUS. Setting this
variable has no effect on slaves for which multi-threading is not enabled. Setting this variable takes
effect for all replication channels immediately, including running channels.

This variable works in combination with the slave_checkpoint_group system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both
the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 1, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 0. Regardless of how the server was built, the default value is
300, and the maximum possible value is 4294967296 (4GB).

• slave_compressed_protocol

Command-Line Format --slave_compressed_protocol

System Variable Name slave_compressed_protocol

Replication and Binary Logging Options and Variables

2474

Variable
Scope

Global

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether to use compression of the slave/master protocol if both the slave and the master support it.
Changes to this variable take effect on subsequent connection attempts; this includes after issuing a
START SLAVE statement, as well as reconnections made by a running I/O thread (for example after
issuing a CHANGE MASTER TO MASTER_RETRY_COUNT statement).

• slave_exec_mode

Command-Line Format --slave-exec-mode=mode

Name slave_exec_mode

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default STRICT (ALL)

Default IDEMPOTENT (NDB)

IDEMPOTENT

Permitted Values

Valid
Values STRICT

Controls how a slave thread resolves conflicts and errors during replication. IDEMPOTENT mode
causes suppression of duplicate-key and no-key-found errors. This mode should be employed in
multi-master replication, circular replication, and some other special replication scenarios. STRICT
mode is the default, and is suitable for most other cases. Setting this variable takes effect for all
replication channels immediately, including running channels.

• slave_load_tmpdir

Command-Line Format --slave-load-tmpdir=dir_name

Name slave_load_tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /tmp

The name of the directory where the slave creates temporary files for replicating LOAD DATA
INFILE statements. Setting this variable takes effect for all replication channels immediately,
including running channels.

• slave_max_allowed_packet

Name slave_max_allowed_packetSystem Variable

Variable
Scope

Global

Replication and Binary Logging Options and Variables

2475

Dynamic
Variable

Yes

Type integer

Default 1073741824

Min
Value

1024

Permitted Values

Max
Value

1073741824

This variable sets the maximum packet size for the slave SQL and I/O threads, so that large
updates using row-based replication do not cause replication to fail because an update exceeded
max_allowed_packet. Setting this variable takes effect for all replication channels immediately,
including running channels.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or
used; setting slave_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning
is issued in all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is
1024.

slave_max_allowed_packet can also be set at startup, using the --slave-max-allowed-
packet option.

• slave_net_timeout

Command-Line Format --slave-net-timeout=#

Name slave_net_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 3600

Permitted Values

Min
Value

1

Type integer

Default 60

Permitted Values (>=
5.7.7)

Min
Value

1

The number of seconds to wait for more data from a master/slave connection before aborting
the read. Setting this variable has no immediate effect. The state of the variable applies on all
subsequent START SLAVE commands.

• slave_parallel_type=type

Introduced 5.7.2

Command-Line Format --slave-parallel-type=type

Type enumeration

Default DATABASE

Permitted Values

Valid
Values

DATABASE

Replication and Binary Logging Options and Variables

2476

LOGICAL_CLOCK

When using a multi-threaded slave (slave_parallel_workers is greater than 0), this variable
specifies the policy used to decide which transactions are allowed to execute in parallel on the slave.
See --slave-parallel-type for more information.

• slave_parallel_workers

Command-Line Format --slave-parallel-workers=#

Name slave_parallel_workers

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1024

Sets the number of slave applier threads for executing replication transactions in parallel. When set
to 0 (the default) parallel execution is disabled and the slave uses a single applier thread. Setting
this variable to a number greater than 0 creates a multi-threaded slave with this number of applier
threads. When the slave is multi-threaded and parallel execution is enabled, there is one coordinator
thread and multiple applier threads. The way which transactions are distributed among threads is
configured by slave_parallel_type. Setting this variable has no immediate effect. The state of
the variable applies on all subsequent START SLAVE commands.

The transaction that the slave applies in parallel may commit out of order, unless
slave_preserve_commit_order=1. Therefore, checking for the most recently executed
transaction does not guarantee that all previous transactions from the master have been executed
on the slave. This has implications for logging and recovery when using a multi-threaded slave.
For information about how to interpret binary logging information when using multi-threading on the
slave, see Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”. In addition, this means that START
SLAVE UNTIL is not supported by a multi-threaded slave.

As of MySQL 5.7.5, retrying of transactions is supported when multi-threading is enabled on a slave.
In previous versions, slave_transaction_retries was treated as equal to 0 when using multi-
threaded slaves.

• slave_pending_jobs_size_max

Name slave_pending_jobs_size_max

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 16M

Permitted Values

Min
Value

1024

Replication and Binary Logging Options and Variables

2477

Max
Value

18EB

Block
Size

1024

For multi-threaded slaves, this variable sets the maximum amount of memory (in bytes) available to
slave worker queues holding events not yet applied. Setting this variable has no effect on slaves for
which multi-threading is not enabled. Setting this variable has no immediate effect. The state of the
variable applies on all subsequent START SLAVE commands.

The minimum possible value for this variable is 1024; the default is 16MB. The maximum possible
value is 18446744073709551615 (16 exabytes). Values that are not exact multiples of 1024 are
rounded down to the next-highest multiple of 1024 prior to being stored.

Important

The value of this variable must not be less than the master's value for
max_allowed_packet; otherwise a slave worker queue may become full
while there remain events coming from the master to be processed.

• slave_preserve_commit_order

Introduced 5.7.5

Command-Line Format --slave-preserve-commit-order=value

Name slave_preserve_commit_order

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type boolean

Default 0

0

Permitted Values

Valid
Values 1

For multi-threaded slaves, enabling this variable ensures that transactions are externalized on the
slave in the same order as they appear in the slave's relay log. Setting this variable has no effect on
slaves for which multi-threading is not enabled. All replication threads (for all replication channels if
you are using multiple replication channels) must be stopped before changing this variable. --log-
bin and --log-slave-updates must be enabled on the slave. In addition --slave-parallel-
type must be set to LOGICAL_CLOCK.

Once a multi-threaded slave has been started, transactions can begin to execute in parallel.
With slave_preserve_commit_order enabled, the executing thread waits until all previous
transactions are committed before committing. While the slave thread is waiting for other workers
to commit their transactions it reports its status as Waiting for preceding transaction
to commit. (Prior to MySQL 5.7.8, this was shown as Waiting for its turn to commit.)
Enabling this mode on a multi-threaded slave ensures that it never enters a state that the master was
not in. This makes it well suited to using replication for read scale-out. See Section 17.3.3, “Using
Replication for Scale-Out”.

When using a multi-threaded slave, if slave_preserve_commit_order is not enabled, there is
a chance of gaps in the sequence of transactions that have been executed from the slave's relay
log. When this option is enabled, there is not this chance of gaps, but Exec_master_log_pos
may be behind the position up to which has been executed. See Section 17.4.1.34, “Replication and
Transaction Inconsistencies” for more information.

Replication and Binary Logging Options and Variables

2478

• slave_rows_search_algorithms

Name slave_rows_search_algorithms=list

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type set

Default TABLE_SCAN,INDEX_SCAN

TABLE_SCAN,INDEX_SCAN

INDEX_SCAN,HASH_SCAN

TABLE_SCAN,HASH_SCAN

Permitted Values

Valid
Values

TABLE_SCAN,INDEX_SCAN,HASH_SCAN (equivalent to
INDEX_SCAN,HASH_SCAN)

When preparing batches of rows for row-based logging and replication, this variable controls how the
rows are searched for matches—that is, whether or not hashing is used for searches using a primary
or unique key, using some other key, or using no key at all. Setting this variable takes effect for all
replication channels immediately, including running channels.

> This variable takes a comma-separated list of at least 2 values from the list INDEX_SCAN,
TABLE_SCAN, HASH_SCAN. The value expected as a string, so the value must be quoted. In addition,
the value must not contain any spaces. Possible combinations (lists) and their effects are shown in
the following table:

Index used / option
value

INDEX_SCAN,HASH_SCAN
or
INDEX_SCAN,TABLE_SCAN,HASH_SCAN

INDEX_SCAN,TABLE_SCANTABLE_SCAN,HASH_SCAN

Primary key or unique
key

Index scan index scan Index hash

(Other) Key Index hash Index scan Index hash

No index Table hash Table scan Table hash

The order in which the algorithms are specified in the list does not make any difference in the order
in which they are displayed by a SELECT or SHOW VARIABLES statement, as shown here:

mysql> SET GLOBAL slave_rows_search_algorithms = "INDEX_SCAN,TABLE_SCAN";
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE '%algorithms%';
+------------------------------+-----------------------+
| Variable_name | Value |
+------------------------------+-----------------------+
| slave_rows_search_algorithms | TABLE_SCAN,INDEX_SCAN |
+------------------------------+-----------------------+
1 row in set (0.00 sec)

mysql> SET GLOBAL slave_rows_search_algorithms = "TABLE_SCAN,INDEX_SCAN";
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE '%algorithms%';
+------------------------------+-----------------------+
| Variable_name | Value |
+------------------------------+-----------------------+
| slave_rows_search_algorithms | TABLE_SCAN,INDEX_SCAN |
+------------------------------+-----------------------+
1 row in set (0.00 sec)

Replication and Binary Logging Options and Variables

2479

The default value is TABLE_SCAN,INDEX_SCAN, which means that all searches that can use
indexes do use them, and searches without any indexes use table scans.

Specifying INDEX_SCAN,TABLE_SCAN,HASH_SCAN has the same effect as specifying
INDEX_SCAN,HASH_SCAN. To use hashing for any searches that does not use a primary or unique
key, set this variable to INDEX_SCAN,HASH_SCAN. To force hashing for all searches, set it to
TABLE_SCAN,HASH_SCAN.

• slave_skip_errors

Command-Line Format --slave-skip-errors=name

Name slave_skip_errors

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default OFF

OFF

[list of error codes]

Permitted Values

Valid
Values

all

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Normally, replication stops when an error occurs on the slave, which gives you the opportunity
to resolve the inconsistency in the data manually. This variable causes the slave SQL thread to
continue replication when a statement returns any of the errors listed in the variable value. The
setting of this variable takes effect immediately, even for running replication threads.

• slave_sql_verify_checksum

Name slave_sql_verify_checksum

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

Replication and Binary Logging Options and Variables

2480

0Valid
Values 1

Cause the slave SQL thread to verify data using the checksums read from the relay log. In the
event of a mismatch, the slave stops with an error. Setting this variable takes effect for all replication
channels immediately, including running channels.

Note

The slave I/O thread always reads checksums if possible when accepting
events from over the network.

• slave_transaction_retries

Command-Line Format --slave_transaction_retries=#

Name slave_transaction_retries

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

If a replication slave SQL thread fails to execute a transaction because of an InnoDB deadlock or
because the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout,
it automatically retries slave_transaction_retries times before stopping with an error. The
default value is 10. Setting this variable takes effect for all replication channels immediately, including
running channels.

As of MySQL 5.7.5, retrying of transactions is supported when multi-threading is enabled on a slave.
In previous versions, slave_transaction_retries was treated as equal to 0 when using multi-
threaded slaves.

• slave_type_conversions

Command-Line Format --slave_type_conversions=set

Name slave_type_conversions

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values (<=
5.7.1)

Type set

Replication and Binary Logging Options and Variables

2481

Default

ALL_LOSSYValid
Values ALL_NON_LOSSY

Type set

Default

ALL_LOSSY

ALL_NON_LOSSY

ALL_SIGNED

Permitted Values (>=
5.7.2)

Valid
Values

ALL_UNSIGNED

Controls the type conversion mode in effect on the slave when using row-based replication. In
MySQL 5.7.2 and later, its value is a comma-delimited set of zero or more elements from the list:
ALL_LOSSY, ALL_NON_LOSSY, ALL_SIGNED, ALL_UNSIGNED. Set this variable to an empty string
to disallow type conversions between the master and the slave. Setting this variable takes effect for
all replication channels immediately, including running channels.

ALL_SIGNED and ALL_UNSIGNED were added in MySQL 5.7.2 (Bug#15831300). For additional
information on type conversion modes applicable to attribute promotion and demotion in row-based
replication, see Row-based replication: attribute promotion and demotion.

• sql_slave_skip_counter

Name sql_slave_skip_counter

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

The number of events from the master that a slave server should skip. Setting the option has no
immediate effect. The variable applies to the next START SLAVE statement; the next START SLAVE
statement also changes the value back to 0. When this variable is set to a non-zero value and there
are multiple replication channels configured, the START SLAVE statement can only be used with the
FOR CHANNEL channel clause.

This option is incompatible with GTID-based replication, and must not be set to a nonzero value
when --gtid-mode=ON. In MySQL 5.7.1 and later, trying to do so is specifically disallowed. (Bug
#15833516) If you need to skip transactions when employing GTIDs, use gtid_executed from the
master instead. See Injecting empty transactions, for information about how to do this.

Important

If skipping the number of events specified by setting this variable would
cause the slave to begin in the middle of an event group, the slave continues
to skip until it finds the beginning of the next event group and begins from
that point. For more information, see Section 13.4.2.5, “SET GLOBAL
sql_slave_skip_counter Syntax”.

• sync_master_info

Command-Line Format --sync-master-info=#

Name sync_master_infoSystem Variable

Variable
Scope

Global

Replication and Binary Logging Options and Variables

2482

Dynamic
Variable

Yes

Type integer

Default 10000

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10000

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The effects of this variable on a replication slave depend on whether the slave's
master_info_repository is set to FILE or TABLE, as explained in the following paragraphs.

master_info_repository = FILE. If the value of sync_master_info is greater than 0, the slave
synchronizes its master.info file to disk (using fdatasync()) after every sync_master_info
events. If it is 0, the MySQL server performs no synchronization of the master.info file to disk;
instead, the server relies on the operating system to flush its contents periodically as with any other
file.

master_info_repository = TABLE. If the value of sync_master_info is greater than 0, the
slave updates its master info repository table after every sync_master_info events. If it is 0, the
table is never updated.

The default value for sync_master_info is 10000. Setting this variable takes effect for all
replication channels immediately, including running channels.

• sync_relay_log

Command-Line Format --sync-relay-log=#

Name sync_relay_log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10000

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10000

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

Replication and Binary Logging Options and Variables

2483

If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk
(using fdatasync()) after every sync_relay_log events are written to the relay log. Setting this
variable takes effect for all replication channels immediately, including running channels.

Setting sync_relay_log to 0 causes no synchronization to be done to disk; in this case, the server
relies on the operating system to flush the relay log's contents from time to time as for any other file.

A value of 1 is the safest choice because in the event of a crash you lose at most one event from the
relay log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which
makes synchronization very fast).

• sync_relay_log_info

Command-Line Format --sync-relay-log-info=#

Name sync_relay_log_info

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10000

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10000

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The effects of this variable on the slave depend on the server's relay_log_info_repository
setting (FILE or TABLE), and if this is TABLE, additionally on whether the storage engine used by the
relay log info table is transactional (such as InnoDB) or not (MyISAM). The effects of these factors
on the behavior of the server for sync_relay_log_info values of zero and greater than zero are
shown in the following table:

relay_log_info_repository

TABLE

sync_relay_log_info

FILE

Transactional Nontransactional

N > 0 The slave synchronizes its
relay-log.info file to
disk (using fdatasync())
after every N transactions.

The table is
updated after
every N events.

0 The MySQL server performs
no synchronization of the
relay-log.info file to
disk; instead, the server
relies on the operating
system to flush its contents

The table is
updated after
each transaction.
(N is effectively
ignored.) The table is never

updated.

Replication and Binary Logging Options and Variables

2484

relay_log_info_repository

TABLE

sync_relay_log_info

FILE

Transactional Nontransactional
periodically as with any other
file.

The default value for sync_relay_log_info is 10000. Setting this variable takes effect for all
replication channels immediately, including running channels.

17.1.6.4 Binary Logging Options and Variables

Startup Options Used with Binary Logging

System Variables Used with Binary Logging

You can use the mysqld options and system variables that are described in this section to affect
the operation of the binary log as well as to control which statements are written to the binary log.
For additional information about the binary log, see Section 5.2.4, “The Binary Log”. For additional
information about using MySQL server options and system variables, see Section 5.1.3, “Server
Command Options”, and Section 5.1.4, “Server System Variables”.

Startup Options Used with Binary Logging

The following list describes startup options for enabling and configuring the binary log. System
variables used with binary logging are discussed later in this section.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Type integer

Default 8192

Min
Value

256

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 8192

Min
Value

256

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 8192. See
Section 17.2.1, “Replication Formats”.

• --log-bin[=base_name]

Command-Line Format --log-bin

Name log_bin

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Replication and Binary Logging Options and Variables

2485

Permitted Values Type file name

Enable binary logging. The server logs all statements that change data to the binary log, which is
used for backup and replication. See Section 5.2.4, “The Binary Log”.

The option value, if given, is the base name for the log sequence. The server creates binary log files
in sequence by adding a numeric suffix to the base name. It is recommended that you specify a
base name (see Section B.5.7, “Known Issues in MySQL”, for the reason). Otherwise, MySQL uses
host_name-bin as the base name.

When the server reads an entry from the index file, it checks whether the entry contains a relative
path, and if it does, the relative part of the path in replaced with the absolute path set using the
--log-bin option. An absolute path remains unchanged; in such a case, the index must be
edited manually to enable the new path or paths to be used. (In older versions of MySQL, manual
intervention was required whenever relocating the binary log or relay log files.) (Bug #11745230, Bug
#12133)

Setting this option causes the log_bin system variable to be set to ON (or 1), and not to the base
name. The binary log file name (with path) is available as the log_bin_basename system variable.

In MySQL 5.7.3 and later, if you specify this option without also specifying a --server-id [2426],
the server is not allowed to start. (Bug #11763963, Bug #56739)

• --log-bin-index[=file_name]

Command-Line Format --log-bin-index=file_name

Permitted Values Type file name

The index file for binary log file names. See Section 5.2.4, “The Binary Log”. If you omit the file
name, and if you did not specify one with --log-bin, MySQL uses host_name-bin.index as the
file name.

• --log-bin-trust-function-creators[={0|1}]

Command-Line Format --log-bin-trust-function-creators

Name log_bin_trust_function_creators

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

This option sets the corresponding log_bin_trust_function_creators system variable. If no
argument is given, the option sets the variable to 1. log_bin_trust_function_creators affects
how MySQL enforces restrictions on stored function and trigger creation. See Section 19.7, “Binary
Logging of Stored Programs”.

• --log-bin-use-v1-row-events[={0|1}]

Command-Line Format --log-bin-use-v1-row-events[={0|1}]

Name log_bin_use_v1_row_eventsSystem Variable

Variable
Scope

Global

Replication and Binary Logging Options and Variables

2486

Dynamic
Variable

No

Type booleanPermitted Values

Default 0

MySQL 5.7 uses Version 2 binary log row events, which cannot be read by MySQL Server releases
prior to MySQL 5.6.6. Setting this option to 1 causes mysqld to write the binary log using Version
1 logging events, which is the only version of binary log events used in previous releases, and thus
produce binary logs that can be read by older slaves. Setting --log-bin-use-v1-row-events to
0 (the default) causes mysqld to use Version 2 binary log events.

The value used for this option can be obtained from the read-only log_bin_use_v1_row_events
system variable.

Statement selection options. The options in the following list affect which statements are written
to the binary log, and thus sent by a replication master server to its slaves. There are also options for
slave servers that control which statements received from the master should be executed or ignored.
For details, see Section 17.1.6.3, “Replication Slave Options and Variables”.

• --binlog-do-db=db_name

Command-Line Format --binlog-do-db=name

Permitted Values Type string

This option affects binary logging in a manner similar to the way that --replicate-do-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is
in use, in the same way that the effects of --replicate-do-db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of binlog_format.
For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
--binlog-do-db always apply in determining whether or not the statement is logged.

Statement-based logging. Only those statements are written to the binary log where the default
database (that is, the one selected by USE) is db_name. To specify more than one database,
use this option multiple times, once for each database; however, doing so does not cause cross-
database statements such as UPDATE some_db.some_table SET foo='bar' to be logged
while a different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, the list will be treated as the
name of a single database if you supply a comma-separated list.

An example of what does not work as you might expect when using statement-based logging: If the
server is started with --binlog-do-db=sales and you issue the following statements, the UPDATE
statement is not logged:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Replication and Binary Logging Options and Variables

2487

Another case which may not be self-evident occurs when a given database is replicated even though
it was not specified when setting the option. If the server is started with --binlog-do-db=sales,
the following UPDATE statement is logged even though prices was not included when setting --
binlog-do-db:

USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;

Because sales is the default database when the UPDATE statement is issued, the UPDATE is
logged.

Row-based logging. Logging is restricted to database db_name. Only changes to tables
belonging to db_name are logged; the default database has no effect on this. Suppose that the
server is started with --binlog-do-db=sales and row-based logging is in effect, and then the
following statements are executed:

USE prices;
UPDATE sales.february SET amount=amount+100;

The changes to the february table in the sales database are logged in accordance with the
UPDATE statement; this occurs whether or not the USE statement was issued. However, when using
the row-based logging format and --binlog-do-db=sales, changes made by the following
UPDATE are not logged:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the USE prices statement were changed to USE sales, the UPDATE statement's effects
would still not be written to the binary log.

Another important difference in --binlog-do-db handling for statement-based logging as opposed
to the row-based logging occurs with regard to statements that refer to multiple databases. Suppose
that the server is started with --binlog-do-db=db1, and the following statements are executed:

USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

If you are using statement-based logging, the updates to both tables are written to the binary log.
However, when using the row-based format, only the changes to table1 are logged; table2 is in a
different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE db1
statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

In this case, the UPDATE statement is not written to the binary log when using statement-based
logging. However, when using row-based logging, the change to table1 is logged, but not that to
table2—in other words, only changes to tables in the database named by --binlog-do-db are
logged, and the choice of default database has no effect on this behavior.

• --binlog-ignore-db=db_name

Command-Line Format --binlog-ignore-db=name

Permitted Values Type string

This option affects binary logging in a manner similar to the way that --replicate-ignore-db
affects replication.

Replication and Binary Logging Options and Variables

2488

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --replicate-ignore-db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of binlog_format.
For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
--binlog-ignore-db always apply in determining whether or not the statement is logged.

Statement-based logging. Tells the server to not log any statement where the default database
(that is, the one selected by USE) is db_name.

Prior to MySQL 5.7.2, this option caused any statements containing fully qualified table names not to
be logged if there was no default database specified (that is, when SELECT DATABASE() returned
NULL). In MySQL 5.7.2 and later, when there is no default database, no --binlog-ignore-db
options are applied, and such statements are always logged. (Bug #11829838, Bug #60188)

Row-based format. Tells the server not to log updates to any tables in the database db_name.
The current database has no effect.

When using statement-based logging, the following example does not work as you might expect.
Suppose that the server is started with --binlog-ignore-db=sales and you issue the following
statements:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is logged in such a case because --binlog-ignore-db applies only
to the default database (determined by the USE statement). Because the sales database was
specified explicitly in the statement, the statement has not been filtered. However, when using row-
based logging, the UPDATE statement's effects are not written to the binary log, which means that no
changes to the sales.january table are logged; in this instance, --binlog-ignore-db=sales
causes all changes made to tables in the master's copy of the sales database to be ignored for
purposes of binary logging.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, the list will be treated as the name of a single
database if you supply a comma-separated list.

You should not use this option if you are using cross-database updates and you do not want these
updates to be logged.

Checksum options. MySQL 5.7 supports reading and writing of binary log checksums. These are
enabled using the two options listed here:

• --binlog-checksum={NONE|CRC32}

Command-Line Format --binlog-checksum=type

Type string

Default CRC32

NONE

Permitted Values

Valid
Values CRC32

Enabling this option causes the master to write checksums for events written to the binary log. Set to
NONE to disable, or the name of the algorithm to be used for generating checksums; currently, only
CRC32 checksums are supported, and CRC32 is the default.

• --master-verify-checksum={0|1}

Replication and Binary Logging Options and Variables

2489

Command-Line Format --master-verify-checksum=name

Type booleanPermitted Values

Default OFF

Enabling this option causes the master to verify events from the binary log using checksums, and to
stop with an error in the event of a mismatch. Disabled by default.

To control reading of checksums by the slave (from the relay) log, use the --slave-sql-verify-
checksum option.

Testing and debugging options. The following binary log options are used in replication testing
and debugging. They are not intended for use in normal operations.

• --max-binlog-dump-events=N

Command-Line Format --max-binlog-dump-events=#

Type integerPermitted Values

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --sporadic-binlog-dump-fail

Command-Line Format --sporadic-binlog-dump-fail

Type booleanPermitted Values

Default FALSE

This option is used internally by the MySQL test suite for replication testing and debugging.

• --binlog-rows-query-log-events

Command-Line Format --binlog-rows-query-log-events

Type booleanPermitted Values

Default FALSE

This option enables binlog_rows_query_log_events.

System Variables Used with Binary Logging

The following list describes system variables for controlling binary logging. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used to control binary
logging are listed earlier in this section. For information about the sql_log_bin and sql_log_off
variables, see Section 5.1.4, “Server System Variables”.

• binlog_cache_size

Command-Line Format --binlog_cache_size=#

Name binlog_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (32-bit
platforms) Default 32768

Replication and Binary Logging Options and Variables

2490

Min
Value

4096

Max
Value

4294967295

Type integer

Default 32768

Min
Value

4096

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The size of the cache to hold changes to the binary log during a transaction. A binary log cache is
allocated for each client if the server supports any transactional storage engines and if the server has
the binary log enabled (--log-bin option). If you often use large transactions, you can increase this
cache size to get better performance. The Binlog_cache_use and Binlog_cache_disk_use
status variables can be useful for tuning the size of this variable. See Section 5.2.4, “The Binary
Log”.

binlog_cache_size sets the size for the transaction cache only; the size of the statement cache
is governed by the binlog_stmt_cache_size system variable.

• binlog_checksum

Name binlog_checksum

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type string

Default CRC32

NONE

Permitted Values

Valid
Values CRC32

When enabled, this variable causes the master to write a checksum for each event in the binary log.
binlog_checksum supports the values NONE (disabled) and CRC32. The default is CRC32.

When binlog_checksum is disabled (value NONE), the server verifies that it is writing only complete
events to the binary log by writing and checking the event length (rather than a checksum) for each
event.

Changing the value of this variable causes the binary log to be rotated; checksums are always
written to an entire binary log file, and never to only part of one.

Setting this variable on the master to a value unrecognized by the slave causes the slave to set
its own binlog_checksum value to NONE, and to stop replication with an error. (Bug #13553750,
Bug #61096) If backward compatibility with older slaves is a concern, you may want to set the value
explicitly to NONE.

• binlog_direct_non_transactional_updates

Command-Line Format --binlog_direct_non_transactional_updates[=value]

Name binlog_direct_non_transactional_updatesSystem Variable

Variable
Scope

Global, Session

Replication and Binary Logging Options and Variables

2491

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Due to concurrency issues, a slave can become inconsistent when a transaction contains updates
to both transactional and nontransactional tables. MySQL tries to preserve causality among these
statements by writing nontransactional statements to the transaction cache, which is flushed upon
commit. However, problems arise when modifications done to nontransactional tables on behalf of
a transaction become immediately visible to other connections because these changes may not be
written immediately into the binary log.

The binlog_direct_non_transactional_updates variable offers one
possible workaround to this issue. By default, this variable is disabled. Enabling
binlog_direct_non_transactional_updates causes updates to nontransactional tables to
be written directly to the binary log, rather than to the transaction cache.

binlog_direct_non_transactional_updates works only for statements that are replicated
using the statement-based binary logging format; that is, it works only when the value of
binlog_format is STATEMENT, or when binlog_format is MIXED and a given statement is
being replicated using the statement-based format. This variable has no effect when the binary log
format is ROW, or when binlog_format is set to MIXED and a given statement is replicated using
the row-based format.

Important

Before enabling this variable, you must make certain that there are no
dependencies between transactional and nontransactional tables; an
example of such a dependency would be the statement INSERT INTO
myisam_table SELECT * FROM innodb_table. Otherwise, such
statements are likely to cause the slave to diverge from the master.

In MySQL 5.7, this variable has no effect when the binary log format is ROW or MIXED. (Bug #51291)

• binlog_error_action

Introduced 5.7.6

Command-Line Format --binlog_error_action[=value]

Name binlog_error_action

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default IGNORE_ERROR

IGNORE_ERROR

Permitted Values

Valid
Values ABORT_SERVER

Type enumeration

Default ABORT_SERVER

IGNORE_ERROR

Permitted Values (>=
5.7.7)

Valid
Values ABORT_SERVER

Replication and Binary Logging Options and Variables

2492

Controls what happens when the server encounters an error such as not being able to write to,
flush or synchronize the binary log, which can cause the master's log to become inconsistent and
replication slaves to lose synchronization.

In MySQL 5.7.7 and later, this variable defaults to ABORT_SERVER, which makes the server halt
logging and shut down whenever it encounters such an error with the binary log. Upon server restart,
all of the previously prepared and binary logged transactions are committed, while any transactions
which were prepared but not binary logged due to the error are aborted.

When binlog_error_action is set to IGNORE_ERROR, if the server encounters such an error
it continues the ongoing transaction, logs the error then halts logging, and continues performing
updates. To resume binary logging log_bin must be enabled again. This provides backward
compatibility with older versions of MySQL.

In previous releases this variable was named binlogging_impossible_mode.

• binlog_format

Command-Line Format --binlog-format=format

Name binlog_format

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default STATEMENT

ROW

STATEMENT

Permitted Values (<=
5.7.6)

Valid
Values

MIXED

Type enumeration

Default ROW

ROW

STATEMENT

Permitted Values (>=
5.7.7)

Valid
Values

MIXED

This variable sets the binary logging format, and can be any one of STATEMENT, ROW, or MIXED. See
Section 17.2.1, “Replication Formats”. binlog_format is set by the --binlog-format option at
startup, or by the binlog_format variable at runtime.

Note

While you can change the logging format at runtime, it is not recommended
that you change it while replication is ongoing. This is due in part to the fact
that slaves do not honor the master's binlog_format setting; a given
MySQL Server can change only its own logging format.

Prior to MySQL 5.7.7, the default format was STATEMENT. In MySQL 5.7.7 and later the default is
ROW.

You must have the SUPER privilege to set either the global or session binlog_format value.

The rules governing when changes to this variable take effect and how long the effect lasts are the
same as for other MySQL server system variables. See Section 13.7.4, “SET Syntax”, for more
information.

Replication and Binary Logging Options and Variables

2493

When MIXED is specified, statement-based replication is used, except for cases where only
row-based replication is guaranteed to lead to proper results. For example, this happens when
statements contain user-defined functions (UDF) or the UUID() function. An exception to this rule is
that MIXED always uses statement-based replication for stored functions and triggers.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger.

• If the session is currently in row-based replication mode and has open temporary tables.

• From within a transaction.

Trying to switch the format in those cases results in an error.

The binary log format affects the behavior of the following server options:

• --replicate-do-db

• --replicate-ignore-db

• --binlog-do-db

• --binlog-ignore-db

These effects are discussed in detail in the descriptions of the individual options.

• binlog_group_commit_sync_delay

Introduced 5.7.5

Command-Line Format --binlog-group-commit-sync-delay=#

Name binlog_group_commit_sync_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1000000

Controls how many microseconds the binary log commit waits before synchronizing the binary log
file to disk. By default binlog-group-commit-sync-delay is set to 0, meaning that there is
no delay. Setting binlog-group-commit-sync-delay to a microsecond delay enables more
transactions to be synchronized together to disk at once, reducing the overall time to commit a group
of transactions because the larger groups require fewer time units per group. With the correct tuning,
this can increase slave performance without compromising the master's throughput.

• binlog_group_commit_sync_no_delay_count

Introduced 5.7.5

Command-Line Format --binlog-group-commit-sync-no-delay-count=#

System Variable Name binlog_group_commit_sync_no_delay_count

Replication and Binary Logging Options and Variables

2494

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1000000

The maximum number of transactions to wait for before aborting the current delay as specified by
binlog-group-commit-sync-delay. If binlog-group-commit-sync-delay is set to 0, then
this option has no effect.

• binlogging_impossible_mode

Introduced 5.7.5

Deprecated 5.7.6

Command-Line Format --binlogging_impossible_mode[=value]

Name binlogging_impossible_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default IGNORE_ERROR

IGNORE_ERROR

Permitted Values

Valid
Values ABORT_SERVER

This option is deprecated and will be removed in a future MySQL release. Use the renamed
binlog_error_action to control what happens when the server cannot write to the binary log.

• binlog_max_flush_queue_time

Deprecated 5.7.9

Name binlog_max_flush_queue_time

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

100000

Formerly, this controlled the time in microseconds to continue reading transactions from the flush
queue before proceeding with group commit. In MySQL 5.7, this variable no longer has any effect.

Replication and Binary Logging Options and Variables

2495

binlog_max_flush_queue_time is deprecated as of MySQL 5.7.9, and is marked for eventual
removal in a future MySQL release.

• binlog_order_commits

Name binlog_order_commits

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

When this variable is enabled on a master (the default), transactions are externalized in the same
order as they are written to the binary log. If disabled, transactions may be committed in parallel. In
some cases, disabling this variable might produce a performance increment.

• binlog_row_image

Command-Line Format --binlog-row-image=image_type

Name binlog_row_image=image_type

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default full

full (Log all columns)

minimal (Log only changed columns, and columns needed to
identify rows)

Permitted Values

Valid
Values

noblob (Log all columns, except for unneeded BLOB and
TEXT columns)

In MySQL row-based replication, each row change event contains two images, a “before” image
whose columns are matched against when searching for the row to be updated, and an “after” image
containing the changes. Normally, MySQL logs full rows (that is, all columns) for both the before and
after images. However, it is not strictly necessary to include every column in both images, and we
can often save disk, memory, and network usage by logging only those columns which are actually
required.

Note

When deleting a row, only the before image is logged, since there are no
changed values to propagate following the deletion. When inserting a row,
only the after image is logged, since there is no existing row to be matched.
Only when updating a row are both the before and after images required, and
both written to the binary log.

For the before image, it is necessary only that the minimum set of columns required to uniquely
identify rows is logged. If the table containing the row has a primary key, then only the primary key
column or columns are written to the binary log. Otherwise, if the table has a unique key all of whose
columns are NOT NULL, then only the columns in the unique key need be logged. (If the table has
neither a primary key nor a unique key without any NULL columns, then all columns must be used in

Replication and Binary Logging Options and Variables

2496

the before image, and logged.) In the after image, it is necessary to log only the columns which have
actually changed.

You can cause the server to log full or minimal rows using the binlog_row_image system variable.
This variable actually takes one of three possible values, as shown in the following list:

• full: Log all columns in both the before image and the after image.

• minimal: Log only those columns in the before image that are required to identify the row to be
changed; log only those columns in the after image that are actually changed.

• noblob: Log all columns (same as full), except for BLOB and TEXT columns that are not
required to identify rows, or that have not changed.

The default value is full.

In MySQL 5.5 and earlier, full row images are always used for both before images and after images.
If you need to replicate from a newer master to a slave running MySQL 5.5 or earlier, the master
should always use this value.

When using minimal or noblob, deletes and updates are guaranteed to work correctly for a given
table if and only if the following conditions are true for both the source and destination tables:

• All columns must be present and in the same order; each column must use the same data type as
its counterpart in the other table.

• The tables must have identical primary key definitions.

(In other words, the tables must be identical with the possible exception of indexes that are not part
of the tables' primary keys.)

If these conditions are not met, it is possible that the primary key column values in the destination
table may prove insufficient to provide a unique match for a delete or update. In this event, no
warning or error is issued; the master and slave silently diverge, thus breaking consistency.

Setting this variable has no effect when the binary logging format is STATEMENT. When
binlog_format is MIXED, the setting for binlog_row_image is applied to changes that are
logged using row-based format, but this setting no effect on changes logged as statements.

Setting binlog_row_image on either the global or session level does not cause an implicit commit;
this means that this variable can be changed while a transaction is in progress without affecting the
transaction.

• binlog_rows_query_log_events

Name binlog_rows_query_log_events

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

The binlog_rows_query_log_events system variable affects row-based logging only. When
enabled, it causes the MySQL Server to write informational log events such as row query log
events into its binary log. This information can be used for debugging and related purposes; such
as obtaining the original query issued on the master when it cannot be reconstructed from the row
updates.

Replication and Binary Logging Options and Variables

2497

These events are normally ignored by MySQL programs reading the binary log and so cause no
issues when replicating or restoring from backup.

• binlog_stmt_cache_size

Command-Line Format --binlog_stmt_cache_size=#

Name binlog_stmt_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 32768

Min
Value

4096

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 32768

Min
Value

4096

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

This variable determines the size of the cache for the binary log to hold nontransactional
statements issued during a transaction. Separate binary log transaction and statement caches
are allocated for each client if the server supports any transactional storage engines and if the
server has the binary log enabled (--log-bin option). If you often use large nontransactional
statements during transactions, you can increase this cache size to get better performance. The
Binlog_stmt_cache_use and Binlog_stmt_cache_disk_use status variables can be useful
for tuning the size of this variable. See Section 5.2.4, “The Binary Log”.

The binlog_cache_size system variable sets the size for the transaction cache.

• log_bin

Name log_bin

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether the binary log is enabled. If the --log-bin option is used, then the value of this variable
is ON; otherwise it is OFF. This variable reports only on the status of binary logging (enabled or
disabled); it does not actually report the value to which --log-bin is set.

See Section 5.2.4, “The Binary Log”.

• log_bin_basename

Name log_bin_basenameSystem Variable

Variable
Scope

Global

Replication and Binary Logging Options and Variables

2498

Dynamic
Variable

No

Type file namePermitted Values

Default datadir + '/' + hostname + '-bin'

Holds the name and complete path to the binary log file. Unlike the log_bin system variable,
log_bin_basename reflects the name set with the --log-bin server option.

• log_bin_index

Name log_bin_index

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The index file for binary log file names.

• log_bin_use_v1_row_events

Command-Line Format --log-bin-use-v1-row-events[={0|1}]

Name log_bin_use_v1_row_events

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default 0

Shows whether Version 2 binary logging is in use. A value of 1 shows that the server is writing the
binary log using Version 1 logging events (the only version of binary log events used in previous
releases), and thus producing a binary log that can be read by older slaves. 0 indicates that Version
2 binary log events are in use.

This variable is read-only. To switch between Version 1 and Version 2 binary event binary logging, it
is necessary to restart mysqld with the --log-bin-use-v1-row-events option.

• log_slave_updates

Command-Line Format --log-slave-updates

Name log_slave_updates

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default FALSE

Whether updates received by a slave server from a master server should be logged to the slave's
own binary log. Binary logging must be enabled on the slave for this variable to have any effect. See
Section 17.1.6, “Replication and Binary Logging Options and Variables”.

Replication and Binary Logging Options and Variables

2499

• master_verify_checksum

Name master_verify_checksum

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enabling this variable causes the master to examine checksums when reading from the binary log.
master_verify_checksum is disabled by default; in this case, the master uses the event length
from the binary log to verify events, so that only complete events are read from the binary log.

• max_binlog_cache_size

Command-Line Format --max_binlog_cache_size=#

Name max_binlog_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 18446744073709551615

Min
Value

4096

Permitted Values

Max
Value

18446744073709551615

If a transaction requires more than this many bytes of memory, the server generates a Multi-
statement transaction required more than 'max_binlog_cache_size' bytes of
storage error. The minimum value is 4096. The maximum possible value is 16EB (exabytes). The
maximum recommended value is 4GB; this is due to the fact that MySQL currently cannot work with
binary log positions greater than 4GB.

max_binlog_cache_size sets the size for the transaction cache only; the upper limit for the
statement cache is governed by the max_binlog_stmt_cache_size system variable.

In MySQL 5.7, the visibility to sessions of max_binlog_cache_size matches that of the
binlog_cache_size system variable; in other words, changing its value effects only new sessions
that are started after the value is changed.

• max_binlog_size

Command-Line Format --max_binlog_size=#

Name max_binlog_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 1073741824

Replication and Binary Logging Options and Variables

2500

Min
Value

4096

Max
Value

1073741824

If a write to the binary log causes the current log file size to exceed the value of this variable, the
server rotates the binary logs (closes the current file and opens the next one). The minimum value is
4096 bytes. The maximum and default value is 1GB.

A transaction is written in one chunk to the binary log, so it is never split between several
binary logs. Therefore, if you have big transactions, you might see binary log files larger than
max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

• max_binlog_stmt_cache_size

Command-Line Format --max_binlog_stmt_cache_size=#

Name max_binlog_stmt_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 18446744073709547520

Min
Value

4096

Permitted Values

Max
Value

18446744073709547520

If nontransactional statements within a transaction require more than this many bytes of memory, the
server generates an error. The minimum value is 4096. The maximum and default values are 4GB
on 32-bit platforms and 16EB (exabytes) on 64-bit platforms.

max_binlog_stmt_cache_size sets the size for the statement cache only; the upper limit for the
transaction cache is governed exclusively by the max_binlog_cache_size system variable.

• sync_binlog

Command-Line Format --sync-binlog=#

Name sync_binlog

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (>=
5.7.7)

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Type integer

Replication and Binary Logging Options and Variables

2501

Default 0

Min
Value

0

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

4294967295

Controls the number of binary log commit groups to collect before synchronizing the binary log to
disk. When sync_binlog=0, the binary log is never synchronized to disk, and when sync_binlog
is set to a value greater than 0 this number of binary log commit groups is periodically synchronized
to disk. When sync_binlog=1, all transactions are synchronized to the binary log before they are
committed. Therefore, even in the event of an unexpected restart, any transactions that are missing
from the binary log are only in prepared state. This causes the server's automatic recovery routine
to rollback those transactions. This guarantees that no transaction is lost from the binary log, and is
the safest option. However this can have a negative impact on performance because of an increased
number of disk writes. Using a higher value improves performance, but with the increased risk of
data loss.

When sync_binlog=0 or sync_binlog is greater than 1, transactions are committed without
having been synchronized to disk. Therefore, in the event of a power failure or operating
system crash, it is possible that the server has committed some transactions that have not been
synchronized to the binary log. Therefore it is impossible for the recovery routine to recover these
transactions and they will be lost from the binary log.

Prior to MySQL 5.7.7, the default value of sync_binlog was 0, which configures no synchronizing
to disk—in this case, the server relies on the operating system to flush the binary log's contents from
time to time as for any other file. MySQL 5.7.7 and later use a default value of 1, which is the safest
choice, but as noted above can impact performance.

17.1.6.5 Global Transaction ID Options and Variables

Startup Options Used with GTID Replication

System Variables Used with GTID Replication

The MySQL Server options and system variables described in this section are used to monitor and
control Global Transaction Identifiers (GTIDs).

For additional information, see Section 17.1.3, “Replication with Global Transaction Identifiers”.

Startup Options Used with GTID Replication

The following server startup options are used with GTID-based replication:

• --enforce-gtid-consistency

Command-Line Format --enforce-gtid-consistency[=value]

Name enforce_gtid_consistency

Variable
Scope

Global

System Variable (<=
5.7.5)

Dynamic
Variable

No

Replication and Binary Logging Options and Variables

2502

Name enforce_gtid_consistency

Variable
Scope

Global

System Variable (>=
5.7.6)

Dynamic
Variable

Yes

Type booleanPermitted Values (<=
5.7.5) Default false

Type enumeration

Default OFF

OFF

ON

Permitted Values (>=
5.7.6)

Valid
Values

WARN

When enabled, the server enforces GTID consistency by allowing execution of only statements that
can be safely logged using a GTID. You must set this option to ON before enabling GTID based
replication.

The values that --enforce-gtid-consistency can be configured to are:

• OFF: all transactions are allowed to violate GTID consistency.

• ON: no transaction is allowed to violate GTID consistency.

• WARN: all transactions are allowed to violate GTID consistency, but a warning is generated in this
case. Added in MySQL 5.7.6.

Setting --enforce-gtid-consistency without a value is an alias for --
enforce-gtid-consistency=ON. This impacts on the behavior of the variable, see
enforce_gtid_consistency.

Only statements that can be logged using GTID safe statements can be logged when enforce-
gtid-consistency is set to ON, so the operations listed here cannot be used with this option:

• CREATE TABLE ... SELECT statements

• CREATE TEMPORARY TABLE or DROP TEMPORARY TABLE statements inside transactions

• Transactions or statements that update both transactional and nontransactional tables. There is an
exception that nontransactional DML is allowed in the same transaction or in the same statement
as transactional DML, if all nontransactional tables are temporary.

For more information, see Section 17.1.3.4, “Restrictions on Replication with GTIDs”.

• --executed-gtids-compression-period

Introduced 5.7.5

Deprecated 5.7.6

Command-Line Format --executed-gtids-compression-period=#

Type integer

Default 1000

Min
Value

0

Permitted Values

Max
Value

4294967295

Replication and Binary Logging Options and Variables

2503

This option is deprecated and will be removed in a future MySQL release. Use the renamed
gtid_executed_compression_period to control how the gtid_executed table is compressed.

• --gtid-mode

Command-Line Format --gtid-mode=MODE

Name gtid_mode

Variable
Scope

Global

System Variable (<=
5.7.5)

Dynamic
Variable

No

Name gtid_mode

Variable
Scope

Global

System Variable (>=
5.7.6)

Dynamic
Variable

Yes

Type enumeration

Default OFF

OFF

UPGRADE_STEP_1

UPGRADE_STEP_2

Permitted Values (<=
5.7.5)

Valid
Values

ON

Type enumeration

Default OFF

OFF

OFF_PERMISSIVE

ON_PERMISSIVE

Permitted Values (>=
5.7.6)

Valid
Values

ON

This option specifies whether global transaction identifiers (GTIDs) are used to identify transactions.
Setting this option to --gtid-mode=ON requires that enforce-gtid-consistency be set to
ON. Prior to MySQL 5.7.6 the gtid_mode variable which this option controls could only be set at
server startup. In MySQL 5.7.6 and later the gtid_mode variable is dynamic and enables GTID
based replication to be configured online. Before using this feature, see Section 17.1.5, “Changing
Replication Modes on Online Servers”.

Prior to MySQL 5.7.5, starting the server with --gtid-mode=ON required that the server also be
started with the --log-bin, --log-slave-updates, options. In versions of MySQL 5.7.5 and
later this is not a requirement. See The mysql.gtid_executed Table.

• --gtid-executed-compression-period

Introduced 5.7.6

Command-Line Format --gtid-executed-compression-period=#

Type integer

Default 1000

Permitted Values

Min
Value

0

Replication and Binary Logging Options and Variables

2504

Max
Value

4294967295

Compress the mysql.gtid_executed table each time this many transactions have taken place. A
setting of 0 means that this table is not compressed. No compression of the table occurs when binary
logging is enabled, therefore the option has no effect unless log_bin is OFF.

See mysql.gtid_executed Table Compression, for more information.

In MySQL version 5.7.5, this variable was added as executed_gtids_compression_period
and in MySQL version 5.7.6 it was renamed to gtid_executed_compression_period.

System Variables Used with GTID Replication

The following system variables are used with GTID-based replication:

• binlog_gtid_simple_recovery

Introduced 5.7.6

Command-Line Format --binlog-gtid-simple-recovery

Name binlog_gtid_simple_recovery

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default FALSE

Type booleanPermitted Values (>=
5.7.7) Default TRUE

This variable controls how binary log files are iterated during the search for GTIDs
when MySQL starts or restarts. In MySQL version 5.7.5, this variable was added as
simplified_binlog_gtid_recovery and in MySQL version 5.7.6 it was renamed to
binlog_gtid_simple_recovery.

When binlog_gtid_simple_recovery=FALSE, the method of iterating the binary log files is:

• To initialize gtid_executed, binary log files are iterated from the newest file, stopping
at the first binary log that has any Previous_gtids_log_event. All GTIDs from
Previous_gtids_log_event and Gtid_log_events are read from this binary log file. This
GTID set is stored internally and called gtids_in_binlog. The value of gtid_executed is
computed as the union of this set and the GTIDs stored in the mysql.gtid_executed table.

This process could take a long time if you had a large number of binary log files without GTID
events, for example created when gtid_mode=OFF.

• To initialize gtid_purged, binary log files are iterated from the oldest to the newest, stopping
at the first binary log that contains either a Previous_gtids_log_event that is non-empty
(that has at least one GTID) or that has at least one Gtid_log_event. From this binary log it
reads Previous_gtids_log_event. This GTID set is subtracted from gtids_in_binlog
and the result stored in the internal variable gtids_in_binlog_not_purged.
The value of gtid_purged is initialized to the value of gtid_executed, minus
gtids_in_binlog_not_purged.

When binlog_gtid_simple_recovery=TRUE, which is the default in MySQL 5.7.7 and
later, the server iterates only the oldest and the newest binary log files and the values of

Replication and Binary Logging Options and Variables

2505

gtid_purged and gtid_executed are computed based only on Previous_gtids_log_event
or Gtid_log_event found in these files. This ensures only two binary log files are iterated during
server restart or when binary logs are being purged.

Note

If this option is enabled, gtid_executed and gtid_purged may be
initialized incorrectly in the following situations:

• The newest binary log was generated by MySQL 5.7.5 or older, and
gtid_mode was ON for some binary logs but OFF for the newest binary log.

• A SET GTID_PURGED statement was issued on a MySQL version
prior to 5.7.7, and the binary log that was active at the time of the SET
GTID_PURGED has not yet been purged.

If an incorrect GTID set is computed in either situation, it will remain incorrect
even if the server is later restarted, regardless of the value of this option.

• enforce_gtid_consistency

Command-Line Format --enforce-gtid-consistency[=value]

Name enforce_gtid_consistency

Variable
Scope

Global

System Variable (<=
5.7.5)

Dynamic
Variable

No

Name enforce_gtid_consistency

Variable
Scope

Global

System Variable (>=
5.7.6)

Dynamic
Variable

Yes

Type booleanPermitted Values (<=
5.7.5) Default false

Type enumeration

Default OFF

OFF

ON

Permitted Values (>=
5.7.6)

Valid
Values

WARN

Depending on the value of this variable, the server enforces GTID consistency by allowing execution
of only statements that can be safely logged using a GTID. You must set this variable to ON before
enabling GTID based replication.

The values that enforce_gtid_consistency can be configured to are:

• OFF: all transactions are allowed to violate GTID consistency.

• ON: no transaction is allowed to violate GTID consistency.

• WARN: all transactions are allowed to violate GTID consistency, but a warning is generated in this
case. Added in MySQL 5.7.6.

For more information on statements that can be logged using GTID based replication, see --
enforce-gtid-consistency.

Replication and Binary Logging Options and Variables

2506

Prior to MySQL 5.7.6, the boolean enforce-gtid-consistency defaulted to OFF. To maintain
compatibility with previous versions, in MySQL 5.7.6 the enumeration defaults to OFF, and setting
--enforce-gtid-consistency without a value is interpreted as setting the value to ON. The
variable also has multiple textual aliases for the values: 0=OFF=FALSE, 1=ON=TRUE,2=WARN.
This differs from other enumeration types but maintains compatibility with the boolean type used
in previous versions. These changes impact on what is returned by the variable. Using SELECT
@@ENFORCE_GTID_CONSISTENCY, SHOW VARIABLES LIKE 'ENFORCE_GTID_CONSISTENCY',
and SELECT * FROM INFORMATION_SCHEMA.VARIABLES WHERE 'VARIABLE_NAME' =
'ENFORCE_GTID_CONSISTENCY', all return the textual form, not the numeric form. This is an
incompatible change, since @@ENFORCE_GTID_CONSISTENCY returns the numeric form for
booleans but returns the textual form for SHOW and the Information Schema.

• executed_gtids_compression_period

Introduced 5.7.5

Deprecated 5.7.6

Name executed_gtids_compression_period

Variable
Scope

Global

System Variable (>=
5.7.5)

Dynamic
Variable

Yes

Type integer

Default 1000

Min
Value

0

Permitted Values

Max
Value

4294967295

This option is deprecated and will be removed in a future MySQL release. Use the renamed
gtid_executed_compression_period to control how the gtid_executed table is
compressed.

• gtid_executed

Name gtid_executed

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

No

Name gtid_executed

Variable
Scope

Global

System Variable (>=
5.7.7)

Dynamic
Variable

No

Permitted Values Type string

When used with global scope, this variable contains a representation of the set of all transactions
executed on the server and GTIDs that have been set by a SET gtid_purged statement. This
is the same as the value of the Executed_Gtid_Set column in the output of SHOW MASTER
STATUS and SHOW SLAVE STATUS. The value of this variable is a GTID set, see GTID Sets for
more information.

Replication and Binary Logging Options and Variables

2507

When the server starts, @@global.gtid_executed is initialized. See
binlog_gtid_simple_recovery for more information on how binary logs are iterated to populate
gtid_executed. GTIDs are then added to the set as transactions are executed, or if any SET
gtid_purged statement is executed.

The set of transactions that can be found in the binary logs at any given time is equal to
GTID_SUBTRACT(@@global.gtid_executed, @@global.gtid_purged); that is, to all
transactions in the binary log that have not yet been purged.

Issuing RESET MASTER causes the global value (but not the session value) of this variable to be
reset to an empty string. GTIDs are not otherwise removed from this set other than when the set is
cleared due to RESET MASTER.

Prior to MySQL 5.7.7, this variable could also be used with session scope, where it contained a
representation of the set of transactions that are written to the cache in the current session. The
session scope was deprecated in MySQL 5.7.7.

• gtid_executed_compression_period

Introduced 5.7.6

Name gtid_executed_compression_period

Variable
Scope

Global

System Variable (>=
5.7.6)

Dynamic
Variable

Yes

Type integer

Default 1000

Min
Value

0

Permitted Values

Max
Value

4294967295

Compress the mysql.gtid_executed table each time this many transactions have been
processed. A setting of 0 means that this table is not compressed. Since no compression of the table
occurs when using the binary log, setting the value of the variable has no effect unless binary logging
is disabled.

See mysql.gtid_executed Table Compression, for more information.

In MySQL version 5.7.5, this variable was added as executed_gtids_compression_period
and in MySQL version 5.7.6 it was renamed to gtid_executed_compression_period.

• gtid_mode

Name gtid_mode

Variable
Scope

Global

System Variable (<=
5.7.5)

Dynamic
Variable

No

Name gtid_mode

Variable
Scope

Global

System Variable (>=
5.7.6)

Dynamic
Variable

Yes

Replication and Binary Logging Options and Variables

2508

Type enumeration

Default OFF

OFF

UPGRADE_STEP_1

UPGRADE_STEP_2

Permitted Values (<=
5.7.5)

Valid
Values

ON

Type enumeration

Default OFF

OFF

OFF_PERMISSIVE

ON_PERMISSIVE

Permitted Values (>=
5.7.6)

Valid
Values

ON

Controls whether GTID based logging is enabled and what type of transactions the logs can contain.
Prior to MySQL 5.7.6 this variable was read-only and was set using the --gtid-mode option only.
MySQL 5.7.6 enables this variable to be set dynamically. You must have the SUPER privilege to set
this variable. enforce_gtid_consistency must be true before you can set gtid_mode=ON.
Before modifying this variable, see Section 17.1.5, “Changing Replication Modes on Online Servers”.

Transactions logged in MySQL 5.7.6 and later can be either anonymous or use GTIDs. Anonymous
transactions rely on binary log file and position to identify specific transactions. GTID transactions
have a unique identifier that is used to refer to transactions. The OFF_PERMISSIVE and
ON_PERMISSIVE modes added in MySQL 5.7.6 permit a mix of these transaction types in the
topology. The different modes are now:

• OFF: Both new and replicated transactions must be anonymous.

• OFF_PERMISSIVE: New transactions are anonymous. Replicated transactions can be either
anonymous or GTID transactions.

• ON_PERMISSIVE: New transactions are GTID transactions. Replicated transactions can be either
anonymous or GTID transactions.

• ON: Both new and replicated transactions must be GTID transactions.

Changes from one value to another can only be one step at a time. For example, if gtid_mode is
currently set to OFF_PERMISSIVE, it is possible to change to OFF or ON_PERMISSIVE but not to ON.

In MySQL 5.7.6 and later, the values of gtid_purged and gtid_executed are persistent
regardless of the value of gtid_mode. Therefore even after changing the value of gtid_mode,
these variables contain the correct values. In MySQL 5.7.5 and earlier, the values of gtid_purged
and gtid_executed are not persistent while gtid_mode=OFF. Therefore, after changing
gtid_mode to OFF, once all binary logs containing GTIDs are purged, the values of these variables
are lost.

• gtid_next

Name gtid_next

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type enumeration

Replication and Binary Logging Options and Variables

2509

Default AUTOMATIC

AUTOMATIC

ANONYMOUS

Valid
Values

UUID:NUMBER

This variable is used to specify whether and how the next GTID is obtained. gtid_next can take
any of the following values:

• AUTOMATIC: Use the next automatically-generated global transaction ID.

• ANONYMOUS: Transactions do not have global identifiers, and are identified by file and position
only.

• A global transaction ID in UUID:NUMBER format.

Exactly which of the above options are valid depends on the setting of gtid_mode, see
Section 17.1.5.1, “Replication Mode Concepts” for more information. Setting this variable has no
effect if gtid_mode is OFF.

After this variable has been set to UUID:NUMBER, and a transaction has been committed or rolled
back, an explicit SET GTID_NEXT statement must again be issued before any other statement.

In MySQL 5.7.5 and later, DROP TABLE or DROP TEMPORARY TABLE fails with an explicit error
when used on a combination of nontemporary tables with temporary tables, or of temporary
tables using transactional storage engines with temporary tables using nontransactional storage
engines. Prior to MySQL 5.7.5, when GTIDs were enabled but gtid_next was not AUTOMATIC,
DROP TABLE did not work correctly when used with either of these combinations of tables. (Bug
#17620053)

In MySQL 5.7.1, you cannot execute any of the statements CHANGE MASTER TO, START SLAVE,
STOP SLAVE, REPAIR TABLE, OPTIMIZE TABLE, ANALYZE TABLE, CHECK TABLE, CREATE
SERVER, ALTER SERVER, DROP SERVER, CACHE INDEX, LOAD INDEX INTO CACHE, FLUSH, or
RESET when gtid_next is set to any value other than AUTOMATIC; in such cases, the statement
fails with an error. Such statements are not disallowed in MySQL 5.7.2 and later. (Bug #16062608,
Bug #16715809, Bug #69045) (Bug #16062608)

• gtid_owned

Name gtid_owned

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

No

Permitted Values Type string

This read-only variable holds a list whose contents depend on its scope. When used with session
scope, the list holds all GTIDs that are owned by this client; when used with global scope, it holds a
list of all GTIDs along with their owners.

• gtid_purged

Name gtid_purged

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Common Replication Administration Tasks

2510

Permitted Values Type string

The set of all transactions that have been purged from the binary log. This is a subset of the set of
transactions in gtid_executed. The value of this variable is a GTID set, see GTID Sets for more
information.

When the server starts, the global value of gtid_purged is initialized to a set of GTIDs. See
binlog_gtid_simple_recovery for more information on how binary logs are iterated to populate
gtid_purged. Issuing RESET MASTER causes the value of this variable to be reset to an empty
string.

It is possible to update the value of this variable, but only when gtid_executed is the empty string,
and therefore gtid_purged is the empty string. This can occur either when replication has not been
started previously, or when replication was not previously using GTIDs. Prior to MySQL 5.7.6, this
variable was settable only when gtid_mode=ON. In MySQL 5.7.6 and later, this variable is settable
regardless of the value of gtid_mode.

If all existing binary logs were generated using MySQL 5.7.6 or later, after issuing a SET
gtid_purged statement, binlog_gtid_simple_recovery=TRUE (the default setting in MySQL
5.7.7 and later) can safely be used. If binary logs from MySQL 5.7.7 or earlier exist, there is a
chance that gtid_purged may be computed incorrectly. See binlog_gtid_simple_recovery
for more information. If you are using MySQL 5.7.7 or earlier, after issuing a SET gtid_purged
statement note down the current binary log file name, which can be checked using SHOW
MASTER STATUS. If the server is restarted before this file has been purged, then you should use
binlog_gtid_simple_recovery=FALSE to avoid gtid_purged or gtid_executed being
computed incorrectly.

• simplified_binlog_gtid_recovery

Introduced 5.7.5

Deprecated 5.7.6

Command-Line Format --simplified-binlog-gtid-recovery

Name simplified_binlog_gtid_recovery

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default FALSE

This option is deprecated and will be removed in a future MySQL release. Use the renamed
binlog_gtid_simple_recovery to control how MySQL iterates through binary log files after a
crash.

17.1.7 Common Replication Administration Tasks

Once replication has been started it executes without requiring much regular administration. This
section describes how to check the status of replication and how to pause a slave.

17.1.7.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking
place and that there have been no errors between the slave and the master. The primary statement for
this is SHOW SLAVE STATUS, which you must execute on each slave:

Common Replication Administration Tasks

2511

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: master1
 Master_User: root
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000004
 Read_Master_Log_Pos: 931
 Relay_Log_File: slave1-relay-bin.000056
 Relay_Log_Pos: 950
 Relay_Master_Log_File: mysql-bin.000004
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 931
 Relay_Log_Space: 1365
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids: 0

The key fields from the status report to examine are:

• Slave_IO_State: The current status of the slave. See Section 8.14.5, “Replication Slave I/O
Thread States”, and Section 8.14.6, “Replication Slave SQL Thread States”, for more information.

• Slave_IO_Running: Whether the I/O thread for reading the master's binary log is running.
Normally, you want this to be Yes unless you have not yet started replication or have explicitly
stopped it with STOP SLAVE.

• Slave_SQL_Running: Whether the SQL thread for executing events in the relay log is running. As
with the I/O thread, this should normally be Yes.

• Last_IO_Error, Last_SQL_Error: The last errors registered by the I/O and SQL threads when
processing the relay log. Ideally these should be blank, indicating no errors.

• Seconds_Behind_Master: The number of seconds that the slave SQL thread is behind processing
the master binary log. A high number (or an increasing one) can indicate that the slave is unable to
handle events from the master in a timely fashion.

A value of 0 for Seconds_Behind_Master can usually be interpreted as meaning that the slave
has caught up with the master, but there are some cases where this is not strictly true. For example,
this can occur if the network connection between master and slave is broken but the slave I/O thread
has not yet noticed this—that is, slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Master may not reflect the situation
accurately. When the slave SQL thread has caught up on I/O, Seconds_Behind_Master displays

Common Replication Administration Tasks

2512

0; but when the slave I/O thread is still queuing up a new event, Seconds_Behind_Master may
show a large value until the SQL thread finishes executing the new event. This is especially likely
when the events have old timestamps; in such cases, if you execute SHOW SLAVE STATUS several
times in a relatively short period, you may see this value change back and forth repeatedly between
0 and a relatively large value.

Several pairs of fields provide information about the progress of the slave in reading events from the
master binary log and processing them in the relay log:

• (Master_Log_file, Read_Master_Log_Pos): Coordinates in the master binary log indicating
how far the slave I/O thread has read events from that log.

• (Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the master binary log
indicating how far the slave SQL thread has executed events received from that log.

• (Relay_Log_File, Relay_Log_Pos): Coordinates in the slave relay log indicating how far the
slave SQL thread has executed the relay log. These correspond to the preceding coordinates, but
are expressed in slave relay log coordinates rather than master binary log coordinates.

On the master, you can check the status of connected slaves using SHOW PROCESSLIST to examine
the list of running processes. Slave connections have Binlog Dump in the Command field:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
 Id: 10
 User: root
 Host: slave1:58371
 db: NULL
Command: Binlog Dump
 Time: 777
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

Because it is the slave that drives the replication process, very little information is available in this
report.

For slaves that were started with the --report-host option and are connected to the master, the
SHOW SLAVE HOSTS statement on the master shows basic information about the slaves. The output
includes the ID of the slave server, the value of the --report-host option, the connecting port, and
master ID:

mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
| 10 | slave1 | 3306 | 0 | 1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)

17.1.7.2 Pausing Replication on the Slave

You can stop and start replication on the slave using the STOP SLAVE and START SLAVE statements.

To stop processing of the binary log from the master, use STOP SLAVE:

mysql> STOP SLAVE;

When replication is stopped, the slave I/O thread stops reading events from the master binary log and
writing them to the relay log, and the SQL thread stops reading events from the relay log and executing
them. You can pause the I/O or SQL thread individually by specifying the thread type:

Replication Implementation

2513

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;

To start execution again, use the START SLAVE statement:

mysql> START SLAVE;

To start a particular thread, specify the thread type:

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;

For a slave that performs updates only by processing events from the master, stopping only the SQL
thread can be useful if you want to perform a backup or other task. The I/O thread will continue to read
events from the master but they are not executed. This makes it easier for the slave to catch up when
you restart the SQL thread.

Stopping only the I/O thread enables the events in the relay log to be executed by the SQL thread up
to the point where the relay log ends. This can be useful when you want to pause execution to catch
up with events already received from the master, when you want to perform administration on the slave
but also ensure that it has processed all updates to a specific point. This method can also be used
to pause event receipt on the slave while you conduct administration on the master. Stopping the I/O
thread but permitting the SQL thread to run helps ensure that there is not a massive backlog of events
to be executed when replication is started again.

17.2 Replication Implementation

Replication is based on the master server keeping track of all changes to its databases (updates,
deletes, and so on) in its binary log. The binary log serves as a written record of all events that modify
database structure or content (data) from the moment the server was started. Typically, SELECT
statements are not recorded because they modify neither database structure nor content.

Each slave that connects to the master requests a copy of the binary log. That is, it pulls the data from
the master, rather than the master pushing the data to the slave. The slave also executes the events
from the binary log that it receives. This has the effect of repeating the original changes just as they
were made on the master. Tables are created or their structure modified, and data is inserted, deleted,
and updated according to the changes that were originally made on the master.

Because each slave is independent, the replaying of the changes from the master's binary log occurs
independently on each slave that is connected to the master. In addition, because each slave receives
a copy of the binary log only by requesting it from the master, the slave is able to read and update
the copy of the database at its own pace and can start and stop the replication process at will without
affecting the ability to update to the latest database status on either the master or slave side.

For more information on the specifics of the replication implementation, see Section 17.2.2,
“Replication Implementation Details”.

Masters and slaves report their status in respect of the replication process regularly so that you can
monitor them. See Section 8.14, “Examining Thread Information”, for descriptions of all replicated-
related states.

The master binary log is written to a local relay log on the slave before it is processed. The slave also
records information about the current position with the master's binary log and the local relay log. See
Section 17.2.4, “Replication Relay and Status Logs”.

Database changes are filtered on the slave according to a set of rules that are applied according to the
various configuration options and variables that control event evaluation. For details on how these rules
are applied, see Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.

Replication Formats

2514

17.2.1 Replication Formats

Replication works because events written to the binary log are read from the master and then
processed on the slave. The events are recorded within the binary log in different formats according
to the type of event. The different replication formats used correspond to the binary logging format
used when the events were recorded in the master's binary log. The correlation between binary logging
formats and the terms used during replication are:

• When using statement-based binary logging, the master writes SQL statements to the binary log.
Replication of the master to the slave works by executing the SQL statements on the slave. This is
called statement-based replication (often abbreviated as SBR), which corresponds to the standard
MySQL statement-based binary logging format. Replication capabilities in MySQL version 5.1.4 and
earlier used this format exclusively.

• When using row-based logging, the master writes events to the binary log that indicate how
individual table rows are changed. Replication of the master to the slave works by copying the events
representing the changes to the table rows to the slave. This is called row-based replication (often
abbreviated as RBR).

• You can also configure MySQL to use a mix of both statement-based and row-based logging,
depending on which is most appropriate for the change to be logged. This is called mixed-format
logging. When using mixed-format logging, a statement-based log is used by default. Depending on
certain statements, and also the storage engine being used, the log is automatically switched to row-
based in particular cases. Replication using the mixed format is often referred to as mixed-based
replication or mixed-format replication. For more information, see Section 5.2.4.3, “Mixed Binary
Logging Format”.

Prior to MySQL 5.7.7, statement-based format was the default. In MySQL 5.7.7 and later, row-based
format is the default.

When using MIXED format, the binary logging format is determined in part by the storage engine being
used and the statement being executed. For more information on mixed-format logging and the rules
governing the support of different logging formats, see Section 5.2.4.3, “Mixed Binary Logging Format”.

The logging format in a running MySQL server is controlled by setting the binlog_format server
system variable. This variable can be set with session or global scope. The rules governing when and
how the new setting takes effect are the same as for other MySQL server system variables—setting
the variable for the current session lasts only until the end of that session, and the change is not visible
to other sessions; setting the variable globally requires a restart of the server to take effect. For more
information, see Section 13.7.4, “SET Syntax”.

There are conditions under which you cannot change the binary logging format at runtime or doing so
causes replication to fail. See Section 5.2.4.2, “Setting The Binary Log Format”.

You must have the SUPER privilege to set either the global or session binlog_format value.

The statement-based and row-based replication formats have different issues and limitations. For a
comparison of their relative advantages and disadvantages, see Section 17.2.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

With statement-based replication, you may encounter issues with replicating stored routines or
triggers. You can avoid these issues by using row-based replication instead. For more information, see
Section 19.7, “Binary Logging of Stored Programs”.

17.2.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication

Each binary logging format has advantages and disadvantages. For most users, the mixed replication
format should provide the best combination of data integrity and performance. If, however, you want to
take advantage of the features specific to the statement-based or row-based replication format when
performing certain tasks, you can use the information in this section, which provides a summary of their
relative advantages and disadvantages, to determine which is best for your needs.

Replication Formats

2515

• Advantages of statement-based replication

• Disadvantages of statement-based replication

• Advantages of row-based replication

• Disadvantages of row-based replication

Advantages of statement-based replication

• Proven technology that has existed in MySQL since 3.23.

• Less data written to log files. When updates or deletes affect many rows, this results in much less
storage space required for log files. This also means that taking and restoring from backups can be
accomplished more quickly.

• Log files contain all statements that made any changes, so they can be used to audit the database.

Disadvantages of statement-based replication

• Statements that are unsafe for SBR.
Not all statements which modify data (such as INSERT DELETE, UPDATE, and REPLACE statements)
can be replicated using statement-based replication. Any nondeterministic behavior is difficult to
replicate when using statement-based replication. Examples of such Data Modification Language
(DML) statements include the following:

• A statement that depends on a UDF or stored program that is nondeterministic, since the value
returned by such a UDF or stored program or depends on factors other than the parameters
supplied to it. (Row-based replication, however, simply replicates the value returned by the UDF
or stored program, so its effect on table rows and data is the same on both the master and slave.)
See Section 17.4.1.12, “Replication of Invoked Features”, for more information.

• DELETE and UPDATE statements that use a LIMIT clause without an ORDER BY are
nondeterministic. See Section 17.4.1.17, “Replication and LIMIT”.

• Deterministic UDFs must be applied on the slaves.

• Statements using any of the following functions cannot be replicated properly using statement-
based replication:

• LOAD_FILE()

• UUID(), UUID_SHORT()

• USER()

• FOUND_ROWS()

• SYSDATE() (unless both the master and the slave are started with the --sysdate-is-now
option)

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

• MASTER_POS_WAIT()

• RAND()

• RELEASE_LOCK()

Replication Formats

2516

• SLEEP()

• VERSION()

However, all other functions are replicated correctly using statement-based replication, including
NOW() and so forth.

For more information, see Section 17.4.1.16, “Replication and System Functions”.

Statements that cannot be replicated correctly using statement-based replication are logged with a
warning like the one shown here:

[Warning] Statement is not safe to log in statement format.

A similar warning is also issued to the client in such cases. The client can display it using SHOW
WARNINGS.

• INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

• UPDATE statements that require a table scan (because no index is used in the WHERE clause) must
lock a greater number of rows than with row-based replication.

• For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other nonconflicting INSERT
statements.

• For complex statements, the statement must be evaluated and executed on the slave before the
rows are updated or inserted. With row-based replication, the slave only has to modify the affected
rows, not execute the full statement.

• If there is an error in evaluation on the slave, particularly when executing complex statements,
statement-based replication may slowly increase the margin of error across the affected rows over
time. See Section 17.4.1.28, “Slave Errors During Replication”.

• Stored functions execute with the same NOW() value as the calling statement. However, this is not
true of stored procedures.

• Deterministic UDFs must be applied on the slaves.

• Table definitions must be (nearly) identical on master and slave. See Section 17.4.1.10, “Replication
with Differing Table Definitions on Master and Slave”, for more information.

Advantages of row-based replication

• All changes can be replicated. This is the safest form of replication.

Note

Statements that update the information in the mysql database—such as
GRANT, REVOKE and the manipulation of triggers, stored routines (including
stored procedures), and views—are all replicated to slaves using statement-
based replication.

For statements such as CREATE TABLE ... SELECT, a CREATE statement
is generated from the table definition and replicated using statement-based
format, while the row insertions are replicated using row-based format.

• Fewer row locks are required on the master, which thus achieves higher concurrency, for the
following types of statements:

• INSERT ... SELECT

Replication Formats

2517

• INSERT statements with AUTO_INCREMENT

• UPDATE or DELETE statements with WHERE clauses that do not use keys or do not change most of
the examined rows.

• Fewer row locks are required on the slave for any INSERT, UPDATE, or DELETE statement.

Disadvantages of row-based replication

• RBR can generate more data that must be logged. To replicate a DML statement (such as an
UPDATE or DELETE statement), statement-based replication writes only the statement to the binary
log. By contrast, row-based replication writes each changed row to the binary log. If the statement
changes many rows, row-based replication may write significantly more data to the binary log; this is
true even for statements that are rolled back. This also means that making and restoring a backup
can require more time. In addition, the binary log is locked for a longer time to write the data, which
may cause concurrency problems. Use binlog_row_image=minimal to reduce the disadvantage
considerably.

• Deterministic UDFs that generate large BLOB values take longer to replicate with row-based
replication than with statement-based replication. This is because the BLOB column value is logged,
rather than the statement generating the data.

• You cannot see on the slave what statements were received from the master and executed.
However, you can see what data was changed using mysqlbinlog with the options --base64-
output=DECODE-ROWS and --verbose.

Alternatively, use the binlog_rows_query_log_events variable, which if enabled adds a
Rows_query event with the statement to mysqlbinlog output when the -vv option is used.

• For tables using the MyISAM storage engine, a stronger lock is required on the slave for INSERT
statements when applying them as row-based events to the binary log than when applying them as
statements. This means that concurrent inserts on MyISAM tables are not supported when using row-
based replication.

17.2.1.2 Usage of Row-Based Logging and Replication

MySQL uses statement-based logging (SBL), row-based logging (RBL) or mixed-format logging.
The type of binary log used impacts the size and efficiency of logging.Therefore the choice between
row-based replication (RBR) or statement-based replication (SBR) depends on your application and
environment. This section describes known issues when using a row-based format log, and describes
some best practices using it in replication.

For additional information, see Section 17.2.1, “Replication Formats”, and Section 17.2.1.1,
“Advantages and Disadvantages of Statement-Based and Row-Based Replication”.

• Row-based logging of temporary tables. As noted in Section 17.4.1.24, “Replication and
Temporary Tables”, temporary tables are not replicated when using row-based format. When using
mixed format logging, “safe” statements involving temporary tables are logged using statement-
based format. For more information, see Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”.

Temporary tables are not replicated when using row-based format because there is no need. In
addition, because temporary tables can be read only from the thread which created them, there is
seldom if ever any benefit obtained from replicating them, even when using statement-based format.

In MySQL 5.7, you can switch from statement-based to row-based binary logging mode even when
temporary tables have been created. However, while using the row-based format, the MySQL server
cannot determine the logging mode that was in effect when a given temporary table was created.
For this reason, the server in such cases logs a DROP TEMPORARY TABLE IF EXISTS statement
for each temporary table that still exists for a given client session when that session ends. While this

Replication Formats

2518

means that it is possible that an unnecessary DROP TEMPORARY TABLE statement might be logged
in some cases, the statement is harmless, and does not cause an error even if the table does not
exist, due to the presence of the IF EXISTS option.

Nontransactional DML statements involving temporary tables are allowed when using
binlog_format=ROW, as long as any nontransactional tables affected by the statements are
temporary tables (Bug #14272672).

• RBL and synchronization of nontransactional tables. When many rows are affected, the set
of changes is split into several events; when the statement commits, all of these events are written to
the binary log. When executing on the slave, a table lock is taken on all tables involved, and then the
rows are applied in batch mode. Depending on the engine used for the slave's copy of the table, this
may or may not be effective.

• Latency and binary log size. RBL writes changes for each row to the binary log and so its size
can increase quite rapidly. This can significantly increase the time required to make changes on the
slave that match those on the master. You should be aware of the potential for this delay in your
applications.

• Reading the binary log. mysqlbinlog displays row-based events in the binary log using the
BINLOG statement (see Section 13.7.6.1, “BINLOG Syntax”). This statement displays an event as
a base 64-encoded string, the meaning of which is not evident. When invoked with the --base64-
output=DECODE-ROWS and --verbose options, mysqlbinlog formats the contents of the binary
log to be human readable. When binary log events were written in row-based format and you want to
read or recover from a replication or database failure you can use this command to read contents of
the binary log. For more information, see Section 4.6.7.2, “mysqlbinlog Row Event Display”.

• Binary log execution errors and slave_exec_mode. If slave_exec_mode is IDEMPOTENT, a
failure to apply changes from RBL because the original row cannot be found does not trigger an error
or cause replication to fail. This means that it is possible that updates are not applied on the slave,
so that the master and slave are no longer synchronized. Latency issues and use of nontransactional
tables with RBR when slave_exec_mode is IDEMPOTENT can cause the master and slave to
diverge even further. For more information about slave_exec_mode, see Section 5.1.4, “Server
System Variables”.

Note

slave_exec_mode=IDEMPOTENT is generally useful only for circular
replication or multi-master replication with MySQL Cluster, for which
IDEMPOTENT is the default value.

For other scenarios, setting slave_exec_mode to STRICT is normally sufficient; this is the default
value for storage engines other than NDB.

The NDBCLUSTER storage engine is currently not supported in MySQL 5.7. See MySQL Cluster NDB
7.3 and MySQL Cluster NDB 7.4.

• Lack of binary log checksums. RBL does not use checksums, so network, disk, and other
errors may not be identified when processing the binary log. To ensure that data is transmitted
without network corruption use SSL for replication connections. The CHANGE MASTER TO statement
has options to enable replication over SSL. See also Section 13.4.2.1, “CHANGE MASTER TO
Syntax”, for general information about setting up MySQL with SSL.

• Filtering based on server ID not supported. In MySQL 5.7, you can filter based on server ID by
using the IGNORE_SERVER_IDS option for the CHANGE MASTER TO statement. This option works
with statement-based and row-based logging formats. Another method to filter out changes on some
slaves is to use a WHERE clause that includes the relation @@server_id <> id_value clause with
UPDATE and DELETE statements. For example, WHERE @@server_id <> 1. However, this does
not work correctly with row-based logging. To use the server_id system variable for statement
filtering, use statement-based logging.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Replication Formats

2519

• Database-level replication options. The effects of the --replicate-do-db, --replicate-
ignore-db, and --replicate-rewrite-db options differ considerably depending on whether
row-based or statement-based logging is used. Therefore, it is recommended to avoid database-level
options and instead use table-level options such as --replicate-do-table and --replicate-
ignore-table. For more information about these options and the impact replication format has on
how they operate, see Section 17.1.6, “Replication and Binary Logging Options and Variables”.

• RBL, nontransactional tables, and stopped slaves. When using row-based logging, if the slave
server is stopped while a slave thread is updating a nontransactional table, the slave database can
reach an inconsistent state. For this reason, it is recommended that you use a transactional storage
engine such as InnoDB for all tables replicated using the row-based format. Use of STOP SLAVE
or STOP SLAVE SQL_THREAD prior to shutting down the slave MySQL server helps prevent issues
from occurring, and is always recommended regardless of the logging format or storage engine you
use.

17.2.1.3 Determination of Safe and Unsafe Statements in Binary Logging

The “safeness” of a statement in MySQL Replication, refers to whether the statement and its effects
can be replicated correctly using statement-based format. If this is true of the statement, we refer to the
statement as safe; otherwise, we refer to it as unsafe.

In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain
nondeterministic functions are not considered unsafe (see Nondeterministic functions not considered
unsafe, later in this section). In addition, statements using results from floating-point math functions—
which are hardware-dependent—are always considered unsafe (see Section 17.4.1.13, “Replication
and Floating-Point Values”).

Handling of safe and unsafe statements. A statement is treated differently depending on whether
the statement is considered safe, and with respect to the binary logging format (that is, the current
value of binlog_format).

• When using row-based logging, no distinction is made in the treatment of safe and unsafe
statements.

• When using mixed-format logging, statements flagged as unsafe are logged using the row-based
format; statements regarded as safe are logged using the statement-based format.

• When using statement-based logging, statements flagged as being unsafe generate a warning to this
effect. Safe statements are logged normally.

Each statement flagged as unsafe generates a warning. Formerly, if a large number of such statements
were executed on the master, this could lead to excessively large error log files. To prevent this,
MySQL 5.7 provides a warning suppression mechanism, which behaves as follows: Whenever the 50
most recent ER_BINLOG_UNSAFE_STATEMENT warnings have been generated more than 50 times in
any 50-second period, warning suppression is enabled. When activated, this causes such warnings not
to be written to the error log; instead, for each 50 warnings of this type, a note The last warning
was repeated N times in last S seconds is written to the error log. This continues as long
as the 50 most recent such warnings were issued in 50 seconds or less; once the rate has decreased
below this threshold, the warnings are once again logged normally. Warning suppression has no effect
on how the safety of statements for statement-based logging is determined, nor on how warnings are
sent to the client. MySQL clients still receive one warning for each such statement.

For more information, see Section 17.2.1, “Replication Formats”.

Statements considered unsafe.
Statements with the following characteristics are considered unsafe:

• Statements containing system functions that may return a different value on slave.
These functions include FOUND_ROWS(), GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(),
LOAD_FILE(), MASTER_POS_WAIT(), PASSWORD(), RAND(), RELEASE_LOCK(), ROW_COUNT(),

Replication Formats

2520

SESSION_USER(), SLEEP(), SYSDATE(), SYSTEM_USER(), USER(), UUID(), and
UUID_SHORT().

Nondeterministic functions not considered unsafe. Although these functions are not
deterministic, they are treated as safe for purposes of logging and replication: CONNECTION_ID(),
CURDATE(), CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP(), CURTIME(),,
LAST_INSERT_ID(), LOCALTIME(), LOCALTIMESTAMP(), NOW(), UNIX_TIMESTAMP(),
UTC_DATE(), UTC_TIME(), and UTC_TIMESTAMP().

For more information, see Section 17.4.1.16, “Replication and System Functions”.

• References to system variables. Most system variables are not replicated correctly using the
statement-based format. See Section 17.4.1.38, “Replication and Variables”. For exceptions, see
Section 5.2.4.3, “Mixed Binary Logging Format”.

• UDFs. Since we have no control over what a UDF does, we must assume that it is executing
unsafe statements.

• Fulltext plugin. This plugin may behave differently on different MySQL servers; therefore,
statements depending on it could have different results. For this reason, all statements relying on the
fulltext plugin are treated as unsafe in MySQL 5.7.1 and later. (Bug #11756280, Bug #48183)

• Trigger or stored program updates a table having an AUTO_INCREMENT column. This is
unsafe because the order in which the rows are updated may differ on the master and the slave.

In addition, an INSERT into a table that has a composite primary key containing an
AUTO_INCREMENT column that is not the first column of this composite key is unsafe.

For more information, see Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique
keys. When executed against a table that contains more than one primary or unique key, this
statement is considered unsafe, being sensitive to the order in which the storage engine checks
the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server
depends.

An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one
unique or primary key is marked as unsafe for statement-based replication. (Bug #11765650, Bug
#58637)

• Updates using LIMIT. The order in which rows are retrieved is not specified, and is therefore
considered unsafe. See Section 17.4.1.17, “Replication and LIMIT”.

• Accesses or references log tables. The contents of the system log table may differ between
master and slave.

• Nontransactional operations after transactional operations. Within a transaction, allowing
any nontransactional reads or writes to execute after any transactional reads or writes is considered
unsafe.

For more information, see Section 17.4.1.33, “Replication and Transactions”.

• Accesses or references self-logging tables. All reads and writes to self-logging tables are
considered unsafe. Within a transaction, any statement following a read or write to self-logging tables
is also considered unsafe.

• LOAD DATA INFILE statements. LOAD DATA INFILE is considered unsafe, it causes a
warning in statement-based mode, and a switch to row-based format when using mixed-format
logging. See Section 17.4.1.18, “Replication and LOAD DATA INFILE”.

For additional information, see Section 17.4.1, “Replication Features and Issues”.

Replication Implementation Details

2521

17.2.2 Replication Implementation Details

MySQL replication capabilities are implemented using three threads, one on the master server and two
on the slave:

• Binlog dump thread. The master creates a thread to send the binary log contents to a slave
when the slave connects. This thread can be identified in the output of SHOW PROCESSLIST on the
master as the Binlog Dump thread.

The binary log dump thread acquires a lock on the master's binary log for reading each event that
is to be sent to the slave. As soon as the event has been read, the lock is released, even before the
event is sent to the slave.

• Slave I/O thread. When a START SLAVE statement is issued on a slave server, the slave creates
an I/O thread, which connects to the master and asks it to send the updates recorded in its binary
logs.

The slave I/O thread reads the updates that the master's Binlog Dump thread sends (see previous
item) and copies them to local files that comprise the slave's relay log.

The state of this thread is shown as Slave_IO_running in the output of SHOW SLAVE STATUS or
as Slave_running in the output of SHOW STATUS.

• Slave SQL thread. The slave creates an SQL thread to read the relay log that is written by the
slave I/O thread and execute the events contained therein.

In the preceding description, there are three threads per master/slave connection. A master that has
multiple slaves creates one binary log dump thread for each currently connected slave, and each slave
has its own I/O and SQL threads.

A slave uses two threads to separate reading updates from the master and executing them into
independent tasks. Thus, the task of reading statements is not slowed down if statement execution
is slow. For example, if the slave server has not been running for a while, its I/O thread can quickly
fetch all the binary log contents from the master when the slave starts, even if the SQL thread lags
far behind. If the slave stops before the SQL thread has executed all the fetched statements, the I/
O thread has at least fetched everything so that a safe copy of the statements is stored locally in the
slave's relay logs, ready for execution the next time that the slave starts.

The SHOW PROCESSLIST statement provides information that tells you what is happening on the
master and on the slave regarding replication. For information on master states, see Section 8.14.4,
“Replication Master Thread States”. For slave states, see Section 8.14.5, “Replication Slave I/O Thread
States”, and Section 8.14.6, “Replication Slave SQL Thread States”.

The following example illustrates how the three threads show up in the output from SHOW
PROCESSLIST.

On the master server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 2
 User: root
 Host: localhost:32931
 db: NULL
Command: Binlog Dump
 Time: 94
 State: Has sent all binlog to slave; waiting for binlog to
 be updated
 Info: NULL

Here, thread 2 is a Binlog Dump replication thread that services a connected slave. The State
information indicates that all outstanding updates have been sent to the slave and that the master is

Replication Channels

2522

waiting for more updates to occur. If you see no Binlog Dump threads on a master server, this means
that replication is not running; that is, no slaves are currently connected.

On a slave server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 11
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Has read all relay log; waiting for the slave I/O
 thread to update it
 Info: NULL

The State information indicates that thread 10 is the I/O thread that is communicating with the master
server, and thread 11 is the SQL thread that is processing the updates stored in the relay logs. At the
time that SHOW PROCESSLIST was run, both threads were idle, waiting for further updates.

The value in the Time column can show how late the slave is compared to the master. See
Section A.13, “MySQL 5.7 FAQ: Replication”. If sufficient time elapses on the master side without
activity on the Binlog Dump thread, the master determines that the slave is no longer connected. As
for any other client connection, the timeouts for this depend on the values of net_write_timeout
and net_retry_count; for more information about these, see Section 5.1.4, “Server System
Variables”.

The SHOW SLAVE STATUS statement provides additional information about replication processing on a
slave server. See Section 17.1.7.1, “Checking Replication Status”.

17.2.3 Replication Channels

MySQL 5.7.6 introduces the concept of a replication channel, which represents the path of transactions
flowing from a master to a slave. This section describes how channels can be used in a replication
topology, and the impact they have on single-source replication.

To provide compatibity with previous versions, the MySQL server automatically creates on startup
a default channel whose name is the empty string (""). This channel is always present; it cannot
be created or destroyed by the user. If no other channels (having nonempty names) have been
created, replication statements act on the default channel only, so that all replication statements from
older slaves function as expected (see Section 17.2.3.2, “Compatibility with Previous Replication
Statements”. Statements applying to replication channels as described in this section can be used only
when there is at least one named channel.

A replication channel encompasses the path of transactions transmitted from a master to a slave. In
multi-source replication a slave opens multiple channels, one per master, and each channel has its
own relay log and applier (SQL) threads. Once transactions are received by a replication channel's
receiver (I/O) thread, they are added to the channel's relay log file and passed through to an applier
thread. This enables channels to function independently.

A replication channel is also associated with a host name and port. You can assign multiple channels
to the same combination of host name and port; in MySQL 5.7, the maximum number of channels that
can be added to one slave in a multi-source replication topology is 256. Each replication channel must

Replication Channels

2523

have a unique (nonempty) name (see Section 17.2.3.4, “Replication Channel Naming Conventions”).
Channels can be configured independently.

17.2.3.1 Commands for Operations on a Single Channel

To enable existing MySQL replication statements to act on individual replication channels, MySQL
5.7.6 introduces the FOR CHANNEL channel_name option for use with the following replication
statements in managing a replication channel independently of other channels:

• CHANGE MASTER TO

• START SLAVE

• STOP SLAVE

• SHOW RELAYLOG EVENTS

• FLUSH RELAY LOGS

• SHOW SLAVE STATUS

• RESET SLAVE

Similarly, an additional channel_name parameter is introduced for the following functions:

• MASTER_POS_WAIT()

• WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()

Beginning with MySQL 5.7.9, the following statements are disallowed for the
group_replication_recovery channel.

• START SLAVE

• STOP SLAVE

17.2.3.2 Compatibility with Previous Replication Statements

When a replication slave has multiple channels and a FOR CHANNEL channel_name option is not
specified, a valid statement generally acts on all available channels.

For example, the following statements behave as expected:

• START SLAVE starts replication threads for all channels. (In MySQL 5.7.9 and later, this does not
include the group_replication_recovery channel.)

• STOP SLAVE stops replication threads for all the channels. (In MySQL 5.7.9 and later, this does not
include the group_replication_recovery channel.)

• SHOW SLAVE STATUS reports the status for all channels.

• FLUSH RELAY LOGS flushes the relay logs for all channels.

• RESET SLAVE resets all channels.

Warning

Use RESET SLAVE with caution as this statement deletes all existing channels,
purges their relay log files, and recreates only the default channel.

Some replication statements cannot operate on all channels. In this case, error 1964 Multiple
channels exist on the slave. Please provide channel name as an argument. is
generated. The following statements and functions generate this error when used in a multi-source
replication topology and a FOR CHANNEL channel_name option is not used to specify which channel
to act on:

Replication Channels

2524

• SHOW RELAYLOG EVENTS

• CHANGE MASTER TO

• MASTER_POS_WAIT()

• WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()

• WAIT_FOR_EXECUTED_GTID_SET()

Note that a default channel always exists in a single source replication topology, where statements and
functions behave as in previous versions of MySQL.

17.2.3.3 Startup Options and Replication Channels

This section describes startup options which are impacted by the addition of replication channels.

The following startup options must be configured correctly to use multi-source replication.

• --relay-log-info-repository

This must be set to TABLE. If this option is set to FILE, attempting to add more sources to a slave
fails with ER_SLAVE_NEW_CHANNEL_WRONG_REPOSITORY.

• --master-info-repository

This must be set to TABLE. If this option is set to FILE, attempting to add more sources to a slave
fails with ER_SLAVE_NEW_CHANNEL_WRONG_REPOSITORY.

The following startup options now affect all channels in a replication topology.

• --log-slave-updates

All transactions received by the slave (even from multiple sources) are written in the binary log.

• --relay-log-purge

When set, each channel purges its own relay log automatically.

• --slave_transaction_retries

Applier threads of all channels retry transactions.

• --skip-slave-start

No replication threads start on any channels.

• --slave-skip-errors

Execution continues and errors are skipped for all channels.

The values set for the following startup options apply on each channel; since these are mysqld startup
options, they are applied on every channel.

• --max-relay-log-size=size

Maximum size of the individual relay log file for each channel; after reaching this limit, the file is
rotated.

• --relay-log-space-limit=size

Upper limit for the total size of all relay logs combined, for each individual channel. For N channels,
the combined size of these logs is limited to relay_log_space_limit * N.

• --slave-parallel-workers=value

Replication Relay and Status Logs

2525

Number of slave parallel workers per channel.

• --slave-checkpoint-group

Waiting time by an I/O thread for each source.

• --relay-log-index=filename

Base name for each channel's relay log index file. See Section 17.2.3.4, “Replication Channel
Naming Conventions”.

• --relay-log=filename

Denotes the base name of each channel's relay log file. See Section 17.2.3.4, “Replication Channel
Naming Conventions”.

• --slave_net-timeout=N

This value is set per channel, so that each channel waits for N seconds to check for a broken
connection.

• --slave-skip-counter=N

This value is set per channel, so that each channel skips N events from its master.

17.2.3.4 Replication Channel Naming Conventions

This section describes how naming conventions are impacted by replication channels.

Each replication channel has a unique name which is a string with a maximum length of 64 characters
and is case insensitive. Because channel names are used in slave tables, the character set used for
these is always UTF-8. Although you are generally free to use any name for channels, the following
names are reserved:

• group_replication_applier

• group_replication_recovery

The name you choose for a replication channel also influences the file names used by a multi-source
replication slave. The relay log files and index files for each channel are named base_name-relay-
bin-channel_name.0000x, where base_name is generally a host name (if not specified using --
log-bin) and channel_name is the name of the channel logged to this file.

17.2.4 Replication Relay and Status Logs

During replication, a slave server creates several logs that hold the binary log events relayed from the
master to the slave, and to record information about the current status and location within the relay log.
There are three types of logs used in the process, listed here:

• The relay log consists of the events read from the binary log of the master and written by the slave I/
O thread. Events in the relay log are executed on the slave as part of the SQL thread.

• The master info log contains status and current configuration information for the slave's connection
to the master. This log holds information on the master host name, login credentials, and coordinates
indicating how far the slave has read from the master's binary log.

This log can be written to the mysql.slave_master_info table instead of a file, by starting the
slave with --master-info-repository=TABLE.

• The relay log info log holds status information about the execution point within the slave's relay log.

This log can be written to the mysql.slave_relay_log_info table instead of a file by starting the
slave with --relay-log-info-repository=TABLE.

Replication Relay and Status Logs

2526

Crash-safe replication. In order for replication to be crash-safe when using tables for logging
status and relay information, these tables must use a transactional storage engine, such as InnoDB. In
MySQL 5.7 these tables are created using InnoDB.

Therefore, in order to guarantee crash safety on the slave, you must run the slave with --relay-log-
recovery enabled, in addition to setting --relay-log-info-repository to TABLE.

In MySQL 5.7, a warning is given when mysqld is unable to initialize the replication logging tables, but
the slave is allowed to continue starting. This situation is most likely to occur when upgrading from a
version of MySQL that does not support slave logging tables to one in which they are supported.

In MySQL 5.7, execution of any statement requiring a write lock on either or both of the
slave_master_info and slave_relay_log_info tables is disallowed while replication is
ongoing, while statements that perform only reads are permitted at any time.

Important

Do not attempt to update or insert rows in the slave_master_info or
slave_relay_log_info table manually. Doing so can cause undefined
behavior, and is not supported.

17.2.4.1 The Slave Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

Relay log files have the same format as binary log files and can be read using mysqlbinlog (see
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”).

By default, relay log file names have the form host_name-relay-bin.nnnnnn in the data
directory, where host_name is the name of the slave server host and nnnnnn is a sequence number.
Successive relay log files are created using successive sequence numbers, beginning with 000001.
The slave uses an index file to track the relay log files currently in use. The default relay log index file
name is host_name-relay-bin.index in the data directory.

The default relay log file and relay log index file names can be overridden with, respectively, the --
relay-log and --relay-log-index server options (see Section 17.1.6, “Replication and Binary
Logging Options and Variables”).

If a slave uses the default host-based relay log file names, changing a slave's host name after
replication has been set up can cause replication to fail with the errors Failed to open the relay
log and Could not find target log during relay log initialization. This is a
known issue (see Bug #2122). If you anticipate that a slave's host name might change in the future (for
example, if networking is set up on the slave such that its host name can be modified using DHCP),
you can avoid this issue entirely by using the --relay-log and --relay-log-index options to
specify relay log file names explicitly when you initially set up the slave. This will make the names
independent of server host name changes.

If you encounter the issue after replication has already begun, one way to work around it is to stop the
slave server, prepend the contents of the old relay log index file to the new one, and then restart the
slave. On a Unix system, this can be done as shown here:

shell> cat new_relay_log_name.index >> old_relay_log_name.index
shell> mv old_relay_log_name.index new_relay_log_name.index

A slave server creates a new relay log file under the following conditions:

• Each time the I/O thread starts.

Replication Relay and Status Logs

2527

• When the logs are flushed; for example, with FLUSH LOGS or mysqladmin flush-logs.

• When the size of the current relay log file becomes “too large,” determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay
log file size.

The SQL thread automatically deletes each relay log file as soon as it has executed all events in the
file and no longer needs it. There is no explicit mechanism for deleting relay logs because the SQL
thread takes care of doing so. However, FLUSH LOGS rotates relay logs, which influences when the
SQL thread deletes them.

17.2.4.2 Slave Status Logs

A replication slave server creates two logs. By default, these logs are files named master.info and
relay-log.info and created in the data directory. The names and locations of these files can be
changed by using the --master-info-file and --relay-log-info-file options, respectively.
In MySQL 5.7, either or both of these logs can also be written to tables in the mysql database by
starting the server with the appropriate option: use --master-info-repository to have the
master info log written to the mysql.slave_master_info table, and use --relay-log-info-
repository to have the relay log info log written to the mysql.slave_relay_log_info table. See
Section 17.1.6, “Replication and Binary Logging Options and Variables”.

The two status logs contain information like that shown in the output of the SHOW SLAVE STATUS
statement, which is discussed in Section 13.4.2, “SQL Statements for Controlling Slave Servers”.
Because the status logs are stored on disk, they survive a slave server's shutdown. The next time the
slave starts up, it reads the two logs to determine how far it has proceeded in reading binary logs from
the master and in processing its own relay logs.

The master info log file or table should be protected because it contains the password for connecting to
the master. See Section 6.1.2.3, “Passwords and Logging”.

The slave I/O thread updates the master info log. The following table shows the correspondence
between the lines in the master.info file, the columns in the mysql.slave_master_info table,
and the columns displayed by SHOW SLAVE STATUS.

Line in
master.info
File

slave_master_info
Table Column

SHOW SLAVE STATUS Column Description

1 Number_of_lines [None] Number of lines
in the file, or
columns in the
table

2 Master_log_name Master_Log_File The name of the
master binary
log currently
being read from
the master

3 Master_log_pos Read_Master_Log_Pos The current
position within
the master
binary log that
have been read
from the master

4 Host Master_Host The host name
of the master

Replication Relay and Status Logs

2528

Line in
master.info
File

slave_master_info
Table Column

SHOW SLAVE STATUS Column Description

5 User_name Master_User The user name
used to connect
to the master

6 User_password Password (not shown by SHOW
SLAVE STATUS)

The password
used to connect
to the master

7 Port Master_Port The network
port used to
connect to the
master

8 Connect_retry Connect_Retry The period (in
seconds) that
the slave will
wait before
trying to
reconnect to the
master

9 Enabled_ssl Master_SSL_Allowed Indicates
whether
the server
supports SSL
connections

10 Ssl_ca Master_SSL_CA_File The file used for
the Certificate
Authority (CA)
certificate

11 Ssl_capath Master_SSL_CA_Path The path to
the Certificate
Authority (CA)
certificates

12 Ssl_cert Master_SSL_Cert The name of the
SSL certificate
file

13 Ssl_cipher Master_SSL_Cipher The list of
possible ciphers
used in the
handshake
for the SSL
connection

14 Ssl_key Master_SSL_Key The name of the
SSL key file

15 Ssl_verify_server_cert Master_SSL_Verify_Server_CertWhether to
verify the server
certificate

16 Heartbeat [None] Interval between
replication
heartbeats, in
seconds

17 Bind Master_Bind Which of the
slave's network

Replication Relay and Status Logs

2529

Line in
master.info
File

slave_master_info
Table Column

SHOW SLAVE STATUS Column Description

interfaces
should be used
for connecting
to the master

18 Ignored_server_ids Replicate_Ignore_Server_Ids The list of
server IDs to
be ignored.
Note that for
Ignored_server_ids
the list of server
IDs is preceded
by the total
number of
server IDs to
ignore.

19 Uuid Master_UUID The master's
unique ID

20 Retry_count Master_Retry_Count Maximum
number of
reconnection
attempts
permitted

21 Ssl_crl [None] Path to an
ssl certificate
revocation list
file

22 Ssl_crl_path [None] Path to a
directory
containing
ssl certificate
revocation list
files

23 Enabled_auto_position Auto_position If
autopositioning
is in use or not

24 Channel_name Channel_name The name of
the replication
channel

The slave SQL thread updates the relay log info log. In MySQL 5.7, the relay-log.info file includes
a line count and a replication delay value. The following table shows the correspondence between the
lines in the relay-log.info file, the columns in the mysql.slave_relay_log_info table, and
the columns displayed by SHOW SLAVE STATUS.

Line in
relay-
log.info

slave_relay_log_info
Table Column

SHOW SLAVE STATUS Column Description

1 Number_of_lines [None] Number of lines in
the file or columns
in the table

Replication Relay and Status Logs

2530

Line in
relay-
log.info

slave_relay_log_info
Table Column

SHOW SLAVE STATUS Column Description

2 Relay_log_name Relay_Log_File The name of the
current relay log
file

3 Relay_log_pos Relay_Log_Pos The current
position within
the relay log file;
events up to this
position have
been executed
on the slave
database

4 Master_log_name Relay_Master_Log_File The name of the
master binary log
file from which the
events in the relay
log file were read

5 Master_log_pos Exec_Master_Log_Pos The equivalent
position within the
master's binary
log file of events
that have already
been executed

6 Sql_delay SQL_Delay The number of
seconds that the
slave must lag the
master

7 Number_of_workers [None] The number of
slave worker
threads for
executing
replication events
(transactions) in
parallel

8 Id [None] ID used for
internal purposes;
currently this is
always 1

9 Channel_name Channel_name The name of
the replication
channel

In older versions of MySQL (prior to MySQL 5.6), the relay-log.info file does not include a line
count or a delay value (and the slave_relay_log_info table is not available).

Line Status Column Description

1 Relay_Log_File The name of the current relay log file

2 Relay_Log_Pos The current position within the relay log file;
events up to this position have been executed on
the slave database

3 Relay_Master_Log_File The name of the master binary log file from which
the events in the relay log file were read

How Servers Evaluate Replication Filtering Rules

2531

Line Status Column Description

4 Exec_Master_Log_Pos The equivalent position within the master's binary
log file of events that have already been executed

Note

If you downgrade a slave server to a version older than MySQL 5.6, the older
server does not read the relay-log.info file correctly. To address this,
modify the file in a text editor by deleting the initial line containing the number of
lines.

The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATUS
statement might not match if the relay-log.info file has not been flushed to disk. Ideally, you
should only view relay-log.info on a slave that is offline (that is, mysqld is not running). For
a running system, you can use SHOW SLAVE STATUS, or query the slave_master_info and
slave_relay_log_info tables if you are writing the status logs to tables.

When you back up the slave's data, you should back up these two status logs, along with the relay
log files. The status logs are needed to resume replication after you restore the data from the slave.
If you lose the relay logs but still have the relay log info log, you can check it to determine how far the
SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with the
MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that
point. Of course, this requires that the binary logs still exist on the master.

17.2.5 How Servers Evaluate Replication Filtering Rules

If a master server does not write a statement to its binary log, the statement is not replicated. If the
server does log the statement, the statement is sent to all slaves and each slave determines whether to
execute it or ignore it.

On the master, you can control which databases to log changes for by using the --binlog-do-
db and --binlog-ignore-db options to control binary logging. For a description of the rules
that servers use in evaluating these options, see Section 17.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”. You should not use these options to control which databases
and tables are replicated. Instead, use filtering on the slave to control the events that are executed on
the slave.

On the slave side, decisions about whether to execute or ignore statements received from the
master are made according to the --replicate-* options that the slave was started with. (See
Section 17.1.6, “Replication and Binary Logging Options and Variables”.) In MySQL 5.7.3 and later,
the filters governed by these options can also be set dynamically using the CHANGE REPLICATION
FILTER statement. The rules governing such filters are the same whether they are created on startup
using --replicate-* options or while the slave server is running by CHANGE REPLICATION
FILTER.

In the simplest case, when there are no --replicate-* options, the slave executes all statements
that it receives from the master. Otherwise, the result depends on the particular options given.

Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first;
see Section 17.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a
description of this process. If no database-level options are used, option checking proceeds to any
table-level options that may be in use (see Section 17.2.5.2, “Evaluation of Table-Level Replication
Options”, for a discussion of these). If one or more database-level options are used but none are
matched, the statement is not replicated.

For statements affecting databases only (that is, CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), database-level options always take precedence over any --replicate-wild-do-
table options. In other words, for such statements, --replicate-wild-do-table options are

How Servers Evaluate Replication Filtering Rules

2532

checked if and only if there are no database-level options that apply. This is a change in behavior from
previous versions of MySQL, where the statement CREATE DATABASE dbx was not replicated if the
slave had been started with --replicate-do-db=dbx --replicate-wild-do-table=db%.t1.
(Bug #46110)

To make it easier to determine what effect an option set will have, it is recommended that you avoid
mixing “do” and “ignore” options, or wildcard and nonwildcard options.

If any --replicate-rewrite-db options were specified, they are applied before the --
replicate-* filtering rules are tested.

Note

In MySQL 5.7, all replication filtering options follow the same rules for case
sensitivity that apply to names of databases and tables elsewhere in the MySQL
server, including the effects of the lower_case_table_names system
variable.

This is a change from previous versions of MySQL. (Bug #51639)

17.2.5.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the slave begins by checking to see whether there are any --
replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db
or --binlog-ignore-db, the process is similar, but the options are checked on the master.

With statement-based replication, the default database is checked for a match. With row-based
replication, the database where data is to be changed is the database that is checked. Regardless
of the binary logging format, checking of database-level options proceeds as shown in the following
diagram.

How Servers Evaluate Replication Filtering Rules

2533

The steps involved are listed here:

1. Are there any --replicate-do-db options?

• Yes. Do any of them match the database?

• Yes. Execute the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 2.

2. Are there any --replicate-ignore-db options?

• Yes. Do any of them match the database?

• Yes. Ignore the statement and exit.

• No. Continue to step 3.

• No. Continue to step 3.

3. Proceed to checking the table-level replication options, if there are any. For a description of how
these options are checked, see Section 17.2.5.2, “Evaluation of Table-Level Replication Options”.

How Servers Evaluate Replication Filtering Rules

2534

Important

A statement that is still permitted at this stage is not yet actually executed.
The statement is not executed until all table-level options (if any) have also
been checked, and the outcome of that process permits execution of the
statement.

For binary logging, the steps involved are listed here:

1. Are there any --binlog-do-db or --binlog-ignore-db options?

• Yes. Continue to step 2.

• No. Log the statement and exit.

2. Is there a default database (has any database been selected by USE)?

• Yes. Continue to step 3.

• No. Ignore the statement and exit.

3. There is a default database. Are there any --binlog-do-db options?

• Yes. Do any of them match the database?

• Yes. Log the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 4.

4. Do any of the --binlog-ignore-db options match the database?

• Yes. Ignore the statement and exit.

• No. Log the statement and exit.

Important

For statement-based logging, an exception is made in the rules just given for
the CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements.
In those cases, the database being created, altered, or dropped replaces the
default database when determining whether to log or ignore updates.

--binlog-do-db can sometimes mean “ignore other databases”. For example, when using
statement-based logging, a server running with only --binlog-do-db=sales does not write to
the binary log statements for which the default database differs from sales. When using row-based
logging with the same option, the server logs only those updates that change data in sales.

17.2.5.2 Evaluation of Table-Level Replication Options

The slave checks for and evaluates table options only if either of the following two conditions is true:

• No matching database options were found.

• One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 17.2.5.1, “Evaluation of
Database-Level Replication and Binary Logging Options”).

First, as a preliminary condition, the slave checks whether statement-based replication is enabled.
If so, and the statement occurs within a stored function, the slave executes the statement and exits.

How Servers Evaluate Replication Filtering Rules

2535

If row-based replication is enabled, the slave does not know whether a statement occurred within a
stored function on the master, so this condition does not apply.

Note

For statement-based replication, replication events represent statements (all
changes making up a given event are associated with a single SQL statement);
for row-based replication, each event represents a change in a single table row
(thus a single statement such as UPDATE mytable SET mycol = 1 may
yield many row-based events). When viewed in terms of events, the process
of checking table options is the same for both row-based and statement-based
replication.

Having reached this point, if there are no table options, the slave simply executes all events. If there
are any --replicate-do-table or --replicate-wild-do-table options, the event must match
one of these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-
table or --replicate-wild-ignore-table options, all events are executed except those that
match any of these options. This process is illustrated in the following diagram.

How Servers Evaluate Replication Filtering Rules

2536

The following steps describe this evaluation in more detail:

1. Are there any table options?

• Yes. Continue to step 2.

• No. Execute the event and exit.

2. Are there any --replicate-do-table options?

How Servers Evaluate Replication Filtering Rules

2537

• Yes. Does the table match any of them?

• Yes. Execute the event and exit.

• No. Continue to step 3.

• No. Continue to step 3.

3. Are there any --replicate-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the event and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Are there any --replicate-wild-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the event and exit.

• No. Continue to step 5.

• No. Continue to step 5.

5. Are there any --replicate-wild-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the event and exit.

• No. Continue to step 6.

• No. Continue to step 6.

6. Are there any --replicate-do-table or --replicate-wild-do-table options?

• Yes. Ignore the event and exit.

• No. Execute the event and exit.

17.2.5.3 Replication Rule Application

This section provides additional explanation and examples of usage for different combinations of
replication filtering options.

Some typical combinations of replication filter rule types are given in the following table:

Condition (Types of Options) Outcome

No --replicate-* options at all: The slave executes all events that it receives from the
master.

--replicate-*-db options, but no
table options:

The slave accepts or ignores events using the database
options. It executes all events permitted by those options
because there are no table restrictions.

--replicate-*-table options, but
no database options:

All events are accepted at the database-checking stage
because there are no database conditions. The slave

Replication Solutions

2538

Condition (Types of Options) Outcome
executes or ignores events based solely on the table
options.

A combination of database and table
options:

The slave accepts or ignores events using the database
options. Then it evaluates all events permitted by those
options according to the table options. This can sometimes
lead to results that seem counterintuitive, and that may be
different depending on whether you are using statement-
based or row-based replication; see the text for an example.

A more complex example follows, in which we examine the outcomes for both statement-based and
row-based settings.

Suppose that we have two tables mytbl1 in database db1 and mytbl2 in database db2 on the
master, and the slave is running with the following options (and no other replication filtering options):

replicate-ignore-db = db1
replicate-do-table = db2.tbl2

Now we execute the following statements on the master:

USE db1;
INSERT INTO db2.tbl2 VALUES (1);

The results on the slave vary considerably depending on the binary log format, and may not match
initial expectations in either case.

Statement-based replication. The USE statement causes db1 to be the default database. Thus the
--replicate-ignore-db option matches, and the INSERT statement is ignored. The table options
are not checked.

Row-based replication. The default database has no effect on how the slave reads database
options when using row-based replication. Thus, the USE statement makes no difference in how the
--replicate-ignore-db option is handled: the database specified by this option does not match
the database where the INSERT statement changes data, so the slave proceeds to check the table
options. The table specified by --replicate-do-table matches the table to be updated, and the
row is inserted.

17.3 Replication Solutions

Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 17.3.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the master and slaves, see Section 17.3.2,
“Using Replication with Different Master and Slave Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of
applications that use the solution. See Section 17.3.3, “Using Replication for Scale-Out”.

For performance or data distribution reasons, you may want to replicate different databases to different
replication slaves. See Section 17.3.4, “Replicating Different Databases to Different Slaves”

As the number of replication slaves increases, the load on the master can increase and lead to reduced
performance (because of the need to replicate the binary log to each slave). For tips on improving

Using Replication for Backups

2539

your replication performance, including using a single secondary server as a replication master, see
Section 17.3.5, “Improving Replication Performance”.

For guidance on switching masters, or converting slaves into masters as part of an emergency failover
solution, see Section 17.3.6, “Switching Masters During Failover”.

To secure your replication communication, you can use SSL to encrypt the communication channel.
For step-by-step instructions, see Section 17.3.7, “Setting Up Replication Using SSL”.

17.3.1 Using Replication for Backups

To use replication as a backup solution, replicate data from the master to a slave, and then back up
the data slave. The slave can be paused and shut down without affecting the running operation of the
master, so you can produce an effective snapshot of “live” data that would otherwise require the master
to be shut down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replication slave state so that you can rebuild the slave in the event of failure. There are
therefore two choices:

• If you are using replication as a solution to enable you to back up the data on the master, and the
size of your database is not too large, the mysqldump tool may be suitable. See Section 17.3.1.1,
“Backing Up a Slave Using mysqldump”.

• For larger databases, where mysqldump would be impractical or inefficient, you can back up the
raw data files instead. Using the raw data files option also means that you can back up the binary
and relay logs that will enable you to recreate the slave in the event of a slave failure. For more
information, see Section 17.3.1.2, “Backing Up Raw Data from a Slave”.

Another backup strategy, which can be used for either master or slave servers, is to put the server in a
read-only state. The backup is performed against the read-only server, which then is changed back to
its usual read/write operational status. See Section 17.3.1.3, “Backing Up a Master or Slave by Making
It Read Only”.

17.3.1.1 Backing Up a Slave Using mysqldump

Using mysqldump to create a copy of a database enables you to capture all of the data in the
database in a format that enables the information to be imported into another instance of MySQL
Server (see Section 4.5.4, “mysqldump — A Database Backup Program”). Because the format of the
information is SQL statements, the file can easily be distributed and applied to running servers in the
event that you need access to the data in an emergency. However, if the size of your data set is very
large, mysqldump may be impractical.

When using mysqldump, you should stop replication on the slave before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the slave from processing requests. You can stop replication completely on the slave using
mysqladmin:

shell> mysqladmin stop-slave

Alternatively, you can stop only the slave SQL thread to pause event execution:

shell> mysql -e 'STOP SLAVE SQL_THREAD;'

This enables the slave to continue to receive data change events from the master's binary log
and store them in the relay logs using the I/O thread, but prevents the slave from executing these
events and changing its data. Within busy replication environments, permitting the I/O thread to run
during backup may speed up the catch-up process when you restart the slave SQL thread.

2. Run mysqldump to dump your databases. You may either dump all databases or select databases
to be dumped. For example, to dump all databases:

Using Replication for Backups

2540

shell> mysqldump --all-databases > fulldb.dump

3. Once the dump has completed, start slave operations again:

shell> mysqladmin start-slave

In the preceding example, you may want to add login credentials (user name, password) to the
commands, and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the slave replication process to ensure that the time
taken to run the backup does not affect the slave's ability to keep up with events from the master. See
Section 17.1.7.1, “Checking Replication Status”. If the slave is unable to keep up, you may want to add
another slave and distribute the backup process. For an example of how to configure this scenario, see
Section 17.3.4, “Replicating Different Databases to Different Slaves”.

17.3.1.2 Backing Up Raw Data from a Slave

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL
replication slave should take place while your slave server is shut down. If the MySQL server is still
running, background tasks may still be updating the database files, particularly those involving storage
engines with background processes such as InnoDB. With InnoDB, these problems should be
resolved during crash recovery, but since the slave server can be shut down during the backup process
without affecting the execution of the master it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the slave MySQL server:

shell> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or
WinZip. For example, assuming that the data directory is located under the current directory, you
can archive the entire directory as follows:

shell> tar cf /tmp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

shell> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqld"

Normally you should back up the entire data directory for the slave MySQL server. If you want to be
able to restore the data and operate as a slave (for example, in the event of failure of the slave), then in
addition to the slave's data, you should also back up the slave status files, the master info and relay log
info repositories, and the relay log files. These files are needed to resume replication after you restore
the slave's data.

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how far
the SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with
the MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from
that point. This requires that the binary logs still exist on the master server.

If your slave is replicating LOAD DATA INFILE statements, you should also back up any SQL_LOAD-
* files that exist in the directory that the slave uses for this purpose. The slave needs these files to
resume replication of any interrupted LOAD DATA INFILE operations. The location of this directory
is the value of the --slave-load-tmpdir option. If the server was not started with that option, the
directory location is the value of the tmpdir system variable.

Using Replication for Backups

2541

17.3.1.3 Backing Up a Master or Slave by Making It Read Only

It is possible to back up either master or slave servers in a replication setup by acquiring a global read
lock and manipulating the read_only system variable to change the read-only state of the server to
be backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.

2. Perform the backup.

3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as mysqldump
(see Section 4.5.4, “mysqldump — A Database Backup Program”). You should
not attempt to use these instructions to make a binary backup by copying files
directly because the server may still have modified data cached in memory and
not flushed to disk.

The following instructions describe how to do this for a master server and for a slave server. For both
scenarios discussed here, suppose that you have the following replication setup:

• A master server M1

• A slave server S1 that has M1 as its master

• A client C1 connected to M1

• A client C2 connected to S1

In either scenario, the statements to acquire the global read lock and manipulate the read_only
variable are performed on the server to be backed up and do not propagate to any slaves of that
server.

Scenario 1: Backup with a Read-Only Master

Put the master M1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While M1 is in a read-only state, the following properties are true:

• Requests for updates sent by C1 to M1 will block because the server is in read-only mode.

• Requests for query results sent by C1 to M1 will succeed.

• Making a backup on M1 is safe.

• Making a backup on S1 is not safe. This server is still running, and might be processing the binary
log or update requests coming from client C2

While M1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on M1 completes, restore M1 to its normal operational state by executing
these statements:

mysql> SET GLOBAL read_only = OFF;

Using Replication with Different Master and Slave Storage Engines

2542

mysql> UNLOCK TABLES;

Although performing the backup on M1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of M1 are blocked from executing updates.

This strategy applies to backing up a master server in a replication setup, but can also be used for a
single server in a nonreplication setting.

Scenario 2: Backup with a Read-Only Slave

Put the slave S1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While S1 is in a read-only state, the following properties are true:

• The master M1 will continue to operate, so making a backup on the master is not safe.

• The slave S1 is stopped, so making a backup on the slave S1 is safe.

These properties provide the basis for a popular backup scenario: Having one slave busy performing a
backup for a while is not a problem because it does not affect the entire network, and the system is still
running during the backup. In particular, clients can still perform updates on the master server, which
remains unaffected by backup activity on the slave.

While S1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing
these statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

After the slave is restored to normal operation, it again synchronizes to the master by catching up with
any outstanding updates from the binary log of the master.

17.3.2 Using Replication with Different Master and Slave Storage Engines

It does not matter for the replication process whether the source table on the master and the
replicated table on the slave use different engine types. In fact, the default_storage_engine and
storage_engine system variables are not replicated.

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 17.3.3, “Using Replication for Scale-Out”), you want to use InnoDB tables on the master to
take advantage of the transactional functionality, but use MyISAM on the slaves where transaction
support is not required because the data is only read. When using replication in a data-logging
environment you may want to use the Archive storage engine on the slave.

Configuring different engines on the master and slave depends on how you set up the initial replication
process:

• If you used mysqldump to create the database snapshot on your master, you could edit the dump
file text to change the engine type used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the
slave before using the dump to build the data on the slave. For example, you can add the --skip-
federated option on your slave to disable the FEDERATED engine. If a specific engine does
not exist for a table to be created, MySQL will use the default engine type, usually MyISAM. (This

Using Replication for Scale-Out

2543

requires that the NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable
additional engines in this way, you may want to consider building a special binary to be used on the
slave that only supports the engines you want.

• If you are using raw data files (a binary backup) to set up the slave, you will be unable to change the
initial table format. Instead, use ALTER TABLE to change the table types after the slave has been
started.

• For new master/slave replication setups where there are currently no tables on the master, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another
engine type, follow these steps:

1. Stop the slave from running replication updates:

mysql> STOP SLAVE;

This will enable you to change engine types without interruptions.

2. Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.

3. Start the slave replication process again:

mysql> START SLAVE;

Although the default_storage_engine variable is not replicated, be aware that CREATE TABLE
and ALTER TABLE statements that include the engine specification will be correctly replicated to the
slave. For example, if you have a CSV table and you execute:

mysql> ALTER TABLE csvtable Engine='MyISAM';

The above statement will be replicated to the slave and the engine type on the slave will be converted
to MyISAM, even if you have previously changed the table type on the slave to an engine other than
CSV. If you want to retain engine differences on the master and slave, you should be careful to use the
default_storage_engine variable on the master when creating a new table. For example, instead
of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET default_storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

When replicated, the default_storage_engine variable will be ignored, and the CREATE TABLE
statement will execute on the slave using the slave's default engine.

17.3.3 Using Replication for Scale-Out

You can use replication as a scale-out solution; that is, where you want to split up the load of database
queries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one master to one or more slaves, using replication
for scale-out works best in an environment where you have a high number of reads and low number of
writes/updates. Most Web sites fit into this category, where users are browsing the Web site, reading
articles, posts, or viewing products. Updates only occur during session management, or when making a
purchase or adding a comment/message to a forum.

Replicating Different Databases to Different Slaves

2544

Replication in this situation enables you to distribute the reads over the replication slaves, while still
enabling your web servers to communicate with the replication master when a write is required. You
can see a sample replication layout for this scenario in Figure 17.1, “Using Replication to Improve
Performance During Scale-Out”.

Figure 17.1 Using Replication to Improve Performance During Scale-Out

If the part of your code that is responsible for database access has been properly abstracted/
modularized, converting it to run with a replicated setup should be very smooth and easy. Change
the implementation of your database access to send all writes to the master, and to send reads to
either the master or a slave. If your code does not have this level of abstraction, setting up a replicated
system gives you the opportunity and motivation to clean it up. Start by creating a wrapper library or
module that implements the following functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions.
You can use different names for the functions. The important thing is to have a unified interface for
connecting for reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to take
advantage of a master/slave configuration, even one involving multiple slaves. The code is much easier
to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions;
for example, to log how long each statement took, or which statement among those issued gave you an
error.

If you have written a lot of code, you may want to automate the conversion task by using the replace
utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your
code uses consistent programming style conventions. If not, then you are probably better off rewriting it
anyway, or at least going through and manually regularizing it to use a consistent style.

17.3.4 Replicating Different Databases to Different Slaves

There may be situations where you have a single master and want to replicate different databases to
different slaves. For example, you may want to distribute different sales data to different departments

Replicating Different Databases to Different Slaves

2545

to help spread the load during data analysis. A sample of this layout is shown in Figure 17.2, “Using
Replication to Replicate Databases to Separate Replication Slaves”.

Figure 17.2 Using Replication to Replicate Databases to Separate Replication Slaves

You can achieve this separation by configuring the master and slaves as normal, and then limiting
the binary log statements that each slave processes by using the --replicate-wild-do-table
configuration option on each slave.

Important

You should not use --replicate-do-db for this purpose when using
statement-based replication, since statement-based replication causes this
option's affects to vary according to the database that is currently selected. This
applies to mixed-format replication as well, since this enables some updates to
be replicated using the statement-based format.

However, it should be safe to use --replicate-do-db for this purpose if you
are using row-based replication only, since in this case the currently selected
database has no effect on the option's operation.

For example, to support the separation as shown in Figure 17.2, “Using Replication to Replicate
Databases to Separate Replication Slaves”, you should configure each replication slave as follows,
before executing START SLAVE:

• Replication slave 1 should use --replicate-wild-do-table=databaseA.%.

• Replication slave 2 should use --replicate-wild-do-table=databaseB.%.

• Replication slave 3 should use --replicate-wild-do-table=databaseC.%.

Each slave in this configuration receives the entire binary log from the master, but executes only those
events from the binary log that apply to the databases and tables included by the --replicate-
wild-do-table option in effect on that slave.

If you have data that must be synchronized to the slaves before replication starts, you have a number
of choices:

• Synchronize all the data to each slave, and delete the databases, tables, or both that you do not
want to keep.

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file
on each slave.

• Use a raw data file dump and include only the specific files and databases that you need for each
slave.

Note

This does not work with InnoDB databases unless you use
innodb_file_per_table.

Improving Replication Performance

2546

17.3.5 Improving Replication Performance

As the number of slaves connecting to a master increases, the load, although minimal, also increases,
as each slave uses a client connection to the master. Also, as each slave must receive a full copy of
the master binary log, the network load on the master may also increase and create a bottleneck.

If you are using a large number of slaves connected to one master, and that master is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication
structure that enables the master to replicate to only one slave, and for the remaining slaves to connect
to this primary slave for their individual replication requirements. A sample of this structure is shown in
Figure 17.3, “Using an Additional Replication Host to Improve Performance”.

Figure 17.3 Using an Additional Replication Host to Improve Performance

For this to work, you must configure the MySQL instances as follows:

• Master 1 is the primary master where all changes and updates are written to the database. Binary
logging should be enabled on this machine.

• Master 2 is the slave to the Master 1 that provides the replication functionality to the remainder of
the slaves in the replication structure. Master 2 is the only machine permitted to connect to Master
1. Master 2 also has binary logging enabled, and the --log-slave-updates option so that
replication instructions from Master 1 are also written to Master 2's binary log so that they can then
be replicated to the true slaves.

• Slave 1, Slave 2, and Slave 3 act as slaves to Master 2, and replicate the information from Master 2,
which actually consists of the upgrades logged on Master 1.

The above solution reduces the client load and the network interface load on the primary master, which
should improve the overall performance of the primary master when used as a direct database solution.

If your slaves are having trouble keeping up with the replication process on the master, there are a
number of options available:

• If possible, put the relay logs and the data files on different physical drives. To do this, use the --
relay-log option to specify the location of the relay log.

• If the slaves are significantly slower than the master, you may want to divide up the responsibility
for replicating different databases to different slaves. See Section 17.3.4, “Replicating Different
Databases to Different Slaves”.

• If your master makes use of transactions and you are not concerned about transaction support on
your slaves, use MyISAM or another nontransactional engine on the slaves. See Section 17.3.2,
“Using Replication with Different Master and Slave Storage Engines”.

• If your slaves are not acting as masters, and you have a potential solution in place to ensure that you
can bring up a master in the event of failure, then you can switch off --log-slave-updates. This
prevents “dumb” slaves from also logging events they have executed into their own binary log.

Switching Masters During Failover

2547

17.3.6 Switching Masters During Failover

When using replication with GTIDs (see Section 17.1.3, “Replication with Global Transaction
Identifiers”), you can provide failover between master and slaves in the event of a failure using
mysqlfailover, which is provided by the MySQL Utilities; see mysqlfailover — Automatic
replication health monitoring and failover, for more information. If you're not using mysqlfailover,
you must set up a master and one or more slaves; then, you need to write an application or script that
monitors the master to check whether it is up, and instructs the slaves and applications to change to
another master in case of failure. This section discusses some of the issues encountered when setting
up failover in this fashion.

You can tell a slave to change to a new master using the CHANGE MASTER TO statement. The slave
does not check whether the databases on the master are compatible with those on the slave; it simply
begins reading and executing events from the specified coordinates in the new master's binary log. In
a failover situation, all the servers in the group are typically executing the same events from the same
binary log file, so changing the source of the events should not affect the structure or integrity of the
database, provided that you exercise care in making the change.

Slaves should be run with the --log-bin option and without --log-slave-updates. In this way,
the slave is ready to become a master without restarting the slave mysqld. Assume that you have the
structure shown in Figure 17.4, “Redundancy Using Replication, Initial Structure”.

Figure 17.4 Redundancy Using Replication, Initial Structure

In this diagram, the MySQL Master holds the master database, the MySQL Slave hosts are
replication slaves, and the Web Client machines are issuing database reads and writes. Web clients
that issue only reads (and would normally be connected to the slaves) are not shown, as they do not
need to switch to a new server in the event of failure. For a more detailed example of a read/write
scale-out replication structure, see Section 17.3.3, “Using Replication for Scale-Out”.

Each MySQL Slave (Slave 1, Slave 2, and Slave 3) is a slave running with --log-bin and
without --log-slave-updates. Because updates received by a slave from the master are not
logged in the binary log unless --log-slave-updates is specified, the binary log on each slave is
empty initially. If for some reason MySQL Master becomes unavailable, you can pick one of the slaves
to become the new master. For example, if you pick Slave 1, all Web Clients should be redirected
to Slave 1, which writes the updates to its binary log. Slave 2 and Slave 3 should then replicate
from Slave 1.

The reason for running the slave without --log-slave-updates is to prevent slaves from receiving
updates twice in case you cause one of the slaves to become the new master. If Slave 1 has --log-
slave-updates enabled, it writes any updates that it receives from Master in its own binary log. This

http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysqlfailover.html
http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysqlfailover.html

Switching Masters During Failover

2548

means that, when Slave 2 changes from Master to Slave 1 as its master, it may receive updates
from Slave 1 that it has already received from Master.

Make sure that all slaves have processed any statements in their relay log. On each slave, issue STOP
SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read all
relay log. When this is true for all slaves, they can be reconfigured to the new setup. On the slave
Slave 1 being promoted to become the master, issue STOP SLAVE and RESET MASTER.

On the other slaves Slave 2 and Slave 3, use STOP SLAVE and CHANGE MASTER TO
MASTER_HOST='Slave1' (where 'Slave1' represents the real host name of Slave 1). To use
CHANGE MASTER TO, add all information about how to connect to Slave 1 from Slave 2 or Slave
3 (user, password, port). When issuing the CHANGE MASTER TO statement in this, there is no need
to specify the name of the Slave 1 binary log file or log position to read from, since the first binary log
file and position 4, are the defaults. Finally, execute START SLAVE on Slave 2 and Slave 3.

Once the new replication setup is in place, you need to tell each Web Client to direct its statements
to Slave 1. From that point on, all updates statements sent by Web Client to Slave 1 are written
to the binary log of Slave 1, which then contains every update statement sent to Slave 1 since
Master died.

The resulting server structure is shown in Figure 17.5, “Redundancy Using Replication, After Master
Failure”.

Figure 17.5 Redundancy Using Replication, After Master Failure

When Master becomes available again, you should make it a slave of Slave 1. To do this, issue
on Master the same CHANGE MASTER TO statement as that issued on Slave 2 and Slave 3
previously. Master then becomes a slave of S1ave 1 and picks up the Web Client writes that it
missed while it was offline.

To make Master a master again, use the preceding procedure as if Slave 1 was unavailable and
Master was to be the new master. During this procedure, do not forget to run RESET MASTER on
Master before making Slave 1, Slave 2, and Slave 3 slaves of Master. If you fail to do this,
the slaves may pick up stale writes from the Web Client applications dating from before the point at
which Master became unavailable.

You should be aware that there is no synchronization between slaves, even when they share the same
master, and thus some slaves might be considerably ahead of others. This means that in some cases

Setting Up Replication Using SSL

2549

the procedure outlined in the previous example might not work as expected. In practice, however, relay
logs on all slaves should be relatively close together.

One way to keep applications informed about the location of the master is to have a dynamic DNS
entry for the master. With bind you can use nsupdate to update the DNS dynamically.

17.3.7 Setting Up Replication Using SSL

To use SSL for encrypting the transfer of the binary log required during replication, both the master
and the slave must support SSL network connections. If either host does not support SSL connections
(because it has not been compiled or configured for SSL), replication through an SSL connection is not
possible.

Setting up replication using an SSL connection is similar to setting up a server and client using SSL.
You must obtain (or create) a suitable security certificate that you can use on the master, and a similar
certificate (from the same certificate authority) on each slave.

For more information on setting up a server and client for SSL connectivity, see Section 6.3.12.4,
“Configuring MySQL to Use Secure Connections”.

To enable SSL on the master you must create or obtain suitable certificates, and then add the following
configuration options to the master's configuration within the [mysqld] section of the master's
my.cnf file:

[mysqld]
ssl-ca=cacert.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

The paths to the certificates may be relative or absolute; we recommend that you always use complete
paths for this purpose.

The options are as follows:

• ssl-ca identifies the Certificate Authority (CA) certificate.

• ssl-cert identifies the server public key. This can be sent to the client and authenticated against
the CA certificate that it has.

• ssl-key identifies the server private key.

On the slave, you have two options available for setting the SSL information. You can either add the
slave certificates to the [client] section of the slave's my.cnf file, or you can explicitly specify the
SSL information using the CHANGE MASTER TO statement:

• To add the slave certificates using an option file, add the following lines to the [client] section of
the slave's my.cnf file:

[client]
ssl-ca=cacert.pem
ssl-cert=client-cert.pem
ssl-key=client-key.pem

Restart the slave server, using the --skip-slave-start option to prevent the slave from
connecting to the master. Use CHANGE MASTER TO to specify the master configuration, using the
MASTER_SSL option to enable SSL connectivity:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_hostname',
 -> MASTER_USER='replicate',
 -> MASTER_PASSWORD='password',

Semisynchronous Replication

2550

 -> MASTER_SSL=1;

• To specify the SSL certificate options using the CHANGE MASTER TO statement, append the SSL
options:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_hostname',
 -> MASTER_USER='replicate',
 -> MASTER_PASSWORD='password',
 -> MASTER_SSL=1,
 -> MASTER_SSL_CA = 'ca_file_name',
 -> MASTER_SSL_CAPATH = 'ca_directory_name',
 -> MASTER_SSL_CERT = 'cert_file_name',
 -> MASTER_SSL_KEY = 'key_file_name';

After the master information has been updated, start the slave replication process:

mysql> START SLAVE;

You can use the SHOW SLAVE STATUS statement to confirm that the SSL connection was established
successfully.

For more information on the CHANGE MASTER TO statement, see Section 13.4.2.1, “CHANGE
MASTER TO Syntax”.

If you want to enforce the use of SSL connections during replication, create a user and use the
REQUIRE SSL option, then grant that user the REPLICATION SLAVE privilege. For example:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass'
 -> REQUIRE SSL;
mysql> GRANT REPLICATION SLAVE ON *.*
 -> TO 'repl'@'%.mydomain.com';

If the account already exists, you can add REQUIRE SSL to it with this statement:

mysql> ALTER USER 'repl'@'%.mydomain.com' REQUIRE SSL;

17.3.8 Semisynchronous Replication

In addition to the built-in asynchronous replication, MySQL 5.7 supports an interface to
semisynchronous replication that is implemented by plugins. This section discusses what
semisynchronous replication is and how it works. The following sections cover the administrative
interface to semisynchronous replication and how to install, configure, and monitor it.

MySQL replication by default is asynchronous. The master writes events to its binary log but does not
know whether or when a slave has retrieved and processed them. With asynchronous replication, if
the master crashes, transactions that it has committed might not have been transmitted to any slave.
Consequently, failover from master to slave in this case may result in failover to a server that is missing
transactions relative to the master.

Semisynchronous replication can be used as an alternative to asynchronous replication:

• A slave indicates whether it is semisynchronous-capable when it connects to the master.

• If semisynchronous replication is enabled on the master side and there is at least one
semisynchronous slave, a thread that performs a transaction commit on the master blocks and
waits until at least one semisynchronous slave acknowledges that it has received all events for the
transaction, or until a timeout occurs.

• The slave acknowledges receipt of a transaction's events only after the events have been written to
its relay log and flushed to disk.

Semisynchronous Replication

2551

• If a timeout occurs without any slave having acknowledged the transaction, the master reverts to
asynchronous replication. When at least one semisynchronous slave catches up, the master returns
to semisynchronous replication.

• Semisynchronous replication must be enabled on both the master and slave sides. If
semisynchronous replication is disabled on the master, or enabled on the master but on no slaves,
the master uses asynchronous replication.

While the master is blocking (waiting for acknowledgment from a slave), it does not return to the
session that performed the transaction. When the block ends, the master returns to the session, which
then can proceed to execute other statements. At this point, the transaction has committed on the
master side, and receipt of its events has been acknowledged by at least one slave.

As of MySQL 5.7.3, the number of slave acknowledgments the master must receive per transaction
before proceeding is configurable using the rpl_semi_sync_master_wait_for_slave_count
system variable. The default value is 1.

Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction
that modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though
it has no effect for transactional tables because the modifications to the nontransactional tables cannot
be rolled back and must be sent to slaves.

For statements that do not occur in transactional context (that is, when no transaction has been started
with START TRANSACTION or SET autocommit = 0), autocommit is enabled and each statement
commits implicitly. With semisynchronous replication, the master blocks for each such statement, just
as it does for explicit transaction commits.

To understand what the “semi” in “semisynchronous replication” means, compare it with asynchronous
and fully synchronous replication:

• With asynchronous replication, the master writes events to its binary log and slaves request them
when they are ready. There is no guarantee that any event will ever reach any slave.

• With fully synchronous replication, when a master commits a transaction, all slaves also will have
committed the transaction before the master returns to the session that performed the transaction.
The drawback of this is that there might be a lot of delay to complete a transaction.

• Semisynchronous replication falls between asynchronous and fully synchronous replication. The
master waits only until at least one slave has received and logged the events. It does not wait for
all slaves to acknowledge receipt, and it requires only receipt, not that the events have been fully
executed and committed on the slave side.

Compared to asynchronous replication, semisynchronous replication provides improved data integrity
because when a commit returns successfully, it is known that the data exists in at least two places.
Until a semisynchronous master receives acknowledgment from the number of slaves configured by
rpl_semi_sync_master_wait_for_slave_count, the transaction is on hold and not committed.

Semisynchronous replication also places a rate limit on busy sessions by constraining the speed at
which binary log events can be sent from master to slave. When one user is too busy, this will slow it
down, which is useful in some deployment situations.

Semisynchronous replication does have some performance impact because commits are slower due
to the need to wait for slaves. This is the tradeoff for increased data integrity. The amount of slowdown
is at least the TCP/IP roundtrip time to send the commit to the slave and wait for the acknowledgment
of receipt by the slave. This means that semisynchronous replication works best for close servers
communicating over fast networks, and worst for distant servers communicating over slow networks.

The rpl_semi_sync_master_wait_point system variable controls the point at which a
semisynchronous replication master waits for slave acknowledgment of transaction receipt before
returning a status to the client that committed the transaction. These values are permitted:

Semisynchronous Replication

2552

• AFTER_SYNC (the default): The master writes each transaction to its binary log and the slave, and
syncs the binary log to disk. The master waits for slave acknowledgment of transaction receipt after
the sync. Upon receiving acknowledgment, the master commits the transaction to the storage engine
and returns a result to the client, which then can proceed.

• AFTER_COMMIT: The master writes each transaction to its binary log and the slave, syncs the binary
log, and commits the transaction to the storage engine. The master waits for slave acknowledgment
of transaction receipt after the commit. Upon receiving acknowledgment, the master returns a result
to the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the slave and committed to the storage engine on the master. Thus, all clients see
the same data on the master.

In the event of master failure, all transactions committed on the master have been replicated to the
slave (saved to its relay log). A crash of the master and failover to the slave is lossless because the
slave is up to date.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives slave acknowledgment. After the commit and before
slave acknowledgment, other clients can see the committed transaction before the committing client.

If something goes wrong such that the slave does not process the transaction, then in the event of a
master crash and failover to the slave, it is possible that such clients will see a loss of data relative to
what they saw on the master.

17.3.8.1 Semisynchronous Replication Administrative Interface

The administrative interface to semisynchronous replication has several components:

• Two plugins implement semisynchronous capability. There is one plugin for the master side and one
for the slave side.

• System variables control plugin behavior. Some examples:

• rpl_semi_sync_master_enabled

Controls whether semisynchronous replication is enabled on the master. To enable or disable the
plugin, set this variable to 1 or 0, respectively. The default is 0 (off).

• rpl_semi_sync_master_timeout

A value in milliseconds that controls how long the master waits on a commit for acknowledgment
from a slave before timing out and reverting to asynchronous replication. The default value is
10000 (10 seconds).

• rpl_semi_sync_slave_enabled

Similar to rpl_semi_sync_master_enabled, but controls the slave plugin.

All rpl_semi_sync_xxx system variables are described at Section 5.1.4, “Server System
Variables”.

• Status variables enable semisynchronous replication monitoring. Some examples:

• Rpl_semi_sync_master_clients

The number of semisynchronous slaves.

• Rpl_semi_sync_master_status

Semisynchronous Replication

2553

Whether semisynchronous replication currently is operational on the master. The value is 1 if the
plugin has been enabled and a commit acknowledgment has not occurred. It is 0 if the plugin is not
enabled or the master has fallen back to asynchronous replication due to commit acknowledgment
timeout.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a slave.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a slave.

• Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the slave. This is 1 if the plugin
has been enabled and the slave I/O thread is running, 0 otherwise.

All Rpl_semi_sync_xxx status variables are described at Section 5.1.6, “Server Status Variables”.

The system and status variables are available only if the appropriate master or slave plugin has been
installed with INSTALL PLUGIN.

17.3.8.2 Semisynchronous Replication Installation and Configuration

Semisynchronous replication is implemented using plugins, so the plugins must be installed into the
server to make them available. After a plugin has been installed, you control it by means of the system
variables associated with it. These system variables are unavailable until the associated plugin has
been installed.

To use semisynchronous replication, the following requirements must be satisfied:

• MySQL 5.5 or higher must be installed.

• The capability of installing plugins requires a MySQL server that supports dynamic loading. To
verify this, check that the value of the have_dynamic_loading system variable is YES. Binary
distributions should support dynamic loading.

• Replication must already be working. For information on creating a master/slave relationship, see
Section 17.1.2, “Setting Up Binary Log File Position Based Replication”.

• There must not be multiple replication channels configured. Semisynchronous replication is only
compatible with the default replication channel.

To set up semisynchronous replication, use the following instructions. The INSTALL PLUGIN, SET
GLOBAL, STOP SLAVE, and START SLAVE statements mentioned here require the SUPER privilege.

The semisynchronous replication plugins are included with MySQL distributions.

Unpack the component distribution, which contains files for the master side and the slave side.

Install the component files in the plugin directory of the appropriate server. Install the
semisync_master* files in the plugin directory of the master server. Install the semisync_slave*
files in the plugin directory of each slave server. The location of the plugin directory is available as the
value of the server's plugin_dir system variable.

To load the plugins, use the INSTALL PLUGIN statement on the master and on each slave that is to
be semisynchronous.

On the master:

Semisynchronous Replication

2554

mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';

On each slave:

mysql> INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';

The preceding commands use a plugin file name suffix of .so. A different suffix might apply on your
system. If you are not sure about the plugin file name, look for the plugins in the server's plugin
directory.

If an attempt to install a plugin results in an error on Linux similar to that shown here, you will need to
install libimf:

mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_master.so' (errno: 22 libimf.so: cannot open
shared object file: No such file or directory)

You can obtain libimf from http://dev.mysql.com/downloads/os-linux.html.

To see which plugins are installed, use the SHOW PLUGINS statement, or query the
INFORMATION_SCHEMA.PLUGINS table.

After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins
must be enabled both on the master side and the slave side to enable semisynchronous replication. If
only one side is enabled, replication will be asynchronous.

To control whether an installed plugin is enabled, set the appropriate system variables. You can set
these variables at runtime using SET GLOBAL, or at server startup on the command line or in an option
file.

At runtime, these master-side system variables are available:

mysql> SET GLOBAL rpl_semi_sync_master_enabled = {0|1};
mysql> SET GLOBAL rpl_semi_sync_master_timeout = N;

On the slave side, this system variable is available:

mysql> SET GLOBAL rpl_semi_sync_slave_enabled = {0|1};

For rpl_semi_sync_master_enabled or rpl_semi_sync_slave_enabled, the value should be
1 to enable semisynchronous replication or 0 to disable it. By default, these variables are set to 0.

For rpl_semi_sync_master_timeout, the value N is given in milliseconds. The default value is
10000 (10 seconds).

If you enable semisynchronous replication on a slave at runtime, you must also start the slave I/O
thread (stopping it first if it is already running) to cause the slave to connect to the master and register
as a semisynchronous slave:

mysql> STOP SLAVE IO_THREAD; START SLAVE IO_THREAD;

If the I/O thread is already running and you do not restart it, the slave continues to use asynchronous
replication.

At server startup, the variables that control semisynchronous replication can be set as command-line
options or in an option file. A setting listed in an option file takes effect each time the server starts. For
example, you can set the variables in my.cnf files on the master and slave sides as follows.

On the master:

http://dev.mysql.com/downloads/os-linux.html

Delayed Replication

2555

[mysqld]
rpl_semi_sync_master_enabled=1
rpl_semi_sync_master_timeout=1000 # 1 second

On each slave:

[mysqld]
rpl_semi_sync_slave_enabled=1

17.3.8.3 Semisynchronous Replication Monitoring

The plugins for the semisynchronous replication capability expose several system and status variables
that you can examine to determine its configuration and operational state.

The system variable reflect how semisynchronous replication is configured. To check their values, use
SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';

The status variables enable you to monitor the operation of semisynchronous replication. To check
their values, use SHOW STATUS:

mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';

When the master switches between asynchronous or semisynchronous replication due to commit-
blocking timeout or a slave catching up, it sets the value of the Rpl_semi_sync_master_status
status variable appropriately. Automatic fallback from semisynchronous to asynchronous replication on
the master means that it is possible for the rpl_semi_sync_master_enabled system variable to
have a value of 1 on the master side even when semisynchronous replication is in fact not operational
at the moment. You can monitor the Rpl_semi_sync_master_status status variable to determine
whether the master currently is using asynchronous or semisynchronous replication.

To see how many semisynchronous slaves are connected, check
Rpl_semi_sync_master_clients.

The number of commits that have been acknowledged successfully or unsuccessfully by slaves
are indicated by the Rpl_semi_sync_master_yes_tx and Rpl_semi_sync_master_no_tx
variables.

On the slave side, Rpl_semi_sync_slave_status indicates whether semisynchronous replication
currently is operational.

17.3.9 Delayed Replication

MySQL 5.7 supports delayed replication such that a slave server deliberately lags behind the master by
at least a specified amount of time. The default delay is 0 seconds. Use the MASTER_DELAY option for
CHANGE MASTER TO to set the delay to N seconds:

CHANGE MASTER TO MASTER_DELAY = N;

An event received from the master is not executed until at least N seconds later than its execution on
the master. The exceptions are that there is no delay for format description events or log file rotation
events, which affect only the internal state of the SQL thread.

Delayed replication can be used for several purposes:

• To protect against user mistakes on the master. A DBA can roll back a delayed slave to the time just
before the disaster.

Replication Notes and Tips

2556

• To test how the system behaves when there is a lag. For example, in an application, a lag might be
caused by a heavy load on the slave. However, it can be difficult to generate this load level. Delayed
replication can simulate the lag without having to simulate the load. It can also be used to debug
conditions related to a lagging slave.

• To inspect what the database looked like long ago, without having to reload a backup. For example,
if the delay is one week and the DBA needs to see what the database looked like before the last few
days' worth of development, the delayed slave can be inspected.

START SLAVE and STOP SLAVE take effect immediately and ignore any delay. RESET SLAVE resets
the delay to 0.

SHOW SLAVE STATUS has three fields that provide information about the delay:

• SQL_Delay: A nonnegative integer indicating the number of seconds that the slave must lag the
master.

• SQL_Remaining_Delay: When Slave_SQL_Running_State is Waiting until
MASTER_DELAY seconds after master executed event, this field contains an integer
indicating the number of seconds left of the delay. At other times, this field is NULL.

• Slave_SQL_Running_State: A string indicating the state of the SQL thread (analogous to
Slave_IO_State). The value is identical to the State value of the SQL thread as displayed by
SHOW PROCESSLIST.

When the slave SQL thread is waiting for the delay to elapse before executing an event, SHOW
PROCESSLIST displays its State value as Waiting until MASTER_DELAY seconds after
master executed event.

17.4 Replication Notes and Tips

17.4.1 Replication Features and Issues

The following sections provide information about what is supported and what is not in MySQL
replication, and about specific issues and situations that may occur when replicating certain
statements.

Statement-based replication depends on compatibility at the SQL level between the master and slave.
In others, successful SBR requires that any SQL features used be supported by both the master and
the slave servers. For example, if you use a feature on the master server that is available only in
MySQL 5.7 (or later), you cannot replicate to a slave that uses MySQL 5.6 (or earlier).

Such incompatibilities also can occur within a release series when using pre-production releases of
MySQL. For example, the SLEEP() function is available beginning with MySQL 5.0.12. If you use this
function on the master, you cannot replicate to a slave that uses MySQL 5.0.11 or earlier.

For this reason, use Generally Available (GA) releases of MySQL for statement-based replication in a
production setting, since we do not introduce new SQL statements or change their behavior within a
given release series once that series reaches GA release status.

If you are planning to use statement-based replication between MySQL 5.7 and a previous MySQL
release series, it is also a good idea to consult the edition of the MySQL Reference Manual
corresponding to the earlier release series for information regarding the replication characteristics of
that series.

With MySQL's statement-based replication, there may be issues with replicating stored routines or
triggers. You can avoid these issues by using MySQL's row-based replication instead. For a detailed
list of issues, see Section 19.7, “Binary Logging of Stored Programs”. For more information about
row-based logging and row-based replication, see Section 5.2.4.1, “Binary Logging Formats”, and
Section 17.2.1, “Replication Formats”.

Replication Features and Issues

2557

For additional information specific to replication and InnoDB, see Section 14.16, “InnoDB and
MySQL Replication”. For information relating to replication with MySQL Cluster, see MySQL Cluster
Replication.

17.4.1.1 Replication and AUTO_INCREMENT

Statement-based replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is
done correctly, subject to the following exceptions:

• When using statement-based replication prior to MySQL 5.7.1, AUTO_INCREMENT columns in tables
on the slave must match the same columns on the master; that is, AUTO_INCREMENT columns must
be replicated to AUTO_INCREMENT columns.

• A statement invoking a trigger or function that causes an update to an AUTO_INCREMENT column
is not replicated correctly using statement-based replication. In MySQL 5.7, such statements are
marked as unsafe. (Bug #45677)

• An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT
column that is not the first column of this composite key is not safe for statement-based logging or
replication. In MySQL 5.7 and later, such statements are marked as unsafe. (Bug #11754117, Bug
#45670)

This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an
AUTO_INCREMENT column requires at least one key where the auto-increment column is the only
or leftmost column.

• Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the slave and the master. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which
the rows were inserted. If it is important to have the same order on the master and slave, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements
produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, the ORDER BY
clause must name all columns of t1.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key
definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a
table definition includes any of those characteristics, create t2 using a CREATE TABLE statement
that is identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT
column, the final step is to drop the original table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Section B.5.6.1, “Problems with ALTER TABLE”.

17.4.1.2 Replication and BLACKHOLE Tables

The BLACKHOLE storage engine accepts data but discards it and does not store it. When performing
binary logging, all inserts to such tables are always logged, regardless of the logging format in use.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication.html

Replication Features and Issues

2558

Updates and deletes are handled differently depending on whether statement based or row based
logging is in use. With the statement based logging format, all statements affecting BLACKHOLE tables
are logged, but their effects ignored. When using row-based logging, updates and deletes to such
tables are simply skipped—they are not written to the binary log. In MySQL 5.7.2 and later, a warning is
logged whenever this occurs (Bug #13004581)

For this reason we recommend when you replicate to tables using the BLACKHOLE storage engine that
you have the binlog_format server variable set to STATEMENT, and not to either ROW or MIXED.

17.4.1.3 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

• If the master has databases with a character set different from the global character_set_server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on
the database default character set. A good workaround is to state the character set and collation
explicitly in CREATE TABLE statements.

17.4.1.4 Replication and CHECKSUM TABLE

CHECKSUM TABLE returns a checksum that is calculated row by row, using a method that depends
on the table row storage format, which is not guaranteed to remain the same between MySQL release
series. For example, the storage format for temporal types such as TIME, DATETIME, and TIMESTAMP
changed in MySQL 5.6 prior to MySQL 5.6.5, so if a 5.5 table is upgraded to MySQL 5.6, the checksum
value may change.

17.4.1.5 Replication of CREATE ... IF NOT EXISTS Statements

MySQL applies these rules when various CREATE ... IF NOT EXISTS statements are replicated:

• Every CREATE DATABASE IF NOT EXISTS statement is replicated, whether or not the database
already exists on the master.

• Similarly, every CREATE TABLE IF NOT EXISTS statement without a SELECT is replicated,
whether or not the table already exists on the master. This includes CREATE TABLE IF NOT
EXISTS ... LIKE. Replication of CREATE TABLE IF NOT EXISTS ... SELECT follows
somewhat different rules; see Section 17.4.1.6, “Replication of CREATE TABLE ... SELECT
Statements”, for more information.

• CREATE EVENT IF NOT EXISTS is always replicated in MySQL 5.7, whether or not the event
named in the statement already exists on the master.

See also Bug #45574.

17.4.1.6 Replication of CREATE TABLE ... SELECT Statements

This section discusses how MySQL replicates CREATE TABLE ... SELECT statements.

MySQL 5.7 does not allow a CREATE TABLE ... SELECT statement to make any changes in tables
other than the table that is created by the statement. Some older versions of MySQL permitted these
statements to do so; this means that, when using statement-based replication between a MySQL 5.6
or later slave and a master running a previous version of MySQL, a CREATE TABLE ... SELECT
statement causing changes in other tables on the master fails on the slave, causing replication to stop.
To prevent this from happening, you should use row-based replication, rewrite the offending statement
before running it on the master, or upgrade the master to MySQL 5.7. (If you choose to upgrade the
master, keep in mind that such a CREATE TABLE ... SELECT statement fails following the upgrade
unless it is rewritten to remove any side effects on other tables.) This is not an issue when using row-
based replication, because the statement is logged as a CREATE TABLE statement with any changes
to table data logged as row-insert events, rather than as the entire CREATE TABLE ... SELECT.

These behaviors are not dependent on MySQL version:

Replication Features and Issues

2559

• CREATE TABLE ... SELECT always performs an implicit commit (Section 13.3.3, “Statements
That Cause an Implicit Commit”).

• If destination table does not exist, logging occurs as follows. It does not matter whether IF NOT
EXISTS is present.

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-
row events.

• If the statement fails, nothing is logged. This includes the case that the destination table exists and
IF NOT EXISTS is not given.

When the destination table exists and IF NOT EXISTS is given, MySQL 5.7 ignores the statement
completely; nothing is inserted or logged. The handling of such statements in this regard has changed
considerably in previous MySQL releases; if you are replicating from a MySQL 5.5.6 or older master to
a newer slave, see Replication of CREATE ... IF NOT EXISTS Statements, for more information.

17.4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

In MySQL 5.7, the statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written
to the binary log, regardless of the binary logging format that is in use.

17.4.1.8 Replication of CURRENT_USER()

The following statements support use of the CURRENT_USER() function to take the place of the name
of (and, possibly, the host for) an affected user or a definer; in such cases, CURRENT_USER() is
expanded where and as needed:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

When CURRENT_USER() or CURRENT_USER is used as the definer in any of the statements CREATE
FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, CREATE EVENT, CREATE VIEW, or ALTER
VIEW when binary logging is enabled, the function reference is expanded before it is written to the
binary log, so that the statement refers to the same user on both the master and the slave when the
statement is replicated. CURRENT_USER() or CURRENT_USER is also expanded prior to being written
to the binary log when used in DROP USER, RENAME USER, GRANT, REVOKE, or ALTER EVENT.

17.4.1.9 Replication of DROP ... IF EXISTS Statements

http://dev.mysql.com/doc/refman/5.5/en/replication-features-create-if-not-exists.html

Replication Features and Issues

2560

The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS
statements are always replicated, even if the database, table, or view to be dropped does not exist on
the master. This is to ensure that the object to be dropped no longer exists on either the master or the
slave, once the slave has caught up with the master.

DROP ... IF EXISTS statements for stored programs (stored procedures and functions, triggers,
and events) are also replicated, even if the stored program to be dropped does not exist on the master.

17.4.1.10 Replication with Differing Table Definitions on Master and Slave

Source and target tables for replication do not have to be identical. A table on the master can have
more or fewer columns than the slave's copy of the table. In addition, corresponding table columns on
the master and the slave can use different data types, subject to certain conditions.

Note

Replication between tables which are partitioned differently from one another is
not supported. See Section 17.4.1.19, “Replication and Partitioning”.

In all cases where the source and target tables do not have identical definitions, the database and table
names must be the same on both the master and the slave. Additional conditions are discussed, with
examples, in the following two sections.

Replication with More Columns on Master or Slave

You can replicate a table from the master to the slave such that the master and slave copies of the
table have differing numbers of columns, subject to the following conditions:

• Columns common to both versions of the table must be defined in the same order on the master and
the slave.

(This is true even if both tables have the same number of columns.)

• Columns common to both versions of the table must be defined before any additional columns.

This means that executing an ALTER TABLE statement on the slave where a new column is inserted
into the table within the range of columns common to both tables causes replication to fail, as shown
in the following example:

Suppose that a table t, existing on the master and the slave, is defined by the following CREATE
TABLE statement:

CREATE TABLE t (
 c1 INT,
 c2 INT,
 c3 INT
);

Suppose that the ALTER TABLE statement shown here is executed on the slave:

ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;

The previous ALTER TABLE is permitted on the slave because the columns c1, c2, and c3 that are
common to both versions of table t remain grouped together in both versions of the table, before any
columns that differ.

However, the following ALTER TABLE statement cannot be executed on the slave without causing
replication to break:

ALTER TABLE t ADD COLUMN cnew2 INT AFTER c2;

Replication Features and Issues

2561

Replication fails after execution on the slave of the ALTER TABLE statement just shown, because
the new column cnew2 comes between columns common to both versions of t.

• Each “extra” column in the version of the table having more columns must have a default value.

A column's default value is determined by a number of factors, including its type, whether it is defined
with a DEFAULT option, whether it is declared as NULL, and the server SQL mode in effect at the
time of its creation; for more information, see Section 11.7, “Data Type Default Values”).

In addition, when the slave's copy of the table has more columns than the master's copy, each column
common to the tables must use the same data type in both tables.

Examples. The following examples illustrate some valid and invalid table definitions:

More columns on the master. The following table definitions are valid and replicate correctly:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);

The following table definitions would raise an error because the definitions of the columns common to
both versions of the table are in a different order on the slave than they are on the master:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT);

The following table definitions would also raise an error because the definition of the extra column on
the master appears before the definitions of the columns common to both versions of the table:

master> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);

More columns on the slave. The following table definitions are valid and replicate correctly:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

The following definitions raise an error because the columns common to both versions of the table are
not defined in the same order on both the master and the slave:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);

The following table definitions also raise an error because the definition for the extra column in the
slave's version of the table appears before the definitions for the columns which are common to both
versions of the table:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);

The following table definitions fail because the slave's version of the table has additional columns
compared to the master's version, and the two versions of the table use different data types for the
common column c2:

master> CREATE TABLE t1 (c1 INT, c2 BIGINT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

Replication of Columns Having Different Data Types

Replication Features and Issues

2562

Corresponding columns on the master's and the slave's copies of the same table ideally should have
the same data type. However, this is not always strictly enforced, as long as certain conditions are met.

It is usually possible to replicate from a column of a given data type to another column of the same
type and same size or width, where applicable, or larger. For example, you can replicate from a
CHAR(10) column to another CHAR(10), or from a CHAR(10) column to a CHAR(25) column without
any problems. In certain cases, it also possible to replicate from a column having one data type (on
the master) to a column having a different data type (on the slave); when the data type of the master's
version of the column is promoted to a type that is the same size or larger on the slave, this is known
as attribute promotion.

Attribute promotion can be used with both statement-based and row-based replication, and is not
dependent on the storage engine used by either the master or the slave. However, the choice of
logging format does have an effect on the type conversions that are permitted; the particulars are
discussed later in this section.

Important

Whether you use statement-based or row-based replication, the slave's copy
of the table cannot contain more columns than the master's copy if you wish to
employ attribute promotion.

Statement-based replication. When using statement-based replication, a simple rule of thumb to
follow is, “If the statement run on the master would also execute successfully on the slave, it should
also replicate successfully”. In other words, if the statement uses a value that is compatible with the
type of a given column on the slave, the statement can be replicated. For example, you can insert any
value that fits in a TINYINT column into a BIGINT column as well; it follows that, even if you change
the type of a TINYINT column in the slave's copy of a table to BIGINT, any insert into that column
on the master that succeeds should also succeed on the slave, since it is impossible to have a legal
TINYINT value that is large enough to exceed a BIGINT column.

Prior to MySQL 5.7.1, when using statement-based replication, AUTO_INCREMENT columns were
required to be the same on both the master and the slave; otherwise, updates could be applied to the
wrong table on the slave. (Bug #12669186)

Row-based replication: attribute promotion and demotion. Row-based replication in MySQL
5.7 supports attribute promotion and demotion between smaller data types and larger types. It is also
possible to specify whether or not to permit lossy (truncated) or non-lossy conversions of demoted
column values, as explained later in this section.

Lossy and non-lossy conversions. In the event that the target type cannot represent the value
being inserted, a decision must be made on how to handle the conversion. If we permit the conversion
but truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make
what is known as a lossy conversion. A conversion which does not require truncation or similar
modifications to fit the source column value in the target column is a non-lossy conversion.

Type conversion modes (slave_type_conversions variable). The setting of the
slave_type_conversions global server variable controls the type conversion mode used on the
slave. This variable takes a set of values from the following table, which shows the effects of each
mode on the slave's type-conversion behavior:

Mode Effect

ALL_LOSSY In this mode, type conversions that would mean loss of
information are permitted.

This does not imply that non-lossy conversions are permitted,
merely that only cases requiring either lossy conversions or no
conversion at all are permitted; for example, enabling only this

Replication Features and Issues

2563

Mode Effect
mode permits an INT column to be converted to TINYINT (a
lossy conversion), but not a TINYINT column to an INT column
(non-lossy). Attempting the latter conversion in this case would
cause replication to stop with an error on the slave.

ALL_NON_LOSSY This mode permits conversions that do not require truncation
or other special handling of the source value; that is, it permits
conversions where the target type has a wider range than the
source type.

Setting this mode has no bearing on whether lossy conversions
are permitted; this is controlled with the ALL_LOSSY mode. If only
ALL_NON_LOSSY is set, but not ALL_LOSSY, then attempting a
conversion that would result in the loss of data (such as INT to
TINYINT, or CHAR(25) to VARCHAR(20)) causes the slave to
stop with an error.

ALL_LOSSY,ALL_NON_LOSSY When this mode is set, all supported type conversions are
permitted, whether or not they are lossy conversions.

ALL_SIGNED Treat promoted integer types as signed values (the default
behavior).

ALL_UNSIGNED Treat promoted integer types as unsigned values.

ALL_SIGNED,ALL_UNSIGNED Treat promoted integer types as signed if possible, otherwise as
unsigned.

[empty] When slave_type_conversions is not set, no attribute
promotion or demotion is permitted; this means that all columns in
the source and target tables must be of the same types.

This mode is the default.

When an integer type is promoted, its signedness is not preserved. By default, the slave treats all such
values as signed. Beginning with MySQL 5.7.2, you can control this behavior using ALL_SIGNED,
ALL_UNSIGNED, or both. (Bug#15831300) ALL_SIGNED tells the slave to treat all promoted integer
types as signed; ALL_UNSIGNED instructs it to treat these as unsigned. Specifying both causes the
slave to treat the value as signed if possible, otherwise to treat it as unsigned; the order in which they
are listed is not significant. Neither ALL_SIGNED nor ALL_UNSIGNED has any effect if at least one of
ALL_LOSSY or ALL_NONLOSSY is not also used.

Changing the type conversion mode requires restarting the slave with the new
slave_type_conversions setting.

Supported conversions. Supported conversions between different but similar data types are
shown in the following list:

• Between any of the integer types TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.

This includes conversions between the signed and unsigned versions of these types.

Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted
by the target column. For ensuring non-lossy conversions when going from unsigned to signed types,
the target column must be large enough to accommodate the range of values in the source column.
For example, you can demote TINYINT UNSIGNED non-lossily to SMALLINT, but not to TINYINT.

• Between any of the decimal types DECIMAL, FLOAT, DOUBLE, and NUMERIC.

FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A
conversion from DECIMAL(M,D) to DECIMAL(M',D') where D' >= D and (M'-D') >= (M-D) is
non-lossy; for any case where M' < M, D' < D, or both, only a lossy conversion can be made.

Replication Features and Issues

2564

For any of the decimal types, if a value to be stored cannot be fit in the target type, the value
is rounded down according to the rounding rules defined for the server elsewhere in the
documentation. See Section 12.21.4, “Rounding Behavior”, for information about how this is done for
decimal types.

• Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different
widths.

Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or
larger is never lossy. Lossy conversion is handled by inserting only the first N characters of the string
on the slave, where N is the width of the target column.

Important

Replication between columns using different character sets is not supported.

• Between any of the binary data types BINARY, VARBINARY, and BLOB, including conversions
between different widths.

Conversion of a BINARY, VARBINARY, or BLOB to a BINARY, VARBINARY, or BLOB column the
same size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of
the string on the slave, where N is the width of the target column.

• Between any 2 BIT columns of any 2 sizes.

When inserting a value from a BIT(M) column into a BIT(M') column, where M' > M, the most
significant bits of the BIT(M') columns are cleared (set to zero) and the M bits of the BIT(M) value
are set as the least significant bits of the BIT(M') column.

When inserting a value from a source BIT(M) column into a target BIT(M') column, where M' <
M, the maximum possible value for the BIT(M') column is assigned; in other words, an “all-set”
value is assigned to the target column.

Conversions between types not in the previous list are not permitted.

17.4.1.11 Replication and DIRECTORY Table Options

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement
on the master server, the table option is also used on the slave. This can cause problems if no
corresponding directory exists in the slave host file system or if it exists but is not accessible to the
slave server. This can be overridden by using the NO_DIR_IN_CREATE server SQL mode on the slave,
which causes the slave to ignore the DATA DIRECTORY and INDEX DIRECTORY table options when
replicating CREATE TABLE statements. The result is that MyISAM data and index files are created in
the table's database directory.

For more information, see Section 5.1.7, “Server SQL Modes”.

17.4.1.12 Replication of Invoked Features

Replication of invoked features such as user-defined functions (UDFs) and stored programs (stored
procedures and functions, triggers, and events) provides the following characteristics:

• The effects of the feature are always replicated.

• The following statements are replicated using statement-based replication:

• CREATE EVENT

• ALTER EVENT

Replication Features and Issues

2565

• DROP EVENT

• CREATE PROCEDURE

• DROP PROCEDURE

• CREATE FUNCTION

• DROP FUNCTION

• CREATE TRIGGER

• DROP TRIGGER

However, the effects of features created, modified, or dropped using these statements are replicated
using row-based replication.

Note

Attempting to replicate invoked features using statement-based replication
produces the warning Statement is not safe to log in statement
format. For example, trying to replicate a UDF with statement-based
replication generates this warning because it currently cannot be determined
by the MySQL server whether the UDF is deterministic. If you are absolutely
certain that the invoked feature's effects are deterministic, you can safely
disregard such warnings.

• In the case of CREATE EVENT and ALTER EVENT:

• The status of the event is set to SLAVESIDE_DISABLED on the slave regardless of the state
specified (this does not apply to DROP EVENT).

• The master on which the event was created is identified on the slave by its server ID. The
ORIGINATOR column in INFORMATION_SCHEMA.EVENTS and the originator column in
mysql.event store this information. See Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”, and Section 13.7.5.18, “SHOW EVENTS Syntax”, for more information.

• The feature implementation resides on the slave in a renewable state so that if the master fails, the
slave can be used as the master without loss of event processing.

To determine whether there are any scheduled events on a MySQL server that were created on a
different server (that was acting as a replication master), query the INFORMATION_SCHEMA.EVENTS
table in a manner similar to what is shown here:

SELECT EVENT_SCHEMA, EVENT_NAME
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

Alternatively, you can use the SHOW EVENTS statement, like this:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

When promoting a replication slave having such events to a replication master, you must enable each
event using ALTER EVENT event_name ENABLED, where event_name is the name of the event.

If more than one master was involved in creating events on this slave, and you wish to identify events
that were created only on a given master having the server ID master_id, modify the previous query
on the EVENTS table to include the ORIGINATOR column, as shown here:

Replication Features and Issues

2566

SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'master_id'

You can employ ORIGINATOR with the SHOW EVENTS statement in a similar fashion:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'master_id'

Before enabling events that were replicated from the master, you should disable the MySQL Event
Scheduler on the slave (using a statement such as SET GLOBAL event_scheduler = OFF;), run
any necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on
the slave afterward (using a statement such as SET GLOBAL event_scheduler = ON;)-

If you later demote the new master back to being a replication slave, you must disable manually all
events enabled by the ALTER EVENT statements. You can do this by storing in a separate table the
event names from the SELECT statement shown previously, or using ALTER EVENT statements to
rename the events with a common prefix such as replicated_ to identify them.

If you rename the events, then when demoting this server back to being a replication slave, you can
identify the events by querying the EVENTS table, as shown here:

SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event'
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE INSTR(EVENT_NAME, 'replicated_') = 1;

17.4.1.13 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving
floating-point values are inexact. This is true for operations that use floating-point values explicitly,
or that use values that are converted to floating-point implicitly. Comparisons of floating-point values
might yield different results on master and slave servers due to differences in computer architecture,
the compiler used to build MySQL, and so forth. See Section 12.2, “Type Conversion in Expression
Evaluation”, and Section B.5.4.8, “Problems with Floating-Point Values”.

17.4.1.14 Replication and Fractional Seconds Support

MySQL 5.7 permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. See Section 11.3.6, “Fractional Seconds in Time Values”.

There may be problems replicating from a master server that understands fractional seconds to an
older slave (MySQL 5.6.3 and earlier) that does not:

• For CREATE TABLE statements containing columns that have an fsp (fractional seconds precision)
value greater than 0, replication will fail due to parser errors.

• Statements that use temporal data types with an fsp value of 0 will work for with statement-based
logging but not row-based logging. In the latter case, the data types have binary formats and type
codes on the master that differ from those on the slave.

• Some expression results will differ on master and slave. Examples: On the master, the timestamp
system variable returns a value that includes a microseconds fractional part; on the slave, it returns
an integer. On the master, functions that return a result that includes the current time (such as
CURTIME(), SYSDATE(), or UTC_TIMESTAMP()) interpret an argument as an fsp value and the
return value includes a fractional seconds part of that many digits. On the slave, these functions
permit an argument but ignore it.

17.4.1.15 Replication and FLUSH

Replication Features and Issues

2567

Some forms of the FLUSH statement are not logged because they could cause problems if replicated
to a slave: FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK.
For a syntax example, see Section 13.7.6.3, “FLUSH Syntax”. The FLUSH TABLES, ANALYZE TABLE,
OPTIMIZE TABLE, and REPAIR TABLE statements are written to the binary log and thus replicated to
slaves. This is not normally a problem because these statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the mysql database and update those tables directly without using GRANT, you must issue
a FLUSH PRIVILEGES on the slaves to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH
TABLES manually on the slaves. These statements are written to the binary log unless you specify
NO_WRITE_TO_BINLOG or its alias LOCAL.

17.4.1.16 Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER() (or CURRENT_USER), UUID(), VERSION(), and LOAD_FILE()
functions are replicated without change and thus do not work reliably on the slave unless row-based
replication is enabled. (See Section 17.2.1, “Replication Formats”.)

USER() and CURRENT_USER() are automatically replicated using row-based replication when using
MIXED mode, and generate a warning in STATEMENT mode. (See also Section 17.4.1.8, “Replication
of CURRENT_USER()”.) This is also true for VERSION() and RAND().

• For NOW(), the binary log includes the timestamp. This means that the value as returned by the call
to this function on the master is replicated to the slave. To avoid unexpected results when replicating
between MySQL servers in different time zones, set the time zone on both master and slave. See
also Section 17.4.1.32, “Replication and Time Zones”

To explain the potential problems when replicating between servers which are in different time
zones, suppose that the master is located in New York, the slave is located in Stockholm, and both
servers are using local time. Suppose further that, on the master, you create a table mytable,
perform an INSERT statement on this table, and then select from the table, as shown here:

mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO mytable VALUES (NOW());
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the
slave at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason,
if you select from the slave's copy of mytable after the CREATE TABLE and INSERT statements
just shown have been replicated, you might expect mycol to contain the value 2009-09-01
18:00:00. However, this is not the case; when you select from the slave's copy of mytable, you
obtain exactly the same result as on the master:

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+

Replication Features and Issues

2568

1 row in set (0.00 sec)

Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET
TIMESTAMP statements in the binary log and is nondeterministic if statement-based logging is used.
This is not a problem if row-based logging is used.

An alternative is to use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This must be done on the master and the slave to work correctly. In such cases, a warning
is still issued by this function, but can safely be ignored as long as --sysdate-is-now is used on
both the master and the slave.

SYSDATE() is automatically replicated using row-based replication when using MIXED mode, and
generates a warning in STATEMENT mode.

See also Section 17.4.1.32, “Replication and Time Zones”.

• The following restriction applies to statement-based replication only, not to row-based replication.
The GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that
handle user-level locks are replicated without the slave knowing the concurrency context on the
master. Therefore, these functions should not be used to insert into a master table because the
content on the slave would differ. For example, do not issue a statement such as INSERT INTO
mytable VALUES(GET_LOCK(...)).

These functions are automatically replicated using row-based replication when using MIXED mode,
and generate a warning in STATEMENT mode.

As a workaround for the preceding limitations when statement-based replication is in effect, you can
use the strategy of saving the problematic function result in a user variable and referring to the variable
in a later statement. For example, the following single-row INSERT is problematic due to the reference
to the UUID() function:

INSERT INTO t VALUES(UUID());

To work around the problem, do this instead:

SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a
user-variable event prior to the INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert,
you can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

INSERT INTO t2 SELECT UUID(), * FROM t1;

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the
execution of the function. (You can consider the function execution timestamp and random number
seed as implicit inputs that are identical on the master and slave.)

The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based
replication. A workaround is to store the result of the function call in a user variable, and then use that

Replication Features and Issues

2569

in the INSERT statement. For example, if you wish to store the result in a table named mytable, you
might normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(FOUND_ROWS());

However, if you are replicating mytable, you should use SELECT ... INTO, and then store the
variable in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the slave correctly.

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)

Prior to MySQL 5.7.3, the value of LAST_INSERT_ID() was not replicated correctly if any filtering
options such as --replicate-ignore-db and --replicate-do-table were enabled on the
slave. (Bug #17234370, BUG# 69861)

17.4.1.17 Replication and LIMIT

Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT
statements is unsafe since the order of the rows affected is not defined. (Such statements can be
replicated correctly with statement-based replication only if they also contain an ORDER BY clause.)
When such a statement is encountered:

• When using STATEMENT mode, a warning that the statement is not safe for statement-based
replication is now issued.

When using STATEMENT mode, warnings are issued for DML statements containing LIMIT even
when they also have an ORDER BY clause (and so are made deterministic). This is a known issue.
(Bug #42851)

• When using MIXED mode, the statement is now automatically replicated using row-based mode.

17.4.1.18 Replication and LOAD DATA INFILE

In MySQL 5.7, LOAD DATA INFILE is considered unsafe (see Section 17.2.1.3, “Determination of
Safe and Unsafe Statements in Binary Logging”). It causes a warning when using statement-based
logging format, and is logged using row-based format when using mixed-format logging.

17.4.1.19 Replication and Partitioning

Replication is supported between partitioned tables as long as they use the same partitioning scheme
and otherwise have the same structure except where an exception is specifically allowed (see
Section 17.4.1.10, “Replication with Differing Table Definitions on Master and Slave”).

Replication between tables having different partitioning is generally not supported. This because
statements (such as ALTER TABLE ... DROP PARTITION) acting directly on partitions in such
cases may produce different results on master and slave. In the case where a table is partitioned on
the master but not on the slave, any statements operating on partitions on the master's copy of the
slave fail on the slave. When the slave's copy of the table is partitioned but the master's copy is not,
statements acting on partitions cannot be run on the master without causing errors there.

Due to these dangers of causing replication to fail entirely (on account of failed statements) and of
inconsistencies (when the result of a partition-level SQL statement produces different results on master
and slave), we recommend that insure that the partitioning of any tables to be replicated from the
master is matched by the slave's versions of these tables.

Replication Features and Issues

2570

17.4.1.20 Replication and REPAIR TABLE

When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed
by this statement are not replicated, which can cause master and slave to lose synchronization.
For this reason, in the event that a table on the master becomes damaged and you use REPAIR
TABLE to repair it, you should first stop replication (if it is still running) before using REPAIR TABLE,
then afterward compare the master's and slave's copies of the table and be prepared to correct any
discrepancies manually, before restarting replication.

17.4.1.21 Replication and Master or Slave Shutdowns

It is safe to shut down a master server and restart it later. When a slave loses its connection to the
master, the slave tries to reconnect immediately and retries periodically if that fails. The default is to
retry every 60 seconds. This may be changed with the CHANGE MASTER TO statement. A slave also
is able to deal with network connectivity outages. However, the slave notices the network outage only
after receiving no data from the master for slave_net_timeout seconds. If your outages are short,
you may want to decrease slave_net_timeout. See Section 5.1.4, “Server System Variables”.

An unclean shutdown (for example, a crash) on the master side can result in the master binary log
having a final position less than the most recent position read by the slave, due to the master binary
log file not being flushed. This can cause the slave not to be able to replicate when the master comes
back up. Setting sync_binlog=1 in the master my.cnf file helps to minimize this problem because it
causes the master to flush its binary log more frequently.

Shutting down a slave cleanly is safe because it keeps track of where it left off. However, be careful
that the slave does not have temporary tables open; see Section 17.4.1.24, “Replication and
Temporary Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not
flushed to disk before the problem occurred:

• For transactions, the slave commits and then updates relay-log.info. If a crash occurs between
these two operations, relay log processing will have proceeded further than the information file
indicates and the slave will re-execute the events from the last transaction in the relay log after it has
been restarted.

• A similar problem can occur if the slave updates relay-log.info but the server host
crashes before the write has been flushed to disk. To minimize the chance of this occurring, set
sync_relay_log_info=1 in the slave my.cnf file. The default value of sync_relay_log_info
is 0, which does not cause writes to be forced to disk; the server relies on the operating system to
flush the file from time to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

17.4.1.22 Replication and max_allowed_packet

max_allowed_packet sets an upper limit on the size of any single message between the MySQL
server and clients, including replication slaves. If you are replicating large column values (such as
might be found in TEXT or BLOB columns) and max_allowed_packet is too small on the master, the
master fails with an error, and the slave shuts down the I/O thread. If max_allowed_packet is too
small on the slave, this also causes the slave to stop the I/O thread.

Row-based replication currently sends all columns and column values for updated rows from the
master to the slave, including values of columns that were not actually changed by the update. This
means that, when you are replicating large column values using row-based replication, you must take
care to set max_allowed_packet large enough to accommodate the largest row in any table to be
replicated, even if you are replicating updates only, or you are inserting only relatively small values.

17.4.1.23 Replication and MEMORY Tables

Replication Features and Issues

2571

When a master server shuts down and restarts, its MEMORY tables become empty. To replicate this
effect to slaves, the first time that the master uses a given MEMORY table after startup, it logs an event
that notifies slaves that the table must to be emptied by writing a DELETE statement for that table to the
binary log.

When a slave server shuts down and restarts, its MEMORY tables become empty. This causes the slave
to be out of synchrony with the master and may lead to other failures or cause the slave to stop:

• Row-format updates and deletes received from the master may fail with Can't find record in
'memory_table'.

• Statements such as INSERT INTO ... SELECT FROM memory_table may insert a different set
of rows on the master and slave.

The safe way to restart a slave that is replicating MEMORY tables is to first drop or delete all rows from
the MEMORY tables on the master and wait until those changes have replicated to the slave. Then it is
safe to restart the slave.

An alternative restart method may apply in some cases. When binlog_format=ROW, you can prevent
the slave from stopping if you set slave_exec_mode=IDEMPOTENT before you start the slave again.
This allows the slave to continue to replicate, but its MEMORY tables will still be different from those on
the master. This can be okay if the application logic is such that the contents of MEMORY tables can be
safely lost (for example, if the MEMORY tables are used for caching). slave_exec_mode=IDEMPOTENT
applies globally to all tables, so it may hide other replication errors in non-MEMORY tables.

The size of MEMORY tables is limited by the value of the max_heap_table_size system
variable, which is not replicated (see Section 17.4.1.38, “Replication and Variables”). A change in
max_heap_table_size takes effect for MEMORY tables that are created or updated using ALTER
TABLE ... ENGINE = MEMORY or TRUNCATE TABLE following the change, or for all MEMORY tables
following a server restart. If you increase the value of this variable on the master without doing so on
the slave, it becomes possible for a table on the master to grow larger than its counterpart on the slave,
leading to inserts that succeed on the master but fail on the slave with Table is full errors. This is
a known issue (Bug #48666). In such cases, you must set the global value of max_heap_table_size
on the slave as well as on the master, then restart replication. It is also recommended that you restart
both the master and slave MySQL servers, to insure that the new value takes complete (global) effect
on each of them.

See Section 15.3, “The MEMORY Storage Engine”, for more information about MEMORY tables.

17.4.1.24 Replication and Temporary Tables

The discussion in the following paragraphs does not apply when binlog_format=ROW because, in
that case, temporary tables are not replicated; this means that there are never any temporary tables
on the slave to be lost in the event of an unplanned shutdown by the slave. The remainder of this
section applies only when using statement-based or mixed-format replication. Loss of replicated
temporary tables on the slave can be an issue, whenever binlog_format is STATEMENT or MIXED,
for statements involving temporary tables that can be logged safely using statement-based format.
For more information about row-based replication and temporary tables, see Row-based logging of
temporary tables.

Safe slave shutdown when using temporary tables. Temporary tables are replicated except
in the case where you stop the slave server (not just the slave threads) and you have replicated
temporary tables that are open for use in updates that have not yet been executed on the slave. If you
stop the slave server, the temporary tables needed by those updates are no longer available when
the slave is restarted. To avoid this problem, do not shut down the slave while it has temporary tables
open. Instead, use the following procedure:

1. Issue a STOP SLAVE SQL_THREAD statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

Replication Features and Issues

2572

3. If the value is not 0, restart the slave SQL thread with START SLAVE SQL_THREAD and repeat the
procedure later.

4. When the value is 0, issue a mysqladmin shutdown command to stop the slave.

Temporary tables and replication options. By default, all temporary tables are replicated; this
happens whether or not there are any matching --replicate-do-db, --replicate-do-table, or
--replicate-wild-do-table options in effect. However, the --replicate-ignore-table and
--replicate-wild-ignore-table options are honored for temporary tables.

A recommended practice when using statement-based or mixed-format replication is to designate a
prefix for exclusive use in naming temporary tables that you do not want replicated, then employ a --
replicate-wild-ignore-table option to match that prefix. For example, you might give all such
tables names beginning with norep (such as norepmytable, norepyourtable, and so on), then
use --replicate-wild-ignore-table=norep% to prevent them from being replicated.

17.4.1.25 Replication of the mysql System Database

Data modification statements made to tables in the mysql database are replicated according to the
value of binlog_format; if this value is MIXED, these statements are replicated using row-based
format. However, statements that would normally update this information indirectly—such GRANT,
REVOKE, and statements manipulating triggers, stored routines, and views—are replicated to slaves
using statement-based replication.

17.4.1.26 Replication and the Query Optimizer

It is possible for the data on the master and slave to become different if a statement is written in such
a way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this
is not a good practice, even outside of replication.) Examples of nondeterministic statements include
DELETE or UPDATE statements that use LIMIT with no ORDER BY clause; see Section 17.4.1.17,
“Replication and LIMIT”, for a detailed discussion of these.

17.4.1.27 Replication and Reserved Words

You can encounter problems when you attempt to replicate from an older master to a newer slave
and you make use of identifiers on the master that are reserved words in the newer MySQL version
running on the slave. An example of this is using a table column named virtual on a 5.6 master
that is replicating to a 5.7 or higher slave because VIRTUAL is a reserved word beginning in MySQL
5.7. Replication can fail in such cases with Error 1064 You have an error in your SQL
syntax..., even if a database or table named using the reserved word or a table having a column
named using the reserved word is excluded from replication. This is due to the fact that each SQL
event must be parsed by the slave prior to execution, so that the slave knows which database object
or objects would be affected; only after the event is parsed can the slave apply any filtering rules
defined by --replicate-do-db, --replicate-do-table, --replicate-ignore-db, and --
replicate-ignore-table.

To work around the problem of database, table, or column names on the master which would be
regarded as reserved words by the slave, do one of the following:

• Use one or more ALTER TABLE statements on the master to change the names of any database
objects where these names would be considered reserved words on the slave, and change any SQL
statements that use the old names to use the new names instead.

• In any SQL statements using these database object names, write the names as quoted identifiers
using backtick characters (`).

For listings of reserved words by MySQL version, see Reserved Words, in the MySQL Server Version
Reference. For identifier quoting rules, see Section 9.2, “Schema Object Names”.

17.4.1.28 Slave Errors During Replication

http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-optvar.html

Replication Features and Issues

2573

If a statement produces the same error (identical error code) on both the master and the slave, the
error is logged, but replication continues.

If a statement produces different errors on the master and the slave, the slave SQL thread terminates,
and the slave writes a message to its error log and waits for the database administrator to decide what
to do about the error. This includes the case that a statement produces an error on the master or the
slave, but not both. To address the issue, connect to the slave manually and determine the cause of
the problem. SHOW SLAVE STATUS is useful for this. Then fix the problem and run START SLAVE. For
example, you might need to create a nonexistent table before you can start the slave again.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored)
with the --slave-skip-errors option.

For nontransactional storage engines such as MyISAM, it is possible to have a statement that only
partially updates a table and returns an error code. This can happen, for example, on a multiple-row
insert that has one row violating a key constraint, or if a long update statement is killed after updating
some of the rows. If that happens on the master, the slave expects execution of the statement to result
in the same error code. If it does not, the slave SQL thread stops as described previously.

If you are replicating between tables that use different storage engines on the master and slave, keep
in mind that the same statement might produce a different error when run against one version of the
table, but not the other, or might cause an error for one version of the table, but not the other. For
example, since MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing
an InnoDB table on the master might cause a foreign key violation but the same statement performed
on a MyISAM version of the same table on the slave would produce no such error, causing replication
to stop.

17.4.1.29 Replication of Server-Side Help Tables

The server maintains tables in the mysql database that store information for the HELP statement (see
Section 13.8.3, “HELP Syntax”. These tables can be loaded manually as described at Section 5.1.10,
“Server-Side Help”.

Help table content is derived from the MySQL Reference Manual. There are versions of the manual
specific to each MySQL release series, so help content is specific to each series as well. Normally, you
load a version of help content that matches the server version. This has implications for replication. For
example, you would load MySQL 5.6 help content into a MySQL 5.6 master server, but not necessarily
replicate that content to a MySQL 5.7 slave server for which 5.7 help content is more appropriate.

This section describes how to manage help table content upgrades when your servers participate in
replication. Server versions are one factor in this task. Another is that help table structure may differ
between the master and the slave.

Assume that help content is stored in a file named fill_help_tables.sql. In MySQL distributions,
this file is located under the share or share/mysql directory, and the most recent version is always
available for download from http://dev.mysql.com/doc/index-other.html.

To upgrade help tables, using the following procedure. Connection parameters are not shown for the
mysql commands discussed here; in all cases, connect to the server using an account such as root
that has privileges for modifying tables in the mysql database.

1. Upgrade your servers by running mysql_upgrade, first on the slaves and then on the master. This
is the usual principle of upgrading slaves first.

2. Decide whether you want to replicate help table content from the master to its slaves. If not, load
the content on the master and each slave individually. Otherwise, check for and resolve any
incompatibilities between help table structure on the master and its slaves, then load the content
into the master and let it replicate to the slaves.

More detail about these two methods of loading help table content follows.

http://dev.mysql.com/doc/index-other.html

Replication Features and Issues

2574

Loading Help Table Content Without Replication to Slaves

To load help table content without replication, run this command on the master and each slave
individually, using a fill_help_tables.sql file containing content appropriate to the server version
(enter the command on one line):

mysql --init-command="SET sql_log_bin=0"
 mysql < fill_help_tables.sql

Use the --init-command option on each server, including the slaves, in case a slave also acts as a
master to other slaves in your replication topology. The SET statement suppresses binary logging. After
the command has been run on each server to be upgraded, you are done.

Note

As of MySQL 5.7.5, the fill_help_tables.sql file includes the SET
statement to cause the file contents not to replicate. Thus, for 5.7. and up, the
command is simpler:

mysql mysql < fill_help_tables.sql

Loading Help Table Content With Replication to Slaves

Note

As mentioned previously, fill_help_tables.sql in MySQL 5.7.5 and up
includes a SET statement to suppress binary logging of the file contents. If you
want to replicate help table contents for MySQL 5.7.5 or later, you must edit
fill_help_tables.sql to remove the SET statement. This should rarely be
desireable because help table contents are specific to the version of the server
into which they are loaded, which may differ for master and slave.

If you do want to replicate help table content, check for help table incompatibilities between your
master and its slaves. The url column in the help_category and help_topic tables was originally
CHAR(128), but is TEXT in newer MySQL versions to accommodate longer URLs. To check help table
structure, use this statement:

SELECT TABLE_NAME, COLUMN_NAME, COLUMN_TYPE
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = 'mysql'
AND COLUMN_NAME = 'url';

For tables with the old structure, the statement produces this result:

+---------------+-------------+-------------+
| TABLE_NAME | COLUMN_NAME | COLUMN_TYPE |
+---------------+-------------+-------------+
| help_category | url | char(128) |
| help_topic | url | char(128) |
+---------------+-------------+-------------+

For tables with the new structure, the statement produces this result:

+---------------+-------------+-------------+
| TABLE_NAME | COLUMN_NAME | COLUMN_TYPE |
+---------------+-------------+-------------+
| help_category | url | text |
| help_topic | url | text |
+---------------+-------------+-------------+

Replication Features and Issues

2575

If the master and slave both have the old structure or both have the new structure, they are compatible
and you can replicate help table content by executing this command on the master:

mysql mysql < fill_help_tables.sql

The table content will load into the master, then replicate to the slaves.

If the master and slave have incompatible help tables (one server has the old structure and the other
has the new), you have a choice between not replicating help table content after all, or making the table
structures compatible so that you can replicate the content.

• If you decide not to replicate the content after all, upgrade the master and slaves individually using
mysql with the --init-command option, as described previously.

• If instead you decide to make the table structures compatible, upgrade the tables on the server that
has the old structure. Suppose that your master server has the old table structure. Upgrade its tables
to the new structure manually by executing these statements (binary logging is disabled here to
prevent replication of the changes to the slaves, which already have the new structure):

SET sql_log_bin=0;
ALTER TABLE mysql.help_category ALTER COLUMN url TEXT;
ALTER TABLE mysql.help_topic ALTER COLUMN url TEXT;

Then run this command on the master:

mysql mysql < fill_help_tables.sql

The table content will load into the master, then replicate to the slaves.

17.4.1.30 Replication and Server SQL Mode

Using different server SQL mode settings on the master and the slave may cause the same INSERT
statements to be handled differently on the master and the slave, leading the master and slave to
diverge. For best results, you should always use the same server SQL mode on the master and on the
slave. This advice applies whether you are using statement-based or row-based replication.

If you are replicating partitioned tables, using different SQL modes on the master and the slave is likely
to cause issues. At a minimum, this is likely to cause the distribution of data among partitions to be
different in the master's and slave's copies of a given table. It may also cause inserts into partitioned
tables that succeed on the master to fail on the slave.

For more information, see Section 5.1.7, “Server SQL Modes”. In particular, see SQL Mode Changes in
MySQL 5.7, which describes changes in MySQL 5.7 so that you can assess whether your applications
will be affected.

17.4.1.31 Replication Retries and Timeouts

The global system variable slave_transaction_retries affects replication as follows:
If the slave SQL thread fails to execute a transaction because of an InnoDB deadlock
or because it exceeded the InnoDB innodb_lock_wait_timeout value, or the NDB
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout value, the slave
automatically retries the transaction slave_transaction_retries times before stopping with an
error. The default value is 10. The total retry count can be seen in the output of SHOW STATUS; see
Section 5.1.6, “Server Status Variables”.

17.4.1.32 Replication and Time Zones

By default, master and slave servers assume that they are in the same time zone. If you are replicating
between servers in different time zones, the time zone must be set on both master and slave.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Replication Features and Issues

2576

Otherwise, statements depending on the local time on the master are not replicated properly, such as
statements that use the NOW() or FROM_UNIXTIME() functions. Set the time zone in which MySQL
server runs by using the --timezone=timezone_name option of the mysqld_safe script or by
setting the TZ environment variable. See also Section 17.4.1.16, “Replication and System Functions”.

17.4.1.33 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In
general, you should avoid transactions that update both transactional and nontransactional tables in a
replication environment. You should also avoid using any statement that accesses both transactional
(or temporary) and nontransactional tables and writes to any of them.

The server uses these rules for binary logging:

• If the initial statements in a transaction are nontransactional, they are written to the binary log
immediately. The remaining statements in the transaction are cached and not written to the binary
log until the transaction is committed. (If the transaction is rolled back, the cached statements are
written to the binary log only if they make nontransactional changes that cannot be rolled back.
Otherwise, they are discarded.)

• For statement-based logging, logging of nontransactional statements is affected by the
binlog_direct_non_transactional_updates system variable. When this variable is OFF
(the default), logging is as just described. When this variable is ON, logging occurs immediately for
nontransactional statements occurring anywhere in the transaction (not just initial nontransactional
statements). Other statements are kept in the transaction cache and logged when the transaction
commits. binlog_direct_non_transactional_updates has no effect for row-format or mixed-
format binary logging.

Transactional, nontransactional, and mixed statements.
To apply those rules, the server considers a statement nontransactional if it changes only
nontransactional tables, and transactional if it changes only transactional tables. In MySQL 5.7, a
statement that references both nontransactional and transactional tables and updates any of the tables
involved, is considered a “mixed” statement. (In previous MySQL release series, a statement that
changed both nontransactional and transactional tables was considered mixed.) Mixed statements, like
transactional statements, are cached and logged when the transaction commits.

A mixed statement that updates a transactional table is considered unsafe if the statement also
performs either of the following actions:

• Updates or reads a transactional table

• Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ

A mixed statement following the update of a transactional table within a transaction is considered
unsafe if it performs either of the following actions:

• Updates any table and reads from any temporary table

• Updates a nontransactional table and binlog_direct_non_trans_update is OFF

For more information, see Section 17.2.1.3, “Determination of Safe and Unsafe Statements in Binary
Logging”.

Note

A mixed statement is unrelated to mixed binary logging format.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in
case of a ROLLBACK. However, when a second connection updates the nontransactional table before

Replication Features and Issues

2577

the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on master and slave. It is possible to replicate transactional
tables on the master using nontransactional tables on the slave. For example, you can replicate an
InnoDB master table as a MyISAM slave table. However, if you do this, there are problems if the slave
is stopped in the middle of a BEGIN ... COMMIT block because the slave restarts at the beginning of the
BEGIN block.

In MySQL 5.7, it is also safe to replicate transactions from MyISAM tables on the master to
transactional tables—such as tables that use the InnoDB storage engine—on the slave. In such cases,
an AUTOCOMMIT=1 statement issued on the master is replicated, thus enforcing AUTOCOMMIT mode on
the slave.

When the storage engine type of the slave is nontransactional, transactions on the master that mix
updates of transactional and nontransactional tables should be avoided because they can cause
inconsistency of the data between the master transactional table and the slave nontransactional table.
That is, such transactions can lead to master storage engine-specific behavior with the possible effect
of replication going out of synchrony. MySQL does not issue a warning about this currently, so extra
care should be taken when replicating transactional tables from the master to nontransactional tables
on the slaves.

Changing the binary logging format within transactions. The binlog_format system variable
is read-only as long as a transaction is in progress.

Every transaction (including autocommit transactions) is recorded in the binary log as though it starts
with a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. In MySQL 5.7,
this true is even for statements affecting tables that use a nontransactional storage engine (such as
MyISAM).

17.4.1.34 Replication and Transaction Inconsistencies

Inconsistencies in the sequence of transactions that have been executed from the relay log can occur
depending on your replication configuration. This section explains how to avoid inconsistencies and
solve any problems they cause.

The following types of inconsistencies can exist:

• Half-applied transactions. A transaction which updates non-transactional tables has applied some
but not all of its changes.

• Gaps. A gap is a transaction that has not been (fully) applied, even though some later
transaction has been applied. Gaps can only appear when using a multi-threaded slave.
To avoid gaps occurring, set slave_preserve_commit_order=1, which requires
slave_parallel_type=LOGICAL_CLOCK, and that log-bin and log-slave-updates are also
enabled.

• Gap-free low-watermark position. Even in the absence of gaps, it is possible that transactions
after Exec_master_log_pos have not been applied. That is, all transactions up to point N
have been applied, and no transactions after N have been applied, but Exec_master_log_pos
has a value smaller than N. This can only happen on multi-threaded slaves. Enabling
slave_preserve_commit_order does not prevent gap-free low-watermark positions.

The following scenarios are relevant to the existence of half-applied transactions, gaps, and gap-free
low-watermark position inconsistencies:

1. While slave threads are running, there may be gaps and half-applied transactions.

2. mysqld shuts down. Both clean and unclean shutdown abort ongoing transactions and may leave
gaps and half-applied transactions.

Replication Features and Issues

2578

3. KILL of replication threads (the SQL thread when using a single-threaded slave, the coordinator
thread when using a multi-threaded slave). This aborts ongoing transactions and may leave gaps
and half-applied transactions.

4. Error in applier threads. This may leave gaps. If the error is in a mixed transaction, that transaction
is half-applied. When using a multi-threaded slave, workers which have not received an error
complete their queues, so it may take time to stop all threads.

5. STOP SLAVE when using a multi-threaded slave. After issuing STOP SLAVE, the slave waits for
any gaps to be filled and then updates Exec_master_log_pos. This ensures it never leaves gaps
or gap-free low-watermark positions, unless any of the cases above applies (in other words, before
STOP SLAVE completes, either an error happens, or another thread issues KILL, or the server
restarts. In these cases, STOP SLAVE returns successfully.)

6. If the last transaction in the relay log is only half-received and the multi-threaded slave coordinator
has started to schedule the transaction to a worker, then STOP SLAVE waits up to 60 seconds
for the transaction to be received. After this timeout, the coordinator gives up and aborts the
transaction. If the transaction is mixed, it may be left half-completed.

7. STOP SLAVE when using a single-threaded slave. If the ongoing transaction only updates
transactional tables, it is rolled back and STOP SLAVE stops immediately. If the ongoing transaction
is mixed, STOP SLAVE waits up to 60 seconds for the transaction to complete. After this timeout, it
aborts the transaction, so it may be left half-completed.

The global variable rpl_stop_slave_timeout is unrelated to the process of stopping the replication
threads. It only makes the client that issues STOP SLAVE return to the client, but the replication
threads continue to try to stop.

If a replication channel has gaps, it has the following consequences:

1. The slave database is in a state that may never have existed on the master.

2. The field Exec_master_log_pos in SHOW SLAVE STATUS is only a "low-watermark". In
other words, transactions appearing before the position are guaranteed to have committed, but
transactions after the position may have committed or not.

3. CHANGE MASTER TO statements for that channel fail with an error, unless the applier threads are
running and the CHANGE MASTER TO statement only sets receiver options.

4. If mysqld is started with --relay-log-recovery, no recovery is done for that channel, and a
warning is printed.

5. If mysqldump is used with --dump-slave, it does not record the existence of gaps; thus
it prints CHANGE MASTER TO with RELAY_LOG_POS set to the low-watermark position in
Exec_master_log_pos.

After applying the dump on another server, and starting the replication threads, transactions
appearing after the position are replicated again. Note that this is harmless if GTIDs are enabled
(however, in that case it is not recommended to use --dump-slave).

If a replication channel has a gap-free low-watermark position, cases 2 to 5 above apply, but case 1
does not.

The gap-free low-watermark position information is persisted in binary format in the internal table
mysql.slave_worker_info. START SLAVE [SQL_THREAD] always consults this information so
that it applies only the correct transactions. This remains true even if slave_parallel_workers
has been changed to 0 before START SLAVE, and even if START SLAVE is used with UNTIL clauses.
START SLAVE UNTIL SQL_AFTER_MTS_GAPS only applies as many transactions as needed in
order to fill in the gaps. If START SLAVE is used with UNTIL clauses that tell it to stop before it has
consumed all the gaps, then it leaves remaining gaps.

Replication Features and Issues

2579

Warning

RESET SLAVE removes the relay logs and resets the replication position.
Thus issuing RESET SLAVE on a slave with gaps means the slave loses any
information about the gaps, without correcting the gaps.

slave-preserve-commit-order ensures that there are no gaps. However, it is still possible that
Exec_master_log_pos is just a gap-free low-watermark position in scenarios 1 to 4 above. That
is, there may be transactions after Exec_master_log_pos which have been applied. Therefore the
cases numbered 2 to 5 above (but not case 1) apply, even when slave-preserve-commit-order
is enabled.

17.4.1.35 Replication and Triggers

With statement-based replication, triggers executed on the master also execute on the slave. With
row-based replication, triggers executed on the master do not execute on the slave. Instead, the row
changes on the master resulting from trigger execution are replicated and applied on the slave.

This behavior is by design. If under row-based replication the slave applied the triggers as well as the
row changes caused by them, the changes would in effect be applied twice on the slave, leading to
different data on the master and the slave.

If you want triggers to execute on both the master and the slave—perhaps because you have different
triggers on the master and slave—you must use statement-based replication. However, to enable
slave-side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to
switch to statement-based replication only for those statements where you want this effect, and to use
row-based replication the rest of the time.

A statement invoking a trigger (or function) that causes an update to an AUTO_INCREMENT column
is not replicated correctly using statement-based replication. MySQL 5.7 marks such statements as
unsafe. (Bug #45677)

A trigger can have triggers for different combinations of trigger event (INSERT, UPDATE, DELETE) and
action time (BEFORE, AFTER), but before MySQL 5.7.2 cannot have multiple triggers that have the
same trigger event and action time. MySQL 5.7.2 lifts this limitation and multiple triggers are permitted.
This change has replication implications for upgrades and downgrades.

For brevity, “multiple triggers” here is shorthand for “multiple triggers that have the same trigger event
and action time.”

Upgrades. Suppose that you upgrade an old server that does not support multiple triggers to MySQL
5.7.2 or newer. If the new server is a replication master and has old slaves that do not support multiple
triggers, an error occurs on those slaves if a trigger is created on the master for a table that already has
a trigger with the same trigger event and action time. To avoid this problem, upgrade the slaves first,
then upgrade the master.

Downgrades. If you downgrade a server that supports multiple triggers to an older version that does
not, the downgrade has these effects:

• For each table that has triggers, all trigger definitions remain in the .TRG file for the table. However, if
there are multiple triggers with the same trigger event and action time, the server executes only one
of them when the trigger event occurs. For information about .TRG files, see Table Trigger Storage.

• If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites the
table's .TRG file. The rewritten file retains only one trigger per combination of trigger event and action
time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

http://dev.mysql.com/doc/internals/en/sp-storage.html#sp-storage-trigger

Replication Features and Issues

2580

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed
using NEW and OLD can be passed to the routine using parameters. If the trigger needs a single
result value from the code, you can put the code in a stored function and have the function return
the value. If the trigger needs multiple result values from the code, you can put the code in a stored
procedure and return the values using OUT parameters.

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for this
trigger is thus the same as the multiple triggers it replaces.

17.4.1.36 Replication and TRUNCATE TABLE

TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be
logged and replicated using row-based format when the binary logging mode is ROW or MIXED.
However this caused issues when logging or replicating, in STATEMENT or MIXED mode, tables that
used transactional storage engines such as InnoDB when the transaction isolation level was READ
COMMITTED or READ UNCOMMITTED, which precludes statement-based logging.

TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that
it can be logged and replicated as a statement. However, the effects of the statement as applicable
to InnoDB and other transactional tables on replication slaves still follow the rules described in
Section 13.1.29, “TRUNCATE TABLE Syntax” governing such tables. (Bug #36763)

17.4.1.37 Replication and User Name Length

The maximum length of MySQL user names was increased from 16 characters to 32 characters in
MySQL 5.7.8. Replication of user names longer than 16 characters to a slave that supports only shorter
user names will fail. However, this should occur only when replicating from a newer master to an older
slave, which is not a recommended configuration.

17.4.1.38 Replication and Variables

System variables are not replicated correctly when using STATEMENT mode, except for the following
variables when they are used with session scope:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

Replication Features and Issues

2581

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

When MIXED mode is used, the variables in the preceding list, when used with session scope, cause
a switch from statement-based to row-based logging. See Section 5.2.4.3, “Mixed Binary Logging
Format”.

sql_mode is also replicated except for the NO_DIR_IN_CREATE mode; the slave always preserves
its own value for NO_DIR_IN_CREATE, regardless of changes to it on the master. This is true for all
replication formats.

However, when mysqlbinlog parses a SET @@sql_mode = mode statement, the full mode value,
including NO_DIR_IN_CREATE, is passed to the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT mode is in use.

The default_storage_engine and storage_engine system variables are not replicated,
regardless of the logging mode; this is intended to facilitate replication between different storage
engines.

The read_only system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

The max_heap_table_size system variable is not replicated. Increasing the value of this variable on
the master without doing so on the slave can lead eventually to Table is full errors on the slave
when trying to execute INSERT statements on a MEMORY table on the master that is thus permitted to
grow larger than its counterpart on the slave. For more information, see Section 17.4.1.23, “Replication
and MEMORY Tables”.

In statement-based replication, session variables are not replicated properly when used in statements
that update tables. For example, the following sequence of statements will not insert the same data on
the master and the slave:

SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);

This does not apply to the common sequence:

SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));

Replication of session variables is not a problem when row-based replication is being used, in which
case, session variables are always replicated safely. See Section 17.2.1, “Replication Formats”.

In MySQL 5.7, the following session variables are written to the binary log and honored by the
replication slave when parsing the binary log, regardless of the logging format:

• sql_mode

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

Replication Compatibility Between MySQL Versions

2582

• collation_database

• collation_server

• sql_auto_is_null

Important

Even though session variables relating to character sets and collations are
written to the binary log, replication between different character sets is not
supported.

To help reduce possible confusion, we recommend that you always use the same setting for the
lower_case_table_names system variable on both master and slave, especially when you are
running MySQL on platforms with case-sensitive file systems.

17.4.1.39 Replication and Views

Views are always replicated to slaves. Views are filtered by their own name, not by the tables they refer
to. This means that a view can be replicated to the slave even if the view contains a table that would
normally be filtered out by replication-ignore-table rules. Care should therefore be taken to
ensure that views do not replicate table data that would normally be filtered for security reasons.

Replication from a table to a same-named view is supported using statement-based logging, but not
when using row-based logging. In MySQL 5.7.1 and later, trying to do so when row-based logging is in
effect causes an error. (Bug #11752707, Bug #43975)

17.4.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one release series to the next higher release series. For example,
you can replicate from a master running MySQL 5.5 to a slave running MySQL 5.6, from a master
running MySQL 5.6 to a slave running MySQL 5.7, and so on.

However, you may encounter difficulties when replicating from an older master to a newer slave if the
master uses statements or relies on behavior no longer supported in the version of MySQL used on
the slave. For example, in MySQL 5.5, CREATE TABLE ... SELECT statements are permitted to
change tables other than the one being created, but are no longer allowed to do so in MySQL 5.6 (see
Section 17.4.1.6, “Replication of CREATE TABLE ... SELECT Statements”).

The use of more than two MySQL Server versions is not supported in replication setups involving
multiple masters, regardless of the number of master or slave MySQL servers. This restriction applies
not only to release series, but to version numbers within the same release series as well. For example,
if you are using a chained or circular replication setup, you cannot use MySQL 5.7.1, MySQL 5.7.2, and
MySQL 5.7.4 concurrently, although you could use any two of these releases together.

Important

It is strongly recommended to use the most recent release available within a
given MySQL release series because replication (and other) capabilities are
continually being improved. It is also recommended to upgrade masters and
slaves that use early releases of a release series of MySQL to GA (production)
releases when the latter become available for that release series.

Replication from newer masters to older slaves may be possible, but is generally not supported. This is
due to a number of factors:

• Binary log format changes. The binary log format can change between major releases. While
we attempt to maintain backward compatibility, this is not always possible.

This also has significant implications for upgrading replication servers; see Section 17.4.3,
“Upgrading a Replication Setup”, for more information.

Upgrading a Replication Setup

2583

• For more information about row-based replication, see Section 17.2.1, “Replication Formats”.

• SQL incompatibilities. You cannot replicate from a newer master to an older slave using
statement-based replication if the statements to be replicated use SQL features available on the
master but not on the slave.

However, if both the master and the slave support row-based replication, and there are no data
definition statements to be replicated that depend on SQL features found on the master but not on
the slave, you can use row-based replication to replicate the effects of data modification statements
even if the DDL run on the master is not supported on the slave.

For more information on potential replication issues, see Section 17.4.1, “Replication Features and
Issues”.

17.4.3 Upgrading a Replication Setup

When you upgrade servers that participate in a replication setup, the procedure for upgrading depends
on the current server versions and the version to which you are upgrading.

This section applies to upgrading replication from older versions of MySQL to MySQL 5.7. A 4.0 server
should be 4.0.3 or newer.

When you upgrade a master to 5.7 from an earlier MySQL release series, you should first ensure that
all the slaves of this master are using the same 5.7.x release. If this is not the case, you should first
upgrade the slaves. To upgrade each slave, shut it down, upgrade it to the appropriate 5.7.x version,
restart it, and restart replication. Relay logs created by the slave after the upgrade are in 5.7 format.

Changes affecting operations in strict SQL mode may result in replication failure on an updated
slave. For example, as of MySQL 5.7.2, the server restricts insertion of a DEFAULT value of 0 for
temporal data types in strict mode (STRICT_TRANS_TABLES or STRICT_ALL_TABLES). A resulting
incompatibility for replication if you use statement-based logging (binlog_format=STATEMENT) is
that if a slave is upgraded, a nonupgraded master will execute statements without error that may fail
on the slave and replication will stop. To deal with this, stop all new statements on the master and wait
until the slaves catch up. Then upgrade the slaves. Alternatively, if you cannot stop new statements,
temporarily change to row-based logging on the master (binlog_format=ROW) and wait until all
slaves have processed all binary logs produced up to the point of this change. Then upgrade the
slaves.

After the slaves have been upgraded, shut down the master, upgrade it to the same 5.7.x release as
the slaves, and restart it. If you had temporarily changed the master to row-based logging, change
it back to statement-based logging. The 5.7 master is able to read the old binary logs written prior to
the upgrade and to send them to the 5.7 slaves. The slaves recognize the old format and handle it
properly. Binary logs created by the master subsequent to the upgrade are in 5.7 format. These too are
recognized by the 5.7 slaves.

In other words, when upgrading to MySQL 5.7, the slaves must be MySQL 5.7 before you can upgrade
the master to 5.7. Note that downgrading from 5.7 to older versions does not work so simply: You must
ensure that any 5.7 binary log or relay log has been fully processed, so that you can remove it before
proceeding with the downgrade.

Downgrading a replication setup to a previous version cannot be done once you have switched from
statement-based to row-based replication, and after the first row-based statement has been written to
the binlog. See Section 17.2.1, “Replication Formats”.

Some upgrades may require that you drop and re-create database objects when you move from one
MySQL series to the next. For example, collation changes might require that table indexes be rebuilt.
Such operations, if necessary, will be detailed at Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”. It is safest to perform these operations separately on the slaves and the master, and to
disable replication of these operations from the master to the slave. To achieve this, use the following
procedure:

Troubleshooting Replication

2584

1. Stop all the slaves and upgrade them. Restart them with the --skip-slave-start option so
that they do not connect to the master. Perform any table repair or rebuilding operations needed
to re-create database objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and
reloading tables or triggers.

2. Disable the binary log on the master. To do this without restarting the master, execute a SET
sql_log_bin = 0 statement. Alternatively, stop the master and restart it without the --log-bin
option. If you restart the master, you might also want to disallow client connections. For example,
if all clients connect using TCP/IP, use the --skip-networking option when you restart the
master.

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the slaves later.

4. Re-enable the binary log on the master. If you set sql_log_bin to 0 earlier, execute a SET
sql_log_bin = 1 statement. If you restarted the master to disable the binary log, restart it with
--log-bin, and without --skip-networking so that clients and slaves can connect.

5. Restart the slaves, this time without the --skip-slave-start option.

If you are upgrading an existing replication setup from a version of MySQL that does not support global
transaction identifiers to a version that does, you should not enable GTIDs on either the master or the
slave before making sure that the setup meets all the requirements for GTID-based replication. See
Section 17.1.3.2, “Setting Up Replication Using GTIDs”, which contains information about converting
existing replication setups to use GTID-based replication.

17.4.4 Troubleshooting Replication

If you have followed the instructions but your replication setup is not working, the first thing to do is
check the error log for messages. Many users have lost time by not doing this soon enough after
encountering problems.

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the master has binary logging enabled by issuing a SHOW MASTER STATUS statement. If
logging is enabled, Position is nonzero. If binary logging is not enabled, verify that you are running
the master with the --log-bin option.

• Verify that the master and slave both were started with the --server-id [2426] option and that the
ID value is unique on each server.

• Verify that the slave is running. Use SHOW SLAVE STATUS to check whether the
Slave_IO_Running and Slave_SQL_Running values are both Yes. If not, verify the options that
were used when starting the slave server. For example, --skip-slave-start prevents the slave
threads from starting until you issue a START SLAVE statement.

• If the slave is running, check whether it established a connection to the master. Use SHOW
PROCESSLIST, find the I/O and SQL threads and check their State column to see what they
display. See Section 17.2.2, “Replication Implementation Details”. If the I/O thread state says
Connecting to master, check the following:

• Verify the privileges for the user being used for replication on the master.

• Check that the host name of the master is correct and that you are using the correct port to
connect to the master. The port used for replication is the same as used for client network
communication (the default is 3306). For the host name, ensure that the name resolves to the
correct IP address.

• Check that networking has not been disabled on the master or slave. Look for the skip-
networking option in the configuration file. If present, comment it out or remove it.

How to Report Replication Bugs or Problems

2585

• If the master has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

• Check that you can reach the master by using ping or traceroute/tracert to reach the host.

• If the slave was running previously but has stopped, the reason usually is that some statement
that succeeded on the master failed on the slave. This should never happen if you have taken
a proper snapshot of the master, and never modified the data on the slave outside of the slave
thread. If the slave stops unexpectedly, it is a bug or you have encountered one of the known
replication limitations described in Section 17.4.1, “Replication Features and Issues”. If it is a bug,
see Section 17.4.5, “How to Report Replication Bugs or Problems”, for instructions on how to report
it.

• If a statement that succeeded on the master refuses to run on the slave, try the following procedure
if it is not feasible to do a full database resynchronization by deleting the slave's databases and
copying a new snapshot from the master:

1. Determine whether the affected table on the slave is different from the master table. Try to
understand how this happened. Then make the slave's table identical to the master's and run
START SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe
to make the update manually (if needed) and then ignore the next statement from the master.

3. If you decide that the slave can skip the next statement from the master, issue the following
statements:

mysql> SET GLOBAL sql_slave_skip_counter = N;
mysql> START SLAVE;

The value of N should be 1 if the next statement from the master does not use AUTO_INCREMENT
or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for
statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in
the binary log of the master.

See also Section 13.4.2.5, “SET GLOBAL sql_slave_skip_counter Syntax”.

4. If you are sure that the slave started out perfectly synchronized with the master, and that no one
has updated the tables involved outside of the slave thread, then presumably the discrepancy
is the result of a bug. If you are running the most recent version of MySQL, please report the
problem. If you are running an older version, try upgrading to the latest production release to
determine whether the problem persists.

17.4.5 How to Report Replication Bugs or Problems

When you have determined that there is no user error involved, and replication still either does not
work at all or is unstable, it is time to send us a bug report. We need to obtain as much information as
possible from you to be able to track down the bug. Please spend some time and effort in preparing a
good bug report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database
using the instructions given in Section 1.7, “How to Report Bugs or Problems”. If you have a “phantom”
problem (one that you cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the slave outside of the slave
thread, the data goes out of synchrony, and you can have unique key violations on updates. In
this case, the slave thread stops and waits for you to clean up the tables manually to bring them
into synchrony. This is not a replication problem. It is a problem of outside interference causing
replication to fail.

How to Report Replication Bugs or Problems

2586

2. Run the slave with the --log-slave-updates and --log-bin options. These options cause the
slave to log the updates that it receives from the master into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary log files from the master

• All binary log files from the slave

• The output of SHOW MASTER STATUS from the master at the time you discovered the problem

• The output of SHOW SLAVE STATUS from the slave at the time you discovered the problem

• Error logs from the master and the slave

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem
statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos
values from SHOW SLAVE STATUS.

shell> mysqlbinlog --start-position=log_pos log_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
Section 1.7, “How to Report Bugs or Problems”.

2587

Chapter 18 Partitioning

Table of Contents
18.1 Overview of Partitioning in MySQL ... 2589
18.2 Partitioning Types ... 2591

18.2.1 RANGE Partitioning .. 2593
18.2.2 LIST Partitioning .. 2597
18.2.3 COLUMNS Partitioning ... 2600
18.2.4 HASH Partitioning .. 2607
18.2.5 KEY Partitioning ... 2610
18.2.6 Subpartitioning ... 2612
18.2.7 How MySQL Partitioning Handles NULL .. 2615

18.3 Partition Management ... 2619
18.3.1 Management of RANGE and LIST Partitions .. 2620
18.3.2 Management of HASH and KEY Partitions ... 2626
18.3.3 Exchanging Partitions and Subpartitions with Tables .. 2627
18.3.4 Maintenance of Partitions ... 2634
18.3.5 Obtaining Information About Partitions ... 2636

18.4 Partition Pruning ... 2638
18.5 Partition Selection ... 2641
18.6 Restrictions and Limitations on Partitioning ... 2647

18.6.1 Partitioning Keys, Primary Keys, and Unique Keys ... 2653
18.6.2 Partitioning Limitations Relating to Storage Engines ... 2656
18.6.3 Partitioning Limitations Relating to Functions ... 2657
18.6.4 Partitioning and Locking ... 2658

This chapter discusses MySQL's implementation of user-defined partitioning. You can determine
whether your MySQL Server supports partitioning by checking the output of the SHOW PLUGINS
statement, like this:

mysql> SHOW PLUGINS;
+------------+----------+----------------+---------+---------+
| Name | Status | Type | Library | License |
+------------+----------+----------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
FEDERATED	DISABLED	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	DISABLED	STORAGE ENGINE	NULL	GPL
+------------+----------+----------------+---------+---------+
11 rows in set (0.00 sec)

You can also check the INFORMATION_SCHEMA.PLUGINS table with a query similar to this one:

mysql> SELECT
 -> PLUGIN_NAME as Name,
 -> PLUGIN_VERSION as Version,
 -> PLUGIN_STATUS as Status
 -> FROM INFORMATION_SCHEMA.PLUGINS
 -> WHERE PLUGIN_TYPE='STORAGE ENGINE';

2588

+--------------------+---------+--------+
| Name | Version | Status |
+--------------------+---------+--------+
binlog	1.0	ACTIVE
CSV	1.0	ACTIVE
MEMORY	1.0	ACTIVE
MRG_MYISAM	1.0	ACTIVE
MyISAM	1.0	ACTIVE
PERFORMANCE_SCHEMA	0.1	ACTIVE
BLACKHOLE	1.0	ACTIVE
ARCHIVE	3.0	ACTIVE
InnoDB	5.7	ACTIVE
partition	1.0	ACTIVE
+--------------------+---------+--------+
10 rows in set (0.00 sec)

In either case, if you do not see the partition plugin listed with the value ACTIVE for the Status
column in the output (shown in bold text in each of the examples just given), then your version of
MySQL was not built with partitioning support.

MySQL 5.7 Community binaries provided by Oracle include partitioning support. For information about
partitioning support offered in MySQL Enterprise Edition binaries, see Chapter 25, MySQL Enterprise
Edition.

To enable partitioning if you are compiling MySQL 5.7 from source, the build must be configured with
the -DWITH_PARTITION_STORAGE_ENGINE option. For more information, see Section 2.9, “Installing
MySQL from Source”.

If your MySQL binary is built with partitioning support, nothing further needs to be done to enable it (for
example, no special entries are required in your my.cnf file).

If you want to disable partitioning support, you can start the MySQL Server with the --skip-
partition option, in which case the value of have_partitioning is DISABLED. When partitioning
support is disabled, you can see any existing partitioned tables and drop them (although doing this is
not advised), but you cannot otherwise manipulate them or access their data.

See Section 18.1, “Overview of Partitioning in MySQL”, for an introduction to partitioning and
partitioning concepts.

MySQL supports several types of partitioning as well as subpartitioning; see Section 18.2, “Partitioning
Types”, and Section 18.2.6, “Subpartitioning”.

Section 18.3, “Partition Management”, covers methods of adding, removing, and altering partitions in
existing partitioned tables.

Section 18.3.4, “Maintenance of Partitions”, discusses table maintenance commands for use with
partitioned tables.

The PARTITIONS table in the INFORMATION_SCHEMA database provides information about partitions
and partitioned tables. See Section 20.14, “The INFORMATION_SCHEMA PARTITIONS Table”, for
more information; for some examples of queries against this table, see Section 18.2.7, “How MySQL
Partitioning Handles NULL”.

For known issues with partitioning in MySQL 5.7, see Section 18.6, “Restrictions and Limitations on
Partitioning”.

You may also find the following resources to be useful when working with partitioned tables.

Additional Resources. Other sources of information about user-defined partitioning in MySQL
include the following:

• MySQL Partitioning Forum

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_have_partitioning
http://forums.mysql.com/list.php?106

Overview of Partitioning in MySQL

2589

This is the official discussion forum for those interested in or experimenting with MySQL Partitioning
technology. It features announcements and updates from MySQL developers and others. It is
monitored by members of the Partitioning Development and Documentation Teams.

• Mikael Ronström's Blog

MySQL Partitioning Architect and Lead Developer Mikael Ronström frequently posts articles here
concerning his work with MySQL Partitioning and MySQL Cluster.

• PlanetMySQL

A MySQL news site featuring MySQL-related blogs, which should be of interest to anyone using
my MySQL. We encourage you to check here for links to blogs kept by those working with MySQL
Partitioning, or to have your own blog added to those covered.

MySQL 5.7 binaries are available from http://dev.mysql.com/downloads/mysql/5.7.html.
However, for the latest partitioning bugfixes and feature additions, you can obtain the source
from our GitHub repository. To enable partitioning, the build must be configured with the -
DWITH_PARTITION_STORAGE_ENGINE option. For more information about building MySQL, see
Section 2.9, “Installing MySQL from Source”. If you have problems compiling a partitioning-enabled
MySQL 5.7 build, check the MySQL Partitioning Forum and ask for assistance there if you do not find a
solution to your problem already posted.

18.1 Overview of Partitioning in MySQL

This section provides a conceptual overview of partitioning in MySQL 5.7.

For information on partitioning restrictions and feature limitations, see Section 18.6, “Restrictions and
Limitations on Partitioning”.

The SQL standard does not provide much in the way of guidance regarding the physical aspects
of data storage. The SQL language itself is intended to work independently of any data structures
or media underlying the schemas, tables, rows, or columns with which it works. Nonetheless, most
advanced database management systems have evolved some means of determining the physical
location to be used for storing specific pieces of data in terms of the file system, hardware or even
both. In MySQL, the InnoDB storage engine has long supported the notion of a tablespace, and the
MySQL Server, even prior to the introduction of partitioning, could be configured to employ different
physical directories for storing different databases (see Section 8.12.4, “Using Symbolic Links”, for an
explanation of how this is done).

Partitioning takes this notion a step further, by enabling you to distribute portions of individual tables
across a file system according to rules which you can set largely as needed. In effect, different portions
of a table are stored as separate tables in different locations. The user-selected rule by which the
division of data is accomplished is known as a partitioning function, which in MySQL can be the
modulus, simple matching against a set of ranges or value lists, an internal hashing function, or a linear
hashing function. The function is selected according to the partitioning type specified by the user, and
takes as its parameter the value of a user-supplied expression. This expression can be a column value,
a function acting on one or more column values, or a set of one or more column values, depending on
the type of partitioning that is used.

In the case of RANGE, LIST, and [LINEAR] HASH partitioning, the value of the partitioning column
is passed to the partitioning function, which returns an integer value representing the number of the
partition in which that particular record should be stored. This function must be nonconstant and
nonrandom. It may not contain any queries, but may use an SQL expression that is valid in MySQL, as
long as that expression returns either NULL or an integer intval such that

-MAXVALUE <= intval <= MAXVALUE

http://mikaelronstrom.blogspot.com/
http://www.planetmysql.org/
http://dev.mysql.com/downloads/mysql/5.7.html
http://forums.mysql.com/list.php?106

Overview of Partitioning in MySQL

2590

(MAXVALUE is used to represent the least upper bound for the type of integer in question. -MAXVALUE
represents the greatest lower bound.)

For [LINEAR] KEY, RANGE COLUMNS, and LIST COLUMNS partitioning, the partitioning expression
consists of a list of one or more columns.

For [LINEAR] KEY partitioning, the partitioning function is supplied by MySQL.

For more information about permitted partitioning column types and partitioning functions, see
Section 18.2, “Partitioning Types”, as well as Section 13.1.14, “CREATE TABLE Syntax”, which
provides partitioning syntax descriptions and additional examples. For information about restrictions on
partitioning functions, see Section 18.6.3, “Partitioning Limitations Relating to Functions”.

This is known as horizontal partitioning—that is, different rows of a table may be assigned to different
physical partitions. MySQL 5.7 does not support vertical partitioning, in which different columns of a
table are assigned to different physical partitions. There are not at this time any plans to introduce
vertical partitioning into MySQL 5.7.

For information about determining whether your MySQL Server binary supports user-defined
partitioning, see Chapter 18, Partitioning.

For creating partitioned tables, you can use most storage engines that are supported by your MySQL
server; the MySQL partitioning engine runs in a separate layer and can interact with any of these.
In MySQL 5.7, all partitions of the same partitioned table must use the same storage engine; for
example, you cannot use MyISAM for one partition and InnoDB for another. However, there is nothing
preventing you from using different storage engines for different partitioned tables on the same MySQL
server or even in the same database.

MySQL partitioning cannot be used with the MERGE, CSV, or FEDERATED storage engines.

To employ a particular storage engine for a partitioned table, it is necessary only to use the
[STORAGE] ENGINE option just as you would for a nonpartitioned table. However, you should keep
in mind that [STORAGE] ENGINE (and other table options) need to be listed before any partitioning
options are used in a CREATE TABLE statement. This example shows how to create a table that is
partitioned by hash into 6 partitions and which uses the InnoDB storage engine:

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)
 ENGINE=INNODB
 PARTITION BY HASH(MONTH(tr_date))
 PARTITIONS 6;

Each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 5.7 this has no
effect.

Important

Partitioning applies to all data and indexes of a table; you cannot partition only
the data and not the indexes, or vice versa, nor can you partition only a portion
of the table.

Data and indexes for each partition can be assigned to a specific directory using the DATA
DIRECTORY and INDEX DIRECTORY options for the PARTITION clause of the CREATE TABLE
statement used to create the partitioned table.

DATA DIRECTORY and INDEX DIRECTORY are not supported for individual partitions or subpartitions
of MyISAM tables on Windows. They are supported for individual partitions and subpartitions of InnoDB
tables (as on all platforms).

All columns used in the table's partitioning expression must be part of every unique key that the table
may have, including any primary key. This means that a table such as this one, created by the following
SQL statement, cannot be partitioned:

Partitioning Types

2591

CREATE TABLE tnp (
 id INT NOT NULL AUTO_INCREMENT,
 ref BIGINT NOT NULL,
 name VARCHAR(255),
 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
);

Because the keys pk and uk have no columns in common, there are no columns available for use in a
partitioning expression. Possible workarounds in this situation include adding the name column to the
table's primary key, adding the id column to uk, or simply removing the unique key altogether. See
Section 18.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”, for more information.

In addition, MAX_ROWS and MIN_ROWS can be used to determine the maximum and minimum numbers
of rows, respectively, that can be stored in each partition. See Section 18.3, “Partition Management”,
for more information on these options.

Some advantages of partitioning are listed here:

• Partitioning makes it possible to store more data in one table than can be held on a single disk or file
system partition.

• Data that loses its usefulness can often be easily removed from a partitioned table by dropping the
partition (or partitions) containing only that data. Conversely, the process of adding new data can in
some cases be greatly facilitated by adding one or more new partitions for storing specifically that
data.

• Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause
can be stored only on one or more partitions, which automatically excludes any remaining partitions
from the search. Because partitions can be altered after a partitioned table has been created, you
can reorganize your data to enhance frequent queries that may not have been often used when the
partitioning scheme was first set up. This ability to exclude non-matching partitions (and thus any
rows they contain) is often referred to as partition pruning. For more information, see Section 18.4,
“Partition Pruning”.

In addition, MySQL 5.7 supports explicit partition selection for queries. For example, SELECT *
FROM t PARTITION (p0,p1) WHERE c < 5 selects only those rows in partitions p0 and p1
that match the WHERE condition. In this case, MySQL does not check any other partitions of table t;
this can greatly speed up queries when you already know which partition or partitions you wish to
examine. Partition selection is also supported for the data modification statements DELETE, INSERT,
REPLACE, UPDATE, and LOAD DATA, LOAD XML. See the descriptions of these statements for more
information and examples.

Other benefits usually associated with partitioning include those in the following list. These features are
not currently implemented in MySQL Partitioning, but are high on our list of priorities.

• Queries involving aggregate functions such as SUM() and COUNT() can easily be parallelized.
A simple example of such a query might be SELECT salesperson_id, COUNT(orders) as
order_total FROM sales GROUP BY salesperson_id;. By “parallelized,” we mean that the
query can be run simultaneously on each partition, and the final result obtained merely by summing
the results obtained for all partitions.

• Achieving greater query throughput in virtue of spreading data seeks over multiple disks.

Be sure to check this section and chapter frequently for updates as MySQL Partitioning development
continues.

18.2 Partitioning Types
This section discusses the types of partitioning which are available in MySQL 5.7. These include the
types listed here:

Partitioning Types

2592

• RANGE partitioning. This type of partitioning assigns rows to partitions based on column values
falling within a given range. See Section 18.2.1, “RANGE Partitioning”. For information about an
extension to this type, RANGE COLUMNS, see Section 18.2.3.1, “RANGE COLUMNS partitioning”.

• LIST partitioning. Similar to partitioning by RANGE, except that the partition is selected based
on columns matching one of a set of discrete values. See Section 18.2.2, “LIST Partitioning”. For
information about an extension to this type, LIST COLUMNS, see Section 18.2.3.2, “LIST COLUMNS
partitioning”.

• HASH partitioning. With this type of partitioning, a partition is selected based on the value
returned by a user-defined expression that operates on column values in rows to be inserted into
the table. The function may consist of any expression valid in MySQL that yields a nonnegative
integer value. An extension to this type, LINEAR HASH, is also available. See Section 18.2.4, “HASH
Partitioning”.

• KEY partitioning. This type of partitioning is similar to partitioning by HASH, except that only one
or more columns to be evaluated are supplied, and the MySQL server provides its own hashing
function. These columns can contain other than integer values, since the hashing function supplied
by MySQL guarantees an integer result regardless of the column data type. An extension to this
type, LINEAR KEY, is also available. See Section 18.2.5, “KEY Partitioning”.

A very common use of database partitioning is to segregate data by date. Some database systems
support explicit date partitioning, which MySQL does not implement in 5.7. However, it is not difficult
in MySQL to create partitioning schemes based on DATE, TIME, or DATETIME columns, or based on
expressions making use of such columns.

When partitioning by KEY or LINEAR KEY, you can use a DATE, TIME, or DATETIME column as the
partitioning column without performing any modification of the column value. For example, this table
creation statement is perfectly valid in MySQL:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY KEY(joined)
PARTITIONS 6;

In MySQL 5.7, it is also possible to use a DATE or DATETIME column as the partitioning column using
RANGE COLUMNS and LIST COLUMNS partitioning.

MySQL's other partitioning types, however, require a partitioning expression that yields an integer value
or NULL. If you wish to use date-based partitioning by RANGE, LIST, HASH, or LINEAR HASH, you can
simply employ a function that operates on a DATE, TIME, or DATETIME column and returns such a
value, as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE

RANGE Partitioning

2593

);

Additional examples of partitioning using dates may be found in the following sections of this chapter:

• Section 18.2.1, “RANGE Partitioning”

• Section 18.2.4, “HASH Partitioning”

• Section 18.2.4.1, “LINEAR HASH Partitioning”

For more complex examples of date-based partitioning, see the following sections:

• Section 18.4, “Partition Pruning”

• Section 18.2.6, “Subpartitioning”

MySQL partitioning is optimized for use with the TO_DAYS(), YEAR(), and TO_SECONDS()
functions. However, you can use other date and time functions that return an integer or NULL, such
as WEEKDAY(), DAYOFYEAR(), or MONTH(). See Section 12.7, “Date and Time Functions”, for more
information about such functions.

It is important to remember—regardless of the type of partitioning that you use—that partitions are
always numbered automatically and in sequence when created, starting with 0. When a new row is
inserted into a partitioned table, it is these partition numbers that are used in identifying the correct
partition. For example, if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For
the RANGE and LIST partitioning types, it is necessary to ensure that there is a partition defined for
each partition number. For HASH partitioning, the user function employed must return an integer value
greater than 0. For KEY partitioning, this issue is taken care of automatically by the hashing function
which the MySQL server employs internally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for
tables and databases. However, you should note that partition names are not case-sensitive. For
example, the following CREATE TABLE statement fails as shown:

mysql> CREATE TABLE t2 (val INT)
 -> PARTITION BY LIST(val)(
 -> PARTITION mypart VALUES IN (1,3,5),
 -> PARTITION MyPart VALUES IN (2,4,6)
 ->);
ERROR 1488 (HY000): Duplicate partition name mypart

Failure occurs because MySQL sees no difference between the partition names mypart and MyPart.

When you specify the number of partitions for the table, this must be expressed as a positive, nonzero
integer literal with no leading zeros, and may not be an expression such as 0.8E+01 or 6-2, even if it
evaluates to an integer value. Decimal fractions are not permitted.

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can
be used for creating each partition type; this information may be found in Section 13.1.14, “CREATE
TABLE Syntax”.

18.2.1 RANGE Partitioning

A table that is partitioned by range is partitioned in such a way that each partition contains rows for
which the partitioning expression value lies within a given range. Ranges should be contiguous but
not overlapping, and are defined using the VALUES LESS THAN operator. For the next few examples,
suppose that you are creating a table such as the following to hold personnel records for a chain of 20
video stores, numbered 1 through 20:

CREATE TABLE employees (

RANGE Partitioning

2594

 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Note

The employees table used here has no primary or unique keys. While the
examples work as shown for purposes of the present discussion, you should
keep in mind that tables are extremely likely in practice to have primary keys,
unique keys, or both, and that allowable choices for partitioning columns
depend on the columns used for these keys, if any are present. For a discussion
of these issues, see Section 18.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”.

This table can be partitioned by range in a number of ways, depending on your needs. One way would
be to use the store_id column. For instance, you might decide to partition the table 4 ways by adding
a PARTITION BY RANGE clause as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN (21)
);

In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5
are stored in partition p0, to those employed at stores 6 through 10 are stored in partition p1, and
so on. Note that each partition is defined in order, from lowest to highest. This is a requirement of
the PARTITION BY RANGE syntax; you can think of it as being analogous to a series of if ...
elseif ... statements in C or Java in this regard.

It is easy to determine that a new row containing the data (72, 'Michael', 'Widenius',
'1998-06-25', NULL, 13) is inserted into partition p2, but what happens when your chain adds
a 21st store? Under this scheme, there is no rule that covers a row whose store_id is greater than
20, so an error results because the server does not know where to place it. You can keep this from
occurring by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that
provides for all values greater than the highest value explicitly named:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),

RANGE Partitioning

2595

 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Note

Another way to avoid an error when no matching value is found is to use
the IGNORE keyword as part of the INSERT statement. For an example, see
Section 18.2.2, “LIST Partitioning”. Also see Section 13.2.5, “INSERT Syntax”,
for general information about IGNORE.

MAXVALUE represents an integer value that is always greater than the largest possible integer value (in
mathematical language, it serves as a least upper bound). Now, any rows whose store_id column
value is greater than or equal to 16 (the highest value defined) are stored in partition p3. At some point
in the future—when the number of stores has increased to 25, 30, or more—you can use an ALTER
TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Section 18.3, “Partition
Management”, for details of how to do this).

In much the same fashion, you could partition the table based on employee job codes—that is, based
on ranges of job_code column values. For example—assuming that two-digit job codes are used for
regular (in-store) workers, three-digit codes are used for office and support personnel, and four-digit
codes are used for management positions—you could create the partitioned table using the following
statement:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (job_code) (
 PARTITION p0 VALUES LESS THAN (100),
 PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (10000)
);

In this instance, all rows relating to in-store workers would be stored in partition p0, those relating to
office and support staff in p1, and those relating to managers in partition p2.

It is also possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be
able to evaluate the expression's return value as part of a LESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on
one of the two DATE columns instead. For example, let us suppose that you wish to partition based on
the year that each employee left the company; that is, the value of YEAR(separated). An example of
a CREATE TABLE statement that implements such a partitioning scheme is shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY RANGE (YEAR(separated)) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1996),
 PARTITION p2 VALUES LESS THAN (2001),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

RANGE Partitioning

2596

In this scheme, for all employees who left before 1991, the rows are stored in partition p0; for those
who left in the years 1991 through 1995, in p1; for those who left in the years 1996 through 2000, in
p2; and for any workers who left after the year 2000, in p3.

It is also possible to partition a table by RANGE, based on the value of a TIMESTAMP column, using the
UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
 PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)

Range partitioning is particularly useful when one or more of the following conditions is true:

• You want or need to delete “old” data. If you are using the partitioning scheme shown previously
for the employees table, you can simply use ALTER TABLE employees DROP PARTITION
p0; to delete all rows relating to employees who stopped working for the firm prior to 1991. (See
Section 13.1.6, “ALTER TABLE Syntax”, and Section 18.3, “Partition Management”, for more
information.) For a table with a great many rows, this can be much more efficient than running a
DELETE query such as DELETE FROM employees WHERE YEAR(separated) <= 1990;.

• You want to use a column containing date or time values, or containing values arising from some
other series.

• You frequently run queries that depend directly on the column used for partitioning the table. For
example, when executing a query such as EXPLAIN PARTITIONS SELECT COUNT(*) FROM
employees WHERE separated BETWEEN '2000-01-01' AND '2000-12-31' GROUP BY
store_id;, MySQL can quickly determine that only partition p2 needs to be scanned because
the remaining partitions cannot contain any records satisfying the WHERE clause. See Section 18.4,
“Partition Pruning”, for more information about how this is accomplished.

A variant on this type of partitioning is RANGE COLUMNS partitioning. Partitioning by RANGE COLUMNS
makes it possible to employ multiple columns for defining partitioning ranges that apply both to
placement of rows in partitions and for determining the inclusion or exclusion of specific partitions
when performing partition pruning. See Section 18.2.3.1, “RANGE COLUMNS partitioning”, for more
information.

Partitioning schemes based on time intervals. If you wish to implement a partitioning scheme
based on ranges or intervals of time in MySQL 5.7, you have two options:

1. Partition the table by RANGE, and for the partitioning expression, employ a function operating on a
DATE, TIME, or DATETIME column and returning an integer value, as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),

LIST Partitioning

2597

 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

In MySQL 5.7, it is also possible to partition a table by RANGE based on the value of a TIMESTAMP
column, using the UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
 PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

In MySQL 5.7, any other expressions involving TIMESTAMP values are not permitted. (See Bug
#42849.)

Note

It is also possible in MySQL 5.7 to use
UNIX_TIMESTAMP(timestamp_column) as a partitioning expression for
tables that are partitioned by LIST. However, it is usually not practical to do
so.

2. Partition the table by RANGE COLUMNS, using a DATE or DATETIME column as the partitioning
column. For example, the members table could be defined using the joined column directly, as
shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE COLUMNS(joined) (
 PARTITION p0 VALUES LESS THAN ('1960-01-01'),
 PARTITION p1 VALUES LESS THAN ('1970-01-01'),
 PARTITION p2 VALUES LESS THAN ('1980-01-01'),
 PARTITION p3 VALUES LESS THAN ('1990-01-01'),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

Note

The use of partitioning columns employing date or time types other than DATE
or DATETIME is not supported with RANGE COLUMNS.

18.2.2 LIST Partitioning

LIST Partitioning

2598

List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE,
each partition must be explicitly defined. The chief difference between the two types of partitioning is
that, in list partitioning, each partition is defined and selected based on the membership of a column
value in one of a set of value lists, rather than in one of a set of contiguous ranges of values. This is
done by using PARTITION BY LIST(expr) where expr is a column value or an expression based
on a column value and returning an integer value, and then defining each partition by means of a
VALUES IN (value_list), where value_list is a comma-separated list of integers.

Note

In MySQL 5.7, it is possible to match against only a list of integers (and possibly
NULL—see Section 18.2.7, “How MySQL Partitioning Handles NULL”) when
partitioning by LIST.

However, other column types may be used in value lists when employing LIST
COLUMN partitioning, which is described later in this section.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any
particular order. For more detailed syntactical information, see Section 13.1.14, “CREATE TABLE
Syntax”.

For the examples that follow, we assume that the basic definition of the table to be partitioned is
provided by the CREATE TABLE statement shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
);

(This is the same table used as a basis for the examples in Section 18.2.1, “RANGE Partitioning”.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table.

Region Store ID Numbers

North 3, 5, 6, 9, 17

East 1, 2, 10, 11, 19, 20

West 4, 12, 13, 14, 18

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in the
same partition, you could use the CREATE TABLE statement shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LIST(store_id) (
 PARTITION pNorth VALUES IN (3,5,6,9,17),
 PARTITION pEast VALUES IN (1,2,10,11,19,20),

LIST Partitioning

2599

 PARTITION pWest VALUES IN (4,12,13,14,18),
 PARTITION pCentral VALUES IN (7,8,15,16)
);

This makes it easy to add or drop employee records relating to specific regions to or from the table.
For instance, suppose that all stores in the West region are sold to another company. In MySQL
5.7, all rows relating to employees working at stores in that region can be deleted with the query
ALTER TABLE employees TRUNCATE PARTITION pWest, which can be executed much more
efficiently than the equivalent DELETE statement DELETE FROM employees WHERE store_id IN
(4,12,13,14,18);. (Using ALTER TABLE employees DROP PARTITION pWest would also
delete all of these rows, but would also remove the partition pWest from the definition of the table; you
would need to use an ALTER TABLE ... ADD PARTITION statement to restore the table's original
partitioning scheme.)

As with RANGE partitioning, it is possible to combine LIST partitioning with partitioning by hash or key
to produce a composite partitioning (subpartitioning). See Section 18.2.6, “Subpartitioning”.

Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVALUE; all expected values
for the partitioning expression should be covered in PARTITION ... VALUES IN (...) clauses.
An INSERT statement containing an unmatched partitioning column value fails with an error, as shown
in this example:

mysql> CREATE TABLE h2 (
 -> c1 INT,
 -> c2 INT
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (1, 4, 7),
 -> PARTITION p1 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.11 sec)

mysql> INSERT INTO h2 VALUES (3, 5);
ERROR 1525 (HY000): Table has no partition for value 3

When inserting multiple rows using a single INSERT statement the behavior depends on whether the
table uses a transactional storage engine. For an InnoDB table, the statement is considered a single
transaction, so the presence of any unmatched values causes the statement to fail completely, and
no rows are inserted. For a table using a nontransactional storage engine such as MyISAM, any rows
coming before the row containing the unmatched value are inserted, but any coming after it are not.

You can cause this type of error to be ignored by using the IGNORE keyword. If you do so, rows
containing unmatched partitioning column values are not inserted, but any rows with matching values
are inserted, and no errors are reported:

mysql> TRUNCATE h2;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM h2;
Empty set (0.00 sec)

mysql> INSERT IGNORE INTO h2 VALUES (2, 5), (6, 10), (7, 5), (3, 1), (1, 9);
Query OK, 3 rows affected (0.00 sec)
Records: 5 Duplicates: 2 Warnings: 0

mysql> SELECT * FROM h2;
+------+------+
| c1 | c2 |
+------+------+
7	5
1	9
2	5
+------+------+
3 rows in set (0.00 sec)

COLUMNS Partitioning

2600

MySQL 5.7 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning that
enables you to use columns of types other than integer types for partitioning columns, as well as to use
multiple columns as partitioning keys. For more information, see Section 18.2.3.2, “LIST COLUMNS
partitioning”.

18.2.3 COLUMNS Partitioning

The next two sections discuss COLUMNS partitioning, which are variants on RANGE and LIST
partitioning. COLUMNS partitioning enables the use of multiple columns in partitioning keys. All of
these columns are taken into account both for the purpose of placing rows in partitions and for the
determination of which partitions are to be checked for matching rows in partition pruning.

In addition, both RANGE COLUMNS partitioning and LIST COLUMNS partitioning support the use of non-
integer columns for defining value ranges or list members. The permitted data types are shown in the
following list:

• All integer types: TINYINT, SMALLINT, MEDIUMINT, INT (INTEGER), and BIGINT. (This is the
same as with partitioning by RANGE and LIST.)

Other numeric data types (such as DECIMAL or FLOAT) are not supported as partitioning columns.

• DATE and DATETIME.

Columns using other data types relating to dates or times are not supported as partitioning columns.

• The following string types: CHAR, VARCHAR, BINARY, and VARBINARY.

TEXT and BLOB columns are not supported as partitioning columns.

The discussions of RANGE COLUMNS and LIST COLUMNS partitioning in the next two sections assume
that you are already familiar with partitioning based on ranges and lists as supported in MySQL 5.1 and
later; for more information about these, see Section 18.2.1, “RANGE Partitioning”, and Section 18.2.2,
“LIST Partitioning”, respectively.

18.2.3.1 RANGE COLUMNS partitioning

Range columns partitioning is similar to range partitioning, but enables you to define partitions using
ranges based on multiple column values. In addition, you can define the ranges using columns of types
other than integer types.

RANGE COLUMNS partitioning differs significantly from RANGE partitioning in the following ways:

• RANGE COLUMNS does not accept expressions, only names of columns.

• RANGE COLUMNS accepts a list of one or more columns.

RANGE COLUMNS partitions are based on comparisons between tuples (lists of column values) rather
than comparisons between scalar values. Placement of rows in RANGE COLUMNS partitions is also
based on comparisons between tuples; this is discussed further later in this section.

• RANGE COLUMNS partitioning columns are not restricted to integer columns; string, DATE and
DATETIME columns can also be used as partitioning columns. (See Section 18.2.3, “COLUMNS
Partitioning”, for details.)

The basic syntax for creating a table partitioned by RANGE COLUMNS is shown here:

CREATE TABLE table_name
PARTITIONED BY RANGE COLUMNS(column_list) (
 PARTITION partition_name VALUES LESS THAN (value_list)[,
 PARTITION partition_name VALUES LESS THAN (value_list)][,
 ...]

COLUMNS Partitioning

2601

)

column_list:
 column_name[, column_name][, ...]

value_list:
 value[, value][, ...]

Note

Not all CREATE TABLE options that can be used when creating partitioned
tables are shown here. For complete information, see Section 13.1.14,
“CREATE TABLE Syntax”.

In the syntax just shown, column_list is a list of one or more columns (sometimes called a
partitioning column list), and value_list is a list of values (that is, it is a partition definition value list).
A value_list must be supplied for each partition definition, and each value_list must have the
same number of values as the column_list has columns. Generally speaking, if you use N columns
in the COLUMNS clause, then each VALUES LESS THAN clause must also be supplied with a list of N
values.

The elements in the partitioning column list and in the value list defining each partition must occur
in the same order. In addition, each element in the value list must be of the same data type as the
corresponding element in the column list. However, the order of the column names in the partitioning
column list and the value lists does not have to be the same as the order of the table column definitions
in the main part of the CREATE TABLE statement. As with table partitioned by RANGE, you can use
MAXVALUE to represent a value such that any legal value inserted into a given column is always less
than this value. Here is an example of a CREATE TABLE statement that helps to illustrate all of these
points:

mysql> CREATE TABLE rcx (
 -> a INT,
 -> b INT,
 -> c CHAR(3),
 -> d INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,d,c) (
 -> PARTITION p0 VALUES LESS THAN (5,10,'ggg'),
 -> PARTITION p1 VALUES LESS THAN (10,20,'mmmm'),
 -> PARTITION p2 VALUES LESS THAN (15,30,'sss'),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
Query OK, 0 rows affected (0.15 sec)

Table rcx contains the columns a, b, c, d. The partitioning column list supplied to the COLUMNS
clause uses 3 of these columns, in the order a, d, c. Each value list used to define a partition contains
3 values in the same order; that is, each value list tuple has the form (INT, INT, CHAR(3)), which
corresponds to the data types used by columns a, d, and c (in that order).

Placement of rows into partitions is determined by comparing the tuple from a row to be inserted that
matches the column list in the COLUMNS clause with the tuples used in the VALUES LESS THAN
clauses to define partitions of the table. Because we are comparing tuples (that is, lists or sets
of values) rather than scalar values, the semantics of VALUES LESS THAN as used with RANGE
COLUMNS partitions differs somewhat from the case with simple RANGE partitions. In RANGE partitioning,
a row generating an expression value that is equal to a limiting value in a VALUES LESS THAN is
never placed in the corresponding partition; however, when using RANGE COLUMNS partitioning, it is
sometimes possible for a row whose partitioning column list's first element is equal in value to the that
of the first element in a VALUES LESS THAN value list to be placed in the corresponding partition.

Consider the RANGE partitioned table created by this statement:

CREATE TABLE r1 (

COLUMNS Partitioning

2602

 a INT,
 b INT
)
PARTITION BY RANGE (a) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert 3 rows into this table such that the column value for a is 5 for each row, all 3 rows are
stored in partition p1 because the a column value is in each case not less than 5, as we can see by
executing the proper query against the INFORMATION_SCHEMA.PARTITIONS table:

mysql> INSERT INTO r1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'r1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 3 |
+----------------+------------+
2 rows in set (0.00 sec)

Now consider a similar table rc1 that uses RANGE COLUMNS partitioning with both columns a and b
referenced in the COLUMNS clause, created as shown here:

CREATE TABLE rc1 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a, b) (
 PARTITION p0 VALUES LESS THAN (5, 12),
 PARTITION p3 VALUES LESS THAN (MAXVALUE, MAXVALUE)
);

If we insert exactly the same rows into rc1 as we just inserted into r1, the distribution of the rows is
quite different:

mysql> INSERT INTO rc1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rc1';
+--------------+----------------+------------+
| TABLE_SCHEMA | PARTITION_NAME | TABLE_ROWS |
+--------------+----------------+------------+
| p | p0 | 2 |
| p | p1 | 1 |
+--------------+----------------+------------+
2 rows in set (0.00 sec)

This is because we are comparing rows rather than scalar values. We can compare the row values
inserted with the limiting row value from the VALUES THAN LESS THAN clause used to define partition
p0 in table rc1, like this:

mysql> SELECT (5,10) < (5,12), (5,11) < (5,12), (5,12) < (5,12);
+-----------------+-----------------+-----------------+
| (5,10) < (5,12) | (5,11) < (5,12) | (5,12) < (5,12) |
+-----------------+-----------------+-----------------+
| 1 | 1 | 0 |

COLUMNS Partitioning

2603

+-----------------+-----------------+-----------------+
1 row in set (0.00 sec)

The 2 tuples (5,10) and (5,11) evaluate as less than (5,12), so they are stored in partition p0.
Since 5 is not less than 5 and 12 is not less than 12, (5,12) is considered not less than (5,12), and
is stored in partition p1.

The SELECT statement in the preceding example could also have been written using explicit row
constructors, like this:

SELECT ROW(5,10) < ROW(5,12), ROW(5,11) < ROW(5,12), ROW(5,12) < ROW(5,12);

For more information about the use of row constructors in MySQL, see Section 13.2.10.5, “Row
Subqueries”.

For a table partitioned by RANGE COLUMNS using only a single partitioning column, the storing of
rows in partitions is the same as that of an equivalent table that is partitioned by RANGE. The following
CREATE TABLE statement creates a table partitioned by RANGE COLUMNS using 1 partitioning column:

CREATE TABLE rx (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS (a) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert the rows (5,10), (5,11), and (5,12) into this table, we can see that their placement is
the same as it is for the table r we created and populated earlier:

mysql> INSERT INTO rx VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rx';
+--------------+----------------+------------+
| TABLE_SCHEMA | PARTITION_NAME | TABLE_ROWS |
+--------------+----------------+------------+
| p | p0 | 0 |
| p | p1 | 3 |
+--------------+----------------+------------+
2 rows in set (0.00 sec)

It is also possible to create tables partitioned by RANGE COLUMNS where limiting values for one or
more columns are repeated in successive partition definitions. You can do this as long as the tuples of
column values used to define the partitions are strictly increasing. For example, each of the following
CREATE TABLE statements is valid:

CREATE TABLE rc2 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

CREATE TABLE rc3 (
 a INT,

COLUMNS Partitioning

2604

 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (10,35),
 PARTITION p4 VALUES LESS THAN (20,40),
 PARTITION p5 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

The following statement also succeeds, even though it might appear at first glance that it would not,
since the limiting value of column b is 25 for partition p0 and 20 for partition p1, and the limiting value
of column c is 100 for partition p1 and 50 for partition p2:

CREATE TABLE rc4 (
 a INT,
 b INT,
 c INT
)
PARTITION BY RANGE COLUMNS(a,b,c) (
 PARTITION p0 VALUES LESS THAN (0,25,50),
 PARTITION p1 VALUES LESS THAN (10,20,100),
 PARTITION p2 VALUES LESS THAN (10,30,50)
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
);

When designing tables partitioned by RANGE COLUMNS, you can always test successive partition
definitions by comparing the desired tuples using the mysql client, like this:

mysql> SELECT (0,25,50) < (10,20,100), (10,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (10,20,100) | (10,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 1 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

If a CREATE TABLE statement contains partition definitions that are not in strictly increasing order, it
fails with an error, as shown in this example:

mysql> CREATE TABLE rcf (
 -> a INT,
 -> b INT,
 -> c INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,b,c) (
 -> PARTITION p0 VALUES LESS THAN (0,25,50),
 -> PARTITION p1 VALUES LESS THAN (20,20,100),
 -> PARTITION p2 VALUES LESS THAN (10,30,50),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
ERROR 1493 (HY000): VALUES LESS THAN value must be strictly increasing for each partition

When you get such an error, you can deduce which partition definitions are invalid by making “less
than” comparisons between their column lists. In this case, the problem is with the definition of partition
p2 because the tuple used to define it is not less than the tuple used to define partition p3, as shown
here:

mysql> SELECT (0,25,50) < (20,20,100), (20,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (20,20,100) | (20,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 0 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

COLUMNS Partitioning

2605

It is also possible for MAXVALUE to appear for the same column in more than one VALUES LESS THAN
clause when using RANGE COLUMNS. However, the limiting values for individual columns in successive
partition definitions should otherwise be increasing, there should be no more than one partition defined
where MAXVALUE is used as the upper limit for all column values, and this partition definition should
appear last in the list of PARTITION ... VALUES LESS THAN clauses. In addition, you cannot use
MAXVALUE as the limiting value for the first column in more than one partition definition.

As stated previously, it is also possible with RANGE COLUMNS partitioning to use non-integer columns
as partitioning columns. (See Section 18.2.3, “COLUMNS Partitioning”, for a complete listing of these.)
Consider a table named employees (which is not partitioned), created using the following statement:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Using RANGE COLUMNS partitioning, you can create a version of this table that stores each row in one
of four partitions based on the employee's last name, like this:

CREATE TABLE employees_by_lname (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Alternatively, you could cause the employees table as created previously to be partitioned using this
scheme by executing the following ALTER TABLE statement:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Note

Because different character sets and collations have different sort orders,
the character sets and collations in use may effect which partition of a table
partitioned by RANGE COLUMNS a given row is stored in when using string
columns as partitioning columns. In addition, changing the character set or
collation for a given database, table, or column after such a table is created may
cause changes in how rows are distributed. For example, when using a case-
sensitive collation, 'and' sorts before 'Andersen', but when using a collation
that is case insensitive, the reverse is true.

For information about how MySQL handles character sets and collations, see
Section 10.1, “Character Set Support”.

COLUMNS Partitioning

2606

Similarly, you can cause the employees table to be partitioned in such a way that each row is stored
in one of several partitions based on the decade in which the corresponding employee was hired using
the ALTER TABLE statement shown here:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (hired) (
 PARTITION p0 VALUES LESS THAN ('1970-01-01'),
 PARTITION p1 VALUES LESS THAN ('1980-01-01'),
 PARTITION p2 VALUES LESS THAN ('1990-01-01'),
 PARTITION p3 VALUES LESS THAN ('2000-01-01'),
 PARTITION p4 VALUES LESS THAN ('2010-01-01'),
 PARTITION p5 VALUES LESS THAN (MAXVALUE)
);

See Section 13.1.14, “CREATE TABLE Syntax”, for additional information about PARTITION BY
RANGE COLUMNS syntax.

18.2.3.2 LIST COLUMNS partitioning

MySQL 5.7 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning
that enables the use of multiple columns as partition keys, and for columns of data types other than
integer types to be used as partitioning columns; you can use string types, DATE, and DATETIME
columns. (For more information about permitted data types for COLUMNS partitioning columns, see
Section 18.2.3, “COLUMNS Partitioning”.)

Suppose that you have a business that has customers in 12 cities which, for sales and marketing
purposes, you organize into 4 regions of 3 cities each as shown in the following table:

Region Cities

1 Oskarshamn, Högsby, Mönsterås

2 Vimmerby, Hultsfred, Västervik

3 Nässjö, Eksjö, Vetlanda

4 Uppvidinge, Alvesta, Växjo

With LIST COLUMNS partitioning, you can create a table for customer data that assigns a row to any of
4 partitions corresponding to these regions based on the name of the city where a customer resides, as
shown here:

CREATE TABLE customers_1 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(city) (
 PARTITION pRegion_1 VALUES IN('Oskarshamn', 'Högsby', 'Mönsterås'),
 PARTITION pRegion_2 VALUES IN('Vimmerby', 'Hultsfred', 'Västervik'),
 PARTITION pRegion_3 VALUES IN('Nässjö', 'Eksjö', 'Vetlanda'),
 PARTITION pRegion_4 VALUES IN('Uppvidinge', 'Alvesta', 'Växjo')
);

As with partitioning by RANGE COLUMNS, you do not need to use expressions in the COLUMNS() clause
to convert column values into integers. (In fact, the use of expressions other than column names is not
permitted with COLUMNS().)

It is also possible to use DATE and DATETIME columns, as shown in the following example that
uses the same name and columns as the customers_1 table shown previously, but employs LIST
COLUMNS partitioning based on the renewal column to store rows in one of 4 partitions depending on
the week in February 2010 the customer's account is scheduled to renew:

HASH Partitioning

2607

CREATE TABLE customers_2 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES IN('2010-02-01', '2010-02-02', '2010-02-03',
 '2010-02-04', '2010-02-05', '2010-02-06', '2010-02-07'),
 PARTITION pWeek_2 VALUES IN('2010-02-08', '2010-02-09', '2010-02-10',
 '2010-02-11', '2010-02-12', '2010-02-13', '2010-02-14'),
 PARTITION pWeek_3 VALUES IN('2010-02-15', '2010-02-16', '2010-02-17',
 '2010-02-18', '2010-02-19', '2010-02-20', '2010-02-21'),
 PARTITION pWeek_4 VALUES IN('2010-02-22', '2010-02-23', '2010-02-24',
 '2010-02-25', '2010-02-26', '2010-02-27', '2010-02-28')
);

This works, but becomes cumbersome to define and maintain if the number of dates involved grows
very large; in such cases, it is usually more practical to employ RANGE or RANGE COLUMNS partitioning
instead. In this case, since the column we wish to use as the partitioning key is a DATE column, we use
RANGE COLUMNS partitioning, as shown here:

CREATE TABLE customers_3 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY RANGE COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES LESS THAN('2010-02-09'),
 PARTITION pWeek_2 VALUES LESS THAN('2010-02-15'),
 PARTITION pWeek_3 VALUES LESS THAN('2010-02-22'),
 PARTITION pWeek_4 VALUES LESS THAN('2010-03-01')
);

See Section 18.2.3.1, “RANGE COLUMNS partitioning”, for more information.

In addition (as with RANGE COLUMNS partitioning), you can use multiple columns in the COLUMNS()
clause.

See Section 13.1.14, “CREATE TABLE Syntax”, for additional information about PARTITION BY
LIST COLUMNS() syntax.

18.2.4 HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined
number of partitions. With range or list partitioning, you must specify explicitly into which partition a
given column value or set of column values is to be stored; with hash partitioning, MySQL takes care
of this for you, and you need only specify a column value or expression based on a column value to be
hashed and the number of partitions into which the partitioned table is to be divided.

To partition a table using HASH partitioning, it is necessary to append to the CREATE TABLE statement
a PARTITION BY HASH (expr) clause, where expr is an expression that returns an integer. This
can simply be the name of a column whose type is one of MySQL's integer types. In addition, you
most likely want to follow this with PARTITIONS num, where num is a positive integer representing the
number of partitions into which the table is to be divided.

Note

For simplicity, the tables in the examples that follow do not use any keys. You
should be aware that, if a table has any unique keys, every column used in the

HASH Partitioning

2608

partitioning expression for this table must be part of every unique key, including
the primary key. See Section 18.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”, for more information.

The following statement creates a table that uses hashing on the store_id column and is divided into
4 partitions:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(store_id)
PARTITIONS 4;

If you do not include a PARTITIONS clause, the number of partitions defaults to 1.

Using the PARTITIONS keyword without a number following it results in a syntax error.

You can also use an SQL expression that returns an integer for expr. For instance, you might want to
partition based on the year in which an employee was hired. This can be done as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(YEAR(hired))
PARTITIONS 4;

expr must return a nonconstant, nonrandom integer value (in other words, it should be varying
but deterministic), and must not contain any prohibited constructs as described in Section 18.6,
“Restrictions and Limitations on Partitioning”. You should also keep in mind that this expression is
evaluated each time a row is inserted or updated (or possibly deleted); this means that very complex
expressions may give rise to performance issues, particularly when performing operations (such as
batch inserts) that affect a great many rows at one time.

The most efficient hashing function is one which operates upon a single table column and whose value
increases or decreases consistently with the column value, as this allows for “pruning” on ranges of
partitions. That is, the more closely that the expression varies with the value of the column on which it
is based, the more efficiently MySQL can use the expression for hash partitioning.

For example, where date_col is a column of type DATE, then the expression TO_DAYS(date_col)
is said to vary directly with the value of date_col, because for every change in the value
of date_col, the value of the expression changes in a consistent manner. The variance of
the expression YEAR(date_col) with respect to date_col is not quite as direct as that of
TO_DAYS(date_col), because not every possible change in date_col produces an equivalent
change in YEAR(date_col). Even so, YEAR(date_col) is a good candidate for a hashing function,
because it varies directly with a portion of date_col and there is no possible change in date_col
that produces a disproportionate change in YEAR(date_col).

By way of contrast, suppose that you have a column named int_col whose type is INT. Now
consider the expression POW(5-int_col,3) + 6. This would be a poor choice for a hashing function
because a change in the value of int_col is not guaranteed to produce a proportional change in
the value of the expression. Changing the value of int_col by a given amount can produce by

HASH Partitioning

2609

widely different changes in the value of the expression. For example, changing int_col from 5 to 6
produces a change of -1 in the value of the expression, but changing the value of int_col from 6 to
7 produces a change of -7 in the expression value.

In other words, the more closely the graph of the column value versus the value of the expression
follows a straight line as traced by the equation y=cx where c is some nonzero constant, the better the
expression is suited to hashing. This has to do with the fact that the more nonlinear an expression is,
the more uneven the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but
determining which of such expressions are suitable can be quite difficult and time-consuming. For this
reason, the use of hashing expressions involving multiple columns is not particularly recommended.

When PARTITION BY HASH is used, MySQL determines which partition of num partitions to use
based on the modulus of the result of the user function. In other words, for an expression expr, the
partition in which the record is stored is partition number N, where N = MOD(expr, num). Suppose
that table t1 is defined as follows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY HASH(YEAR(col3))
 PARTITIONS 4;

If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is
stored is determined as follows:

MOD(YEAR('2005-09-01'),4)
= MOD(2005,4)
= 1

MySQL 5.7 also supports a variant of HASH partitioning known as linear hashing which employs a more
complex algorithm for determining the placement of new rows inserted into the partitioned table. See
Section 18.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm.

The user function is evaluated each time a record is inserted or updated. It may also—depending on
the circumstances—be evaluated when records are deleted.

Note

If a table to be partitioned has a UNIQUE key, then any columns supplied as
arguments to the HASH user function or to the KEY's column_list must be
part of that key.

18.2.4.1 LINEAR HASH Partitioning

MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a
linear powers-of-two algorithm whereas regular hashing employs the modulus of the hashing function's
value.

Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of
the LINEAR keyword in the PARTITION BY clause, as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LINEAR HASH(YEAR(hired))
PARTITIONS 4;

KEY Partitioning

2610

Given an expression expr, the partition in which the record is stored when linear hashing is used is
partition number N from among num partitions, where N is derived according to the following algorithm:

1. Find the next power of 2 greater than num. We call this value V; it can be calculated as:

V = POWER(2, CEILING(LOG(2, num)))

(Suppose that num is 13. Then LOG(2,13) is 3.7004397181411. CEILING(3.7004397181411)
is 4, and V = POWER(2,4), which is 16.)

2. Set N = F(column_list) & (V - 1).

3. While N >= num:

• Set V = CEIL(V / 2)

• Set N = N & (V - 1)

Suppose that the table t1, using linear hash partitioning and having 6 partitions, is created using this
statement:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR HASH(YEAR(col3))
 PARTITIONS 6;

Now assume that you want to insert two records into t1 having the col3 column values
'2003-04-14' and '1998-10-19'. The partition number for the first of these is determined as
follows:

V = POWER(2, CEILING(LOG(2,6))) = 8
N = YEAR('2003-04-14') & (8 - 1)
 = 2003 & 7
 = 3

(3 >= 6 is FALSE: record stored in partition #3)

The number of the partition where the second record is stored is calculated as shown here:

V = 8
N = YEAR('1998-10-19') & (8-1)
 = 1998 & 7
 = 6

(6 >= 6 is TRUE: additional step required)

N = 6 & CEILING(8 / 2)
 = 6 & 3
 = 2

(2 >= 6 is FALSE: record stored in partition #2)

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of
partitions is made much faster, which can be beneficial when dealing with tables containing extremely
large amounts (terabytes) of data. The disadvantage is that data is less likely to be evenly distributed
between partitions as compared with the distribution obtained using regular hash partitioning.

18.2.5 KEY Partitioning

Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a
user-defined expression, the hashing function for key partitioning is supplied by the MySQL server.
This internal hashing function is based on the same algorithm as PASSWORD().

KEY Partitioning

2611

The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a
table that is partitioned by hash. The major differences are listed here:

• KEY is used rather than HASH.

• KEY takes only a list of zero or more column names. Any columns used as the partitioning key
must comprise part or all of the table's primary key, if the table has one. Where no column name is
specified as the partitioning key, the table's primary key is used, if there is one. For example, the
following CREATE TABLE statement is valid in MySQL 5.7:

CREATE TABLE k1 (
 id INT NOT NULL PRIMARY KEY,
 name VARCHAR(20)
)
PARTITION BY KEY()
PARTITIONS 2;

If there is no primary key but there is a unique key, then the unique key is used for the partitioning
key:

CREATE TABLE k1 (
 id INT NOT NULL,
 name VARCHAR(20),
 UNIQUE KEY (id)
)
PARTITION BY KEY()
PARTITIONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement
would fail.

In both of these cases, the partitioning key is the id column, even though it is not shown
in the output of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the
INFORMATION_SCHEMA.PARTITIONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted
to integer or NULL values. For example, the following CREATE TABLE statement is valid:

CREATE TABLE tm1 (
 s1 CHAR(32) PRIMARY KEY
)
PARTITION BY KEY(s1)
PARTITIONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified. (In
this case, simply using PARTITION BY KEY() would also be valid and have the same effect as
PARTITION BY KEY(s1), since s1 is the table's primary key.)

For additional information about this issue, see Section 18.6, “Restrictions and Limitations on
Partitioning”.

Important

For a key-partitioned table, you cannot execute an ALTER TABLE DROP
PRIMARY KEY, as doing so generates the error ERROR 1466 (HY000):
Field in list of fields for partition function not found
in table.

It is also possible to partition a table by linear key. Here is a simple example:

CREATE TABLE tk (

Subpartitioning

2612

 col1 INT NOT NULL,
 col2 CHAR(5),
 col3 DATE
)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;

Using LINEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the
partition number being derived using a powers-of-two algorithm rather than modulo arithmetic. See
Section 18.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm and its implications.

18.2.6 Subpartitioning

Subpartitioning—also known as composite partitioning—is the further division of each partition in a
partitioned table. Consider the following CREATE TABLE statement:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased))
 SUBPARTITIONS 2 (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

Table ts has 3 RANGE partitions. Each of these partitions—p0, p1, and p2—is further divided into
2 subpartitions. In effect, the entire table is divided into 3 * 2 = 6 partitions. However, due to the
action of the PARTITION BY RANGE clause, the first 2 of these store only those records with a value
less than 1990 in the purchased column.

In MySQL 5.7, it is possible to subpartition tables that are partitioned by RANGE or LIST. Subpartitions
may use either HASH or KEY partitioning. This is also known as composite partitioning.

Note

SUBPARTITION BY HASH and SUBPARTITION BY KEY generally follow
the same syntax rules as PARTITION BY HASH and PARTITION BY KEY,
respectively. An exception to this is that SUBPARTITION BY KEY (unlike
PARTITION BY KEY) does not currently support a default column, so the
column used for this purpose must be specified, even if the table has an explicit
primary key. This is a known issue which we are working to address; see Issues
with subpartitions, for more information and an example.

It is also possible to define subpartitions explicitly using SUBPARTITION clauses to specify options for
individual subpartitions. For example, a more verbose fashion of creating the same table ts as shown
in the previous example would be:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)

Subpartitioning

2613

);

Some syntactical items of note are listed here:

• Each partition must have the same number of subpartitions.

• If you explicitly define any subpartitions using SUBPARTITION on any partition of a partitioned table,
you must define them all. In other words, the following statement will fail:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s2,
 SUBPARTITION s3
)
);

This statement would still fail even if it included a SUBPARTITIONS 2 clause.

• Each SUBPARTITION clause must include (at a minimum) a name for the subpartition. Otherwise,
you may set any desired option for the subpartition or allow it to assume its default setting for that
option.

• Subpartition names must be unique across the entire table. For example, the following CREATE
TABLE statement is valid in MySQL 5.7:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)
);

Subpartitions can be used with especially large tables to distribute data and indexes across many
disks. Suppose that you have 6 disks mounted as /disk0, /disk1, /disk2, and so on. Now consider
the following example:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0
 DATA DIRECTORY = '/disk0/data'
 INDEX DIRECTORY = '/disk0/idx',
 SUBPARTITION s1
 DATA DIRECTORY = '/disk1/data'
 INDEX DIRECTORY = '/disk1/idx'
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2

Subpartitioning

2614

 DATA DIRECTORY = '/disk2/data'
 INDEX DIRECTORY = '/disk2/idx',
 SUBPARTITION s3
 DATA DIRECTORY = '/disk3/data'
 INDEX DIRECTORY = '/disk3/idx'
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4
 DATA DIRECTORY = '/disk4/data'
 INDEX DIRECTORY = '/disk4/idx',
 SUBPARTITION s5
 DATA DIRECTORY = '/disk5/data'
 INDEX DIRECTORY = '/disk5/idx'
)
);

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other
variations are possible; another example might be:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0a
 DATA DIRECTORY = '/disk0'
 INDEX DIRECTORY = '/disk1',
 SUBPARTITION s0b
 DATA DIRECTORY = '/disk2'
 INDEX DIRECTORY = '/disk3'
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s1a
 DATA DIRECTORY = '/disk4/data'
 INDEX DIRECTORY = '/disk4/idx',
 SUBPARTITION s1b
 DATA DIRECTORY = '/disk5/data'
 INDEX DIRECTORY = '/disk5/idx'
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s2a,
 SUBPARTITION s2b
)
);

Here, the storage is as follows:

• Rows with purchased dates from before 1990 take up a vast amount of space, so are split up 4
ways, with a separate disk dedicated to the data and to the indexes for each of the two subpartitions
(s0a and s0b) making up partition p0. In other words:

• The data for subpartition s0a is stored on /disk0.

• The indexes for subpartition s0a are stored on /disk1.

• The data for subpartition s0b is stored on /disk2.

• The indexes for subpartition s0b are stored on /disk3.

• Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as
those from before 1990. These are split between 2 disks (/disk4 and /disk5) rather than 4 disks
as with the legacy records stored in p0:

• Data and indexes belonging to p1's first subpartition (s1a) are stored on /disk4—the data in /
disk4/data, and the indexes in /disk4/idx.

• Data and indexes belonging to p1's second subpartition (s1b) are stored on /disk5—the data in
/disk5/data, and the indexes in /disk5/idx.

How MySQL Partitioning Handles NULL

2615

• Rows reflecting dates from the year 2000 to the present (partition p2) do not take up as much space
as required by either of the two previous ranges. Currently, it is sufficient to store all of these in the
default location.

In future, when the number of purchases for the decade beginning with the year 2000 grows to a
point where the default location no longer provides sufficient space, the corresponding rows can
be moved using an ALTER TABLE ... REORGANIZE PARTITION statement. See Section 18.3,
“Partition Management”, for an explanation of how this can be done.

The DATA DIRECTORY and INDEX DIRECTORY options are not permitted in partition definitions when
the NO_DIR_IN_CREATE server SQL mode is in effect. In MySQL 5.7, these options are also not
permitted when defining subpartitions (Bug #42954).

18.2.7 How MySQL Partitioning Handles NULL

Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether
it is a column value or the value of a user-supplied expression. Even though it is permitted to use
NULL as the value of an expression that must otherwise yield an integer, it is important to keep in mind
that NULL is not a number. MySQL's partitioning implementation treats NULL as being less than any
non-NULL value, just as ORDER BY does.

This means that treatment of NULL varies between partitioning of different types, and may produce
behavior which you do not expect if you are not prepared for it. This being the case, we discuss in
this section how each MySQL partitioning type handles NULL values when determining the partition in
which a row should be stored, and provide examples for each.

Handling of NULL with RANGE partitioning. If you insert a row into a table partitioned by RANGE
such that the column value used to determine the partition is NULL, the row is inserted into the lowest
partition. Consider these two tables in a database named p, created as follows:

mysql> CREATE TABLE t1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (0),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE t2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (10),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.09 sec)

You can see the partitions created by these two CREATE TABLE statements using the following query
against the PARTITIONS table in the INFORMATION_SCHEMA database:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| t1 | p0 | 0 | 0 | 0 |

How MySQL Partitioning Handles NULL

2616

t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	0	0	0
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.00 sec)

(For more information about this table, see Section 20.14, “The INFORMATION_SCHEMA
PARTITIONS Table”.) Now let us populate each of these tables with a single row containing a NULL in
the column used as the partitioning key, and verify that the rows were inserted using a pair of SELECT
statements:

mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

You can see which partitions are used to store the inserted rows by rerunning the previous query
against INFORMATION_SCHEMA.PARTITIONS and inspecting the output:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
t1	p0	1	20	20
t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	1	20	20
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

You can also demonstrate that these rows were stored in the lowest partition of each table by dropping
these partitions, and then re-running the SELECT statements:

mysql> ALTER TABLE t1 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> ALTER TABLE t2 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

How MySQL Partitioning Handles NULL

2617

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTITION, see Section 13.1.6, “ALTER TABLE
Syntax”.)

NULL is also treated in this way for partitioning expressions that use SQL functions. Suppose that we
define a table using a CREATE TABLE statement such as this one:

CREATE TABLE tndate (
 id INT,
 dt DATE
)
PARTITION BY RANGE(YEAR(dt)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

As with other MySQL functions, YEAR(NULL) returns NULL. A row with a dt column value of NULL is
treated as though the partitioning expression evaluated to a value less than any other value, and so is
inserted into partition p0.

Handling of NULL with LIST partitioning. A table that is partitioned by LIST admits NULL values
if and only if one of its partitions is defined using that value-list that contains NULL. The converse of
this is that a table partitioned by LIST which does not explicitly use NULL in a value list rejects rows
resulting in a NULL value for the partitioning expression, as shown in this example:

mysql> CREATE TABLE ts1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts1 VALUES (9, 'mothra');
ERROR 1504 (HY000): Table has no partition for value 9

mysql> INSERT INTO ts1 VALUES (NULL, 'mothra');
ERROR 1504 (HY000): Table has no partition for value NULL

Only rows having a c1 value between 0 and 8 inclusive can be inserted into ts1. NULL falls outside
this range, just like the number 9. We can create tables ts2 and ts3 having value lists containing
NULL, as shown here:

mysql> CREATE TABLE ts2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8),
 -> PARTITION p3 VALUES IN (NULL)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE ts3 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (

How MySQL Partitioning Handles NULL

2618

 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7, NULL),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can (and should) treat NULL just as you would any other
value. For example, both VALUES IN (NULL) and VALUES IN (1, 4, 7, NULL) are valid, as are
VALUES IN (1, NULL, 4, 7), VALUES IN (NULL, 1, 4, 7), and so on. You can insert a row
having NULL for column c1 into each of the tables ts2 and ts3:

mysql> INSERT INTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

By issuing the appropriate query against INFORMATION_SCHEMA.PARTITIONS, you can determine
which partitions were used to store the rows just inserted (we assume, as in the previous examples,
that the partitioned tables were created in the p database):

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 'ts_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
ts2	p0	0	0	0
ts2	p1	0	0	0
ts2	p2	0	0	0
ts2	p3	1	20	20
ts3	p0	0	0	0
ts3	p1	1	20	20
ts3	p2	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

As shown earlier in this section, you can also verify which partitions were used for storing the rows by
deleting these partitions and then performing a SELECT.

Handling of NULL with HASH and KEY partitioning. NULL is handled somewhat differently for
tables partitioned by HASH or KEY. In these cases, any partition expression that yields a NULL value
is treated as though its return value were zero. We can verify this behavior by examining the effects
on the file system of creating a table partitioned by HASH and populating it with a record containing
appropriate values. Suppose that you have a table th (also in the p database) created using the
following statement:

mysql> CREATE TABLE th (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY HASH(c1)
 -> PARTITIONS 2;
Query OK, 0 rows affected (0.00 sec)

The partitions belonging to this table can be viewed using the query shown here:

mysql> SELECT TABLE_NAME,PARTITION_NAME,TABLE_ROWS,AVG_ROW_LENGTH,DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 0 | 0 | 0 |

Partition Management

2619

| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

Note that TABLE_ROWS for each partition is 0. Now insert two rows into th whose c1 column values
are NULL and 0, and verify that these rows were inserted, as shown here:

mysql> INSERT INTO th VALUES (NULL, 'mothra'), (0, 'gigan');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM th;
+------+---------+
| c1 | c2 |
+------+---------+
| NULL | mothra |
+------+---------+
| 0 | gigan |
+------+---------+
2 rows in set (0.01 sec)

Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned
by HASH or KEY, this result is treated for determining the correct partition as 0. Checking the
INFORMATION_SCHEMA.PARTITIONS table once again, we can see that both rows were inserted into
partition p0:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 2 | 20 | 20 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

If you repeat this example using PARTITION BY KEY in place of PARTITION BY HASH in the
definition of the table, you can verify easily that NULL is also treated like 0 for this type of partitioning.

18.3 Partition Management

MySQL 5.7 provides a number of ways to modify partitioned tables. It is possible to add, drop,
redefine, merge, or split existing partitions. All of these actions can be carried out using the partitioning
extensions to the ALTER TABLE statement. There are also ways to obtain information about
partitioned tables and partitions. We discuss these topics in the sections that follow.

• For information about partition management in tables partitioned by RANGE or LIST, see
Section 18.3.1, “Management of RANGE and LIST Partitions”.

• For a discussion of managing HASH and KEY partitions, see Section 18.3.2, “Management of HASH
and KEY Partitions”.

• See Section 18.3.5, “Obtaining Information About Partitions”, for a discussion of mechanisms
provided in MySQL 5.7 for obtaining information about partitioned tables and partitions.

• For a discussion of performing maintenance operations on partitions, see Section 18.3.4,
“Maintenance of Partitions”.

Note

In MySQL 5.7, all partitions of a partitioned table must have the same number of
subpartitions, and it is not possible to change the subpartitioning once the table
has been created.

Management of RANGE and LIST Partitions

2620

To change a table's partitioning scheme, it is necessary only to use the ALTER TABLE statement
with a partition_options clause. This clause has the same syntax as that as used with CREATE
TABLE for creating a partitioned table, and always begins with the keywords PARTITION BY. Suppose
that you have a table partitioned by range using the following CREATE TABLE statement:

CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (2005)
);

To repartition this table so that it is partitioned by key into two partitions using the id column value as
the basis for the key, you can use this statement:

ALTER TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using
CREATE TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;.

ALTER TABLE ... ENGINE = ... changes only the storage engine used by the table, and leaves
the table's partitioning scheme intact. Use ALTER TABLE ... REMOVE PARTITIONING to remove a
table's partitioning. See Section 13.1.6, “ALTER TABLE Syntax”.

Important

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION,
REORGANIZE PARTITION, or COALESCE PARTITION clause can be used in a
given ALTER TABLE statement. If you (for example) wish to drop a partition and
reorganize a table's remaining partitions, you must do so in two separate ALTER
TABLE statements (one using DROP PARTITION and then a second one using
REORGANIZE PARTITIONS).

In MySQL 5.7, it is possible to delete all rows from one or more selected partitions using ALTER
TABLE ... TRUNCATE PARTITION.

18.3.1 Management of RANGE and LIST Partitions

Range and list partitions are very similar with regard to how the adding and dropping of partitions
are handled. For this reason we discuss the management of both sorts of partitioning in this section.
For information about working with tables that are partitioned by hash or key, see Section 18.3.2,
“Management of HASH and KEY Partitions”. Dropping a RANGE or LIST partition is more
straightforward than adding one, so we discuss this first.

Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished
using the ALTER TABLE statement with a DROP PARTITION clause. Here is a very basic example,
which supposes that you have already created a table which is partitioned by range and then populated
with 10 records using the following CREATE TABLE and INSERT statements:

mysql> CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)
 -> PARTITION BY RANGE(YEAR(purchased)) (
 -> PARTITION p0 VALUES LESS THAN (1990),
 -> PARTITION p1 VALUES LESS THAN (1995),
 -> PARTITION p2 VALUES LESS THAN (2000),
 -> PARTITION p3 VALUES LESS THAN (2005)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO tr VALUES
 -> (1, 'desk organiser', '2003-10-15'),
 -> (2, 'CD player', '1993-11-05'),

Management of RANGE and LIST Partitions

2621

 -> (3, 'TV set', '1996-03-10'),
 -> (4, 'bookcase', '1982-01-10'),
 -> (5, 'exercise bike', '2004-05-09'),
 -> (6, 'sofa', '1987-06-05'),
 -> (7, 'popcorn maker', '2001-11-22'),
 -> (8, 'aquarium', '1992-08-04'),
 -> (9, 'study desk', '1984-09-16'),
 -> (10, 'lava lamp', '1998-12-25');
Query OK, 10 rows affected (0.01 sec)

You can see which items should have been inserted into partition p2 as shown here:

mysql> SELECT * FROM tr
 -> WHERE purchased BETWEEN '1995-01-01' AND '1999-12-31';
+------+-----------+------------+
| id | name | purchased |
+------+-----------+------------+
| 3 | TV set | 1996-03-10 |
| 10 | lava lamp | 1998-12-25 |
+------+-----------+------------+
2 rows in set (0.00 sec)

To drop the partition named p2, execute the following command:

mysql> ALTER TABLE tr DROP PARTITION p2;
Query OK, 0 rows affected (0.03 sec)

It is very important to remember that, when you drop a partition, you also delete all the data that was
stored in that partition. You can see that this is the case by re-running the previous SELECT query:

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '1999-12-31';
Empty set (0.00 sec)

Because of this, you must have the DROP privilege for a table before you can execute ALTER
TABLE ... DROP PARTITION on that table.

If you wish to drop all data from all partitions while preserving the table definition and its partitioning
scheme, use the TRUNCATE TABLE statement. (See Section 13.1.29, “TRUNCATE TABLE Syntax”.)

If you intend to change the partitioning of a table without losing data, use ALTER TABLE ...
REORGANIZE PARTITION instead. See below or in Section 13.1.6, “ALTER TABLE Syntax”, for
information about REORGANIZE PARTITION.

If you now execute a SHOW CREATE TABLE statement, you can see how the partitioning makeup of
the table has been changed:

mysql> SHOW CREATE TABLE tr\G
*************************** 1. row ***************************
 Table: tr
Create Table: CREATE TABLE `tr` (
 `id` int(11) default NULL,
 `name` varchar(50) default NULL,
 `purchased` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM
)
1 row in set (0.01 sec)

When you insert new rows into the changed table with purchased column values between
'1995-01-01' and '2004-12-31' inclusive, those rows will be stored in partition p3. You can verify
this as follows:

Management of RANGE and LIST Partitions

2622

mysql> INSERT INTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
+------+----------------+------------+
| id | name | purchased |
+------+----------------+------------+
11	pencil holder	1995-07-12
1	desk organiser	2003-10-15
5	exercise bike	2004-05-09
7	popcorn maker	2001-11-22
+------+----------------+------------+
4 rows in set (0.00 sec)

mysql> ALTER TABLE tr DROP PARTITION p3;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
Empty set (0.00 sec)

Note that the number of rows dropped from the table as a result of ALTER TABLE ... DROP
PARTITION is not reported by the server as it would be by the equivalent DELETE query.

Dropping LIST partitions uses exactly the same ALTER TABLE ... DROP PARTITION syntax as
used for dropping RANGE partitions. However, there is one important difference in the effect this has
on your use of the table afterward: You can no longer insert into the table any rows having any of the
values that were included in the value list defining the deleted partition. (See Section 18.2.2, “LIST
Partitioning”, for an example.)

To add a new range or list partition to a previously partitioned table, use the ALTER TABLE ... ADD
PARTITION statement. For tables which are partitioned by RANGE, this can be used to add a new
range to the end of the list of existing partitions. Suppose that you have a partitioned table containing
membership data for your organization, which is defined as follows:

CREATE TABLE members (
 id INT,
 fname VARCHAR(25),
 lname VARCHAR(25),
 dob DATE
)
PARTITION BY RANGE(YEAR(dob)) (
 PARTITION p0 VALUES LESS THAN (1970),
 PARTITION p1 VALUES LESS THAN (1980),
 PARTITION p2 VALUES LESS THAN (1990)
);

Suppose further that the minimum age for members is 16. As the calendar approaches the end of
2005, you realize that you will soon be admitting members who were born in 1990 (and later in years
to come). You can modify the members table to accommodate new members born in the years 1990 to
1999 as shown here:

ALTER TABLE members ADD PARTITION (PARTITION p3 VALUES LESS THAN (2000));

With tables that are partitioned by range, you can use ADD PARTITION to add new partitions to the
high end of the partitions list only. Trying to add a new partition in this manner between or before
existing partitions results in an error as shown here:

mysql> ALTER TABLE members
 > ADD PARTITION (
 > PARTITION n VALUES LESS THAN (1960));
ERROR 1463 (HY000): VALUES LESS THAN value must be strictly »
 increasing for each partition

Management of RANGE and LIST Partitions

2623

You can work around this problem by reorganizing the first partition into two new ones that split the
range between them, like this:

ALTER TABLE members
 REORGANIZE PARTITION p0 INTO (
 PARTITION n0 VALUES LESS THAN (1960),
 PARTITION n1 VALUES LESS THAN (1970)
);

Using SHOW CREATE TABLE you can see that the ALTER TABLE statement has had the desired
effect:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) DEFAULT NULL,
 `fname` varchar(25) DEFAULT NULL,
 `lname` varchar(25) DEFAULT NULL,
 `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1960) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2000) ENGINE = InnoDB) */
1 row in set (0.00 sec)

See also Section 13.1.6.1, “ALTER TABLE Partition Operations”.

You can also use ALTER TABLE ... ADD PARTITION to add new partitions to a table that is
partitioned by LIST. Suppose a table tt is defined using the following CREATE TABLE statement:

CREATE TABLE tt (
 id INT,
 data INT
)
PARTITION BY LIST(data) (
 PARTITION p0 VALUES IN (5, 10, 15),
 PARTITION p1 VALUES IN (6, 12, 18)
);

You can add a new partition in which to store rows having the data column values 7, 14, and 21 as
shown:

ALTER TABLE tt ADD PARTITION (PARTITION p2 VALUES IN (7, 14, 21));

You cannot add a new LIST partition encompassing any values that are already included in the value
list of an existing partition. If you attempt to do so, an error will result:

mysql> ALTER TABLE tt ADD PARTITION
 > (PARTITION np VALUES IN (4, 8, 12));
ERROR 1465 (HY000): Multiple definition of same constant »
 in list partitioning

Because any rows with the data column value 12 have already been assigned to partition p1, you
cannot create a new partition on table tt that includes 12 in its value list. To accomplish this, you could
drop p1, and add np and then a new p1 with a modified definition. However, as discussed earlier, this
would result in the loss of all data stored in p1—and it is often the case that this is not what you really
want to do. Another solution might appear to be to make a copy of the table with the new partitioning
and to copy the data into it using CREATE TABLE ... SELECT ..., then drop the old table and

Management of RANGE and LIST Partitions

2624

rename the new one, but this could be very time-consuming when dealing with a large amounts of
data. This also might not be feasible in situations where high availability is a requirement.

You can add multiple partitions in a single ALTER TABLE ... ADD PARTITION statement as shown
here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 hired DATE NOT NULL
)
PARTITION BY RANGE(YEAR(hired)) (
 PARTITION p1 VALUES LESS THAN (1991),
 PARTITION p2 VALUES LESS THAN (1996),
 PARTITION p3 VALUES LESS THAN (2001),
 PARTITION p4 VALUES LESS THAN (2005)
);

ALTER TABLE employees ADD PARTITION (
 PARTITION p5 VALUES LESS THAN (2010),
 PARTITION p6 VALUES LESS THAN MAXVALUE
);

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing
data. Let us look first at a couple of simple examples involving RANGE partitioning. Recall the members
table which is now defined as shown here:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) default NULL,
 `fname` varchar(25) default NULL,
 `lname` varchar(25) default NULL,
 `dob` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(dob)) (
 PARTITION p0 VALUES LESS THAN (1970) ENGINE = MyISAM,
 PARTITION p1 VALUES LESS THAN (1980) ENGINE = MyISAM,
 PARTITION p2 VALUES LESS THAN (1990) ENGINE = MyISAM.
 PARTITION p3 VALUES LESS THAN (2000) ENGINE = MyISAM
)

Suppose that you would like to move all rows representing members born before 1960 into a separate
partition. As we have already seen, this cannot be done using ALTER TABLE ... ADD PARTITION.
However, you can use another partition-related extension to ALTER TABLE to accomplish this:

ALTER TABLE members REORGANIZE PARTITION p0 INTO (
 PARTITION s0 VALUES LESS THAN (1960),
 PARTITION s1 VALUES LESS THAN (1970)
);

In effect, this command splits partition p0 into two new partitions s0 and s1. It also moves the data that
was stored in p0 into the new partitions according to the rules embodied in the two PARTITION ...
VALUES ... clauses, so that s0 contains only those records for which YEAR(dob) is less than 1960
and s1 contains those rows in which YEAR(dob) is greater than or equal to 1960 but less than 1970.

A REORGANIZE PARTITION clause may also be used for merging adjacent partitions. You can return
the members table to its previous partitioning as shown here:

ALTER TABLE members REORGANIZE PARTITION s0,s1 INTO (
 PARTITION p0 VALUES LESS THAN (1970)
);

Management of RANGE and LIST Partitions

2625

No data is lost in splitting or merging partitions using REORGANIZE PARTITION. In executing the
above statement, MySQL moves all of the records that were stored in partitions s0 and s1 into partition
p0.

The general syntax for REORGANIZE PARTITION is shown here:

ALTER TABLE tbl_name
 REORGANIZE PARTITION partition_list
 INTO (partition_definitions);

Here, tbl_name is the name of the partitioned table, and partition_list is a comma-separated
list of names of one or more existing partitions to be changed. partition_definitions
is a comma-separated list of new partition definitions, which follow the same rules as for the
partition_definitions list used in CREATE TABLE (see Section 13.1.14, “CREATE TABLE
Syntax”). It should be noted that you are not limited to merging several partitions into one, or to splitting
one partition into many, when using REORGANIZE PARTITION. For example, you can reorganize all
four partitions of the members table into two, as follows:

ALTER TABLE members REORGANIZE PARTITION p0,p1,p2,p3 INTO (
 PARTITION m0 VALUES LESS THAN (1980),
 PARTITION m1 VALUES LESS THAN (2000)
);

You can also use REORGANIZE PARTITION with tables that are partitioned by LIST. Let us return
to the problem of adding a new partition to the list-partitioned tt table and failing because the new
partition had a value that was already present in the value-list of one of the existing partitions. We can
handle this by adding a partition that contains only nonconflicting values, and then reorganizing the
new partition and the existing one so that the value which was stored in the existing one is now moved
to the new one:

ALTER TABLE tt ADD PARTITION (PARTITION np VALUES IN (4, 8));
ALTER TABLE tt REORGANIZE PARTITION p1,np INTO (
 PARTITION p1 VALUES IN (6, 18),
 PARTITION np VALUES in (4, 8, 12)
);

Here are some key points to keep in mind when using ALTER TABLE ... REORGANIZE PARTITION
to repartition tables that are partitioned by RANGE or LIST:

• The PARTITION clauses used to determine the new partitioning scheme are subject to the same
rules as those used with a CREATE TABLE statement.

Most importantly, you should remember that the new partitioning scheme cannot have any
overlapping ranges (applies to tables partitioned by RANGE) or sets of values (when reorganizing
tables partitioned by LIST).

• The combination of partitions in the partition_definitions list should account for the same
range or set of values overall as the combined partitions named in the partition_list.

For instance, in the members table used as an example in this section, partitions p1 and p2 together
cover the years 1980 through 1999. Therefore, any reorganization of these two partitions should
cover the same range of years overall.

• For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip over
range partitions.

For instance, you could not reorganize the members table used as an example in this section using a
statement beginning with ALTER TABLE members REORGANIZE PARTITION p0,p2 INTO ...
because p0 covers the years prior to 1970 and p2 the years from 1990 through 1999 inclusive, and
thus the two are not adjacent partitions.

Management of HASH and KEY Partitions

2626

• You cannot use REORGANIZE PARTITION to change the table's partitioning type; that is, you cannot
(for example) change RANGE partitions to HASH partitions or vice versa. You also cannot use this
command to change the partitioning expression or column. To accomplish either of these tasks
without dropping and re-creating the table, you can use ALTER TABLE ... PARTITION BY
For example:

ALTER TABLE members
 PARTITION BY HASH(YEAR(dob))
 PARTITIONS 8;

18.3.2 Management of HASH and KEY Partitions

Tables which are partitioned by hash or by key are very similar to one another with regard to making
changes in a partitioning setup, and both differ in a number of ways from tables which have been
partitioned by range or list. For that reason, this section addresses the modification of tables partitioned
by hash or by key only. For a discussion of adding and dropping of partitions of tables that are
partitioned by range or list, see Section 18.3.1, “Management of RANGE and LIST Partitions”.

You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that
you can from tables that are partitioned by RANGE or LIST. However, you can merge HASH or KEY
partitions using the ALTER TABLE ... COALESCE PARTITION statement. Suppose that you have
a table containing data about clients, which is divided into twelve partitions. The clients table is
defined as shown here:

CREATE TABLE clients (
 id INT,
 fname VARCHAR(30),
 lname VARCHAR(30),
 signed DATE
)
PARTITION BY HASH(MONTH(signed))
PARTITIONS 12;

To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE
command:

mysql> ALTER TABLE clients COALESCE PARTITION 4;
Query OK, 0 rows affected (0.02 sec)

COALESCE works equally well with tables that are partitioned by HASH, KEY, LINEAR HASH, or LINEAR
KEY. Here is an example similar to the previous one, differing only in that the table is partitioned by
LINEAR KEY:

mysql> CREATE TABLE clients_lk (
 -> id INT,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30),
 -> signed DATE
 ->)
 -> PARTITION BY LINEAR KEY(signed)
 -> PARTITIONS 12;
Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE clients_lk COALESCE PARTITION 4;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

The number following COALESCE PARTITION is the number of partitions to merge into the remainder
—in other words, it is the number of partitions to remove from the table.

If you attempt to remove more partitions than the table has, the result is an error like the one shown:

Exchanging Partitions and Subpartitions with Tables

2627

mysql> ALTER TABLE clients COALESCE PARTITION 18;
ERROR 1478 (HY000): Cannot remove all partitions, use DROP TABLE instead

To increase the number of partitions for the clients table from 12 to 18. use ALTER TABLE ...
ADD PARTITION as shown here:

ALTER TABLE clients ADD PARTITION PARTITIONS 6;

18.3.3 Exchanging Partitions and Subpartitions with Tables

In MySQL 5.7, it is possible to exchange a table partition or subpartition with a table using ALTER
TABLE pt EXCHANGE PARTITION p WITH TABLE nt, where pt is the partitioned table and p
is the partition or subpartition of pt to be exchanged with unpartitioned table nt, provided that the
following statements are true:

1. Table nt is not itself partitioned.

2. Table nt is not a temporary table.

3. The structures of tables pt and nt are otherwise identical.

4. Table nt contains no foreign key references, and no other table has any foreign keys that refer to
nt.

5. There are no rows in nt that lie outside the boundaries of the partition definition for p. This
condition does not apply if the WITHOUT VALIDATION option is used. The [{WITH|WITHOUT}
VALIDATION] option was added in MySQL 5.7.5.

In addition to the ALTER, INSERT, and CREATE privileges usually required for ALTER TABLE
statements, you must have the DROP privilege to perform ALTER TABLE ... EXCHANGE
PARTITION.

You should also be aware of the following effects of ALTER TABLE ... EXCHANGE PARTITION:

• Executing ALTER TABLE ... EXCHANGE PARTITION does not invoke any triggers on either the
partitioned table or the table to be exchanged.

• Any AUTO_INCREMENT columns in the exchanged table are reset.

• The IGNORE keyword has no effect when used with ALTER TABLE ... EXCHANGE PARTITION.

The syntax of the ALTER TABLE ... EXCHANGE PARTITION statement is shown here, where pt
is the partitioned table, p is the partition or subpartition to be exchanged, and nt is the nonpartitioned
table to be exchanged with p:

ALTER TABLE pt
 EXCHANGE PARTITION p
 WITH TABLE nt;

Optionally, you can append a WITH VALIDATION or WITHOUT VALIDATION clause. When WITHOUT
VALIDATION is specified, the ALTER TABLE ... EXCHANGE PARTITION operation does not
perform row-by-row validation when exchanging a partition a nonpartitioned table, allowing database
administrators to assume responsibility for ensuring that rows are within the boundaries of the partition
definition. WITH VALIDATION is the default behavior and need not be specified explicitly. The
[{WITH|WITHOUT} VALIDATION] option was added in MySQL 5.7.5.

One and only one partition or subpartition may be exchanged with one and only one nonpartitioned
table in a single ALTER TABLE EXCHANGE PARTITION statement. To exchange multiple partitions
or subpartitions, use multiple ALTER TABLE EXCHANGE PARTITION statements. EXCHANGE

Exchanging Partitions and Subpartitions with Tables

2628

PARTITION may not be combined with other ALTER TABLE options. The partitioning and (if
applicable) subpartitioning used by the partitioned table may be of any type or types supported in
MySQL 5.7.

Exchanging a Partition with a Nonpartitioned Table

Suppose that a partitioned table e has been created and populated using the following SQL
statements:

CREATE TABLE e (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
)
 PARTITION BY RANGE (id) (
 PARTITION p0 VALUES LESS THAN (50),
 PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (150),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

INSERT INTO e VALUES
 (1669, "Jim", "Smith"),
 (337, "Mary", "Jones"),
 (16, "Frank", "White"),
 (2005, "Linda", "Black");

Now we create a nonpartitioned copy of e named e2. This can be done using the mysql client as
shown here:

mysql> CREATE TABLE e2 LIKE e;
Query OK, 0 rows affected (1.34 sec)

mysql> ALTER TABLE e2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.90 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can see which partitions in table e contain rows by querying the
INFORMATION_SCHEMA.PARTITIONS table, like this:

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

Note

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column
of the INFORMATION_SCHEMA.PARTITIONS table is only an estimated value
used in SQL optimization, and is not always exact.

To exchange partition p0 in table e with table e2, you can use the ALTER TABLE statement shown
here:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)

Exchanging Partitions and Subpartitions with Tables

2629

More precisely, the statement just issued causes any rows found in the partition to be swapped
with those found in the table. You can observe how this has happened by querying the
INFORMATION_SCHEMA.PARTITIONS table, as before. The table row that was previously found in
partition p0 is no longer present:

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	0
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

If you query table e2, you can see that the “missing” row can now be found there:

mysql> SELECT * FROM e2;
+----+-------+-------+
| id | fname | lname |
+----+-------+-------+
| 16 | Frank | White |
+----+-------+-------+
1 row in set (0.00 sec)

The table to be exchanged with the partition does not necessarily have to be empty. To demonstrate
this, we first insert a new row into table e, making sure that this row is stored in partition p0 by
choosing an id column value that is less than 50, and verifying this afterwards by querying the
PARTITIONS table:

mysql> INSERT INTO e VALUES (41, "Michael", "Green");
Query OK, 1 row affected (0.05 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

Now we once again exchange partition p0 with table e2 using the same ALTER TABLE statement as
previously:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)

The output of the following queries shows that the table row that was stored in partition p0 and the
table row that was stored in table e2, prior to issuing the ALTER TABLE statement, have now switched
places:

mysql> SELECT * FROM e;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
| 16 | Frank | White |

Exchanging Partitions and Subpartitions with Tables

2630

1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
4 rows in set (0.00 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

mysql> SELECT * FROM e2;
+----+---------+-------+
| id | fname | lname |
+----+---------+-------+
| 41 | Michael | Green |
+----+---------+-------+
1 row in set (0.00 sec)

Nonmatching Rows

You should keep in mind that any rows found in the nonpartitioned table prior to issuing the ALTER
TABLE ... EXCHANGE PARTITION statement must meet the conditions required for them to be
stored in the target partition; otherwise, the statement fails. To see how this occurs, first insert a row
into e2 that is outside the boundaries of the partition definition for partition p0 of table e. For example,
insert a row with an id column value that is too large; then, try to exchange the table with the partition
again:

mysql> INSERT INTO e2 VALUES (51, "Ellen", "McDonald");
Query OK, 1 row affected (0.08 sec)

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition

The IGNORE keyword is accepted, but has no effect when used with EXCHANGE PARTITION, as
shown here:

mysql> ALTER IGNORE TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition

Only the WITHOUT VALIDATION option would permit this operation to succeed:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2 WITHOUT VALIDATION;
Query OK, 0 rows affected (0.02 sec)

When a partition is exchanged with a table that contains rows that do not match the partition definition,
it is the responsibility of the database administrator to fix the non-matching rows, which can be
performed using REPAIR TABLE or ALTER TABLE ... REPAIR PARTITION.

Exchanging Partitions Without Row-By-Row Validation

To avoid time consuming validation when exchanging a partition with a table that has many rows, it is
possible to skip the row-by-row validation step by appending WITHOUT VALIDATION to the ALTER
TABLE ... EXCHANGE PARTITION statement.

The following example compares the difference between execution times when exchanging a partition
with a nonpartitioned table, with and without validation. The partitioned table (table e) contains two

Exchanging Partitions and Subpartitions with Tables

2631

partitions of 1 million rows each. The rows in p0 of table e are removed and p0 is exchanged with
a nonpartitioned table of 1 million rows. The WITH VALIDATION operation takes 0.74 seconds. By
comparison, the WITHOUT VALIDATION operation takes 0.01 seconds.

Create a partitioned table with 1 million rows in each partition

CREATE TABLE e (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
)
 PARTITION BY RANGE (id) (
 PARTITION p0 VALUES LESS THAN (1000001),
 PARTITION p1 VALUES LESS THAN (2000001),
);

mysql> SELECT COUNT(*) FROM e;
| COUNT(*) |
+----------+
| 2000000 |
+----------+
1 row in set (0.27 sec)

View the rows in each partition

SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+-------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+-------------+
| p0 | 1000000 |
| p1 | 1000000 |
+----------------+-------------+
2 rows in set (0.00 sec)

Create a nonpartitioned table of the same structure and populate it with 1 million rows

CREATE TABLE e2 (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
);

mysql> SELECT COUNT(*) FROM e2;
+----------+
| COUNT(*) |
+----------+
| 1000000 |
+----------+
1 row in set (0.24 sec)

Create another nonpartitioned table of the same structure and populate it with 1 million rows

CREATE TABLE e3 (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
);

mysql> SELECT COUNT(*) FROM e3;
+----------+
| COUNT(*) |
+----------+
| 1000000 |
+----------+
1 row in set (0.25 sec)

Drop the rows from p0 of table e

mysql> DELETE FROM e WHERE id < 1000001;
Query OK, 1000000 rows affected (5.55 sec)

Exchanging Partitions and Subpartitions with Tables

2632

Confirm that there are no rows in partition p0

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

Exchange partition p0 of table e with the table e2 'WITH VALIDATION'

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2 WITH VALIDATION;
Query OK, 0 rows affected (0.74 sec)

Confirm that the partition was exchanged with table e2

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1000000 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

Once again, drop the rows from p0 of table e

mysql> DELETE FROM e WHERE id < 1000001;
Query OK, 1000000 rows affected (5.55 sec)

Confirm that there are no rows in partition p0

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

Exchange partition p0 of table e with the table e3 'WITHOUT VALIDATION'

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e3 WITHOUT VALIDATION;
Query OK, 0 rows affected (0.01 sec)

Confirm that the partition was exchanged with table e3

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1000000 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

If a partition is exchanged with a table that contains rows that do not match the partition definition, it is
the responsibility of the database administrator to fix the non-matching rows, which can be performed
using REPAIR TABLE or ALTER TABLE ... REPAIR PARTITION.

Exchanging a Subpartition with a Nonpartitioned Table

You can also exchange a subpartition of a subpartitioned table (see Section 18.2.6, “Subpartitioning”)
with a nonpartitioned table using an ALTER TABLE ... EXCHANGE PARTITION statement. In the
following example, we first create a table es that is partitioned by RANGE and subpartitioned by KEY,

Exchanging Partitions and Subpartitions with Tables

2633

populate this table as we did table e, and then create an empty, nonpartitioned copy es2 of the table,
as shown here:

mysql> CREATE TABLE es (
 -> id INT NOT NULL,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30)
 ->)
 -> PARTITION BY RANGE (id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (50),
 -> PARTITION p1 VALUES LESS THAN (100),
 -> PARTITION p2 VALUES LESS THAN (150),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (2.76 sec)

mysql> INSERT INTO es VALUES
 -> (1669, "Jim", "Smith"),
 -> (337, "Mary", "Jones"),
 -> (16, "Frank", "White"),
 -> (2005, "Linda", "Black");
Query OK, 4 rows affected (0.04 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> CREATE TABLE es2 LIKE es;
Query OK, 0 rows affected (1.27 sec)

mysql> ALTER TABLE es2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.70 sec)
Records: 0 Duplicates: 0 Warnings: 0

Although we did not explicitly name any of the subpartitions when creating table es, we can obtain
generated names for these by including the SUBPARTITION_NAME of the PARTITIONS table from
INFORMATION_SCHEMA when selecting from that table, as shown here:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
p0	p0sp0	1
p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0
p3	p3sp0	3
p3	p3sp1	0
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

The following ALTER TABLE statement exchanges subpartition p3sp0 table es with the nonpartitioned
table es2:

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es2;
Query OK, 0 rows affected (0.29 sec)

You can verify that the rows were exchanged by issuing the following queries:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+

Maintenance of Partitions

2634

| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
p0	p0sp0	1
p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0
p3	p3sp0	0
p3	p3sp1	0
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM es2;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
3 rows in set (0.00 sec)

If a table is subpartitioned, you can exchange only a subpartition of the table—not an entire partition—
with an unpartitioned table, as shown here:

mysql> ALTER TABLE es EXCHANGE PARTITION p3 WITH TABLE es2;
ERROR 1704 (HY000): Subpartitioned table, use subpartition instead of partition

The comparison of table structures used by MySQL is very strict. The number, order, names, and types
of columns and indexes of the partitioned table and the nonpartitioned table must match exactly. In
addition, both tables must use the same storage engine:

mysql> CREATE TABLE es3 LIKE e;
Query OK, 0 rows affected (1.31 sec)

mysql> ALTER TABLE es3 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.53 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE es3\G
*************************** 1. row ***************************
 Table: es3
Create Table: CREATE TABLE `es3` (
 `id` int(11) NOT NULL,
 `fname` varchar(30) DEFAULT NULL,
 `lname` varchar(30) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

mysql> ALTER TABLE es3 ENGINE = MyISAM;
Query OK, 0 rows affected (0.15 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es3;
ERROR 1497 (HY000): The mix of handlers in the partitions is not allowed in this version of MySQL

18.3.4 Maintenance of Partitions

A number of table and partition maintenance tasks can be carried out using SQL statements intended
for such purposes on partitioned tables in MySQL 5.7.

Table maintenance of partitioned tables can be accomplished using the statements CHECK TABLE,
OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE, which are supported for partitioned tables.

You can use a number of extensions to ALTER TABLE for performing operations of this type on one or
more partitions directly, as described in the following list:

Maintenance of Partitions

2635

• Rebuilding partitions. Rebuilds the partition; this has the same effect as dropping all records
stored in the partition, then reinserting them. This can be useful for purposes of defragmentation.

Example:

ALTER TABLE t1 REBUILD PARTITION p0, p1;

• Optimizing partitions. If you have deleted a large number of rows from a partition or if you have
made many changes to a partitioned table with variable-length rows (that is, having VARCHAR, BLOB,
or TEXT columns), you can use ALTER TABLE ... OPTIMIZE PARTITION to reclaim any unused
space and to defragment the partition data file.

Example:

ALTER TABLE t1 OPTIMIZE PARTITION p0, p1;

Using OPTIMIZE PARTITION on a given partition is equivalent to running CHECK PARTITION,
ANALYZE PARTITION, and REPAIR PARTITION on that partition.

Some MySQL storage engines, including InnoDB, do not support per-partition optimization; in
these cases, ALTER TABLE ... OPTIMIZE PARTITION analyzes and rebuilds the entire table,
and causes an appropriate warning to be issued. (Bug #11751825, Bug #42822) Use ALTER
TABLE ... REBUILD PARTITION and ALTER TABLE ... ANALYZE PARTITION instead, to
avoid this issue.

• Analyzing partitions. This reads and stores the key distributions for partitions.

Example:

ALTER TABLE t1 ANALYZE PARTITION p3;

• Repairing partitions. This repairs corrupted partitions.

Example:

ALTER TABLE t1 REPAIR PARTITION p0,p1;

Normally, REPAIR PARTITION fails when the partition contains duplicate key errors. In MySQL
5.7.2 and later, you can use ALTER IGNORE TABLE with this option, in which case all rows that
cannot be moved due to the presence of duplicate keys are removed from the partition (Bug
#16900947).

• Checking partitions. You can check partitions for errors in much the same way that you can use
CHECK TABLE with nonpartitioned tables.

Example:

ALTER TABLE trb3 CHECK PARTITION p1;

This command will tell you if the data or indexes in partition p1 of table t1 are corrupted. If this is the
case, use ALTER TABLE ... REPAIR PARTITION to repair the partition.

Normally, CHECK PARTITION fails when the partition contains duplicate key errors. In MySQL 5.7.2
and later, you can use ALTER IGNORE TABLE with this option, in which case the statement returns
the contents of each row in the partition where a duplicate key violation is found. Note that only the
values for the columns in the partitioning expression for the table are reported. (Bug #16900947)

Each of the statements in the list just shown also supports the keyword ALL in place of the list of
partition names. Using ALL causes the statement to act on all partitions in the table.

Obtaining Information About Partitions

2636

The use of mysqlcheck and myisamchk is not supported with partitioned tables.

In MySQL 5.7, you can also truncate partitions using ALTER TABLE ... TRUNCATE PARTITION.
This statement can be used to delete all rows from one or more partitions in much the same way that
TRUNCATE TABLE deletes all rows from a table.

ALTER TABLE ... TRUNCATE PARTITION ALL truncates all partitions in the table.

Prior to MySQL 5.7.2, ANALYZE, CHECK, OPTIMIZE, REBUILD, REPAIR, and TRUNCATE operations
were not permitted on subpartitions (Bug #14028340, Bug #65184).

18.3.5 Obtaining Information About Partitions

This section discusses obtaining information about existing partitions, which can be done in a number
of ways. Methods of obtaining such information include the following:

• Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a
partitioned table.

• Using the SHOW TABLE STATUS statement to determine whether a table is partitioned.

• Querying the INFORMATION_SCHEMA.PARTITIONS table.

• Using the statement EXPLAIN PARTITIONS SELECT to see which partitions are used by a given
SELECT.

As discussed elsewhere in this chapter, SHOW CREATE TABLE includes in its output the PARTITION
BY clause used to create a partitioned table. For example:

mysql> SHOW CREATE TABLE trb3\G
*************************** 1. row ***************************
 Table: trb3
Create Table: CREATE TABLE `trb3` (
 `id` int(11) default NULL,
 `name` varchar(50) default NULL,
 `purchased` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = MyISAM,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM
)
1 row in set (0.00 sec)

The output from SHOW TABLE STATUS for partitioned tables is the same as that for nonpartitioned
tables, except that the Create_options column contains the string partitioned. The
Engine column contains the name of the storage engine used by all partitions of the table. (See
Section 13.7.5.36, “SHOW TABLE STATUS Syntax”, for more information about this statement.)

You can also obtain information about partitions from INFORMATION_SCHEMA, which contains a
PARTITIONS table. See Section 20.14, “The INFORMATION_SCHEMA PARTITIONS Table”.

It is possible to determine which partitions of a partitioned table are involved in a given SELECT query
using EXPLAIN PARTITIONS. The PARTITIONS keyword adds a partitions column to the output
of EXPLAIN listing the partitions from which records would be matched by the query.

Suppose that you have a table trb1 created and populated as follows:

CREATE TABLE trb1 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(id)
 (
 PARTITION p0 VALUES LESS THAN (3),
 PARTITION p1 VALUES LESS THAN (7),

Obtaining Information About Partitions

2637

 PARTITION p2 VALUES LESS THAN (9),
 PARTITION p3 VALUES LESS THAN (11)
);

INSERT INTO trb1 VALUES
 (1, 'desk organiser', '2003-10-15'),
 (2, 'CD player', '1993-11-05'),
 (3, 'TV set', '1996-03-10'),
 (4, 'bookcase', '1982-01-10'),
 (5, 'exercise bike', '2004-05-09'),
 (6, 'sofa', '1987-06-05'),
 (7, 'popcorn maker', '2001-11-22'),
 (8, 'aquarium', '1992-08-04'),
 (9, 'study desk', '1984-09-16'),
 (10, 'lava lamp', '1998-12-25');

You can see which partitions are used in a query such as SELECT * FROM trb1;, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1,p2,p3
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using filesort

In this case, all four partitions are searched. However, when a limiting condition making use of the
partitioning key is added to the query, you can see that only those partitions containing matching
values are scanned, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where

EXPLAIN PARTITIONS provides information about keys used and possible keys, just as with the
standard EXPLAIN SELECT statement:

mysql> ALTER TABLE trb1 ADD PRIMARY KEY (id);
Query OK, 10 rows affected (0.03 sec)
Records: 10 Duplicates: 0 Warnings: 0

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL

Partition Pruning

2638

 rows: 7
 Extra: Using where

You should take note of the following restrictions and limitations on EXPLAIN PARTITIONS:

• You cannot use the PARTITIONS and EXTENDED keywords together in the same EXPLAIN ...
SELECT statement. Attempting to do so produces a syntax error.

• If EXPLAIN PARTITIONS is used to examine a query against a nonpartitioned table, no error is
produced, but the value of the partitions column is always NULL.

The rows column of EXPLAIN PARTITIONS output displays the total number of rows in the table.

See also Section 13.8.2, “EXPLAIN Syntax”.

18.4 Partition Pruning
This section discusses an optimization known as partition pruning. The core concept behind partition
pruning is relatively simple, and can be described as “Do not scan partitions where there can be no
matching values”. Suppose that you have a partitioned table t1 defined by this statement:

CREATE TABLE t1 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(region_code) (
 PARTITION p0 VALUES LESS THAN (64),
 PARTITION p1 VALUES LESS THAN (128),
 PARTITION p2 VALUES LESS THAN (192),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Consider the case where you wish to obtain results from a SELECT statement such as this one:

SELECT fname, lname, region_code, dob
 FROM t1
 WHERE region_code > 125 AND region_code < 130;

It is easy to see that none of the rows which ought to be returned will be in either of the partitions p0
or p3; that is, we need to search only in partitions p1 and p2 to find matching rows. By doing so, it is
possible to expend much less time and effort in finding matching rows than would be required to scan
all partitions in the table. This “cutting away” of unneeded partitions is known as pruning. When the
optimizer can make use of partition pruning in performing this query, execution of the query can be
an order of magnitude faster than the same query against a nonpartitioned table containing the same
column definitions and data.

Note

When pruning is performed on a partitioned MyISAM table, all partitions are
opened, whether or not they are examined, due to the design of the MyISAM
storage engine. This means that you must have a sufficient number of file
descriptors available to cover all partitions of the table. See MyISAM and
partition file descriptor usage.

This limitation does not apply to partitioned tables using other MySQL storage
engines such as InnoDB.

The optimizer can perform pruning whenever a WHERE condition can be reduced to either one of the
following two cases:

• partition_column = constant

Partition Pruning

2639

• partition_column IN (constant1, constant2, ..., constantN)

In the first case, the optimizer simply evaluates the partitioning expression for the value given,
determines which partition contains that value, and scans only this partition. In many cases, the equal
sign can be replaced with another arithmetic comparison, including <, >, <=, >=, and <>. Some queries
using BETWEEN in the WHERE clause can also take advantage of partition pruning. See the examples
later in this section.

In the second case, the optimizer evaluates the partitioning expression for each value in the list,
creates a list of matching partitions, and then scans only the partitions in this partition list.

MySQL can apply partition pruning to SELECT, DELETE, and UPDATE statements. INSERT statements
currently cannot be pruned.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists
of values. For instance, in the previous example, the WHERE clause can be converted to WHERE
region_code IN (126, 127, 128, 129). Then the optimizer can determine that the first two
values in the list are found in partition p1, the remaining two values in partition p2, and that the other
partitions contain no relevant values and so do not need to be searched for matching rows.

Yhe optimizer can also perform pruning for WHERE conditions that involve comparisons of the preceding
types on multiple columns for tables that use RANGE COLUMNS or LIST COLUMNS partitioning.

This type of optimization can be applied whenever the partitioning expression consists of an equality
or a range which can be reduced to a set of equalities, or when the partitioning expression represents
an increasing or decreasing relationship. Pruning can also be applied for tables partitioned on a DATE
or DATETIME column when the partitioning expression uses the YEAR() or TO_DAYS() function. In
addition, in MySQL 5.7, pruning can be applied for such tables when the partitioning expression uses
the TO_SECONDS() function.

Suppose that table t2, defined as shown here, is partitioned on a DATE column:

CREATE TABLE t2 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(YEAR(dob)) (
 PARTITION d0 VALUES LESS THAN (1970),
 PARTITION d1 VALUES LESS THAN (1975),
 PARTITION d2 VALUES LESS THAN (1980),
 PARTITION d3 VALUES LESS THAN (1985),
 PARTITION d4 VALUES LESS THAN (1990),
 PARTITION d5 VALUES LESS THAN (2000),
 PARTITION d6 VALUES LESS THAN (2005),
 PARTITION d7 VALUES LESS THAN MAXVALUE
);

The following statements using t2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = '1982-06-23';

UPDATE t2 SET region_code = 8 WHERE dob BETWEEN '1991-02-15' AND '1997-04-25';

DELETE FROM t2 WHERE dob >= '1984-06-21' AND dob <= '1999-06-21'

In the case of the last statement, the optimizer can also act as follows:

1. Find the partition containing the low end of the range.

YEAR('1984-06-21') yields the value 1984, which is found in partition d3.

2. Find the partition containing the high end of the range.

Partition Pruning

2640

YEAR('1999-06-21') evaluates to 1999, which is found in partition d5.

3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitions d3, d4, and d5 are scanned. The remaining partitions
may be safely ignored (and are ignored).

Important

Invalid DATE and DATETIME values referenced in the WHERE condition of
a statement against a partitioned table are treated as NULL. This means
that a query such as SELECT * FROM partitioned_table WHERE
date_column < '2008-12-00' does not return any values (see Bug
#40972).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with
other partitioning types as well.

Consider a table that is partitioned by LIST, where the partitioning expression is increasing or
decreasing, such as the table t3 shown here. (In this example, we assume for the sake of brevity that
the region_code column is limited to values between 1 and 10 inclusive.)

CREATE TABLE t3 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY LIST(region_code) (
 PARTITION r0 VALUES IN (1, 3),
 PARTITION r1 VALUES IN (2, 5, 8),
 PARTITION r2 VALUES IN (4, 9),
 PARTITION r3 VALUES IN (6, 7, 10)
);

For a statement such as SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3, the
optimizer determines in which partitions the values 1, 2, and 3 are found (r0 and r1) and skips the
remaining ones (r2 and r3).

For tables that are partitioned by HASH or [LINEAR] KEY, partition pruning is also possible in cases in
which the WHERE clause uses a simple = relation against a column used in the partitioning expression.
Consider a table created like this:

CREATE TABLE t4 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY KEY(region_code)
PARTITIONS 8;

A statement that compares a column value with a constant can be pruned:

UPDATE t4 WHERE region_code = 7;

Pruning can also be employed for short ranges, because the optimizer can turn such conditions into IN
relations. For example, using the same table t4 as defined previously, queries such as these can be
pruned:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

Partition Selection

2641

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE region_code IN
(3, 4, 5).

Important

This optimization is used only if the range size is smaller than the number of
partitions. Consider this statement:

DELETE FROM t4 WHERE region_code BETWEEN 4 AND 12;

The range in the WHERE clause covers 9 values (4, 5, 6, 7, 8, 9, 10, 11, 12), but
t4 has only 8 partitions. This means that the DELETE cannot be pruned.

When a table is partitioned by HASH or [LINEAR] KEY, pruning can be used only on integer columns.
For example, this statement cannot use pruning because dob is a DATE column:

SELECT * FROM t4 WHERE dob >= '2001-04-14' AND dob <= '2005-10-15';

However, if the table stores year values in an INT column, then a query having WHERE year_col >=
2001 AND year_col <= 2005 can be pruned.

Prior to MySQL 5.7.1, partition pruning was disabled for all tables using a storage engine that
provides automatic partitioning, such as the NDB storage engine used by MySQL Cluster (not currently
supported in MySQL 5.7). (Bug #14672885) Beginning with MySQL 5.7.1, such tables can be pruned if
they are explicitly partitioned. (Bug #14827952)

18.5 Partition Selection
MySQL 5.7 supports explicit selection of partitions and subpartitions that, when executing a statement,
should be checked for rows matching a given WHERE condition. Partition selection is similar to partition
pruning, in that only specific partitions are checked for matches, but differs in two key respects:

1. The partitions to be checked are specified by the issuer of the statement, unlike partition pruning,
which is automatic.

2. Whereas partition pruning applies only to queries, explicit selection of partitions is supported for
both queries and a number of DML statements.

SQL statements supporting explicit partition selection are listed here:

• SELECT

• DELETE

• INSERT

• REPLACE

• UPDATE

• LOAD DATA.

• LOAD XML.

The remainder of this section discusses explicit partition selection as it applies generally to the
statements just listed, and provides some examples.

Explicit partition selection is implemented using a PARTITION option. For all supported statements,
this option uses the syntax shown here:

Partition Selection

2642

 PARTITION (partition_names)

 partition_names:
 partition_name, ...

This option always follows the name of the table to which the partition or partitions belong.
partition_names is a comma-separated list of partitions or subpartitions to be used. Each
name in this list must be the name of an existing partition or subpartition of the specified table; if
any of the partitions or subpartitions are not found, the statement fails with an error (partition
'partition_name' doesn't exist). Partitions and subpartitions named in partition_names
may be listed in any order, and may overlap.

When the PARTITION option is used, only the partitions and subpartitions listed are checked for
matching rows. This option can be used in a SELECT statement to determine which rows belong to
a given partition. Consider a partitioned table named employees, created and populated using the
statements shown here:

SET @@SQL_MODE = '';

CREATE TABLE employees (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 fname VARCHAR(25) NOT NULL,
 lname VARCHAR(25) NOT NULL,
 store_id INT NOT NULL,
 department_id INT NOT NULL
)
 PARTITION BY RANGE(id) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (10),
 PARTITION p2 VALUES LESS THAN (15),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

INSERT INTO employees VALUES
 ('', 'Bob', 'Taylor', 3, 2), ('', 'Frank', 'Williams', 1, 2),
 ('', 'Ellen', 'Johnson', 3, 4), ('', 'Jim', 'Smith', 2, 4),
 ('', 'Mary', 'Jones', 1, 1), ('', 'Linda', 'Black', 2, 3),
 ('', 'Ed', 'Jones', 2, 1), ('', 'June', 'Wilson', 3, 1),
 ('', 'Andy', 'Smith', 1, 3), ('', 'Lou', 'Waters', 2, 4),
 ('', 'Jill', 'Stone', 1, 4), ('', 'Roger', 'White', 3, 2),
 ('', 'Howard', 'Andrews', 1, 2), ('', 'Fred', 'Goldberg', 3, 3),
 ('', 'Barbara', 'Brown', 2, 3), ('', 'Alice', 'Rogers', 2, 2),
 ('', 'Mark', 'Morgan', 3, 3), ('', 'Karen', 'Cole', 3, 2);

You can see which rows are stored in partition p1 like this:

mysql> SELECT * FROM employees PARTITION (p1);
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
5	Mary	Jones	1	1
6	Linda	Black	2	3
7	Ed	Jones	2	1
8	June	Wilson	3	1
9	Andy	Smith	1	3
+----+-------+--------+----------+---------------+
5 rows in set (0.00 sec)

The result is the same as obtained by the query SELECT * FROM employees WHERE id BETWEEN
5 AND 9.

To obtain rows from multiple partitions, supply their names as a comma-delimited list. For example,
SELECT * FROM employees PARTITION (p1, p2) returns all rows from partitions p1 and p2
while excluding rows from the remaining partitions.

Any valid query against a partitioned table can be rewritten with a PARTITION option to restrict the
result to one or more desired partitions. You can use WHERE conditions, ORDER BY and LIMIT options,

Partition Selection

2643

and so on. You can also use aggregate functions with HAVING and GROUP BY options. Each of the
following queries produces a valid result when run on the employees table as previously defined:

mysql> SELECT * FROM employees PARTITION (p0, p2)
 -> WHERE lname LIKE 'S%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 4 | Jim | Smith | 2 | 4 |
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
2 rows in set (0.00 sec)

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees PARTITION (p0) ORDER BY lname;
+----+----------------+
| id | name |
+----+----------------+
3	Ellen Johnson
4	Jim Smith
1	Bob Taylor
2	Frank Williams
+----+----------------+
4 rows in set (0.06 sec)

mysql> SELECT store_id, COUNT(department_id) AS c
 -> FROM employees PARTITION (p1,p2,p3)
 -> GROUP BY store_id HAVING c > 4;
+---+----------+
| c | store_id |
+---+----------+
| 5 | 2 |
| 5 | 3 |
+---+----------+
2 rows in set (0.00 sec)

Statements using partition selection can be employed with tables using any of the partitioning types
supported in MySQL 5.7. When a table is created using [LINEAR] HASH or [LINEAR] KEY
partitioning and the names of the partitions are not specified, MySQL automatically names the
partitions p0, p1, p2, ..., pN-1, where N is the number of partitions. For subpartitions not explicitly
named, MySQL assigns automatically to the subpartitions in each partition pX the names pXsp0,
pXsp1, pXsp2, ..., pXspM-1, where M is the number of subpartitions. When executing against this
table a SELECT (or other SQL statement for which explicit partition selection is allowed), you can use
these generated names in a PARTITION option, as shown here:

mysql> CREATE TABLE employees_sub (
 -> id INT NOT NULL AUTO_INCREMENT,
 -> fname VARCHAR(25) NOT NULL,
 -> lname VARCHAR(25) NOT NULL,
 -> store_id INT NOT NULL,
 -> department_id INT NOT NULL,
 -> PRIMARY KEY pk (id, lname)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (5),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN (15),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (1.14 sec)

mysql> INSERT INTO employees_sub # re-use data in employees table
 -> SELECT * FROM employees;
Query OK, 18 rows affected (0.09 sec)
Records: 18 Duplicates: 0 Warnings: 0

Partition Selection

2644

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees_sub PARTITION (p2sp1);
+----+---------------+
| id | name |
+----+---------------+
| 10 | Lou Waters |
| 14 | Fred Goldberg |
+----+---------------+
2 rows in set (0.00 sec)

You may also use a PARTITION option in the SELECT portion of an INSERT ... SELECT statement,
as shown here:

mysql> CREATE TABLE employees_copy LIKE employees;
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO employees_copy
 -> SELECT * FROM employees PARTITION (p2);
Query OK, 5 rows affected (0.04 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM employees_copy;
+----+--------+----------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+--------+----------+----------+---------------+
10	Lou	Waters	2	4
11	Jill	Stone	1	4
12	Roger	White	3	2
13	Howard	Andrews	1	2
14	Fred	Goldberg	3	3
+----+--------+----------+----------+---------------+
5 rows in set (0.00 sec)

Partition selection can also be used with joins. Suppose we create and populate two tables using the
statements shown here:

CREATE TABLE stores (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 city VARCHAR(30) NOT NULL
)
 PARTITION BY HASH(id)
 PARTITIONS 2;

INSERT INTO stores VALUES
 ('', 'Nambucca'), ('', 'Uranga'),
 ('', 'Bellingen'), ('', 'Grafton');

CREATE TABLE departments (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30) NOT NULL
)
 PARTITION BY KEY(id)
 PARTITIONS 2;

INSERT INTO departments VALUES
 ('', 'Sales'), ('', 'Customer Service'),
 ('', 'Delivery'), ('', 'Accounting');

You can explicitly select partitions (or subpartitions, or both) from any or all of the tables in a join.
(Note that the PARTITION option used to select partitions from a given table immediately follows the
name of the table, before all other options, including any table alias.) For example, the following query
gets the name, employee ID, department, and city of all employees who work in the Sales or Delivery
department (partition p1 of the departments table) at the stores in either of the cities of Nambucca
and Bellingen (partition p0 of the stores table):

mysql> SELECT
 -> e.id AS 'Employee ID', CONCAT(e.fname, ' ', e.lname) AS Name,
 -> s.city AS City, d.name AS department

Partition Selection

2645

 -> FROM employees AS e
 -> JOIN stores PARTITION (p1) AS s ON e.store_id=s.id
 -> JOIN departments PARTITION (p0) AS d ON e.department_id=d.id
 -> ORDER BY e.lname;
+-------------+---------------+-----------+------------+
| Employee ID | Name | City | department |
+-------------+---------------+-----------+------------+
14	Fred Goldberg	Bellingen	Delivery
5	Mary Jones	Nambucca	Sales
17	Mark Morgan	Bellingen	Delivery
9	Andy Smith	Nambucca	Delivery
8	June Wilson	Bellingen	Sales
+-------------+---------------+-----------+------------+
5 rows in set (0.00 sec)

For general information about joins in MySQL, see Section 13.2.9.2, “JOIN Syntax”.

When the PARTITION option is used with DELETE statements, only those partitions (and subpartitions,
if any) listed with the option are checked for rows to be deleted. Any other partitions are ignored, as
shown here:

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
4	Jim	Smith	2	4
8	June	Wilson	3	1
11	Jill	Stone	1	4
+----+-------+--------+----------+---------------+
3 rows in set (0.00 sec)

mysql> DELETE FROM employees PARTITION (p0, p1)
 -> WHERE fname LIKE 'j%';
Query OK, 2 rows affected (0.09 sec)

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

Only the two rows in partitions p0 and p1 matching the WHERE condition were deleted. As you can see
from the result when the SELECT is run a second time, there remains a row in the table matching the
WHERE condition, but residing in a different partition (p2).

UPDATE statements using explicit partition selection behave in the same way; only rows in the
partitions referenced by the PARTITION option are considered when determining the rows to be
updated, as can be seen by executing the following statements:

mysql> UPDATE employees PARTITION (p0)
 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0 Changed: 0 Warnings: 0

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

mysql> UPDATE employees PARTITION (p2)
 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 1 row affected (0.09 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Partition Selection

2646

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 2 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

In the same way, when PARTITION is used with DELETE, only rows in the partition or partitions named
in the partition list are checked for deletion.

For statements that insert rows, the behavior differs in that failure to find a suitable partition causes the
statement to fail. This is true for both INSERT and REPLACE statements, as shown here:

mysql> INSERT INTO employees PARTITION (p2) VALUES (20, 'Jan', 'Jones', 1, 3);
ERROR 1729 (HY000): Found a row not matching the given partition set
mysql> INSERT INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 1, 3);
Query OK, 1 row affected (0.07 sec)

mysql> REPLACE INTO employees PARTITION (p0) VALUES (20, 'Jan', 'Jones', 3, 2);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> REPLACE INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 3, 2);
Query OK, 2 rows affected (0.09 sec)

For statements that write multiple rows to a partitioned table that uses the InnoDB storage engine:
If any row in the list following VALUES cannot be written to one of the partitions specified in the
partition_names list, the entire statement fails and no rows are written. This is shown for INSERT
statements in the following example, reusing the employees table created previously:

mysql> ALTER TABLE employees
 -> REORGANIZE PARTITION p3 INTO (
 -> PARTITION p3 VALUES LESS THAN (20),
 -> PARTITION p4 VALUES LESS THAN (25),
 -> PARTITION p5 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 6 rows affected (2.09 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE employees\G
*************************** 1. row ***************************
 Table: employees
Create Table: CREATE TABLE `employees` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `fname` varchar(25) NOT NULL,
 `lname` varchar(25) NOT NULL,
 `store_id` int(11) NOT NULL,
 `department_id` int(11) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=27 DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (id)
(PARTITION p0 VALUES LESS THAN (5) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (10) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (15) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (20) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (25) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */
1 row in set (0.00 sec)

mysql> INSERT INTO employees PARTITION (p3, p4) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> INSERT INTO employees PARTITION (p3, p4. p5) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
Query OK, 2 rows affected (0.06 sec)
Records: 2 Duplicates: 0 Warnings: 0

The preceding is true for both INSERT statements and REPLACE statements that write multiple rows.

Restrictions and Limitations on Partitioning

2647

In MySQL 5.7.1 and later, partition selection is disabled for tables employing a storage engine that
supplies automatic partitioning, such as NDB. (Bug #14827952)

18.6 Restrictions and Limitations on Partitioning
This section discusses current restrictions and limitations on MySQL partitioning support.

Prohibited constructs. The following constructs are not permitted in partitioning expressions:

• Stored procedures, stored functions, UDFs, or plugins.

• Declared variables or user variables.

For a list of SQL functions which are permitted in partitioning expressions, see Section 18.6.3,
“Partitioning Limitations Relating to Functions”.

Arithmetic and logical operators. Use of the arithmetic operators +, -, and * is permitted in
partitioning expressions. However, the result must be an integer value or NULL (except in the case of
[LINEAR] KEY partitioning, as discussed elsewhere in this chapter; see Section 18.2, “Partitioning
Types”, for more information).

The DIV operator is also supported, and the / operator is not permitted. (Bug #30188, Bug #33182)

The bit operators |, &, ^, <<, >>, and ~ are not permitted in partitioning expressions.

HANDLER statements. Previously, the HANDLER statement was not supported with partitioned
tables. This limitation is removed beginning with MySQL 5.7.1.

Server SQL mode. Tables employing user-defined partitioning do not preserve the SQL mode
in effect at the time that they were created. As discussed in Section 5.1.7, “Server SQL Modes”, the
results of many MySQL functions and operators may change according to the server SQL mode.
Therefore, a change in the SQL mode at any time after the creation of partitioned tables may lead to
major changes in the behavior of such tables, and could easily lead to corruption or loss of data. For
these reasons, it is strongly recommended that you never change the server SQL mode after creating
partitioned tables.

Examples. The following examples illustrate some changes in behavior of partitioned tables due to
a change in the server SQL mode:

1. Error handling. Suppose that you create a partitioned table whose partitioning expression is
one such as column DIV 0 or column MOD 0, as shown here:

mysql> CREATE TABLE tn (c1 INT)
 -> PARTITION BY LIST(1 DIV c1) (
 -> PARTITION p0 VALUES IN (NULL),
 -> PARTITION p1 VALUES IN (1)
 ->);
Query OK, 0 rows affected (0.05 sec)

The default behavior for MySQL is to return NULL for the result of a division by zero, without
producing any errors:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
Query OK, 3 rows affected (0.00 sec)

Restrictions and Limitations on Partitioning

2648

Records: 3 Duplicates: 0 Warnings: 0

However, changing the server SQL mode to treat division by zero as an error and to enforce strict
error handling causes the same INSERT statement to fail, as shown here:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
ERROR 1365 (22012): Division by 0

2. Table accessibility. Sometimes a change in the server SQL mode can make partitioned tables
unusable. The following CREATE TABLE statement can be executed successfully only if the
NO_UNSIGNED_SUBTRACTION mode is in effect:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),
 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1563 (HY000): Partition constant is out of partition function domain

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@sql_mode;
+-------------------------+
| @@sql_mode |
+-------------------------+
| NO_UNSIGNED_SUBTRACTION |
+-------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),
 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.05 sec)

If you remove the NO_UNSIGNED_SUBTRACTION server SQL mode after creating tu, you may no
longer be able to access this table:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM tu;
ERROR 1563 (HY000): Partition constant is out of partition function domain
mysql> INSERT INTO tu VALUES (20);
ERROR 1563 (HY000): Partition constant is out of partition function domain

Server SQL modes also impact replication of partitioned tables. Differing SQL modes on master and
slave can lead to partitioning expressions being evaluated differently; this can cause the distribution of

Restrictions and Limitations on Partitioning

2649

data among partitions to be different in the master's and slave's copies of a given table, and may even
cause inserts into partitioned tables that succeed on the master to fail on the slave. For best results,
you should always use the same server SQL mode on the master and on the slave.

Performance considerations. Some affects of partitioning operations on performance are given in
the following list:

• File system operations. Partitioning and repartitioning operations (such as ALTER TABLE
with PARTITION BY ..., REORGANIZE PARTITIONS, or REMOVE PARTITIONING) depend
on file system operations for their implementation. This means that the speed of these operations
is affected by such factors as file system type and characteristics, disk speed, swap space, file
handling efficiency of the operating system, and MySQL server options and variables that relate
to file handling. In particular, you should make sure that large_files_support is enabled
and that open_files_limit is set properly. For partitioned tables using the MyISAM storage
engine, increasing myisam_max_sort_file_size may improve performance; partitioning
and repartitioning operations involving InnoDB tables may be made more efficient by enabling
innodb_file_per_table.

See also Maximum number of partitions.

• MyISAM and partition file descriptor usage. For a partitioned MyISAM table, MySQL uses 2
file descriptors for each partition, for each such table that is open. This means that you need many
more file descriptors to perform operations on a partitioned MyISAM table than on a table which
is identical to it except that the latter table is not partitioned, particularly when performing ALTER
TABLE operations.

Assume a MyISAM table t with 100 partitions, such as the table created by this SQL statement:

CREATE TABLE t (c1 VARCHAR(50))
PARTITION BY KEY (c1) PARTITIONS 100
ENGINE=MYISAM;

Note

For brevity, we use KEY partitioning for the table shown in this example, but
file descriptor usage as described here applies to all partitioned MyISAM
tables, regardless of the type of partitioning that is employed. Partitioned
tables using other storage engines such as InnoDB are not affected by this
issue.

Now assume that you wish to repartition t so that it has 101 partitions, using the statement shown
here:

ALTER TABLE t PARTITION BY KEY (c1) PARTITIONS 101;

To process this ALTER TABLE statement, MySQL uses 402 file descriptors—that is, two for
each of the 100 original partitions, plus two for each of the 101 new partitions. This is because all
partitions (old and new) must be opened concurrently during the reorganization of the table data. It
is recommended that, if you expect to perform such operations, you should make sure that --open-
files-limit is not set too low to accommodate them.

• Table locks. The process executing a partitioning operation on a table takes a write lock on the
table. Reads from such tables are relatively unaffected; pending INSERT and UPDATE operations are
performed as soon as the partitioning operation has completed.

• Storage engine. Partitioning operations, queries, and update operations generally tend to be
faster with MyISAM tables than with InnoDB tables.

• Indexes; partition pruning. As with nonpartitioned tables, proper use of indexes can speed
up queries on partitioned tables significantly. In addition, designing partitioned tables and queries

Restrictions and Limitations on Partitioning

2650

on these tables to take advantage of partition pruning can improve performance dramatically. See
Section 18.4, “Partition Pruning”, for more information.

Previously, index condition pushdown was not supported for partitioned tables. This limitation was
removed in MySQL 5.7.3. See Section 8.2.1.6, “Index Condition Pushdown Optimization”.

• Performance with LOAD DATA. In MySQL 5.7, LOAD DATA uses buffering to improve
performance. You should be aware that the buffer uses 130 KB memory per partition to achieve this.

Maximum number of partitions.
In MySQL 5.7, the maximum possible number of partitions for a given table is 8192. This number
includes subpartitions.

If, when creating tables with a large number of partitions (but less than the maximum), you encounter
an error message such as Got error ... from storage engine: Out of resources
when opening file, you may be able to address the issue by increasing the value of the
open_files_limit system variable. However, this is dependent on the operating system, and
may not be possible or advisable on all platforms; see Section B.5.2.18, “'File' Not Found and Similar
Errors”, for more information. In some cases, using large numbers (hundreds) of partitions may also
not be advisable due to other concerns, so using more partitions does not automatically lead to better
results.

See also File system operations.

Query cache not supported.
The query cache is not supported for partitioned tables, and is automatically disabled for queries
involving partitioned tables. The query cache cannot be enabled for such queries.

Per-partition key caches.
In MySQL 5.7, key caches are supported for partitioned MyISAM tables, using the CACHE INDEX and
LOAD INDEX INTO CACHE statements. Key caches may be defined for one, several, or all partitions,
and indexes for one, several, or all partitions may be preloaded into key caches.

Foreign keys not supported for partitioned InnoDB tables.
Partitioned tables using the InnoDB storage engine do not support foreign keys. More specifically, this
means that the following two statements are true:

1. No definition of an InnoDB table employing user-defined partitioning may contain foreign key
references; no InnoDB table whose definition contains foreign key references may be partitioned.

2. No InnoDB table definition may contain a foreign key reference to a user-partitioned table; no
InnoDB table with user-defined partitioning may contain columns referenced by foreign keys.

The scope of the restrictions just listed includes all tables that use the InnoDB storage engine. CREATE
TABLE and ALTER TABLE statements that would result in tables violating these restrictions are not
allowed.

ALTER TABLE ... ORDER BY. An ALTER TABLE ... ORDER BY column statement run against
a partitioned table causes ordering of rows only within each partition.

Effects on REPLACE statements by modification of primary keys. It can be desirable in some
cases (see Section 18.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”) to modify a table's
primary key. Be aware that, if your application uses REPLACE statements and you do this, the results
of these statements can be drastically altered. See Section 13.2.8, “REPLACE Syntax”, for more
information and an example.

FULLTEXT indexes.
Partitioned tables do not support FULLTEXT indexes or searches, even for partitioned tables employing
the InnoDB or MyISAM storage engine.

Spatial columns. Columns with spatial data types such as POINT or GEOMETRY cannot be used in
partitioned tables.

Restrictions and Limitations on Partitioning

2651

Temporary tables.
Temporary tables cannot be partitioned. (Bug #17497)

Log tables. It is not possible to partition the log tables; an ALTER TABLE ... PARTITION
BY ... statement on such a table fails with an error.

Data type of partitioning key.
A partitioning key must be either an integer column or an expression that resolves to an integer.
Expressions employing ENUM columns cannot be used. The column or expression value may also be
NULL. (See Section 18.2.7, “How MySQL Partitioning Handles NULL”.)

There are two exceptions to this restriction:

1. When partitioning by [LINEAR] KEY, it is possible to use columns of any valid MySQL data type
other than TEXT or BLOB as partitioning keys, because MySQL's internal key-hashing functions
produce the correct data type from these types. For example, the following two CREATE TABLE
statements are valid:

CREATE TABLE tkc (c1 CHAR)
PARTITION BY KEY(c1)
PARTITIONS 4;

CREATE TABLE tke
 (c1 ENUM('red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet'))
PARTITION BY LINEAR KEY(c1)
PARTITIONS 6;

2. When partitioning by RANGE COLUMNS or LIST COLUMNS, it is possible to use string, DATE, and
DATETIME columns. For example, each of the following CREATE TABLE statements is valid:

CREATE TABLE rc (c1 INT, c2 DATE)
PARTITION BY RANGE COLUMNS(c2) (
 PARTITION p0 VALUES LESS THAN('1990-01-01'),
 PARTITION p1 VALUES LESS THAN('1995-01-01'),
 PARTITION p2 VALUES LESS THAN('2000-01-01'),
 PARTITION p3 VALUES LESS THAN('2005-01-01'),
 PARTITION p4 VALUES LESS THAN(MAXVALUE)
);

CREATE TABLE lc (c1 INT, c2 CHAR(1))
PARTITION BY LIST COLUMNS(c2) (
 PARTITION p0 VALUES IN('a', 'd', 'g', 'j', 'm', 'p', 's', 'v', 'y'),
 PARTITION p1 VALUES IN('b', 'e', 'h', 'k', 'n', 'q', 't', 'w', 'z'),
 PARTITION p2 VALUES IN('c', 'f', 'i', 'l', 'o', 'r', 'u', 'x', NULL)
);

Neither of the preceding exceptions applies to BLOB or TEXT column types.

Subqueries.
A partitioning key may not be a subquery, even if that subquery resolves to an integer value or NULL.

Issues with subpartitions.
Subpartitions must use HASH or KEY partitioning. Only RANGE and LIST partitions may be
subpartitioned; HASH and KEY partitions cannot be subpartitioned.

 SUBPARTITION BY KEY requires that the subpartitioning column or columns be specified explicitly,
unlike the case with PARTITION BY KEY, where it can be omitted (in which case the table's primary
key column is used by default). Consider the table created by this statement:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
);

Restrictions and Limitations on Partitioning

2652

You can create a table having the same columns, partitioned by KEY, using a statement such as this
one:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY()
PARTITIONS 4;

The previous statement is treated as though it had been written like this, with the table's primary key
column used as the partitioning column:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY(id)
PARTITIONS 4;

However, the following statement that attempts to create a subpartitioned table using the default
column as the subpartitioning column fails, and the column must be specified for the statement to
succeed, as shown here:

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY()
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near ')

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY(id)
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.07 sec)

This is a known issue (see Bug #51470).

DATA DIRECTORY and INDEX DIRECTORY options. DATA DIRECTORY and INDEX
DIRECTORY are subject to the following restrictions when used with partitioned tables:

• Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored (see Bug #32091).

• On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for
individual partitions or subpartitions of MyISAM tables. However, you can use DATA DIRECTORY for
individual partitions or subpartitions of InnoDB tables.

Repairing and rebuilding partitioned tables. The statements CHECK TABLE, OPTIMIZE TABLE,
ANALYZE TABLE, and REPAIR TABLE are supported for partitioned tables.

Partitioning Keys, Primary Keys, and Unique Keys

2653

In addition, you can use ALTER TABLE ... REBUILD PARTITION to rebuild one or more partitions
of a partitioned table; ALTER TABLE ... REORGANIZE PARTITION also causes partitions to be
rebuilt. See Section 13.1.6, “ALTER TABLE Syntax”, for more information about these two statements.

Starting in MySQL 5.7.2, ANALYZE, CHECK, OPTIMIZE, REPAIR, and TRUNCATE operations are
supported with subpartitions. REBUILD was also accepted syntax prior to MySQL 5.7.5, although this
had no effect. (Bug #19075411, Bug #73130) See also Section 13.1.6.1, “ALTER TABLE Partition
Operations”.

mysqlcheck, myisamchk, and myisampack are not supported with partitioned tables.

FOR EXPORT option (FLUSH TABLES). The FLUSH TABLES statement's FOR EXPORT option is
not supported for partitioned InnoDB tables in MySQL 5.7.4 and earlier. (Bug #16943907)

18.6.1 Partitioning Keys, Primary Keys, and Unique Keys

This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule
governing this relationship can be expressed as follows: All columns used in the partitioning expression
for a partitioned table must be part of every unique key that the table may have.

In other words, every unique key on the table must use every column in the table's partitioning
expression. (This also includes the table's primary key, since it is by definition a unique key. This
particular case is discussed later in this section.) For example, each of the following table creation
statements is invalid:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1),
 UNIQUE KEY (col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns
used in the partitioning expression.

Each of the following statements is valid, and represents one way in which the corresponding invalid
table creation statement could be made to work:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2, col3)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,

Partitioning Keys, Primary Keys, and Unique Keys

2654

 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

This example shows the error produced in such cases:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,
 -> UNIQUE KEY (col1, col2),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col1 + col3)
 -> PARTITIONS 4;
ERROR 1491 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

The CREATE TABLE statement fails because both col1 and col3 are included in the proposed
partitioning key, but neither of these columns is part of both of unique keys on the table. This shows
one possible fix for the invalid table definition:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,
 -> UNIQUE KEY (col1, col2, col3),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col3)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.05 sec)

In this case, the proposed partitioning key col3 is part of both unique keys, and the table creation
statement succeeds.

The following table cannot be partitioned at all, because there is no way to include in a partitioning key
any columns that belong to both unique keys:

CREATE TABLE t4 (
 col1 INT NOT NULL,
 col2 INT NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col3),
 UNIQUE KEY (col2, col4)
);

Since every primary key is by definition a unique key, this restriction also includes the table's primary
key, if it has one. For example, the next two statements are invalid:

CREATE TABLE t5 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

Partitioning Keys, Primary Keys, and Unique Keys

2655

CREATE TABLE t6 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col3),
 UNIQUE KEY(col2)
)
PARTITION BY HASH(YEAR(col2))
PARTITIONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression.
However, both of the next two statements are valid:

CREATE TABLE t7 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

CREATE TABLE t8 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2, col4),
 UNIQUE KEY(col2, col1)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

If a table has no unique keys—this includes having no primary key—then this restriction does not
apply, and you may use any column or columns in the partitioning expression as long as the column
type is compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes
all columns used by the table's partitioning expression. Consider the partitioned table created as shown
here:

mysql> CREATE TABLE t_no_pk (c1 INT, c2 INT)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (10),
 -> PARTITION p1 VALUES LESS THAN (20),
 -> PARTITION p2 VALUES LESS THAN (30),
 -> PARTITION p3 VALUES LESS THAN (40)
 ->);
Query OK, 0 rows affected (0.12 sec)

It is possible to add a primary key to t_no_pk using either of these ALTER TABLE statements:

possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1);
Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0

drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0

use another possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1, c2);
Query OK, 0 rows affected (0.12 sec)

Partitioning Limitations Relating to Storage Engines

2656

Records: 0 Duplicates: 0 Warnings: 0

drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

However, the next statement fails, because c1 is part of the partitioning key, but is not part of the
proposed primary key:

fails with error 1503
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c2);
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

Since t_no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2
alone fails. However, you can add a unique key that uses both c1 and c2.

These rules also apply to existing nonpartitioned tables that you wish to partition using ALTER
TABLE ... PARTITION BY. Consider a table np_pk created as shown here:

mysql> CREATE TABLE np_pk (
 -> id INT NOT NULL AUTO_INCREMENT,
 -> name VARCHAR(50),
 -> added DATE,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.08 sec)

The following ALTER TABLE statement fails with an error, because the added column is not part of
any unique key in the table:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(TO_DAYS(added))
 -> PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

However, this statement using the id column for the partitioning column is valid, as shown here:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(id)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

In the case of np_pk, the only column that may be used as part of a partitioning expression is id; if
you wish to partition this table using any other column or columns in the partitioning expression, you
must first modify the table, either by adding the desired column or columns to the primary key, or by
dropping the primary key altogether.

18.6.2 Partitioning Limitations Relating to Storage Engines

The following limitations apply to the use of storage engines with user-defined partitioning of tables.

MERGE storage engine. User-defined partitioning and the MERGE storage engine are not
compatible. Tables using the MERGE storage engine cannot be partitioned. Partitioned tables cannot be
merged.

FEDERATED storage engine. Partitioning of FEDERATED tables is not supported; it is not possible
to create partitioned FEDERATED tables.

CSV storage engine. Partitioned tables using the CSV storage engine are not supported; it is not
possible to create partitioned CSV tables.

Partitioning Limitations Relating to Functions

2657

InnoDB storage engine. InnoDB foreign keys and MySQL partitioning are not compatible.
Partitioned InnoDB tables cannot have foreign key references, nor can they have columns referenced
by foreign keys. InnoDB tables which have or which are referenced by foreign keys cannot be
partitioned.

In addition, ALTER TABLE ... OPTIMIZE PARTITION does not work correctly with partitioned
tables that use the InnoDB storage engine. Use ALTER TABLE ... REBUILD PARTITION and
ALTER TABLE ... ANALYZE PARTITION, instead, for such tables. For more information, see
Section 13.1.6.1, “ALTER TABLE Partition Operations”.

Upgrading partitioned tables. When performing an upgrade, tables which are partitioned by KEY
must be dumped and reloaded.

Same storage engine for all partitions. All partitions of a partitioned table must use the same
storage engine and it must be the same storage engine used by the table as a whole. In addition, if one
does not specify an engine on the table level, then one must do either of the following when creating or
altering a partitioned table:

• Do not specify any engine for any partition or subpartition

• Specify the engine for all partitions or subpartitions

18.6.3 Partitioning Limitations Relating to Functions

This section discusses limitations in MySQL Partitioning relating specifically to functions used in
partitioning expressions.

Only the MySQL functions shown in the following table are allowed in partitioning expressions.

ABS() CEILING() (see CEILING() and
FLOOR())

DAY()

DAYOFMONTH() DAYOFWEEK() DAYOFYEAR()

DATEDIFF() EXTRACT() (see EXTRACT()
function with WEEK specifier)

FLOOR() (see CEILING() and
FLOOR())

HOUR() MICROSECOND() MINUTE()

MOD() MONTH() QUARTER()

SECOND() TIME_TO_SEC() TO_DAYS()

TO_SECONDS() UNIX_TIMESTAMP() (with
TIMESTAMP columns)

WEEKDAY()

YEAR() YEARWEEK()

In MySQL 5.7, partition pruning is supported for the TO_DAYS(), TO_SECONDS(), YEAR(), and
UNIX_TIMESTAMP() functions. See Section 18.4, “Partition Pruning”, for more information.

CEILING() and FLOOR(). Each of these functions returns an integer only if it is passed an argument
of an exact numeric type, such as one of the INT types or DECIMAL. This means, for example, that the
following CREATE TABLE statement fails with an error, as shown here:

mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST(FLOOR(c))(
 -> PARTITION p0 VALUES IN (1,3,5),
 -> PARTITION p1 VALUES IN (2,4,6)
 ->);
ERROR 1490 (HY000): The PARTITION function returns the wrong type

EXTRACT() function with WEEK specifier. The value returned by the EXTRACT() function, when
used as EXTRACT(WEEK FROM col), depends on the value of the default_week_format system
variable. For this reason, EXTRACT() is not permitted as a partitioning function when it specifies the
unit as WEEK. (Bug #54483)

Partitioning and Locking

2658

See Section 12.6.2, “Mathematical Functions”, for more information about the return types of these
functions, as well as Section 11.2, “Numeric Types”.

18.6.4 Partitioning and Locking

For storage engines such as MyISAM that actually execute table-level locks when executing DML
or DDL statements, such a statement in older versions of MySQL (5.6.5 and earlier)that affected a
partitioned table imposed a lock on the table as a whole; that is, all partitions were locked until the
statement was finished. In MySQL 5.7, partition lock pruning eliminates unneeded locks in many cases,
and most statements reading from or updating a partitioned MyISAM table cause only the effected
partitions to be locked. For example, a SELECT from a partitioned MyISAM table locks only those
partitions actually containing rows that satisfy the SELECT statement's WHERE condition are locked.

For statements effecting partitioned tables using storage engines such as InnoDB, that employ row-
level locking and do not actually perform (or need to perform) the locks prior to partition pruning, this is
not an issue.

The next few paragraphs discuss the effects of partition lock pruning for various MySQL statements on
tables using storage engines that employ table-level locks.

Effects on DML statements

SELECT statements (including those containing unions or joins) lock only those partitions that actually
need to be read. This also applies to SELECT ... PARTITION.

An UPDATE prunes locks only for tables on which no partitioning columns are updated.

REPLACE and INSERT lock only those partitions having rows to be inserted or replaced. However, if an
AUTO_INCREMENT value is generated for any partitioning column then all partitions are locked.

INSERT ... ON DUPLICATE KEY UPDATE is pruned as long as no partitioning column is updated.

INSERT ... SELECT locks only those partitions in the source table that need to be read, although all
partitions in the target table are locked.

Locks imposed by LOAD DATA statements on partitioned tables cannot be pruned.

The presence of BEFORE INSERT or BEFORE UPDATE triggers using any partitioning column of a
partitioned table means that locks on INSERT and UPDATE statements updating this table cannot
be pruned, since the trigger can alter its values: A BEFORE INSERT trigger on any of the table's
partitioning columns means that locks set by INSERT or REPLACE cannot be pruned, since the BEFORE
INSERT trigger may change a row's partitioning columns before the row is inserted, forcing the row
into a different partition than it would be otherwise. A BEFORE UPDATE trigger on a partitioning column
means that locks imposed by UPDATE or INSERT ... ON DUPLICATE KEY UPDATE cannot be
pruned.

Affected DDL statements

CREATE VIEW does not cause any locks.

ALTER TABLE ... EXCHANGE PARTITION prunes locks; only the exchanged table and the
exchanged partition are locked.

ALTER TABLE ... TRUNCATE PARTITION prunes locks; only the partitions to be emptied are
locked.

In addition, ALTER TABLE statements take metadata locks on the table level.

Other statements

LOCK TABLES cannot prune partition locks.

Partitioning and Locking

2659

CALL stored_procedure(expr) supports lock pruning, but evaluating expr does not.

DO and SET statements do not support partitioning lock pruning.

2660

2661

Chapter 19 Stored Programs and Views

Table of Contents
19.1 Defining Stored Programs ... 2662
19.2 Using Stored Routines (Procedures and Functions) .. 2663

19.2.1 Stored Routine Syntax .. 2663
19.2.2 Stored Routines and MySQL Privileges ... 2664
19.2.3 Stored Routine Metadata .. 2665
19.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 2665

19.3 Using Triggers .. 2665
19.3.1 Trigger Syntax and Examples ... 2666
19.3.2 Trigger Metadata .. 2669

19.4 Using the Event Scheduler .. 2670
19.4.1 Event Scheduler Overview .. 2670
19.4.2 Event Scheduler Configuration .. 2671
19.4.3 Event Syntax ... 2673
19.4.4 Event Metadata .. 2673
19.4.5 Event Scheduler Status .. 2674
19.4.6 The Event Scheduler and MySQL Privileges .. 2675

19.5 Using Views ... 2677
19.5.1 View Syntax ... 2678
19.5.2 View Processing Algorithms .. 2678
19.5.3 Updatable and Insertable Views .. 2680
19.5.4 The View WITH CHECK OPTION Clause .. 2682
19.5.5 View Metadata ... 2683

19.6 Access Control for Stored Programs and Views .. 2684
19.7 Binary Logging of Stored Programs ... 2685

This chapter discusses stored programs and views, which are database objects defined in terms of
SQL code that is stored on the server for later execution.

Stored programs include these objects:

• Stored routines, that is, stored procedures and functions. A stored procedure is invoked using the
CALL statement. A procedure does not have a return value but can modify its parameters for later
inspection by the caller. It can also generate result sets to be returned to the client program. A stored
function is used much like a built-in function. you invoke it in an expression and it returns a value
during expression evaluation.

• Triggers. A trigger is a named database object that is associated with a table and that is activated
when a particular event occurs for the table, such as an insert or update.

• Events. An event is a task that the server runs according to schedule.

Views are stored queries that when referenced produce a result set. A view acts as a virtual table.

This chapter describes how to use stored programs and views. The following sections provide
additional information about SQL syntax for statements related to these objects:

• For each object type, there are CREATE, ALTER, and DROP statements that control which objects
exist and how they are defined. See Section 13.1, “Data Definition Statements”.

• The CALL statement is used to invoke stored procedures. See Section 13.2.1, “CALL Syntax”.

• Stored program definitions include a body that may use compound statements, loops, conditionals,
and declared variables. See Section 13.6, “MySQL Compound-Statement Syntax”.

Defining Stored Programs

2662

In MySQL 5.7, metadata changes to objects referred to by stored programs are detected and
cause automatic reparsing of the affected statements when the program is next executed. For more
information, see Section 8.10.4, “Caching of Prepared Statements and Stored Programs”.

19.1 Defining Stored Programs

Each stored program contains a body that consists of an SQL statement. This statement may be a
compound statement made up of several statements separated by semicolon (;) characters. For
example, the following stored procedure has a body made up of a BEGIN ... END block that contains
a SET statement and a REPEAT loop that itself contains another SET statement:

CREATE PROCEDURE dorepeat(p1 INT)
BEGIN
 SET @x = 0;
 REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
END;

If you use the mysql client program to define a stored program containing semicolon characters, a
problem arises. By default, mysql itself recognizes the semicolon as a statement delimiter, so you
must redefine the delimiter temporarily to cause mysql to pass the entire stored program definition to
the server.

To redefine the mysql delimiter, use the delimiter command. The following example shows how to
do this for the dorepeat() procedure just shown. The delimiter is changed to // to enable the entire
definition to be passed to the server as a single statement, and then restored to ; before invoking the
procedure. This enables the ; delimiter used in the procedure body to be passed through to the server
rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL dorepeat(1000);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

You can redefine the delimiter to a string other than //, and the delimiter can consist of a single
character or multiple characters. You should avoid the use of the backslash (“\”) character because
that is the escape character for MySQL.

The following is an example of a function that takes a parameter, performs an operation using an SQL
function, and returns the result. In this case, it is unnecessary to use delimiter because the function
definition contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

Using Stored Routines (Procedures and Functions)

2663

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

19.2 Using Stored Routines (Procedures and Functions)
Stored routines (procedures and functions) are supported in MySQL 5.7. A stored routine is a set of
SQL statements that can be stored in the server. Once this has been done, clients don't need to keep
reissuing the individual statements but can refer to the stored routine instead.

Stored routines require the proc table in the mysql database. This table is created during the MySQL
5.7 installation procedure. If you are upgrading to MySQL 5.7 from an earlier version, be sure to update
your grant tables to make sure that the proc table exists. See Section 4.4.7, “mysql_upgrade —
Check and Upgrade MySQL Tables”.

Stored routines can be particularly useful in certain situations:

• When multiple client applications are written in different languages or work on different platforms, but
need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures and functions for all
common operations. This provides a consistent and secure environment, and routines can ensure
that each operation is properly logged. In such a setup, applications and users would have no access
to the database tables directly, but can only execute specific stored routines.

Stored routines can provide improved performance because less information needs to be sent between
the server and the client. The tradeoff is that this does increase the load on the database server
because more of the work is done on the server side and less is done on the client (application)
side. Consider this if many client machines (such as Web servers) are serviced by only one or a few
database servers.

Stored routines also enable you to have libraries of functions in the database server. This is a feature
shared by modern application languages that enable such design internally (for example, by using
classes). Using these client application language features is beneficial for the programmer even
outside the scope of database use.

MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2. All syntax
described here is supported and any limitations and extensions are documented where appropriate.

Additional Resources

• You may find the Stored Procedures User Forum of use when working with stored procedures and
functions.

• For answers to some commonly asked questions regarding stored routines in MySQL, see
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and Functions”.

• There are some restrictions on the use of stored routines. See Section C.1, “Restrictions on Stored
Programs”.

• Binary logging for stored routines takes place as described in Section 19.7, “Binary Logging of
Stored Programs”.

19.2.1 Stored Routine Syntax

A stored routine is either a procedure or a function. Stored routines are created with the CREATE
PROCEDURE and CREATE FUNCTION statements (see Section 13.1.12, “CREATE PROCEDURE and

http://forums.mysql.com/list.php?98

Stored Routines and MySQL Privileges

2664

CREATE FUNCTION Syntax”). A procedure is invoked using a CALL statement (see Section 13.2.1,
“CALL Syntax”), and can only pass back values using output variables. A function can be called from
inside a statement just like any other function (that is, by invoking the function's name), and can return
a scalar value. The body of a stored routine can use compound statements (see Section 13.6, “MySQL
Compound-Statement Syntax”).

Stored routines can be dropped with the DROP PROCEDURE and DROP FUNCTION statements (see
Section 13.1.22, “DROP PROCEDURE and DROP FUNCTION Syntax”), and altered with the ALTER
PROCEDURE and ALTER FUNCTION statements (see Section 13.1.4, “ALTER PROCEDURE Syntax”).

A stored procedure or function is associated with a particular database. This has several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the routine
terminates). USE statements within stored routines are not permitted.

• You can qualify routine names with the database name. This can be used to refer to a routine that
is not in the current database. For example, to invoke a stored procedure p or function f that is
associated with the test database, you can say CALL test.p() or test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

Stored functions cannot be recursive.

Recursion in stored procedures is permitted but disabled by default. To enable recursion, set
the max_sp_recursion_depth server system variable to a value greater than zero. Stored
procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the
value of thread_stack at server startup. See Section 5.1.4, “Server System Variables”, for more
information.

MySQL supports a very useful extension that enables the use of regular SELECT statements (that
is, without using cursors or local variables) inside a stored procedure. The result set of such a query
is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so
the client must use a MySQL client library that supports multiple result sets. This means the client
must use a client library from a version of MySQL at least as recent as 4.1. The client should also
specify the CLIENT_MULTI_RESULTS option when it connects. For C programs, this can be done with
the mysql_real_connect() C API function. See Section 23.8.7.54, “mysql_real_connect()”, and
Section 23.8.17, “C API Support for Multiple Statement Execution”.

19.2.2 Stored Routines and MySQL Privileges

The MySQL grant system takes stored routines into account as follows:

• The CREATE ROUTINE privilege is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted
automatically to the creator of a routine if necessary, and dropped from the creator when the routine
is dropped.

• The EXECUTE privilege is required to execute stored routines. However, this privilege is granted
automatically to the creator of a routine if necessary (and dropped from the creator when the routine
is dropped). Also, the default SQL SECURITY characteristic for a routine is DEFINER, which enables
users who have access to the database with which the routine is associated to execute the routine.

• If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE
privileges are not automatically granted to and dropped from the routine creator.

• The creator of a routine is the account used to execute the CREATE statement for it. This might not
be the same as the account named as the DEFINER in the routine definition.

The server manipulates the mysql.proc table in response to statements that create, alter, or drop
stored routines. It is not supported that the server will notice manual manipulation of this table.

Stored Routine Metadata

2665

19.2.3 Stored Routine Metadata

Metadata about stored routines can be obtained as follows:

• Query the ROUTINES table of the INFORMATION_SCHEMA database. See Section 20.19, “The
INFORMATION_SCHEMA ROUTINES Table”.

• Use the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements to see routine
definitions. See Section 13.7.5.9, “SHOW CREATE PROCEDURE Syntax”.

• Use the SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS statements to see routine
characteristics. See Section 13.7.5.28, “SHOW PROCEDURE STATUS Syntax”.

19.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects (see Section 12.14, “Information Functions”). The effect of a stored routine or trigger
upon the value of LAST_INSERT_ID() that is seen by following statements depends on the kind of
routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements do not see a changed value.

19.3 Using Triggers
A trigger is a named database object that is associated with a table, and that activates when a
particular event occurs for the table. Some uses for triggers are to perform checks of values to be
inserted into a table or to perform calculations on values involved in an update.

A trigger is defined to activate when a statement inserts, updates, or deletes rows in the associated
table. These row operations are trigger events. For example, rows can be inserted by INSERT or LOAD
DATA statements, and an insert trigger activates for each inserted row. A trigger can be set to activate
either before or after the trigger event. For example, you can have a trigger activate before each row
that is inserted into a table or after each row that is updated.

Important

MySQL triggers activate only for changes made to tables by SQL statements.
They do not activate for changes in views, nor by changes to tables made
by APIs that do not transmit SQL statements to the MySQL Server. This
means that triggers are not activated by changes in INFORMATION_SCHEMA or
performance_schema tables, because these tables are actually views.

The following sections describe the syntax for creating and dropping triggers, show some examples of
how to use them, and indicate how to obtain trigger metadata.

Additional Resources

• You may find the Triggers User Forum of use when working with triggers.

• For answers to commonly asked questions regarding triggers in MySQL, see Section A.5, “MySQL
5.7 FAQ: Triggers”.

• There are some restrictions on the use of triggers; see Section C.1, “Restrictions on Stored
Programs”.

• Binary logging for triggers takes place as described in Section 19.7, “Binary Logging of Stored
Programs”.

http://forums.mysql.com/list.php?100

Trigger Syntax and Examples

2666

19.3.1 Trigger Syntax and Examples

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement,
described in Section 13.1.16, “CREATE TRIGGER Syntax”, and Section 13.1.26, “DROP TRIGGER
Syntax”.

Here is a simple example that associates a trigger with a table, to activate for INSERT operations. The
trigger acts as an accumulator, summing the values inserted into one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 -> FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.06 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the
account table. It also includes clauses that specify the trigger action time, the triggering event, and
what to do when the trigger activates:

• The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each
row inserted into the table. The other permitted keyword here is AFTER.

• The keyword INSERT indicates the trigger event; that is, the type of operation that activates the
trigger. In the example, INSERT operations cause trigger activation. You can also create triggers for
DELETE and UPDATE operations.

• The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute
each time the trigger activates, which occurs once for each row affected by the triggering event.
In the example, the trigger body is a simple SET that accumulates into a user variable the values
inserted into the amount column. The statement refers to the column as NEW.amount which means
“the value of the amount column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see
what value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 -
100, or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the
trigger is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names
within a schema. Triggers in different schemas can have the same name.

As of MySQL 5.7.2, it is possible to define multiple triggers for a given table that have the same trigger
event and action time. For example, you can have two BEFORE UPDATE triggers for a table. By default,
triggers that have the same trigger event and action time activate in the order they were created. To

Trigger Syntax and Examples

2667

affect trigger order, specify a clause after FOR EACH ROW that indicates FOLLOWS or PRECEDES and
the name of an existing trigger that also has the same trigger event and action time. With FOLLOWS,
the new trigger activates after the existing trigger. With PRECEDES, the new trigger activates before the
existing trigger.

For example, the following trigger definition defines another BEFORE INSERT trigger for the account
table:

mysql> CREATE TRIGGER ins_transaction BEFORE INSERT ON account
 -> FOR EACH ROW PRECEDES ins_sum
 -> SET
 -> @deposits = @deposits + IF(NEW.amount>0,NEW.amount,0),
 -> @withdrawals = @withdrawals + IF(NEW.amount<0,-NEW.amount,0);
Query OK, 0 rows affected (0.02 sec)

This trigger, ins_transaction, is similar to ins_sum but accumulates deposits and withdrawals
separately. It has a PRECEDES clause that causes it to activate before ins_sum; without that clause, it
would activate after ins_sum because it is created after ins_sum.

Before MySQL 5.7.2, there cannot be multiple triggers for a given table that have the same trigger
event and action time. For example, you cannot have two BEFORE UPDATE triggers for a table. To
work around this, you can define a trigger that executes multiple statements by using the BEGIN ...
END compound statement construct after FOR EACH ROW. (An example appears later in this section.)

Within the trigger body, the OLD and NEW keywords enable you to access columns in the rows affected
by a trigger. OLD and NEW are MySQL extensions to triggers; they are not case sensitive.

In an INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only
OLD.col_name can be used; there is no new row. In an UPDATE trigger, you can use OLD.col_name
to refer to the columns of a row before it is updated and NEW.col_name to refer to the columns of the
row after it is updated.

A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but
not modify it. You can refer to a column named with NEW if you have the SELECT privilege for it. In a
BEFORE trigger, you can also change its value with SET NEW.col_name = value if you have the
UPDATE privilege for it. This means you can use a trigger to modify the values to be inserted into a new
row or used to update a row. (Such a SET statement has no effect in an AFTER trigger because the row
change will have already occurred.)

In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the sequence number
that is generated automatically when the new row actually is inserted.

By using the BEGIN ... END construct, you can define a trigger that executes multiple statements.
Within the BEGIN block, you also can use other syntax that is permitted within stored routines such as
conditionals and loops. However, just as for stored routines, if you use the mysql program to define a
trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so
that you can use the ; statement delimiter within the trigger definition. The following example illustrates
these points. It defines an UPDATE trigger that checks the new value to be used for updating each row,
and modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger because
the value must be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
 -> FOR EACH ROW
 -> BEGIN
 -> IF NEW.amount < 0 THEN
 -> SET NEW.amount = 0;
 -> ELSEIF NEW.amount > 100 THEN
 -> SET NEW.amount = 100;
 -> END IF;
 -> END;//
mysql> delimiter ;

Trigger Syntax and Examples

2668

It can be easier to define a stored procedure separately and then invoke it from the trigger using a
simple CALL statement. This is also advantageous if you want to execute the same code from within
several triggers.

There are limitations on what can appear in statements that a trigger executes when activated:

• The trigger cannot use the CALL statement to invoke stored procedures that return data to the client
or that use dynamic SQL. (Stored procedures are permitted to return data to the trigger through OUT
or INOUT parameters.)

• The trigger cannot use statements that explicitly or implicitly begin or end a transaction, such as
START TRANSACTION, COMMIT, or ROLLBACK. (ROLLBACK to SAVEPOINT is permitted because it
does not end a transaction.).

See also Section C.1, “Restrictions on Stored Programs”.

MySQL handles errors during trigger execution as follows:

• If a BEFORE trigger fails, the operation on the corresponding row is not performed.

• A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the
attempt subsequently succeeds.

• An AFTER trigger is executed only if any BEFORE triggers and the row operation execute
successfully.

• An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused
trigger invocation.

• For transactional tables, failure of a statement should cause rollback of all changes performed by the
statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For
nontransactional tables, such rollback cannot be done, so although the statement fails, any changes
performed prior to the point of the error remain in effect.

Triggers can contain direct references to tables by name, such as the trigger named testref shown
in this example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
 a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b4 INT DEFAULT 0
);

delimiter |

CREATE TRIGGER testref BEFORE INSERT ON test1
 FOR EACH ROW
 BEGIN
 INSERT INTO test2 SET a2 = NEW.a1;
 DELETE FROM test3 WHERE a3 = NEW.a1;
 UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
 END;
|

delimiter ;

INSERT INTO test3 (a3) VALUES
 (NULL), (NULL), (NULL), (NULL), (NULL),
 (NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
 (0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

Suppose that you insert the following values into table test1 as shown here:

Trigger Metadata

2669

mysql> INSERT INTO test1 VALUES
 -> (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

As a result, the four tables contain the following data:

mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
1	3
2	0
3	1
4	2
5	0
6	0
7	1
8	1
9	0
10	0
+----+------+
10 rows in set (0.00 sec)

19.3.2 Trigger Metadata

Metadata about triggers can be obtained as follows:

Using the Event Scheduler

2670

• Query the TRIGGERS table of the INFORMATION_SCHEMA database. See Section 20.27, “The
INFORMATION_SCHEMA TRIGGERS Table”.

• Use the SHOW CREATE TRIGGER statement. See Section 13.7.5.11, “SHOW CREATE TRIGGER
Syntax”.

• Use the SHOW TRIGGERS statement. See Section 13.7.5.38, “SHOW TRIGGERS Syntax”.

19.4 Using the Event Scheduler
The MySQL Event Scheduler manages the scheduling and execution of events, that is, tasks that run
according to a schedule. The following discussion covers the Event Scheduler and is divided into the
following sections:

• Section 19.4.1, “Event Scheduler Overview”, provides an introduction to and conceptual overview of
MySQL Events.

• Section 19.4.3, “Event Syntax”, discusses the SQL statements for creating, altering, and dropping
MySQL Events.

• Section 19.4.4, “Event Metadata”, shows how to obtain information about events and how this
information is stored by the MySQL Server.

• Section 19.4.6, “The Event Scheduler and MySQL Privileges”, discusses the privileges required to
work with events and the ramifications that events have with regard to privileges when executing.

Stored routines require the event table in the mysql database. This table is created during the
MySQL 5.7 installation procedure. If you are upgrading to MySQL 5.7 from an earlier version,
be sure to update your grant tables to make sure that the event table exists. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

Additional Resources

• You may find the MySQL Event Scheduler User Forum of use when working with scheduled events.

• There are some restrictions on the use of events; see Section C.1, “Restrictions on Stored
Programs”.

• Binary logging for events takes place as described in Section 19.7, “Binary Logging of Stored
Programs”.

19.4.1 Event Scheduler Overview

MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as
scheduled events. When you create an event, you are creating a named database object containing
one or more SQL statements to be executed at one or more regular intervals, beginning and ending at
a specific date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a
“cron job”) or the Windows Task Scheduler.

Scheduled tasks of this type are also sometimes known as “temporal triggers”, implying that these are
objects that are triggered by the passage of time. While this is essentially correct, we prefer to use the
term events to avoid confusion with triggers of the type discussed in Section 19.3, “Using Triggers”.
Events should more specifically not be confused with “temporary triggers”. Whereas a trigger is a
database object whose statements are executed in response to a specific type of event that occurs
on a given table, a (scheduled) event is an object whose statements are executed in response to the
passage of a specified time interval.

While there is no provision in the SQL Standard for event scheduling, there are precedents in other
database systems, and you may notice some similarities between these implementations and that
found in the MySQL Server.

MySQL Events have the following major features and properties:

http://forums.mysql.com/list.php?119

Event Scheduler Configuration

2671

• In MySQL, an event is uniquely identified by its name and the schema to which it is assigned.

• An event performs a specific action according to a schedule. This action consists of an SQL
statement, which can be a compound statement in a BEGIN ... END block if desired (see
Section 13.6, “MySQL Compound-Statement Syntax”). An event's timing can be either one-time
or recurrent. A one-time event executes one time only. A recurrent event repeats its action at a
regular interval, and the schedule for a recurring event can be assigned a specific start day and time,
end day and time, both, or neither. (By default, a recurring event's schedule begins as soon as it is
created, and continues indefinitely, until it is disabled or dropped.)

If a repeating event does not terminate within its scheduling interval, the result may be multiple
instances of the event executing simultaneously. If this is undesirable, you should institute a
mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK()
function, or row or table locking.

• Users can create, modify, and drop scheduled events using SQL statements intended for these
purposes. Syntactically invalid event creation and modification statements fail with an appropriate
error message. A user may include statements in an event's action which require privileges that the
user does not actually have. The event creation or modification statement succeeds but the event's
action fails. See Section 19.4.6, “The Event Scheduler and MySQL Privileges” for details.

• Many of the properties of an event can be set or modified using SQL statements. These properties
include the event's name, timing, persistence (that is, whether it is preserved following the expiration
of its schedule), status (enabled or disabled), action to be performed, and the schema to which it is
assigned. See Section 13.1.2, “ALTER EVENT Syntax”.

The default definer of an event is the user who created the event, unless the event has been altered,
in which case the definer is the user who issued the last ALTER EVENT statement affecting that
event. An event can be modified by any user having the EVENT privilege on the database for which
the event is defined. See Section 19.4.6, “The Event Scheduler and MySQL Privileges”.

• An event's action statement may include most SQL statements permitted within stored routines. For
restrictions, see Section C.1, “Restrictions on Stored Programs”.

19.4.2 Event Scheduler Configuration

Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we
actually refer to this thread. When running, the event scheduler thread and its current state can be
seen by users having the PROCESS privilege in the output of SHOW PROCESSLIST, as shown in the
discussion that follows.

The global event_scheduler system variable determines whether the Event Scheduler is enabled
and running on the server. It has one of these 3 values, which affect event scheduling as described
here:

• OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown in the
output of SHOW PROCESSLIST, and no scheduled events are executed. OFF is the default value for
event_scheduler.

When the Event Scheduler is stopped (event_scheduler is OFF), it can be started by setting the
value of event_scheduler to ON. (See next item.)

• ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled
events.

When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW
PROCESSLIST as a daemon process, and its state is represented as shown here:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Event Scheduler Configuration

2672

 Id: 1
 User: root
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: NULL
 Info: show processlist
*************************** 2. row ***************************
 Id: 2
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 3
 State: Waiting for next activation
 Info: NULL
2 rows in set (0.00 sec)

Event scheduling can be stopped by setting the value of event_scheduler to OFF.

• DISABLED: This value renders the Event Scheduler nonoperational. When the Event Scheduler is
DISABLED, the event scheduler thread does not run (and so does not appear in the output of SHOW
PROCESSLIST). In addition, the Event Scheduler state cannot be changed at runtime.

If the Event Scheduler status has not been set to DISABLED, event_scheduler can be toggled
between ON and OFF (using SET). It is also possible to use 0 for OFF, and 1 for ON when setting this
variable. Thus, any of the following 4 statements can be used in the mysql client to turn on the Event
Scheduler:

SET GLOBAL event_scheduler = ON;
SET @@global.event_scheduler = ON;
SET GLOBAL event_scheduler = 1;
SET @@global.event_scheduler = 1;

Similarly, any of these 4 statements can be used to turn off the Event Scheduler:

SET GLOBAL event_scheduler = OFF;
SET @@global.event_scheduler = OFF;
SET GLOBAL event_scheduler = 0;
SET @@global.event_scheduler = 0;

Although ON and OFF have numeric equivalents, the value displayed for event_scheduler by
SELECT or SHOW VARIABLES is always one of OFF, ON, or DISABLED. DISABLED has no numeric
equivalent. For this reason, ON and OFF are usually preferred over 1 and 0 when setting this variable.

Note that attempting to set event_scheduler without specifying it as a global variable causes an
error:

mysql< SET @@event_scheduler = OFF;
ERROR 1229 (HY000): Variable 'event_scheduler' is a GLOBAL
variable and should be set with SET GLOBAL

Important

It is possible to set the Event Scheduler to DISABLED only at server startup. If
event_scheduler is ON or OFF, you cannot set it to DISABLED at runtime.
Also, if the Event Scheduler is set to DISABLED at startup, you cannot change
the value of event_scheduler at runtime.

To disable the event scheduler, use one of the following two methods:

• As a command-line option when starting the server:

Event Syntax

2673

--event-scheduler=DISABLED

• In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it
will be read by the server (for example, in a [mysqld] section):

event_scheduler=DISABLED

To enable the Event Scheduler, restart the server without the --event-scheduler=DISABLED
command-line option, or after removing or commenting out the line containing event-
scheduler=DISABLED in the server configuration file, as appropriate. Alternatively, you can use ON
(or 1) or OFF (or 0) in place of the DISABLED value when starting the server.

Note

You can issue event-manipulation statements when event_scheduler is set
to DISABLED. No warnings or errors are generated in such cases (provided
that the statements are themselves valid). However, scheduled events cannot
execute until this variable is set to ON (or 1). Once this has been done, the event
scheduler thread executes all events whose scheduling conditions are satisfied.

Starting the MySQL server with the --skip-grant-tables option causes event_scheduler to
be set to DISABLED, overriding any other value set either on the command line or in the my.cnf or
my.ini file (Bug #26807).

For SQL statements used to create, alter, and drop events, see Section 19.4.3, “Event Syntax”.

MySQL provides an EVENTS table in the INFORMATION_SCHEMA database. This table can be
queried to obtain information about scheduled events which have been defined on the server. See
Section 19.4.4, “Event Metadata”, and Section 20.7, “The INFORMATION_SCHEMA EVENTS Table”,
for more information.

For information regarding event scheduling and the MySQL privilege system, see Section 19.4.6, “The
Event Scheduler and MySQL Privileges”.

19.4.3 Event Syntax

MySQL provides several SQL statements for working with scheduled events:

• New events are defined using the CREATE EVENT statement. See Section 13.1.9, “CREATE EVENT
Syntax”.

• The definition of an existing event can be changed by means of the ALTER EVENT statement. See
Section 13.1.2, “ALTER EVENT Syntax”.

• When a scheduled event is no longer wanted or needed, it can be deleted from the server by its
definer using the DROP EVENT statement. See Section 13.1.19, “DROP EVENT Syntax”. Whether an
event persists past the end of its schedule also depends on its ON COMPLETION clause, if it has one.
See Section 13.1.9, “CREATE EVENT Syntax”.

An event can be dropped by any user having the EVENT privilege for the database on which the
event is defined. See Section 19.4.6, “The Event Scheduler and MySQL Privileges”.

19.4.4 Event Metadata

Metadata about events can be obtained as follows:

• Query the event table of the mysql database.

• Query the EVENTS table of the INFORMATION_SCHEMA database. See Section 20.7, “The
INFORMATION_SCHEMA EVENTS Table”.

• Use the SHOW CREATE EVENT statement. See Section 13.7.5.7, “SHOW CREATE EVENT Syntax”.

Event Scheduler Status

2674

• Use the SHOW EVENTS statement. See Section 13.7.5.18, “SHOW EVENTS Syntax”.

Event Scheduler Time Representation

Each session in MySQL has a session time zone (STZ). This is the session time_zone value that is
initialized from the server's global time_zone value when the session begins but may be changed
during the session.

The session time zone that is current when a CREATE EVENT or ALTER EVENT statement executes is
used to interpret times specified in the event definition. This becomes the event time zone (ETZ); that
is, the time zone that is used for event scheduling and is in effect within the event as it executes.

For representation of event information in the mysql.event table, the execute_at, starts, and
ends times are converted to UTC and stored along with the event time zone. This enables event
execution to proceed as defined regardless of any subsequent changes to the server time zone or
daylight saving time effects. The last_executed time is also stored in UTC.

If you select information from mysql.event, the times just mentioned are retrieved as UTC values.
These times can also be obtained by selecting from the INFORMATION_SCHEMA.EVENTS table or
from SHOW EVENTS, but they are reported as ETZ values. Other times available from these sources
indicate when an event was created or last altered; these are displayed as STZ values. The following
table summarizes representation of event times.

Value mysql.event INFORMATION_SCHEMA.EVENTSSHOW EVENTS

Execute at UTC ETZ ETZ

Starts UTC ETZ ETZ

Ends UTC ETZ ETZ

Last executed UTC ETZ n/a

Created STZ STZ n/a

Last altered STZ STZ n/a

19.4.5 Event Scheduler Status

The Event Scheduler writes information about event execution that terminates with an error or warning
to the MySQL Server's error log. See Section 19.4.6, “The Event Scheduler and MySQL Privileges” for
an example.

To obtain information about the state of the Event Scheduler for debugging and troubleshooting
purposes, run mysqladmin debug (see Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”); after running this command, the server's error log contains output relating to the
Event Scheduler, similar to what is shown here:

Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : init_scheduler:313
LUA : init_scheduler:318
WOC : NO
Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 1
Data locked : NO
Attempting lock : NO
LLA : init_queue:148

The Event Scheduler and MySQL Privileges

2675

LUA : init_queue:168
WOC : NO
Next activation : 0000-00-00 00:00:00

In statements that occur as part of events executed by the Event Scheduler, diagnostics messages
(not only errors, but also warnings) are written to the error log, and, on Windows, to the application
event log. For frequently executed events, it is possible for this to result in many logged messages.
For example, for SELECT ... INTO var_list statements, if the query returns no rows, a warning
with error code 1329 occurs (No data), and the variable values remain unchanged. If the query
returns multiple rows, error 1172 occurs (Result consisted of more than one row). For
either condition, you can avoid having the warnings be logged by declaring a condition handler; see
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”. For statements that may retrieve multiple rows,
another strategy is to use LIMIT 1 to limit the result set to a single row.

19.4.6 The Event Scheduler and MySQL Privileges

To enable or disable the execution of scheduled events, it is necessary to set the value of the global
event_scheduler system variable. This requires the SUPER privilege.

The EVENT privilege governs the creation, modification, and deletion of events. This privilege can
be bestowed using GRANT. For example, this GRANT statement confers the EVENT privilege for the
schema named myschema on the user jon@ghidora:

GRANT EVENT ON myschema.* TO jon@ghidora;

(We assume that this user account already exists, and that we wish for it to remain unchanged
otherwise.)

To grant this same user the EVENT privilege on all schemas, use the following statement:

GRANT EVENT ON *.* TO jon@ghidora;

The EVENT privilege has global or schema-level scope. Therefore, trying to grant it on a single table
results in an error as shown:

mysql> GRANT EVENT ON myschema.mytable TO jon@ghidora;
ERROR 1144 (42000): Illegal GRANT/REVOKE command; please
consult the manual to see which privileges can be used

It is important to understand that an event is executed with the privileges of its definer, and that it
cannot perform any actions for which its definer does not have the requisite privileges. For example,
suppose that jon@ghidora has the EVENT privilege for myschema. Suppose also that this user
has the SELECT privilege for myschema, but no other privileges for this schema. It is possible for
jon@ghidora to create a new event such as this one:

CREATE EVENT e_store_ts
 ON SCHEDULE
 EVERY 10 SECOND
 DO
 INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());

The user waits for a minute or so, and then performs a SELECT * FROM mytable; query, expecting
to see several new rows in the table. Instead, the table is empty. Since the user does not have the
INSERT privilege for the table in question, the event has no effect.

If you inspect the MySQL error log (hostname.err), you can see that the event is executing, but the
action it is attempting to perform fails:

2013-09-24T12:41:31.261992Z 25 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user

The Event Scheduler and MySQL Privileges

2676

'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:31.262022Z 25 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.
2013-09-24T12:41:41.271796Z 26 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:41.272761Z 26 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.

Since this user very likely does not have access to the error log, it is possible to verify whether the
event's action statement is valid by executing it directly:

mysql> INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
ERROR 1142 (42000): INSERT command denied to user
'jon'@'ghidora' for table 'mytable'

Inspection of the INFORMATION_SCHEMA.EVENTS table shows that e_store_ts exists and is
enabled, but its LAST_EXECUTED column is NULL:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 > WHERE EVENT_NAME='e_store_ts'
 > AND EVENT_SCHEMA='myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: NULL
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_store_ts
 DEFINER: jon@ghidora
 EVENT_BODY: SQL
EVENT_DEFINITION: INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP())
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 5
 INTERVAL_FIELD: SECOND
 SQL_MODE: NULL
 STARTS: 0000-00-00 00:00:00
 ENDS: 0000-00-00 00:00:00
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2006-02-09 22:36:06
 LAST_ALTERED: 2006-02-09 22:36:06
 LAST_EXECUTED: NULL
 EVENT_COMMENT:
1 row in set (0.00 sec)

To rescind the EVENT privilege, use the REVOKE statement. In this example, the EVENT privilege on the
schema myschema is removed from the jon@ghidora user account:

REVOKE EVENT ON myschema.* FROM jon@ghidora;

Important

Revoking the EVENT privilege from a user does not delete or disable any events
that may have been created by that user.

An event is not migrated or dropped as a result of renaming or dropping the
user who created it.

Suppose that the user jon@ghidora has been granted the EVENT and INSERT privileges on the
myschema schema. This user then creates the following event:

CREATE EVENT e_insert
 ON SCHEDULE
 EVERY 7 SECOND
 DO
 INSERT INTO myschema.mytable;

Using Views

2677

After this event has been created, root revokes the EVENT privilege for jon@ghidora. However,
e_insert continues to execute, inserting a new row into mytable each seven seconds. The same
would be true if root had issued either of these statements:

• DROP USER jon@ghidora;

• RENAME USER jon@ghidora TO someotherguy@ghidora;

You can verify that this is true by examining the mysql.event table (discussed later in this section)
or the INFORMATION_SCHEMA.EVENTS table (see Section 20.7, “The INFORMATION_SCHEMA
EVENTS Table”) before and after issuing a DROP USER or RENAME USER statement.

Event definitions are stored in the mysql.event table. To drop an event created by another user
account, the MySQL root user (or another user with the necessary privileges) can delete rows from
this table. For example, to remove the event e_insert shown previously, root can use the following
statement:

DELETE FROM mysql.event
 WHERE db = 'myschema'
 AND definer = 'jon@ghidora'
 AND name = 'e_insert';

It is very important to match the event name, database schema name, and user account when deleting
rows from the mysql.event table. This is because the same user can create different events of the
same name in different schemas.

Users' EVENT privileges are stored in the Event_priv columns of the mysql.user and
mysql.db tables. In both cases, this column holds one of the values 'Y' or 'N'. 'N' is the default.
mysql.user.Event_priv is set to 'Y' for a given user only if that user has the global EVENT privilege
(that is, if the privilege was bestowed using GRANT EVENT ON *.*). For a schema-level EVENT
privilege, GRANT creates a row in mysql.db and sets that row's Db column to the name of the schema,
the User column to the name of the user, and the Event_priv column to 'Y'. There should never be
any need to manipulate these tables directly, since the GRANT EVENT and REVOKE EVENT statements
perform the required operations on them.

Five status variables provide counts of event-related operations (but not of statements executed by
events; see Section C.1, “Restrictions on Stored Programs”). These are:

• Com_create_event: The number of CREATE EVENT statements executed since the last server
restart.

• Com_alter_event: The number of ALTER EVENT statements executed since the last server
restart.

• Com_drop_event: The number of DROP EVENT statements executed since the last server restart.

• Com_show_create_event: The number of SHOW CREATE EVENT statements executed since the
last server restart.

• Com_show_events: The number of SHOW EVENTS statements executed since the last server
restart.

You can view current values for all of these at one time by running the statement SHOW STATUS LIKE
'%event%';.

19.5 Using Views
MySQL supports views, including updatable views. Views are stored queries that when invoked
produce a result set. A view acts as a virtual table.

The following discussion describes the syntax for creating and dropping views, and shows some
examples of how to use them.

Additional Resources

2678

Additional Resources

• You may find the Views User Forum of use when working with views.

• For answers to some commonly asked questions regarding views in MySQL, see Section A.6,
“MySQL 5.7 FAQ: Views”.

• There are some restrictions on the use of views; see Section C.5, “Restrictions on Views”.

19.5.1 View Syntax

The CREATE VIEW statement creates a new view (see Section 13.1.17, “CREATE VIEW Syntax”).
To alter the definition of a view or drop a view, use ALTER VIEW (see Section 13.1.7, “ALTER VIEW
Syntax”), or DROP VIEW (see Section 13.1.27, “DROP VIEW Syntax”).

A view can be created from many kinds of SELECT statements. It can refer to base tables or other
views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The
following example defines a view that selects two columns from another table, as well as an expression
calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50), (5, 60);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
| 5 | 60 | 300 |
+------+-------+-------+
mysql> SELECT * FROM v WHERE qty = 5;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 5 | 60 | 300 |
+------+-------+-------+

19.5.2 View Processing Algorithms

The optional ALGORITHM clause for CREATE VIEW or ALTER VIEW is a MySQL extension to standard
SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE,
or UNDEFINED.

• For MERGE, the text of a statement that refers to the view and the view definition are merged such
that parts of the view definition replace corresponding parts of the statement.

• For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to
execute the statement.

• For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if
possible, because MERGE is usually more efficient and because a view cannot be updatable if a
temporary table is used.

• If no ALGORITHM clause is present, UNDEFINED is the default algorithm prior to MySQL 5.7.6.
As of 5.7.6, the default algorithm is determined by the value of the derived_merge flag of the
optimizer_switch system variable. For additional discussion, see Optimizing Derived Tables and
View References.

A reason to specify TEMPTABLE explicitly is that locks can be released on underlying tables after the
temporary table has been created and before it is used to finish processing the statement. This might
result in quicker lock release than the MERGE algorithm so that other clients that use the view are not
blocked as long.

http://forums.mysql.com/list.php?100

View Processing Algorithms

2679

A view algorithm can be UNDEFINED for three reasons:

• No ALGORITHM clause is present in the CREATE VIEW statement.

• The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.

• ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In
this case, MySQL generates a warning and sets the algorithm to UNDEFINED.

As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the
statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm
works. The examples assume that there is a view v_merge that has this definition:

CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;

Example 1: Suppose that we issue this statement:

SELECT * FROM v_merge;

MySQL handles the statement as follows:

• v_merge becomes t

• * becomes vc1, vc2, which corresponds to c1, c2

• The view WHERE clause is added

The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 2: Suppose that we issue this statement:

SELECT * FROM v_merge WHERE vc1 < 100;

This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100
and the view WHERE clause is added to the statement WHERE clause using an AND connective (and
parentheses are added to make sure the parts of the clause are executed with correct precedence).
The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);

Effectively, the statement to be executed has a WHERE clause of this form:

WHERE (select WHERE) AND (view WHERE)

If the MERGE algorithm cannot be used, a temporary table must be used instead. MERGE cannot be
used if the view contains any of the following constructs:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• LIMIT

• UNION or UNION ALL

Updatable and Insertable Views

2680

• Subquery in the select list

• Assignment to user variables

• Refers only to literal values (in this case, there is no underlying table)

19.5.3 Updatable and Insertable Views

Some views are updatable and references to them can be used to specify tables to be updated in data
change statements. That is, you can use them in statements such as UPDATE, DELETE, or INSERT
to update the contents of the underlying table. Derived tables can also be specified in multiple-table
UPDATE and DELETE statements, but can only be used for reading data to specify rows to be updated
or deleted. Generally, the view references must be updatable, meaning that they may be merged and
not materialized. Composite views have more complex rules.

For a view to be updatable, there must be a one-to-one relationship between the rows in the view
and the rows in the underlying table. There are also certain other constructs that make a view
nonupdatable. To be more specific, a view is not updatable if it contains any of the following:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list (fails for INSERT, okay for UPDATE, DELETE)

• Certain joins (see additional join discussion later in this section)

• Reference to nonupdatable view in the FROM clause

• Subquery in the WHERE clause that refers to a table in the FROM clause

• Refers only to literal values (in this case, there is no underlying table to update)

• ALGORITHM = TEMPTABLE (use of a temporary table always makes a view nonupdatable)

• Multiple references to any column of a base table (fails for INSERT, okay for UPDATE, DELETE)

A generated column in a view is considered updatable because it is possible to assign to it. However,
if such a column is updated explicitly, the only permitted value is DEFAULT. For information about
generated columns, see CREATE TABLE and Generated Columns.

It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed
with the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a
UNION). Also, only a single table in the view definition can be updated, so the SET clause must name
only columns from one of the tables in the view. Views that use UNION ALL are not permitted even
though they might be theoretically updatable.

With respect to insertability (being updatable with INSERT statements), an updatable view is insertable
if it also satisfies these additional requirements for the view columns:

• There must be no duplicate view column names.

• The view must contain all columns in the base table that do not have a default value.

• The view columns must be simple column references. They must not be expressions, such as these:

Updatable and Insertable Views

2681

3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true)
if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO
(false). The IS_UPDATABLE column in the INFORMATION_SCHEMA.VIEWS table displays the status of
this flag.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected.
(Note that even if a view is updatable, it might not be possible to insert into it, as described elsewhere
in this section.)

The IS_UPDATABLE flag may be unreliable if a view depends on one or more other views, and one of
these underlying views is updated. Regardless of the IS_UPDATABLE value, the server keeps track of
the updatability of a view and correctly rejects data change operations to views that are not updatable.
If the IS_UPDATABLE value for a view has become inaccurate to due to changes to underlying views,
the value can be updated by deleting and recreating the view.

The updatability of views may be affected by the value of the updatable_views_with_limit
system variable. See Section 5.1.4, “Server System Variables”.

For the following discussion, suppose that these tables and views exist:

CREATE TABLE t1 (x INTEGER);
CREATE TABLE t2 (c INTEGER);
CREATE VIEW vmat AS SELECT SUM(x) AS s FROM t1;
CREATE VIEW vup AS SELECT * FROM t2;
CREATE VIEW vjoin AS SELECT * FROM vmat JOIN vup ON vmat.s=vup.c;

INSERT, UPDATE, and DELETE statements are permitted as follows:

• INSERT: The insert table of an INSERT statement may be a view reference that is merged. If the
view is a join view, all components of the view must be updatable (not materialized). For a multiple-
table updatable view, INSERT can work if it inserts into a single table.

This statement is invalid because one component of the join view is nonupdatable:

INSERT INTO vjoin (c) VALUES (1);

This statement is valid; the view contains no materialized components:

INSERT INTO vup (c) VALUES (1);

• UPDATE: The table or tables to be updated in an UPDATE statement may be view references that are
merged. If a view is a join view, at least one component of the view must be updatable (this differs
from INSERT).

In a multiple-table UPDATE statement, the updated table references of the statement must be base
tables or updatable view references. Nonupdated table references may be materialized views or
derived tables.

This statement is valid; column c is from the updatable part of the join view:

UPDATE vjoin SET c=c+1;

This statement is invalid; column x is from the nonupdatable part:

The View WITH CHECK OPTION Clause

2682

UPDATE vjoin SET x=x+1;

This statement is valid; the updated table reference of the multiple-table UPDATE is an updatable
view (vup):

UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET c=c+1;

This statement is invalid; it tries to update a materialized derived table:

UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET s=s+1;

• DELETE: The table or tables to be deleted from in a DELETE statement must be merged views. Join
views are not allowed (this differs from INSERT and UPDATE).

This statement is invalid because the view is a join view:

DELETE vjoin WHERE ...;

This statement is valid because the view is a merged (updatable) view:

DELETE vup WHERE ...;

This statement is valid because it deletes from a merged (updatable) view:

DELETE vup FROM vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...;

Additional discussion and examples follow.

Earlier discussion in this section pointed out that a view is not insertable if not all columns are simple
column references (for example, if it contains columns that are expressions or composite expressions).
Although such a view is not insertable, it can be updatable if you update only columns that are not
expressions. Consider this view:

CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;

This view is not insertable because col2 is an expression. But it is updatable if the update does not try
to update col2. This update is permissible:

UPDATE v SET col1 = 0;

This update is not permissible because it attempts to update an expression column:

UPDATE v SET col2 = 0;

If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that
does not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(),
because the side effects of inserting default values into columns not part of the view should not be
visible.

19.5.4 The View WITH CHECK OPTION Clause

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts to rows for
which the WHERE clause in the select_statement is not true. It aslo prevents updates to rows for
which the WHERE clause is true but the update would cause it to be not true (in other words, it prevents
visible rows from being updated to nonvisible rows).

View Metadata

2683

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords
determine the scope of check testing when the view is defined in terms of another view. When neither
keyword is given, the default is CASCADED.

Before MySQL 5.7.6, WITH CHECK OPTION testing works like this:

• With LOCAL, the view WHERE clause is checked, but no underlying views are checked.

• With CASCADED, the view WHERE clause is checked, then checking recurses to underlying views,
adds WITH CASCADED CHECK OPTION to them (for purposes of the check; their definitions remain
unchanged), and applies the same rules.

• With no check option, the view WHERE clause is not checked, and no underlying views are checked.

As of MySQL 5.7.6, WITH CHECK OPTION testing is standard-compliant (with changed semantics from
previously for LOCAL and no check clause):

• With LOCAL, the view WHERE clause is checked, then checking recurses to underlying views and
applies the same rules.

• With CASCADED, the view WHERE clause is checked, then checking recurses to underlying views,
adds WITH CASCADED CHECK OPTION to them (for purposes of the check; their definitions remain
unchanged), and applies the same rules.

• With no check option, the view WHERE clause is not checked, then checking recurses to underlying
views, and applies the same rules.

Consider the definitions for the following table and set of views:

CREATE TABLE t1 (a INT);
CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2
WITH CHECK OPTION;
CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0
WITH LOCAL CHECK OPTION;
CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0
WITH CASCADED CHECK OPTION;

Here the v2 and v3 views are defined in terms of another view, v1. Before MySQL 5.7.6, because v2
has a LOCAL check option, inserts are tested only against the v2 check. v3 has a CASCADED check
option, so inserts are tested not only against the v3 check, but against those of underlying views. The
following statements illustrate these differences:

mysql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

As of MySQL 5.7.6, the semantics for LOCAL differ from previously: Inserts for v2 are checked against
its LOCAL check option, then (unlike before 5.7.6), the check recurses to v1 and the rules are applied
again. The rules for v1 cause a check failure. The check for v3 fails as before:

mysql> INSERT INTO v2 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v2'
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

19.5.5 View Metadata

Metadata about views can be obtained as follows:

• Query the VIEWS table of the INFORMATION_SCHEMA database. See Section 20.29, “The
INFORMATION_SCHEMA VIEWS Table”.

• Use the SHOW CREATE VIEW statement. See Section 13.7.5.13, “SHOW CREATE VIEW Syntax”.

Access Control for Stored Programs and Views

2684

19.6 Access Control for Stored Programs and Views
Stored programs and views are defined prior to use and, when referenced, execute within a security
context that determines their privileges. These privileges are controlled by their DEFINER attribute, and,
if there is one, their SQL SECURITY characteristic.

All stored programs (procedures, functions, triggers, and events) and views can have a DEFINER
attribute that names a MySQL account. If the DEFINER attribute is omitted from a stored program or
view definition, the default account is the user who creates the object.

In addition, stored routines (procedures and functions) and views can have a SQL SECURITY
characteristic with a value of DEFINER or INVOKER to specify whether the object executes in definer or
invoker context. If the SQL SECURITY characteristic is omitted, the default is definer context.

Triggers and events have no SQL SECURITY characteristic and always execute in definer context. The
server invokes these objects automatically as necessary, so there is no invoking user.

Definer and invoker security contexts differ as follows:

• A stored program or view that executes in definer security context executes with the privileges
of the account named by its DEFINER attribute. These privileges may be entirely different from
those of the invoking user. The invoker must have appropriate privileges to reference the object (for
example, EXECUTE to call a stored procedure or SELECT to select from a view), but when the object
executes, the invoker's privileges are ignored and only the DEFINER account privileges matter. If this
account has few privileges, the object is correspondingly limited in the operations it can perform. If
the DEFINER account is highly privileged (such as a root account), the object can perform powerful
operations no matter who invokes it.

• A stored routine or view that executes in invoker security context can perform only operations for
which the invoker has privileges. The DEFINER attribute can be specified but has no effect for
objects that execute in invoker context.

Consider the following stored procedure:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p1()
SQL SECURITY DEFINER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

Any user who has the EXECUTE privilege for p1 can invoke it with a CALL statement. However,
when p1 executes, it does so in DEFINER security context and thus executes with the privileges of
'admin'@'localhost', the account named in the DEFINER attribute. This account must have the
EXECUTE privilege for p1 as well as the UPDATE privilege for the table t1. Otherwise, the procedure
fails.

Now consider this stored procedure, which is identical to p1 except that its SQL SECURITY
characteristic is INVOKER:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p2()
SQL SECURITY INVOKER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

p2, unlike p1, executes in INVOKER security context. The DEFINER attribute is irrelevant and p2
executes with the privileges of the invoking user. p2 fails if the invoker lacks the EXECUTE privilege for
p2 or the UPDATE privilege for the table t1.

MySQL uses the following rules to control which accounts a user can specify in an object DEFINER
attribute:

Binary Logging of Stored Programs

2685

• You can specify a DEFINER value other than your own account only if you have the SUPER privilege.

• If you do not have the SUPER privilege, the only legal user value is your own account, either specified
literally or by using CURRENT_USER. You cannot set the definer to some other account.

To minimize the risk potential for stored program and view creation and use, follow these guidelines:

• For a stored routine or view, use SQL SECURITY INVOKER in the object definition when possible so
that it can be used only by users with permissions appropriate for the operations performed by the
object.

• If you create definer-context stored programs or views while using an account that has the SUPER
privilege, specify an explicit DEFINER attribute that names an account possessing only the privileges
required for the operations performed by the object. Specify a highly privileged DEFINER account
only when absolutely necessary.

• Administrators can prevent users from specifying highly privileged DEFINER accounts by not granting
them the SUPER privilege.

• Definer-context objects should be written keeping in mind that they may be able to access data for
which the invoking user has no privileges. In some cases, you can prevent reference to these objects
by not granting unauthorized users particular privileges:

• A stored procedure or function cannot be referenced by a user who does not have the EXECUTE
privilege for it.

• A view cannot be referenced by a user who does not have the appropriate privilege for it (SELECT
to select from it, INSERT to insert into it, and so forth).

However, no such control exists for triggers because users do not reference them directly. A
trigger always executes in DEFINER context and is activated by access to the table with which it is
associated, even ordinary table accesses by users with no special privileges. If the DEFINER account
is highly privileged, the trigger can perform sensitive or dangerous operations. This remains true
if the SUPER and TRIGGER privileges needed to create the trigger are revoked from the account
of the user who created it. Administrators should be especially careful about granting users that
combination of privileges.

19.7 Binary Logging of Stored Programs
The binary log contains information about SQL statements that modify database contents. This
information is stored in the form of “events” that describe the modifications. The binary log has two
important purposes:

• For replication, the binary log is used on master replication servers as a record of the statements to
be sent to slave servers. The master server sends the events contained in its binary log to its slaves,
which execute those events to make the same data changes that were made on the master. See
Section 17.2, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup file has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 7.3.2, “Using Backups
for Recovery”.

However, there are certain binary logging issues that apply with respect to stored programs (stored
procedures and functions, triggers, and events), if logging occurs at the statement level:

• In some cases, it is possible that a statement will affect different sets of rows on a master and a
slave.

• Replicated statements executed on a slave are processed by the slave SQL thread, which has full
privileges. It is possible for a procedure to follow different execution paths on master and slave

Binary Logging of Stored Programs

2686

servers, so a user can write a routine containing a dangerous statement that will execute only on the
slave where it is processed by a thread that has full privileges.

• If a stored program that modifies data is nondeterministic, it is not repeatable. This can result in
different data on a master and slave, or cause restored data to differ from the original data.

This section describes how MySQL 5.7 handles binary logging for stored programs. It states the current
conditions that the implementation places on the use of stored programs, and what you can do to avoid
problems. It also provides additional information about the reasons for these conditions.

In general, the issues described here result when binary logging occurs at the SQL statement level.
If you use row-based binary logging, the log contains changes made to individual rows as a result
of executing SQL statements. When routines or triggers execute, row changes are logged, not the
statements that make the changes. For stored procedures, this means that the CALL statement is
not logged. For stored functions, row changes made within the function are logged, not the function
invocation. For triggers, row changes made by the trigger are logged. On the slave side, only the
row changes are seen, not the stored program invocation. For general information about row-based
logging, see Section 17.2.1, “Replication Formats”.

Unless noted otherwise, the remarks here assume that you have enabled binary logging by starting
the server with the --log-bin option. (See Section 5.2.4, “The Binary Log”.) If the binary log is not
enabled, replication is not possible, nor is the binary log available for data recovery.

The current conditions on the use of stored functions in MySQL 5.7 can be summarized as follows.
These conditions do not apply to stored procedures or Event Scheduler events and they do not apply
unless binary logging is enabled.

• To create or alter a stored function, you must have the SUPER privilege, in addition to the CREATE
ROUTINE or ALTER ROUTINE privilege that is normally required. (Depending on the DEFINER value
in the function definition, SUPER might be required regardless of whether binary logging is enabled.
See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.)

• When you create a stored function, you must declare either that it is deterministic or that it does not
modify data. Otherwise, it may be unsafe for data recovery or replication.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

This function is deterministic (and does not modify data), so it is safe:

CREATE FUNCTION f1(i INT)
RETURNS INT
DETERMINISTIC
READS SQL DATA
BEGIN
 RETURN i;
END;

This function uses UUID(), which is not deterministic, so the function also is not deterministic and is
not safe:

CREATE FUNCTION f2()
RETURNS CHAR(36) CHARACTER SET utf8
BEGIN
 RETURN UUID();
END;

Binary Logging of Stored Programs

2687

This function modifies data, so it may not be safe:

CREATE FUNCTION f3(p_id INT)
RETURNS INT
BEGIN
 UPDATE t SET modtime = NOW() WHERE id = p_id;
 RETURN ROW_COUNT();
END;

Assessment of the nature of a function is based on the “honesty” of the creator: MySQL does not
check that a function declared DETERMINISTIC is free of statements that produce nondeterministic
results.

• Although it is possible to create a deterministic stored function without specifying DETERMINISTIC,
you cannot execute this function using statement-based binary logging. To execute such a
function, you must use row-based or mixed binary logging. Alternatively, if you explicitly specify
DETERMINISTIC in the function definition, you can use any kind of logging, including statement-
based logging.

• To relax the preceding conditions on function creation (that you must have the SUPER privilege
and that a function must be declared deterministic or to not modify data), set the global
log_bin_trust_function_creators system variable to 1. By default, this variable has a value
of 0, but you can change it like this:

mysql> SET GLOBAL log_bin_trust_function_creators = 1;

You can also set this variable by using the --log-bin-trust-function-creators=1 option
when starting the server.

If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• For information about built-in functions that may be unsafe for replication (and thus cause stored
functions that use them to be unsafe as well), see Section 17.4.1, “Replication Features and Issues”.

Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to
triggers with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC
characteristic, so triggers are assumed to be always deterministic. However, this assumption might in
some cases be invalid. For example, the UUID() function is nondeterministic (and does not replicate).
You should be careful about using such functions in triggers.

Triggers can update tables, so error messages similar to those for stored functions occur with CREATE
TRIGGER if you do not have the required privileges. On the slave side, the slave uses the trigger
DEFINER attribute to determine which user is considered to be the creator of the trigger.

The rest of this section provides additional detail about the logging implementation and its implications.
You need not read it unless you are interested in the background on the rationale for the current
logging-related conditions on stored routine use. This discussion applies only for statement-based
logging, and not for row-based logging, with the exception of the first item: CREATE and DROP
statements are logged as statements regardless of the logging mode.

• The server writes CREATE EVENT, CREATE PROCEDURE, CREATE FUNCTION, ALTER EVENT,
ALTER PROCEDURE, ALTER FUNCTION, DROP EVENT, DROP PROCEDURE, and DROP FUNCTION
statements to the binary log.

• A stored function invocation is logged as a SELECT statement if the function changes data and
occurs within a statement that would not otherwise be logged. This prevents nonreplication of data
changes that result from use of stored functions in nonlogged statements. For example, SELECT
statements are not written to the binary log, but a SELECT might invoke a stored function that makes

Binary Logging of Stored Programs

2688

changes. To handle this, a SELECT func_name() statement is written to the binary log when the
given function makes a change. Suppose that the following statements are executed on the master:

CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN
 IF (a < 3) THEN
 INSERT INTO t2 VALUES (a);
 END IF;
 RETURN 0;
END;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);

SELECT f1(a) FROM t1;

When the SELECT statement executes, the function f1() is invoked three times. Two of those
invocations insert a row, and MySQL logs a SELECT statement for each of them. That is, MySQL
writes the following statements to the binary log:

SELECT f1(1);
SELECT f1(2);

The server also logs a SELECT statement for a stored function invocation when the function invokes
a stored procedure that causes an error. In this case, the server writes the SELECT statement to the
log along with the expected error code. On the slave, if the same error occurs, that is the expected
result and replication continues. Otherwise, replication stops.

• Logging stored function invocations rather than the statements executed by a function has a security
implication for replication, which arises from two factors:

• It is possible for a function to follow different execution paths on master and slave servers.

• Statements executed on a slave are processed by the slave SQL thread which has full privileges.

The implication is that although a user must have the CREATE ROUTINE privilege to create a
function, the user can write a function containing a dangerous statement that will execute only on the
slave where it is processed by a thread that has full privileges. For example, if the master and slave
servers have server ID values of 1 and 2, respectively, a user on the master server could create and
invoke an unsafe function unsafe_func() as follows:

mysql> delimiter //
mysql> CREATE FUNCTION unsafe_func () RETURNS INT
 -> BEGIN
 -> IF @@server_id=2 THEN dangerous_statement; END IF;
 -> RETURN 1;
 -> END;
 -> //
mysql> delimiter ;
mysql> INSERT INTO t VALUES(unsafe_func());

The CREATE FUNCTION and INSERT statements are written to the binary log, so the slave will
execute them. Because the slave SQL thread has full privileges, it will execute the dangerous
statement. Thus, the function invocation has different effects on the master and slave and is not
replication-safe.

To guard against this danger for servers that have binary logging enabled, stored function creators
must have the SUPER privilege, in addition to the usual CREATE ROUTINE privilege that is required.
Similarly, to use ALTER FUNCTION, you must have the SUPER privilege in addition to the ALTER
ROUTINE privilege. Without the SUPER privilege, an error will occur:

ERROR 1419 (HY000): You do not have the SUPER privilege and

Binary Logging of Stored Programs

2689

binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

If you do not want to require function creators to have the SUPER privilege (for example, if all users
with the CREATE ROUTINE privilege on your system are experienced application developers), set
the global log_bin_trust_function_creators system variable to 1. You can also set this
variable by using the --log-bin-trust-function-creators=1 option when starting the server.
If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• If a function that performs updates is nondeterministic, it is not repeatable. This can have two
undesirable effects:

• It will make a slave different from the master.

• Restored data will be different from the original data.

To deal with these problems, MySQL enforces the following requirement: On a master server,
creation and alteration of a function is refused unless you declare the function to be deterministic or
to not modify data. Two sets of function characteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function
always produces the same result for given inputs. The default is NOT DETERMINISTIC if
neither characteristic is given. To declare that a function is deterministic, you must specify
DETERMINISTIC explicitly.

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics
provide information about whether the function reads or writes data. Either NO SQL or READS SQL
DATA indicates that a function does not change data, but you must specify one of these explicitly
because the default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

If you set log_bin_trust_function_creators to 1, the requirement that functions be
deterministic or not modify data is dropped.

• Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the
server does not log the CALL statement, it logs those statements within the procedure that actually
execute. As a result, the same changes that occur on the master will be observed on slave servers.
This prevents problems that could result from a procedure having different execution paths on
different machines.

In general, statements executed within a stored procedure are written to the binary log using the
same rules that would apply were the statements to be executed in standalone fashion. Some
special care is taken when logging procedure statements because statement execution within
procedures is not quite the same as in nonprocedure context:

• A statement to be logged might contain references to local procedure variables. These variables
do not exist outside of stored procedure context, so a statement that refers to such a variable
cannot be logged literally. Instead, each reference to a local variable is replaced by this construct
for logging purposes:

NAME_CONST(var_name, var_value)

Binary Logging of Stored Programs

2690

var_name is the local variable name, and var_value is a constant indicating the value that the
variable has at the time the statement is logged. NAME_CONST() has a value of var_value, and
a “name” of var_name. Thus, if you invoke this function directly, you get a result like this:

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

NAME_CONST() enables a logged standalone statement to be executed on a slave with the same
effect as the original statement that was executed on the master within a stored procedure.

The use of NAME_CONST() can result in a problem for CREATE TABLE ... SELECT statements
when the source column expressions refer to local variables. Converting these references to
NAME_CONST() expressions can result in column names that are different on the master and
slave servers, or names that are too long to be legal column identifiers. A workaround is to supply
aliases for columns that refer to local variables. Consider this statement when myvar has a value
of 1:

CREATE TABLE t1 SELECT myvar;

That will be rewritten as follows:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1);

To ensure that the master and slave tables have the same column names, write the statement like
this:

CREATE TABLE t1 SELECT myvar AS myvar;

The rewritten statement becomes:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1) AS myvar;

• A statement to be logged might contain references to user-defined variables. To handle this,
MySQL writes a SET statement to the binary log to make sure that the variable exists on the slave
with the same value as on the master. For example, if a statement refers to a variable @my_var,
that statement will be preceded in the binary log by the following statement, where value is the
value of @my_var on the master:

SET @my_var = value;

• Procedure calls can occur within a committed or rolled-back transaction. Transactional context is
accounted for so that the transactional aspects of procedure execution are replicated correctly.
That is, the server logs those statements within the procedure that actually execute and modify
data, and also logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if
a procedure updates only transactional tables and is executed within a transaction that is rolled
back, those updates are not logged. If the procedure occurs within a committed transaction, BEGIN
and COMMIT statements are logged with the updates. For a procedure that executes within a
rolled-back transaction, its statements are logged using the same rules that would apply if the
statements were executed in standalone fashion:

• Updates to transactional tables are not logged.

• Updates to nontransactional tables are logged because rollback does not cancel them.

Binary Logging of Stored Programs

2691

• Updates to a mix of transactional and nontransactional tables are logged surrounded by BEGIN
and ROLLBACK so that slaves will make the same changes and rollbacks as on the master.

• A stored procedure call is not written to the binary log at the statement level if the procedure is
invoked from within a stored function. In that case, the only thing logged is the statement that invokes
the function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a
statement that is not logged). For this reason, care should be exercised in the use of stored functions
that invoke a procedure, even if the procedure is otherwise safe in itself.

2692

2693

Chapter 20 INFORMATION_SCHEMA Tables

Table of Contents
20.1 The INFORMATION_SCHEMA CHARACTER_SETS Table ... 2696
20.2 The INFORMATION_SCHEMA COLLATIONS Table ... 2696
20.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table ... 2697
20.4 The INFORMATION_SCHEMA COLUMNS Table ... 2697
20.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table .. 2698
20.6 The INFORMATION_SCHEMA ENGINES Table ... 2699
20.7 The INFORMATION_SCHEMA EVENTS Table .. 2699
20.8 The INFORMATION_SCHEMA FILES Table .. 2703
20.9 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables 2705
20.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
... 2706
20.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table .. 2706
20.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table ... 2707
20.13 The INFORMATION_SCHEMA PARAMETERS Table ... 2707
20.14 The INFORMATION_SCHEMA PARTITIONS Table .. 2708
20.15 The INFORMATION_SCHEMA PLUGINS Table ... 2711
20.16 The INFORMATION_SCHEMA PROCESSLIST Table ... 2712
20.17 The INFORMATION_SCHEMA PROFILING Table .. 2713
20.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 2714
20.19 The INFORMATION_SCHEMA ROUTINES Table ... 2715
20.20 The INFORMATION_SCHEMA SCHEMATA Table ... 2716
20.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table .. 2716
20.22 The INFORMATION_SCHEMA STATISTICS Table ... 2717
20.23 The INFORMATION_SCHEMA TABLES Table ... 2717
20.24 The INFORMATION_SCHEMA TABLESPACES Table .. 2719
20.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table .. 2719
20.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table .. 2720
20.27 The INFORMATION_SCHEMA TRIGGERS Table ... 2720
20.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table ... 2722
20.29 The INFORMATION_SCHEMA VIEWS Table ... 2722
20.30 INFORMATION_SCHEMA Tables for InnoDB ... 2724

20.30.1 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
... 2724
20.30.2 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 2725
20.30.3 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables .. 2727
20.30.4 The INFORMATION_SCHEMA INNODB_TRX Table .. 2728
20.30.5 The INFORMATION_SCHEMA INNODB_LOCKS Table 2730
20.30.6 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table 2731
20.30.7 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table 2732
20.30.8 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table 2734
20.30.9 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table 2735
20.30.10 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table 2737
20.30.11 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table 2737
20.30.12 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table 2738
20.30.13 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View 2738
20.30.14 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table 2739
20.30.15 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table 2740
20.30.16 The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table 2744
20.30.17 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 2745
20.30.18 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 2747

Usage Notes for the INFORMATION_SCHEMA Database

2694

20.30.19 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 2749
20.30.20 The INFORMATION_SCHEMA INNODB_METRICS Table 2751
20.30.21 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 2752
20.30.22 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 2753
20.30.23 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 2754
20.30.24 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 2756
20.30.25 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 2757
20.30.26 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 2758
20.30.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 2759

20.31 Extensions to SHOW Statements ... 2760

INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server
such as the name of a database or table, the data type of a column, or access privileges. Other terms
that are sometimes used for this information are data dictionary and system catalog.

Usage Notes for the INFORMATION_SCHEMA Database

INFORMATION_SCHEMA is a database within each MySQL instance, the place that stores information
about all the other databases that the MySQL server maintains. The INFORMATION_SCHEMA database
contains several read-only tables. They are actually views, not base tables, so there are no files
associated with them, and you cannot set triggers on them. Also, there is no database directory with
that name.

Although you can select INFORMATION_SCHEMA as the default database with a USE statement, you
can only read the contents of tables, not perform INSERT, UPDATE, or DELETE operations on them.

Example

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
 -> FROM information_schema.tables
 -> WHERE table_schema = 'db5'
 -> ORDER BY table_name;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
fk	BASE TABLE	InnoDB
fk2	BASE TABLE	InnoDB
goto	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
loop	BASE TABLE	MyISAM
pk	BASE TABLE	InnoDB
t	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
tables	BASE TABLE	MyISAM
v	VIEW	NULL
v2	VIEW	NULL
v3	VIEW	NULL
v56	VIEW	NULL
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, showing just three pieces
of information: the name of the table, its type, and its storage engine.

Character Set Considerations

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N)
CHARACTER SET utf8 where N is at least 64. MySQL uses the default collation for this character

INFORMATION_SCHEMA as Alternative to SHOW Statements

2695

set (utf8_general_ci) for all searches, sorts, comparisons, and other string operations on such
columns.

Because some MySQL objects are represented as files, searches in INFORMATION_SCHEMA string
columns can be affected by file system case sensitivity. For more information, see Section 10.1.7.9,
“Collation and INFORMATION_SCHEMA Searches”.

INFORMATION_SCHEMA as Alternative to SHOW Statements

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way
to provide access to the information provided by the various SHOW statements that MySQL supports
(SHOW DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared to
SHOW:

• It conforms to Codd's rules, because all access is done on tables.

• You can use the familiar syntax of the SELECT statement, and only need to learn some table and
column names.

• The implementor need not worry about adding keywords.

• You can filter, sort, concatenate, and transform the results from INFORMATION_SCHEMA queries into
whatever format your application needs, such as a data structure or a text representation to parse.

• This technique is more interoperable with other database systems. For example, Oracle Database
users are familiar with querying tables in the Oracle data dictionary.

Because SHOW is familiar and widely used, the SHOW statements remain as an alternative. In fact, along
with the implementation of INFORMATION_SCHEMA, there are enhancements to SHOW as described in
Section 20.31, “Extensions to SHOW Statements”.

Privileges

Each MySQL user has the right to access these tables, but can see only the rows in the tables that
correspond to objects for which the user has the proper access privileges. In some cases (for example,
the ROUTINE_DEFINITION column in the INFORMATION_SCHEMA.ROUTINES table), users who have
insufficient privileges see NULL. These restrictions do not apply for InnoDB tables; you can see them
with only the PROCESS privilege.

The same privileges apply to selecting information from INFORMATION_SCHEMA and viewing the same
information through SHOW statements. In either case, you must have some privilege on an object to see
information about it.

Performance Considerations

INFORMATION_SCHEMA queries that search for information from more than one database might take
a long time and impact performance. To check the efficiency of a query, you can use EXPLAIN. For
information about using EXPLAIN output to tune INFORMATION_SCHEMA queries, see Section 8.2.4,
“Optimizing INFORMATION_SCHEMA Queries”.

Standards Considerations

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO
SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core
feature F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity.
However, MySQL has omitted many columns that are not relevant for our implementation,

Conventions in the INFORMATION_SCHEMA Reference Sections

2696

and added columns that are MySQL-specific. One such column is the ENGINE column in the
INFORMATION_SCHEMA.TABLES table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is
INFORMATION_SCHEMA.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we
changed the names of some columns marked “MySQL extension”. (For example, we changed
COLLATION to TABLE_COLLATION in the TABLES table.) See the list of reserved words near the
end of this article: https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-
disarticles/gulutzan5.

Conventions in the INFORMATION_SCHEMA Reference Sections

The following sections describe each of the tables and columns in INFORMATION_SCHEMA. For each
column, there are three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA
table. This corresponds to the standard SQL name unless the “Remarks” field says “MySQL
extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the
value of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL
extension to standard SQL.

Many sections indicate what SHOW statement is equivalent to a SELECT that retrieves information from
INFORMATION_SCHEMA. For SHOW statements that display information for the default database if you
omit a FROM db_name clause, you can often select information for the default database by adding an
AND TABLE_SCHEMA = SCHEMA() condition to the WHERE clause of a query that retrieves information
from an INFORMATION_SCHEMA table.

For information about INFORMATION_SCHEMA tables specific to the InnoDB storage engine, see
Section 20.30, “INFORMATION_SCHEMA Tables for InnoDB”.

For answers to questions that are often asked concerning the INFORMATION_SCHEMA database, see
Section A.7, “MySQL 5.7 FAQ: INFORMATION_SCHEMA”.

20.1 The INFORMATION_SCHEMA CHARACTER_SETS Table
The CHARACTER_SETS table provides information about available character sets.

INFORMATION_SCHEMA Name SHOW Name Remarks

CHARACTER_SET_NAME Charset

DEFAULT_COLLATE_NAME Default collation

DESCRIPTION Description MySQL extension

MAXLEN Maxlen MySQL extension

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 [WHERE CHARACTER_SET_NAME LIKE 'wild']

SHOW CHARACTER SET
 [LIKE 'wild']

20.2 The INFORMATION_SCHEMA COLLATIONS Table

https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5
https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5

The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table

2697

The COLLATIONS table provides information about collations for each character set.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset MySQL extension

ID Id MySQL extension

IS_DEFAULT Default MySQL extension

IS_COMPILED Compiled MySQL extension

SORTLEN Sortlen MySQL extension

• COLLATION_NAME is the collation name.

• CHARACTER_SET_NAME is the name of the character set with which the collation is associated.

• ID is the collation ID.

• IS_DEFAULT indicates whether the collation is the default for its character set.

• IS_COMPILED indicates whether the character set is compiled into the server.

• SORTLEN is related to the amount of memory required to sort strings expressed in the character set.

Collation information is also available from the SHOW COLLATION statement. The following statements
are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
 [WHERE COLLATION_NAME LIKE 'wild']

SHOW COLLATION
 [LIKE 'wild']

20.3 The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable
for what collation. The columns are equivalent to the first two display fields that we get from SHOW
COLLATION.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset

20.4 The INFORMATION_SCHEMA COLUMNS Table

The COLUMNS table provides information about columns in tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME Field

The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

2698

INFORMATION_SCHEMA Name SHOW Name Remarks

ORDINAL_POSITION see notes

COLUMN_DEFAULT Default

IS_NULLABLE Null

DATA_TYPE Type

CHARACTER_MAXIMUM_LENGTH Type

CHARACTER_OCTET_LENGTH

NUMERIC_PRECISION Type

NUMERIC_SCALE Type

DATETIME_PRECISION Type

CHARACTER_SET_NAME

COLLATION_NAME Collation

COLUMN_TYPE Type MySQL extension

COLUMN_KEY Key MySQL extension

EXTRA Extra MySQL extension

PRIVILEGES Privileges MySQL extension

COLUMN_COMMENT Comment MySQL extension

GENERATION_EXPRESSION MySQL extension

Notes:

• In SHOW, the Type display includes values from several different COLUMNS columns.

• ORDINAL_POSITION is necessary because you might want to say ORDER BY
ORDINAL_POSITION. Unlike SHOW, SELECT does not have automatic ordering.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for
multibyte character sets.

• CHARACTER_SET_NAME can be derived from Collation. For example, if you say SHOW FULL
COLUMNS FROM t, and you see in the Collation column a value of latin1_swedish_ci, the
character set is what is before the first underscore: latin1.

• GENERATION_EXPRESSION is nonempty for generated columns and displays the expression used
to compute column values. For information about generated columns, see CREATE TABLE and
Generated Columns. This column was added in MySQL 5.7.6.

• As of MySQL 5.7.6, the EXTRA column contains VIRTUAL GENERATED or VIRTUAL STORED for
generated columns.

The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE table_name = 'tbl_name'
 [AND table_schema = 'db_name']
 [AND column_name LIKE 'wild']

SHOW COLUMNS
 FROM tbl_name
 [FROM db_name]
 [LIKE 'wild']

20.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

The INFORMATION_SCHEMA ENGINES Table

2699

The COLUMN_PRIVILEGES table provides information about column privileges. This information comes
from the mysql.columns_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

TABLE_CATALOG def

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• In the output from SHOW FULL COLUMNS, the privileges are all in one field and in lowercase, for
example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege
per row, in uppercase.

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES.

• If the user has GRANT OPTION privilege, IS_GRANTABLE should be YES. Otherwise,
IS_GRANTABLE should be NO. The output does not list GRANT OPTION as a separate privilege.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW GRANTS ...

20.6 The INFORMATION_SCHEMA ENGINES Table

The ENGINES table provides information about storage engines.

INFORMATION_SCHEMA Name SHOW Name Remarks

ENGINE Engine MySQL extension

SUPPORT Support MySQL extension

COMMENT Comment MySQL extension

TRANSACTIONS Transactions MySQL extension

XA XA MySQL extension

SAVEPOINTS Savepoints MySQL extension

Notes:

• The ENGINES table is a nonstandard table. Its contents correspond to the columns of the SHOW
ENGINES statement. For descriptions of its columns, see Section 13.7.5.16, “SHOW ENGINES
Syntax”.

See also Section 13.7.5.16, “SHOW ENGINES Syntax”.

20.7 The INFORMATION_SCHEMA EVENTS Table

The INFORMATION_SCHEMA EVENTS Table

2700

The EVENTS table provides information about scheduled events, which are discussed in Section 19.4,
“Using the Event Scheduler”. The SHOW Name values correspond to column names of the SHOW
EVENTS statement.

INFORMATION_SCHEMA Name SHOW Name Remarks

EVENT_CATALOG def, MySQL extension

EVENT_SCHEMA Db MySQL extension

EVENT_NAME Name MySQL extension

DEFINER Definer MySQL extension

TIME_ZONE Time zone MySQL extension

EVENT_BODY MySQL extension

EVENT_DEFINITION MySQL extension

EVENT_TYPE Type MySQL extension

EXECUTE_AT Execute at MySQL extension

INTERVAL_VALUE Interval value MySQL extension

INTERVAL_FIELD Interval field MySQL extension

SQL_MODE MySQL extension

STARTS Starts MySQL extension

ENDS Ends MySQL extension

STATUS Status MySQL extension

ON_COMPLETION MySQL extension

CREATED MySQL extension

LAST_ALTERED MySQL extension

LAST_EXECUTED MySQL extension

EVENT_COMMENT MySQL extension

ORIGINATOR Originator MySQL extension

CHARACTER_SET_CLIENT character_set_client MySQL extension

COLLATION_CONNECTION collation_connection MySQL extension

DATABASE_COLLATION Database Collation MySQL extension

Notes:

• The EVENTS table is a nonstandard table.

• EVENT_CATALOG: The value of this column is always def.

• EVENT_SCHEMA: The name of the schema (database) to which this event belongs.

• EVENT_NAME: The name of the event.

• DEFINER: The account of the user who created the event, in 'user_name'@'host_name' format.

• TIME_ZONE: The event time zone, which is the time zone used for scheduling the event and that is in
effect within the event as it executes. The default value is SYSTEM.

• EVENT_BODY: The language used for the statements in the event's DO clause; in MySQL 5.7, this is
always SQL.

This column is not to be confused with the column of the same name (now named
EVENT_DEFINITION) that existed in earlier MySQL versions.

The INFORMATION_SCHEMA EVENTS Table

2701

• EVENT_DEFINITION: The text of the SQL statement making up the event's DO clause; in other
words, the statement executed by this event.

• EVENT_TYPE: The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• EXECUTE_AT: For a one-time event, this is the DATETIME value specified in the AT clause of
the CREATE EVENT statement used to create the event, or of the last ALTER EVENT statement
that modified the event. The value shown in this column reflects the addition or subtraction of
any INTERVAL value included in the event's AT clause. For example, if an event is created using
ON SCHEDULE AT CURRENT_TIMESTAMP + '1:6' DAY_HOUR, and the event was created at
2006-02-09 14:05:30, the value shown in this column would be '2006-02-10 20:05:30'.

If the event's timing is determined by an EVERY clause instead of an AT clause (that is, if the event is
recurring), the value of this column is NULL.

• INTERVAL_VALUE: For recurring events, this column contains the numeric portion of the event's
EVERY clause.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column is
NULL.

• INTERVAL_FIELD: For recurring events, this column contains the units portion of the EVERY clause
governing the timing of the event. Thus, this column contains a value such as 'YEAR', 'QUARTER',
'DAY', and so on.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column is
NULL.

• SQL_MODE: The SQL mode in effect when the event was created or altered, and under which the
event executes. For the permitted values, see Section 5.1.7, “Server SQL Modes”.

• STARTS: For a recurring event whose definition includes a STARTS clause, this column contains
the corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used.

If there is no STARTS clause affecting the timing of the event, this column is NULL

• ENDS: For a recurring event whose definition includes a ENDS clause, this column contains the
corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used.

If there is no ENDS clause affecting the timing of the event, this column is NULL.

• STATUS: One of the three values ENABLED, DISABLED, or SLAVESIDE_DISABLED.

SLAVESIDE_DISABLED indicates that the creation of the event occurred on another MySQL server
acting as a replication master and was replicated to the current MySQL server which is acting as a
slave, but the event is not presently being executed on the slave. See Section 17.4.1.12, “Replication
of Invoked Features”, for more information.

• ON_COMPLETION: One of the two values PRESERVE or NOT PRESERVE.

• CREATED: The date and time when the event was created. This is a TIMESTAMP value.

• LAST_ALTERED: The date and time when the event was last modified. This is a TIMESTAMP value.
If the event has not been modified since its creation, this column holds the same value as the
CREATED column.

• LAST_EXECUTED: The date and time when the event last executed. A DATETIME value. If the event
has never executed, this column is NULL.

LAST_EXECUTED indicates when the event started. As a result, the ENDS column is never less than
LAST_EXECUTED.

The INFORMATION_SCHEMA EVENTS Table

2702

• EVENT_COMMENT: The text of a comment, if the event has one. If not, the value of this column is an
empty string.

• ORIGINATOR: The server ID of the MySQL server on which the event was created; used in
replication. The default value is 0.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the event was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the event was created.

• DATABASE_COLLATION: The collation of the database with which the event is associated.

Example: Suppose that the user jon@ghidora creates an event named e_daily, and then modifies
it a few minutes later using an ALTER EVENT statement, as shown here:

DELIMITER |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

DELIMITER ;

ALTER EVENT e_daily
 ENABLED;

(Note that comments can span multiple lines.)

This user can then run the following SELECT statement, and obtain the output shown:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 > WHERE EVENT_NAME = 'e_daily'
 > AND EVENT_SCHEMA = 'myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: def
 EVENT_SCHEMA: test
 EVENT_NAME: e_daily
 DEFINER: me@localhost
 TIME_ZONE: SYSTEM
 EVENT_BODY: SQL
 EVENT_DEFINITION: BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 1
 INTERVAL_FIELD: DAY
 SQL_MODE:
 STARTS: 2008-09-03 12:13:39
 ENDS: NULL
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2008-09-03 12:13:39
 LAST_ALTERED: 2008-09-03 12:13:39
 LAST_EXECUTED: NULL

The INFORMATION_SCHEMA FILES Table

2703

 EVENT_COMMENT: Saves total number of sessions then clears the
 table each day
 ORIGINATOR: 1
CHARACTER_SET_CLIENT: latin1
COLLATION_CONNECTION: latin1_swedish_ci
 DATABASE_COLLATION: latin1_swedish_ci

Times in the EVENTS table are displayed using the event time zone or the current session time zone,
as described in Section 19.4.4, “Event Metadata”.

See also Section 13.7.5.18, “SHOW EVENTS Syntax”.

20.8 The INFORMATION_SCHEMA FILES Table
The FILES table provides information about the files in which MySQL tablespace data is stored.

INFORMATION_SCHEMA.FILES reports data about InnoDB data files as of MySQL 5.7.8. (Previously,
this table contained information about MySQL Cluster Disk Data files. See MySQL Cluster NDB 7.3
and MySQL Cluster NDB 7.4), for more information.)

INFORMATION_SCHEMA Name SHOW Name Remarks

FILE_ID MySQL extension

FILE_NAME MySQL extension

FILE_TYPE MySQL extension

TABLESPACE_NAME MySQL extension

TABLE_CATALOG MySQL extension

TABLE_SCHEMA MySQL extension

TABLE_NAME MySQL extension

LOGFILE_GROUP_NAME MySQL extension

LOGFILE_GROUP_NUMBER MySQL extension

ENGINE MySQL extension

FULLTEXT_KEYS MySQL extension

DELETED_ROWS MySQL extension

UPDATE_COUNT MySQL extension

FREE_EXTENTS MySQL extension

TOTAL_EXTENTS MySQL extension

EXTENT_SIZE MySQL extension

INITIAL_SIZE MySQL extension

MAXIMUM_SIZE MySQL extension

AUTOEXTEND_SIZE MySQL extension

CREATION_TIME MySQL extension

LAST_UPDATE_TIME MySQL extension

LAST_ACCESS_TIME MySQL extension

RECOVER_TIME MySQL extension

TRANSACTION_COUNTER MySQL extension

VERSION MySQL extension

ROW_FORMAT MySQL extension

TABLE_ROWS MySQL extension

AVG_ROW_LENGTH MySQL extension

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

InnoDB Notes

2704

INFORMATION_SCHEMA Name SHOW Name Remarks

DATA_LENGTH MySQL extension

MAX_DATA_LENGTH MySQL extension

INDEX_LENGTH MySQL extension

DATA_FREE MySQL extension

CREATE_TIME MySQL extension

UPDATE_TIME MySQL extension

CHECK_TIME MySQL extension

CHECKSUM MySQL extension

STATUS MySQL extension

EXTRA MySQL extension

InnoDB Notes

The following notes apply to InnoDB data files. INFORMATION_SCHEMA.FILES fields that are not
described below are not applicable to InnoDB and report a NULL value.

• Data reported by INFORMATION_SCHEMA.FILES is reported from the InnoDB in-memory cache for
open files. By comparison, INFORMATION_SCHEMA.INNODB_SYS_DATAFILES reports data from
the InnoDB SYS_DATAFILES internal data dictionary table.

• The data reported by INFORMATION_SCHEMA.FILES includes temporary table tablespace data.
This data is not available in the internal SYS_DATAFILES data dictionary table, and is therefore not
reported by INNODB_SYS_DATAFILES.

• Undo tablespace data is reported by INFORMATION_SCHEMA.FILES when separate undo
tablespaces are configured using the innodb_undo_tablespaces configuration option.

• FILE_ID is the tablespace ID, also referred to as the space_id or fil_space_t::id.

• FILE_NAME is the name of the data file. File-per-table and general tablespaces have a .ibd file
name extension. Undo tablespaces are prefixed by undo. The system tablespace is prefixed by
ibdata. Temporary table tablespaces are prefixed by ibtmp. The file name includes the file path,
which may be relative to the MySQL data directory (datadir).

• FILE_TYPE is the tablespace file type. There are three possible file types for InnoDB files.
TABLESPACE is the file type for any system, general, or file-per-table tablespace file that holds
tables, indexes, or other forms of user data. TEMPORARY is the file type for temporary table
tablespaces. UNDO LOG is the file type for undo log tablespaces, which hold undo records. By
default, undo records are stored in the system tablespace. Separate undo log tablespaces can be
added using the innodb_undo_tablespaces option.

• TABLESPACE_NAME is the SQL name for the tablespace. A general tablespace name is the
SYS_TABLESPACES.NAME value. For other tablespace files, names start with innodb_, such as
innodb_system, innodb_undo, and innodb_file_per_table. The file-per-table tablespace
name format is innodb_file_per_table_##, where ## is the tablespace ID.

• ENGINE is the storage engine. For InnoDB files, the value is always InnoDB.

• FREE_EXTENTS is the number of fully free extents in the current data file.

• TOTAL_EXTENTS is the number of full extents used in the current data file. Any partial extent at the
end of the file is not counted.

• EXTENT_SIZE is 1048576 (1MB) for files with a 4k, 8k, or 16k page size. Extent size
is 2097152 bytes (2MB) for files with a 32k page size, and 4194304 (4MB) for files

The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables

2705

with a 64k page size. INFORMATION_SCHEMA.FILES does not report InnoDB page
size. Page size is defined by the innodb_page_size option. Extent size information
can also be retrieved from INNODB_SYS_TABLESPACES where FILES.FILE_ID =
INNODB_SYS_TABLESPACES.SPACE_ID.

• INITIAL_SIZE is the initial size of the file, in bytes.

• MAXIMUM_SIZE is the maximum number of bytes allowed in the file. The value is NULL for all data
files except for predefined system tablespace data files. Maximum system tablespace file size is
defined by innodb_data_file_path. Maximum temporary table tablespace file size is defined
by innodb_temp_data_file_path. A NULL value for a predefined system tablespace data file
indicates that a file size limit was not defined explicitly.

• AUTOEXTEND_SIZE is the auto-extend size defined by innodb_data_file_path for the system
tablespace, or defined by innodb_temp_data_file_path for temporary table tablespaces.

• DATA_FREE is the total amount of free space (in bytes) for the entire tablespace. Predefined system
tablespaces, which include the system tablespace and temporary table tablespaces, may have one
or more data files.

• STATUS is NORMAL by default. InnoDB file-per-table tablespaces may report IMPORTING, which
indicates that the tablespace is not yet available.

• The following query returns all data pertinent to InnoDB tablespaces.

mysql> SELECT FILE_ID, FILE_NAME, FILE_TYPE, TABLESPACE_NAME, FREE_EXTENTS, TOTAL_EXTENTS,
EXTENT_SIZE, INITIAL_SIZE, MAXIMUM_SIZE, AUTOEXTEND_SIZE, DATA_FREE, STATUS ENGINE
FROM INFORMATION_SCHEMA.FILES \G

20.9 The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables

Note

As of MySQL 5.7.6, the value of the show_compatibility_56 system
variable affects the information available from the tables described here. For
details, see the description of that variable in Section 5.1.4, “Server System
Variables”.

Note

As of MySQL 5.7.6, information available from the tables described here is
also available from the Performance Schema. The INFORMATION_SCHEMA
tables are deprecated in preference to the Performance Schema tables and
will be removed in a future MySQL release. For advice on migrating away from
the INFORMATION_SCHEMA tables to the Performance Schema tables, see
Section 21.17, “Migrating to Performance Schema System and Status Variable
Tables”.

The GLOBAL_STATUS and SESSION_STATUS tables provide information about server status variables.
Their contents correspond to the information produced by the SHOW GLOBAL STATUS and SHOW
SESSION STATUS statements (see Section 13.7.5.35, “SHOW STATUS Syntax”).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name

VARIABLE_VALUE Value

Notes:

The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables

2706

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024).

20.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables

Note

As of MySQL 5.7.6, the value of the show_compatibility_56 system
variable affects the information available from the tables described here. For
details, see the description of that variable in Section 5.1.4, “Server System
Variables”.

Note

As of MySQL 5.7.6, information available from the tables described here is
also available from the Performance Schema. The INFORMATION_SCHEMA
tables are deprecated in preference to the Performance Schema tables and
will be removed in a future MySQL release. For advice on migrating away from
the INFORMATION_SCHEMA tables to the Performance Schema tables, see
Section 21.17, “Migrating to Performance Schema System and Status Variable
Tables”.

The GLOBAL_VARIABLES and SESSION_VARIABLES tables provide information about server status
variables. Their contents correspond to the information produced by the SHOW GLOBAL VARIABLES
and SHOW SESSION VARIABLES statements (see Section 13.7.5.39, “SHOW VARIABLES Syntax”).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name

VARIABLE_VALUE Value

Notes:

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024). For
variables with very long values that are not completely displayed, use SELECT as a workaround. For
example:

SELECT @@GLOBAL.innodb_data_file_path;

20.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

The KEY_COLUMN_USAGE table describes which key columns have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG def

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG def

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

ORDINAL_POSITION

POSITION_IN_UNIQUE_CONSTRAINT

The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

2707

INFORMATION_SCHEMA Name SHOW Name Remarks

REFERENCED_TABLE_SCHEMA

REFERENCED_TABLE_NAME

REFERENCED_COLUMN_NAME

Notes:

• If the constraint is a foreign key, then this is the column of the foreign key, not the column that the
foreign key references.

• The value of ORDINAL_POSITION is the column's position within the constraint, not the column's
position within the table. Column positions are numbered beginning with 1.

• The value of POSITION_IN_UNIQUE_CONSTRAINT is NULL for unique and primary-key constraints.
For foreign-key constraints, it is the ordinal position in key of the table that is being referenced.

Suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(
 s1 INT,
 s2 INT,
 s3 INT,
 PRIMARY KEY(s3)
) ENGINE=InnoDB;

CREATE TABLE t3
(
 s1 INT,
 s2 INT,
 s3 INT,
 KEY(s1),
 CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)
) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

20.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
The OPTIMIZER_TRACE table provides information produced by the optimizer tracing capability.
To enable tracking, use the optimizer_trace system variable. For details, see MySQL Internals:
Tracing the Optimizer.

20.13 The INFORMATION_SCHEMA PARAMETERS Table
The PARAMETERS table provides information about stored procedure and function parameters,
and about return values for stored functions. Parameter information is similar to the contents of the
param_list column in the mysql.proc table.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_CATALOG def

SPECIFIC_SCHEMA db routine database

SPECIFIC_NAME name routine name

http://dev.mysql.com/doc/internals/en/optimizer-tracing.html
http://dev.mysql.com/doc/internals/en/optimizer-tracing.html

The INFORMATION_SCHEMA PARTITIONS Table

2708

INFORMATION_SCHEMA Name mysql.proc Name Remarks

ORDINAL_POSITION 1, 2, 3, ... for parameters, 0
for function RETURNS clause

PARAMETER_MODE IN, OUT, INOUT (NULL for
RETURNS)

PARAMETER_NAME parameter name (NULL for
RETURNS)

DATA_TYPE same as for COLUMNS table

CHARACTER_MAXIMUM_LENGTH same as for COLUMNS table

CHARACTER_OCTET_LENGTH same as for COLUMNS table

NUMERIC_PRECISION same as for COLUMNS table

NUMERIC_SCALE same as for COLUMNS table

DATETIME_PRECISION same as for COLUMNS table

CHARACTER_SET_NAME same as for COLUMNS table

COLLATION_NAME same as for COLUMNS table

DTD_IDENTIFIER same as for COLUMNS table

ROUTINE_TYPE type same as for ROUTINES table

Notes:

• For successive parameters of a stored procedure or function, the ORDINAL_POSITION values are
1, 2, 3, and so forth. For a stored function, there is also a row that describes the data type for the
RETURNS clause. The return value is not a true parameter, so the row that describes it has these
unique characteristics:

• The ORDINAL_POSITION value is 0.

• The PARAMETER_NAME and PARAMETER_MODE values are NULL because the return value has no
name and the mode does not apply.

20.14 The INFORMATION_SCHEMA PARTITIONS Table

The PARTITIONS table provides information about table partitions. See Chapter 18, Partitioning, for
more information about partitioning tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG MySQL extension

TABLE_SCHEMA MySQL extension

TABLE_NAME MySQL extension

PARTITION_NAME MySQL extension

SUBPARTITION_NAME MySQL extension

PARTITION_ORDINAL_POSITION MySQL extension

SUBPARTITION_ORDINAL_POSITION MySQL extension

PARTITION_METHOD MySQL extension

SUBPARTITION_METHOD MySQL extension

PARTITION_EXPRESSION MySQL extension

SUBPARTITION_EXPRESSION MySQL extension

PARTITION_DESCRIPTION MySQL extension

The INFORMATION_SCHEMA PARTITIONS Table

2709

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_ROWS MySQL extension

AVG_ROW_LENGTH MySQL extension

DATA_LENGTH MySQL extension

MAX_DATA_LENGTH MySQL extension

INDEX_LENGTH MySQL extension

DATA_FREE MySQL extension

CREATE_TIME MySQL extension

UPDATE_TIME MySQL extension

CHECK_TIME MySQL extension

CHECKSUM MySQL extension

PARTITION_COMMENT MySQL extension

NODEGROUP MySQL extension

TABLESPACE_NAME MySQL extension

Notes:

• The PARTITIONS table is a nonstandard table.

Each record in this table corresponds to an individual partition or subpartition of a partitioned table.

• TABLE_CATALOG: This column is always def.

• TABLE_SCHEMA: This column contains the name of the database to which the table belongs.

• TABLE_NAME: This column contains the name of the table containing the partition.

• PARTITION_NAME: The name of the partition.

• SUBPARTITION_NAME: If the PARTITIONS table record represents a subpartition, then this column
contains the name of subpartition; otherwise it is NULL.

• PARTITION_ORDINAL_POSITION: All partitions are indexed in the same order as they are defined,
with 1 being the number assigned to the first partition. The indexing can change as partitions are
added, dropped, and reorganized; the number shown is this column reflects the current order, taking
into account any indexing changes.

• SUBPARTITION_ORDINAL_POSITION: Subpartitions within a given partition are also indexed and
reindexed in the same manner as partitions are indexed within a table.

• PARTITION_METHOD: One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY;
that is, one of the available partitioning types as discussed in Section 18.2, “Partitioning Types”.

• SUBPARTITION_METHOD: One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is,
one of the available subpartitioning types as discussed in Section 18.2.6, “Subpartitioning”.

• PARTITION_EXPRESSION: This is the expression for the partitioning function used in the CREATE
TABLE or ALTER TABLE statement that created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
 c1 INT,
 c2 INT,
 c3 VARCHAR(25)
)

The INFORMATION_SCHEMA PARTITIONS Table

2710

PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table record for a partition from this table
displays c1 + c2, as shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';
+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2 |
+----------------------+
1 row in set (0.09 sec)

• SUBPARTITION_EXPRESSION: This works in the same fashion for the subpartitioning expression
that defines the subpartitioning for a table as PARTITION_EXPRESSION does for the partitioning
expression used to define a table's partitioning.

If the table has no subpartitions, then this column is NULL.

• PARTITION_DESCRIPTION: This column is used for RANGE and LIST partitions. For a RANGE
partition, it contains the value set in the partition's VALUES LESS THAN clause, which can be
either an integer or MAXVALUE. For a LIST partition, this column contains the values defined in the
partition's VALUES IN clause, which is a comma-separated list of integer values.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.

• TABLE_ROWS: The number of table rows in the partition.

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column is only an estimated
value used in SQL optimization, and may not always be exact.

• AVG_ROW_LENGTH: The average length of the rows stored in this partition or subpartition, in bytes.

This is the same as DATA_LENGTH divided by TABLE_ROWS.

• DATA_LENGTH: The total length of all rows stored in this partition or subpartition, in bytes—that is,
the total number of bytes stored in the partition or subpartition.

• MAX_DATA_LENGTH: The maximum number of bytes that can be stored in this partition or
subpartition.

• INDEX_LENGTH: The length of the index file for this partition or subpartition, in bytes.

• DATA_FREE: The number of bytes allocated to the partition or subpartition but not used.

• CREATE_TIME: The time of the partition's or subpartition's creation.

Prior to MySQL 5.7.8, for partitioned InnoDB tables, this column was always NULL. The correct
creation time is shown in MySQL 5.7.8 and later. (Bug #17299181, Bug #69990)

• UPDATE_TIME: The time that the partition or subpartition was last modified.

Prior to MySQL 5.7.8, for partitioned InnoDB tables, this column was always NULL. The correct
modification time is shown in MySQL 5.7.8 and later. (Bug #17299181, Bug #69990)

• CHECK_TIME: The last time that the table to which this partition or subpartition belongs was checked.

For partitioned InnoDB tables, this column is always NULL.

• CHECKSUM: The checksum value, if any; otherwise, this column is NULL.

The INFORMATION_SCHEMA PLUGINS Table

2711

• PARTITION_COMMENT: This column contains the text of any comment made for the partition.

In MySQL 5.7, the maximum length for a partition comment is defined as 1024 characters, and the
display width of the PARTITION_COMMENT column is also 1024, characters to match this limit (Bug
#11748924, Bug #37728).

The default value for this column is an empty string.

• NODEGROUP: This is the nodegroup to which the partition belongs. This is relevant only to MySQL
Cluster tables; otherwise the value of this column is always 0.

• TABLESPACE_NAME: This column contains the name of the tablespace to which the partition
belongs. The value of this column is always DEFAULT.

• A nonpartitioned table has one record in INFORMATION_SCHEMA.PARTITIONS; however, the
values of the PARTITION_NAME, SUBPARTITION_NAME, PARTITION_ORDINAL_POSITION,
SUBPARTITION_ORDINAL_POSITION, PARTITION_METHOD, SUBPARTITION_METHOD,
PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and PARTITION_DESCRIPTION
columns are all NULL. (The PARTITION_COMMENT column in this case is blank.)

20.15 The INFORMATION_SCHEMA PLUGINS Table

The PLUGINS table provides information about server plugins.

INFORMATION_SCHEMA Name SHOW Name Remarks

PLUGIN_NAME Name MySQL extension

PLUGIN_VERSION MySQL extension

PLUGIN_STATUS Status MySQL extension

PLUGIN_TYPE Type MySQL extension

PLUGIN_TYPE_VERSION MySQL extension

PLUGIN_LIBRARY Library MySQL extension

PLUGIN_LIBRARY_VERSION MySQL extension

PLUGIN_AUTHOR MySQL extension

PLUGIN_DESCRIPTION MySQL extension

PLUGIN_LICENSE License MySQL extension

LOAD_OPTION MySQL extension

Notes:

• The PLUGINS table is a nonstandard table.

• PLUGIN_NAME is the name used to refer to the plugin in statements such as INSTALL PLUGIN and
UNINSTALL PLUGIN.

• PLUGIN_VERSION is the version from the plugin's general type descriptor.

• PLUGIN_STATUS indicates the plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• PLUGIN_TYPE indicates the type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or
AUTHENTICATION.

• PLUGIN_TYPE_VERSION is the version from the plugin's type-specific descriptor.

• PLUGIN_LIBRARY is the name of the plugin shared object file. This is the name used to refer to the
plugin file in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in

The INFORMATION_SCHEMA PROCESSLIST Table

2712

the directory named by the plugin_dir system variable. If the library name is NULL, the plugin is
compiled in and cannot be uninstalled with UNINSTALL PLUGIN.

• PLUGIN_LIBRARY_VERSION indicates the plugin API interface version.

• PLUGIN_AUTHOR names the plugin author.

• PLUGIN_DESCRIPTION provides a short description of the plugin.

• PLUGIN_LICENSE indicates how the plugin is licensed; for example, GPL.

• LOAD_OPTION indicates how the plugin was loaded. The value is OFF, ON, FORCE, or
FORCE_PLUS_PERMANENT. See Section 5.1.8.1, “Installing and Uninstalling Plugins”.

For plugins installed with INSTALL PLUGIN, the PLUGIN_NAME and PLUGIN_LIBRARY values are
also registered in the mysql.plugin table.

These statements are equivalent:

SELECT
 PLUGIN_NAME, PLUGIN_STATUS, PLUGIN_TYPE,
 PLUGIN_LIBRARY, PLUGIN_LICENSE
FROM INFORMATION_SCHEMA.PLUGINS;

SHOW PLUGINS;

For information about plugin data structures that form the basis of the information in the PLUGINS
table, see Section 24.2, “The MySQL Plugin API”.

Plugin information is also available using the SHOW PLUGINS statement. See Section 13.7.5.25,
“SHOW PLUGINS Syntax”.

20.16 The INFORMATION_SCHEMA PROCESSLIST Table

The PROCESSLIST table provides information about which threads are running.

INFORMATION_SCHEMA Name SHOW Name Remarks

ID Id MySQL extension

USER User MySQL extension

HOST Host MySQL extension

DB db MySQL extension

COMMAND Command MySQL extension

TIME Time MySQL extension

STATE State MySQL extension

INFO Info MySQL extension

For an extensive description of the table columns, see Section 13.7.5.29, “SHOW PROCESSLIST
Syntax”.

Notes:

• The PROCESSLIST table is a nonstandard table.

• Like the output from the corresponding SHOW statement, the PROCESSLIST table will only show
information about your own threads, unless you have the PROCESS privilege, in which case you will
see information about other threads, too. As an anonymous user, you cannot see any rows at all.

The INFORMATION_SCHEMA PROFILING Table

2713

• If an SQL statement refers to INFORMATION_SCHEMA.PROCESSLIST, MySQL populates the entire
table once, when statement execution begins, so there is read consistency during the statement.
There is no read consistency for a multi-statement transaction, though.

• Process information is also available from the performance_schema.threads table. However,
access to threads does not require a mutex and has minimal impact on server performance.
INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance
consequences because they require a mutex. threads also shows information about background
threads, which INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST do not. This
means that threads can be used to monitor activity the other thread information sources cannot.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST

SHOW FULL PROCESSLIST

20.17 The INFORMATION_SCHEMA PROFILING Table

The PROFILING table provides statement profiling information. Its contents correspond to the
information produced by the SHOW PROFILES and SHOW PROFILE statements (see Section 13.7.5.31,
“SHOW PROFILES Syntax”). The table is empty unless the profiling session variable is set to 1.

Note

This table is deprecated as of MySQL 5.7.2 and will be removed in a future
MySQL release. Use the Performance Schema instead; see Chapter 21,
MySQL Performance Schema.

INFORMATION_SCHEMA Name SHOW Name Remarks

QUERY_ID Query_ID

SEQ

STATE Status

DURATION Duration

CPU_USER CPU_user

CPU_SYSTEM CPU_system

CONTEXT_VOLUNTARY Context_voluntary

CONTEXT_INVOLUNTARY Context_involuntary

BLOCK_OPS_IN Block_ops_in

BLOCK_OPS_OUT Block_ops_out

MESSAGES_SENT Messages_sent

MESSAGES_RECEIVED Messages_received

PAGE_FAULTS_MAJOR Page_faults_major

PAGE_FAULTS_MINOR Page_faults_minor

SWAPS Swaps

SOURCE_FUNCTION Source_function

SOURCE_FILE Source_file

SOURCE_LINE Source_line

Notes:

• QUERY_ID is a numeric statement identifier.

The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

2714

• SEQ is a sequence number indicating the display order for rows with the same QUERY_ID value.

• STATE is the profiling state to which the row measurements apply.

• DURATION indicates how long statement execution remained in the given state, in seconds.

• CPU_USER and CPU_SYSTEM indicate user and system CPU use, in seconds.

• CONTEXT_VOLUNTARY and CONTEXT_INVOLUNTARY indicate how many voluntary and involuntary
context switches occurred.

• BLOCK_OPS_IN and BLOCK_OPS_OUT indicate the number of block input and output operations.

• MESSAGES_SENT and MESSAGES_RECEIVED indicate the number of communication messages sent
and received.

• PAGE_FAULTS_MAJOR and PAGE_FAULTS_MINOR indicate the number of major and minor page
faults.

• SWAPS indicates how many swaps occurred.

• SOURCE_FUNCTION, SOURCE_FILE, and SOURCE_LINE provide information indicating where in the
source code the profiled state executes.

20.18 The INFORMATION_SCHEMA
REFERENTIAL_CONSTRAINTS Table

The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG def

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

UNIQUE_CONSTRAINT_CATALOG def

UNIQUE_CONSTRAINT_SCHEMA

UNIQUE_CONSTRAINT_NAME

MATCH_OPTION

UPDATE_RULE

DELETE_RULE

TABLE_NAME

REFERENCED_TABLE_NAME

Notes:

• TABLE_NAME has the same value as TABLE_NAME in
INFORMATION_SCHEMA.TABLE_CONSTRAINTS.

• CONSTRAINT_SCHEMA and CONSTRAINT_NAME identify the foreign key.

• UNIQUE_CONSTRAINT_SCHEMA, UNIQUE_CONSTRAINT_NAME, and REFERENCED_TABLE_NAME
identify the referenced key.

• The only valid value at this time for MATCH_OPTION is NONE.

• The possible values for UPDATE_RULE or DELETE_RULE are CASCADE, SET NULL, SET DEFAULT,
RESTRICT, NO ACTION.

The INFORMATION_SCHEMA ROUTINES Table

2715

20.19 The INFORMATION_SCHEMA ROUTINES Table

The ROUTINES table provides information about stored routines (both procedures and functions). The
ROUTINES table does not include user-defined functions (UDFs).

The column named “mysql.proc name” indicates the mysql.proc table column that corresponds to
the INFORMATION_SCHEMA.ROUTINES table column, if any.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_NAME specific_name

ROUTINE_CATALOG def

ROUTINE_SCHEMA db

ROUTINE_NAME name

ROUTINE_TYPE type {PROCEDURE|FUNCTION}

DATA_TYPE same as for COLUMNS table

CHARACTER_MAXIMUM_LENGTH same as for COLUMNS table

CHARACTER_OCTET_LENGTH same as for COLUMNS table

NUMERIC_PRECISION same as for COLUMNS table

NUMERIC_SCALE same as for COLUMNS table

DATETIME_PRECISION same as for COLUMNS table

CHARACTER_SET_NAME same as for COLUMNS table

COLLATION_NAME same as for COLUMNS table

DTD_IDENTIFIER data type descriptor

ROUTINE_BODY SQL

ROUTINE_DEFINITION body_utf8

EXTERNAL_NAME NULL

EXTERNAL_LANGUAGE language NULL

PARAMETER_STYLE SQL

IS_DETERMINISTIC is_deterministic

SQL_DATA_ACCESS sql_data_access

SQL_PATH NULL

SECURITY_TYPE security_type

CREATED created

LAST_ALTERED modified

SQL_MODE sql_mode MySQL extension

ROUTINE_COMMENT comment MySQL extension

DEFINER definer MySQL extension

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

DATABASE_COLLATION MySQL extension

Notes:

• MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL

The INFORMATION_SCHEMA SCHEMATA Table

2716

• Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do not
have external languages yet, so it is always NULL.

• CREATED: The date and time when the routine was created. This is a TIMESTAMP value.

• LAST_ALTERED: The date and time when the routine was last modified. This is a TIMESTAMP value.
If the routine has not been modified since its creation, this column holds the same value as the
CREATED column.

• SQL_MODE: The SQL mode in effect when the routine was created or altered, and under which the
routine executes. For the permitted values, see Section 5.1.7, “Server SQL Modes”.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the routine was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the routine was created.

• DATABASE_COLLATION: The collation of the database with which the routine is associated.

• The DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
NUMERIC_PRECISION, NUMERIC_SCALE, DATETIME_PRECISION, CHARACTER_SET_NAME, and
COLLATION_NAME columns provide information about the data type for the RETURNS clause of
stored functions. If a stored routine is a stored procedure, these columns all are NULL.

• Information about stored function RETURNS data types is also available in the PARAMETERS
table. The return value data type row for a function can be identified as the row that has an
ORDINAL_POSITION value of 0.

20.20 The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

CATALOG_NAME def

SCHEMA_NAME Database

DEFAULT_CHARACTER_SET_NAME

DEFAULT_COLLATION_NAME

SQL_PATH NULL

The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
 FROM INFORMATION_SCHEMA.SCHEMATA
 [WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
 [LIKE 'wild']

20.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. This
information comes from the mysql.db grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value, MySQL extension

The INFORMATION_SCHEMA STATISTICS Table

2717

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def, MySQL extension

TABLE_SCHEMA MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a nonstandard table. It takes its values from the mysql.db table.

20.22 The INFORMATION_SCHEMA STATISTICS Table

The STATISTICS table provides information about table indexes.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def

TABLE_SCHEMA = Database

TABLE_NAME Table

NON_UNIQUE Non_unique

INDEX_SCHEMA = Database

INDEX_NAME Key_name

SEQ_IN_INDEX Seq_in_index

COLUMN_NAME Column_name

COLLATION Collation

CARDINALITY Cardinality

SUB_PART Sub_part MySQL extension

PACKED Packed MySQL extension

NULLABLE Null MySQL extension

INDEX_TYPE Index_type MySQL extension

COMMENT Comment MySQL extension

Notes:

• There is no standard table for indexes. The preceding list is similar to what SQL Server 2000 returns
for sp_statistics, except that we replaced the name QUALIFIER with CATALOG and we replaced
the name OWNER with SCHEMA.

Clearly, the preceding table and the output from SHOW INDEX are derived from the same parent. So
the correlation is already close.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
 WHERE table_name = 'tbl_name'
 AND table_schema = 'db_name'

SHOW INDEX
 FROM tbl_name
 FROM db_name

20.23 The INFORMATION_SCHEMA TABLES Table

The INFORMATION_SCHEMA TABLES Table

2718

The TABLES table provides information about tables in databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def

TABLE_SCHEMA Table_...

TABLE_NAME Table_...

TABLE_TYPE

ENGINE Engine MySQL extension

VERSION Version The version number of the
table's .frm file, MySQL
extension

ROW_FORMAT Row_format MySQL extension

TABLE_ROWS Rows MySQL extension

AVG_ROW_LENGTH Avg_row_length MySQL extension

DATA_LENGTH Data_length MySQL extension

MAX_DATA_LENGTH Max_data_length MySQL extension

INDEX_LENGTH Index_length MySQL extension

DATA_FREE Data_free MySQL extension

AUTO_INCREMENT Auto_increment MySQL extension

CREATE_TIME Create_time MySQL extension

UPDATE_TIME Update_time MySQL extension

CHECK_TIME Check_time MySQL extension

TABLE_COLLATION Collation MySQL extension

CHECKSUM Checksum MySQL extension

CREATE_OPTIONS Create_options MySQL extension

TABLE_COMMENT Comment MySQL extension

Notes:

• TABLE_SCHEMA and TABLE_NAME are a single field in a SHOW display, for example Table_in_db1.

• TABLE_TYPE should be BASE TABLE or VIEW. The TABLES table does not list TEMPORARY tables.

• For partitioned tables, the ENGINE column shows the name of the storage engine used by all
partitions. (Previously, this column showed PARTITION for such tables.)

• The TABLE_ROWS column is NULL if the table is in the INFORMATION_SCHEMA database.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also
true if the InnoDB table is partitioned.)

• The DATA_FREE column shows the free space in bytes for InnoDB tables.

• Prior to MySQL 5.7.8, for partitioned InnoDB tables, the CREATE_TIME column always showed
NULL. This column shows the correct table creation time for such tables in MySQL 5.7.8 and later.
(Bug #17299181, Bug #69990)

• Beginning with MySQL 5.7.2, UPDATE_TIME displays a timestamp value for the last UPDATE,
INSERT, or DELETE performed on InnoDB tables that are not partitioned. Previously, UPDATE_TIME
displayed a NULL value for InnoDB tables. For MVCC, the timestamp value reflects the COMMIT
time, which is considered the last update time. Timestamps are not persisted when the server is
restarted or when the table is evicted from the InnoDB data dictionary cache.

The INFORMATION_SCHEMA TABLESPACES Table

2719

The UPDATE_TIME column also shows this information for partitioned InnoDB tables in MySQL
5.7.8 and later. Previously this column was always NULL for such tables. (Bug #17299181, Bug
#69990)

• For partitioned InnoDB tables, the CHECK_TIME column is always NULL.

• We have nothing for the table's default character set. TABLE_COLLATION is close, because collation
names begin with a character set name.

• The CREATE_OPTIONS column shows partitioned if the table is partitioned.

The following statements are equivalent:

SELECT table_name FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']

SHOW TABLES
 FROM db_name
 [LIKE 'wild']

20.24 The INFORMATION_SCHEMA TABLESPACES Table

The TABLESPACES table provides information about active tablespaces.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLESPACE_NAME MySQL extension

ENGINE MySQL extension

TABLESPACE_TYPE MySQL extension

LOGFILE_GROUP_NAME MySQL extension

EXTENT_SIZE MySQL extension

AUTOEXTEND_SIZE MySQL extension

MAXIMUM_SIZE MySQL extension

NODEGROUP_ID MySQL extension

TABLESPACE_COMMENT MySQL extension

Notes:

The INFORMATION_SCHEMA.TABLESPACES table does not provide information about InnoDB
tablespaces. For InnoDB tablespace metadata, see INNODB_SYS_TABLESPACES and
INNODB_SYS_DATAFILES. As of MySQL 5.7.8, the INFORMATION_SCHEMA.FILES table also
provides metadata for InnoDB tablespaces.

20.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG def

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_SCHEMA

The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

2720

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_NAME

CONSTRAINT_TYPE

Notes:

• The CONSTRAINT_TYPE value can be UNIQUE, PRIMARY KEY, or FOREIGN KEY.

• The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name
field in the output from SHOW INDEX when the Non_unique field is 0.

• The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY,
FOREIGN KEY, CHECK. This is a CHAR (not ENUM) column. The CHECK value is not available until we
support CHECK.

20.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

The TABLE_PRIVILEGES table provides information about table privileges. This information comes
from the mysql.tables_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

TABLE_CATALOG def

TABLE_SCHEMA

TABLE_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES, ALTER, INDEX, DROP, CREATE VIEW.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

SHOW GRANTS ...

20.27 The INFORMATION_SCHEMA TRIGGERS Table

The TRIGGERS table provides information about triggers. You can see information only for databases
and tables for which you have the TRIGGER privilege.

INFORMATION_SCHEMA Name SHOW Name Remarks

TRIGGER_CATALOG def

TRIGGER_SCHEMA

TRIGGER_NAME Trigger

EVENT_MANIPULATION Event

EVENT_OBJECT_CATALOG def

EVENT_OBJECT_SCHEMA

The INFORMATION_SCHEMA TRIGGERS Table

2721

INFORMATION_SCHEMA Name SHOW Name Remarks

EVENT_OBJECT_TABLE Table

ACTION_ORDER

ACTION_CONDITION NULL

ACTION_STATEMENT Statement

ACTION_ORIENTATION ROW

ACTION_TIMING Timing

ACTION_REFERENCE_OLD_TABLE NULL

ACTION_REFERENCE_NEW_TABLE NULL

ACTION_REFERENCE_OLD_ROW OLD

ACTION_REFERENCE_NEW_ROW NEW

CREATED Created

SQL_MODE sql_mode MySQL extension

DEFINER Definer MySQL extension

CHARACTER_SET_CLIENT character_set_client MySQL extension

COLLATION_CONNECTION collation_connection MySQL extension

DATABASE_COLLATION Database Collation MySQL extension

Notes:

• The names in the “SHOW Name” column refer to the SHOW TRIGGERS statement, not SHOW CREATE
TRIGGER. See Section 13.7.5.38, “SHOW TRIGGERS Syntax”.

• TRIGGER_SCHEMA and TRIGGER_NAME: The name of the database in which the trigger occurs and
the trigger name, respectively.

• EVENT_MANIPULATION: The trigger event. This is the type of operation on the associated table for
which the trigger activates. The value is 'INSERT' (a row was inserted), 'DELETE' (a row was
deleted), or 'UPDATE' (a row was modified).

• EVENT_OBJECT_SCHEMA and EVENT_OBJECT_TABLE: As noted in Section 19.3, “Using Triggers”,
every trigger is associated with exactly one table. These columns indicate the database in which this
table occurs, and the table name, respectively.

• ACTION_ORDER: The ordinal position of the trigger's action within the list of triggers on the same
table with the same EVENT_MANIPULATION and ACTION_TIMING values. Before MySQL 5.7.2, this
value is always 0 because it is not possible for a table to have more than one trigger with the same
EVENT_MANIPULATION and ACTION_TIMING values.

• ACTION_STATEMENT: The trigger body; that is, the statement executed when the trigger activates.
This text uses UTF-8 encoding.

• ACTION_ORIENTATION: Always contains the value 'ROW'.

• ACTION_TIMING: Whether the trigger activates before or after the triggering event. The value is
'BEFORE' or 'AFTER'.

• ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW: The old and new column
identifiers, respectively. This means that ACTION_REFERENCE_OLD_ROW always contains the value
'OLD' and ACTION_REFERENCE_NEW_ROW always contains the value 'NEW'.

• CREATED: The date and time when the trigger was created. This is a TIMESTAMP(2) value (with
a fractional part in hundredths of seconds) for triggers created in MySQL 5.7.2 or later, NULL for
triggers created prior to 5.7.2.

The INFORMATION_SCHEMA USER_PRIVILEGES Table

2722

• SQL_MODE: The SQL mode in effect when the trigger was created, and under which the trigger
executes. For the permitted values, see Section 5.1.7, “Server SQL Modes”.

• DEFINER: The account of the user who created the trigger, in 'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the trigger was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the trigger was created.

• DATABASE_COLLATION: The collation of the database with which the trigger is associated.

• The following columns currently always contain NULL: ACTION_CONDITION,
ACTION_REFERENCE_OLD_TABLE, and ACTION_REFERENCE_NEW_TABLE.

Example, using the ins_sum trigger defined in Section 19.3, “Using Triggers”:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS
 -> WHERE TRIGGER_SCHEMA='test' AND TRIGGER_NAME='ins_sum'\G
*************************** 1. row ***************************
 TRIGGER_CATALOG: def
 TRIGGER_SCHEMA: test
 TRIGGER_NAME: ins_sum
 EVENT_MANIPULATION: INSERT
 EVENT_OBJECT_CATALOG: def
 EVENT_OBJECT_SCHEMA: test
 EVENT_OBJECT_TABLE: account
 ACTION_ORDER: 1
 ACTION_CONDITION: NULL
 ACTION_STATEMENT: SET @sum = @sum + NEW.amount
 ACTION_ORIENTATION: ROW
 ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
 ACTION_REFERENCE_OLD_ROW: OLD
 ACTION_REFERENCE_NEW_ROW: NEW
 CREATED: 2013-07-05 07:41:21.26
 SQL_MODE: NO_ENGINE_SUBSTITUTION
 DEFINER: me@localhost
 CHARACTER_SET_CLIENT: utf8
 COLLATION_CONNECTION: utf8_general_ci
 DATABASE_COLLATION: latin1_swedish_ci

20.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table

The USER_PRIVILEGES table provides information about global privileges. This information comes
from the mysql.user grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value, MySQL extension

TABLE_CATALOG def, MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a nonstandard table. It takes its values from the mysql.user table.

20.29 The INFORMATION_SCHEMA VIEWS Table

The INFORMATION_SCHEMA VIEWS Table

2723

The VIEWS table provides information about views in databases. You must have the SHOW VIEW
privilege to access this table.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG def

TABLE_SCHEMA

TABLE_NAME

VIEW_DEFINITION

CHECK_OPTION

IS_UPDATABLE

DEFINER

SECURITY_TYPE

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

Notes:

• The VIEW_DEFINITION column has most of what you see in the Create Table field that SHOW
CREATE VIEW produces. Skip the words before SELECT and skip the words WITH CHECK OPTION.
Suppose that the original statement was:

CREATE VIEW v AS
 SELECT s2,s1 FROM t
 WHERE s1 > 5
 ORDER BY s1
 WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• The CHECK_OPTION column has a value of NONE, CASCADE, or LOCAL.

• MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES
(true) if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set
to NO (false). The IS_UPDATABLE column in the VIEWS table displays the status of this flag.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and will be
rejected. (Note that even if a view is updatable, it might not be possible to insert into it; for details,
refer to Section 19.5.3, “Updatable and Insertable Views”.)

The IS_UPDATABLE flag may be unreliable if a view depends on one or more other views, and one
of these underlying views is updated. Regardless of the IS_UPDATABLE value, the server keeps
track of the updatability of a view and correctly rejects data change operations to views that are
not updatable. If the IS_UPDATABLE value for a view has become inaccurate to due to changes to
underlying views, the value can be updated by deleting and recreating the view.

• DEFINER: The account of the user who created the view, in 'user_name'@'host_name' format.
SECURITY_TYPE has a value of DEFINER or INVOKER.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the view was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the view was created.

INFORMATION_SCHEMA Tables for InnoDB

2724

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support.
For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard
SQL concatenation operator, the double bar (||), in your queries. If you then create a view that
concatenates items, you might worry that changing the sql_mode setting to a value different from
ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a
view definition, MySQL always stores it the same way, in a canonical form. Here is an example that
shows how the server changes a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS
 -> WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+
| VIEW_DEFINITION |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value
of sql_mode will not affect the results from the view. However an additional consequence is that
comments prior to SELECT are stripped from the definition by the server.

20.30 INFORMATION_SCHEMA Tables for InnoDB

This section provides table definitions for InnoDB INFORMATION_SCHEMA tables. For related
information and examples, see Section 14.12, “InnoDB INFORMATION_SCHEMA Tables”.

InnoDB INFORMATION_SCHEMA tables can be used to monitor ongoing InnoDB activity, to detect
inefficiencies before they turn into issues, or to troubleshoot performance and capacity issues. As your
database becomes bigger and busier, running up against the limits of your hardware capacity, you
monitor and tune these aspects to keep the database running smoothly.

20.30.1 The INFORMATION_SCHEMA INNODB_CMP and
INNODB_CMP_RESET Tables

The INNODB_CMP and INNODB_CMP_RESET tables contain status information on operations related to
compressed InnoDB tables.

Table 20.1 Columns of INNODB_CMP and INNODB_CMP_RESET

Column name Description

PAGE_SIZE Compressed page size in bytes.

COMPRESS_OPS Number of times a B-tree page of the size PAGE_SIZE has been
compressed. Pages are compressed whenever an empty page is created
or the space for the uncompressed modification log runs out.

COMPRESS_OPS_OK Number of times a B-tree page of the size PAGE_SIZE has
been successfully compressed. This count should never exceed
COMPRESS_OPS.

COMPRESS_TIME Total time in seconds spent in attempts to compress B-tree pages of the
size PAGE_SIZE.

UNCOMPRESS_OPS Number of times a B-tree page of the size PAGE_SIZE has been
uncompressed. B-tree pages are uncompressed whenever compression

The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables

2725

Column name Description
fails or at first access when the uncompressed page does not exist in the
buffer pool.

UNCOMPRESS_TIME Total time in seconds spent in uncompressing B-tree pages of the size
PAGE_SIZE.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP \G
*************************** 1. row ***************************
 page_size: 1024
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 2. row ***************************
 page_size: 2048
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 3. row ***************************
 page_size: 4096
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 4. row ***************************
 page_size: 8192
 compress_ops: 86955
compress_ops_ok: 81182
 compress_time: 27
 uncompress_ops: 26828
uncompress_time: 5
*************************** 5. row ***************************
 page_size: 16384
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0

Notes:

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of these tables
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.6.1.4, “Monitoring Compression at Runtime” and
Section 14.12.1.3, “Using the Compression Information Schema Tables”. For general information
about InnoDB table compression, see Section 14.6, “InnoDB Table and Page Compression”.

20.30.2 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables contain status
information on operations related to compressed InnoDB tables and indexes, with separate statistics
for each combination of database, table, and index, to help you evaluate the performance and
usefulness of compression for specific tables.

The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables

2726

For a compressed InnoDB table, both the table data and all the secondary indexes are compressed. In
this context, the table data is treated as just another index, one that happens to contain all the columns:
the clustered index.

Table 20.2 Columns of INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET

Column name Description

DATABASE_NAME Database containing the applicable table.

TABLE_NAME Table to monitor for compression statistics.

INDEX_NAME Index to monitor for compression statistics.

COMPRESS_OPS Number of compression operations attempted. Pages are compressed
whenever an empty page is created or the space for the uncompressed
modification log runs out.

COMPRESS_OPS_OK Number of successful compression operations. Subtract from the
COMPRESS_OPS value to get the number of compression failures. Divide
by the COMPRESS_OPS value to get the percentage of compression
failures.

COMPRESS_TIME Total amount of CPU time, in seconds, used for compressing data in this
index.

UNCOMPRESS_OPS Number of uncompression operations performed. Compressed InnoDB
pages are uncompressed whenever compression fails, or the first time a
compressed page is accessed in the buffer pool and the uncompressed
page does not exist.

UNCOMPRESS_TIME Total amount of CPU time, in seconds, used for uncompressing data in
this index.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX \G
*************************** 1. row ***************************
 database_name: employees
 table_name: salaries
 index_name: PRIMARY
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 23451
uncompress_time: 4
*************************** 2. row ***************************
 database_name: employees
 table_name: salaries
 index_name: emp_no
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 1597
uncompress_time: 0

Notes:

• Use these tables to measure the effectiveness of InnoDB table compression for specific tables,
indexes, or both.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of these tables
including data types and default values.

• You must have the PROCESS privilege to query these tables.

• Because collecting separate measurements for every index imposes substantial performance
overhead, INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET statistics are not

The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

2727

gathered by default. You must enable the innodb_cmp_per_index_enabled configuration option
before performing the operations on compressed tables that you want to monitor.

• For usage information, see Section 14.6.1.4, “Monitoring Compression at Runtime” and
Section 14.12.1.3, “Using the Compression Information Schema Tables”. For general information
about InnoDB table compression, see Section 14.6, “InnoDB Table and Page Compression”.

20.30.3 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables contain status information on compressed
pages within the InnoDB buffer pool.

Table 20.3 Columns of INNODB_CMPMEM and INNODB_CMPMEM_RESET

Column name Description

PAGE_SIZE Block size in bytes. Each record of this table describes blocks of this size.

BUFFER_POOL_INSTANCEA unique identifier for the buffer pool instance.

PAGES_USED Number of blocks of the size PAGE_SIZE that are currently in use.

PAGES_FREE Number of blocks of the size PAGE_SIZE that are currently available for
allocation. This column shows the external fragmentation in the memory
pool. Ideally, these numbers should be at most 1.

RELOCATION_OPS Number of times a block of the size PAGE_SIZE has been relocated.
The buddy system can relocate the allocated “buddy neighbor” of a freed
block when it tries to form a bigger freed block. Reading from the table
INNODB_CMPMEM_RESET resets this count.

RELOCATION_TIME Total time in microseconds spent in relocating blocks of the size
PAGE_SIZE. Reading from the table INNODB_CMPMEM_RESET resets this
count.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMPMEM \G
*************************** 1. row ***************************
 page_size: 1024
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 2. row ***************************
 page_size: 2048
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 3. row ***************************
 page_size: 4096
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 4. row ***************************
 page_size: 8192
buffer_pool_instance: 0
 pages_used: 7673
 pages_free: 15
 relocation_ops: 4638
 relocation_time: 0
*************************** 5. row ***************************
 page_size: 16384

The INFORMATION_SCHEMA INNODB_TRX Table

2728

buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0

Notes:

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of these tables
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.6.1.4, “Monitoring Compression at Runtime” and
Section 14.12.1.3, “Using the Compression Information Schema Tables”. For general information
about InnoDB table compression, see Section 14.6, “InnoDB Table and Page Compression”.

20.30.4 The INFORMATION_SCHEMA INNODB_TRX Table

The INNODB_TRX table contains information about every transaction (excluding read-only transactions)
currently executing inside InnoDB, including whether the transaction is waiting for a lock, when the
transaction started, and the SQL statement the transaction is executing, if any.

Table 20.4 INNODB_TRX Columns

Column name Description

TRX_ID Unique transaction ID number, internal to InnoDB. (Starting in
MySQL 5.6, these IDs are not created for transactions that are
read-only and non-locking. See Section 8.5.3, “Optimizing InnoDB
Read-Only Transactions” for details.)

TRX_WEIGHT The weight of a transaction, reflecting (but not necessarily the
exact count of) the number of rows altered and the number of
rows locked by the transaction. To resolve a deadlock, InnoDB
selects the transaction with the smallest weight as the “victim” to
rollback. Transactions that have changed non-transactional tables
are considered heavier than others, regardless of the number of
altered and locked rows.

TRX_STATE Transaction execution state. One of RUNNING, LOCK WAIT,
ROLLING BACK or COMMITTING.

TRX_STARTED Transaction start time.

TRX_REQUESTED_LOCK_ID ID of the lock the transaction is currently waiting for (if TRX_STATE
is LOCK WAIT, otherwise NULL). Details about the lock can be
found by joining with INNODB_LOCKS on LOCK_ID.

TRX_WAIT_STARTED Time when the transaction started waiting on the lock (if
TRX_STATE is LOCK WAIT, otherwise NULL).

TRX_MYSQL_THREAD_ID MySQL thread ID. Can be used for joining with PROCESSLIST on
ID. See Potential Inconsistency with PROCESSLIST Data.

TRX_QUERY The SQL query that is being executed by the transaction.

TRX_OPERATION_STATE The transaction's current operation, or NULL.

TRX_TABLES_IN_USE The number of InnoDB tables used while processing the current
SQL statement of this transaction.

TRX_TABLES_LOCKED Number of InnoDB tables that the current SQL statement has row
locks on. (Because these are row locks, not table locks, the tables
can usually still be read from and written to by multiple transactions,
despite some rows being locked.)

The INFORMATION_SCHEMA INNODB_TRX Table

2729

Column name Description

TRX_LOCK_STRUCTS The number of locks reserved by the transaction.

TRX_LOCK_MEMORY_BYTES Total size taken up by the lock structures of this transaction in
memory.

TRX_ROWS_LOCKED Approximate number or rows locked by this transaction. The value
might include delete-marked rows that are physically present but
not visible to the transaction.

TRX_ROWS_MODIFIED The number of modified and inserted rows in this transaction.

TRX_CONCURRENCY_TICKETS A value indicating how much work the current transaction
can do before being swapped out, as specified by the
innodb_concurrency_tickets option.

TRX_ISOLATION_LEVEL The isolation level of the current transaction.

TRX_UNIQUE_CHECKS Whether unique checks are turned on or off for the current
transaction. (They might be turned off during a bulk data load, for
example.)

TRX_FOREIGN_KEY_CHECKS Whether foreign key checks are turned on or off for the current
transaction. (They might be turned off during a bulk data load, for
example.)

TRX_LAST_FOREIGN_KEY_ERRORDetailed error message for last FK error, or NULL.

TRX_ADAPTIVE_HASH_LATCHED Whether or not the adaptive hash index is locked by the current
transaction. (Only a single transaction at a time can modify the
adaptive hash index.)

TRX_ADAPTIVE_HASH_TIMEOUT Whether to relinquish the search latch immediately for the adaptive
hash index, or reserve it across calls from MySQL. When there is
no AHI contention, this value remains zero and statements reserve
the latch until they finish. During times of contention, it counts down
to zero, and statements release the latch immediately after each
row lookup.

TRX_IS_READ_ONLY A value of 1 indicates the transaction is read-only. (5.6.4 and up.)

TRX_AUTOCOMMIT_NON_LOCKINGA value of 1 indicates the transaction is a SELECT statement
that does not use the FOR UPDATE or LOCK IN SHARED MODE
clauses, and is executing with the autocommit setting turned
on so that the transaction will only contain this one statement.
(5.6.4 and up.) When this column and TRX_IS_READ_ONLY are
both 1, InnoDB optimizes the transaction to reduce the overhead
associated with transactions that change table data.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX\G
*************************** 1. row ***************************
 trx_id: 1510
 trx_state: RUNNING
 trx_started: 2014-11-19 13:24:40
 trx_requested_lock_id: NULL
 trx_wait_started: NULL
 trx_weight: 586739
 trx_mysql_thread_id: 2
 trx_query: DELETE FROM employees.salaries WHERE salary > 65000
 trx_operation_state: updating or deleting
 trx_tables_in_use: 1
 trx_tables_locked: 1
 trx_lock_structs: 3003
 trx_lock_memory_bytes: 450768
 trx_rows_locked: 1407513
 trx_rows_modified: 583736
 trx_concurrency_tickets: 0

The INFORMATION_SCHEMA INNODB_LOCKS Table

2730

 trx_isolation_level: REPEATABLE READ
 trx_unique_checks: 1
 trx_foreign_key_checks: 1
trx_last_foreign_key_error: NULL
 trx_adaptive_hash_latched: 0
 trx_adaptive_hash_timeout: 10000
 trx_is_read_only: 0
trx_autocommit_non_locking: 0
1 row in set (0.00 sec)

Notes:

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Section 14.12.2.3, “Data Persistence and Consistency
for InnoDB Transaction and Locking Tables”.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.12.2.1, “Usage Examples for InnoDB Transaction and Locking
Tables”.

20.30.5 The INFORMATION_SCHEMA INNODB_LOCKS Table

The INNODB_LOCKS table contains information about each lock that an InnoDB transaction has
requested but not yet acquired, and each lock that a transaction holds that is blocking another
transaction.

Table 20.5 INNODB_LOCKS Columns

Column name Description

LOCK_ID Unique lock ID number, internal to InnoDB. Treat it as an opaque string.
Although LOCK_ID currently contains TRX_ID, the format of the data in LOCK_ID
is not guaranteed to remain the same in future releases. Do not write programs
that parse the LOCK_ID value.

LOCK_TRX_ID ID of the transaction holding this lock. Details about the transaction can be found
by joining with INNODB_TRX on TRX_ID.

LOCK_MODE Mode of the lock. One of S, X, IS, IX, S_GAP, X_GAP, IS_GAP, IX_GAP, or
AUTO_INC for shared, exclusive, intention shared, intention exclusive row locks,
shared and exclusive gap locks, intention shared and intention exclusive gap
locks, and auto-increment table level lock, respectively. Refer to the sections
Section 14.2.2.1, “InnoDB Lock Modes” and Section 14.2.2, “The InnoDB
Transaction Model and Locking” for information on InnoDB locking.

LOCK_TYPE Type of the lock. One of RECORD or TABLE for record (row) level or table level
locks, respectively.

LOCK_TABLE Name of the table that has been locked or contains locked records.

LOCK_INDEX Name of the index if LOCK_TYPE='RECORD', otherwise NULL.

LOCK_SPACE Tablespace ID of the locked record if LOCK_TYPE='RECORD', otherwise NULL.

LOCK_PAGE Page number of the locked record if LOCK_TYPE='RECORD', otherwise NULL.

LOCK_REC Heap number of the locked record within the page if LOCK_TYPE='RECORD',
otherwise NULL.

LOCK_DATA Primary key value(s) of the locked record if LOCK_TYPE='RECORD', otherwise
NULL. This column contains the value(s) of the primary key column(s) in
the locked row, formatted as a valid SQL string (ready to be copied to SQL
commands). If there is no primary key then the InnoDB internal unique row ID
number is used. If a gap lock is taken for key values or ranges above the largest

The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

2731

Column name Description
value in the index, LOCK_DATA reports “supremum pseudo-record”. When the
page containing the locked record is not in the buffer pool (in the case that it was
paged out to disk while the lock was held), InnoDB does not fetch the page from
disk, to avoid unnecessary disk operations. Instead, LOCK_DATA is set to NULL.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCKS \G
*************************** 1. row ***************************
 lock_id: 3723:72:3:2
lock_trx_id: 3723
 lock_mode: X
 lock_type: RECORD
 lock_table: `mysql`.`t`
 lock_index: PRIMARY
 lock_space: 72
 lock_page: 3
 lock_rec: 2
 lock_data: 1, 9
*************************** 2. row ***************************
 lock_id: 3722:72:3:2
lock_trx_id: 3722
 lock_mode: S
 lock_type: RECORD
 lock_table: `mysql`.`t`
 lock_index: PRIMARY
 lock_space: 72
 lock_page: 3
 lock_rec: 2
 lock_data: 1, 9

Notes:

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Section 14.12.2.3, “Data Persistence and Consistency
for InnoDB Transaction and Locking Tables”.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.12.2.1, “Usage Examples for InnoDB Transaction and Locking
Tables”.

20.30.6 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

The INNODB_LOCK_WAITS table contains one or more rows for each blocked InnoDB transaction,
indicating the lock it has requested and any locks that are blocking that request.

Table 20.6 INNODB_LOCK_WAITS Columns

Column name Description

REQUESTING_TRX_ID ID of the requesting transaction.

REQUESTED_LOCK_ID ID of the lock for which a transaction is waiting. Details about the lock can
be found by joining with INNODB_LOCKS on LOCK_ID.

BLOCKING_TRX_ID ID of the blocking transaction.

BLOCKING_LOCK_ID ID of a lock held by a transaction blocking another transaction from
proceeding. Details about the lock can be found by joining with
INNODB_LOCKS on LOCK_ID.

Example:

The INFORMATION_SCHEMA INNODB_SYS_TABLES Table

2732

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCK_WAITS \G
*************************** 1. row ***************************
requesting_trx_id: 3396
requested_lock_id: 3396:91:3:2
 blocking_trx_id: 3395
 blocking_lock_id: 3395:91:3:2
1 row in set (0.00 sec)

Notes:

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Section 14.12.2.3, “Data Persistence and Consistency
for InnoDB Transaction and Locking Tables”.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.12.2.1, “Usage Examples for InnoDB Transaction and Locking
Tables”.

20.30.7 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table

The INNODB_SYS_TABLES table provides metadata about InnoDB tables, equivalent to the
information from the SYS_TABLES table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Table 20.7 INNODB_SYS_TABLES Columns

Column name Description

TABLE_ID An identifier for each InnoDB table that is unique across all databases in
the instance.

NAME The name of the table. Preceded by the database name where
appropriate, for example test/t1. InnoDB system table names
are in all uppercase. Names of databases and user tables are in the
same case as they were originally defined, possibly influenced by the
lower_case_table_names setting.

FLAG This value provides bit level information about table format and storage
characteristics including row format, compressed page size (if applicable),
and whether or not the DATA DIRECTORY clause was used with CREATE
TABLE or ALTER TABLE.

N_COLS The number of columns in the table. The number reported includes three
hidden columns that are created by InnoDB (DB_ROW_ID, DB_TRX_ID,
and DB_ROLL_PTR). The number reported also includes virtual generated
columns, if present.

SPACE An identifier for the tablespace where the table resides. 0 means the
InnoDB system tablespace. Any other number represents either a file-
per-table tablespace or a general tablespace. This identifier stays the
same after a TRUNCATE TABLE statement. For file-per-table tablespaces,
this identifier is unique for tables across all databases in the instance.

FILE_FORMAT The table's file format (Antelope or Barracuda).

ROW_FORMAT The table's row format (Compact, Redundant, Dynamic, or Compressed).

ZIP_PAGE_SIZE The zip page size. Only applies to tables that use the Compressed row
format.

The INFORMATION_SCHEMA INNODB_SYS_TABLES Table

2733

Column name Description

SPACE_TYPE The type of tablespace to which the table belongs. Possible values
include System (for the InnoDB system tablespace), General (for
InnoDB general tablespaces created using CREATE TABLESPACE,
and Single (for InnoDB file-per-table tablespaces). Tables assigned
to the system tablespace using the CREATE TABLE or ALTER TABLE
TABLESPACE=innodb_system clause have a General SPACE_TYPE.
The SPACE_TYPE column was added in MySQL 5.7.6 with the
introduction of InnoDB general tablespaces. For more information, see
CREATE TABLESPACE.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE TABLE_ID = 214 \G
*************************** 1. row ***************************
 TABLE_ID: 214
 NAME: test/t1
 FLAG: 129
 N_COLS: 4
 SPACE: 233
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: General
1 row in set (0.00 sec)

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

Interpreting the INNODB_SYS_TABLES.FLAG Column Value:

The INNODB_SYS_TABLES.FLAG column provides bit-level information about the table's format and
storage characteristics. You can interpret the FLAG column value by adding together the applicable
decimal numeric values that are provided in the following table.

Table 20.8 Bit Position Values for Interpreting INNODB_SYS_TABLES FLAG Column Data

Bit Position Description Decimal Numeric Value

0 This bit is set if the row format is not
REDUNDANT. In other words, it is set if
the row format is COMPACT, DYNAMIC or
COMPRESSED.

• 0 - REDUNDANT

• 1 - COMPACT, DYNAMIC or
COMPRESSED

1-4 These four bits contain a small
number that represents the
compressed page size of the table. The
INNODB_SYS_TABLES.ZIP_PAGE_SIZE
field also reports the compressed page
size, if applicable.

• 0 - Not Compressed

• 2 - 1024 Byte Compressed Page Size

• 4 - 2048 Byte Compressed Page Size

• 6 - 4096 Byte Compressed Page Size

• 8 - 8192 Byte Compressed Page Size

• 10 - 16384 Byte Compressed Page
Size

5 This bit is set if the row format is
DYNAMIC or COMPRESSED.

• 0 - REDUNDANT or COMPACT

• 32 - DYNAMIC or COMPRESSED

The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table

2734

Bit Position Description Decimal Numeric Value

6 This bit is set if the DATA DIRECTORY
option is used with CREATE TABLE
or ALTER TABLE. This bit is set for
file-per-table tablespaces that are
located in directories other than the
default data directory (datadir).
For these tables, a tablename.isl
file is present in the same location
as the tablename.frm file. The
tablename.isl file stores the actual
directory path to the tablename.ibd
file-per-table tablespace file.

• 0 - Not a remote file-per-table
tablespace

• 64 - A remote file-per-table
tablespace

7 This bit is set if the table is
assigned to a shared tablespace
(either a general tablespace or
a system tablespace) using the
CREATE TABLE or ALTER TABLE
TABLESPACE=tablespace_name
option.

• 0 - Table is located in a default
location depending on the value of
the innodb_file_per_table.

• 128 - The table is explicitly assigned
to a shared tablespace.

In the following, table t1 uses ROW_FORMAT=DYNAMIC and has a FLAG value of 33. Based on the
information in the preceding table, we can see that bit position 0 would be set to 1, and bit position 5
would be set to 32 for a table with a DYNAMIC row format. These values add up to a FLAG value of 33.

mysql> use test;
Database changed

mysql> SET GLOBAL innodb_file_format=Barracuda;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (c1 int) ROW_FORMAT=DYNAMIC;
Query OK, 0 rows affected (0.02 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE 'test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 89
 NAME: test/t1
 FLAG: 33
 N_COLS: 4
 SPACE: 75
 FILE_FORMAT: Barracuda
 ROW_FORMAT: Dynamic
ZIP_PAGE_SIZE: 0
1 row in set (0.01 sec)

20.30.8 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table

The INNODB_SYS_INDEXES table provides metadata about InnoDB indexes, equivalent to the
information in the internal SYS_INDEXES table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Table 20.9 INNODB_SYS_INDEXES Columns

Column name Description

INDEX_ID An identifier for each index that is unique across all the databases in an
instance.

NAME The name of the index. Most indexes created implicitly by InnoDB have
consistent names but the index names are not necessarily unique. For

The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table

2735

Column name Description
example, PRIMARY for a primary key index, GEN_CLUST_INDEX for the
index representing a primary key when one is not specified, and ID_IND,
FOR_IND, and REF_IND for foreign key constraints.

TABLE_ID An identifier representing the table associated with the index; the same
value from INNODB_SYS_TABLES.TABLE_ID.

TYPE A numeric identifier signifying the kind of index. 0 = Secondary Index, 1
= Clustered Index, 2 = Unique Index, 3 = Primary Index, 32 = Full-text
Index, 64 = Spatial Index, 128 = A secondary index that includes a virtual
generated column.

N_FIELDS The number of columns in the index key. For the GEN_CLUST_INDEX
indexes, this value is 0 because the index is created using an artificial
value rather than a real table column.

PAGE_NO The root page number of the index B-tree. For full-text indexes, the
PAGE_NO field is unused and set to -1 (FIL_NULL) because the full-text
index is laid out in several B-trees (auxiliary tables).

SPACE An identifier for the tablespace where the index resides. 0 means the
InnoDB system tablespace. Any other number represents a table created
in file-per-table mode with a separate .ibd file. This identifier stays
the same after a TRUNCATE TABLE statement. Because all indexes
for a table reside in the same tablespace as the table, this value is not
necessarily unique.

MERGE_THRESHOLD The merge threshold value for index pages. If the amount of data in an
index page falls below the MERGE_THRESHOLD value when a row
is deleted or when a row is shortened by an update operation, InnoDB
attempts to merge the index page with the neighboring index page. The
default threshold value is 50%. The MERGE_THRESHOLD column was
added to INNODB_SYS_INDEXES in MySQL 5.7.6. For more information,
see Section 14.3.12, “Configuring the Merge Threshold for Index Pages”.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_INDEXES WHERE TABLE_ID = 34 \G
*************************** 1. row ***************************
 INDEX_ID: 39
 NAME: GEN_CLUST_INDEX
 TABLE_ID: 34
 TYPE: 1
 N_FIELDS: 0
 PAGE_NO: 3
 SPACE: 23
MERGE_THRESHOLD: 50
*************************** 2. row ***************************
 INDEX_ID: 40
 NAME: i1
 TABLE_ID: 34
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 23
MERGE_THRESHOLD: 50

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

20.30.9 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table

The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table

2736

The INNODB_SYS_COLUMNS table provides metadata about InnoDB table columns, equivalent to the
information from the SYS_COLUMNS table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Table 20.10 INNODB_SYS_COLUMNS Columns

Column name Description

TABLE_ID An identifier representing the table associated with the column; the same
value from INNODB_SYS_TABLES.TABLE_ID.

NAME The name of each column in each table. These names can be uppercase
or lowercase depending on the lower_case_table_names setting.
There are no special system-reserved names for columns.

POS The ordinal position of the column within the table, starting from 0 and
incrementing sequentially. When a column is dropped, the remaining
columns are reordered so that the sequence has no gaps. The POS value
for a virtual generated column encodes the column sequence number
and ordinal position of the column. For more information, see the POS
column description in Section 20.30.16, “The INFORMATION_SCHEMA
INNODB_SYS_VIRTUAL Table”.

MTYPE Stands for “main type”. A numeric identifier for the column type. 1 =
VARCHAR, 2 = CHAR, 3 = FIXBINARY, 4 = BINARY, 5 = BLOB, 6 = INT, 7
= SYS_CHILD, 8 = SYS, 9 = FLOAT, 10 = DOUBLE, 11 = DECIMAL, 12 =
VARMYSQL, 13 = MYSQL, 14 = GEOMETRY.

PRTYPE The InnoDB “precise type”, a binary value with bits representing MySQL
data type, character set code, and nullability.

LEN The column length, for example 4 for INT and 8 for BIGINT. For
character columns in multibyte character sets, this length value is the
maximum length in bytes needed to represent a definition such as
VARCHAR(N); that is, it might be 2*N, 3*N, and so on depending on the
character encoding.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_COLUMNS where TABLE_ID = 71 \G
*************************** 1. row ***************************
TABLE_ID: 71
 NAME: col1
 POS: 0
 MTYPE: 6
 PRTYPE: 1027
 LEN: 4
*************************** 2. row ***************************
TABLE_ID: 71
 NAME: col2
 POS: 1
 MTYPE: 2
 PRTYPE: 524542
 LEN: 10
*************************** 3. row ***************************
TABLE_ID: 71
 NAME: col3
 POS: 2
 MTYPE: 1
 PRTYPE: 524303
 LEN: 10

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table

2737

• You must have the PROCESS privilege to query this table.

20.30.10 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table

The INNODB_SYS_FIELDS table provides metadata about the key columns (fields) of InnoDB indexes,
equivalent to the information from the SYS_FIELDS table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Table 20.11 INNODB_SYS_FIELDS Columns

Column name Description

INDEX_ID An identifier for the index associated with this key field, using the same
value as in INNODB_SYS_INDEXES.INDEX_ID.

NAME The name of the original column from the table, using the same value as
in INNODB_SYS_COLUMNS.NAME.

POS The ordinal position of the key field within the index, starting from 0 and
incrementing sequentially. When a column is dropped, the remaining
columns are reordered so that the sequence has no gaps.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FIELDS where INDEX_ID = 117 \G
*************************** 1. row ***************************
INDEX_ID: 117
 NAME: col1
 POS: 0
1 row in set (0.00 sec)

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

20.30.11 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table

The INNODB_SYS_FOREIGN table provides metadata about InnoDB foreign keys, equivalent to the
information from the SYS_FOREIGN table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Table 20.12 INNODB_SYS_FOREIGN Columns

Column name Description

ID The name (not a numeric value) of the foreign key index. Preceded by the
database name, for example, test/products_fk.

FOR_NAME The name of the child table in this foreign key relationship.

REF_NAME The name of the parent table in this foreign key relationship.

N_COLS The number of columns in the foreign key index.

TYPE A collection of bit flags with information about the foreign key column,
ORed together. 1 = ON DELETE CASCADE, 2 = ON UPDATE SET
NULL, 4 = ON UPDATE CASCADE, 8 = ON UPDATE SET NULL, 16 = ON
DELETE NO ACTION, 32 = ON UPDATE NO ACTION.

Example:

The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table

2738

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1
1 row in set (0.00 sec)

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

20.30.12 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS
Table

The INNODB_SYS_FOREIGN_COLS table provides status information about the columns of InnoDB
foreign keys, equivalent to the information from the SYS_FOREIGN_COLS table in the InnoDB data
dictionary.

For related usage information and examples, see Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Table 20.13 INNODB_SYS_FOREIGN_COLS Columns

Column name Description

ID The foreign key index associated with this index key field, using the same
value as INNODB_SYS_FOREIGN.ID.

FOR_COL_NAME The name of the associated column in the child table.

REF_COL_NAME The name of the associated column in the parent table.

POS The ordinal position of this key field within the foreign key index, starting
from 0.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN_COLS WHERE ID = 'test/fk1' \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0
1 row in set (0.00 sec)

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

20.30.13 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View

The INNODB_SYS_TABLESTATS provides a view of low-level status information about InnoDB tables.
This data is used by the MySQL optimizer to calculate which index to use when querying an InnoDB
table. This information is derived from in-memory data structures rather than corresponding to data
stored on disk. There is no corresponding internal InnoDB system table.

InnoDB tables are represented in this view if they have been opened since the last server restart, and
not aged out of the table cache. Tables for which persistent stats are available are always represented
in this view.

The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table

2739

Table statistics are only updated for DELETE or UPDATE operations that modify indexed columns.
Statistics are not updated by operations that only modify non-indexed columns.

For related usage information and examples, see Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Table 20.14 INNODB_SYS_TABLESTATS Columns

Column name Description

TABLE_ID An identifier representing the table for which statistics are available, using
the same value as INNODB_SYS_TABLES.TABLE_ID.

NAME The name of the table, using the same value as
INNODB_SYS_TABLES.NAME.

STATS_INITIALIZED The value is Initialized if the statistics are already collected,
Uninitialized if not.

NUM_ROWS The current estimated number of rows in the table. Updated after each
DML operation. Could be imprecise if uncommitted transactions are
inserting into or deleting from the table.

CLUST_INDEX_SIZE Number of pages on disk that store the clustered index, which holds the
InnoDB table data in primary key order. This value might be null if no
statistics are collected yet for the table.

OTHER_INDEX_SIZE Number of pages on disk that store all secondary indexes for the table.
This value might be null if no statistics are collected yet for the table.

MODIFIED_COUNTER The number of rows modified by DML operations, such as INSERT,
UPDATE, DELETE, and also cascade operations from foreign keys. This
column is reset each time table statistics are recalculated

AUTOINC The next number to be issued for any auto-increment-based operation.
The rate at which the AUTOINC value changes depends on how many
times auto-increment numbers have been requested and how many
numbers are granted per request.

REF_COUNT When this counter reaches zero, the table metadata can be evicted from
the table cache.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS where TABLE_ID = 71 \G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
STATS_INITIALIZED: Initialized
 NUM_ROWS: 1
 CLUST_INDEX_SIZE: 1
 OTHER_INDEX_SIZE: 0
 MODIFIED_COUNTER: 1
 AUTOINC: 0
 REF_COUNT: 1
1 row in set (0.00 sec)

Notes:

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

20.30.14 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table

The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

2740

The INNODB_SYS_DATAFILES table provides data file path information for InnoDB file-per-table and
general tablespaces, equivalent to the information in the SYS_DATAFILES table in the InnoDB data
dictionary.

For related usage information and examples, see Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Note

As of MySQL 5.7.8, the INFORMATION_SCHEMA.FILES table provides
data file path information and other metadata about all InnoDB tablespace
types including file-per-table tablespaces, general tablespaces, the system
tablespace, temporary table tablespaces, and undo tablespaces (if present).

Table 20.15 INNODB_SYS_DATAFILES Columns

Column name Description

SPACE The tablespace Space ID.

PATH The tablespace data file path (for example, “.\world\innodb
\city.ibd”). If a file-per-table tablespace is created in a location outside
the MySQL data directory using the DATA DIRECTORY clause of the
CREATE TABLE statement, the tablespace PATH field shows the fully
qualified directory path.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_DATAFILES WHERE SPACE = 57 \G
*************************** 1. row ***************************
SPACE: 57
 PATH: ./test/t1.ibd
1 row in set (0.01 sec)

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

20.30.15 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

The INNODB_SYS_TABLESPACES table provides metadata about InnoDB file-per-table and general
tablespaces, equivalent to the information in the SYS_TABLESPACES table in the InnoDB data
dictionary.

For related usage information and examples, see Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

Note

As of MySQL 5.7.8, the INFORMATION_SCHEMA.FILES table provides
metadata about all InnoDB tablespace types including file-per-table
tablespaces, general tablespaces, the system tablespace, temporary table
tablespaces, and undo tablespaces (if present).

Table 20.16 INNODB_SYS_TABLESPACES Columns

Column name Description

SPACE Tablespace Space ID.

NAME The database and table name (for example, world_innodb\city)

FLAG This value provides bit level information about tablespace format and
storage characteristics.

The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

2741

Column name Description

FILE_FORMAT The tablespace file format. For example, Antelope, Barracuda, or Any
(general tablespaces support any row format). The data in this field is
interpreted from the tablespace flags information that resides in the .ibd
file. For more information about InnoDB file formats, see Section 14.7,
“InnoDB File-Format Management”.

ROW_FORMAT The tablespace row format (Compact or Redundant, Dynamic, or
Compressed). The data in this field is interpreted from the tablespace
flags information that resides in the .ibd file.

PAGE_SIZE The tablespace page size. The data in this field is interpreted from the
tablespace flags information that resides in the .ibd file.

ZIP_PAGE_SIZE The tablespace zip page size. The data in this field is interpreted from the
tablespace flags information that resides in the .ibd file.

SPACE_TYPE The type of tablespace. Possible values include General (for InnoDB
general tablespaces created using CREATE TABLESPACE and Single
(for InnoDB file-per-table tablespaces). The SPACE_TYPE column
was added in MySQL 5.7.6 with the introduction of InnoDB general
tablespaces. For more information, see CREATE TABLESPACE.

FS_BLOCK_SIZE The file system block size, which is the unit size used for hole punching.
This column was added in MySQL 5.7.8 with the introduction of the
InnoDB transparent page compression feature.

FILE_SIZE The apparent size of the file, which represents the maximum size of the
file, uncompressed. This column was added in MySQL 5.7.8 with the
introduction of the InnoDB transparent page compression feature.

ALLOCATED_SIZE The actual size of the file, which is the amount of space allocated on
disk. This column was added in MySQL 5.7.8 with the introduction of the
InnoDB transparent page compression feature.

COMPRESSION The current tablespace setting for page compression (Zlib, Lz4, or
None). A table may contain a mix of pages with different compression
settings. This column was added in MySQL 5.7.8 with the introduction of
the InnoDB transparent page compression feature. This column displays
incorrect data after a server restart (Bug #78197) and is removed in
5.7.10. Use SHOW CREATE TABLE to view the current page compression
setting.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE SPACE = 26 \G
*************************** 1. row ***************************
 SPACE: 26
 NAME: test/t1
 FLAG: 0
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
 ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single
 FS_BLOCK_SIZE: 4096
 FILE_SIZE: 98304
ALLOCATED_SIZE: 65536
 COMPRESSION: LZ4
1 row in set (0.00 sec)

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

2742

• Because tablespace flags are always zero for all Antelope file formats (unlike table flags), there is no
way to determine from this flag integer if the tablespace row format is Redundant or Compact. As a
result, the possible values for the ROW_FORMAT field are “Compact or Redundant”, “Compressed”, or
“Dynamic.”

• With the introduction of general tablespaces in MySQl 5.7.6, InnoDB system tablespace data (for
SPACE 0) is exposed in INNODB_SYS_TABLESPACES.

Interpreting the INNODB_SYS_TABLESPACES.FLAG Column Value:

The INNODB_SYS_TABLESPACES.FLAG column provides bit-level information about tablespace format
and storage characteristics.

Until MySQL 5.6, table and tablespace flags were the same except for the bit position 0 settings. In
MySQL 5.6, support was added for 4K and 8K pages, which required an additional 4 bits to hold the
logical page size. Also in MySQL 5.6, support was added for the CREATE TABLE and ALTER TABLE
DATA DIRECTORY clause, which allows file-per-table tablespaces to be stored in a location outside of
the MySQL data directory. This feature required an additional bit for both table and tablespace flags,
but not at the same position.

You can interpret the tablespace FLAG column value by adding together the applicable decimal
numeric values that are provided in the following table.

Table 20.17 Bit Position Values for Interpreting INNODB_SYS_TABLESPACES FLAG Column
Data

Bit Position Description Decimal Numeric Value

0 This bit is set if the row format of tables in
the tablespace is DYNAMIC or COMPRESSED.
This information can help you distinguish
between Antelope and Barracuda file formats
but not between REDUNDANT and COMPACT
file formats (DYNAMIC and COMPRESSED row
formats require the Barracuda file format). If it
is a file-per-table tablespace, you must query
INNODB_SYS_TABLES to determine which of the
two Antelope row formats is used (REDUNDANT or
COMPACT).

• 0 - REDUNDANT
or COMPACT
(FILE_FORMAT=Antelope)

• 1 - DYNAMIC or
COMPRESSED
(FILE_FORMAT=Barracuda)

1-4 These four bits contain a small number that
represents the compressed page size (the
KEY_BLOCK_SIZE or “physical block size”) of the
tablespace.

• 0 - Not Compressed

• 2 - 1024 Byte Compressed
Page Size

• 4 - 2048 Byte Compressed
Page Size

• 6 - 4096 Byte Compressed
Page Size

• 8 - 8192 Byte Compressed
Page Size

• 10 - 16384 Byte
Compressed Page Size

• 12 - 32768 Byte
Compressed Page Size

• 14 - 65536 Byte
Compressed Page Size

The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

2743

Bit Position Description Decimal Numeric Value

5 This bit is set for file-per-table tablespaces
if the row format of the table is DYNAMIC or
COMPRESSED. General tablespaces that do not
contain compressed tables will have the first 6 bits
set to zero, including this bit, making it appear to
be the Antelope file format. But actually, general
tablespaces may contain any combination of
REDUNDANT, COMPACT and DYNAMIC tables. For
more information about general tablespaces, see
CREATE TABLESPACE.

• 0 - REDUNDANT or
COMPACT

• 32 - DYNAMIC or
COMPRESSED

6-9 These four bits contain a small number that
represents the uncompressed page size (logical
page size) of the tablespace. The setting is zero if
the logical page size is the original InnoDB default
page size of 16K.

• 192 - 4096 Byte Logical/
Uncompressed Page Size

• 256 - 8192 Byte Logical/
Uncompressed Page Size

• 0 - 16384 Byte Logical/
Uncompressed Page size

• 384 - 32768 Byte Logical/
Uncompressed Page Size

• 448 - 65536 Byte Logical/
Uncompressed Page Size

10 This bit is set if the DATA DIRECTORY option is
used with CREATE TABLE or ALTER TABLE.
This bit is set for file-per-table tablespaces
that are located in directories other than the
default data directory (datadir). For these
tables, a tablename.isl file is present in the
same location as the tablename.frm file. The
tablename.isl file stores the actual directory
path to the tablename.ibd file-per-table
tablespace file.

• 0 - Not a remote file-per-
table tablespace

• 1024 - A remote file-per-
table tablespace

11 This bit is set if the tablespace is a shared general
tablespace created using CREATE TABLESPACE.

• 0 - Table is located in a
default location depending
on the value of the
innodb_file_per_table
setting.

• 2048 - The table was
explicitly assigned to a
shared tablespace.

12 This bit is set if the tablespace is dedicated
to temporary tables. In MySQL 5.7, only the
predefined ibtmp1 tablespace uses this flag.

• 0 - The tablespace does
not contain temporary
tables, so it is not recreated
upon startup.

• 4096 - The tablespace
contains temporary tables
and is recreated on startup.

In the following example, table t1 is created with innodb_file_per_table=ON, which creates table
t1 in its own tablespace. When querying INNODB_SYS_TABLESPACES, we see that the tablespace
has a FLAG value of 33. To determine how this value is arrived at, review the bit values described in
the preceding table. Bit 0 has a value of 1 because table t1 uses the DYNAMIC row format. Bit 5 has

The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table

2744

a value of 32 because the tablespace is a file-per-table tablespace that uses a DYNAMIC row format.
Bit position 6-9 is 0 because innodb_page_size is set to the default 16K value. The other bit values
are not applicable and are therefore set to 0. The values for bit position 0 and bit position 5 add up to a
FLAG value of 33.

mysql> use test;
Database changed

mysql> SHOW VARIABLES LIKE 'innodb_file_per_table';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| innodb_file_per_table | ON |
+-----------------------+-------+
1 row in set (0.00 sec)

mysql> SHOW VARIABLES LIKE 'innodb_page_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| innodb_page_size | 16384 |
+------------------+-------+
1 row in set (0.00 sec)

mysql> SET GLOBAL innodb_file_format=Barracuda;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (c1 int) ROW_FORMAT=DYNAMIC;
Query OK, 0 rows affected (0.02 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE NAME LIKE 'test/t1' \G
*************************** 1. row ***************************
 SPACE: 75
 NAME: test/t1
 FLAG: 33
 FILE_FORMAT: Barracuda
 ROW_FORMAT: Dynamic
 PAGE_SIZE: 16384
ZIP_PAGE_SIZE: 0
1 row in set (0.00 sec)

20.30.16 The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table

The INNODB_SYS_VIRTUAL table provides metadata about InnoDB virtual generated columns
and columns upon which virtual generated columns are based, equivalent to information in the
SYS_VIRTUAL table in the InnoDB data dictionary.

A row appears in the INNODB_SYS_VIRTUAL table for each column upon which a virtual generated
column is based.

Table 20.18 INNODB_SYS_VIRTUAL Columns

Column name Description

TABLE_ID An identifier representing the table associated with the virtual column; the
same value as INNODB_SYS_TABLES.TABLE_ID.

POS The position value of the virtual generated column. The value is large
because it encodes the column sequence number and ordinal position.
The formula used to calculate the value uses a bitwise operation.
The formula is ((nth virtual generated column for the
InnoDB instance + 1) << 16) + the ordinal position of
the virtual generated column. For example, if the first virtual
generated column in the InnoDB instance is the third column of the table,
the formula is (0 + 1) << 16) + 2. The first virtual generated column in the
InnoDB instance is always number 0. As the third column in the table, the
ordinal position of the virtual generated column is 2. Ordinal positions are
counted from 0.

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

2745

Column name Description

BASE_POS The ordinal position of the columns upon which a virtual generated
column is based.

Example:

mysql> CREATE TABLE `t1` (
 -> `a` int(11) DEFAULT NULL,
 -> `b` int(11) DEFAULT NULL,
 -> `c` int(11) GENERATED ALWAYS AS (a+b) VIRTUAL,
 -> `h` varchar(10) DEFAULT NULL
 ->) ENGINE=InnoDB DEFAULT CHARSET=latin1;

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_VIRTUAL
 -> WHERE TABLE_ID IN (SELECT TABLE_ID FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE "test/t1");
+----------+-------+----------+
| TABLE_ID | POS | BASE_POS |
+----------+-------+----------+
| 45 | 65538 | 0 |
| 45 | 65538 | 1 |
+----------+-------+----------+

Notes:

• If a constant value is assigned to a virtual generated column, as in the following example, an entry
for the column does not appear in the INNODB_SYS_VIRTUAL table. For an entry to appear, a virtual
generated column must have a base column.

mysql> CREATE TABLE `t1` (
 -> `a` int(11) DEFAULT NULL,
 -> `b` int(11) DEFAULT NULL,
 -> `c` int(11) GENERATED ALWAYS AS (5) VIRTUAL
 ->) ENGINE=InnoDB DEFAULT CHARSET=latin1;

However, metadata for such a column appears in the INNODB_SYS_COLUMNS table.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

20.30.17 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The INNODB_BUFFER_PAGE table holds information about each page in the InnoDB buffer pool.

For related usage information and examples, see Section 14.12.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Warning

Querying the INNODB_BUFFER_PAGE table can introduce significant
performance overhead. Do not query this table on a production system
unless you are aware of the performance impact that your query may have
and have determined it to be acceptable. To avoid impacting performance,
reproduce the issue you want to investigate on a test instance and query the
INNODB_BUFFER_PAGE table on the test instance.

Table 20.19 INNODB_BUFFER_PAGE Columns

Column name Description

POOL_ID Buffer Pool ID. An identifier to distinguish between multiple buffer pool
instances.

BLOCK_ID Buffer Pool Block ID.

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

2746

Column name Description

SPACE Tablespace ID. Uses the same value as in
INNODB_SYS_TABLES.SPACE.

PAGE_NUMBER Page number.

PAGE_TYPE Page type. One of ALLOCATED (Freshly allocated page), INDEX
(B-tree node), UNDO_LOG (Undo log page), INODE (Index node),
IBUF_FREE_LIST (Insert buffer free list), IBUF_BITMAP (Insert
buffer bitmap), SYSTEM (System page), TRX_SYSTEM (Transaction
system data), FILE_SPACE_HEADER (File space header),
EXTENT_DESCRIPTOR (Extent descriptor page), BLOB (Uncompressed
BLOB page), COMPRESSED_BLOB (First compressed BLOB page),
COMPRESSED_BLOB2 (Subsequent comp BLOB page), IBUF_INDEX
(Insert buffer index), UNKNOWN (unknown).

FLUSH_TYPE Flush type.

FIX_COUNT Number of threads using this block within the buffer pool. When zero, the
block is eligible to be evicted.

IS_HASHED Whether hash index has been built on this page.

NEWEST_MODIFICATION Log Sequence Number of the youngest modification.

OLDEST_MODIFICATION Log Sequence Number of the oldest modification.

ACCESS_TIME An abstract number used to judge the first access time of the page.

TABLE_NAME Name of the table the page belongs to. This column is only applicable to
pages of type INDEX.

INDEX_NAME Name of the index the page belongs to. It can be the name of a clustered
index or a secondary index. This column is only applicable to pages of
type INDEX.

NUMBER_RECORDS Number of records within the page.

DATA_SIZE Sum of the sizes of the records. This column is only applicable to pages
of type INDEX.

COMPRESSED_SIZE Compressed page size. Null for pages that are not compressed.

PAGE_STATE Page state. A page with valid data has one of the following states:
FILE_PAGE (buffers a page of data from a file), MEMORY (buffers a
page from an in-memory object), COMPRESSED. Other possible states
(managed by InnoDB) are: NULL, READY_FOR_USE, NOT_USED,
REMOVE_HASH.

IO_FIX Specifies whether any I/O is pending for this page: IO_NONE = no
pending I/O, IO_READ = read pending, IO_WRITE = write pending.

IS_OLD Specifies whether or not the block is in the sublist of old blocks in the LRU
list.

FREE_PAGE_CLOCK The value of the freed_page_clock counter when the block was the
last placed at the head of the LRU list. The freed_page_clock counter
tracks the number of blocks removed from the end of the LRU list.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 BLOCK_ID: 0
 SPACE: 97
 PAGE_NUMBER: 2473
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

2747

 IS_HASHED: YES
NEWEST_MODIFICATION: 733855581
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378385672
 TABLE_NAME: `employees`.`salaries`
 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468
 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 PAGE_STATE: FILE_PAGE
 IO_FIX: IO_NONE
 IS_OLD: YES
 FREE_PAGE_CLOCK: 66
1 row in set (0.03 sec)

Notes:

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the buffer
pool until space is required for other data. The INNODB_BUFFER_PAGE table reports information
about these pages until they are evicted from the buffer pool. For more information about how the
InnoDB manages buffer pool data, see Section 8.10.1, “The InnoDB Buffer Pool”.

20.30.18 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered in the LRU list that determines which pages to evict from the buffer
pool when it becomes full.

The INNODB_BUFFER_PAGE_LRU table has the same columns as the INNODB_BUFFER_PAGE table,
except that the INNODB_BUFFER_PAGE_LRU table has an LRU_POSITION column instead of a
BLOCK_ID column.

For related usage information and examples, see Section 14.12.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Warning

Querying the INNODB_BUFFER_PAGE_LRU table can introduce significant
performance overhead. Do not query this table on a production system
unless you are aware of the performance impact that your query may have,
and have determined it to be acceptable. To avoid impacting performance,
reproduce the issue you want to investigate on a test instance and query the
INNODB_BUFFER_PAGE_LRU table on the test instance.

Table 20.20 INNODB_BUFFER_PAGE_LRU Columns

Column name Description

POOL_ID Buffer Pool ID. An identifier to distinguish between multiple buffer pool
instances.

LRU_POSITION The position of the page in the LRU list.

SPACE Tablespace ID. Uses the same value as in
INNODB_SYS_TABLES.SPACE.

PAGE_NUMBER Page number.

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

2748

Column name Description

PAGE_TYPE Page type. One of ALLOCATED (Freshly allocated page), INDEX
(B-tree node), UNDO_LOG (Undo log page), INODE (Index node),
IBUF_FREE_LIST (Insert buffer free list), IBUF_BITMAP (Insert
buffer bitmap), SYSTEM (System page), TRX_SYSTEM (Transaction
system data), FILE_SPACE_HEADER (File space header),
EXTENT_DESCRIPTOR (Extent descriptor page), BLOB (Uncompressed
BLOB page), COMPRESSED_BLOB (First compressed BLOB page),
COMPRESSED_BLOB2 (Subsequent comp BLOB page), IBUF_INDEX
(Insert buffer index), UNKNOWN (unknown).

FLUSH_TYPE Flush type.

FIX_COUNT Number of threads using this block within the buffer pool. When zero, the
block is eligible to be evicted.

IS_HASHED Whether hash index has been built on this page.

NEWEST_MODIFICATION Log Sequence Number of the youngest modification.

OLDEST_MODIFICATION Log Sequence Number of the oldest modification.

ACCESS_TIME An abstract number used to judge the first access time of the page.

TABLE_NAME Name of the table the page belongs to. This column is only applicable to
pages of type INDEX.

INDEX_NAME Name of the index the page belongs to. It can be the name of a clustered
index or a secondary index. This column is only applicable to pages of
type INDEX.

NUMBER_RECORDS Number of records within the page.

DATA_SIZE Sum of the sizes of the records. This column is only applicable to pages
of type INDEX.

COMPRESSED_SIZE Compressed page size. Null for pages that are not compressed.

PAGE_STATE Page state. A page with valid data has one of the following states:
FILE_PAGE (buffers a page of data from a file), MEMORY (buffers a
page from an in-memory object), COMPRESSED. Other possible states
(managed by InnoDB) are: NULL, READY_FOR_USE, NOT_USED,
REMOVE_HASH.

IO_FIX Specifies whether any I/O is pending for this page: IO_NONE = no
pending I/O, IO_READ = read pending, IO_WRITE = write pending.

IS_OLD Specifies whether or not the block is in the sublist of old blocks in the LRU
list.

FREE_PAGE_CLOCK The value of the freed_page_clock counter when the block was the
last placed at the head of the LRU list. The freed_page_clock counter
tracks the number of blocks removed from the end of the LRU list.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 LRU_POSITION: 0
 SPACE: 97
 PAGE_NUMBER: 1984
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0
 IS_HASHED: YES
NEWEST_MODIFICATION: 719490396
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378383796
 TABLE_NAME: `employees`.`salaries`

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

2749

 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468
 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 COMPRESSED: NO
 IO_FIX: IO_NONE
 IS_OLD: YES
 FREE_PAGE_CLOCK: 0
1 row in set (0.02 sec)

Notes

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• Querying this table can require MySQL to allocate a large block of contiguous memory, more than 64
bytes time the number of active pages in the buffer pool. This allocation could potentially cause an
out-of-memory error, especially for systems with multi-gigabyte buffer pools.

• Querying this table requires MySQL to lock the data structure representing the buffer pool while
traversing the LRU list, which can reduce concurrency, especially for systems with multi-gigabyte
buffer pools.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the
buffer pool until space is required for other data. The INNODB_BUFFER_PAGE_LRU table reports
information about these pages until they are evicted from the buffer pool. For more information about
how the InnoDB manages buffer pool data, see Section 8.10.1, “The InnoDB Buffer Pool”.

20.30.19 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS
Table

The INNODB_BUFFER_POOL_STATS table provides much of the same buffer pool information provided
in SHOW ENGINE INNODB STATUS output. Much of the same information may also be obtained using
InnoDB buffer pool server status variables.

The idea of making pages in the buffer pool “young” or “not young” refers to transferring them between
the sublists at the head and tail of the buffer pool data structure. Pages made “young” take longer
to age out of the buffer pool, while pages made “not young” are moved much closer to the point of
eviction.

For related usage information and examples, see Section 14.12.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Table 20.21 INNODB_BUFFER_POOL_STATS Columns

Column name Description

POOL_ID Buffer Pool ID. A unique identifier to distinguish between multiple buffer
pool instances.

POOL_SIZE The InnoDB buffer pool size in pages.

FREE_BUFFERS The number of free pages in the InnoDB buffer pool

DATABASE_PAGES The number of pages in the InnoDB buffer pool containing data. The
number includes both dirty and clean pages.

OLD_DATABASE_PAGES The number of pages in the old buffer pool sublist.

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

2750

Column name Description

MODIFIED_DATABASE_PAGESThe number of modified (dirty) database pages

PENDING_DECOMPRESS The number of pages pending decompression

PENDING_READS The number of pending reads

PENDING_FLUSH_LRU The number of pages pending flush in the LRU

PENDING_FLUSH_LIST The number of pages pending flush in the flush list

PAGES_MADE_YOUNG The number of pages made young

PAGES_NOT_MADE_YOUNG The number of pages not made young

PAGES_MADE_YOUNG_RATEThe number of pages made young per second (pages made young since
the last printout / time elapsed)

PAGES_MADE_NOT_YOUNG_RATEThe number of pages not made per second (pages not made young since
the last printout / time elapsed)

NUMBER_PAGES_READ The number of pages read

NUMBER_PAGES_CREATED The number of pages created

NUMBER_PAGES_WRITTEN The number of pages written

PAGES_READ_RATE The number of pages read per second (pages read since the last
printout / time elapsed)

PAGES_CREATE_RATE The number of pages created per second (pages created since the last
printout / time elapsed)

PAGES_WRITTEN_RATE The number of pages written per second (pages written since the last
printout / time elapsed)

NUMBER_PAGES_GET The number of logical read requests.

HIT_RATE The buffer pool hit rate

YOUNG_MAKE_PER_THOUSAND_GETSThe number of pages made young per thousand gets

NOT_YOUNG_MAKE_PER_THOUSAND_GETSThe number of pages not made young per thousand gets

NUMBER_PAGES_READ_AHEADThe number of pages read ahead

NUMBER_READ_AHEAD_EVICTEDThe number of pages read into the InnoDB buffer pool by the read-ahead
background thread that were subsequently evicted without having been
accessed by queries.

READ_AHEAD_RATE The read ahead rate per second (pages read ahead since the last
printout / time elapsed)

READ_AHEAD_EVICTED_RATEThe number of read ahead pages evicted without access per second
(read ahead pages not accessed since the last printout / time elapsed)

LRU_IO_TOTAL LRU IO total

LRU_IO_CURRENT LRU IO for the current interval

UNCOMPRESS_TOTAL Total number of pages decompressed

UNCOMPRESS_CURRENT The number of pages decompressed in the current interval

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_POOL_STATS\G
*************************** 1. row ***************************
 POOL_ID: 0
 POOL_SIZE: 8192
 FREE_BUFFERS: 1
 DATABASE_PAGES: 8085
 OLD_DATABASE_PAGES: 2964
 MODIFIED_DATABASE_PAGES: 0
 PENDING_DECOMPRESS: 0
 PENDING_READS: 0

The INFORMATION_SCHEMA INNODB_METRICS Table

2751

 PENDING_FLUSH_LRU: 0
 PENDING_FLUSH_LIST: 0
 PAGES_MADE_YOUNG: 22821
 PAGES_NOT_MADE_YOUNG: 3544303
 PAGES_MADE_YOUNG_RATE: 357.62602199870594
 PAGES_MADE_NOT_YOUNG_RATE: 0
 NUMBER_PAGES_READ: 2389
 NUMBER_PAGES_CREATED: 12385
 NUMBER_PAGES_WRITTEN: 13111
 PAGES_READ_RATE: 0
 PAGES_CREATE_RATE: 0
 PAGES_WRITTEN_RATE: 0
 NUMBER_PAGES_GET: 33322210
 HIT_RATE: 1000
 YOUNG_MAKE_PER_THOUSAND_GETS: 18
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
 NUMBER_PAGES_READ_AHEAD: 2024
 NUMBER_READ_AHEAD_EVICTED: 0
 READ_AHEAD_RATE: 0
 READ_AHEAD_EVICTED_RATE: 0
 LRU_IO_TOTAL: 0
 LRU_IO_CURRENT: 0
 UNCOMPRESS_TOTAL: 0
 UNCOMPRESS_CURRENT: 0
1 row in set (0.00 sec)

Notes:

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

20.30.20 The INFORMATION_SCHEMA INNODB_METRICS Table

This INFORMATION_SCHEMA table presents a wide variety of InnoDB performance information,
complementing the specific focus areas of the PERFORMANCE_SCHEMA tables for InnoDB. With simple
queries, you can check the overall health of the system. With more detailed queries, you can diagnose
issues such as performance bottlenecks, resource shortages, and application issues.

Each monitor represents a point within the InnoDB source code that is instrumented to gather counter
information. Each counter can be started, stopped, and reset. You can also perform these actions for a
group of counters using their common module name.

By default, relatively little data is collected. To start, stop, and reset counters, you set one
of the configuration options innodb_monitor_enable, innodb_monitor_disable,
innodb_monitor_reset, or innodb_monitor_reset_all, using the name of the counter, the
name of the module, a wildcard match for such a name using the “%” character, or the special keyword
all.

For usage information, see Section 14.12.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

Table 20.22 INNODB_METRICS Columns

Column name Description

NAME Unique name for the counter.

SUBSYSTEM The aspect of InnoDB that the metric applies to. See the list following the
table for the corresponding module names to use with the SET GLOBAL
syntax.

COUNT Value since the counter is enabled.

The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

2752

Column name Description

MAX_COUNT Maximum value since the counter is enabled.

MIN_COUNT Minimum value since the counter is enabled.

AVG_COUNT Average value since the counter is enabled.

COUNT_RESET Counter value since it was last reset. (The _RESET fields act like the
lap counter on a stopwatch: you can measure the activity during some
time interval, while the cumulative figures are still available in the COUNT,
MAX_COUNT, and so on fields.)

MAX_COUNT_RESET Maximum counter value since it was last reset.

MIN_COUNT_RESET Minimum counter value since it was last reset.

AVG_COUNT_RESET Average counter value since it was last reset.

TIME_ENABLED Timestamp of last start.

TIME_DISABLED Timestamp of last stop.

TIME_ELAPSED Elapsed time in seconds since the counter started.

TIME_RESET Timestamp of last stop.

STATUS Whether the counter is still running (enabled) or stopped (disabled).

TYPE Whether the item is a cumulative counter, or measures the current value
of some resource.

COMMENT Counter description.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.046153846153846156
 COUNT_RESET: 3
MAX_COUNT_RESET: 3
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 65
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted
1 row in set (0.00 sec)

Notes:

• You must have the PROCESS privilege to query this table.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

20.30.21 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

The INNODB_FT_CONFIG table displays metadata about the FULLTEXT index and associated
processing for an InnoDB table.

Before you query this table, set the configuration variable innodb_ft_aux_table to the name
(including the database name) of the table that contains the FULLTEXT index, for example test/
articles.

The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table

2753

For related usage information and examples, see Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

Table 20.23 INNODB_FT_CONFIG Columns

Column name Description

KEY The name designating an item of metadata for an InnoDB table
containing a FULLTEXT index.

VALUE The value associated with the corresponding KEY column, reflecting some
limit or current value for an aspect of a FULLTEXT index for an InnoDB
table.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_CONFIG;
+---------------------------+-------------------+
| KEY | VALUE |
+---------------------------+-------------------+
optimize_checkpoint_limit	180
synced_doc_id	0
stopword_table_name	test/my_stopwords
use_stopword	1
+---------------------------+-------------------+

Notes:

• This table is only intended for internal configuration. It is not intended for statistical information
purposes.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• The values for the KEY column might evolve depending on the needs for performance tuning and
debugging for InnoDB full-text processing. The key values include:

• optimize_checkpoint_limit: The number of seconds after which an OPTIMIZE TABLE run
will stop.

• synced_doc_id: The next DOC_ID to be issued.

• stopword_table_name: The database/table name for a user defined stopword table. This
field appears empty if there is no user-defined stopword table.

• use_stopword: Indicates whether or not a stopword table is used, which is defined when the
FULLTEXT index is created.

• For more information about InnoDB FULLTEXT search, see Section 14.2.7.3, “InnoDB FULLTEXT
Indexes”, and Section 12.9, “Full-Text Search Functions”.

20.30.22 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD
Table

The INNODB_FT_DEFAULT_STOPWORD table holds a list of stopwords that are used by default when
creating a FULLTEXT index on an InnoDB table. For information about the default InnoDB stopword
list and how to define your own stopword lists, see Section 12.9.4, “Full-Text Stopwords”.

For related usage information and examples, see Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

2754

Table 20.24 INNODB_FT_DEFAULT_STOPWORD Columns

Column name Description

value A word that is used by default as a stopword for FULLTEXT indexes
on InnoDB tables. Not used if you override the default stopword
processing with either the innodb_ft_server_stopword_table or
the innodb_ft_user_stopword_table option.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD;
+-------+
| value |
+-------+
| a |
| about |
| an |
| are |
| as |
| at |
| be |
| by |
| com |
| de |
| en |
| for |
| from |
| how |
| i |
| in |
| is |
| it |
| la |
| of |
| on |
| or |
| that |
| the |
| this |
| to |
| was |
| what |
| when |
| where |
| who |
| will |
| with |
| und |
| the |
| www |
+-------+
36 rows in set (0.00 sec)

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For more information about InnoDB FULLTEXT search, see Section 14.2.7.3, “InnoDB FULLTEXT
Indexes”, and Section 12.9, “Full-Text Search Functions”.

20.30.23 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

The INNODB_FT_INDEX_TABLE table displays information about the inverted index used to process
text searches against the FULLTEXT index of an InnoDB table.

The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

2755

For related usage information and examples, see Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

Before you query this table, set the configuration variable innodb_ft_aux_table to the name
(including the database name) of the table that contains the FULLTEXT index, for example test/
articles.

Table 20.25 INNODB_FT_INDEX_TABLE Columns

Column name Description

WORD A word extracted from the text of the columns that are part of a
FULLTEXT.

FIRST_DOC_ID The first document ID that this word appears in the FULLTEXT index.

LAST_DOC_ID The last document ID that this word appears in the FULLTEXT index.

DOC_COUNT The number of rows this word appears in the FULLTEXT index. The
same word can occur several times within the cache table, once for each
combination of DOC_ID and POSITION values.

DOC_ID The document ID of the row containing the word. This value might reflect
the value of an ID column that you defined for the underlying table, or it
can be a sequence value generated by InnoDB when the table does not
contain a suitable column.

POSITION The position of this particular instance of the word within the relevant
document identified by the DOC_ID value.

Notes:

• This table initially appears empty, until you set the value of the configuration variable
innodb_ft_aux_table. The following example demonstrates how to use the
innodb_ft_aux_table option to show information about a FULLTEXT index for a specified
table. Before information for newly inserted rows appears in INNODB_FT_INDEX_TABLE, the
FULLTEXT index cache must be flushed to disk. This is accomplished by running an OPTIMIZE
TABLE operation on the indexed table with innodb_optimize_fulltext_only=ON.

mysql> use test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we will show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;
Query OK, 0 rows affected (0.00 sec)

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+
1 row in set (0.00 sec)

mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';

The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

2756

Query OK, 0 rows affected (0.00 sec)

mysql> USE INFORMATION_SCHEMA;

mysql> SELECT word, doc_count, doc_id, position FROM INNODB_FT_INDEX_TABLE LIMIT 5;
+------------+-----------+--------+----------+
| word | doc_count | doc_id | position |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44
configured	1	6	20
database	2	1	31
+------------+-----------+--------+----------+

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For more information about InnoDB FULLTEXT search, see Section 14.2.7.3, “InnoDB FULLTEXT
Indexes”, and Section 12.9, “Full-Text Search Functions”.

20.30.24 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

INNODB_FT_INDEX_CACHE: Contains token information about newly inserted rows in a FULLTEXT
index. To avoid expensive index reorganization during DML operations, the information about newly
indexed words is stored separately, and combined with the main search index only when OPTIMIZE
TABLE is run, when the server is shut down, or when the cache size exceeds a limit defined by
innodb_ft_cache_size or innodb_ft_total_cache_size.

Before you query this table, set the configuration variable innodb_ft_aux_table to the name
(including the database name) of the table that contains the FULLTEXT index, for example test/
articles.

For related usage information and examples, see Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

Table 20.26 INNODB_FT_INDEX_CACHE Columns

Column name Description

WORD A word extracted from the text of a newly inserted row.

FIRST_DOC_ID The first document ID that this word appears in the FULLTEXT index.

LAST_DOC_ID The last document ID that this word appears in the FULLTEXT index.

DOC_COUNT The number of rows this word appears in the FULLTEXT index. The
same word can occur several times within the cache table, once for each
combination of DOC_ID and POSITION values.

DOC_ID The document ID of the newly inserted row. This value might reflect the
value of an ID column that you defined for the underlying table, or it can
be a sequence value generated by InnoDB when the table does not
contain a suitable column.

POSITION The position of this particular instance of the word within the relevant
document identified by the DOC_ID value. The value does not represent
an absolute position; it is an offset added to the POSITION of the
previous instance of that word.

Notes:

• This table initially appears empty, until you set the value of the configuration variable
innodb_ft_aux_table. The following example demonstrates how to use the
innodb_ft_aux_table option to show information about a FULLTEXT index for a specified table.

The INFORMATION_SCHEMA INNODB_FT_DELETED Table

2757

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we will show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';
Query OK, 0 rows affected (0.00 sec)

mysql> USE INFORMATION_SCHEMA;

mysql> SELECT word, doc_count, doc_id, position FROM INNODB_FT_INDEX_CACHE LIMIT 5;
+------------+-----------+--------+----------+
| word | doc_count | doc_id | position |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44
configured	1	6	20
database	2	1	31
+------------+-----------+--------+----------+

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For more information about InnoDB FULLTEXT search, see Section 14.2.7.3, “InnoDB FULLTEXT
Indexes”, and Section 12.9, “Full-Text Search Functions”.

20.30.25 The INFORMATION_SCHEMA INNODB_FT_DELETED Table

The INNODB_FT_DELETED table records rows that are deleted from the FULLTEXT index for an
InnoDB table. To avoid expensive index reorganization during DML operations for an InnoDB
FULLTEXT index, the information about newly deleted words is stored separately, filtered out of search
results when you do a text search, and removed from the main search index only when you issue the
OPTIMIZE TABLE statement for the InnoDB table. See Optimizing InnoDB Full-Text Indexes for more
information.

This table initially appears empty, until you set the value of the configuration variable
innodb_ft_aux_table to the name (including the database name) of the table that contains the
FULLTEXT index, for example test/articles.

For related usage information and examples, see Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

Table 20.27 INNODB_FT_DELETED Columns

Column name Description

DOC_ID The document ID of the newly deleted row. This value might reflect the
value of an ID column that you defined for the underlying table, or it
can be a sequence value generated by InnoDB when the table does

The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table

2758

Column name Description
not contain a suitable column. This value is used to skip rows in the
innodb_ft_index_table table, when you do text searches before
data for deleted rows is physically removed from the FULLTEXT index
by an OPTIMIZE TABLE statement. See Optimizing InnoDB Full-Text
Indexes for more information.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
+--------+
| DOC_ID |
+--------+
| 6 |
| 7 |
| 8 |
+--------+

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For more information about InnoDB FULLTEXT search, see Section 14.2.7.3, “InnoDB FULLTEXT
Indexes”, and Section 12.9, “Full-Text Search Functions”.

20.30.26 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table

The INNODB_FT_BEING_DELETED table is a snapshot of the INNODB_FT_DELETED table that
is only used during an OPTIMIZE TABLE maintenance operation. When OPTIMIZE TABLE is
run, the INNODB_FT_BEING_DELETED table is emptied, and DOC_IDs are removed from the
INNODB_FT_DELETED table. Because the contents of INNODB_FT_BEING_DELETED typically have
a short lifetime, this table has limited utility for monitoring or debugging. For information about running
OPTIMIZE TABLE on tables with FULLTEXT indexes, see Section 12.9.6, “Fine-Tuning MySQL Full-
Text Search”.

This table initially appears empty, until you set the value of the configuration variable
innodb_ft_aux_table. The output appears similar to the example provided for the
INNODB_FT_DELETED table.

For related usage information and examples, see Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

Table 20.28 INNODB_FT_BEING_DELETED Columns

Column name Description

DOC_ID The document ID of the row that is in the process of being deleted. This
value might reflect the value of an ID column that you defined for the
underlying table, or it can be a sequence value generated by InnoDB
when the table does not contain a suitable column. This value is used
to skip rows in the innodb_ft_index_table table, when you do text
searches before data for deleted rows is physically removed from the
FULLTEXT index by an OPTIMIZE TABLE statement. See Optimizing
InnoDB Full-Text Indexes for more information.

Notes:

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

2759

• You must have the PROCESS privilege to query this table.

• For more information about InnoDB FULLTEXT search, see Section 14.2.7.3, “InnoDB FULLTEXT
Indexes”, and Section 12.9, “Full-Text Search Functions”.

20.30.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

INNODB_TEMP_TABLE_INFO contains metadata about active InnoDB temporary tables. With the
exception of optimized internal temporary tables used by InnoDB, INNODB_TEMP_TABLE_INFO
reports on all user and system-created temporary tables that are active within a given InnoDB
instance. The table is maintained in memory and not persisted to disk.

Prior to the introduction of the INNODB_TEMP_TABLE_INFO table in MySQL 5.7.1, InnoDB temporary
table metadata was stored in InnoDB system tables.

For usage information and examples, see Section 14.12.7, “InnoDB INFORMATION_SCHEMA
Temporary Table Information Table”.

Table 20.29 INNODB_TEMP_TABLE_INFO Columns

Column name Description

TABLE_ID The table ID of the active temporary table.

NAME The name of the active temporary table.

N_COLS The number of columns in the temporary table. The number always
includes three hidden columns created by InnoDB (DB_ROW_ID,
DB_TRX_ID, and DB_ROLL_PTR).

SPACE The tablespace identifier (a numerical value) for the tablespace in which
the temporary table resides. As of MySQL 5.7.1, all non-compressed
InnoDB temporary tables reside in a shared temporary table tablespace,
as defined by innodb_temp_data_file_path. By default the shared
temporary tablespace is named ibtmp1 and located in the data
directory. Compressed temporary tables reside in separate per-table
tablespaces located in the temporary file directory, as defined by tmpdir.
The SPACE ID is always a non-zero value and is dynamically generated
on server restart.

PER_TABLE_SPACE A value of TRUE indicates that the temporary table resides in a separate
per-table tablespace. A value of FALSE indicates that the temporary table
resides in the shared temporary tablespace.

IS_COMPRESSED A value of TRUE indicates that the temporary table is compressed.

Example:

mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 32
 NAME: #sqlaf56_2_0
 N_COLS: 4
 SPACE: 19
PER_TABLE_TABLESPACE: FALSE
 IS_COMPRESSED: FALSE
1 row in set (0.00 sec)

Notes:

• This table is primarily useful for expert level monitoring.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

Extensions to SHOW Statements

2760

• You must have the PROCESS privilege to query this table.

20.31 Extensions to SHOW Statements

Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which
rows to display.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW
DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its
tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |
| EVENTS |
| FILES |
| GLOBAL_STATUS |
| GLOBAL_VARIABLES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| SESSION_STATUS |
| SESSION_VARIABLES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+
27 rows in set (0.00 sec)

SHOW COLUMNS and DESCRIBE can display information about the columns in individual
INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also permit a WHERE clause that
specifies more general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES

Extensions to SHOW Statements

2761

SHOW TRIGGERS
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW
statement. For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As
an example, the following statement displays information about character sets for which the default
collation contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This statement displays the multibyte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
euckr	EUC-KR Korean	euckr_korean_ci	2
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

2762

2763

Chapter 21 MySQL Performance Schema

Table of Contents
21.1 Performance Schema Quick Start .. 2765
21.2 Performance Schema Configuration ... 2771

21.2.1 Performance Schema Build Configuration .. 2771
21.2.2 Performance Schema Startup Configuration ... 2772
21.2.3 Performance Schema Runtime Configuration ... 2774

21.3 Performance Schema Queries ... 2794
21.4 Performance Schema Instrument Naming Conventions ... 2794
21.5 Performance Schema Status Monitoring ... 2797
21.6 Performance Schema Atom and Molecule Events ... 2801
21.7 Performance Schema Statement Digests ... 2801
21.8 Performance Schema General Table Characteristics ... 2804
21.9 Performance Schema Table Descriptions ... 2804

21.9.1 Performance Schema Table Index .. 2804
21.9.2 Performance Schema Setup Tables .. 2807
21.9.3 Performance Schema Instance Tables .. 2812
21.9.4 Performance Schema Wait Event Tables ... 2816
21.9.5 Performance Schema Stage Event Tables ... 2821
21.9.6 Performance Schema Statement Event Tables .. 2826
21.9.7 Performance Schema Transaction Tables .. 2835
21.9.8 Performance Schema Connection Tables .. 2842
21.9.9 Performance Schema Connection Attribute Tables ... 2844
21.9.10 Performance Schema Replication Tables ... 2846
21.9.11 Performance Schema Lock Tables .. 2857
21.9.12 Performance Schema System Variable Tables ... 2859
21.9.13 Performance Schema Status Variable Tables ... 2860
21.9.14 Performance Schema Summary Tables ... 2862
21.9.15 Performance Schema Miscellaneous Tables .. 2881

21.10 Performance Schema Option and Variable Reference ... 2889
21.11 Performance Schema Command Options ... 2892
21.12 Performance Schema System Variables ... 2893
21.13 Performance Schema Status Variables ... 2909
21.14 The Performance Schema Memory-Allocation Model ... 2912
21.15 Performance Schema and Plugins ... 2913
21.16 Using the Performance Schema to Diagnose Problems ... 2913

21.16.1 Query Profiling Using Performance Schema ... 2914
21.17 Migrating to Performance Schema System and Status Variable Tables 2916

The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level.
The Performance Schema has these characteristics:

• The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE_SCHEMA storage engine and the performance_schema
database. The Performance Schema focuses primarily on performance data. This differs from
INFORMATION_SCHEMA, which serves for inspection of metadata.

• The Performance Schema monitors server events. An “event” is anything the server does that takes
time and has been instrumented so that timing information can be collected. In general, an event
could be a function call, a wait for the operating system, a stage of an SQL statement execution such
as parsing or sorting, or an entire statement or group of statements. Event collection provides access
to information about synchronization calls (such as for mutexes) file and table I/O, table locks, and so
forth for the server and for several storage engines.

2764

• Performance Schema events are distinct from events written to the server's binary log (which
describe data modifications) and Event Scheduler events (which are a type of stored program).

• Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written
to the binary log.

• Current events are available, as well as event histories and summaries. This enables you to
determine how many times instrumented activities were performed and how much time they took.
Event information is available to show the activities of specific threads, or activity associated with
particular objects such as a mutex or file.

• The PERFORMANCE_SCHEMA storage engine collects event data using “instrumentation points” in
server source code.

• Collected events are stored in tables in the performance_schema database. These tables can be
queried using SELECT statements like other tables.

• Performance Schema configuration can be modified dynamically by updating tables in the
performance_schema database through SQL statements. Configuration changes affect data
collection immediately.

• Tables in the performance_schema database are views or temporary tables that use no persistent
on-disk storage.

• Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply
to storage engines might not be implemented for all storage engines. Instrumentation of each third-
party engine is the responsibility of the engine maintainer. See also Section C.8, “Restrictions on
Performance Schema”.

• Data collection is implemented by modifying the server source code to add instrumentation. There
are no separate threads associated with the Performance Schema, unlike other features such as
replication or the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution
while having minimal impact on server performance. The implementation follows these design goals:

• Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAIN) to change.

• Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

• The parser is unchanged. There are no new keywords or statements.

• Execution of server code proceeds normally even if the Performance Schema fails internally.

• When there is a choice between performing processing during event collection initially or during
event retrieval later, priority is given to making collection faster. This is because collection is ongoing
whereas retrieval is on demand and might never happen at all.

• It is easy to add new instrumentation points.

• Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code will continue to work. This benefits developers of third-party plugins because it is not necessary
to upgrade each plugin to stay synchronized with the latest Performance Schema changes.

Note

 The MySQL sys schema is a set of objects that provides convenient access
to data collected by the Performance Schema. The sys schema is installed by

Performance Schema Quick Start

2765

default as of MySQL 5.7.7. For usage instructions, see Chapter 22, MySQL sys
Schema.

21.1 Performance Schema Quick Start

This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Section 21.16, “Using the Performance Schema to Diagnose Problems”.

For the Performance Schema to be available, support for it must have been configured when
MySQL was built. You can verify whether this is the case by checking the server's help output. If the
Performance Schema is available, the output will mention several variables with names that begin with
performance_schema:

shell> mysqld --verbose --help
...
 --performance_schema
 Enable the performance schema.
 --performance_schema_events_waits_history_long_size=#
 Number of rows in events_waits_history_long.
...

If such variables do not appear in the output, your server has not been built to support the Performance
Schema. In this case, see Section 21.2, “Performance Schema Configuration”.

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it
explicitly, start the server with the performance_schema variable set to an appropriate value. For
example, use these lines in your my.cnf file:

[mysqld]
performance_schema=ON

When the server starts, it sees performance_schema and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

mysql> SHOW VARIABLES LIKE 'performance_schema';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| performance_schema | ON |
+--------------------+-------+

A value of ON means that the Performance Schema initialized successfully and is ready for use. A
value of OFF means that some error occurred. Check the server error log for information about what
went wrong.

The Performance Schema is implemented as a storage engine. If this engine is available (which you
should already have checked earlier), you should see it listed with a SUPPORT value of YES in the
output from the INFORMATION_SCHEMA.ENGINES table or the SHOW ENGINES statement:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE ENGINE='PERFORMANCE_SCHEMA'\G
*************************** 1. row ***************************
 ENGINE: PERFORMANCE_SCHEMA
 SUPPORT: YES
 COMMENT: Performance Schema
TRANSACTIONS: NO
 XA: NO
 SAVEPOINTS: NO

mysql> SHOW ENGINES\G
...

Performance Schema Quick Start

2766

 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

The PERFORMANCE_SCHEMA storage engine operates on tables in the performance_schema
database. You can make performance_schema the default database so that references to its tables
need not be qualified with the database name:

mysql> USE performance_schema;

Many examples in this chapter assume performance_schema as the default database.

Performance Schema tables are stored in the performance_schema database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the INFORMATION_SCHEMA database or by using SHOW statements. For example, use either of these
statements to see what Performance Schema tables exist:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'performance_schema';
+--+
| TABLE_NAME |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_thread_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_stages_summary_global_by_event_name |
| events_statements_current |
| events_statements_history |
| events_statements_history_long |
...
| file_instances |
| file_summary_by_event_name |
| file_summary_by_instance |
| host_cache |
| hosts |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |
| memory_summary_by_thread_by_event_name |
| memory_summary_by_user_by_event_name |
| memory_summary_global_by_event_name |
| metadata_locks |
| mutex_instances |
| objects_summary_global_by_type |
| performance_timers |
| replication_connection_configuration |
| replication_connection_status |
| replication_applier_configuration |
| replication_applier_status |
| replication_applier_status_by_coordinator |
| replication_applier_status_by_worker |
| rwlock_instances |
| session_account_connect_attrs |
| session_connect_attrs |
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |

Performance Schema Quick Start

2767

| socket_instances |
| socket_summary_by_event_name |
| socket_summary_by_instance |
| table_handles |
| table_io_waits_summary_by_index_usage |
| table_io_waits_summary_by_table |
| table_lock_waits_summary_by_table |
| threads |
| users |
+--+

mysql> SHOW TABLES FROM performance_schema;
+--+
| Tables_in_performance_schema |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
...

The number of Performance Schema tables is expected to increase over time as implementation of
additional instrumentation proceeds.

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE setup_timers\G
*************************** 1. row ***************************
 Table: setup_timers
Create Table: CREATE TABLE `setup_timers` (
 `NAME` varchar(64) NOT NULL,
 `TIMER_NAME` enum('CYCLE','NANOSECOND','MICROSECOND','MILLISECOND','TICK')
 NOT NULL
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

Table structure is also available by selecting from tables such as INFORMATION_SCHEMA.COLUMNS or
by using statements such as SHOW COLUMNS.

Tables in the performance_schema database can be grouped according to the type of information
in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information
about the tables in each group, see Section 21.9, “Performance Schema Table Descriptions”.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect
all events. To turn all of these on and enable event timing, execute two statements (the row counts may
differ depending on MySQL version):

mysql> UPDATE setup_instruments SET ENABLED = 'YES', TIMED = 'YES';
Query OK, 560 rows affected (0.04 sec)
mysql> UPDATE setup_consumers SET ENABLED = 'YES';
Query OK, 10 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the events_waits_current table. It
contains one row per thread showing each thread's most recent monitored event:

mysql> SELECT * FROM events_waits_current\G
*************************** 1. row ***************************
 THREAD_ID: 0
 EVENT_ID: 5523
 EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK::mutex
 SOURCE: thr_lock.c:525

Performance Schema Quick Start

2768

 TIMER_START: 201660494489586
 TIMER_END: 201660494576112
 TIMER_WAIT: 86526
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 142270668
 NESTING_EVENT_ID: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: 0
...

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK::mutex, a mutex in the mysys subsystem. The first few columns provide the following
information:

• The ID columns indicate which thread the event comes from and the event number.

• EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

• The timer columns show when the event started and stopped and how long it took. If an event is
still in progress, the TIMER_END and TIMER_WAIT values are NULL. Timer values are approximate
and expressed in picoseconds. For information about timers and event time collection, see
Section 21.2.3.1, “Performance Schema Event Timing”.

The history tables contain the same kind of rows as the current-events table but have more rows and
show what the server has been doing “recently” rather than “currently.” The events_waits_history
and events_waits_history_long tables contain the most recent 10 events per thread and most
recent 10,000 events, respectively. For example, to see information for recent events produced by
thread 13, do this:

mysql> SELECT EVENT_ID, EVENT_NAME, TIMER_WAIT
 -> FROM events_waits_history WHERE THREAD_ID = 13
 -> ORDER BY EVENT_ID;
+----------+---+------------+
| EVENT_ID | EVENT_NAME | TIMER_WAIT |
+----------+---+------------+
86	wait/synch/mutex/mysys/THR_LOCK::mutex	686322
87	wait/synch/mutex/mysys/THR_LOCK_malloc	320535
88	wait/synch/mutex/mysys/THR_LOCK_malloc	339390
89	wait/synch/mutex/mysys/THR_LOCK_malloc	377100
90	wait/synch/mutex/sql/LOCK_plugin	614673
91	wait/synch/mutex/sql/LOCK_open	659925
92	wait/synch/mutex/sql/THD::LOCK_thd_data	494001
93	wait/synch/mutex/mysys/THR_LOCK_malloc	222489
94	wait/synch/mutex/mysys/THR_LOCK_malloc	214947
95	wait/synch/mutex/mysys/LOCK_alarm	312993
+----------+---+------------+

As new events are added to a history table, older events are discarded if the table is full.

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times
or have taken the most wait time, sort the events_waits_summary_global_by_event_name
table on the COUNT_STAR or SUM_TIMER_WAIT column, which correspond to a COUNT(*) or
SUM(TIMER_WAIT) value, respectively, calculated over all events:

mysql> SELECT EVENT_NAME, COUNT_STAR
 -> FROM events_waits_summary_global_by_event_name
 -> ORDER BY COUNT_STAR DESC LIMIT 10;
+---+------------+
| EVENT_NAME | COUNT_STAR |

Performance Schema Quick Start

2769

+---+------------+
wait/synch/mutex/mysys/THR_LOCK_malloc	6419
wait/io/file/sql/FRM	452
wait/synch/mutex/sql/LOCK_plugin	337
wait/synch/mutex/mysys/THR_LOCK_open	187
wait/synch/mutex/mysys/LOCK_alarm	147
wait/synch/mutex/sql/THD::LOCK_thd_data	115
wait/io/file/myisam/kfile	102
wait/synch/mutex/sql/LOCK_global_system_variables	89
wait/synch/mutex/mysys/THR_LOCK::mutex	89
wait/synch/mutex/sql/LOCK_open	88
+---+------------+

mysql> SELECT EVENT_NAME, SUM_TIMER_WAIT
 -> FROM events_waits_summary_global_by_event_name
 -> ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;
+--+----------------+
| EVENT_NAME | SUM_TIMER_WAIT |
+--+----------------+
wait/io/file/sql/MYSQL_LOG	1599816582
wait/synch/mutex/mysys/THR_LOCK_malloc	1530083250
wait/io/file/sql/binlog_index	1385291934
wait/io/file/sql/FRM	1292823243
wait/io/file/myisam/kfile	411193611
wait/io/file/myisam/dfile	322401645
wait/synch/mutex/mysys/LOCK_alarm	145126935
wait/io/file/sql/casetest	104324715
wait/synch/mutex/sql/LOCK_plugin	86027823
wait/io/file/sql/pid	72591750
+--+----------------+

These results show that the THR_LOCK_malloc mutex is “hot,” both in terms of how often it is used
and amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK_malloc mutex is used only in debug builds. In production
builds it is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when
used by the server, produces an event. These tables provide event names and explanatory notes or
status information. For example, the file_instances table lists instances of instruments for file I/O
operations and their associated files:

mysql> SELECT * FROM file_instances\G
*************************** 1. row ***************************
 FILE_NAME: /opt/mysql-log/60500/binlog.000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
*************************** 2. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/tables_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
*************************** 3. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/columns_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
...

Setup tables are used to configure and display monitoring characteristics. For example, to see which
event timers are selected, query the setup_timers tables:

mysql> SELECT * FROM setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
| idle | MICROSECOND |

Performance Schema Quick Start

2770

wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

setup_instruments lists the set of instruments for which events can be collected and shows which
of them are enabled:

mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To understand how to interpret instrument names, see Section 21.4, “Performance Schema Instrument
Naming Conventions”.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
 -> WHERE NAME = 'wait/synch/mutex/sql/LOCK_mysql_create_db';

The Performance Schema uses collected events to update tables in the performance_schema
database, which act as “consumers” of event information. The setup_consumers table lists the
available consumers and which are enabled:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

To control whether the Performance Schema maintains a consumer as a destination for event
information, set its ENABLED value.

Performance Schema Configuration

2771

For more information about the setup tables and how to use them to control event collection, see
Section 21.2.3.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
performance_timers lists the available event timers and their characteristics. For information about
timers, see Section 21.2.3.1, “Performance Schema Event Timing”.

21.2 Performance Schema Configuration

To use the MySQL Performance Schema, these configuration considerations apply:

• The Performance Schema must be configured into MySQL Server at build time to make it available.
Performance Schema support is included in binary MySQL distributions. If you are building
from source, you must ensure that it is configured into the build as described in Section 21.2.1,
“Performance Schema Build Configuration”.

• The Performance Schema must be enabled at server startup to enable event collection to
occur. Specific Performance Schema features can be enabled at server startup or at runtime to
control which types of event collection occur. See Section 21.2.2, “Performance Schema Startup
Configuration”, Section 21.2.3, “Performance Schema Runtime Configuration”, and Section 21.2.3.2,
“Performance Schema Event Filtering”.

21.2.1 Performance Schema Build Configuration

For the Performance Schema to be available, it must be configured into the MySQL server at build
time. Binary MySQL distributions provided by Oracle Corporation are configured to support the
Performance Schema. If you use a binary MySQL distribution from another provider, check with the
provider whether the distribution has been appropriately configured.

If you build MySQL from a source distribution, enable the Performance Schema by running CMake with
the WITH_PERFSCHEMA_STORAGE_ENGINE option enabled:

shell> cmake . -DWITH_PERFSCHEMA_STORAGE_ENGINE=1

Configuring MySQL with the -DWITHOUT_PERFSCHEMA_STORAGE_ENGINE=1 option prevents
inclusion of the Performance Schema, so if you want it included, do not use this option. See
Section 2.9.4, “MySQL Source-Configuration Options”.

As of MySQL 5.7.3, it is also possible to enable the Performance Schema but exclude certain parts of
the instrumentation. For example, to enable the Performance Schema but exclude stage and statement
instrumentation, do this:

shell> cmake . -DWITH_PERFSCHEMA_STORAGE_ENGINE=1 \
 -DDISABLE_PSI_STAGE=1 \
 -DDISABLE_PSI_STATEMENT=1

For more information, see the descriptions of the DISABLE_PSI_XXX CMake options in Section 2.9.4,
“MySQL Source-Configuration Options”.

If you install MySQL over a previous installation that was configured without the Performance Schema
(or with an older version of the Performance Schema that may not have all the current tables), run
mysql_upgrade after starting the server to ensure that the performance_schema database exists
with all current tables. Then restart the server. One indication that you need to do this is the presence
of messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'
has the wrong structure
[ERROR] Native table 'performance_schema'.'events_waits_history_long'

Performance Schema Startup Configuration

2772

has the wrong structure
...

To verify whether a server was built with Performance Schema support, check its help output. If the
Performance Schema is available, the output will mention several variables with names that begin with
performance_schema:

shell> mysqld --verbose --help
...
 --performance_schema
 Enable the performance schema.
 --performance_schema_events_waits_history_long_size=#
 Number of rows in events_waits_history_long.
...

You can also connect to the server and look for a line that names the PERFORMANCE_SCHEMA storage
engine in the output from SHOW ENGINES:

mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

If the Performance Schema was not configured into the server at build time, no row for
PERFORMANCE_SCHEMA will appear in the output from SHOW ENGINES. You might see
performance_schema listed in the output from SHOW DATABASES, but it will have no tables and you
will not be able to use it.

A line for PERFORMANCE_SCHEMA in the SHOW ENGINES output means that the Performance Schema
is available, not that it is enabled. To enable it, you must do so at server startup, as described in the
next section.

21.2.2 Performance Schema Startup Configuration

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it
explicitly, start the server with the performance_schema variable set to an appropriate value. For
example, use these lines in your my.cnf file:

[mysqld]
performance_schema=ON

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets performance_schema to OFF, and the server runs
without instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.

To control an instrument at server startup, use an option of this form:

--performance-schema-instrument='instrument_name=value'

Here, instrument_name is an instrument name such as wait/synch/mutex/sql/LOCK_open,
and value is one of these values:

• OFF, FALSE, or 0: Disable the instrument

Performance Schema Startup Configuration

2773

• ON, TRUE, or 1: Enable and time the instrument

• COUNTED: Enable and count (rather than time) the instrument

Each --performance-schema-instrument option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns
are permitted in instrument names to configure instruments that match the pattern. To configure all
condition synchronization instruments as enabled and counted, use this option:

--performance-schema-instrument='wait/synch/cond/%=COUNTED'

To disable all instruments, use this option:

--performance-schema-instrument='%=OFF'

Exception: The memory/performance_schema/% instruments are built in and cannot be disabled at
startup.

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 21.2.3.4, “Naming Instruments
or Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

--performance-schema-consumer-consumer_name=value

Here, consumer_name is a consumer name such as events_waits_history, and value is one of
these values:

• OFF, FALSE, or 0: Do not collect events for the consumer

• ON, TRUE, or 1: Collect events for the consumer

For example, to enable the events_waits_history consumer, use this option:

--performance-schema-consumer-events-waits-history=ON

The permitted consumer names can be found by examining the setup_consumers table. Patterns
are not permitted. Consumer names in the setup_consumers table use underscores, but for
consumers set at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	200
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10

Performance Schema Runtime Configuration

2774

performance_schema_hosts_size	100
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	1000
...

The performance_schema variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. Before
MySQL 5.7.6, it may be necessary to tune the values of Performance Schema
system variables to find the number of instances that balances insufficient
instrumentation against excessive memory consumption. As of MySQL 5.7.6,
the Performance Schema autoscales many parameters to use memory only
as required; see Section 21.14, “The Performance Schema Memory-Allocation
Model”.

To change the value of Performance Schema system variables, set them at server startup. For
example, put the following lines in a my.cnf file to change the sizes of the history tables for wait
events:

[mysqld]
performance_schema
performance_schema_events_waits_history_size=20
performance_schema_events_waits_history_long_size=15000

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For example, it sizes the parameters that control the sizes of the events
waits tables this way. As of MySQL 5.7.6, the Performance Schema allocates memory incrementally,
scaling its memory use to actual server load, instead of allocating all the memory it needs during server
startup. Consequently, many sizing parameters need not be set at all. To see which parameters are
autosized or autoscaled, use mysqld --verbose --help and examine the option descriptions, or
see Section 21.12, “Performance Schema System Variables”.

For each autosized parameter that is not set at server startup (or is set to −1), the Performance
Schema determines how to set its value based on the value of the following system values, which are
considered as “hints” about how you have configured your MySQL server:

max_connections
open_files_limit
table_definition_cache
table_open_cache

To override autosizing or autoscaling for a given parameter, set it to a value other than −1 at startup. In
this case, the Performance Schema assigns it the specified value.

At runtime, SHOW VARIABLES displays the actual values that autosized parameters were set to.
Autoscaled parameters display with a value of −1.

If the Performance Schema is disabled, its autosized and autoscaled parameters remain set to −1 and
SHOW VARIABLES displays −1.

21.2.3 Performance Schema Runtime Configuration

Performance Schema setup tables contain information about monitoring configuration:

Performance Schema Runtime Configuration

2775

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'performance_schema'
 -> AND TABLE_NAME LIKE 'setup%';
+-------------------+
| TABLE_NAME |
+-------------------+
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
+-------------------+

You can examine the contents of these tables to obtain information about Performance Schema
monitoring characteristics. If you have the UPDATE privilege, you can change Performance Schema
operation by modifying setup tables to affect how monitoring occurs. For additional details about these
tables, see Section 21.9.2, “Performance Schema Setup Tables”.

To see which event timers are selected, query the setup_timers tables:

mysql> SELECT * FROM setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

The NAME value indicates the type of instrument to which the timer applies, and TIMER_NAME indicates
which timer applies to those instruments. The timer applies to instruments where their name begins
with a component matching the NAME value.

To change the timer, update the NAME value. For example, to use the NANOSECOND timer for the wait
timer:

mysql> UPDATE setup_timers SET TIMER_NAME = 'NANOSECOND'
 -> WHERE NAME = 'wait';
mysql> SELECT * FROM setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	NANOSECOND
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

For discussion of timers, see Section 21.2.3.1, “Performance Schema Event Timing”.

The setup_instruments and setup_consumers tables list the instruments for which events can
be collected and the types of consumers for which event information actually is collected, respectively.
Other setup tables enable further modification of the monitoring configuration. Section 21.2.3.2,
“Performance Schema Event Filtering”, discusses how you can modify these tables to affect event
collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the
statements in a file and start the server with the --init-file=file_name option. This strategy can
also be useful if you have multiple monitoring configurations, each tailored to produce a different kind
of monitoring, such as casual server health monitoring, incident investigation, application behavior

Performance Schema Runtime Configuration

2776

troubleshooting, and so forth. Put the statements for each monitoring configuration into their own file
and specify the appropriate file as the --init-file argument when you start the server.

21.2.3.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also
possible to configure instruments not to collect timing information. This section discusses the available
timers and their characteristics, and how timing values are represented in events.

Performance Schema Timers

Two Performance Schema tables provide timer information:

• performance_timers lists the available timers and their characteristics.

• setup_timers indicates which timers are used for which instruments.

Each timer row in setup_timers must refer to one of the timers listed in performance_timers.

Timers vary in precision and amount of overhead. To see what timers are available and their
characteristics, check the performance_timers table:

mysql> SELECT * FROM performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
TICK	105	1	2416
+-------------+-----------------+------------------+----------------+

The columns have these meanings:

• The TIMER_NAME column shows the names of the available timers. CYCLE refers to the timer that
is based on the CPU (processor) cycle counter. The timers in setup_timers that you can use are
those that do not have NULL in the other columns. If the values associated with a given timer name
are NULL, that timer is not supported on your platform.

• TIMER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds. For TICK, the frequency may
vary by platform (for example, some use 100 ticks/second, others 1000 ticks/second).

• TIMER_RESOLUTION indicates the number of timer units by which timer values increase at a time. If
a timer has a resolution of 10, its value increases by 10 each time.

• TIMER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given
timer. The overhead per event is twice the value displayed because the timer is invoked at the
beginning and end of the event.

To see which timers are in effect or to change timers, access the setup_timers table:

mysql> SELECT * FROM setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND

Performance Schema Runtime Configuration

2777

| statement | NANOSECOND |
| transaction | NANOSECOND |
+-------------+-------------+

mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
 -> WHERE NAME = 'idle';
mysql> SELECT * FROM setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

By default, the Performance Schema uses the best timer available for each instrument type, but you
can select a different one.

To time wait events, the most important criterion is to reduce overhead, at the possible expense of the
timer accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate
measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the CYCLE timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1
GHz (one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using
the cycle counter is much cheaper than getting the actual time of day. For example, the standard
gettimeofday() function can take hundreds of cycles, which is an unacceptable overhead for data
gathering that may occur thousands or millions of times per second.

Cycle counters also have disadvantages:

• End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

• Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a
CPU slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from
cycles to real-time units is subject to error.

• Cycle counters might be unreliable or unavailable depending on the processor or the operating
system. For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C
instruction) and it is theoretically possible for the operating system to prevent user-mode programs
from using it.

• Some processor details related to out-of-order execution or multiprocessor synchronization might
cause the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, OS X, Linux, Solaris, and other Unix flavors),
PowerPC, and IA-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three
columns to represent timing information: TIMER_START and TIMER_END indicate when an event
started and finished, and TIMER_WAIT indicates event duration.

Performance Schema Runtime Configuration

2778

The setup_instruments table has an ENABLED column to indicate the instruments for which
to collect events. The table also has a TIMED column to indicate which instruments are timed. If
an instrument is not enabled, it produces no events. If an enabled instrument is not timed, events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer
values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum,
and average time values in summary tables.

Internally, times within events are stored in units given by the timer in effect when event timing
begins. For display when events are retrieved from Performance Schema tables, times are shown in
picoseconds (trillionths of a second) to normalize them to a standard unit, regardless of which timer is
selected.

Modifications to the setup_timers table affect monitoring immediately. Events already in progress
may use the original timer for the begin time and the new timer for the end time. To avoid unpredictable
results after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TIMER_START and TIMER_END values in events represent picoseconds since the baseline.
TIMER_WAIT values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor
rate varies, there might be drift. For these reasons, it is not reasonable to look at the TIMER_START
value for an event as an accurate measure of time elapsed since server startup. On the other hand, it
is reasonable to use TIMER_START or TIMER_WAIT values in ORDER BY clauses to order events by
start time or duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.
In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary
to perform a division for every instrumentation. Division is expensive on many platforms. Multiplication
is not expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest
possible TIMER_FREQUENCY value, using a multiplier large enough to ensure that there is no major
precision loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the
decision enables overhead to be minimized.

Before MySQL 5.7.8, while a wait, stage, statement, or transaction event is executing, the respective
current-event tables display the event with TIMER_START populated, but with TIMER_END and
TIMER_WAIT set to NULL:

events_waits_current
events_stages_current
events_statements_current
events_transactions_current

As of MySQL 5.7.8, current-event timing provides more information. To make it possible to determine
how how long a not-yet-completed event has been running, the timer columns are set as follows:

• TIMER_START is populated (unchanged from previous behavior)

• TIMER_END is populated with the current timer value

• TIMER_WAIT is populated with the time elapsed so far (TIMER_END − TIMER_START)

Events that have not yet completed have an END_EVENT_ID value of NULL. To assess time elapsed
so far for an event, use the TIMER_WAIT column. Therefore, to identify events that have not yet
completed and have taken longer than N picoseconds thus far, monitoring applications can use this
expression in queries:

Performance Schema Runtime Configuration

2779

WHERE END_EVENT_ID IS NULL AND TIMER_WAIT > N

Event identification as just described assumes that the corresponding instruments have ENABLED and
TIMED set to YES and that the relevent consumers are enabled.

21.2.3.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

• Instrumented code is the source for events and produces events to be collected. The
setup_instruments table lists the instruments for which events can be collected, whether they
are enabled, and (for enabled instruments) whether to collect timing information:

mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables
may be used as described in Section 21.2.3.3, “Event Pre-Filtering”.

• Performance Schema tables are the destinations for events and consume events. The
setup_consumers table lists the types of consumers to which event information can be sent and
whether they are enabled:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Filtering can be done at different stages of performance monitoring:

• Pre-filtering. This is done by modifying Performance Schema configuration so that only certain
types of events are collected from producers, and collected events update only certain consumers.
To do this, enable or disable instruments or consumers. Pre-filtering is done by the Performance
Schema and has a global effect that applies to all users.

Reasons to use pre-filtering:

• To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and
want to disable the timing code to eliminate timing overhead.

Performance Schema Runtime Configuration

2780

• To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If
you enable only file instruments with pre-filtering, no rows are collected for nonfile instruments.
With post-filtering, nonfile events are collected, leaving fewer rows for file events.

• To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about
event histories, you can disable the history table consumers to improve performance.

• Post-filtering. This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:

• To avoid making decisions for individual users about which event information is of interest.

• To use the Performance Schema to investigate a performance issue when the restrictions to
impose using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Section 21.3, “Performance Schema Queries”.

21.2.3.3 Event Pre-Filtering

Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

• To configure pre-filtering at the producer stage, several tables can be used:

• setup_instruments indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables.
An instrument enabled in this table is permitted to produce events, subject to the contents of the
other tables.

• setup_objects controls whether the Performance Schema monitors particular table and stored
program objects.

• threads indicates whether monitoring is enabled for each server thread.

• setup_actors determines the initial monitoring state for new foreground threads.

• To configure pre-filtering at the consumer stage, modify the setup_consumers table. This
determines the destinations to which events are sent. setup_consumers also implicitly affects
event production. If a given event will not be sent to any destination (that is, will not be consumed),
the Performance Schema does not produce it.

Modifications to any of these tables affect monitoring immediately, with some exceptions:

• Modifications to some instruments in the setup_instruments table are effective only at server
startup; changing them at runtime has no effect. This affects primarily mutexes, conditions, and
rwlocks in the server, although there may be other instruments for which this is true.

• Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads.

When you change the monitoring configuration, the Performance Schema does not flush the history
tables. Events already collected remain in the current-events and history tables until displaced by

Performance Schema Runtime Configuration

2781

newer events. If you disable instruments, you might need to wait a while before events for them are
displaced by newer events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary
tables to clear aggregate information for previously collected events. Except for
events_statements_summary_by_digest and the memory summary tables, the effect of
TRUNCATE TABLE for summary tables is to reset the summary columns to 0 or NULL, not to remove
rows.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

Pre-Filtering by Instrument

The setup_instruments table lists the available instruments:

mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure
whether to collect timing information for an enabled instrument, set its TIMED value to YES or
NO. Setting the TIMED column affects Performance Schema table contents as described in
Section 21.2.3.1, “Performance Schema Event Timing”.

Modifications to most setup_instruments rows affect monitoring immediately. For some
instruments, modifications are effective only at server startup; changing them at runtime has no effect.
This affects primarily mutexes, conditions, and rwlocks in the server, although there may be other
instruments for which this is true.

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 21.2.3.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the setup_instruments table. These
changes, like other pre-filtering operations, affect all users. Some of these queries use the LIKE
operator and a pattern match instrument names. For additional information about specifying patterns to
select instruments, see Section 21.2.3.4, “Naming Instruments or Consumers for Filtering Operations”.

• Disable all instruments:

mysql> UPDATE setup_instruments SET ENABLED = 'NO';

Now no events will be collected.

• Disable all file instruments, adding them to the current set of disabled instruments:

Performance Schema Runtime Configuration

2782

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
 -> WHERE NAME LIKE 'wait/io/file/%';

• Disable only file instruments, enable all other instruments:

mysql> UPDATE setup_instruments
 -> SET ENABLED = IF(NAME LIKE 'wait/io/file/%', 'NO', 'YES');

• Enable all but those instruments in the mysys library:

mysql> UPDATE setup_instruments
 -> SET ENABLED = CASE WHEN NAME LIKE '%/mysys/%' THEN 'YES' ELSE 'NO' END;

• Disable a specific instrument:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
 -> WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• To toggle the state of an instrument, “flip” its ENABLED value:

mysql> UPDATE setup_instruments
 -> SET ENABLED = IF(ENABLED = 'YES', 'NO', 'YES')
 -> WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• Disable timing for all events:

mysql> UPDATE setup_instruments SET TIMED = 'NO';

Pre-Filtering by Object

The setup_objects table controls whether the Performance Schema monitors particular table and
stored program objects. The initial setup_objects contents look like this:

mysql> SELECT * FROM setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

The OBJECT_TYPE column indicates the type of object to which a row applies. TABLE filtering affects
table I/O events (wait/io/table/sql/handler instrument) and table lock events (wait/lock/
table/sql/handler instrument).

Performance Schema Runtime Configuration

2783

The OBJECT_SCHEMA and OBJECT_NAME columns should contain a literal schema or object name, or
'%' to match any name.

The ENABLED column indicates whether matching objects are monitored, and TIMED indicates whether
to collect timing information. Setting the TIMED column affects Performance Schema table contents as
described in Section 21.2.3.1, “Performance Schema Event Timing”.

The effect of the default object configuration is to instrument all objects except those in
the mysql, INFORMATION_SCHEMA, and performance_schema databases. (Tables in
the INFORMATION_SCHEMA database are not instrumented regardless of the contents of
setup_objects; the row for information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For rows that match a given OBJECT_TYPE, the Performance Schema checks rows in
this order:

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='literal'.

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='%'.

• Rows with OBJECT_SCHEMA='%' and OBJECT_NAME='%'.

For example, with a table db1.t1, the Performance Schema looks in TABLE rows for a match for
'db1' and 't1', then for 'db1' and '%', then for '%' and '%'. The order in which matching occurs
matters because different matching setup_objects rows can have different ENABLED and TIMED
values.

For table-related events, the Performance Schema combines the contents of setup_objects with
setup_instruments to determine whether to enable instruments and whether to time enabled
instruments:

• For tables that match a row in setup_objects, table instruments produce events only if ENABLED
is YES in both setup_instruments and setup_objects.

• The TIMED values in the two tables are combined, so that timing information is collected only when
both values are YES.

For stored program objects, the Performance Schema takes the ENABLED and TIMED columns directly
from the setup_objects row. There is no combining of values with setup_instruments.

Suppose that setup_objects contains the following TABLE rows that apply to db1, db2, and db3:

+-------------+---------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+---------------+-------------+---------+-------+
TABLE	db1	t1	YES	YES
TABLE	db1	t2	NO	NO
TABLE	db2	%	YES	YES
TABLE	db3	%	NO	NO
TABLE	%	%	YES	YES
+-------------+---------------+-------------+---------+-------+

If an object-related instrument in setup_instruments has an ENABLED value of NO, events for
the object are not monitored. If the ENABLED value is YES, event monitoring occurs according to the
ENABLED value in the relevant setup_objects row:

• db1.t1 events are monitored

• db1.t2 events are not monitored

• db2.t3 events are monitored

• db3.t4 events are not monitored

Performance Schema Runtime Configuration

2784

• db4.t5 events are monitored

Similar logic applies for combining the TIMED columns from the setup_instruments and
setup_objects tables to determine whether to collect event timing information.

If a persistent table and a temporary table have the same name, matching against setup_objects
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the
other. However, each table is instrumented separately.

Pre-Filtering by Thread

The threads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a
thread, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

The threads table also indicates for each server thread whether to perform historical event logging.
This includes wait, stage, statement, and transaction events and affects logging to these tables:

events_waits_history
events_waits_history_long
events_stages_history
events_stages_history_long
events_statements_history
events_statements_history_long
events_transactions_history
events_transactions_history_long

For historical event logging to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must be enabled. For
example, wait event logging in the events_waits_history and events_waits_history_long
tables requires the corresponding events_waits_history and events_waits_history_long
consumers to be YES.

• The threads.HISTORY column must be YES.

• Logging occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

For foreground threads (resulting from client connections), the initial values of the INSTRUMENTED and
HISTORY columns in threads table rows are determined by whether the user account associated
with a thread matches any row in the setup_actors table. The values come from the ENABLED and
HISTORY columns of the matching setup_actors table row.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial setup_actors contents look like this:

mysql> SELECT * FROM setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

Performance Schema Runtime Configuration

2785

The HOST and USER columns should contain a literal host or user name, or '%' to match any name.

The ENABLED and HISTORY columns indicate whether to enable instrumentation and historical event
logging for matching threads, subject to the other conditions described previously.

When the Performance Schema checks for a match for each new foreground thread in
setup_actors, it tries to find more specific matches first, using the USER and HOST columns (ROLE is
unused):

• Rows with USER='literal' and HOST='literal'.

• Rows with USER='literal' and HOST='%'.

• Rows with USER='%' and HOST='literal'.

• Rows with USER='%' and HOST='%'.

The order in which matching occurs matters because different matching setup_actors rows can
have different USER and HOST values. This enables instrumenting and historical event logging to be
applied selectively per host, user, or account (combination of host and user), based on the ENABLED
and HISTORY column values:

• When the best match is a row with ENABLED=YES, the INSTRUMENTED value for the thread
becomes YES. When the best match is a row with HISTORY=YES, the HISTORY value for the thread
becomes YES.

• When the best match is a row with ENABLED=NO, the INSTRUMENTED value for the thread becomes
NO. When the best match is a row with HISTORY=NO, the HISTORY value for the thread becomes NO.

• When no match is found, the INSTRUMENTED and HISTORY values for the thread become NO.

The ENABLED and HISTORY columns in setup_actors rows can be set to YES or NO independent of
one another. This means you can enable instrumentation separately from whether you collect historical
events.

Before MySQL 5.7.6, there is no ENABLED column. The INSTRUMENTED value for the thread becomes
YES if any row matches, NO otherwise.

Before MySQL 5.7.8, there is no HISTORY column. The Performance Schema logs historical events
either for all threads or no threads, depending on which history consumers are enabled or disabled.

By default, monitoring and historical event collection are enabled for all new foreground threads
because the setup_actors table initially contains a row with '%' for both HOST and USER. To
perform more limited matching such as to enable monitoring only for some foreground threads, you
must change this row because it matches any connection, and add rows for more specific HOST/USER
combinations.

Suppose that you modify setup_actors as follows:

UPDATE setup_actors SET ENABLED = 'NO', HISTORY = 'NO'
WHERE HOST = '%' AND USER = '%';
INSERT INTO setup_actors (HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('localhost','joe','%','YES','YES');
INSERT INTO setup_actors (HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('hosta.example.com','joe','%','YES','NO');
INSERT INTO setup_actors (HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('%','sam','%','NO','YES');

The UPDATE statement changes the default match to disable instrumentation and historical event
collection. The INSERT statements add rows for more specific matches.

Now the Performance Schema determines how to set the INSTRUMENTED and HISTORY values for
new connection threads as follows:

Performance Schema Runtime Configuration

2786

• If joe connects from the local host, the connection matches the first inserted row. The
INSTRUMENTED and HISTORY values for the thread become YES.

• If joe connects from hosta.example.com, the connection matches the second inserted row. The
INSTRUMENTED value for the thread becomes YES and the HISTORY value becomes NO.

• If joe connects from any other host, there is no match. The INSTRUMENTED and HISTORY values
for the thread become NO.

• If sam connects from any host, the connection matches the third inserted row. The INSTRUMENTED
value for the thread becomes NO and the HISTORY value becomes YES.

• For any other connection, the row with HOST and USER set to '%' matches. This row now has
ENABLED and HISTORY set to NO, so the INSTRUMENTED and HISTORY values for the thread
become NO.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

Pre-Filtering by Consumer

The setup_consumers table lists the available consumer types and which are enabled:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Modify the setup_consumers table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES
or NO.

Modifications to the setup_consumers table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer.
For example, if you do not care about historical event information, disable the history consumers:

mysql> UPDATE setup_consumers
 -> SET ENABLED = 'NO' WHERE NAME LIKE '%history%';

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following principles apply:

• Destinations associated with a consumer receive no events unless the Performance Schema checks
the consumer and the consumer is enabled.

• A consumer is checked only if all consumers it depends on (if any) are enabled.

Performance Schema Runtime Configuration

2787

• If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are
not checked.

• Dependent consumers may have their own dependent consumers.

• If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Example Consumer Configurations.

Global and Thread Consumers

• global_instrumentation is the highest level consumer. If global_instrumentation is NO,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual
events are collected in the current-events or event-history tables. If global_instrumentation
is YES, the Performance Schema maintains information for global states and also checks the
thread_instrumentation consumer.

• thread_instrumentation is checked only if global_instrumentation is YES. Otherwise,
if thread_instrumentation is NO, it disables thread-specific instrumentation and all lower-
level settings are ignored. No information is maintained per thread and no individual events
are collected in the current-events or event-history tables. If thread_instrumentation
is YES, the Performance Schema maintains thread-specific information and also checks
events_xxx_current consumers.

Wait Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_waits_current, if NO, disables collection of individual wait events in the
events_waits_current table. If YES, it enables wait event collection and the Performance
Schema checks the events_waits_history and events_waits_history_long consumers.

• events_waits_history is not checked if event_waits_current is NO. Otherwise, an
events_waits_history value of NO or YES disables or enables collection of wait events in the
events_waits_history table.

• events_waits_history_long is not checked if event_waits_current is NO. Otherwise, an
events_waits_history_long value of NO or YES disables or enables collection of wait events in
the events_waits_history_long table.

Stage Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the events_stages_history and events_stages_history_long
consumers.

• events_stages_history is not checked if event_stages_current is NO. Otherwise, an
events_stages_history value of NO or YES disables or enables collection of stage events in the
events_stages_history table.

• events_stages_history_long is not checked if event_stages_current is NO. Otherwise, an
events_stages_history_long value of NO or YES disables or enables collection of stage events
in the events_stages_history_long table.

Statement Event Consumers

Performance Schema Runtime Configuration

2788

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_statements_current, if NO, disables collection of individual statement
events in the events_statements_current table. If YES, it enables statement event
collection and the Performance Schema checks the events_statements_history and
events_statements_history_long consumers.

• events_statements_history is not checked if events_statements_current is NO.
Otherwise, an events_statements_history value of NO or YES disables or enables collection of
statement events in the events_statements_history table.

• events_statements_history_long is not checked if events_statements_current is NO.
Otherwise, an events_statements_history_long value of NO or YES disables or enables
collection of statement events in the events_statements_history_long table.

Transaction Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_transactions_current, if NO, disables collection of individual transaction
events in the events_transactions_current table. If YES, it enables transaction event
collection and the Performance Schema checks the events_transactions_history and
events_transactions_history_long consumers.

• events_transactions_history is not checked if events_transactions_current is NO.
Otherwise, an events_transactions_history value of NO or YES disables or enables collection
of transaction events in the events_transactions_history table.

• events_transactions_history_long is not checked if events_transactions_current
is NO. Otherwise, an events_transactions_history_long value of NO or YES disables or
enables collection of transaction events in the events_transactions_history_long table.

Statement Digest Consumer

This consumer requires global_instrumentation to be YES or it is not checked. There is no
dependency on the statement event consumers, so you can obtain statistics per digest without having
to collect statistics in events_statements_current, which is advantageous in terms of overhead.
Conversely, you can get detailed statements in events_statements_current without digests (the
DIGEST and DIGEST_TEXT columns will be NULL).

Example Consumer Configurations

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not
need the information provided by enabling lower-level settings, disable them and the Performance
Schema will execute less code on your behalf and you will have less information to sift through.

The setup_consumers table contains the following hierarchy of values:

global_instrumentation
 thread_instrumentation
 events_waits_current
 events_waits_history
 events_waits_history_long

Performance Schema Runtime Configuration

2789

 events_stages_current
 events_stages_history
 events_stages_history_long
 events_statements_current
 events_statements_history
 events_statements_history_long
 events_transactions_current
 events_transactions_history
 events_transactions_history_long
 statements_digest

Note

In the consumer hierarchy, the consumers for waits, stages, statements,
and transactions are all at the same level. This differs from the event nesting
hierarchy, for which wait events nest within stage events, which nest within
statement events, which nest within transaction events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated
with the consumer and ignores all lower-level settings. If a given setting is YES, the Performance
Schema enables the instrumentation associated with it and checks the settings at the next lowest level.
For a description of the rules for each consumer, see Pre-Filtering by Consumer.

For example, if global_instrumentation is enabled, thread_instrumentation is
checked. If thread_instrumentation is enabled, the events_xxx_current consumers
are checked. If of these events_waits_current is enabled, events_waits_history and
events_waits_history_long are checked.

Each of the following configuration descriptions indicates which setup elements the Performance
Schema checks and which output tables it maintains (that is, for which tables it collects information).

No Instrumentation

Server configuration state:

mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, nothing is instrumented.

Setup elements checked:

• Table setup_consumers, consumer global_instrumentation

Output tables maintained:

• None

Global Instrumentation Only

Server configuration state:

mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | NO |

Performance Schema Runtime Configuration

2790

...
+---------------------------+---------+

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumer thread_instrumentation

• Table setup_instruments

• Table setup_objects

• Table setup_timers

Additional output tables maintained, relative to the preceding configuration:

• mutex_instances

• rwlock_instances

• cond_instances

• file_instances

• users

• hosts

• accounts

• socket_summary_by_event_name

• file_summary_by_instance

• file_summary_by_event_name

• objects_summary_global_by_type

• memory_summary_global_by_event_name

• table_lock_waits_summary_by_table

• table_io_waits_summary_by_index_usage

• table_io_waits_summary_by_table

• events_waits_summary_by_instance

• events_waits_summary_global_by_event_name

• events_stages_summary_global_by_event_name

• events_statements_summary_global_by_event_name

• events_transactions_summary_global_by_event_name

Global and Thread Instrumentation Only

Server configuration state:

mysql> SELECT * FROM setup_consumers;

Performance Schema Runtime Configuration

2791

+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	NO
...	
events_stages_current	NO
...	
events_statements_current	NO
...	
events_transactions_current	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumers events_xxx_current, where xxx is waits, stages,
statements, transactions

• Table setup_actors

• Column threads.instrumented

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_summary_by_yyy_by_event_name, where xxx is waits, stages, statements,
transactions; and yyy is thread, user, host, account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. Individual events are
collected in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Consumers events_xxx_history, where xxx is waits, stages, statements, transactions

• Consumers events_xxx_history_long, where xxx is waits, stages, statements,
transactions

Performance Schema Runtime Configuration

2792

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_current, where xxx is waits, stages, statements, transactions

Global, Thread, Current-Event, and Event-History instrumentation

The preceding configuration collects no event history because the events_xxx_history and
events_xxx_history_long consumers are disabled. Those consumers can be enabled separately
or together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

This configuration collects event history globally, but not per thread:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

This configuration collects event history per thread and globally:

Performance Schema Runtime Configuration

2793

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

21.2.3.4 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

mysql> UPDATE setup_instruments
 -> SET ENABLED = 'NO'
 -> WHERE NAME = 'wait/synch/mutex/myisammrg/MYRG_INFO::mutex';

mysql> UPDATE setup_consumers
 -> SET ENABLED = 'NO' WHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

mysql> UPDATE setup_instruments
 -> SET ENABLED = 'NO'
 -> WHERE NAME LIKE 'wait/synch/mutex/%';

mysql> UPDATE setup_consumers
 -> SET ENABLED = 'NO' WHERE NAME LIKE '%history%';

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument
name prefix:

... WHERE NAME LIKE 'wait/io/file/%';

A pattern of '%/file/%' will match other instruments that have a component of '/file/' anywhere
in the name. Even less suitable is the pattern '%file%' because it will match instruments with
'file' anywhere in the name, such as wait/synch/mutex/sql/LOCK_des_key_file.

To check which instrument or consumer names a pattern matches, perform a simple test:

mysql> SELECT NAME FROM setup_instruments WHERE NAME LIKE 'pattern';

mysql> SELECT NAME FROM setup_consumers WHERE NAME LIKE 'pattern';

Performance Schema Queries

2794

For information about the types of names that are supported, see Section 21.4, “Performance Schema
Instrument Naming Conventions”.

21.2.3.5 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking
the setup_instruments table. For example, to see what file-related events are instrumented for the
InnoDB storage engine, use this query:

mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'wait/io/file/innodb/%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+

An exhaustive description of precisely what is instrumented is not given in this documentation, for
several reasons:

• What is instrumented is the server code. Changes to this code occur often, which also affects the set
of instruments.

• It is not practical to list all the instruments because there are hundreds of them.

• As described earlier, it is possible to find out by querying the setup_instruments table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used
by automated tools.

21.3 Performance Schema Queries

Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate
WHERE clauses that restrict what event information to select from the events available after pre-filtering
has been applied.

In Section 21.2.3.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the
event tables contain both file and nonfile information, post-filtering is another way to see information
only for file events. Add a WHERE clause to queries to restrict event selection appropriately:

mysql> SELECT THREAD_ID, NUMBER_OF_BYTES
 -> FROM events_waits_history
 -> WHERE EVENT_NAME LIKE 'wait/io/file/%'
 -> AND NUMBER_OF_BYTES IS NOT NULL;
+-----------+-----------------+
| THREAD_ID | NUMBER_OF_BYTES |
+-----------+-----------------+
11	66
11	47
11	139
5	24
5	834
+-----------+-----------------+

21.4 Performance Schema Instrument Naming Conventions

An instrument name consists of a sequence of components separated by '/' characters. Example
names:

Performance Schema Instrument Naming Conventions

2795

wait/io/file/myisam/log
wait/io/file/mysys/charset
wait/lock/table/sql/handler
wait/synch/cond/mysys/COND_alarm
wait/synch/cond/sql/BINLOG::update_cond
wait/synch/mutex/mysys/BITMAP_mutex
wait/synch/mutex/sql/LOCK_delete
wait/synch/rwlock/sql/Query_cache_query::lock
stage/sql/closing tables
stage/sql/Sorting result
statement/com/Execute
statement/com/Query
statement/sql/create_table
statement/sql/lock_tables

The instrument name space has a tree-like structure. The components of an instrument name from left
to right provide a progression from more general to more specific. The number of components a name
has depends on the type of instrument.

The interpretation of a given component in a name depends on the components to the left of it. For
example, myisam appears in both of the following names, but myisam in the first name is related to file
I/O, whereas in the second it is related to a synchronization instrument:

wait/io/file/myisam/log
wait/synch/cond/myisam/MI_SORT_INFO::cond

Instrument names consist of a prefix with a structure defined by the Performance Schema
implementation and a suffix defined by the developer implementing the instrument code. The top-
level component of an instrument prefix indicates the type of instrument. This component also
determines which event timer in the setup_timers table applies to the instrument. For the prefix part
of instrument names, the top level indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

• A name for the major component (a server module such as myisam, innodb, mysys, or sql) or a
plugin name.

• The name of a variable in the code, in the form XXX (a global variable) or CCC::MMM (a member MMM
in class CCC). Examples: COND_thread_cache, THR_LOCK_myisam, BINLOG::LOCK_index.

Top-Level Instrument Components

• idle: An instrumented idle event. This instrument has no further components.

• memory: An instrumented memory event.

• stage: An instrumented stage event.

• statement: An instrumented statement event.

• transaction: An instrumented transaction event. This instrument has no further components.

• wait: An instrumented wait event.

Idle Instrument Components

• idle

The idle instrument. The Performance Schema generates idle events as discussed in the description
of the socket_instances.STATE column in Section 21.9.3.5, “The socket_instances Table”.

Memory Instrument Components

Performance Schema Instrument Naming Conventions

2796

Most memory instrumentation is disabled by default, and can be enabled or disabled dynamically by
updating the ENABLED column of the relevant instruments in the setup_instruments table. Memory
instruments have names of the form memory/code_area/instrument_name where code_area is
a value such as sql or myisam, and instrument_name is the instrument detail.

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema. The memory/performance_schema/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. The built-in
memory instruments are displayed only in the memory_summary_global_by_event_name table.
For more information, see Section 21.14, “The Performance Schema Memory-Allocation Model”.

Stage Instrument Components

Stage instruments have names of the form stage/code_area/stage_name, where code_area is
a value such as sql or myisam, and stage_name indicates the stage of statement processing, such
as Sorting result or Sending data. Stages correspond to the thread states displayed by SHOW
PROCESSLIST or that are visible in the INFORMATION_SCHEMA.PROCESSLIST table.

Statement Instrument Components

• statement/abstract/*: An abstract instrument for statement operations. Abstract instruments
are used during the early stages of statement classification before the exact statement type is
known, then changed to a more specific statement instrument when the type is known. For a
description of this process, see Section 21.9.6, “Performance Schema Statement Event Tables”.

• statement/com: An instrumented command operation. These have names corresponding to
COM_xxx operations (see the mysql_com.h header file and sql/sql_parse.cc. For example,
the statement/com/Connect and statement/com/Init DB instruments correspond to the
COM_CONNECT and COM_INIT_DB commands.

• statement/scheduler/event: A single instrument to track all events executed by the Event
Scheduler. This instrument comes into play when a scheduled event begins executing.

• statement/sp: An instrumented internal instruction executed by a stored program. For example,
the statement/sp/cfetch and statement/sp/freturn instruments are used cursor fetch and
function return instructions.

• statement/sql: An instrumented SQL statement operation. For example, the statement/sql/
create_db and statement/sql/select instruments are used for CREATE DATABASE and
SELECT statements.

Wait Instrument Components

• wait/io

An instrumented I/O operation.

• wait/io/file

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a call to fwrite()). Due to caching, the physical file I/O on the disk might
not happen within this call.

• wait/io/socket

An instrumented socket operation. Socket instruments have names of the form wait/io/
socket/sql/socket_type. The server has a listening socket for each network protocol that
it supports. The instruments associated with listening sockets for TCP/IP or Unix socket file
connections have a socket_type value of server_tcpip_socket or server_unix_socket,
respectively. When a listening socket detects a connection, the server transfers the connection to

Performance Schema Status Monitoring

2797

a new socket managed by a separate thread. The instrument for the new connection thread has a
socket_type value of client_connection.

• wait/io/table

An instrumented table I/O operation. These include row-level accesses to persistent base tables
or temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view,
waits are associated with base tables referenced by the view.

Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file
I/O or memory operations. Thus, events_waits_current for a table I/O wait usually has two
rows. For more information, see Section 21.6, “Performance Schema Atom and Molecule Events”.

Some row operations might cause multiple table I/O waits. For example, an insert might activate a
trigger that causes an update.

• wait/lock

An instrumented lock operation.

• wait/lock/table

An instrumented table lock operation.

• wait/lock/metadata/sql/mdl

An instrumented metadata lock operation (disabled by default).

• wait/synch

An instrumented synchronization object. For synchronization objects, the TIMER_WAIT time includes
the amount of time blocked while attempting to acquire a lock on the object, if any.

• wait/synch/cond

A condition is used by one thread to signal to other threads that something they were waiting for
has happened. If a single thread was waiting for a condition, it can wake up and proceed with its
execution. If several threads were waiting, they can all wake up and compete for the resource for
which they were waiting.

• wait/synch/mutex

A mutual exclusion object used to permit access to a resource (such as a section of executable
code) while preventing other threads from accessing the resource.

• wait/synch/rwlock

A read/write lock object used to lock a specific variable for access while preventing its use by other
threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive
write lock can be acquired by only one thread at a time.

• wait/synch/sxlock

A shared-exclusive (SX) lock is a type of rwlock lock object that provides write access to a
common resource while permitting inconsistent reads by other threads. sxlocks were introduced
in MySQL 5.7 to optimize concurrency and improve scalability for read-write workloads.

21.5 Performance Schema Status Monitoring
There are several status variables associated with the Performance Schema:

Performance Schema Status Monitoring

2798

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_digest_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_memory_classes_lost	0
Performance_schema_metadata_lock_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_nested_statement_lost	0
Performance_schema_program_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_session_connect_attrs_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

• Performance_schema_xxx_classes_lost indicates how many instruments of type xxx could
not be loaded.

• Performance_schema_xxx_instances_lost indicates how many instances of object type xxx
could not be created.

• Performance_schema_xxx_handles_lost indicates how many instances of object type xxx
could not be opened.

• Performance_schema_locker_lost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory
for the instrumentation at runtime, it increments Performance_schema_mutex_classes_lost.
The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it will not be collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there will be
only one instance. Other mutexes have an instance per connection, or per page in various caches
and data buffers, so the number of instances varies over time. Increasing the maximum number of
connections or the maximum size of some buffers will increase the maximum number of instances
that might be allocated at once. If the server cannot create a given instrumented mutex instance, it
increments Performance_schema_mutex_instances_lost.

Suppose that the following conditions hold:

• The server was started with the --performance_schema_max_mutex_classes=200 option and
thus has room for 200 mutex instruments.

• 150 mutex instruments have been loaded already.

• The plugin named plugin_a contains 40 mutex instruments.

Performance Schema Status Monitoring

2799

• The plugin named plugin_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how
many are available, as illustrated by the following sequence of statements:

INSTALL PLUGIN plugin_a

The server now has 150+40 = 190 mutex instruments.

UNINSTALL PLUGIN plugin_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still
available, but new events for the instruments are not collected.

INSTALL PLUGIN plugin_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

INSTALL PLUGIN plugin_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Performance_schema_mutex_classes_lost indicates the number of instruments (mutex classes)
lost:

mysql> SHOW STATUS LIKE "perf%mutex_classes_lost";
+---------------------------------------+-------+
| Variable_name | Value |
+---------------------------------------+-------+
| Performance_schema_mutex_classes_lost | 10 |
+---------------------------------------+-------+
1 row in set (0.10 sec)

The instrumentation still works and collects (partial) data for plugin_b.

When the server cannot create a mutex instrument, these results occur:

• No row for the instrument is inserted into the setup_instruments table.

• Performance_schema_mutex_classes_lost increases by 1.

• Performance_schema_mutex_instances_lost does not change. (When the mutex instrument
is not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.

A value of Performance_schema_mutex_classes_lost greater than 0 can happen in two cases:

• To save a few bytes of memory, you start the server with --
performance_schema_max_mutex_classes=N, where N is less than the default value. The
default value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but
this can be reduced if some plugins are never loaded. For example, you might choose not to load
some of the storage engines in the distribution.

• You load a third-party plugin that is instrumented for the Performance Schema but do not allow for
the plugin's instrumentation memory requirements when you start the server. Because it comes from
a third party, the instrument memory consumption of this engine is not accounted for in the default
value chosen for performance_schema_max_mutex_classes.

Performance Schema Status Monitoring

2800

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate
more using --performance_schema_max_mutex_classes=N, loading the plugin leads to
starvation of instruments.

If the value chosen for performance_schema_max_mutex_classes is too small,
no error is reported in the error log and there is no failure at runtime. However, the
content of the tables in the performance_schema database will miss events. The
Performance_schema_mutex_classes_lost status variable is the only visible sign to indicate that
some events were dropped internally due to failure to create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wait/synch/mutex/sql/LOCK_delete is the name of a mutex instrument
in the setup_instruments table. This single instrument is used when creating a mutex in the
code (in THD::LOCK_delete) however many instances of the mutex are needed as the server
runs. In this case, LOCK_delete is a mutex that is per connection (THD), so if a server has 1000
connections, there are 1000 threads, and 1000 instrumented LOCK_delete mutex instances
(THD::LOCK_delete).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments
Performance_schema_mutex_instances_lost by 200 to indicate that instances could not be
created.

A value of Performance_schema_mutex_instances_lost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for --
performance_schema_max_mutex_instances=N.

The bottom line is that if SHOW STATUS LIKE 'perf%' says that nothing was lost (all values are
zero), the Performance Schema data is accurate and can be relied upon. If something was lost, the
data is incomplete, and the Performance Schema could not record everything given the insufficient
amount of memory it was given to use. In this case, the specific Performance_schema_xxx_lost
variable indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you
do not care about performance data for file I/O, you can start the server with all Performance Schema
parameters related to file I/O set to 0. No memory will be allocated for file-related classes, instances, or
handles, and all file events will be lost.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the
Performance Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600

Performance Schema Atom and Molecule Events

2801

...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see Section 13.7.5.15,
“SHOW ENGINE Syntax”.

21.6 Performance Schema Atom and Molecule Events

For a table I/O event, there are usually two rows in events_waits_current, not one. For example,
a row fetch might result in rows like this:

Row# EVENT_NAME TIMER_START TIMER_END
---- ---------- ----------- ---------
 1 wait/io/file/myisam/dfile 10001 10002
 2 wait/io/table/sql/handler 10000 NULL

The row fetch causes a file read. In the example, the table I/O fetch event started before the file I/O
event but has not finished (its TIMER_END value is NULL). The file I/O event is “nested” within the table
I/O event.

This occurs because, unlike other “atomic” wait events such as for mutexes or file I/O, table I/O events
are “molecular” and include (overlap with) other events. In events_waits_current, the table I/O
event usually has two rows:

• One row for the most recent table I/O wait event

• One row for the most recent wait event of any kind

Usually, but not always, the “of any kind” wait event differs from the table I/O event. As each subsidiary
event completes, it disappears from events_waits_current. At this point, and until the next
subsidiary event begins, the table I/O wait is also the most recent wait of any kind.

21.7 Performance Schema Statement Digests

The MySQL server is capable of maintaining statement digest information. The digesting process
converts a SQL statement to normalized form and computes a hash value for the result. Normalization
permits statements that are similar to be grouped and summarized to expose information about the
types of statements the server is executing and how often they occur. This section describes how
statement normalizing occurs and how it can be useful.

Note

Before MySQL 5.7.4, statement digesting was a function of the Performance
Schema. As of 5.7.4, digesting occurs at the SQL level regardless of whether
the Performance Schema is available, so that other server functions such as
query rewrite plugins have access to statement digests.

In the Performance Schema, statement digesting involves these components:

• A statement_digest consumer in the setup_consumers table controls whether the
Performance Schema maintains digest information.

• The statement event tables (events_statements_current, events_statements_history,
and events_statements_history_long) have columns that contain digests and the
corresponding digest hash values:

• DIGEST_TEXT is the text of the normalized statement digest.

• DIGEST is the digest MD5 hash value.

Performance Schema Statement Digests

2802

The maximum space available for digest computation is 1024 bytes by default.
As of MySQL 5.7.8, this value can be changed at server startup by setting the
performance_schema_max_digest_length system variable. In MySQL 5.7.6 and 5.7.7, use
max_digest_length instead. Before 5.7.6, the value cannot be changed.

• The statement event tables also have a SQL_TEXT column that contains the original
SQL statement. The maximum space available for statement display is 1024 bytes by
default. As of MySQL 5.7.6, this value can be changed at server startup by setting the
performance_schema_max_sql_text_length system variable. Before 5.7.6, the value cannot
be changed.

• An events_statements_summary_by_digest table provides aggregated statement digest
information.

Normalizing a statement transforms the statement text to a more standardized digest string
representation that preserves the general statement structure while removing information not essential
to the structure:

• Object identifiers such as database and table names are preserved.

• Literal values are converted to parameter markers. A normalized statement does not retain
information such as names, passwords, dates, and so forth.

• Comments are removed and whitespace is adjusted.

Consider these statements:

SELECT * FROM orders WHERE customer_id=10 AND quantity>20
SELECT * FROM orders WHERE customer_id = 20 AND quantity > 100

To normalize these statements, the Performance Schema replaces data values by ? and adjusts
whitespace. Both statements yield the same normalized form and thus are considered “the same”:

SELECT * FROM orders WHERE customer_id = ? AND quantity > ?

The normalized statement contains less information but is still representative of the original statement.
Other similar statements that have different comparison values have the same normalized form.

Now consider these statements:

SELECT * FROM customers WHERE customer_id = 1000
SELECT * FROM orders WHERE customer_id = 1000

In this case, the statements are not “the same.” The object identifiers differ, so the statements yield
different normalized forms:

SELECT * FROM customers WHERE customer_id = ?
SELECT * FROM orders WHERE customer_id = ?

If normalization produces a statement that exceeds the space available in the digest buffer, the text
ends with “...”. Long statements that differ only in the part that occurs following the “...” are considered
to be the same. Consider these statements:

SELECT * FROM mytable WHERE cola = 10 AND colb = 20
SELECT * FROM mytable WHERE cola = 10 AND colc = 20

If the cutoff happened to be right after the AND, both statements would have this normalized form:

SELECT * FROM mytable WHERE cola = ? AND ...

Performance Schema Statement Digests

2803

In this case, the difference in the second column name is lost and both statements are considered the
same.

For each normalized statement, the Performance Schema computes a hash digest
value and stores the statement and its MD5 hash value in the DIGEST_TEXT and
DIGEST columns of the statement event tables (events_statements_current,
events_statements_history, and events_statements_history_long). In addition,
information for statements with the same SCHEMA_NAME and DIGEST values are aggregated in the
events_statements_summary_by_digest summary table. The Performance Schema uses
MD5 hash values because they are fast to compute and have a favorable statistical distribution that
minimizes collisions.

The statement digest summary table provides a profile of the statements executed by the server. It
shows what kinds of statements an application is executing and how often. An application developer
can use this information together with other information in the table to assess the application's
performance characteristics. For example, table columns that show wait times, lock times, or index use
may highlight types of queries that are inefficient. This gives the developer insight into which parts of
the application need attention.

The events_statements_summary_by_digest summary table has a fixed size, so when it
becomes full, statements that have SCHEMA_NAME and DIGEST values not matching existing values
in the table are grouped in a special row with SCHEMA_NAME and DIGEST set to NULL. This permits
all statements to be counted. However, if the special row accounts for a significant percentage of the
statements executed, it might be desirable to increase the size of the summary table by setting the
performance_schema_digests_size system variable to a larger value at server startup. If no
performance_schema_digests_size value is given, the Performance Schema estimates the value
to use at startup.

The performance_schema_max_digest_length system variable determines the maximum
number of bytes available in the digest buffer for digest computation. However, the display
length of statement digests may be longer than the available buffer size due to encoding of
statement components such as keywords and literal values in digest buffer. Consequently, values
selected from the DIGEST_TEXT column of statement event tables may appear to exceed the
performance_schema_max_digest_length value.

For applications that generate very long statements that differ only at the end, increasing
performance_schema_max_digest_length enables computation of digests that distinguish
statements that would otherwise aggregate to the same digest. Conversely, decreasing
performance_schema_max_digest_length causes the server to devote less memory to
digest storage but increases the likelihood of longer statements aggregating to the same digest.
Administrators should keep in mind that larger values result in correspondingly increased memory
requirements, particularly for workloads that involve large numbers of simultaneous sessions
(performance_schema_max_digest_length bytes are allocated per session).

To assess the amount of memory used for SQL statement storage and digest computation, use the
SHOW ENGINE PERFORMANCE_SCHEMA STATUS statement, or monitor these instruments:

mysql> SELECT NAME FROM setup_instruments
 -> WHERE NAME LIKE '%.sqltext';
+--+
| NAME |
+--+
| memory/performance_schema/events_statements_history.sqltext |
| memory/performance_schema/events_statements_current.sqltext |
| memory/performance_schema/events_statements_history_long.sqltext |
+--+

mysql> SELECT NAME FROM setup_instruments
 -> WHERE NAME LIKE 'memory/performance_schema/%.tokens';
+--+
| NAME |
+--+

Performance Schema General Table Characteristics

2804

| memory/performance_schema/events_statements_history.tokens |
| memory/performance_schema/events_statements_current.tokens |
| memory/performance_schema/events_statements_summary_by_digest.tokens |
| memory/performance_schema/events_statements_history_long.tokens |
+--+

21.8 Performance Schema General Table Characteristics
The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Most tables in the performance_schema database are read only and cannot be modified. Some
of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so
TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named
with a prefix of events_waits_.

TRUNCATE TABLE can also be used with summary tables, but except for
events_statements_summary_by_digest and the memory summary tables, the effect is to reset
the summary columns to 0 or NULL, not to remove rows.

Privileges are as for other databases and tables:

• To retrieve from performance_schema tables, you must have the SELECT privilege.

• To change those columns that can be modified, you must have the UPDATE privilege.

• To truncate tables that can be truncated, you must have the DROP privilege.

21.9 Performance Schema Table Descriptions
Tables in the performance_schema database can be grouped as follows:

• Setup tables. These tables are used to configure and display monitoring characteristics.

• Current events tables. The events_waits_current table contains the most recent event for
each thread. Other similar tables contain current events at different levels of the event hierarchy:
events_stages_current for stage events, events_statements_current for statement
events, and events_transactions_current for transaction events.

• History tables. These tables have the same structure as the current events tables, but contain more
rows. For example, for wait events, events_waits_history table contains the most recent 10
events per thread. events_waits_history_long contains the most recent 10,000 events. Other
similar tables exist for stage, statement, and transaction histories.

To change the sizes of the history tables, set the appropriate system variables
at server startup. For example, to set the sizes of the wait event history
tables, set performance_schema_events_waits_history_size and
performance_schema_events_waits_history_long_size.

• Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

• Instance tables. These tables document what types of objects are instrumented. An instrumented
object, when used by the server, produces an event. These tables provide event names and
explanatory notes or status information.

• Miscellaneous tables. These do not fall into any of the other table groups.

21.9.1 Performance Schema Table Index

The following table lists each Performance Schema table and provides a short description of each one.

Performance Schema Table Index

2805

Table 21.1 Performance Schema Tables

Table Name Description

accounts Connection statistics per client account

cond_instances synchronization object instances

events_stages_current Current stage events

events_stages_history Most recent stage events for each thread

events_stages_history_long Most recent stage events overall

events_stages_summary_by_account_by_event_nameStage events per account and event name

events_stages_summary_by_host_by_event_nameStage events per host name and event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event name

events_stages_summary_by_user_by_event_nameStage events per user name and event name

events_stages_summary_global_by_event_nameStage waits per event name

events_statements_current Current statement events

events_statements_history Most recent statement events for each thread

events_statements_history_long Most recent statement events overall

events_statements_summary_by_account_by_event_nameStatement events per account and event
name

events_statements_summary_by_digest Statement events per schema and digest
value

events_statements_summary_by_host_by_event_nameStatement events per host name and event
name

events_statements_summary_by_program Statement events per stored program

events_statements_summary_by_thread_by_event_nameStatement events per thread and event name

events_statements_summary_by_user_by_event_nameStatement events per user name and event
name

events_statements_summary_global_by_event_nameStatement events per event name

events_transactions_current Current transaction events

events_transactions_history Most recent transaction events for each
thread

events_transactions_history_long Most recent transaction events overall

events_transactions_summary_by_account_by_event_nameTransaction events per account and event
name

events_transactions_summary_by_host_by_event_nameTransaction events per host name and event
name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread and event
name

events_transactions_summary_by_user_by_event_nameTransaction events per user name and event
name

events_transactions_summary_global_by_event_nameTransaction events per event name

events_waits_current Current wait events

events_waits_history Most recent wait events for each thread

events_waits_history_long Most recent wait events overall

events_waits_summary_by_account_by_event_nameWait events per account and event name

events_waits_summary_by_host_by_event_nameWait events per host name and event name

Performance Schema Table Index

2806

Table Name Description

events_waits_summary_by_instance Wait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event name

events_waits_summary_by_user_by_event_nameWait events per user name and event name

events_waits_summary_global_by_event_name Wait events per event name

file_instances File instances

file_summary_by_event_name File events per event name

file_summary_by_instance File events per file instance

global_status Global status variables

global_variables Global system variables

host_cache Information from the internal host cache

hosts Connection statistics per client host name

memory_summary_by_account_by_event_name Memory operations per account and event
name

memory_summary_by_host_by_event_name Memory operations per host and event name

memory_summary_by_thread_by_event_name Memory operations per thread and event
name

memory_summary_by_user_by_event_name Memory operations per user and event name

memory_summary_global_by_event_name Memory operations globally per event name

metadata_locks Metadata locks and lock requests

mutex_instances Mutex synchronization object instances

objects_summary_global_by_type Object summaries

performance_timers Which event timers are available

prepared_statements_instances Prepared statement instances and statistics

replication_connection_configuration Configuration parameters for connecting to
the master

replication_connection_status Current status of the connection to the
master

replication_applier_configuration Configuration parameters for the transaction
applier on the slave

replication_applier_status Current status of the transaction applier on
the slave

replication_applier_status_by_coordinator SQL or coordinator thread applier status

replication_applier_status_by_worker Worker thread applier status (empty unless
slave is multi-threaded)

rwlock_instances Lock synchronization object instances

session_account_connect_attrs Connection attributes per for the current
session

session_connect_attrs Connection attributes for all sessions

session_status Status variables for current session

session_variables System variables for current session

setup_actors How to initialize monitoring for new
foreground threads

setup_consumers Consumers for which event information can
be stored

Performance Schema Setup Tables

2807

Table Name Description

setup_instruments Classes of instrumented objects for which
events can be collected

setup_objects Which objects should be monitored

setup_timers Current event timer

socket_instances Active connection instances

socket_summary_by_event_name Socket waits and I/O per event name

socket_summary_by_instance Socket waits and I/O per instance

status_by_account Session status variables per account

status_by_host Session status variables per host name

status_by_thread Session status variables per session

status_by_user Session status variables per user name

table_handles Table locks and lock requests

table_io_waits_summary_by_index_usage Table I/O waits per index

table_io_waits_summary_by_table Table I/O waits per table

table_lock_waits_summary_by_table Table lock waits per table

threads Information about server threads

users Connection statistics per client user name

user_variables_by_thread User-defined variables per thread

variables_by_thread Session system variables per session

21.9.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you
have the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree
of flexibility in modifying Performance Schema configuration. For example, you can use a single
statement with standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

• setup_actors: How to initialize monitoring for new foreground threads

• setup_consumers: The destinations to which event information can be sent and stored

• setup_instruments: The classes of instrumented objects for which events can be collected

• setup_objects: Which objects should be monitored

• setup_timers: The current event timer

21.9.2.1 The setup_actors Table

The setup_actors table contains information that determines whether to enable monitoring
and historical event logging for new foreground server threads (threads associated with client
connections). This table has a maximum size of 100 rows by default. To change the table size, modify
the performance_schema_setup_actors_size system variable at server startup.

For each new foreground thread, the Performance Schema matches the user and host for the thread
against the rows of the setup_actors table. If a row from that table matches, its ENABLED and
HISTORY column values are used to set the the INSTRUMENTED and HISTORY columns, respectively,

Performance Schema Setup Tables

2808

of the threads table row for the thread. This enables instrumenting and historical event logging to be
applied selectively per host, user, or account (combination of host and user). If there is no match, the
INSTRUMENTED and HISTORY columns for the thread are set to NO.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial contents of the setup_actors table match any user and host combination, so monitoring
and historical event collection are enabled by default for all foreground threads:

mysql> SELECT * FROM setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

For information about how to use the setup_actors table to affect event monitoring, see Pre-Filtering
by Thread.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

The setup_actors table has these columns:

• HOST

The host name. This should be a literal name, or '%' to mean “any host.”

• USER

The user name. This should be a literal name, or '%' to mean “any user.”

• ROLE

Unused.

• ENABLED

Whether to enable instrumentation for foreground threads matched by the row. The value is YES or
NO.

This column was added in MySQL 5.7.6. For earlier versions in which it is not present, the
Performance Schema enables instrumentation only for foreground threads matched by some row in
the table; instrumentation is implicitly disabled for nonmatching threads.

• HISTORY

Whether to log historical events for foreground threads matched by the row. The value is YES or NO.

This column was added in MySQL 5.7.8. For earlier versions in which it is not present, the
Performance Schema logs historical events either for all threads or no threads, depending on which
history consumers are enabled or disabled.

21.9.2.2 The setup_consumers Table

The setup_consumers table lists the types of consumers for which event information can be stored
and which are enabled:

mysql> SELECT * FROM setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |

Performance Schema Setup Tables

2809

+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

The consumer settings in the setup_consumers table form a hierarchy from higher levels to
lower. For detailed information about the effect of enabling different consumers, see Pre-Filtering by
Consumer.

Modifications to the setup_consumers table affect monitoring immediately.

The setup_consumers table has these columns:

• NAME

The consumer name.

• ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you
disable a consumer, the server does not spend time adding event information to it.

21.9.2.3 The setup_instruments Table

The setup_instruments table lists classes of instrumented objects for which events can be
collected:

mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

Each instrument added to the source code provides a row for this table, even when the instrumented
code is not executed. When an instrument is enabled and executed, instrumented instances are
created, which are visible in the *_instances tables.

Modifications to most setup_instruments rows affect monitoring immediately. For some
instruments, modifications are effective only at server startup; changing them at runtime has no effect.

Performance Schema Setup Tables

2810

This affects primarily mutexes, conditions, and rwlocks in the server, although there may be other
instruments for which this is true.

For more information about the role of the setup_instruments table in event filtering, see
Section 21.2.3.3, “Event Pre-Filtering”.

The setup_instruments table has these columns:

• NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed
in Section 21.4, “Performance Schema Instrument Naming Conventions”. Events produced from
execution of an instrument have an EVENT_NAME value that is taken from the instrument NAME value.
(Events do not really have a “name,” but this provides a way to associate events with instruments.)

• ENABLED

Whether the instrument is enabled. The value is YES or NO. This column can be modified. A disabled
instrument produces no events.

• TIMED

Whether the instrument is timed. This column can be modified.

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT
timer values. This in turn causes those values to be ignored when calculating the sum, minimum,
maximum, and average time values in summary tables.

21.9.2.4 The setup_objects Table

The setup_objects table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_objects_size system variable at server startup.

The initial setup_objects contents look like this:

mysql> SELECT * FROM setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Performance Schema Setup Tables

2811

Modifications to the setup_objects table affect object monitoring immediately.

For object types listed in setup_objects, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT_SCHEMA and OBJECT_NAME columns. Objects for
which there is no match are not monitored.

The effect of the default object configuration is to instrument all tables except those in
the mysql, INFORMATION_SCHEMA, and performance_schema databases. (Tables in
the INFORMATION_SCHEMA database are not instrumented regardless of the contents of
setup_objects; the row for information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For example, with a table db1.t1, it looks for a match for 'db1' and 't1', then for
'db1' and '%', then for '%' and '%'. The order in which matching occurs matters because different
matching setup_objects rows can have different ENABLED and TIMED values.

Rows can be inserted into or deleted from setup_objects by users with the INSERT or DELETE
privilege on the table. For existing rows, only the ENABLED and TIMED columns can be modified, by
users with the UPDATE privilege on the table.

For more information about the role of the setup_objects table in event filtering, see
Section 21.2.3.3, “Event Pre-Filtering”.

The setup_objects table has these columns:

• OBJECT_TYPE

The type of object to instrument. The value is one of 'EVENT' (Event Scheduler event),
'FUNCTION' (stored function), 'PROCEDURE' (stored procedure), 'TABLE' (base table), or
'TRIGGER' (trigger). Before MySQL 5.7.2, the value is always 'TABLE'.

TABLE filtering affects table I/O events (wait/io/table/sql/handler instrument) and table lock
events (wait/lock/table/sql/handler instrument).

• OBJECT_SCHEMA

The schema that contains the object. This should be a literal name, or '%' to mean “any schema.”

• OBJECT_NAME

The name of the instrumented object. This should be a literal name, or '%' to mean “any object.”

• ENABLED

Whether events for the object are instrumented. The value is YES or NO. This column can be
modified.

• TIMED

Whether events for the object are timed. This column can be modified.

21.9.2.5 The setup_timers Table

The setup_timers table shows the currently selected event timers:

mysql> SELECT * FROM setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND

Performance Schema Instance Tables

2812

| transaction | NANOSECOND |
+-------------+-------------+

The setup_timers.TIMER_NAME value can be changed to select a different timer. The value can
be any of the values in the performance_timers.TIMER_NAME column. For an explanation of how
event timing occurs, see Section 21.2.3.1, “Performance Schema Event Timing”.

Modifications to the setup_timers table affect monitoring immediately. Events already in progress
may use the original timer for the begin time and the new timer for the end time. To avoid unpredictable
results after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The setup_timers table has these columns:

• NAME

The type of instrument the timer is used for.

• TIMER_NAME

The timer that applies to the instrument type. This column can be modified.

21.9.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

• cond_instances: Condition synchronization object instances

• file_instances: File instances

• mutex_instances: Mutex synchronization object instances

• rwlock_instances: Lock synchronization object instances

• socket_instances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types
of synchronization objects: cond, mutex, and rwlock. Each instance table has an EVENT_NAME or
NAME column to indicate the instrument associated with each row. Instrument names may have multiple
parts and form a hierarchy, as discussed in Section 21.4, “Performance Schema Instrument Naming
Conventions”.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. For examples of how to use them for this purpose,
see Section 21.16, “Using the Performance Schema to Diagnose Problems”

21.9.3.1 The cond_instances Table

The cond_instances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event
has happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the
thread is waiting for, but there is no immediate way to tell which other thread, or threads, will cause the
condition to happen.

The cond_instances table has these columns:

• NAME

The instrument name associated with the condition.

• OBJECT_INSTANCE_BEGIN

Performance Schema Instance Tables

2813

The address in memory of the instrumented condition.

21.9.3.2 The file_instances Table

The file_instances table lists all the files seen by the Performance Schema when executing file I/O
instrumentation. If a file on disk has never been opened, it will not be in file_instances. When a file
is deleted from the disk, it is also removed from the file_instances table.

The file_instances table has these columns:

• FILE_NAME

The file name.

• EVENT_NAME

The instrument name associated with the file.

• OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT will be 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT
> 0.

21.9.3.3 The mutex_instances Table

The mutex_instances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these
two threads will compete against each other, so that the first query to obtain a lock on the mutex will
cause the other query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The mutex_instances table has these columns:

• NAME

The instrument name associated with the mutex.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented mutex.

• LOCKED_BY_THREAD_ID

When a thread currently has a mutex locked, LOCKED_BY_THREAD_ID is the THREAD_ID of the
locking thread, otherwise it is NULL.

For every mutex instrumented in the code, the Performance Schema provides the following
information.

• The setup_instruments table lists the name of the instrumentation point, with the prefix wait/
synch/mutex/.

• When some code creates a mutex, a row is added to the mutex_instances table. The
OBJECT_INSTANCE_BEGIN column is a property that uniquely identifies the mutex.

Performance Schema Instance Tables

2814

• When a thread attempts to lock a mutex, the events_waits_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which
mutex is waited on (in the OBJECT_INSTANCE_BEGIN column).

• When a thread succeeds in locking a mutex:

• events_waits_current shows that the wait on the mutex is completed (in the TIMER_END and
TIMER_WAIT columns)

• The completed wait event is added to the events_waits_history and
events_waits_history_long tables

• mutex_instances shows that the mutex is now owned by the thread (in the THREAD_ID
column).

• When a thread unlocks a mutex, mutex_instances shows that the mutex now has no owner (the
THREAD_ID column is NULL).

• When a mutex object is destroyed, the corresponding row is removed from mutex_instances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

• events_waits_current, to see what mutex a thread is waiting for

• mutex_instances, to see which other thread currently owns a mutex

21.9.3.4 The rwlock_instances Table

The rwlock_instances table lists all the rwlock (read write lock) instances seen by the Performance
Schema while the server executes. An rwlock is a synchronization mechanism used in the code to
enforce that threads at a given time can have access to some common resource following certain
rules. The resource is said to be “protected” by the rwlock. The access is either shared (many threads
can have a read lock at the same time), exclusive (only one thread can have a write lock at a given
time), or shared-exclusive (a thread can have a write lock while permitting inconsistent reads by other
threads). Shared-exclusive access is otherwise known as an sxlock and was introduced in MySQL
5.7 to optimize concurrency and improve scalability for read-write workloads.

Depending on how many threads are requesting a lock, and the nature of the locks requested, access
can be either granted in shared mode, exclusive mode, shared-exclusive mode or not granted at all,
waiting for other threads to finish first.

The rwlock_instances table has these columns:

• NAME

The instrument name associated with the lock.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented lock.

• WRITE_LOCKED_BY_THREAD_ID

When a thread currently has an rwlock locked in exclusive (write) mode,
WRITE_LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.

• READ_LOCKED_BY_COUNT

When a thread currently has an rwlock locked in shared (read) mode, READ_LOCKED_BY_COUNT
is incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a
read lock, but it can be used to see whether there is a read contention on an rwlock, and see how
many readers are currently active.

Performance Schema Instance Tables

2815

By performing queries on both of the following tables, a monitoring application or a DBA may detect
some bottlenecks or deadlocks between threads that involve locks:

• events_waits_current, to see what rwlock a thread is waiting for

• rwlock_instances, to see which other thread currently owns an rwlock

There is a limitation: The rwlock_instances can be used only to identify the thread holding a write
lock, but not the threads holding a read lock.

21.9.3.5 The socket_instances Table

The socket_instances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information
is available in socket summary tables, including network activity such as socket operations and number
of bytes transmitted and received; see Section 21.9.14.9, “Socket Summary Tables”).

mysql> SELECT * FROM socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_unix_socket
OBJECT_INSTANCE_BEGIN: 4316619408
 THREAD_ID: 1
 SOCKET_ID: 16
 IP:
 PORT: 0
 STATE: ACTIVE
*************************** 2. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 4316644608
 THREAD_ID: 21
 SOCKET_ID: 39
 IP: 127.0.0.1
 PORT: 55233
 STATE: ACTIVE
*************************** 3. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket
OBJECT_INSTANCE_BEGIN: 4316699040
 THREAD_ID: 1
 SOCKET_ID: 14
 IP: 0.0.0.0
 PORT: 50603
 STATE: ACTIVE

Socket instruments have names of the form wait/io/socket/sql/socket_type and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments
associated with listening sockets for TCP/IP or Unix socket file connections have a socket_type
value of server_tcpip_socket or server_unix_socket, respectively.

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket_type
value of client_connection.

3. When a connection terminates, the row in socket_instances corresponding to it is deleted.

The socket_instances table has these columns:

• EVENT_NAME

The name of the wait/io/socket/* instrument that produced the event. This is a NAME value
from the setup_instruments table. Instrument names may have multiple parts and form a
hierarchy, as discussed in Section 21.4, “Performance Schema Instrument Naming Conventions”.

• OBJECT_INSTANCE_BEGIN

Performance Schema Wait Event Tables

2816

This column uniquely identifies the socket. The value is the address of an object in memory.

• THREAD_ID

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

• SOCKET_ID

The internal file handle assigned to the socket.

• IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

• PORT

The TCP/IP port number, in the range from 0 to 65535.

• STATE

The socket status, either IDLE or ACTIVE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the idle instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event
row in socket_instances that is tracking the socket switches from a status of ACTIVE to IDLE.
The EVENT_NAME value remains wait/io/socket/*, but timing for the instrument is suspended.
Instead, an event is generated in the events_waits_current table with an EVENT_NAME value of
idle.

When the next request is received, the idle event terminates, the socket instance switches from
IDLE to ACTIVE, and timing of the socket instrument resumes.

The IP:PORT column combination value identifies the connection. This combination value is used in
the OBJECT_NAME column of the events_waits_xxx tables, to identify the connection from which
socket events come:

• For the Unix domain listener socket (server_unix_socket), the port is 0, and the IP is ''.

• For client connections via the Unix domain listener (client_connection), the port is 0, and the IP
is ''.

• For the TCP/IP server listener socket (server_tcpip_socket), the port is always the master port
(for example, 3306), and the IP is always 0.0.0.0.

• For client connections via the TCP/IP listener (client_connection), the port is whatever the
server assigns, but never 0. The IP is the IP of the originating host (127.0.0.1 or ::1 for the local
host)

21.9.4 Performance Schema Wait Event Tables

These tables store wait events:

• events_waits_current: Current wait events

• events_waits_history: The most recent wait events for each thread

• events_waits_history_long: The most recent wait events overall

The following sections describe those tables. There are also summary tables that aggregate
information about wait events; see Section 21.9.14.1, “Event Wait Summary Tables”.

Performance Schema Wait Event Tables

2817

Wait Event Configuration

To enable collection of wait events, enable the relevant instruments and consumers.

The setup_instruments table contains instruments with names that begin with wait. For example:

mysql> SELECT * FROM setup_instruments
 -> WHERE NAME LIKE 'wait/io/file/innodb%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+
mysql> SELECT * FROM setup_instruments WHERE
 -> NAME LIKE 'wait/io/socket/%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+

To modify collection of wait events, change the ENABLED and TIMING columns of the relevant
instruments. For example:

mysql> UPDATE setup_instruments SET ENABLED = 'YES', TIMED = 'YES'
 -> WHERE NAME LIKE 'wait/io/socket/sql/%';

The setup_consumers table contains consumer values with names corresponding to the current and
recent wait event table names. These consumers may be used to filter collection of wait events. The
wait consumers are disabled by default:

mysql> SELECT * FROM setup_consumers WHERE NAME LIKE '%waits%';
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
+---------------------------+---------+

To enable all wait consumers, do this:

mysql> UPDATE setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%waits%';

The setup_timers table contains a row with a NAME value of wait that indicates the unit for wait
event timing. The default unit is CYCLE.

mysql> SELECT * FROM setup_timers WHERE NAME = 'wait';
+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE |
+------+------------+

To change the timing unit, modify the TIMER_NAME value:

mysql> UPDATE setup_timers SET TIMER_NAME = 'NANOSECOND'
 -> WHERE NAME = 'wait';

Performance Schema Wait Event Tables

2818

For additional information about configuring event collection, see Section 21.2, “Performance Schema
Configuration”.

21.9.4.1 The events_waits_current Table

The events_waits_current table contains current wait events, one row per thread showing the
current status of the thread's most recent monitored wait event.

The events_waits_current table can be truncated with TRUNCATE TABLE.

Of the tables that contain wait event rows, events_waits_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the
events_waits_history and events_waits_history_long tables are collections of the most
recent wait events, up to a fixed number of rows.

For information about configuration of wait event collection, see Section 21.9.4, “Performance Schema
Wait Event Tables”.

The events_waits_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the
row. No two rows will have the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 21.4, “Performance Schema Instrument Naming Conventions”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can
check the context in which this occurs.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL before MySQL 5.7.8. As
of 5.7.8, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed so far
(TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 21.2.3.1, “Performance Schema Event Timing”.

• SPINS

Performance Schema Wait Event Tables

2819

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, OBJECT_INSTANCE_BEGIN

These columns identify the object “being acted on.” What that means depends on the object type.

For a synchronization object (cond, mutex, rwlock):

• OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE are NULL.

• OBJECT_INSTANCE_BEGIN is the address of the synchronization object in memory.

For a file I/O object:

• OBJECT_SCHEMA is NULL.

• OBJECT_NAME is the file name.

• OBJECT_TYPE is FILE.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a socket object:

• OBJECT_NAME is the IP:PORT value for the socket.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a table I/O object:

• OBJECT_SCHEMA is the name of the schema that contains the table.

• OBJECT_NAME is the table name.

• OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.

• OBJECT_INSTANCE_BEGIN is an address in memory.

An OBJECT_INSTANCE_BEGIN value itself has no meaning, except that different values indicate
different objects. OBJECT_INSTANCE_BEGIN can be used for debugging. For example, it can be
used with GROUP BY OBJECT_INSTANCE_BEGIN to see whether the load on 1,000 mutexes (that
protect, say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This
can help you correlate with other sources of information if you see the same object address in a log
file or another debugging or performance tool.

• INDEX_NAME

The name of the index used. PRIMARY indicates the table primary index. NULL means that no index
was used.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

• OPERATION

The type of operation performed, such as lock, read, or write.

Performance Schema Wait Event Tables

2820

• NUMBER_OF_BYTES

The number of bytes read or written by the operation. For table I/O waits (events for the wait/io/
table/sql/handler instrument), NUMBER_OF_BYTES is NULL before MySQL 5.7.5. For table I/O
events as of 5.7.5, this column indicates the number of rows. If the value is greater than 1, the event
is for a batch I/O operation. The following discussion describes the difference between exclusively
single-row reporting and reporting that reflects batch I/O.

MySQL executes joins using a nested-loop implementation. The job of the Performance Schema
instrumentation is to provide row count and accumulated execution time per table in the join. Assume
a join query of the following form that is executed using a table join order of t1, t2, t3:

SELECT ... FROM t1 JOIN t2 ON ... JOIN t3 ON ...

Table “fanout” is the increase or decrease in number of rows from adding a table during join
processing. If the fanout for table t3 is greater than 1, the majority of row-fetch operations are for
that table. Suppose that the join accesses 10 rows from t1, 20 rows from t2 per row from t1, and
30 rows from t3 per row of table t2. With single-row reporting, the total number of instrumented
operations is:

10 + (10 * 20) + (10 * 20 * 30) = 6210

A significant reduction in the number of instrumented operations is achievable by aggregating them
per scan (that is, per unique combination of rows from t1 and t2). With batch I/O reporting, the
Performance Schema produces an event for each scan of the innermost table t3 rather than for
each row, and the number of instrumented row operations reduces to:

10 + (10 * 20) + (10 * 20) = 410

That is a reduction of 93%, illustrating how the batch-reporting strategy significantly reduces
Performance Schema overhead for table I/O by reducing the number of reporting calls. The tradeoff
is lesser accuracy for event timing. Rather than time for an individual row operation as in per-row
reporting, timing for batch I/O includes time spent for operations such as join buffering, aggregation,
and returning rows to the client.

For batch I/O reporting to occur, these conditions must be true:

• Query execution accesses the innermost table of a query block (for a single-table query, that table
counts as innermost)

• Query execution does not request a single row from the table (so, for example, eq_ref access
prevents use of batch reporting)

• Query execution does not evaluate a subquery containing table access for the table

• FLAGS

Reserved for future use.

21.9.4.2 The events_waits_history Table

The events_waits_history table contains the most recent N wait events per thread.
The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_waits_history_size system variable at server startup. Wait
events are not added to the table until they have ended. As new events are added, older events are
discarded if the table is full.

The events_waits_history table has the same structure as events_waits_current. See
Section 21.9.4.1, “The events_waits_current Table”.

Performance Schema Stage Event Tables

2821

The events_waits_history table can be truncated with TRUNCATE TABLE.

For information about configuration of wait event collection, see Section 21.9.4, “Performance Schema
Wait Event Tables”.

21.9.4.3 The events_waits_history_long Table

The events_waits_history_long table contains the most recent N wait events.
The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_waits_history_long_size system variable at server startup.
Wait events are not added to the table until they have ended. As new events are added, older events
are discarded if the table is full. When a thread ends, its rows are removed from the table.

The events_waits_history_long table has the same structure as events_waits_current.
See Section 21.9.4.1, “The events_waits_current Table”.

The events_waits_history_long table can be truncated with TRUNCATE TABLE.

For information about configuration of wait event collection, see Section 21.9.4, “Performance Schema
Wait Event Tables”.

21.9.5 Performance Schema Stage Event Tables

The Performance Schema instruments stages, which are steps during the statement-execution
process, such as parsing a statement, opening a table, or performing a filesort operation.
Stages correspond to the thread states displayed by SHOW PROCESSLIST or that are visible in the
INFORMATION_SCHEMA.PROCESSLIST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events,
which nest within transaction events.

These tables store stage events:

• events_stages_current: Current stage events

• events_stages_history: The most recent stage events for each thread

• events_stages_history_long: The most recent stage events overall

The following sections describe those tables. There are also summary tables that aggregate
information about stage events; see Section 21.9.14.2, “Stage Summary Tables”.

Stage Event Configuration

To enable collection of stage events, enable the relevant instruments and consumers.

The setup_instruments table contains instruments with names that begin with stage. Other than
those instruments that provide statement progress information, these instruments are disabled by
default. For example:

mysql> SELECT * FROM setup_instruments WHERE NAME RLIKE 'stage/sql/[a-c]';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/After create	NO	NO
stage/sql/allocating local table	NO	NO
stage/sql/altering table	NO	NO
stage/sql/committing alter table to storage engine	NO	NO
stage/sql/Changing master	NO	NO
stage/sql/Checking master version	NO	NO
stage/sql/checking permissions	NO	NO

Performance Schema Stage Event Tables

2822

stage/sql/checking privileges on cached query	NO	NO
stage/sql/checking query cache for query	NO	NO
stage/sql/cleaning up	NO	NO
stage/sql/closing tables	NO	NO
stage/sql/Connecting to master	NO	NO
stage/sql/converting HEAP to MyISAM	NO	NO
stage/sql/Copying to group table	NO	NO
stage/sql/Copying to tmp table	NO	NO
stage/sql/copy to tmp table	NO	NO
stage/sql/Creating sort index	NO	NO
stage/sql/creating table	NO	NO
stage/sql/Creating tmp table	NO	NO
+--+---------+-------+

As of MySQL 5.7.7, stage event instruments that provide statement progress information now are
enabled and timed by default:

mysql> SELECT * FROM setup_instruments WHERE
 -> ENABLED='YES' AND NAME LIKE "stage/%";
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/copy to tmp table	YES	YES
stage/innodb/alter table (end)	YES	YES
stage/innodb/alter table (flush)	YES	YES
stage/innodb/alter table (insert)	YES	YES
stage/innodb/alter table (log apply index)	YES	YES
stage/innodb/alter table (log apply table)	YES	YES
stage/innodb/alter table (merge sort)	YES	YES
stage/innodb/alter table (read PK and internal sort)	YES	YES
stage/innodb/buffer pool load	YES	YES
+--+---------+-------+

To modify collection of stage events, change the ENABLED and TIMING columns of the relevant
instruments. For example:

mysql> UPDATE setup_instruments SET ENABLED = 'YES', TIMED = 'YES'
 -> WHERE NAME = 'stage/sql/altering table';

The setup_consumers table contains consumer values with names corresponding to the current and
recent stage event table names. These consumers may be used to filter collection of stage events. The
stage consumers are disabled by default:

mysql> SELECT * FROM setup_consumers WHERE NAME LIKE '%stages%';
+----------------------------+---------+
| NAME | ENABLED |
+----------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
+----------------------------+---------+

To enable all stage consumers, do this:

mysql> UPDATE setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%stages%';

The setup_timers table contains a row with a NAME value of stage that indicates the unit for stage
event timing. The default unit is NANOSECOND.

mysql> SELECT * FROM setup_timers WHERE NAME = 'stage';
+-------+------------+
| NAME | TIMER_NAME |
+-------+------------+
| stage | NANOSECOND |

Performance Schema Stage Event Tables

2823

+-------+------------+

To change the timing unit, modify the TIMER_NAME value:

mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
 -> WHERE NAME = 'stage';

For additional information about configuring event collection, see Section 21.2, “Performance Schema
Configuration”.

Stage Event Progress Information

As of MySQL 5.7.5, the Performance Schema stage event tables contain two columns that, taken
together, provide a stage progress indicator for each row:

• WORK_COMPLETED: The number of work units completed for the stage

• WORK_ESTIMATED: The number of work units expected for the stage

Each column is NULL if no progress information is provided for an instrument. Interpretation of the
information, if it is available, depends entirely on the instrument implementation. The Performance
Schema tables provide a container to store progress data, but make no assumptions about the
semantics of the metric itself:

• A “work unit” is an integer metric that increases over time during execution, such as the number of
bytes, rows, files, or tables processed. The definition of “work unit” for a particular instrument is left to
the instrumentation code providing the data.

• The WORK_COMPLETED value can increase one or many units at a time, depending on the
instrumented code.

• The WORK_ESTIMATED value can change during the stage, depending on the instrumented code.

Instrumentation for a stage event progress indicator can implement any of the following behaviors:

• No progress instrumentation

This is the most typical case, where no progress data is provided. The WORK_COMPLETED and
WORK_ESTIMATED columns are both NULL.

• Unbounded progress instrumentation

Only the WORK_COMPLETED column is meaningful. No data is provided for the WORK_ESTIMATED
column, which displays 0.

By querying the events_stages_current table for the monitored session, a monitoring
application can report how much work has been performed so far, but cannot report whether the
stage is near completion. Currently, no stages are instrumented like this.

• Bounded progress instrumentation

The WORK_COMPLETED and WORK_ESTIMATED columns are both meaningful.

This type of progress indicator is appropriate for an an operation with a defined completion criterion,
such as the table-copy instrument described later. By querying the events_stages_current
table for the monitored session, a monitoring application can report how much work has been
performed so far, and can report the overall completion percentage for the stage, by computing the
WORK_COMPLETED / WORK_ESTIMATED ratio.

The stage/sql/copy to tmp table instrument illustrates how progress indicators work. During
execution of an ALTER TABLE statement, the stage/sql/copy to tmp table stage is used, and
this stage can execute potentially for a long time, depending on the size of the data to copy.

Performance Schema Stage Event Tables

2824

The table-copy task has a defined termination (all rows copied), and the stage/sql/copy to
tmp table stage is instrumented to provided bounded progress information: The work unit used is
number of rows copied, WORK_COMPLETED and WORK_ESTIMATED are both meaningful, and their ratio
indicates task percentage complete.

To enable the instrument and the relevant consumers, execute these statements:

mysql> UPDATE setup_instruments SET ENABLED='YES'
 -> WHERE NAME='stage/sql/copy to tmp table';
mysql> UPDATE setup_consumers SET ENABLED='YES'
 -> WHERE NAME LIKE 'events_stages_%';

To see the progress of an ongoing ALTER TABLE statement, select from the
events_stages_current table.

21.9.5.1 The events_stages_current Table

The events_stages_current table contains current stage events, one row per thread showing the
current status of the thread's most recent monitored stage event.

The events_stages_current table can be truncated with TRUNCATE TABLE.

Of the tables that contain stage event rows, events_stages_current is the most fundamental.
Other tables that contain stage event rows are logically derived from the current events. For example,
the events_stages_history and events_stages_history_long tables are collections of the
most recent stage events, up to a fixed number of rows.

For information about configuration of stage event collection, see Section 21.9.5, “Performance
Schema Stage Event Tables”.

The events_stages_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the
row. No two rows will have the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 21.4, “Performance Schema Instrument Naming Conventions”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

Performance Schema Stage Event Tables

2825

If an event has not finished, TIMER_END and TIMER_WAIT are NULL before MySQL 5.7.8. As
of 5.7.8, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed so far
(TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 21.2.3.1, “Performance Schema Event Timing”.

• WORK_COMPLETED, WORK_ESTIMATED

These columns provide stage progress information, for instruments that have been implemented to
produce such information. WORK_COMPLETED indicates how many work units have been completed
for the stage, and WORK_ESTIMATED indicates how many work units are expected for the stage. For
more information, see Stage Event Progress Information.

These columns were added in MySQL 5.7.5.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested. The nesting event for a stage
event is usually a statement event.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

21.9.5.2 The events_stages_history Table

The events_stages_history table contains the most recent N stage events per
thread. The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_stages_history_size system variable at server startup. Stage
events are not added to the table until they have ended. As new events are added, older events are
discarded if the table is full.

The events_stages_history table has the same structure as events_stages_current. See
Section 21.9.5.1, “The events_stages_current Table”.

The events_stages_history table can be truncated with TRUNCATE TABLE.

For information about configuration of stage event collection, see Section 21.9.5, “Performance
Schema Stage Event Tables”.

21.9.5.3 The events_stages_history_long Table

The events_stages_history_long table contains the most recent N stage events.
The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_stages_history_long_size system variable at server startup.
Stage events are not added to the table until they have ended. As new events are added, older events
are discarded if the table is full. When a thread ends, its rows are removed from the table.

The events_stages_history_long table has the same structure as events_stages_current.
See Section 21.9.5.1, “The events_stages_current Table”.

The events_stages_history_long table can be truncated with TRUNCATE TABLE.

For information about configuration of stage event collection, see Section 21.9.5, “Performance
Schema Stage Event Tables”.

Performance Schema Statement Event Tables

2826

21.9.6 Performance Schema Statement Event Tables

The Performance Schema instruments statement execution. Statement events occur at a high level of
the event hierarchy: Wait events nest within stage events, which nest within statement events, which
nest within transaction events.

These tables store statement events:

• events_statements_current: Current statement events

• events_statements_history: The most recent statement events for each thread

• events_statements_history_long: The most recent statement events overall

• prepared_statements_instances: Prepared statement instances and statistics (added in
MySQL 5.7.4)

The following sections describe those tables. There are also summary tables that aggregate
information about statement events; see Section 21.9.14.3, “Statement Summary Tables”.

Statement Event Configuration

To enable collection of statement events, enable the relevant instruments and consumers.

The setup_instruments table contains instruments with names that begin with statement. These
instruments are enabled by default:

mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'statement/%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
statement/sql/select	YES	YES
statement/sql/create_table	YES	YES
statement/sql/create_index	YES	YES
...		
statement/sp/stmt	YES	YES
statement/sp/set	YES	YES
statement/sp/set_trigger_field	YES	YES
statement/scheduler/event	YES	YES
statement/com/Sleep	YES	YES
statement/com/Quit	YES	YES
statement/com/Init DB	YES	YES
...		
statement/abstract/Query	YES	YES
statement/abstract/new_packet	YES	YES
statement/abstract/relay_log	YES	YES
+---+---------+-------+

To modify collection of statement events, change the ENABLED and TIMING columns of the relevant
instruments. For example:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
 -> WHERE NAME LIKE 'statement/com/%';

The setup_consumers table contains consumer values with names corresponding to the current and
recent statement event table names, and the statement digest consumer. These consumers may be
used to filter collection of statement events and statement digesting. events_statements_current,
events_statements_history, and statements_digest are enabled by default (before MySQL
5.7.5, events_statements_history is disabled by default):

mysql> SELECT * FROM setup_consumers WHERE NAME LIKE '%statements%';

Performance Schema Statement Event Tables

2827

+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
statements_digest	YES
+--------------------------------+---------+

To enable all statement consumers, do this:

mysql> UPDATE setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%statements%';

The setup_timers table contains a row with a NAME value of statement that indicates the unit for
statement event timing. The default unit is NANOSECOND.

mysql> SELECT * FROM setup_timers WHERE NAME = 'statement';
+-----------+------------+
| NAME | TIMER_NAME |
+-----------+------------+
| statement | NANOSECOND |
+-----------+------------+

To change the timing unit, modify the TIMER_NAME value:

mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
 -> WHERE NAME = 'statement';

For additional information about configuring event collection, see Section 21.2, “Performance Schema
Configuration”.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread, to
the moment when all activity has ceased. Typically, this means from the time the server gets the first
packet from the client to the time the server has finished sending the response. Before MySQL 5.7.2,
monitoring occurs only for top-level statements. Statements within stored programs and subqueries
are not seen separately. As of 5.7.2, statements within stored programs are monitored like other
statements.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it
arrives at a final instrument name.

Final instrument names correspond to server commands and SQL statements:

• Server commands correspond to the COM_xxx codes defined in the mysql_com.h header file
and processed in sql/sql_parse.cc. Examples are COM_PING and COM_QUIT. Instruments for
commands have names that begin with statement/com, such as statement/com/Ping and
statement/com/Quit.

• SQL statements are expressed as text, such as DELETE FROM t1 or SELECT * FROM
t2. Instruments for SQL statements have names that begin with statement/sql, such as
statement/sql/delete and statement/sql/select.

Some final instrument names are specific to error handling:

• statement/com/Error accounts for messages received by the server that are out of band. It
can be used to detect commands sent by clients that the server does not understand. This may be

Performance Schema Statement Event Tables

2828

helpful for purposes such as identifying clients that are misconfigured or using a version of MySQL
more recent than that of the server, or clients that are attempting to attack the server.

• statement/sql/error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses
but fails due to an error during execution. For example, SELECT * FROM is malformed, and the
statement/sql/error instrument is used. By contrast, SELECT * parses but fails with a No
tables used error. In this case, statement/sql/select is used and the statement event
contains information to indicate the nature of the error.

A request can be obtained from any of these sources:

• As a command or statement request from a client, which sends the request as packets

• As a statement string read from the relay log on a replication slave (as of MySQL 5.7.2)

• As an event from the Event Scheduler (as of MySQL 5.7.2)

The details for a request are not initially known and the Performance Schema proceeds from abstract
to specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1. When the server detects a new packet at the socket level, a new statement is started with an
abstract instrument name of statement/abstract/new_packet.

2. When the server reads the packet number, it knows more about the type of request received, and
the Performance Schema refines the instrument name. For example, if the request is a COM_PING
packet, the instrument name becomes statement/com/Ping and that is the final name. If
the request is a COM_QUERY packet, it is known to correspond to a SQL statement but not the
particular type of statement. In this case, the instrument changes from one abstract name to a more
specific but still abstract name, statement/abstract/Query, and the request requires further
classification.

3. If the request is a statement, the statement text is read and given to the parser. After parsing,
the exact statement type is known. If the request is, for example, an INSERT statement, the
Performance Schema refines the instrument name from statement/abstract/Query to
statement/sql/insert, which is the final name.

For a request read as a statement from the relay log on a replication slave:

1. Statements in the relay log are stored as text and are read as such. There is no network protocol,
so the statement/abstract/new_packet instrument is not used. Instead, the initial instrument
is statement/abstract/relay_log.

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an INSERT statement, the Performance Schema refines the instrument name from statement/
abstract/Query to statement/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table
I/O done on the slave as it processes row changes can be instrumented, but row events in the relay log
do not appear as discrete statements.

For a request received from the Event Scheduler:

The event execution is instrumented using the name statement/scheduler/event. This is the final
name.

Statements executed within the event body are instrumented using statement/sql/* names,
without use of any preceding abstract instrument. An event is a stored program, and stored programs
are precompiled in memory before execution. Consequently, there is no parsing at runtime and the
type of each statement is known by the time it executes.

Performance Schema Statement Event Tables

2829

Statements executed within the event body are child statements. For example, if an event executes
an INSERT statement, execution of the event itself is the parent, instrumented using statement/
scheduler/event, and the INSERT is the child, instrumented using statement/sql/insert.
The parent/child relationship holds between separate instrumented operations. This differs from the
sequence of refinement that occurs within a single instrumented operation, from abstract to final
instrument names.

For statistics to be collected for statements, it is not sufficient to enable only the final statement/
sql/* instruments used for individual statement types. The abtract statement/abstract/*
instruments must be enabled as well. This should not normally be an issue because all statement
instruments are enabled by default. However, an application that enables or disables statement
instruments selectively must take into account that disabling abstract instruments also disables
statistics collection for the individual statement instruments. For example, to collect statistics for
INSERT statements, statement/sql/insert must be enabled, but also statement/abstract/
new_packet and statement/abstract/Query. Similarly, for replicated statements to be
instrumented, statement/abstract/relay_log must be enabled.

No statistics are aggregated for abstract instruments such as statement/abstract/Query because
no statement is ever classified with an abstract instrument as the final statement name.

The abstract instrument names in the preceding discussion are as of MySQL 5.7.3. In earlier 5.7
versions, there was some renaming before those names were settled on:

• statement/abstract/new_packet was statement/com/ before MySQL 5.7.3.

• statement/abstract/Query was statement/com/Query before MySQL 5.7.3.

• statement/abstract/relay_log was statement/rpl/relay_log in MySQL 5.7.2 and did
not exist before that.

21.9.6.1 The events_statements_current Table

The events_statements_current table contains current statement events, one row per thread
showing the current status of the thread's most recent monitored statement event.

The events_statements_current table can be truncated with TRUNCATE TABLE.

Of the tables that contain statement event rows, events_statements_current
is the most fundamental. Other tables that contain statement event rows are logically
derived from the current events. For example, the events_statements_history and
events_statements_history_long tables are collections of the most recent statement events, up
to a fixed number of rows.

For information about configuration of statement event collection, see Section 21.9.6, “Performance
Schema Statement Event Tables”.

The events_statements_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the
row. No two rows will have the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

Performance Schema Statement Event Tables

2830

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 21.4, “Performance Schema Instrument Naming Conventions”.

For SQL statements, the EVENT_NAME value initially is statement/com/Query until the statement
is parsed, then changes to a more appropriate value, as described in Section 21.9.6, “Performance
Schema Statement Event Tables”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL before MySQL 5.7.8. As
of 5.7.8, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed so far
(TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 21.2.3.1, “Performance Schema Event Timing”.

• LOCK_TIME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

• SQL_TEXT

The text of the SQL statement. For a command not associated with a SQL statement, the value is
NULL.

As of MySQL 5.7.6, the maximum number of bytes to display can be changed by changing the
performance_schema_max_sql_text_length system variable at server startup. Before 5.7.6,
the maximum is fixed at 1024.

• DIGEST

The statement digest MD5 value as a string of 32 hexadecimal characters, or NULL if the
statement_digest consumer is no. For more information about statement digesting, see
Section 21.7, “Performance Schema Statement Digests”.

• DIGEST_TEXT

The normalized statement digest text, or NULL if the statement_digest consumer is no. For more
information about statement digesting, see Section 21.7, “Performance Schema Statement Digests”.

The performance_schema_max_digest_length system variable determines the maximum
number of bytes available for computing statement digests. However, the display length of
statement digests may be longer than the available buffer size due to encoding of statement
components such as keywords and literal values in digest buffer. Consequently, values
selected from the DIGEST_TEXT column of statement event tables may appear to exceed the
performance_schema_max_digest_length value.

Performance Schema Statement Event Tables

2831

This variable was added in MySQL 5.7.8. In MySQL 5.7.6 and 5.7.7, use max_digest_length
instead. Before 5.7.6, the value cannot be changed.

• CURRENT_SCHEMA

The default database for the statement, NULL if there is none.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE

For nested statements (stored programs), these columns contain information about the parent
statement. Otherwise they are NULL.

• OBJECT_INSTANCE_BEGIN

This column identifies the statement. The value is the address of an object in memory.

• MYSQL_ERRNO

The statement error number, from the statement diagnostics area.

• RETURNED_SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.

• MESSAGE_TEXT

The statement error message, from the statement diagnostics area.

• ERRORS

Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

• WARNINGS

The number of warnings, from the statement diagnostics area.

• ROWS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
Section 23.8.7.1, “mysql_affected_rows()”.

• ROWS_SENT

The number of rows returned by the statement.

• ROWS_EXAMINED

The number of rows read from storage engines during statement execution.

• CREATED_TMP_DISK_TABLES

Like the Created_tmp_disk_tables status variable, but specific to the statement.

• CREATED_TMP_TABLES

Like the Created_tmp_tables status variable, but specific to the statement.

• SELECT_FULL_JOIN

Like the Select_full_join status variable, but specific to the statement.

• SELECT_FULL_RANGE_JOIN

Performance Schema Statement Event Tables

2832

Like the Select_full_range_join status variable, but specific to the statement.

• SELECT_RANGE

Like the Select_range status variable, but specific to the statement.

• SELECT_RANGE_CHECK

Like the Select_range_check status variable, but specific to the statement.

• SELECT_SCAN

Like the Select_scan status variable, but specific to the statement.

• SORT_MERGE_PASSES

Like the Sort_merge_passes status variable, but specific to the statement.

• SORT_RANGE

Like the Sort_range status variable, but specific to the statement.

• SORT_ROWS

Like the Sort_rows status variable, but specific to the statement.

• SORT_SCAN

Like the Sort_scan status variable, but specific to the statement.

• NO_INDEX_USED

1 if the statement performed a table scan without using an index, 0 otherwise.

• NO_GOOD_INDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Extra column from EXPLAIN output for the Range checked for each
record value in Section 8.8.2, “EXPLAIN Output Format”.

• NESTING_EVENT_ID, NESTING_EVENT_TYPE, NESTING_EVENT_LEVEL

Before MySQL 5.7.2, only NESTING_EVENT_ID and NESTING_EVENT_TYPE exist and are always
NULL.

As of MySQL 5.7.2, all three columns exist and are used with other columns to provide information
as follows for top-level (unnested) statements and nested statements (executed within a stored
program).

For top level statements:

OBJECT_TYPE = NULL
OBJECT_SCHEMA = NULL
OBJECT_NAME = NULL
NESTING_EVENT_ID = NULL
NESTING_EVENT_TYPE = NULL
NESTING_LEVEL = 0

For nested statements:

OBJECT_TYPE = the parent statement object type
OBJECT_SCHEMA = the parent statement object schema

Performance Schema Statement Event Tables

2833

OBJECT_NAME = the parent statement object name
NESTING_EVENT_ID = the parent statement EVENT_ID
NESTING_EVENT_TYPE = 'STATEMENT'
NESTING_LEVEL = the parent statement NESTING_LEVEL plus one

21.9.6.2 The events_statements_history Table

The events_statements_history table contains the most recent N statement events per
thread. The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_statements_history_size system variable at server startup.
Statement events are not added to the table until they have ended. As new events are added, older
events are discarded if the table is full.

The events_statements_history table has the same structure as
events_statements_current. See Section 21.9.6.1, “The events_statements_current Table”.

The events_statements_history table can be truncated with TRUNCATE TABLE.

For information about configuration of statement event collection, see Section 21.9.6, “Performance
Schema Statement Event Tables”.

21.9.6.3 The events_statements_history_long Table

The events_statements_history_long table contains the most recent N statement
events. The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_statements_history_long_size system variable at server
startup. Statement events are not added to the table until they have ended. As new events are added,
older events are discarded if the table is full. When a thread ends, its rows are removed from the table.

The events_statements_history_long table has the same structure as
events_statements_current. See Section 21.9.6.1, “The events_statements_current Table”.

The events_statements_history_long table can be truncated with TRUNCATE TABLE.

For information about configuration of statement event collection, see Section 21.9.6, “Performance
Schema Statement Event Tables”.

21.9.6.4 The prepared_statements_instances Table

As of MySQL 5.7.4, the Performance Schema provides instrumentation for prepared statements, for
which there are two protocols:

• The binary protocol. This is accessed through the MySQL C API and maps onto underlying server
commands as shown in the following table.

C API Function Corresponding Server Command

mysql_stmt_prepare() COM_STMT_PREPARE

mysql_stmt_execute() COM_STMT_EXECUTE

mysql_stmt_close() COM_STMT_CLOSE

• The text protocol. This is accessed using SQL statements and maps onto underlying server
commands as shown in the following table.

SQL Statement Corresponding Server Command

PREPARE SQLCOM_PREPARE

EXECUTE SQLCOM_EXECUTE

DEALLOCATE PREPARE, DROP PREPARE SQLCOM_DEALLOCATE PREPARE

Performance Schema Statement Event Tables

2834

Performance Schema prepared statement instrumentation covers both protocols. The following
discussion refers to the server commands rather than the C API functions or SQL statements.

Information about prepared statements is available in the prepared_statements_instances
table. This table enables inspection of prepared statements used in the server and
provides aggregated statistics about them. To control the size of this table, set the
performance_schema_max_prepared_statements_instances system variable at server
startup.

Collection of prepared statement information depends on the statement instruments shown
in the following table. These instruments are enabled by default. To modify them, update the
setup_instruments table.

Instrument Server Command

statement/com/Prepare COM_STMT_PREPARE

statement/com/Execute COM_STMT_EXECUTE

statement/sql/prepare_sql SQLCOM_PREPARE

statement/sql/execute_sql SQLCOM_EXECUTE

The Performance Schema manages the contents of the prepared_statements_instances table
as follows:

• Statement preparation

A COM_STMT_PREPARE or SQLCOM_PREPARE command creates a prepared statement
in the server. If the statement is successfully instrumented, a new row is added to the
prepared_statements_instances table. If the statement cannot be instrumented,
Performance_schema_prepared_statements_lost status variable is incremented.

• Prepared statement execution

Execution of a COM_STMT_EXECUTE or SQLCOM_PREPARE command for an instrumented prepared
statement instance updates the corresponding prepared_statements_instances table row.

• Prepared statement deallocation

Execution of a COM_STMT_CLOSE or SQLCOM_DEALLOCATE_PREPARE command
for an instrumented prepared statement instance removes the corresponding
prepared_statements_instances table row. To avoid resource leaks, removal occurs even if
the prepared statement instruments described previously are disabled.

The prepared_statements_instances table has these columns:

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented prepared statement.

• STATEMENT_ID

The internal statement ID assigned by the server. The text and binary protocols both use statement
IDs.

• STATEMENT_NAME

For the binary protocol, this column is NULL. For the text protocol, this column is the external
statement name assigned by the user. For example, for the following SQL statement, the name of
the prepared statement is stmt:

PREPARE stmt FROM 'SELECT 1';

Performance Schema Transaction Tables

2835

• SQL_TEXT

The prepared statement text, with ? placeholder markers.

• OWNER_THREAD_ID, OWNER_EVENT_ID

These columns indicate the event that created the prepared statement.

• OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME

For a prepared statement created by a client session, these columns are NULL. For a prepared
statement created by a stored program, these columns point to the stored program. A typical user
error is forgetting to deallocate prepared statements. These columns can be used to find stored
programs that leak prepared statements:

SELECT OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME,
STATEMENT_NAME, SQL_TEXT
FROM performance_schema.prepared_statements_instances
WHERE OWNER_OBJECT_TYPE IS NOT NULL;

• TIMER_PREPARE

The time spent executing the statement preparation itself.

• COUNT_REPREPARE

The number of times the statement was reprepared internally (see Section 8.10.4, “Caching of
Prepared Statements and Stored Programs”). Timing statistics for repreparation are not available
because it is counted as part of statement execution, not as a separate operation.

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

• SUM_xxx

The remaining SUM_xxx columns are the same as for the statement summary tables (see
Section 21.9.14.3, “Statement Summary Tables”).

TRUNCATE TABLE resets the statistics columns of the table.

21.9.7 Performance Schema Transaction Tables

As of MySQL 5.7.3, the Performance Schema instruments transactions. Within the event hierarchy,
wait events nest within stage events, which nest within statement events, which nest within transaction
events.

These tables store transaction events:

• events_transactions_current: Current transaction events

• events_transactions_history: The most recent transaction events for each thread

• events_transactions_history_long: The most recent transaction events overall

The following sections describe those tables. There are also summary tables that aggregate
information about transaction events; see Section 21.9.14.4, “Transaction Summary Tables”.

Transaction Event Configuration

To enable collection of transaction events, enable the relevant instruments and consumers.

Performance Schema Transaction Tables

2836

The setup_instruments table contains an instrument named transaction. This instrument is
disabled by default:

mysql> SELECT * FROM setup_instruments WHERE NAME = 'transaction';
+-------------+---------+-------+
| NAME | ENABLED | TIMED |
+-------------+---------+-------+
| transaction | NO | NO |
+-------------+---------+-------+

To enable collection of transaction events, including timing information, do this:

mysql> UPDATE setup_instruments SET ENABLED = 'YES', TIMED = 'YES'
 -> WHERE NAME = 'transaction';

The setup_consumers table contains consumer values with names corresponding to the current and
recent transaction event table names. These consumers may be used to filter collection of transaction
events:

mysql> SELECT * FROM setup_consumers WHERE NAME LIKE '%transactions%';
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
+----------------------------------+---------+

To enable all transaction consumers, do this:

mysql> UPDATE setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%transactions%';

To enable collection of transaction events only for specific transaction event tables, enable the
corresponding transaction consumers.

The setup_timers table contains a row with a NAME value of transaction that indicates the unit
for transaction event timing. The default unit is NANOSECOND.

mysql> SELECT * FROM setup_timers WHERE NAME = 'transaction';
+-------------+------------+
| NAME | TIMER_NAME |
+-------------+------------+
| transaction | NANOSECOND |
+-------------+------------+

To change the timing unit, modify the TIMER_NAME value:

mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
 -> WHERE NAME = 'transaction';

For additional information about configuring event collection, see Section 21.2, “Performance Schema
Configuration”.

Transaction Boundaries

In MySQL Server, transactions start explicitly with these statements:

START TRANSACTION | BEGIN | XA START | XA BEGIN

Performance Schema Transaction Tables

2837

Transactions also start implicitly. For example, when the autocommit system variable is enabled, the
start of each statement starts a new transaction.

When autocommit is disabled, the first statement following a committed transaction marks the start of
a new transaction. Subsequent statements are part of the transaction until it is committed.

Transactions explicitly end with these statements:

COMMIT | ROLLBACK | XA COMMIT | XA ROLLBACK

Transactions also end implicitly, by execution of DDL statements, locking statements, and server
administration statements.

In the following discussion, references to START TRANSACTION also apply to BEGIN, XA START, and
XA BEGIN. Similarly, references to COMMIT and ROLLBACK apply to XA COMMIT and XA ROLLBACK,
respectively.

The Performance Schema defines transaction boundaries similarly to that of the server. The start and
end of a transaction event closely match the corresponding state transitions in the server:

• For an explicitly started transaction, the transaction event starts during processing of the START
TRANSACTION statement.

• For an implicitly started transaction, the transaction event starts on the first statement that uses a
transactional engine after the previous transaction has ended.

• For any transaction, whether explicitly or implicitly ended, the transaction event ends when the server
transitions out of the active transaction state during the processing of COMMIT or ROLLBACK.

There are subtle implications to this approach:

• Transaction events in the Performance Schema do not fully include the statement events associated
with the corresponding START TRANSACTION, COMMIT, or ROLLBACK statements. There is a trivial
amount of timing overlap between the transaction event and these statements.

• Statements that work with nontransactional engines have no effect on the transaction state of the
connection. For implicit transactions, the transaction event begins with the first statement that uses
a transactional engine. This means that statements operating exclusively on nontransactional tables
are ignored, even following START TRANSACTION.

To illustrate, consider the following scenario:

1. SET autocommit = OFF;
2. CREATE TABLE t1 (a INT) ENGINE = InnoDB;
3. START TRANSACTION; -- Transaction 1 START
4. INSERT INTO t1 VALUES (1), (2), (3);
5. CREATE TABLE t2 (a INT) ENGINE = MyISAM; -- Transaction 1 COMMIT
 -- (implicit; DDL forces commit)
6. INSERT INTO t2 VALUES (1), (2), (3); -- Update nontransactional table
7. UPDATE t2 SET a = a + 1; -- ... and again
8. INSERT INTO t1 VALUES (4), (5), (6); -- Write to transactional table
 -- Transaction 2 START (implicit)
9. COMMIT; -- Transaction 2 COMMIT

From the perspective of the server, Transaction 1 ends when table t2 is created. Transaction 2 does
not start until a transactional table is accessed, despite the intervening updates to nontransactional
tables.

From the perspective of the Performance Schema, Transaction 2 starts when the server transitions into
an active transaction state. Statements 6 and 7 are not included within the boundaries of Transaction 2,
which is consistent with how the server writes transactions to the binary log.

Performance Schema Transaction Tables

2838

Transaction Instrumentation

Three attributes define transactions:

• Access mode (read only, read write)

• Isolation level (SERIALIZABLE, REPEATABLE READ, and so forth)

• Implicit (autocommit enabled) or explicit (autocommit disabled)

To reduce complexity of the transaction instrumentation and to ensure that the collected transaction
data provides complete, meaningful results, all transactions are instrumented independently of access
mode, isolation level, or autocommit mode.

To selectively examine transaction history, use the attribute columns in the transaction event tables:
ACCESS_MODE, ISOLATION_LEVEL, and AUTOCOMMIT.

The cost of transaction instrumentation can be reduced various ways, such as enabling or disabling
transaction instrumentation according to user, account, host, or thread (client connection).

Transactions and Nested Events

The parent of a transaction event is the event that initiated the transaction. For an explicitly started
transaction, this includes the START TRANSACTION and COMMIT AND CHAIN statements. For an
implicitly started transaction, it is the first statement that uses a transactional engine after the previous
transaction ends.

In general, a transaction is the top-level parent to all events initiated during the transaction, including
statements that explicitly end the transaction such as COMMIT and ROLLBACK. Exceptions are
statements that implicitly end a transaction, such as DDL statements, in which case the current
transaction must be committed before the new statement is executed.

Transactions and Stored Programs

Transactions and stored program events are related as follows:

• Stored Procedures

Stored procedures operate independently of transactions. A stored procedure can be started within a
transaction, and a transaction can be started or ended from within a stored procedure. If called from
within a transaction, a stored procedure can execute statements that force a commit of the parent
transaction and then start a new transaction.

If a stored procedure is started within a transaction, that transaction is the parent of the stored
procedure event.

If a transaction is started by a stored procedure, the stored procedure is the parent of the transaction
event.

• Stored Functions

Stored functions are restricted from causing an explicit or implicit commit or rollback. Stored function
events can reside within a parent transaction event.

• Triggers

Triggers activate as part of a statement that accesses the table with which it is associated, so the
parent of a trigger event is always the statement that activates it.

Triggers cannot issue statements that cause an explicit or implicit commit or rollback of a transaction.

• Scheduled Events

Performance Schema Transaction Tables

2839

The execution of the statements in the body of a scheduled event takes place in a new connection.
Nesting of a scheduled event within a parent transaction is not applicable.

Transactions and Savepoints

Savepoint statements are recorded as separate statement events. Transaction events include separate
counters for SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements issued
during the transaction.

Transactions and Errors

Errors and warnings that occur within a transaction are recorded in statement events, but not in the
corresponding transaction event. This includes transaction-specific errors and warnings, such as a
rollback on a nontransactional table or GTID consistency errors.

21.9.7.1 The events_transactions_current Table

The events_transactions_current table (added in MySQL 5.7.3) contains current transaction
events, one row per thread showing the current status of the thread's most recent monitored
transaction event. For example:

mysql> SELECT * FROM events_transactions_current LIMIT 1\G
*************************** 1. row ***************************
 THREAD_ID: 26
 EVENT_ID: 7
 END_EVENT_ID: NULL
 EVENT_NAME: transaction
 STATE: ACTIVE
 TRX_ID: NULL
 GTID: 3E11FA47-71CA-11E1-9E33-C80AA9429562:56
 XID: NULL
 XA_STATE: NULL
 SOURCE: transaction.cc:150
 TIMER_START: 420833537900000
 TIMER_END: NULL
 TIMER_WAIT: NULL
 ACCESS_MODE: READ WRITE
 ISOLATION_LEVEL: REPEATABLE READ
 AUTOCOMMIT: NO
 NUMBER_OF_SAVEPOINTS: 0
NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0
 NUMBER_OF_RELEASE_SAVEPOINT: 0
 OBJECT_INSTANCE_BEGIN: NULL
 NESTING_EVENT_ID: 6
 NESTING_EVENT_TYPE: STATEMENT

The events_transactions_current table can be truncated with TRUNCATE TABLE.

Of the tables that contain transaction event rows, events_transactions_current
is the most fundamental. Other tables that contain transaction event rows are logically
derived from the current events. For example, the events_transactions_history and
events_transactions_history_long tables are collections of the most recent transaction
events, up to a fixed number of rows.

For information about configuration of transaction event collection, see Section 21.9.7, “Performance
Schema Transaction Tables”.

The events_transactions_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the
row. No two rows will have the same pair of values.

Performance Schema Transaction Tables

2840

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 21.4, “Performance Schema Instrument Naming Conventions”.

• STATE

The current transaction state. The value is ACTIVE (after START TRANSACTION or BEGIN),
COMMITTED (after COMMIT), or ROLLED BACK (after ROLLBACK).

• TRX_ID

Unused.

• GTID

This column changed in MySQL 5.7.6.

• Versions of MySQL prior to 5.7.6:

If gtid_mode=OFF, the value is NULL. If gtid_mode=ON, this is the value of gtid_next when
the transaction started. If gtid_next=AUTOMATIC the value is AUTOMATIC, otherwise the value
is a GTID in UUID:NUMBER format.

• Versions of MySQL 5.7.6 and later:

The GTID column contains the value of gtid_next, which can be one of ANONYMOUS,
AUTOMATIC, or a GTID using the format UUID:NUMBER. For transactions that use
gtid_next=AUTOMATIC, which is all normal client transactions, the GTID column changes
when the transaction commits and the actual GTID is assigned. If gtid_mode is either ON or
ON_PERMISSIVE, the GTID column changes to the transaction's GTID. If gtid_mode is either
OFF or OFF_PERMISSIVE, the GTID column changes to ANONYMOUS.

• XID

The XA transaction identifier. It has the format described in Section 13.3.7.1, “XA Transaction
SQL Syntax”. This column was removed in MySQL 5.7.7 and replaced with the XID_FORMAT_ID,
XID_GTRID, and XID_BQUAL columns representing the components of XID values.

• XID_FORMAT_ID, XID_GTRID, and XID_BQUAL

The components of the XA transaction identifier. They have the format described in Section 13.3.7.1,
“XA Transaction SQL Syntax”. These columns were added in MySQL 5.7.7 as replacements for the
XID column.

• XA_STATE

The state of the XA transaction. The value is ACTIVE (after XA START), IDLE (after XA END),
PREPARED (after XA PREPARE), ROLLED BACK (after XA ROLLBACK), or COMMITTED (after XA
COMMIT).

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

Performance Schema Transaction Tables

2841

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL before MySQL 5.7.8. As
of 5.7.8, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed so far
(TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 21.2.3.1, “Performance Schema Event Timing”.

• ACCESS_MODE

The transaction access mode. The value is READ ONLY or READ WRITE.

• ISOLATION_LEVEL

The transaction isolation level. The value is REPEATABLE READ, READ COMMITTED, READ
UNCOMMITTED, or SERIALIZABLE.

• AUTOCOMMIT

Whether autcommit mode was enabled when the transaction started.

• NUMBER_OF_SAVEPOINTS, NUMBER_OF_ROLLBACK_TO_SAVEPOINT,
NUMBER_OF_RELEASE_SAVEPOINT

The number of SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements
issued during the transaction.

• OBJECT_INSTANCE_BEGIN

Unused.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT. (TRANSACTION
will not appear because transactions cannot be nested.)

21.9.7.2 The events_transactions_history Table

The events_transactions_history table (added in MySQL 5.7.3) contains the most recent
N transaction events per thread. The value of N is autosized at server startup. To set the table size
explicitly, set the performance_schema_events_transactions_history_size system variable
at server startup. Transaction events are not added to the table until they have ended. As new events
are added, older events are discarded if the table is full.

The events_transactions_history table has the same structure as
events_transactions_current. See Section 21.9.7.1, “The events_transactions_current Table”.

The events_transactions_history table can be truncated with TRUNCATE TABLE.

For information about configuration of transaction event collection, see Section 21.9.7, “Performance
Schema Transaction Tables”.

Performance Schema Connection Tables

2842

21.9.7.3 The events_transactions_history_long Table

The events_transactions_history_long table (added in MySQL 5.7.3) contains the most recent
N transaction events. The value of N is autosized at server startup. To set the table size explicitly, set
the performance_schema_events_transactions_history_long_size system variable at
server startup. Transaction events are not added to the table until they have ended. As new events are
added, older events are discarded if the table is full. When a thread ends, its rows are removed from
the table.

The events_transactions_history_long table has the same structure as
events_transactions_current. See Section 21.9.7.1, “The events_transactions_current Table”.

The events_transactions_history_long table can be truncated with TRUNCATE TABLE.

For information about configuration of transaction event collection, see Section 21.9.7, “Performance
Schema Transaction Tables”.

21.9.8 Performance Schema Connection Tables

The Performance Schema provides statistics about connections to the server. When a client connects,
it does so under a particular user name and from a particular host. The Performance Schema tracks
connections per account (user name plus host name) and separately per user name and per host
name, using these tables:

• accounts: Connection statistics per client account

• hosts: Connection statistics per client host name

• users: Connection statistics per client user name

There are also summary tables that aggregate information about connections. See Section 21.9.14.8,
“Connection Summary Tables”.

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables
in the mysql database, in the sense that the term refers to a combination of user and host values.
Where they differ is that in grant tables, the host part of an account can be a pattern, whereas in
Performance Schema tables, the host value is always a specific nonpattern host name.

The connection tables all have CURRENT_CONNECTIONS and TOTAL_CONNECTIONS columns to track
the current and total number of connections per “tracking value” on which statistics are based. The
tables differ in what they use for the tracking value. The accounts table has USER and HOST columns
to track connections per user name plus host name combination. The users and hosts tables have a
USER and HOST column, respectively, to track connections per user name and per host name.

Suppose that clients named user1 and user2 each connect one time from hosta and hostb. The
Performance Schema tracks the connections as follows:

• The accounts table will have four rows, for the user1/hosta, user1/hostb, user2/hosta, and
user2/hostb account values, each row counting one connection per account.

• The users table will have two rows, for user1 and user2, each row counting two connections per
user name.

• The hosts table will have two rows, for hosta and hostb, each row counting two connections per
host name.

When a client connects, the Performance Schema determines which row in each connection table
applies to the connection, using the tracking value appropriate to each table. If there is no such row,
one is added. Then the Performance Schema increments by one the CURRENT_CONNECTIONS and
TOTAL_CONNECTIONS columns in that row.

Performance Schema Connection Tables

2843

When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTIONS
column in the row and leaves the TOTAL_CONNECTIONS column unchanged.

The Performance Schema also counts threads for internal threads and user sessions that failed to
authenticate. These are counted in rows with USER and HOST column values of NULL.

Each connection table can be truncated with TRUNCATE TABLE, which has this effect:

• Rows with CURRENT_CONNECTIONS = 0 are deleted.

• For rows with CURRENT_CONNECTIONS > 0, TOTAL_CONNECTIONS is reset to
CURRENT_CONNECTIONS.

• Connection summary tables that depend on the connection table are truncated implicitly (summary
values are set to 0). For more information about implicit truncation, see Section 21.9.14.8,
“Connection Summary Tables”.

21.9.8.1 The accounts Table

The accounts table contains a row for each account that has connected to the MySQL server. For
each account, the table counts the current and total number of connections. The table size is autosized
at server startup. To set the table size explicitly, set the performance_schema_accounts_size
system variable at server startup. To disable account statistics, set this variable to 0.

The accounts table has the following columns. For a description of how the Performance
Schema maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 21.9.8,
“Performance Schema Connection Tables”.

• USER

The client user name for the connection, or NULL for an internal thread or user session that failed to
authenticate.

• HOST

The host from which the client connected, or NULL for an internal thread or user session that failed to
authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the account.

• TOTAL_CONNECTIONS

The total number of connections for the account.

21.9.8.2 The hosts Table

The hosts table contains a row for each host from which clients have connected to the
MySQL server. For each host name, the table counts the current and total number of
connections. The table size is autosized at server startup. To set the table size explicitly, set the
performance_schema_hosts_size system variable at server startup. To disable host statistics, set
this variable to 0.

The hosts table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 21.9.8,
“Performance Schema Connection Tables”.

• HOST

The host from which the client connected, or NULL for an internal thread or user session that failed to
authenticate.

Performance Schema Connection Attribute Tables

2844

• CURRENT_CONNECTIONS

The current number of connections for the host.

• TOTAL_CONNECTIONS

The total number of connections for the host.

21.9.8.3 The users Table

The users table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. The table size is autosized at
server startup. To set the table size explicitly, set the performance_schema_users_size system
variable at server startup. To disable user statistics, set this variable to 0.

The users table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 21.9.8,
“Performance Schema Connection Tables”.

• USER

The client user name for the connection, or NULL for an internal thread or user session that failed to
authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the user.

• TOTAL_CONNECTIONS

The total number of connections for the user.

21.9.9 Performance Schema Connection Attribute Tables

The Performance Schema makes these types of connection attributes available:

• Attributes defined by application programs, which can provide key/value connection attributes to be
passed to the server at connect time, using the mysql_options() and mysql_options4() C
API functions. The session_account_connect_attrs and session_connect_attrs tables
expose this information:

• session_account_connect_attrs: Connection attributes for sessions for the current account

• session_connect_attrs: Connection attributes for all sessions

• User-defined variables, in the user_variables_by_thread table.

The set of connection attributes visible on a given connection may vary depending on your platform
and Connector used to establish the connection.

The libmysqlclient client library sets these attributes:

• _client_name: The client name (libmysql for the client library)

• _client_version: The client library version

• _os: The operating system (for example, Linux, Win64)

• _platform: The machine platform (for example, x86_64)

• _pid: The client process ID

Performance Schema Connection Attribute Tables

2845

• _thread: The client thread ID (Windows only)

Other MySQL connectors may define connection attributes:

• _client_license: The connector license type (Connector/J).

• _runtime_version: The Java runtime environment (JRE) version (Connector/J).

• _runtime_vendor: The Java runtime environment (JRE) vendor (Connector/J).

Attribute names that begin with _ are reserved for MySQL itself and should not be used by client
applications. This permits new attributes to be introduced by MySQL without colliding with application
attributes.

Many MySQL client programs set a program_name attribute with a value equal to the client name.
For example, mysqladmin and mysqldump set program_name to mysqladmin and mysqldump,
respectively.

Some MySQL clients define additional attributes:

• mysqlbinlog defines the _client_role attribute as binary_log_listener.

• Replication slave connections define program_name as mysqld, _client_role as
binary_log_listener, and _client_replication_channel_name as the channel name.

• FEDERATED storage engine connections define program_name as mysqld and _client_role as
federated_storage.

21.9.9.1 The session_account_connect_attrs Table

Application programs can provide key/value connection attributes to be passed to the server at connect
time, using the mysql_options() and mysql_options4() C API functions. For descriptions of
common attributes, see Section 21.9.9, “Performance Schema Connection Attribute Tables”.

The session_account_connect_attrs table contains connection attributes only for
sessions for your own account. To see connection attributes for all sessions, look in the
session_connect_attrs table.

The session_account_connect_attrs table contains these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

21.9.9.2 The session_connect_attrs Table

Application programs can provide key/value connection attributes to be passed to the server at connect
time, using the mysql_options() and mysql_options4() C API functions. For descriptions of
common attributes, see Section 21.9.9, “Performance Schema Connection Attribute Tables”.

Performance Schema Replication Tables

2846

The session_connect_attrs table contains connection attributes for all sessions.
To see connection attributes only for sessions for your own account, look in the
session_account_connect_attrs table.

The session_connect_attrs table contains these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

21.9.9.3 The user_variables_by_thread Table

As of MySQL 5.7.5, the Performance Schema provides a user_variables_by_thread table that
exposes user-defined variables. These are variables defined within a specific session and include a @
character preceding the name; see Section 9.4, “User-Defined Variables”.

The user_variables_by_thread table contains these columns:

• THREAD_ID

The thread identifier of the session in which the variable is defined.

• VARIABLE_NAME

The variable name, without the leading @ character.

• VARIABLE_VALUE

The variable value.

21.9.10 Performance Schema Replication Tables

As of MySQL 5.7.2, the Performance Schema provides tables that expose replication information. This
is similar to the information available from the SHOW SLAVE STATUS statement, but representation in
table form is more accessible and has usability benefits:

• SHOW SLAVE STATUS output is useful for visual inspection, but not so much for programmatic use.
By contrast, using the Performance Schema tables, information about slave status can be searched
using general SELECT queries, including complex WHERE conditions, joins, and so forth.

• Query results can be saved in tables for further analysis, or assigned to variables and thus used in
stored procedures.

• The replication tables provide better diagnostic information. For multi-threaded slave operation, SHOW
SLAVE STATUS reports all coordinator and worker thread errors using the Last_SQL_Errno and
Last_SQL_Error fields, so only the most recent of those errors is visible and information can be
lost. The replication tables store errors on a per-thread basis without loss of information.

• The last seen transaction is visible in the replication tables on a per-worker basis. This is information
not avilable from SHOW SLAVE STATUS.

Performance Schema Replication Tables

2847

• Developers familiar with the Performance Schema interface can extend the replication tables to
provide additional information by adding rows to the tables.

Replication Table Descriptions

The Performance Schema provides several replication-related tables:

• Tables that contain information about the connection of the slave server to the master server:

• replication_connection_configuration: Configuration parameters for connecting to the
master

• replication_connection_status: Current status of the connection to the master

• Tables that contain general (not thread-specific) information about the transaction applier:

• replication_applier_configuration: Configuration parameters for the transaction applier
on the slave. Renamed from replication_execute_configuration in MySQL 5.7.6.

• replication_applier_status: Current status of the transaction applier on the slave.
Renamed from replication_execute_status in MySQL 5.7.6.

• Tables that contain information about specific threads responsible for applying transactions received
from the master:

• replication_applier_status_by_coordinator: Status of the applier (formerly SQL or
coordinator) thread. Renamed from replication_execute_status_by_coordinator in
MySQL 5.7.6.

• replication_applier_status_by_worker: Worker thread applier status (empty unless
slave is multi-threaded). Renamed from replication_execute_status_by_worker in
MySQL 5.7.6.

• Tables that contain information about replication group members:

• replication_group_members: Provides network and status information for group members.

• replication_group_member_stats: Provides statistical information about group members
and transaction in which they participate.

The following sections describe each replication table in more detail, including the correspondence
between the columns produced by SHOW SLAVE STATUS and the replication table columns in which
the same information appears.

The remainder of this introduction to the replication tables describes how the Performance Schema
populates them and which fields from SHOW SLAVE STATUS are not represented in the tables.

Replication Table Life Cycle

The Performance Schema populates the replication tables as follows:

• Prior to execution of CHANGE MASTER TO, the tables are empty.

• After CHANGE MASTER TO, the configuration parameters can be seen in the tables. At this time,
there are no active slave threads, so the THREAD_ID columns are NULL and the SERVICE_STATE
columns have a value of OFF.

• After START SLAVE, non-NULL THREAD_ID values can be seen. Threads that are idle or active
have a SERVICE_STATE value of ON. The thread that connects to the master server has a value of
CONNECTING while it establishes the connection, and ON thereafter as long as the connection lasts.

• After STOP SLAVE, the THREAD_ID columns become NULL and the SERVICE_STATE columns for
threads that no longer exist have a value of OFF.

Performance Schema Replication Tables

2848

• The tables are preserved after STOP SLAVE or threads dying due to an error.

• The replication_applier_status_by_worker table is nonempty only when the slave is
operating in multi-threaded mode. That is, if the slave_parallel_workers system variable is
greater than 0, this table is populated when START SLAVE is executed, and the number of rows
shows the number of workers.

SHOW SLAVE STATUS Information Not In the Replication Tables

The information in the Performance Schema replication tables differs somewhat from the information
available from SHOW SLAVE STATUS because the tables are oriented toward use of global transaction
identifiers (GTIDs), not file names and positions, and they represent server UUID values, not server
ID values. Due to these differences, several SHOW SLAVE STATUS columns are not preserved in the
Performance Schema replication tables, or are represented a different way:

• The following fields refer to file names and positions and are not preserved:

Master_Log_File
Read_Master_Log_Pos
Relay_Log_File
Relay_Log_Pos
Relay_Master_Log_File
Exec_Master_Log_Pos
Until_Condition
Until_Log_File
Until_Log_Pos

• The Master_Info_File field is not preserved. It refers to the master.info file, which has been
superseded by crash-safe slave tables.

• The following fields are based on server_id, not server_uuid [2426], and are not preserved:

Master_Server_Id
Replicate_Ignore_Server_Ids

• The Skip_Counter field is based on event counts, not GTIDs, and is not preserved.

• These error fields are aliases for Last_SQL_Errno and Last_SQL_Error, so they are not
preserved:

Last_Errno
Last_Error

In the Performance Schema, this error information is available in the LAST_ERROR_NUMBER and
LAST_ERROR_MESSAGE columns of the replication_applier_status_by_coordinator
table (and replication_applier_status_by_worker if the slave is multi-threaded). Those
tables provide more specific per-thread error information than is available from Last_Errno and
Last_Error.

• Fields that provide information about command-line filtering options is not preserved:

Replicate_Do_DB
Replicate_Ignore_DB
Replicate_Do_Table
Replicate_Ignore_Table
Replicate_Wild_Do_Table
Replicate_Wild_Ignore_Table

• The Slave_IO_State and Slave_SQL_Running_State fields are not preserved. If needed,
these values can be obtained from the process list by using the THREAD_ID column of the
appropriate replication table and joining it with the ID column in the INFORMATION_SCHEMA
PROCESSLIST table to select the STATE column of the latter table.

Performance Schema Replication Tables

2849

• The Executed_Gtid_Set field can show a large set with a great deal of text. Instead, the
Performance Schema tables show GTIDs of transactions that are currently being applied
by the slave. Alternatively, the set of executed GTIDs can be obtained from the value of the
gtid_executed system variable.

• The Seconds_Behind_Master and Relay_Log_Space fields are in to-be-decided status and are
not preserved.

Status Variables Moved to Replication Tables

As of MySQL version 5.7.5, the following status variables (previously monitored using SHOW STATUS)
were moved to the Perfomance Schema replication tables:

• Slave_retried_transactions

• Slave_last_heartbeat

• Slave_received_heartbeats

• Slave_heartbeat_period

• Slave_running

These status variables are now only relevant when a single replication channel is being used because
they only report the status of the default replication channel. When multiple replication channels exist,
use the Performance Schema replication tables described in this section, which report these variables
for each existing replication channel.

Replication Channels

The first column of the replication Performance Schema tables is CHANNEL_NAME. This enables the
tables to be viewed per replication channel, added in MySQL 5.7.6. When you are using multiple
replication channels on a slave, you can filter the tables per replication channel to monitor a specific
replication channel. See Section 17.2.3, “Replication Channels” and Section 17.1.4.3, “Multi-Source
Replication Monitoring” for more information.

21.9.10.1 The replication_connection_configuration Table

This table shows the configuration parameters used by the slave server for connecting to the master
server. Parameters stored in the table can be changed at runtime with the CHANGE MASTER TO
statement, as indicated in the column descriptions. This table was added in MySQL 5.7.2.

Compared to the replication_connection_status table,
replication_connection_configuration changes less frequently. It contains values that
define how the slave connects to the master and that remain constant during the connection, whereas
replication_connection_status contains values that change during the connection.

The replication_connection_configuration table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 17.2.3, “Replication Channels” for more
information.

• HOST

The master host that the slave is connected to. (CHANGE MASTER TO option: MASTER_HOST)

• PORT

The port used to connect to the master. (CHANGE MASTER TO option: MASTER_PORT)

Performance Schema Replication Tables

2850

• USER

The user name of the account used to connect to the master. (CHANGE MASTER TO option:
MASTER_USER)

• NETWORK_INTERFACE

The network interface that the slave is bound to, if any. (CHANGE MASTER TO option:
MASTER_BIND)

• AUTO_POSITION

1 if autopositioning is in use; otherwise 0. (CHANGE MASTER TO option: MASTER_AUTO_POSITION)

• SSL_ALLOWED, SSL_CA_FILE, SSL_CA_PATH, SSL_CERTIFICATE, SSL_CIPHER, SSL_KEY,
SSL_VERIFY_SERVER_CERTIFICATE, SSL_CRL_FILE, SSL_CRL_PATH

These columns show the SSL parameters used by the slave to connect to the master, if any.

SSL_ALLOWED has these values:

• Yes if an SSL connection to the master is permitted

• No if an SSL connection to the master is not permitted

• Ignored if an SSL connection is permitted but the slave server does not have SSL support
enabled

CHANGE MASTER TO options for the other SSL columns: MASTER_SSL_CA, MASTER_SSL_CAPATH,
MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL, MASTER_SSL_CRLPATH,
MASTER_SSL_KEY, MASTER_SSL_VERIFY_SERVER_CERT.

Prior to MySQL 5.7.4, the value of SSL_CRL_PATH was not displayed correctly. (Bug #18174719)

• CONNECTION_RETRY_INTERVAL

The number of seconds between connect retries. (CHANGE MASTER TO option:
MASTER_CONNECT_RETRY)

• CONNECTION_RETRY_COUNT

The number of times the slave can attempt to reconnect to the master in the event of a lost
connection. (CHANGE MASTER TO option: MASTER_RETRY_COUNT)

• HEARTBEAT_INTERVAL

The replication heartbeat interval on a slave, measured in seconds. Added in MySQL 5.7.5.

The following table shows the correspondence between
replication_connection_configuration columns and SHOW SLAVE STATUS columns.

replication_connection_configuration Column SHOW SLAVE STATUS Column

HOST Master_Host

PORT Master_Port

USER Master_User

NETWORK_INTERFACE Master_Bind

AUTO_POSITION Auto_Position

SSL_ALLOWED Master_SSL_Allowed

SSL_CA_FILE Master_SSL_CA_File

Performance Schema Replication Tables

2851

replication_connection_configuration Column SHOW SLAVE STATUS Column

SSL_CA_PATH Master_SSL_CA_Path

SSL_CERTIFICATE Master_SSL_Cert

SSL_CIPHER Master_SSL_Cipher

SSL_KEY Master_SSL_Key

SSL_VERIFY_SERVER_CERTIFICATE Master_SSL_Verify_Server_Cert

SSL_CRL_FILE Master_SSL_Crl

SSL_CRL_PATH Master_SSL_Crlpath

CONNECTION_RETRY_INTERVAL Connect_Retry

CONNECTION_RETRY_COUNT Master_Retry_Count

21.9.10.2 The replication_connection_status Table

This table shows the current status of the I/O thread that handles the slave server connection to the
master server. This table was added in MySQL 5.7.2.

Compared to the replication_connection_configuration table,
replication_connection_status changes more frequently. It contains values that change during
the connection, whereas replication_connection_configuration contains values which define
how the slave connects to the master and that remain constant during the connection.

The replication_connection_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 17.2.3, “Replication Channels” for more
information.

• GROUP_NAME

This column is reserved for future use. Added in MySQL 5.7.6.

• SOURCE_UUID

The server_uuid [2426] value from the master.

• THREAD_ID

The I/O thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle), OFF (thread no longer exists), or CONNECTING (thread exists
and is connecting to the master).

• RECEIVED_TRANSACTION_SET

The set of global transaction IDs (GTIDs) corresponding to all transactions received by this slave.
Empty if GTIDs are not in use. See GTID Sets for more information.

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the LAST_ERROR_MESSAGE
value is not empty, the error values also appear in the slave's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

Performance Schema Replication Tables

2852

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD HH:MM:SS format that shows when the most recent I/O error took place.

• LAST_HEARTBEAT_TIMESTAMP

A timestamp in YYMMDD HH:MM:SS format that shows when the most recent heartbeat signal was
received by a replication slave. Added in MySQL 5.7.5.

• COUNT_RECEIVED_HEARTBEATS

The total number of heartbeat signals that a replication slave received since the last time it was
restarted or reset, or a CHANGE MASTER TO statement was issued. Added in MySQL 5.7.5.

The following table shows the correspondence between replication_connection_status
columns and SHOW SLAVE STATUS columns.

replication_connection_status Column SHOW SLAVE STATUS Column

SOURCE_UUID Master_UUID

THREAD_ID None

SERVICE_STATE Slave_IO_Running

RECEIVED_TRANSACTION_SET Retrieved_Gtid_Set

LAST_ERROR_NUMBER Last_IO_Errno

LAST_ERROR_MESSAGE Last_IO_Error

LAST_ERROR_TIMESTAMP Last_IO_Error_Timestamp

21.9.10.3 The replication_applier_configuration Table

This table shows the configuration parameters that affect transactions applied by the
slave server. Parameters stored in the table can be changed at runtime with the CHANGE
MASTER TO statement, as indicated in the column descriptions. This table was added in
MySQL 5.7.2 with the name replication_execute_configuration, and renamed to
replication_applier_configuration in MySQL 5.7.6.

The replication_applier_configuration table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 17.2.3, “Replication Channels” for more
information.

• DESIRED_DELAY

The number of seconds that the slave must lag the master. (CHANGE MASTER TO option:
MASTER_DELAY)

The following table shows the correspondence between replication_applier_configuration
columns and SHOW SLAVE STATUS columns.

replication_applier_configuration Column SHOW SLAVE STATUS Column

DESIRED_DELAY SQL_Delay

21.9.10.4 The replication_applier_status Table

This table shows the current general transaction execution status on the slave server. This table
was added in MySQL 5.7.2 with the name replication_execute_status, and renamed to
replication_applier_configuration in MySQL 5.7.6.

Performance Schema Replication Tables

2853

This table provides information about general aspects of transaction applier status
that are not specific to any thread involved. Thread-specific status information is
available in the replication_applier_status_by_coordinator table (and
replication_applier_status_by_worker if the slave is multi-threaded).

The replication_applier_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 17.2.3, “Replication Channels” for more
information.

• SERVICE_STATE

Reserved for future use.

• REMAINING_DELAY

If the slave is waiting for DESIRED_DELAY seconds to pass since the master applied an event,
this field contains the number of delay seconds remaining. At other times, this field is NULL. (The
DESIRED_DELAY value is stored in the replication_applier_configuration table.)

• COUNT_TRANSACTIONS_RETRIES

Added in MySQL 5.7.5, shows the number of retries that were made because the slave SQL thread
failed to apply a transaction.

The following table shows the correspondence between replication_applier_status columns
and SHOW SLAVE STATUS columns.

replication_applier_status Column SHOW SLAVE STATUS Column

SERVICE_STATE None

REMAINING_DELAY SQL_Remaining_Delay

21.9.10.5 The replication_applier_status_by_coordinator Table

For a multi-threaded slave, the slave uses multiple worker threads and a coordinator
thread to manage them, and this table shows the status of the coordinator thread. In
MySQL 5.7.9 and later, for a single-threaded slave, this table is empty. (Previously,
this table showed the applier thread status for a single-threaded slave; this information
can now be found in the replication_applier_status_by_worker table in
such cases. See Bug #74765, Bug #20001173.) This table was added in MySQL
5.7.2 as replication_execute_status_by_coordinator, and renamed
replication_applier_status_by_coordinator in MySQL 5.7.6. For a multi-threaded slave,
the replication_applier_status_by_worker table shows the status of the worker threads.

The replication_applier_status_by_coordinator table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 17.2.3, “Replication Channels” for more
information.

• THREAD_ID

The SQL/coordinator thread ID.

• SERVICE_STATE

Performance Schema Replication Tables

2854

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the SQL/coordinator
thread to stop. An error number of 0 and message of the empty string mean “no error.” If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the slave's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Section B.3, “Server Error Codes and Messages”.

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD HH:MM:SS format that shows when the most recent SQL/coordinator error
occurred.

The following table shows the correspondence between
replication_applier_status_by_coordinator columns and SHOW SLAVE STATUS columns.

replication_applier_status_by_coordinator
Column

SHOW SLAVE STATUS Column

THREAD_ID None

SERVICE_STATE Slave_SQL_Running

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

21.9.10.6 The replication_applier_status_by_worker Table

In MySQL 5.7.9 and later, if the slave is not multi-threaded, this table shows the status of
the applier thread. (Previously, this table was empty in such cases, and this information
was reported in the replication_applier_status_by_coordinator table; see Bug
#74765, Bug #20001173.) Otherwise, the slave uses multiple worker threads and a coordinator
thread to manage them, and this table shows the status of the worker threads. This table was
added in MySQL 5.7.2 as replication_execute_status_by_worker, and renamed
replication_applier_status_by_worker in MySQL 5.7.6. For a multi-threaded slave, the
replication_applier_status_by_coordinator table shows the status of the coordinator
thread.

The replication_applier_status_by_worker table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 17.2.3, “Replication Channels” for more
information.

• WORKER_ID

The worker identifier (same value as the id column in the mysql.slave_worker_info table).
After STOP SLAVE, the THREAD_ID column becomes NULL, but the WORKER_ID value is preserved.

• THREAD_ID

The worker thread ID.

Performance Schema Replication Tables

2855

• SERVICE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_SEEN_TRANSACTION

The transaction that the worker has last seen. The worker has not necessarily applied this
transaction because it could still be in the process of doing so.

If the gtid_mode system variable value is OFF, this column is ANONYMOUS, indicating that
transactions do not have global transaction identifiers (GTIDs) and are identified by file and position
only.

If gtid_mode is ON, the column value is defined as follows:

• If no transaction has executed, the column is empty.

• When a transaction has executed, the column is set from gtid_next as soon as gtid_next is
set. From this moment, the column always shows a GTID.

• The GTID is preserved until the next transaction is executed. If an error occurs, the column value
is the GTID of the transaction being executed by the worker when the error occurred.

• When the next GTID log event is picked up by this worker thread, this column is updated from
gtid_next soon after gtid_next is set.

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the worker thread
to stop. An error number of 0 and message of the empty string mean “no error”. If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the slave's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Section B.3, “Server Error Codes and Messages”.

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD HH:MM:SS format that shows when the most recent worker error occurred.

The following table shows the correspondence between
replication_applier_status_by_worker columns and SHOW SLAVE STATUS columns.

replication_applier_status_by_worker Column SHOW SLAVE STATUS Column

WORKER_ID None

THREAD_ID None

SERVICE_STATE None

LAST_SEEN_TRANSACTION None

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

21.9.10.7 The replication_group_members Table

This table shows network and status information for replication group members. It was added in
MySQL 5.7.6 and is reserved for future use.

The replication_group_members table has the following columns:

Performance Schema Replication Tables

2856

• CHANNEL_NAME

Name of the group replication channel.

• MEMBER_ID

Identifier for this member; same as the server UUID.

• MEMBER_HOST

Network address of this member (host name or IP address).

• MEMBER_PORT

Port on which the server is listening.

• MEMBER_STATE

Current state of this member; can be any one of the following:

• OFFLINE: The group replication plugin is installed but has not been started.

• RECOVERING: The server has joined a group from which it is retrieving data.

• ONLINE: The member is in a fully functioning state.

21.9.10.8 The replication_group_member_stats Table

This table shows statistical information for replication group members. It was added in MySQL 5.7.6
and is reserved for future use.

The replication_group_member_stats table has the following columns:

• CHANNEL_NAME

Name of the group replication channel

• VIEW_ID

Current view identifier for this group.

• MEMBER_ID

Identifier for this member; same as the server UUID.

• COUNT_TRANSACTIONS_IN_QUEUE

Number of transactions pending certification

• COUNT_TRANSACTIONS_CHECKED

Number of transactions already certified by this member.

• COUNT_CONFLICTS_DETECTED

Number of transactions that were negatively certified.

• COUNT_TRANSACTIONS_VALIDATING

Number of transactions with which one can execute certification with them, but have not been
garbage collected.

• TRANSACTIONS_COMMITTED_ALL_MEMBERS

Performance Schema Lock Tables

2857

Set of stable group transactions.

• LAST_CONFLICT_FREE_TRANSACTION

Latest transaction certified without conflicts.

21.9.11 Performance Schema Lock Tables

The Performance Schema exposes lock information through these tables:

• metadata_locks: Metadata locks held and requested

• table_handles: Table locks held and requested

The following sections describe these tables in more detail.

21.9.11.1 The metadata_locks Table

As of MySQL 5.7.3, the Performance Schema exposes metadata lock information through the
metadata_locks table:

• Locks that have been granted (shows which sessions own which current metadata locks)

• Locks that have been requested but not yet granted (shows which sessions are waiting for which
metadata locks).

• Lock requests that have been killed by the deadlock detector or timed out and are waiting for the
requesting session's lock request to be discarded

This information enables you to understand metadata lock dependencies between sessions. You can
see not only which lock a session is waiting for, but which session currently holds that lock.

The metadata_locks table is read only and cannot be updated. It is autosized by default; to
configure the table size, set the performance_schema_max_metadata_locks system variable at
server startup.

Metadata lock instrumentation is disabled by default. To enable it, enable the wait/lock/metadata/
sql/mdl instrument in the setup_instruments table.

The Performance Schema maintains metadata_locks table content as follows, using the
LOCK_STATUS column to indicate the status of each lock:

• When a metadata lock is requested and obtained immediately, a row with a status of GRANTED is
inserted.

• When a metadata lock is requested and not obtained immediately, a row with a status of PENDING is
inserted.

• When a metadata lock previously requested is granted, its row status is updated to GRANTED.

• When a metadata lock is released, its row is deleted.

• When a pending lock request is canceled by the deadlock detector to break a deadlock
(ER_LOCK_DEADLOCK), its row status is updated from PENDING to VICTIM.

• When a pending lock request times out (ER_LOCK_WAIT_TIMEOUT), its row status is updated from
PENDING to TIMEOUT.

• When granted lock or pending lock request is killed, its row status is updated from GRANTED or
PENDING to KILLED.

• The VICTIM, TIMEOUT, and KILLED status values are brief and signify that the lock row is about to
be deleted.

Performance Schema Lock Tables

2858

• The PRE_ACQUIRE_NOTIFY and POST_RELEASE_NOTIFY status values are brief and signify that
the metadata locking subsubsystem is entering a lock acquisition or leaving a lock release operation.
These status values were added in MySQL 5.7.11.

The metadata_locks table has these columns:

• OBJECT_TYPE

The type of lock used in the metadata lock subsystem: The value is one of GLOBAL, SCHEMA, TABLE,
FUNCTION, PROCEDURE, TRIGGER (currently unused), EVENT, COMMIT, USER LEVEL LOCK (a lock
acquired with GET_LOCK()), or TABLESPACE.

For locks acquired using the locking service described in Section 24.3.1, “The Locking Service”, the
OBJECT_TYPE is LOCKING SERVICE.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented object.

• LOCK_TYPE

The lock type from the metadata lock subsystem. The value is one of INTENTION_EXCLUSIVE,
SHARED, SHARED_HIGH_PRIO, SHARED_READ, SHARED_WRITE, SHARED_UPGRADABLE,
SHARED_NO_WRITE, SHARED_NO_READ_WRITE, or EXCLUSIVE.

• LOCK_DURATION

The lock duration from the metadata lock subsystem. The value is one of STATEMENT,
TRANSACTION, or EXPLICIT. The STATEMENT and TRANSACTION values are for locks that are
released at statement or transaction end, respectively. The EXPLICIT value is for locks that survive
statement or transaction end and are released explicitly, such as global locks acquired with FLUSH
TABLES WITH READ LOCK.

• LOCK_STATUS

The lock status from the metadata lock subsystem. The value is one of PENDING, GRANTED,
VICTIM, TIMEOUT, KILLED, PRE_ACQUIRE_NOTIFY, or POST_RELEASE_NOTIFY. The
Performance Schema assigns these values as described earlier in this section.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• OWNER_THREAD_ID

The thread requesting a metadata lock.

• OWNER_EVENT_ID

The event requesting a metadata lock.

21.9.11.2 The table_handles Table

Performance Schema System Variable Tables

2859

As of MySQL 5.7.3, the Performance Schema exposes table lock information through the
table_handles table to show the table locks currently in effect for each opened table handle.
table_handles reports what is recorded by the table lock instrumentation. This information shows
which table handles the server has open, how they are locked, and by which sessions.

The table_handles table is read only and cannot be updated. It is autosized by default; to configure
the table size, set the performance_schema_max_table_handles system variable at server
startup.

The table_handles table has these columns:

• OBJECT_TYPE

The table opened by a table handle.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The table handle address in memory.

• OWNER_THREAD_ID

The thread owning the table handle.

• OWNER_EVENT_ID

The event which caused the table handle to be opened.

• INTERNAL_LOCK

The table lock used at the SQL level. The value is one of READ, READ WITH SHARED LOCKS, READ
HIGH PRIORITY, READ NO INSERT, WRITE ALLOW WRITE, WRITE CONCURRENT INSERT,
WRITE LOW PRIORITY, or WRITE. For information about these lock types, see the include/
thr_lock.h source file.

• EXTERNAL_LOCK

The table lock used at the storage engine level. The value is one of READ EXTERNAL or WRITE
EXTERNAL.

21.9.12 Performance Schema System Variable Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the
description of that variable in Section 5.1.4, “Server System Variables”.

The MySQL server maintains many system variables that indicate how it is configured (see
Section 5.1.4, “Server System Variables”). As of MySQL 5.7.6, system variable information is available
in these Performance Schema tables:

• global_variables: Global system variables. An application that wants only global values should
use this table.

Performance Schema Status Variable Tables

2860

• session_variables: System variables for the current session. An application that wants all
system variable values for its own session should use this table. It includes the session variables for
its session, as well as the values of global variables that have no session counterpart. (In MySQL
5.7.6 and 5.7.7, the table does not fully reflect all system variable values in effect for the current
session; it includes no rows for global variables that have no session counterpart. This is corrected in
MySQL 5.7.8.)

• variables_by_thread: Session system variables for each active session. An application that
wants to know the session variable values for specific sessions should use this table. It includes
session variables only, identified by thread ID.

The session variable tables (session_variables, variables_by_thread) contain information
only for active sessions, not terminated sessions.

TRUNCATE TABLE is not supported for Performance Schema system variable tables.

The global_variables and session_variables tables have these columns:

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The system variable value. For global_variables, this column contains the global value. For
session_variables, this column contains the variable value in effect for the current session.

The variables_by_thread table has these columns:

• THREAD_ID

The thread identifier of the session in which the system variable is defined.

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The variables_by_thread table contains system variable information only about foreground
threads. If not all threads are instrumented by the Performance Schema, this table will miss some rows.
In this case, the Performance_schema_thread_instances_lost status variable will be greater
than zero.

21.9.13 Performance Schema Status Variable Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the
description of that variable in Section 5.1.4, “Server System Variables”.

The MySQL server maintains many status variables that provide information about its operation (see
Section 5.1.6, “Server Status Variables”). As of MySQL 5.7.6, status variable information is available in
these Performance Schema tables:

• global_status: Global status variables. An application that wants only global values should use
this table.

• session_status: Status variables for the current session. An application that wants all status
variable values for its own session should use this table. It includes the session variables for its

Performance Schema Status Variable Tables

2861

session, as well as the values of global variables that have no session counterpart. (In MySQL 5.7.6
and 5.7.7, the table does not fully reflect all status variable values in effect for the current session; it
includes no rows for global variables that have no session counterpart. This is corrected in MySQL
5.7.8.)

• status_by_thread: Session status variables for each active session. An application that wants
to know the session variable values for specific sessions should use this table. It includes session
variables only, identified by thread ID.

There are also summary tables that provide status variable information aggregated by account, host
name, and user name. See Section 21.9.14.11, “Performance Schema Status Variable Summary
Tables”.

The session variable tables (session_status, status_by_thread) contain information only for
active sessions, not terminated sessions.

The Performance Schema collects statistics for global status variables only for threads for which the
INSTRUMENTED value is YES in the threads table. Statistics for session status variables are always
collected, regardless of the INSTRUMENTED value.

The Performance Schema does not collect statistics for Com_xxx status variables
in the status variable tables. To obtain global and per-session statement execution
counts, use the events_statements_summary_global_by_event_name and
events_statements_summary_by_thread_by_event_name tables, respectively. For example:

SELECT EVENT_NAME, COUNT_STAR
FROM events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%';

The global_status and session_status tables have these columns:

• VARIABLE_NAME

The status variable name.

• VARIABLE_VALUE

The status variable value. For global_status, this column contains the global value. For
session_status, this column contains the variable value for the current session.

The status_by_thread table contains the status of each active thread. It has these columns:

• THREAD_ID

The thread identifier of the session in which the status variable is defined.

• VARIABLE_NAME

The status variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The status_by_thread table contains status variable information only about foreground threads. If
the performance_schema_max_thread_instances system variable is not autoscaled (set to −1)
and the maximum permitted number of instrumented thread objects is not greater than the number of
background threads, the table will be empty.

The Performance Schema supports TRUNCATE TABLE for status variable tables as follows:

• global_status: Resets thread, account, host, and user status. Resets global status variables
except those that the server never resets.

Performance Schema Summary Tables

2862

• session_status: Not supported.

• status_by_thread: Aggregates status for all threads to the global status and account status, then
resets thread status. If account statistics are not collected, the session status is added to host and
user status, if host and user status are collected.

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system
variables, respectively, are set to 0.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

21.9.14 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this
group summarize event data in different ways.

Event Wait Summaries:

• events_waits_summary_global_by_event_name: Wait events summarized per event name

• events_waits_summary_by_instance: Wait events summarized per instance

• events_waits_summary_by_thread_by_event_name: Wait events summarized per thread and
event name

Stage Summaries:

• events_stages_summary_by_thread_by_event_name: Stage waits summarized per thread
and event name

• events_stages_summary_global_by_event_name: Stage waits summarized per event name

Statement Summaries:

• events_statements_summary_by_digest: Statement events summarized per schema and
digest value

• events_statements_summary_by_thread_by_event_name: Statement events summarized
per thread and event name

• events_statements_summary_global_by_event_name: Statement events summarized per
event name

• events_statements_summary_by_program: Statement events summarized per stored program
(stored procedures and functions, triggers, and events) (added in MySQL 5.7.2)

• prepared_statements_instances: Prepared statement instances and statistics (added in
MySQL 5.7.4)

Transaction Summaries:

• events_transactions_summary_by_account_by_event_name: Transaction events per
account and event name (added in MySQL 5.7.3)

• events_transactions_summary_by_host_by_event_name: Transaction events per host
name and event name (added in MySQL 5.7.3)

• events_transactions_summary_by_thread_by_event_name: Transaction events per thread
and event name (added in MySQL 5.7.3)

Performance Schema Summary Tables

2863

• events_transactions_summary_by_user_by_event_name: Transaction events per user
name and event name (added in MySQL 5.7.3)

• events_transactions_summary_global_by_event_name: Transaction events per event
name (added in MySQL 5.7.3)

Object Wait Summaries:

• objects_summary_global_by_type: Object summaries

File I/O Summaries:

• file_summary_by_event_name: File events summarized per event name

• file_summary_by_instance: File events summarized per file instance

Table I/O and Lock Wait Summaries:

• table_io_waits_summary_by_index_usage: Table I/O waits per index

• table_io_waits_summary_by_table: Table I/O waits per table

• table_lock_waits_summary_by_table: Table lock waits per table

Connection Summaries:

• events_waits_summary_by_account_by_event_name: Wait events summarized per account
and event name

• events_waits_summary_by_user_by_event_name: Wait events summarized per user name
and event name

• events_waits_summary_by_host_by_event_name: Wait events summarized per host name
and event name

• events_stages_summary_by_account_by_event_name: Stage events summarized per
account and event name

• events_stages_summary_by_user_by_event_name: Stage events summarized per user name
and event name

• events_stages_summary_by_host_by_event_name: Stage events summarized per host name
and event name

• events_statements_summary_by_digest: Statement events summarized per schema and
digest value

• events_statements_summary_by_account_by_event_name: Statement events summarized
per account and event name

• events_statements_summary_by_user_by_event_name: Statement events summarized per
user name and event name

• events_statements_summary_by_host_by_event_name: Statement events summarized per
host name and event name

Socket Summaries:

• socket_summary_by_instance: Socket waits and I/O summarized per instance

• socket_summary_by_event_name: Socket waits and I/O summarized per event name

Memory Summaries:

Performance Schema Summary Tables

2864

• memory_summary_global_by_event_name: Memory operations summarized globally per event
name (added in MySQL 5.7.2)

• memory_summary_by_thread_by_event_name: Memory operations summarized per thread and
event name (added in MySQL 5.7.2)

• memory_summary_by_account_by_event_name: Memory operations summarized per account
and event name (added in MySQL 5.7.2)

• memory_summary_by_user_by_event_name: Memory operations summarized per user and
event name (added in MySQL 5.7.2)

• memory_summary_by_host_by_event_name: Memory operations summarized per host and
event name (added in MySQL 5.7.2)

Status Variable Summaries:

• status_by_account: Status variables summarized by account (added in MySQL 5.7.6)

• status_by_host: Status variables summarized by host name (added in MySQL 5.7.6)

• status_by_user: Status variables summarized by user name (added in MySQL 5.7.6)

Each summary table has grouping columns that determine how to group the data to be aggregated,
and summary columns that contain the aggregated values. Tables that summarize events in similar
ways often have similar sets of summary columns and differ only in the grouping columns used to
determine how events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Except for
events_statements_summary_by_digest and the memory summary tables, the effect is to reset
the summary columns to 0 or NULL, not to remove rows. This enables you to clear collected values and
restart aggregation. That might be useful, for example, after you have made a runtime configuration
change.

21.9.14.1 Event Wait Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and
aggregates that information in summary tables. Section 21.9.4, “Performance Schema Wait Event
Tables” describes the events on which wait summaries are based. See that discussion for information
about the content of wait events, the current and recent wait event tables, and how to control wait event
collection.

Each event waits summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table.

• events_waits_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name. An instrument might be used to create multiple
instances of the instrumented object. For example, if there is an instrument for a mutex that is
created for each connection, there are as many instances as there are connections. The summary
row for the instrument summarizes over all these instances.

• events_waits_summary_by_instance has EVENT_NAME and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given event name and object. If an instrument is used to
create multiple instances, each instance has a unique OBJECT_INSTANCE_BEGIN value, so these
instances are summarized separately in this table.

• events_waits_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

All event waits summary tables have these summary columns containing aggregated values:

Performance Schema Summary Tables

2865

• COUNT_STAR

The number of summarized events. This value includes all events, whether timed or nontimed.

• SUM_TIMER_WAIT

The total wait time of the summarized timed events. This value is calculated only for timed
events because nontimed events have a wait time of NULL. The same is true for the other
xxx_TIMER_WAIT values.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed events.

Example wait event summary information:

mysql> SELECT * FROM events_waits_summary_global_by_event_name\G
...
*************************** 6. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/BINARY_LOG::LOCK_index
 COUNT_STAR: 8
SUM_TIMER_WAIT: 2119302
MIN_TIMER_WAIT: 196092
AVG_TIMER_WAIT: 264912
MAX_TIMER_WAIT: 569421
...
*************************** 9. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/hash_filo::lock
 COUNT_STAR: 69
SUM_TIMER_WAIT: 16848828
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 244185
MAX_TIMER_WAIT: 735345
...

TRUNCATE TABLE is permitted for wait summary tables. It resets the summary columns to zero rather
than removing rows.

21.9.14.2 Stage Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and
aggregates that information in summary tables. Section 21.9.5, “Performance Schema Stage Event
Tables” describes the events on which stage summaries are based. See that discussion for information
about the content of stage events, the current and recent stage event tables, and how to control stage
event collection.

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table.

• events_stages_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_stages_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

All stage summary tables have these summary columns containing aggregated values: COUNT_STAR,
SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT. These

Performance Schema Summary Tables

2866

columns are analogous to the columns of the same names in the event wait summary tables (see
Section 21.9.14.1, “Event Wait Summary Tables”), except that the stage summary tables aggregate
events from events_stages_current rather than events_waits_current.

Example stage event summary information:

mysql> SELECT * FROM events_stages_summary_global_by_event_name\G
...
*************************** 5. row ***************************
 EVENT_NAME: stage/sql/checking permissions
 COUNT_STAR: 57
SUM_TIMER_WAIT: 26501888880
MIN_TIMER_WAIT: 7317456
AVG_TIMER_WAIT: 464945295
MAX_TIMER_WAIT: 12858936792
...
*************************** 9. row ***************************
 EVENT_NAME: stage/sql/closing tables
 COUNT_STAR: 37
SUM_TIMER_WAIT: 662606568
MIN_TIMER_WAIT: 1593864
AVG_TIMER_WAIT: 17907891
MAX_TIMER_WAIT: 437977248
...

TRUNCATE TABLE is permitted for stage summary tables. It resets the summary columns to zero
rather than removing rows.

21.9.14.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 21.9.6, “Performance Schema Statement
Event Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and recent statement event tables, and
how to control statement event collection.

Each statement summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table.

• events_statements_summary_by_digest has SCHEMA_NAME and DIGEST columns. Each
row summarizes events for given schema/digest values. (The DIGEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor summary column.)

The maximum number of rows in the table is autosized at server startup. To set this maximum
explicitly, set the performance_schema_digests_size system variable at server startup.

• events_statements_summary_by_program has OBJECT_TYPE, OBJECT_SCHEMA, and
OBJECT_NAME columns. Each row summarizes events for a given stored program (stored procedure
or function, trigger, or event).

• events_statements_summary_by_thread_by_event_name has THREAD_ID and
EVENT_NAME columns. Each row summarizes events for a given thread and event name.

• events_statements_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

• prepared_statements_instances has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given prepared statement.

Statement summary tables have these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

Performance Schema Summary Tables

2867

These columns are analogous to the columns of the same names in the event wait summary tables
(see Section 21.9.14.1, “Event Wait Summary Tables”), except that the statement summary tables
aggregate events from events_statements_current rather than events_waits_current.

The prepared_statements_instances table does not have these columns.

• SUM_xxx

The aggregate of the corresponding xxx column in the events_statements_current table. For
example, the SUM_LOCK_TIME and SUM_ERRORS columns in statement summary tables are the
aggregates of the LOCK_TIME and ERRORS columns in events_statements_current table.

The events_statements_summary_by_digest table has these additional summary columns:

• FIRST_SEEN_TIMESTAMP, LAST_SEEN_TIMESTAMP

The times at which a statement with the given digest value were first seen and most recently seen.

The events_statements_summary_by_program table has these additional summary columns:

• COUNT_STATEMENTS, SUM_STATEMENTS_WAIT, MIN_STATEMENTS_WAIT,
AVG_STATEMENTS_WAIT, MAX_STATEMENTS_WAIT

Statistics about nested statements invoked during stored program execution.

The prepared_statements_instances table has these additional summary columns:

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

Example statement event summary information:

mysql> SELECT * FROM events_statements_summary_global_by_event_name\G
*************************** 1. row ***************************
 EVENT_NAME: statement/sql/select
 COUNT_STAR: 25
 SUM_TIMER_WAIT: 1535983999000
 MIN_TIMER_WAIT: 209823000
 AVG_TIMER_WAIT: 61439359000
 MAX_TIMER_WAIT: 1363397650000
 SUM_LOCK_TIME: 20186000000
 SUM_ERRORS: 0
 SUM_WARNINGS: 0
 SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 388
 SUM_ROWS_EXAMINED: 370
SUM_CREATED_TMP_DISK_TABLES: 0
 SUM_CREATED_TMP_TABLES: 0
 SUM_SELECT_FULL_JOIN: 0
 SUM_SELECT_FULL_RANGE_JOIN: 0
 SUM_SELECT_RANGE: 0
 SUM_SELECT_RANGE_CHECK: 0
 SUM_SELECT_SCAN: 6
 SUM_SORT_MERGE_PASSES: 0
 SUM_SORT_RANGE: 0
 SUM_SORT_ROWS: 0
 SUM_SORT_SCAN: 0
 SUM_NO_INDEX_USED: 6
 SUM_NO_GOOD_INDEX_USED: 0
...

TRUNCATE TABLE is permitted for statement summary tables. For
events_statements_summary_by_digest, it empties the table. For the other statement summary
tables, it resets the summary columns to zero rather than removing rows.

Performance Schema Summary Tables

2868

Statement Digest Aggregation Rules

If the statement_digest consumer is enabled, aggregation into
events_statements_summary_by_digest occurs as follows when a statement completes.
Aggregation is based on the DIGEST value computed for the statement.

• If a events_statements_summary_by_digest row already exists with the digest value for
the statement that just completed, statistics for the statement are aggregated to that row. The
LAST_SEEN column is updated to the current time.

• If no row has the digest value for the statement that just completed, and the table is not full, a new
row is created for the statement. The FIRST_SEEN and LAST_SEEN columns are initialized with the
current time.

• If no row has the statement digest value for the statement that just completed, and the table is full,
the statistics for the statement that just completed are added to a special “catch-all” row with DIGEST
= NULL, which is created if necessary. If the row is created, the FIRST_SEEN and LAST_SEEN
columns are initialized with the current time. Otherwise, the LAST_SEEN column is updated with the
current time.

The row with DIGEST = NULL is maintained because Performance Schema tables have a maximum
size due to memory constraints. The DIGEST = NULL row permits digests that do not match other rows
to be counted even if the summary table is full, using a common “other” bucket. This row helps you
estimate whether the digest summary is representative:

• A DIGEST = NULL row that has a COUNT_STAR value that represents 5% of all digests shows that
the digest summary table is very representative; the other rows cover 95% of the statements seen.

• A DIGEST = NULL row that has a COUNT_STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements
seen. Most likely the DBA should increase the maximum table size so that more of the rows counted
in the DIGEST = NULL row would be counted using more specific rows instead. To do this, set the
performance_schema_digests_size system variable to a larger value at server startup. The
default size is 200.

Stored Program Instrumentation Behavior

For stored program types for which instrumentation is enabled in the setup_objects table,
events_statements_summary_by_program maintains statistics for stored programs as follows:

• A row is added for an object when it is first used in the server.

• The row for an object is removed when the object is dropped.

• Statistics are aggregated in the row for an object as it executes.

See also Section 21.2.3.3, “Event Pre-Filtering”.

21.9.14.4 Transaction Summary Tables

As of MySQL 5.7.3, the Performance Schema maintains tables for collecting current and recent
transaction events, and aggregates that information in summary tables. Section 21.9.7, “Performance
Schema Transaction Tables” describes the events on which transaction summaries are based.
See that discussion for information about the content of transaction events, the current and recent
transaction event tables, and how to control transaction event collection, which is disabled by default.

Each transaction summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table.

• events_transactions_summary_by_account_by_event_name has USER, HOST, and
EVENT_NAME columns. Each row summarizes events for a given account and event name.

Performance Schema Summary Tables

2869

• events_transactions_summary_by_host_by_event_name has HOST and EVENT_NAME
columns. Each row summarizes events for a given host and event name.

• events_transactions_summary_by_thread_by_event_name has THREAD_ID and
EVENT_NAME columns. Each row summarizes events for a given thread and event name.

• events_transactions_summary_by_user_by_event_name has USER and EVENT_NAME
columns. Each row summarizes events for a given user and event name.

• events_transactions_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

All transaction summary tables have these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the event wait summary tables
(see Section 21.9.14.1, “Event Wait Summary Tables”), except that the transaction summary tables
aggregate events from events_transactions_current rather than events_waits_current.
These columns summarize read-write and read-only transactions.

• COUNT_READ_WRITE, SUM_TIMER_READ_WRITE, MIN_TIMER_READ_WRITE,
AVG_TIMER_READ_WRITE, MAX_TIMER_READ_WRITE

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-write
transactions only.

• COUNT_READ_ONLY, SUM_TIMER_READ_ONLY, MIN_TIMER_READ_ONLY,
AVG_TIMER_READ_ONLY, MAX_TIMER_READ_ONLY

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-only
transactions only.

Example transaction event summary information:

mysql> SELECT * FROM events_transactions_summary_global_by_event_name LIMIT 1\G
*************************** 1. row ***************************
 EVENT_NAME: transaction
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 19550092000
 MIN_TIMER_WAIT: 2954148000
 AVG_TIMER_WAIT: 3910018000
 MAX_TIMER_WAIT: 5486275000
 COUNT_READ_WRITE: 5
SUM_TIMER_READ_WRITE: 19550092000
MIN_TIMER_READ_WRITE: 2954148000
AVG_TIMER_READ_WRITE: 3910018000
MAX_TIMER_READ_WRITE: 5486275000
 COUNT_READ_ONLY: 0
 SUM_TIMER_READ_ONLY: 0
 MIN_TIMER_READ_ONLY: 0
 AVG_TIMER_READ_ONLY: 0
 MAX_TIMER_READ_ONLY: 0

TRUNCATE TABLE is permitted for transaction summary tables. It resets the summary columns to zero
rather than removing rows.

Transaction Aggregation Rules

Transaction events are collected regardless of isolation level, access mode, or autocommit mode.

Read-write transactions are generally more resource intensive than read-only transactions, therefore
transaction summary tables include separate aggregate columns for read-write and read-only
transactions.

Performance Schema Summary Tables

2870

Resource requirements may also vary with transaction isolation level. However, presuming that only
one isolation level would be used per server, aggregation by isolation level is not provided.

21.9.14.5 Object Wait Summary Table

The objects_summary_global_by_type table aggregates object wait events. It has these
grouping columns to indicate how the table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and
OBJECT_NAME. Each row summarizes events for the given object.

objects_summary_global_by_type has the same summary columns as the
events_waits_summary_by_xxx tables. See Section 21.9.14.1, “Event Wait Summary Tables”.

Example object wait event summary information:

mysql> SELECT * FROM objects_summary_global_by_type\G
...
*************************** 3. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: test
 OBJECT_NAME: t
 COUNT_STAR: 3
SUM_TIMER_WAIT: 263126976
MIN_TIMER_WAIT: 1522272
AVG_TIMER_WAIT: 87708678
MAX_TIMER_WAIT: 258428280
...
*************************** 10. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: mysql
 OBJECT_NAME: user
 COUNT_STAR: 14
SUM_TIMER_WAIT: 365567592
MIN_TIMER_WAIT: 1141704
AVG_TIMER_WAIT: 26111769
MAX_TIMER_WAIT: 334783032
...

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero
rather than removing rows.

21.9.14.6 File I/O Summary Tables

The file I/O summary tables aggregate information about I/O operations.

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table.

• file_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• file_summary_by_instance has FILE_NAME, EVENT_NAME, and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given file and event name.

All file I/O summary tables have the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for
user-defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

Performance Schema Summary Tables

2871

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF,
FWRITE, and PWRITE.

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other I/O operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC.
There are no byte counts for these operations.

Example file I/O event summary information:

mysql> SELECT * FROM file_summary_by_event_name\G
...
*************************** 2. row ***************************
 EVENT_NAME: wait/io/file/sql/binlog
 COUNT_STAR: 31
 SUM_TIMER_WAIT: 8243784888
 MIN_TIMER_WAIT: 0
 AVG_TIMER_WAIT: 265928484
 MAX_TIMER_WAIT: 6490658832
...
mysql> SELECT * FROM file_summary_by_instance\G
...
*************************** 2. row ***************************
 FILE_NAME: /var/mysql/share/english/errmsg.sys
 EVENT_NAME: wait/io/file/sql/ERRMSG
 EVENT_NAME: wait/io/file/sql/ERRMSG
 OBJECT_INSTANCE_BEGIN: 4686193384
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 13990154448
 MIN_TIMER_WAIT: 26349624
 AVG_TIMER_WAIT: 2798030607
 MAX_TIMER_WAIT: 8150662536
...

TRUNCATE TABLE is permitted for file I/O summary tables. It resets the summary columns to zero
rather than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from
files, so it is possible that statements you might expect to result in I/O events will not. You may be able
to ensure that I/O does occur by flushing caches or restarting the server to reset its state.

21.9.14.7 Table I/O and Lock Wait Summary Tables

The following sections describe the table I/O and lock wait summary tables:

• table_io_waits_summary_by_index_usage: Table I/O waits per index

• table_io_waits_summary_by_table: Table I/O waits per table

• table_lock_waits_summary_by_table: Table lock waits per table

The table_io_waits_summary_by_table Table

The table_io_waits_summary_by_table table aggregates all table I/O wait events, as generated
by the wait/io/table/sql/handler instrument. The grouping is by table.

The table_io_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have
the same meaning as in the events_waits_current table. They identify the table to which the row
applies.

Performance Schema Summary Tables

2872

table_io_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values
that are the same as the sum of the values of more fine-grained columns. For example, columns that
aggregate all writes hold the sum of the corresponding columns that aggregate inserts, updates, and
deletes. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
xxx_FETCH columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE

These columns aggregate all write operations. They are the same as the sum of the corresponding
xxx_INSERT, xxx_UPDATE, and xxx_DELETE columns.

• COUNT_FETCH, SUM_TIMER_FETCH, MIN_TIMER_FETCH, AVG_TIMER_FETCH,
MAX_TIMER_FETCH

These columns aggregate all fetch operations.

• COUNT_INSERT, SUM_TIMER_INSERT, MIN_TIMER_INSERT, AVG_TIMER_INSERT,
MAX_TIMER_INSERT

These columns aggregate all insert operations.

• COUNT_UPDATE, SUM_TIMER_UPDATE, MIN_TIMER_UPDATE, AVG_TIMER_UPDATE,
MAX_TIMER_UPDATE

These columns aggregate all update operations.

• COUNT_DELETE, SUM_TIMER_DELETE, MIN_TIMER_DELETE, AVG_TIMER_DELETE,
MAX_TIMER_DELETE

These columns aggregate all delete operations.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
table_io_waits_summary_by_index_usage table.

The table_io_waits_summary_by_index_usage Table

The table_io_waits_summary_by_index_usage table aggregates all table index I/O wait events,
as generated by the wait/io/table/sql/handler instrument. The grouping is by table index.

The structure of table_io_waits_summary_by_index_usage is nearly identical to
table_io_waits_summary_by_table. The only difference is the additional group column,
INDEX_NAME, which corresponds to the name of the index that was used when the table I/O wait event
was recorded:

• A value of PRIMARY indicates that table I/O used the primary index.

• A value of NULL means that table I/O used no index.

• Inserts are counted against INDEX_NAME = NULL.

Performance Schema Summary Tables

2873

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. This table is also truncated by truncation of the
table_io_waits_summary_by_table table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

The table_lock_waits_summary_by_table Table

The table_lock_waits_summary_by_table table aggregates all table lock wait events, as
generated by the wait/lock/table/sql/handler instrument. The grouping is by table.

This table contains information about internal and external locks:

• An internal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to
thr_lock(). In event rows, these locks are distinguished by the OPERATION column, which will
have one of these values:

read normal
read with shared locks
read high priority
read no insert
write allow write
write concurrent insert
write delayed
write low priority
write normal

• An external lock corresponds to a lock in the storage engine layer. This is currently implemented
by a call to handler::external_lock(). In event rows, these locks are distinguished by the
OPERATION column, which will have one of these values:

read external
write external

The table_lock_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have
the same meaning as in the events_waits_current table. They identify the table to which the row
applies.

table_lock_waits_summary_by_table has the following summary columns containing
aggregated values. As indicated in the column descriptions, some columns are more general and have
values that are the same as the sum of the values of more fine-grained columns. For example, columns
that aggregate all locks hold the sum of the corresponding columns that aggregate read and write
locks. In this way, aggregations at higher levels are available directly without the need for user-defined
views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read-lock operations. They are the same as the sum
of the corresponding xxx_READ_NORMAL, xxx_READ_WITH_SHARED_LOCKS,
xxx_READ_HIGH_PRIORITY, and xxx_READ_NO_INSERT columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE

These columns aggregate all write-lock operations. They are the same as the sum of
the corresponding xxx_WRITE_ALLOW_WRITE, xxx_WRITE_CONCURRENT_INSERT,
xxx_WRITE_LOW_PRIORITY, and xxx_WRITE_NORMAL columns.

Performance Schema Summary Tables

2874

• COUNT_READ_NORMAL, SUM_TIMER_READ_NORMAL, MIN_TIMER_READ_NORMAL,
AVG_TIMER_READ_NORMAL, MAX_TIMER_READ_NORMAL

These columns aggregate internal read locks.

• COUNT_READ_WITH_SHARED_LOCKS, SUM_TIMER_READ_WITH_SHARED_LOCKS,
MIN_TIMER_READ_WITH_SHARED_LOCKS, AVG_TIMER_READ_WITH_SHARED_LOCKS,
MAX_TIMER_READ_WITH_SHARED_LOCKS

These columns aggregate internal read locks.

• COUNT_READ_HIGH_PRIORITY, SUM_TIMER_READ_HIGH_PRIORITY,
MIN_TIMER_READ_HIGH_PRIORITY, AVG_TIMER_READ_HIGH_PRIORITY,
MAX_TIMER_READ_HIGH_PRIORITY

These columns aggregate internal read locks.

• COUNT_READ_NO_INSERT, SUM_TIMER_READ_NO_INSERT, MIN_TIMER_READ_NO_INSERT,
AVG_TIMER_READ_NO_INSERT, MAX_TIMER_READ_NO_INSERT

These columns aggregate internal read locks.

• COUNT_READ_EXTERNAL, SUM_TIMER_READ_EXTERNAL, MIN_TIMER_READ_EXTERNAL,
AVG_TIMER_READ_EXTERNAL, MAX_TIMER_READ_EXTERNAL

These columns aggregate external read locks.

• COUNT_WRITE_ALLOW_WRITE, SUM_TIMER_WRITE_ALLOW_WRITE,
MIN_TIMER_WRITE_ALLOW_WRITE, AVG_TIMER_WRITE_ALLOW_WRITE,
MAX_TIMER_WRITE_ALLOW_WRITE

These columns aggregate internal write locks.

• COUNT_WRITE_CONCURRENT_INSERT, SUM_TIMER_WRITE_CONCURRENT_INSERT,
MIN_TIMER_WRITE_CONCURRENT_INSERT, AVG_TIMER_WRITE_CONCURRENT_INSERT,
MAX_TIMER_WRITE_CONCURRENT_INSERT

These columns aggregate internal write locks.

• COUNT_WRITE_LOW_PRIORITY, SUM_TIMER_WRITE_LOW_PRIORITY,
MIN_TIMER_WRITE_LOW_PRIORITY, AVG_TIMER_WRITE_LOW_PRIORITY,
MAX_TIMER_WRITE_LOW_PRIORITY

These columns aggregate internal write locks.

• COUNT_WRITE_NORMAL, SUM_TIMER_WRITE_NORMAL, MIN_TIMER_WRITE_NORMAL,
AVG_TIMER_WRITE_NORMAL, MAX_TIMER_WRITE_NORMAL

These columns aggregate internal write locks.

• COUNT_WRITE_EXTERNAL, SUM_TIMER_WRITE_EXTERNAL, MIN_TIMER_WRITE_EXTERNAL,
AVG_TIMER_WRITE_EXTERNAL, MAX_TIMER_WRITE_EXTERNAL

These columns aggregate external write locks.

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

21.9.14.8 Connection Summary Tables

The connection summary tables are similar to the corresponding
events_xxx_summary_by_thread_by_event_name tables, except that aggregation occurs per
account, user, or host, rather than by thread.

Performance Schema Summary Tables

2875

The Performance Schema maintains summary tables that aggregate connection statistics by event
name and account, user, or host. Separate groups of tables are available that aggregate wait, stage,
and statement events, which results in this set of connection summary tables:

• events_waits_summary_by_account_by_event_name: Wait events summarized per account
and event name

• events_waits_summary_by_user_by_event_name: Wait events summarized per user name
and event name

• events_waits_summary_by_host_by_event_name: Wait events summarized per host name
and event name

• events_stages_summary_by_account_by_event_name: Stage events summarized per
account and event name

• events_stages_summary_by_user_by_event_name: Stage events summarized per user name
and event name

• events_stages_summary_by_host_by_event_name: Stage events summarized per host name
and event name

• events_statements_summary_by_account_by_event_name: Statement events summarized
per account and event name

• events_statements_summary_by_user_by_event_name: Statement events summarized per
user name and event name

• events_statements_summary_by_host_by_event_name: Statement events summarized per
host name and event name

In other words, the connection summary tables have names of the form
events_xxx_summary_yyy_by_event_name, where xxx is waits, stages, or statements, and
yyy is account, user, or host.

The connection summary tables provide an intermediate aggregation level:

• xxx_summary_by_thread_by_event_name tables are more detailed than connection summary
tables

• xxx_summary_global_by_event_name tables are less detailed than connection summary tables

Each connection summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table.

• For tables with _by_account in the name, the USER, HOST, and EVENT_NAME columns group
events per account and event name.

• For tables with _by_host in the name, the HOST and EVENT_NAME columns group events per host
name and event name.

• For tables with _by_user in the name, the USER and EVENT_NAME columns group events per user
name and event name.

All connection summary tables have these summary columns containing aggregated values:
COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT.
These are similar to the columns of the same names in the events_waits_summary_by_instance
table. Connection summary tables for statements have additional SUM_xxx columns that aggregate
statement types.

TRUNCATE TABLE is permitted for connection summary tables. It resets the summary columns to
zero rather than removing rows. In addition, connection summary tables are implicitly truncated if a

Performance Schema Summary Tables

2876

connection table on which they depend is truncated. Table 21.2, “Effect of Implicit Table Truncation”,
describes the relationship between connection table truncation and implicitly truncated tables.

Table 21.2 Effect of Implicit Table Truncation

Truncated Table Implicitly Truncated Summary Tables

accounts Tables with names matching %_by_account%, %_by_thread%

hosts Tables with names matching %_by_account%, %_by_host%,
%_by_thread%

users Tables with names matching %_by_account%, %_by_user%,
%_by_thread%

21.9.14.9 Socket Summary Tables

These socket summary tables aggregate timer and byte count information for socket operations:

• socket_summary_by_instance: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instance. When a
connection terminates, the row in socket_summary_by_instance corresponding to it is deleted.

• socket_summary_by_event_name: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instrument.

The socket summary tables do not aggregate waits generated by idle events while sockets are
waiting for the next request from the client. For idle event aggregations, use the wait-event summary
tables; see Section 21.9.14.1, “Event Wait Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table.

• socket_summary_by_instance has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given object.

• socket_summary_by_event_name has an EVENT_NAME column. Each row summarizes events
for a given event name.

All socket summary tables have these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all receive operations (RECV, RECVFROM, and RECVMSG).

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all send operations (SEND, SENDTO, and SENDMSG).

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other socket operations, such as CONNECT, LISTEN, ACCEPT, CLOSE,
and SHUTDOWN. There are no byte counts for these operations.

The socket_summary_by_instance table also has an EVENT_NAME column that indicates the class
of the socket: client_connection, server_tcpip_socket, server_unix_socket. This column
can be grouped on to isolate, for example, client activity from that of the server listening sockets.

Performance Schema Summary Tables

2877

TRUNCATE TABLE is permitted for socket summary tables. Except for
events_statements_summary_by_digest, tt resets the summary columns to zero rather than
removing rows.

21.9.14.10 Memory Summary Tables

The Performance Schema instruments memory usage and aggregates memory usage statistics,
detailed by these factors:

• Type of memory used (various caches, internal buffers, and so forth)

• Thread, account, user, host indirectly performing the memory operation

The Performance Schema instruments the following aspects of memory use

• Memory sizes used

• Operation counts

• Low and high water marks

Memory sizes help to understand or tune the memory consumption of a server.

Operation counts help to understand or tune the overall pressure the server is putting on the memory
allocator, which has an impact on performance. Allocating a single byte one million times is not the
same as allocating one million bytes a single time; tracking both sizes and counts can expose the
difference.

Low and high water marks are critical to detect workload spikes, overall workload stability, and possible
memory leaks.

Each memory summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table.

• memory_summary_by_account_by_event_name has USER, HOST, and EVENT_NAME columns.
Each row summarizes events for a given account.

• memory_summary_by_host_by_event_name has HOST and EVENT_NAME columns. Each row
summarizes events for a given host.

• memory_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME columns.
Each row summarizes events for a given thread and event name.

• memory_summary_by_user_by_event_name has USER and EVENT_NAME columns. Each row
summarizes events for a given user.

• memory_summary_global_by_event_name has an EVENT_NAME column. Each row summarizes
events for a given event name.

All memory summary tables have these summary columns containing aggregated values:

• COUNT_ALLOC, COUNT_FREE

These columns aggregate the number of calls to malloc-like and free-like functions.

• SUM_NUMBER_OF_BYTES_ALLOC, SUM_NUMBER_OF_BYTES_FREE

These columns indicate the aggregate size of allocated and freed memory blocks.

• CURRENT_COUNT_USED

This column is the aggregate number of currently allocated blocks that have not been freed yet. This
is a convenience column, equal to COUNT_ALLOC − COUNT_FREE.

Performance Schema Summary Tables

2878

• CURRENT_NUMBER_OF_BYTES_USED

This column is the aggregate size of currently allocated memory blocks that have not been
freed yet. This is a convenience column, equal to SUM_NUMBER_OF_BYTES_ALLOC −
SUM_NUMBER_OF_BYTES_FREE.

• LOW_COUNT_USED, HIGH_COUNT_USED

These columns are the low and high water marks corresponding to the CURRENT_COUNT_USED
column.

• LOW_NUMBER_OF_BYTES_USED, HIGH_NUMBER_OF_BYTES_USED

These columns are the low and high water marks corresponding to the
CURRENT_NUMBER_OF_BYTES_USED column.

Memory summary tables do not contain timing columns because memory events are not timed.

Example memory event summary information:

mysql> SELECT * FROM memory_summary_global_by_event_name
 -> WHERE EVENT_NAME = 'memory/sql/TABLE'\G
*************************** 1. row ***************************
 EVENT_NAME: memory/sql/TABLE
 COUNT_ALLOC: 1381
 COUNT_FREE: 924
 SUM_NUMBER_OF_BYTES_ALLOC: 2059873
 SUM_NUMBER_OF_BYTES_FREE: 1407432
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 457
 HIGH_COUNT_USED: 461
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 652441
 HIGH_NUMBER_OF_BYTES_USED: 669269

TRUNCATE TABLE is permitted for memory summary tables. It has these effects:

• In general, truncation resets the baseline for statistics, but does not change the server state. That is,
truncating a memory table does not free memory.

• COUNT_ALLOC and COUNT_FREE are reset to a new baseline, by reducing each counter by the same
value.

• Likewise, SUM_NUMBER_OF_BYTES_ALLOC and SUM_NUMBER_OF_BYTES_FREE are reset to a new
baseline.

• LOW_COUNT_USED and HIGH_COUNT_USED are reset to CURRENT_COUNT_USED.

• LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED are reset to
CURRENT_NUMBER_OF_BYTES_USED.

Memory Instrumentation Behavior

Most memory instrumentation is disabled by default, and can be enabled or disabled dynamically by
updating the ENABLED column of the relevant instruments in the setup_instruments table. Memory
instruments have names of the form memory/code_area/instrument_name.

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema. The memory/performance_schema/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. The built-in
memory instruments are displayed only in the memory_summary_global_by_event_name table.

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

Performance Schema Summary Tables

2879

When a thread in the server executes a memory allocation that has been instrumented, these rules
apply:

• If the thread is not instrumented or the memory instrument is not enabled, the memory block
allocated is not instrumented.

• Otherwise (that is, both the thread and the instrument are enabled), the memory block allocated is
instrumented.

For deallocation, these rules apply:

• If a thread is instrumented, and a memory block is not instrumented, the free operation is not
instrumented; no statistics are changed.

• If a thread is not instrumented, and a memory block is instrumented, the free operation is
instrumented, and statistics are changed.

For the per-thread statistics, the following rules apply.

When an instrumented memory block of size N is allocated, the Performance Schema makes these
updates to memory summary table columns:

• COUNT_ALLOC: Incremented by 1

• CURRENT_COUNT_USED: Incremented by 1

• HIGH_COUNT_USED: Increased if CURRENT_COUNT_USED is a new maximum

• SUM_NUMBER_OF_BYTES_ALLOC: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Increased by N

• HIGH_NUMBER_OF_BYTES_USED: Increased if CURRENT_NUMBER_OF_BYTES_USED is a new
maximum

When an instrumented memory block is deallocated, the Performance Schema makes these updates
to memory summary table columns:

• COUNT_FREE: Incremented by 1

• CURRENT_COUNT_USED: Iecremented by 1

• LOW_COUNT_USED: Decreased if CURRENT_COUNT_USED is a new minimum

• SUM_NUMBER_OF_BYTES_FREE: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Decreased by N

• LOW_NUMBER_OF_BYTES_USED: Decreased if CURRENT_NUMBER_OF_BYTES_USED is a new
minimum

For higher-level aggregates (global, by account, by user, by host), the same rules apply as expected
for low and high water marks.

• LOW_COUNT_USED and LOW_NUMBER_OF_BYTES_USED are lower estimates

• HIGH_COUNT_USED and HIGH_NUMBER_OF_BYTES_USED are higher estimates

“Lower estimates” means that the value reported by the Performance Schema is guaranteed to be less
than or equal to the lowest count or size of memory effectively used at runtime.

“Higher estimates” means that the value reported by the Performance Schema is guaranteed to be
greater than or equal to the highest count or size of memory effectively used at runtime.

For lower estimates in summary tables other than memory_summary_global_by_event_name, it is
possible for values to go negative if memory ownership is transferred between threads.

Performance Schema Summary Tables

2880

Here is an example of estimate computation; but note that estimate implementation is subject to
change:

Thread 1 uses memory in the range from 1MB to 2MB during execution, as reported by
the LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED columns of the
memory_summary_by_thread_by_event_name table.

Thread 2 uses memory in the range from 10MB to 12MB during execution, as reported likewise.

When these two threads belong to the same user account, the per-account summary
estimates that this account used memory in the range from 11MB to 14MB. That
is, the LOW_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum
of each LOW_NUMBER_OF_BYTES_USED (assuming the worst case). Likewise, the
HIGH_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum of each
HIGH_NUMBER_OF_BYTES_USED (assuming the worst case).

11MB is a lower estimate that can occur only if both threads hit the low usage mark at the same time.

14MB is a higher estimate that can occur only if both threads hit the high usage mark at the same time.

The real memory usage for this account could have been in the range from 11.5MB to 13.5MB.

For capacity planning, reporting the worst case is actually the desired behavior, as it shows what can
potentially happen when sessions are uncorrelated, which is typically the case.

21.9.14.11 Performance Schema Status Variable Summary Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the
description of that variable in Section 5.1.4, “Server System Variables”.

As of MySQL 5.7.6, the Performance Schema makes status variable information available in the tables
described in Section 21.9.13, “Performance Schema Status Variable Tables”. It also makes aggregated
status variable information available in summary tables, described here. Each status variable summary
table has one or more grouping columns to indicate how the table aggregates status values:

• status_by_account has USER, HOST, and VARIABLE_NAME columns to summarize status
variables by account.

• status_by_host has HOST and VARIABLE_NAME columns to summarize status variables by the
host from which clients connected.

• status_by_user has USER and VARIABLE_NAME columns to summarize status variables by client
user name.

All status variable summary tables have this summary column containing aggregated values:

• VARIABLE_VALUE

The aggregated status variable value for active and terminated sessions.

The meaning of “account” in these tables is similar to its meaning in the MySQL grant tables in the
mysql database, in the sense that the term refers to a combination of user and host values. Where
they differ is that in grant tables, the host part of an account can be a pattern, whereas in Performance
Schema tables, the host value is always a specific nonpattern host name.

Account status is collected when sessions terminate. The session status counters are added to the
global status counters and the corresponding account status counters. If account statistics are not
collected, the session status is added to host and user status, if host and user status are collected.

Performance Schema Miscellaneous Tables

2881

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system variables,
respectively, are set to 0.

The Performance Schema supports TRUNCATE TABLE for status variable summary tables as follows;
in all cases, status for active sessions is unaffected:

• status_by_account: Aggregates account status from terminated sessions to user and host status,
then resets account status.

• status_by_host: Resets aggregated host status from terminated sessions.

• status_by_user: Resets aggregated user status from terminated sessions.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

21.9.15 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the
preceding sections:

• host_cache: Information from the internal host cache

• performance_timers: Which event timers are available

• threads: Information about server threads

21.9.15.1 The host_cache Table

The host_cache table provides access to the contents of the host cache, which contains client host
name and IP address information and is used to avoid DNS lookups. (See Section 8.12.6.2, “DNS
Lookup Optimization and the Host Cache”.) The host_cache table exposes the contents of the
host cache so that it can be examined using SELECT statements. The Performance Schema must be
enabled or this table is empty.

FLUSH HOSTS and TRUNCATE TABLE host_cache have the same effect: They clear the host cache.
This also empties the host_cache table (because it is the visible representation of the cache) and
unblocks any blocked hosts (see Section B.5.2.6, “Host 'host_name' is blocked”.) FLUSH HOSTS
requires the RELOAD privilege. TRUNCATE TABLE requires the DROP privilege for the host_cache
table.

The host_cache table has these columns:

• IP

The IP address of the client that connected to the server, expressed as a string.

• HOST

The resolved DNS host name for that client IP, or NULL if the name is unknown.

• HOST_VALIDATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP. If
HOST_VALIDATED is YES, the HOST column is used as the host name corresponding to the IP so
that calls to DNS can be avoided. While HOST_VALIDATED is NO, DNS resolution is attempted again
for each connect, until it eventually completes with either a valid result or a permanent error. This
information enables the server to avoid caching bad or missing host names during temporary DNS
failures, which would affect clients forever.

• SUM_CONNECT_ERRORS

Performance Schema Miscellaneous Tables

2882

The number of connection errors that are deemed “blocking” (assessed against the
max_connect_errors system variable). Only protocol handshake errors are counted, and only for
hosts that passed validation (HOST_VALIDATED = YES).

• COUNT_HOST_BLOCKED_ERRORS

The number of connections that were blocked because SUM_CONNECT_ERRORS exceeded the value
of the max_connect_errors system variable.

• COUNT_NAMEINFO_TRANSIENT_ERRORS

The number of transient errors during IP-to-host name DNS resolution.

• COUNT_NAMEINFO_PERMANENT_ERRORS

The number of permanent errors during IP-to-host name DNS resolution.

• COUNT_FORMAT_ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values
in the mysql.user table against host names for which one or more of the initial components of
the name are entirely numeric, such as 1.2.example.com. The client IP address is used instead.
For the rationale why this type of matching does not occur, see Section 6.2.3, “Specifying Account
Names”.

• COUNT_ADDRINFO_TRANSIENT_ERRORS

The number of transient errors during host name-to-IP reverse DNS resolution.

• COUNT_ADDRINFO_PERMANENT_ERRORS

The number of permanent errors during host name-to-IP reverse DNS resolution.

• COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-
IP DNS resolution produces an IP address that does not match the client originating IP address.

• COUNT_HOST_ACL_ERRORS

The number of errors that occur because no user from the client host can possibly log in. In such
cases, the server returns ER_HOST_NOT_PRIVILEGED and does not even ask for a user name or
password.

• COUNT_NO_AUTH_PLUGIN_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

• COUNT_AUTH_PLUGIN_ERRORS

The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root
cause of a failure. Depending on the type of error, one of these columns is
incremented: COUNT_AUTHENTICATION_ERRORS, COUNT_AUTH_PLUGIN_ERRORS,
COUNT_HANDSHAKE_ERRORS. New return codes are an optional extension to the existing plugin API.
Unknown or unexpected plugin errors are counted in the COUNT_AUTH_PLUGIN_ERRORS column.

• COUNT_HANDSHAKE_ERRORS

The number of errors detected at the wire protocol level.

Performance Schema Miscellaneous Tables

2883

• COUNT_PROXY_USER_ERRORS

The number of errors detected when a proxy user A is proxied to another user B who does not exist.

• COUNT_PROXY_USER_ACL_ERRORS

The number of errors detected when a proxy user A is proxied to another user B who does exist but
for whom A does not have the PROXY privilege.

• COUNT_AUTHENTICATION_ERRORS

The number of errors caused by failed authentication.

• COUNT_SSL_ERRORS

The number of errors due to SSL problems.

• COUNT_MAX_USER_CONNECTIONS_ERRORS

The number of errors caused by exceeding per-user connection quotas. See Section 6.3.4, “Setting
Account Resource Limits”.

• COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS

The number of errors caused by exceeding per-user connections-per-hour quotas. See
Section 6.3.4, “Setting Account Resource Limits”.

• COUNT_DEFAULT_DATABASE_ERRORS

The number of errors related to the default database. For example, the database did not exist or the
user had no privileges for accessing it.

• COUNT_INIT_CONNECT_ERRORS

The number of errors caused by execution failures of statements in the init_connect system
variable value.

• COUNT_LOCAL_ERRORS

The number of errors local to the server implementation and not related to the network,
authentication, or authorization. For example, out-of-memory conditions fall into this category.

• COUNT_UNKNOWN_ERRORS

The number of other, unknown errors not accounted for by other columns in this table. This column
is reserved for future use, in case new error conditions must be reported, and if preserving the
backward compatibility and table structure of the host_cache table is required.

• FIRST_SEEN

The timestamp of the first connection attempt seen from the client in the IP column.

• LAST_SEEN

The timestamp of the last connection attempt seen from the client in the IP column.

• FIRST_ERROR_SEEN

The timestamp of the first error seen from the client in the IP column.

• LAST_ERROR_SEEN

The timestamp of the last error seen from the client in the IP column.

Performance Schema Miscellaneous Tables

2884

21.9.15.2 The performance_timers Table

The performance_timers table shows which event timers are available:

mysql> SELECT * FROM performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
TICK	105	1	2416
+-------------+-----------------+------------------+----------------+

The timers in setup_timers that you can use are those that do not have NULL in the other columns.
If the values associated with a given timer name are NULL, that timer is not supported on your platform.

The performance_timers table has these columns:

• TIMER_NAME

The name by which to refer to the timer when configuring the setup_timers table.

• TIMER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to
the CPU speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to
2400000000.

• TIMER_RESOLUTION

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10,
its value increases by 10 each time.

• TIMER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The
Performance Schema determines this value by invoking the timer 20 times during initialization
and picking the smallest value. The total overhead really is twice this amount because the
instrumentation invokes the timer at the start and end of each event. The timer code is called only for
timed events, so this overhead does not apply for nontimed events.

21.9.15.3 The threads Table

The threads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring and historical event logging are enabled for it:

mysql> SELECT * FROM threads\G
*************************** 1. row ***************************
 THREAD_ID: 1
 NAME: thread/sql/main
 TYPE: BACKGROUND
 PROCESSLIST_ID: NULL
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: NULL
 PROCESSLIST_TIME: 80284
 PROCESSLIST_STATE: NULL
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES

Performance Schema Miscellaneous Tables

2885

 HISTORY: YES
 CONNECTION_TYPE: NULL
 THREAD_OS_ID: 489803
...
*************************** 4. row ***************************
 THREAD_ID: 51
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 34
 PROCESSLIST_USER: isabella
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: performance_schema
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0
 PROCESSLIST_STATE: Sending data
 PROCESSLIST_INFO: SELECT * FROM threads
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: SSL/TLS
 THREAD_OS_ID: 755399
...

When the Performance Schema initializes, it populates the threads table based on the threads in
existence then. Thereafter, a new row is added each time the server creates a thread.

The INSTRUMENTED and HISTORY column values for new threads are determined by the contents of
the setup_actors table. For information about how to use the setup_actors table to control these
columns, see Pre-Filtering by Thread.

Removal of rows from the threads table occurs when threads end. For a thread associated with a
client session, removal occurs when the session ends. If a client has auto-reconnect enabled and
the session reconnects after a disconnect, the session becomes associated with a new row in the
threads table that has a different PROCESSLIST_ID value. The initial INSTRUMENTED and HISTORY
values for the new thread may be different from those of the original thread: The setup_actors table
may have changed in the meantime, and if the INSTRUMENTED or HISTORY value for the original
thread was changed after the row was initialized, the change does not carry over to the new thread.

The threads table columns with names having a prefix of PROCESSLIST_ provide information similar
to that available from the INFORMATION_SCHEMA.PROCESSLIST table or the SHOW PROCESSLIST
statement. Thus, all three sources provide thread-monitoring information. Use of threads differs from
use of the other two sources in these ways:

• Access to threads does not require a mutex and has minimal impact on server performance.
INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance
consequences because they require a mutex.

• threads provides additional information for each thread, such as whether it is a foreground or
background thread, and the location within the server associated with the thread.

• threads provides information about background threads, so it can be used to monitor activity the
other thread information sources cannot.

• You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented) and historical event logging. To control the initial INSTRUMENTED and HISTORY
values for new foreground threads, use the setup_actors table. To control these aspects of
existing threads, set the INSTRUMENTED and HISTORY columns of threads table rows. (For more
information about the conditions under which thread monitoring and historical event logging occur,
see the descriptions of the INSTRUMENTED and HISTORY columns.)

For these reasons, DBAs who perform server monitoring using
INFORMATION_SCHEMA.PROCESSLIST or SHOW PROCESSLIST may wish to monitor using the
threads table instead.

Performance Schema Miscellaneous Tables

2886

Note

For INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST,
information about threads for other users is shown only if the current user
has the PROCESS privilege. That is not true of the threads table; all rows
are shown to any user who has the SELECT privilege for the table. Users who
should not be able to see threads for other users should not be given that
privilege.

The threads table has these columns:

• THREAD_ID

A unique thread identifier.

• NAME

The name associated with the thread instrumentation code in the server. For example, thread/
sql/one_connection corresponds to the thread function in the code responsible for handling a
user connection, and thread/sql/main stands for the main() function of the server.

• TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground
threads. Threads associated with internal server activity are background threads. Examples are
internal InnoDB threads, “binlog dump” threads sending information to slaves, and slave I/O and
SQL threads.

• PROCESSLIST_ID

For threads that are displayed in the INFORMATION_SCHEMA.PROCESSLIST table, this is the same
value displayed in the ID column of that table. It is also the value displayed in the Id column of SHOW
PROCESSLIST output, and the value that CONNECTION_ID() would return within that thread.

For background threads (threads not associated with a user connection), PROCESSLIST_ID is
NULL, so the values are not unique.

• PROCESSLIST_USER

The user associated with a foreground thread, NULL for a background thread.

• PROCESSLIST_HOST

The host name of the client associated with a foreground thread, NULL for a background thread.

Unlike the HOST column of the INFORMATION_SCHEMA PROCESSLIST table or the Host column of
SHOW PROCESSLIST output, the PROCESSLIST_HOST column does not include the port number for
TCP/IP connections. To obtain this information from the Performance Schema, enable the socket
instrumentation (which is not enabled by default) and examine the socket_instances table:

mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'wait/io/socket%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+
3 rows in set (0.01 sec)

mysql> UPDATE setup_instruments SET ENABLED='YES' WHERE NAME LIKE 'wait/io/socket%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

Performance Schema Miscellaneous Tables

2887

mysql> SELECT * FROM socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 140612577298432
 THREAD_ID: 31
 SOCKET_ID: 53
 IP: ::ffff:127.0.0.1
 PORT: 55642
 STATE: ACTIVE
...

• PROCESSLIST_DB

The default database for the thread, or NULL if there is none.

• PROCESSLIST_COMMAND

For foreground threads, the type of command the thread is executing on behalf of the client, or
Sleep if the session is idle. For descriptions of thread commands, see Section 8.14, “Examining
Thread Information”. The value of this column corresponds to the COM_xxx commands of the client/
server protocol and Com_xxx status variables. See Section 5.1.6, “Server Status Variables”

Background threads do not execute commands on behalf of clients, so this column may be NULL.

• PROCESSLIST_TIME

The time in seconds that the thread has been in its current state.

• PROCESSLIST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of
PROCESSLIST_STATE values, see Section 8.14, “Examining Thread Information”. If the value if
NULL, the thread may correspond to an idle client session or the work it is doing is not instrumented
with stages.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

• PROCESSLIST_INFO

The statement the thread is executing, or NULL if it is not executing any statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the PROCESSLIST_INFO value shows the SELECT statement.

• PARENT_THREAD_ID

If this thread is a subthread (spawned by another thread), this is the THREAD_ID value of the
spawning thread.

• ROLE

Unused.

• INSTRUMENTED

Whether events executed by the thread are instrumented. The value is YES or NO.

• For foreground threads, the initial INSTRUMENTED value is determined by whether the user
account associated with the thread matches any row in the setup_actors table. Matching is
based on the values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for
the subthread.

Performance Schema Miscellaneous Tables

2888

• For background threads, INSTRUMENTED is YES by default. setup_actors is not consulted
because there is no associated user for background threads.

• For any thread, its INSTRUMENTED value can be changed during the lifetime of the thread.

For monitoring of events executed by the thread to occur, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

• HISTORY

Whether to log historical events for the thread. The value is YES or NO.

• For foreground threads, the initial HISTORY value is determined by whether the user account
associated with the thread matches any row in the setup_actors table. Matching is based on
the values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for
the subthread.

• For background threads, HISTORY is YES by default. setup_actors is not consulted because
there is no associated user for background threads.

• For any thread, its HISTORY value can be changed during the lifetime of the thread.

For historical event logging for the thread to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must
be enabled. For example, wait event logging in the events_waits_history and
events_waits_history_long tables requires the corresponding events_waits_history
and events_waits_history_long consumers to be YES.

• The threads.HISTORY column must be YES.

• Logging occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

The HISTORY column was added in MySQL 5.7.8. For earlier versions in which it is not present, the
Performance Schema logs historical events either for all threads or no threads, depending on which
history consumers are enabled or disabled.

• CONNECTION_TYPE

The protocol used to establish the connection, or NULL for background threads. Permitted values are
TCP/IP (TCP/IP connection established without SSL), SSL/TLS (TCP/IP connection established
with SSL), Socket (Unix socket file connection), Named Pipe (Windows named pipe connection),
and Shared Memory (Windows shared memory connection).

This column was added in MySQL 5.7.8.

• THREAD_OS_ID

The thread or task identifier as defined by the underlying operating system, if there is one:

• When a MySQL thread is associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains the operating system thread ID.

Performance Schema Option and Variable Reference

2889

• When a MySQL thread is not associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains NULL. This is typical for user sessions when the thread pool plugin is
used (see Section 8.12.7, “The Thread Pool Plugin”).

For Windows, THREAD_OS_ID corresponds to the thread ID visible in Process Explorer (https://
technet.microsoft.com/en-us/sysinternals/bb896653.aspx).

For Linux, THREAD_OS_ID corresponds to the value of the gettid() function. This value
is exposed, for example, using the perf or ps -L commands, or in the proc file system (/
proc/[pid]/task/[tid]). For more information, see the perf-stat(1), ps(1), and proc(5)
man pages.

This column was added in MySQL 5.7.9.

21.10 Performance Schema Option and Variable Reference
Table 21.3 Performance Schema Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-stages-
current

Yes Yes

performance-
schema-
consumer-
events-stages-
history

Yes Yes

performance-
schema-
consumer-
events-stages-
history-long

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

performance-
schema-
consumer-

Yes Yes

https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

Performance Schema Option and Variable Reference

2890

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic
events-
statements-
history-long

performance-
schema-
consumer-
events-
transactions-
current

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history-long

Yes Yes

performance-
schema-
consumer-
events-waits-
current

Yes Yes

performance-
schema-
consumer-
events-waits-
history

Yes Yes

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-global-
instrumentation

Yes Yes

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

Performance Schema Option and Variable Reference

2891

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_memory_classes_lost Yes Global No

Performance Schema Command Options

2892

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Performance_schema_metadata_lock_lost Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_nested_statement_lost Yes Global No

Performance_schema_prepared_statements_lost Yes Global No

Performance_schema_program_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Performance_schema_stage_classes_lost Yes Global No

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

21.11 Performance Schema Command Options
Performance Schema parameters can be specified at server startup on the command line or in option
files to configure Performance Schema instruments and consumers. Runtime configuration is also
possible in many cases (see Section 21.2.3, “Performance Schema Runtime Configuration”), but
startup configuration must be used when runtime configuration is too late to affect instruments that
have already been initialized during the startup process.

Performance Schema consumers and instruments can be configured at startup using the following
syntax. For additional details, see Section 21.2.2, “Performance Schema Startup Configuration”.

• --performance-schema-consumer-consumer_name=value

Configure a Performance Schema consumer. Consumer names in the setup_consumers table
use underscores, but for consumers set at startup, dashes and underscores within the name are
equivalent. Options for configuring individual consumers are detailed later in this section.

• --performance-schema-instrument=instrument_name=value

Configure a Performance Schema instrument. The name may be given as a pattern to configure
instruments that match the pattern.

The following items configure individual consumers:

• --performance-schema-consumer-events-stages-current=value

Configure the events-stages-current consumer.

Performance Schema System Variables

2893

• --performance-schema-consumer-events-stages-history=value

Configure the events-stages-history consumer.

• --performance-schema-consumer-events-stages-history-long=value

Configure the events-stages-history-long consumer.

• --performance-schema-consumer-events-statements-current=value

Configure the events-statements-current consumer.

• --performance-schema-consumer-events-statements-history=value

Configure the events-statements-history consumer.

• --performance-schema-consumer-events-statements-history-long=value

Configure the events-statements-history-long consumer.

• --performance-schema-consumer-events-transactions-current=value

Configure the Performance Schema events-transactions-current consumer. This option was
added in MySQL 5.7.3.

• --performance-schema-consumer-events-transactions-history=value

Configure the Performance Schema events-transactions-history consumer. This option was
added in MySQL 5.7.3.

• --performance-schema-consumer-events-transactions-history-long=value

Configure the Performance Schema events-transactions-history-long consumer. This
option was added in MySQL 5.7.3.

• --performance-schema-consumer-events-waits-current=value

Configure the events-waits-current consumer.

• --performance-schema-consumer-events-waits-history=value

Configure the events-waits-history consumer.

• --performance-schema-consumer-events-waits-history-long=value

Configure the events-waits-history-long consumer.

• --performance-schema-consumer-global-instrumentation=value

Configure the global-instrumentation consumer.

• --performance-schema-consumer-statements-digest=value

Configure the statements-digest consumer.

• --performance-schema-consumer-thread-instrumentation=value

Configure the thread-instrumentation consumer.

21.12 Performance Schema System Variables
The Performance Schema implements several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';

Performance Schema System Variables

2894

+--+-------+
| Variable_name | Value |
+--+-------+
performance_schema	ON
performance_schema_accounts_size	-1
performance_schema_digests_size	10000
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_transactions_history_long_size	10000
performance_schema_events_transactions_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	-1
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	-1
performance_schema_max_digest_length	1024
performance_schema_max_file_classes	50
performance_schema_max_file_handles	32768
performance_schema_max_file_instances	-1
performance_schema_max_index_stat	-1
performance_schema_max_memory_classes	320
performance_schema_max_metadata_locks	-1
performance_schema_max_mutex_classes	200
performance_schema_max_mutex_instances	-1
performance_schema_max_prepared_statements_instances	-1
performance_schema_max_program_instances	-1
performance_schema_max_rwlock_classes	40
performance_schema_max_rwlock_instances	-1
performance_schema_max_socket_classes	10
performance_schema_max_socket_instances	-1
performance_schema_max_sql_text_length	1024
performance_schema_max_stage_classes	150
performance_schema_max_statement_classes	192
performance_schema_max_statement_stack	10
performance_schema_max_table_handles	-1
performance_schema_max_table_instances	-1
performance_schema_max_table_lock_stat	-1
performance_schema_max_thread_classes	50
performance_schema_max_thread_instances	-1
performance_schema_session_connect_attrs_size	512
performance_schema_setup_actors_size	-1
performance_schema_setup_objects_size	-1
performance_schema_users_size	-1
+--+-------+

Performance Schema system variables can be set at server startup on the command line or in option
files, and many can be set at runtime. See Section 21.10, “Performance Schema Option and Variable
Reference”.

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For more information, see Section 21.2.2, “Performance Schema Startup
Configuration”.

Performance Schema system variables have the following meanings:

• performance_schema

Command-Line Format --performance_schema=#

Name performance_schema

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

Performance Schema System Variables

2895

Default ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON by default. At server startup, you can specify this variable with no value or a
value of ON or 1 to enable it, or with a value of OFF or 0 to disable it.

As of MySQL 5.7.8, even when the Performance Schema is disabled, it continues to populate
the global_variables, session_variables, global_status, and session_status
tables. This occurs as necessary to permit the results for the SHOW VARIABLES and
SHOW STATUS statements to be drawn from those tables, depending on the setting of the
show_compatibiliy_56 system variable.

• performance_schema_accounts_size

Command-Line Format --performance_schema_accounts_size=#

Name performance_schema_accounts_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default -1 (autosized)

Min
Value

-1 (autosized)

Permitted Values (<=
5.7.5)

Max
Value

1048576

Type integer

Default -1 (autoscaled)

Min
Value

-1 (autoscaled)

Permitted Values (>=
5.7.6)

Max
Value

1048576

The number of rows in the accounts table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the accounts table or status variable information in the
status_by_account table.

• performance_schema_digests_size

Command-Line Format --performance_schema_digests_size=#

Name performance_schema_digests_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default -1 (autosized)

Min
Value

-1

Permitted Values

Max
Value

1048576

Performance Schema System Variables

2896

The maximum number of rows in the events_statements_summary_by_digest table. If
this maximum is exceeded such that a digest cannot be instrumented, the Performance Schema
increments the Performance_schema_digest_lost status variable.

• performance_schema_events_stages_history_long_size

Command-Line Format --
performance_schema_events_stages_history_long_size=#

Name performance_schema_events_stages_history_long_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The number of rows in the events_stages_history_long table.

• performance_schema_events_stages_history_size

Command-Line Format --performance_schema_events_stages_history_size=#

Name performance_schema_events_stages_history_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The number of rows per thread in the events_stages_history table.

• performance_schema_events_statements_history_long_size

Command-Line Format --
performance_schema_events_statements_history_long_size=#

Name performance_schema_events_statements_history_long_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The number of rows in the events_statements_history_long table.

• performance_schema_events_statements_history_size

Command-Line Format --performance_schema_events_statements_history_size=#

Name performance_schema_events_statements_history_sizeSystem Variable

Variable
Scope

Global

Performance Schema System Variables

2897

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The number of rows per thread in the events_statements_history table.

• performance_schema_events_transactions_history_long_size

Introduced 5.7.3

Command-Line Format --
performance_schema_events_transactions_history_long_size=#

Name performance_schema_events_transactions_history_long_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The number of rows in the events_transactions_history_long table. This variable was
added in MySQL 5.7.3.

• performance_schema_events_transactions_history_size

Introduced 5.7.3

Command-Line Format --
performance_schema_events_transactions_history_size=#

Name performance_schema_events_transactions_history_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The number of rows per thread in the events_transactions_history table. This variable was
added in MySQL 5.7.3.

• performance_schema_events_waits_history_long_size

Command-Line Format --performance_schema_events_waits_history_long_size=#

Name performance_schema_events_waits_history_long_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The number of rows in the events_waits_history_long table.

Performance Schema System Variables

2898

• performance_schema_events_waits_history_size

Command-Line Format --performance_schema_events_waits_history_size=#

Name performance_schema_events_waits_history_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The number of rows per thread in the events_waits_history table.

• performance_schema_hosts_size

Command-Line Format --performance_schema_hosts_size=#

Name performance_schema_hosts_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default -1 (autosized)

Min
Value

-1 (autosized)

Permitted Values (<=
5.7.5)

Max
Value

1048576

Type integer

Default -1 (autoscaled)

Min
Value

-1 (autoscaled)

Permitted Values (>=
5.7.6)

Max
Value

1048576

The number of rows in the hosts table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the hosts table or status variable information in the
status_by_host table.

• performance_schema_max_cond_classes

Command-Line Format --performance_schema_max_cond_classes=#

Name performance_schema_max_cond_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 80

The maximum number of condition instruments.

Performance Schema System Variables

2899

• performance_schema_max_cond_instances

Command-Line Format --performance_schema_max_cond_instances=#

Name performance_schema_max_cond_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of instrumented condition objects.

• performance_schema_max_digest_length

Introduced 5.7.8

Command-Line Format --performance_schema_max_digest_length=#

Name performance_schema_max_digest_length

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1024

Min
Value

0

Permitted Values

Max
Value

1048576

The maximum number of bytes available for computing statement digests (see Section 21.7,
“Performance Schema Statement Digests”). This variable is like max_digest_length, but applies
to the Performance Schema only. For more information, see the description of that variable in
Section 5.1.4, “Server System Variables”

This variable was added in MySQL 5.7.8. In MySQL 5.7.6 and 5.7.7, use max_digest_length
instead. Before 5.7.6, the value cannot be changed.

• performance_schema_max_file_classes

Command-Line Format --performance_schema_max_file_classes=#

Name performance_schema_max_file_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.8) Default 50

Permitted Values (>=
5.7.9)

Type integer

Performance Schema System Variables

2900

Default 80

The maximum number of file instruments.

• performance_schema_max_file_handles

Command-Line Format --performance_schema_max_file_handles=#

Name performance_schema_max_file_handles

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 32768

The maximum number of opened file objects.

The value of performance_schema_max_file_handles should be greater than the value of
open_files_limit: open_files_limit affects the maximum number of open file handles the
server can support and performance_schema_max_file_handles affects how many of these
file handles can be instrumented.

• performance_schema_max_file_instances

Command-Line Format --performance_schema_max_file_instances=#

Name performance_schema_max_file_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of instrumented file objects.

• performance_schema_max_index_stat

Introduced 5.7.6

Command-Line Format --performance_schema_max_index_stat=#

Name performance_schema_max_index_stat

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The maximum number of indexes for which the Performance Schema maintains statistics. If this
maximum is exceeded such that index statistics are lost, the Performance Schema increments the

Performance Schema System Variables

2901

Performance_schema_index_stat_lost status variable. The default value is autosized using
the value of performance_schema_max_table_instances.

This variable was added in MySQL 5.7.6.

• performance_schema_max_memory_classes

Introduced 5.7.2

Command-Line Format --performance_schema_max_memory_classes=#

Name performance_schema_max_memory_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.4) Default 250

Type integerPermitted Values (>=
5.7.5) Default 320

The maximum number of memory instruments. This variable was added in MySQL 5.7.2.

• performance_schema_max_metadata_locks

Introduced 5.7.3

Command-Line Format --performance_schema_max_metadata_locks=#

Name performance_schema_max_metadata_locks

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of metadata lock instruments. This value controls the
size of the metadata_locks table. If this maximum is exceeded such that a
metadata lock cannot be instrumented, the Performance Schema increments the
Performance_schema_metadata_lock_lost status variable.

This variable was added in MySQL 5.7.3.

• performance_schema_max_mutex_classes

Command-Line Format --performance_schema_max_mutex_classes=#

Name performance_schema_max_mutex_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type integer

Performance Schema System Variables

2902

Default 200

The maximum number of mutex instruments.

• performance_schema_max_mutex_instances

Command-Line Format --performance_schema_max_mutex_instances=#

Name performance_schema_max_mutex_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of instrumented mutex objects.

• performance_schema_max_prepared_statements_instances

Introduced 5.7.4

Command-Line Format --
performance_schema_max_prepared_statements_instances=#

Name performance_schema_max_prepared_statements_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of rows in the prepared_statements_instances table. If this maximum
is exceeded such that a prepared statement cannot be instrumented, the Performance Schema
increments the Performance_schema_prepared_statements_lost status variable. The
default value of this variable is autosized based on the value of the max_prepared_stmt_count
system variable.

This variable was added in MySQL 5.7.4.

• performance_schema_max_rwlock_classes

Command-Line Format --performance_schema_max_rwlock_classes=#

Name performance_schema_max_rwlock_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Performance Schema System Variables

2903

Type integerPermitted Values (<=
5.7.2) Default 30

Type integerPermitted Values (>=
5.7.3) Default 40

The maximum number of rwlock instruments.

• performance_schema_max_program_instances

Introduced 5.7.2

Command-Line Format --performance_schema_max_program_instances=#

Name performance_schema_max_program_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default 5000

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of stored programs for which the Performance Schema maintains
statistics. If this maximum is exceeded, the Performance Schema increments the
Performance_schema_program_lost status variable.

This variable was added in MySQL 5.7.2.

• performance_schema_max_rwlock_instances

Command-Line Format --performance_schema_max_rwlock_instances=#

Name performance_schema_max_rwlock_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of instrumented rwlock objects.

• performance_schema_max_socket_classes

Command-Line Format --performance_schema_max_socket_classes=#

Name performance_schema_max_socket_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Performance Schema System Variables

2904

Type integerPermitted Values

Default 10

The maximum number of socket instruments.

• performance_schema_max_socket_instances

Command-Line Format --performance_schema_max_socket_instances=#

Name performance_schema_max_socket_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of instrumented socket objects.

• performance_schema_max_sql_text_length

Introduced 5.7.6

Command-Line Format --performance_schema_max_sql_text_length=#

Name performance_schema_max_sql_text_length

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1024

Min
Value

0

Permitted Values

Max
Value

1048576

The maximum number of bytes used to store SQL statements in the SQL_TEXT column
of the events_statements_current, events_statements_history, and
events_statements_history_long statement event tables. Any bytes in excess of
performance_schema_max_sql_text_length are discarded and do not appear in the
SQL_TEXT column. Statements differing only after that many initial bytes are indistinguishable in this
column.

Decreasing the performance_schema_max_sql_text_length value reduces memory use but
causes more statements to become indistinguishable if they differ only at the end. Increasing the
value increases memory use but permits longer statements to be distinguished.

This variable was added in MySQL 5.7.6.

• performance_schema_max_stage_classes

Command-Line Format --performance_schema_max_stage_classes=#

Performance Schema System Variables

2905

Name performance_schema_max_stage_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 150

The maximum number of stage instruments.

• performance_schema_max_statement_classes

Command-Line Format --performance_schema_max_statement_classes=#

Name performance_schema_max_statement_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The maximum number of statement instruments. The default value is calculated at server build time
based on the number of commands in the client/server protocol and the number of SQL statement
types supported by the server.

This variable should not be changed, unless to set it to 0 to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has
no benefit; in particular, values larger than the default cause more memory to be allocated then is
needed.

• performance_schema_max_statement_stack

Introduced 5.7.2

Command-Line Format --performance_schema_max_statement_stack=#

Name performance_schema_max_statement_stack

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 10

The maximum depth of nested stored program calls for which the Performance Schema
maintains statistics. When this maximum is exceeded, the Performance Schema increments the
Performance_schema_nested_statement_lost status variable for each stored program
statement executed.

This variable was added in MySQL 5.7.2.

• performance_schema_max_table_handles

Command-Line Format --performance_schema_max_table_handles=#

Performance Schema System Variables

2906

Name performance_schema_max_table_handles

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of opened table objects. This value controls the size of the table_handles
table. If this maximum is exceeded such that a table handle cannot be instrumented, the
Performance Schema increments the Performance_schema_table_handles_lost status
variable.

• performance_schema_max_table_instances

Command-Line Format --performance_schema_max_table_instances=#

Name performance_schema_max_table_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of instrumented table objects.

• performance_schema_max_table_lock_stat

Introduced 5.7.6

Command-Line Format --performance_schema_max_table_lock_stat=#

Name performance_schema_max_table_lock_stat

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default -1 (autosized)

The maximum number of tables for which the Performance Schema maintains lock statistics. If this
maximum is exceeded such that table lock statistics are lost, the Performance Schema increments
the Performance_schema_table_lock_stat_lost status variable.

This variable was added in MySQL 5.7.6.

• performance_schema_max_thread_classes

Command-Line Format --performance_schema_max_thread_classes=#

Performance Schema System Variables

2907

Name performance_schema_max_thread_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 50

The maximum number of thread instruments.

• performance_schema_max_thread_instances

Command-Line Format --performance_schema_max_thread_instances=#

Name performance_schema_max_thread_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default -1 (autosized)

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The maximum number of instrumented thread objects. The value controls the size of the threads
table. If this maximum is exceeded such that a thread cannot be instrumented, the Performance
Schema increments the Performance_schema_thread_instances_lost status variable.

The max_connections system variable affects how many threads can run in the server.
performance_schema_max_thread_instances affects how many of these running threads can
be instrumented.

The variables_by_thread and status_by_thread tables contain system and
status variable information information only about foreground threads. If not all threads are
instrumented by the Performance Schema, this table will miss some rows. In this case, the
Performance_schema_thread_instances_lost status variable will be greater than zero.

• performance_schema_session_connect_attrs_size

Command-Line Format --performance_schema_session_connect_attrs_size=#

Name performance_schema_session_connect_attrs_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default -1 (autosized)

Min
Value

-1

Permitted Values

Max
Value

1048576

Performance Schema System Variables

2908

The amount of preallocated memory per thread used to hold connection attribute
strings. If the connection attribute strings are larger than the reserved storage, the
Performance_schema_session_connect_attrs_lost status variable is incremented.

• performance_schema_setup_actors_size

Command-Line Format --performance_schema_setup_actors_size=#

Name performance_schema_setup_actors_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default 100

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The number of rows in the setup_actors table.

• performance_schema_setup_objects_size

Command-Line Format --performance_schema_setup_objects_size=#

Name performance_schema_setup_objects_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.7.5) Default 100

Type integerPermitted Values (>=
5.7.6) Default -1 (autoscaled)

The number of rows in the setup_objects table.

• performance_schema_users_size

Command-Line Format --performance_schema_users_size=#

Name performance_schema_users_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default -1 (autosized)

Min
Value

-1 (autosized)

Permitted Values (<=
5.7.5)

Max
Value

1048576

Performance Schema Status Variables

2909

Type integer

Default -1 (autoscaled)

Min
Value

-1 (autoscaled)

Permitted Values (>=
5.7.6)

Max
Value

1048576

The number of rows in the users table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the users table or status variable information in the
status_by_user table.

21.13 Performance Schema Status Variables
The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

Performance Schema status variables have the following meanings:

• Performance_schema_accounts_lost

The number of times a row could not be added to the accounts table because it was full.

• Performance_schema_cond_classes_lost

How many condition instruments could not be loaded.

• Performance_schema_cond_instances_lost

How many condition instrument instances could not be created.

• Performance_schema_digest_lost

The number of digest instances that could not be instrumented in the
events_statements_summary_by_digest table. This can be nonzero if the value of
performance_schema_digests_size is too small.

• Performance_schema_file_classes_lost

Performance Schema Status Variables

2910

How many file instruments could not be loaded.

• Performance_schema_file_handles_lost

How many file instrument instances could not be opened.

• Performance_schema_file_instances_lost

How many file instrument instances could not be created.

• Performance_schema_hosts_lost

The number of times a row could not be added to the hosts table because it was full.

• Performance_schema_index_stat_lost

The number of indexes for which statistics were lost. This can be nonzero if the value of
performance_schema_max_index_stat is too small.

This variable was added in MySQL 5.7.6.

• Performance_schema_locker_lost

How many events are “lost” or not recorded, due to the following conditions:

• Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).

• The depth of the nested events stack is greater than the limit imposed by the implementation.

Events recorded by the Performance Schema are not recursive, so this variable should always be 0.

• Performance_schema_memory_classes_lost

The number of times a memory instrument could not be loaded. This variable was added in MySQL
5.7.2.

• Performance_schema_metadata_lock_lost

The number of metadata locks that could not be instrumented in the metadata_locks table. This
can be nonzero if the value of performance_schema_max_metadata_locks is too small.

This variable was added in MySQL 5.7.3.

• Performance_schema_mutex_classes_lost

How many mutex instruments could not be loaded.

• Performance_schema_mutex_instances_lost

How many mutex instrument instances could not be created.

• Performance_schema_nested_statement_lost

The number of stored program statements for which statistics were lost. This can be nonzero if the
value of performance_schema_max_statement_stack is too small.

This variable was added in MySQL 5.7.2.

• Performance_schema_prepared_statements_lost

The number of prepared statements that could not be instrumented in the
prepared_statements_instances table. This can be nonzero if the value of
performance_schema_max_prepared_statements_instances is too small.

Performance Schema Status Variables

2911

This variable was added in MySQL 5.7.4.

• Performance_schema_program_lost

The number of stored programs for which statistics were lost. This can be nonzero if the value of
performance_schema_max_program_instances is too small.

This variable was added in MySQL 5.7.2.

• Performance_schema_rwlock_classes_lost

How many rwlock instruments could not be loaded.

• Performance_schema_rwlock_instances_lost

How many rwlock instrument instances could not be created.

• Performance_schema_session_connect_attrs_lost

The number of times a connection attribute string was larger than the reserved storage.

• Performance_schema_socket_classes_lost

How many socket instruments could not be loaded.

• Performance_schema_socket_instances_lost

How many socket instrument instances could not be created.

• Performance_schema_stage_classes_lost

How many stage instruments could not be loaded.

• Performance_schema_statement_classes_lost

How many statement instruments could not be loaded.

• Performance_schema_table_handles_lost

How many table instrument instances could not be opened. This can be nonzero if the value of
performance_schema_max_table_handles is too small.

• Performance_schema_table_instances_lost

How many table instrument instances could not be created.

• Performance_schema_table_lock_stat_lost

The number of tables for which lock statistics were lost. This can be nonzero if the value of
performance_schema_max_table_lock_stat is too small.

This variable was added in MySQL 5.7.6.

• Performance_schema_thread_classes_lost

How many thread instruments could not be loaded.

• Performance_schema_thread_instances_lost

The number of thread instances that could not be instrumented in the threads table. This can be
nonzero if the value of performance_schema_max_thread_instances is too small.

• Performance_schema_users_lost

The Performance Schema Memory-Allocation Model

2912

The number of times a row could not be added to the users table because it was full.

For information on using these variables to check Performance Schema status, see Section 21.5,
“Performance Schema Status Monitoring”.

21.14 The Performance Schema Memory-Allocation Model

Before MySQL 5.7.6, the Performance Schema used this memory allocation model:

• Allocate all the memory needed at server startup

• Never allocate memory during server operation

• Never free memory during server operation

• Free all memory used at shutdown

With that model, the Performance Schema potentially allocates a large amount of memory unless
explicit configuration is used to minimize particular types of instrumentation.

As of MySQL 5.7.6, the memory model allocates less memory by default under most circumstances:

• May allocate memory at server startup

• May allocate additional memory during server operation

• Never free memory during server operation (although it might be recycled)

• Free all memory used at shutdown

The result is to relax memory constraints so that the Performance Schema can be used with less
configuration, and to decrease the memory footprint so that consumption scales with server load.
Memory used depends on the load actually seen, not the load estimated or explicitly configured for.

Several Performance Schema sizing parameters are autoscaled and need not be configured explicitly
unless you want to establish an explicit limit on memory allocation:

performance_schema_accounts_size
performance_schema_hosts_size
performance_schema_max_cond_instances
performance_schema_max_file_instances
performance_schema_max_index_stat
performance_schema_max_metadata_locks
performance_schema_max_mutex_instances
performance_schema_max_prepared_statements_instances
performance_schema_max_program_instances
performance_schema_max_rwlock_instances
performance_schema_max_socket_instances
performance_schema_max_table_handles
performance_schema_max_table_instances
performance_schema_max_table_lock_stat
performance_schema_max_thread_instances
performance_schema_users_size

For an autoscaled parameter, configuration works like this:

• With the value set to -1 (the default), the parameter is autoscaled:

• The corresponding internal buffer is empty initially and no memory is allocated.

• As the Performance Schema collects data, memory is allocated in the corresponding buffer. The
buffer size is unbounded, and may grow with the load.

Performance Schema and Plugins

2913

• With the value set to 0:

• The corresponding internal buffer is empty initially and no memory is allocated.

• With the value set to N > 0:

• The corresponding internal buffer is empty initially and no memory is allocated.

• As the Performance Schema collects data, memory is allocated in the corresponding buffer, until
the buffer size reaches N.

• Once the buffer size reaches N, no more memory is allocated. Data collected by the Performance
Schema for this buffer is lost, and any corresponding “lost instance” counters are incremented.

To see how much memory the Performance Schema is using, check the instruments designed
for that purpose. The Performance Schema allocates memory internally and associates each
buffer with a dedicated instrument so that memory consumption can be traced to individual buffers.
Instruments named with the prefix memory/performance_schema/ expose how much memory
is allocated for these internal buffers. The buffers are global to the server, so the instruments
are displayed only in the memory_summary_global_by_event_name table, and not in other
memory_summary_by_xxx_by_event_name tables.

This query shows the information associated with the memory instruments:

SELECT * FROM memory_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'memory/performance_schema/%';

21.15 Performance Schema and Plugins
Removing a plugin with UNINSTALL PLUGIN does not affect information already collected for code
in that plugin. Time spent executing the code while the plugin was loaded was still spent even if the
plugin is unloaded later. The associated event information, including aggregate information, remains
readable in performance_schema database tables. For additional information about the effect of
plugin installation and removal, see Section 21.5, “Performance Schema Status Monitoring”.

A plugin implementor who instruments plugin code should document its instrumentation characteristics
to enable those who load the plugin to account for its requirements. For example, a third-party storage
engine should include in its documentation how much memory the engine needs for mutex and other
instruments.

21.16 Using the Performance Schema to Diagnose Problems
The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema
for this purpose. The discussion here relies on the use of event filtering, which is described in
Section 21.2.3.2, “Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use
case where performance is deemed “too slow” and needs optimization, and you should enable all
instrumentation (no pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis will rely heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if
analysis shows that the issue is not related to file I/O in a particular storage engine, disable the file

Query Profiling Using Performance Schema

2914

I/O instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

At each iteration, the Performance Schema output, particularly the
events_waits_history_long table, will contain less and less “noise” caused by nonsignificant
instruments, and given that this table has a fixed size, will contain more and more data relevant to
the analysis of the problem at hand.

At each iteration, investigation should lead closer and closer to the root cause of the problem, as
the “signal/noise” ratio will improve, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action,
such as:

• Tune the server parameters (cache sizes, memory, and so forth).

• Tune a query by writing it differently,

• Tune the database schema (tables, indexes, and so forth).

• Tune the code (this applies to storage engine or server developers only).

6. Start again at step 1, to see the effects of the changes on performance.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. This is made possible by Performance Schema
instrumentation as follows:

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM events_waits_current WHERE THREAD_ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_waits_current.OBJECT_INSTANCE_BEGIN.

3. You can determine which thread is holding mutex A:

SELECT * FROM mutex_instances WHERE OBJECT_INSTANCE_BEGIN = mutex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
mutex_instances.LOCKED_BY_THREAD_ID.

4. You can see what thread 2 is doing:

SELECT * FROM events_waits_current WHERE THREAD_ID = thread_2;

21.16.1 Query Profiling Using Performance Schema

The following example demonstrates how to use Performance Schema statement events and stage
events to retrieve data comparable to profiling information provided by SHOW PROFILES and SHOW
PROFILE statements.

As of MySQL 5.7.8, the setup_actors table can be used to limit the collection of historical events by
host, user, or account to reduce runtime overhead and the amount of data collected in history tables.
The first step of the example shows how to limit collection of historical events to a specific user.

Query Profiling Using Performance Schema

2915

Performance Schema displays event timer information in picoseconds (trillionths of a second) to
normalize timing data to a standard unit. In the following example, TIMER_WAIT values are divided
by 1000000000000 to show data in units of seconds. Values are also truncated to 6 decimal places to
display data in the same format as SHOW PROFILES and SHOW PROFILE statements.

1. Limit the collection of historical events to the user that will run the query. By default,
setup_actors is configured to allow monitoring and historical event collection for all foreground
threads:

mysql> SELECT * FROM setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

Update the default row in the setup_actors table to disable historical event collection and
monitoring for all foreground threads, and insert a new row that enables monitoring and historical
event collection for the user that will run the query:

mysql> UPDATE performance_schema.setup_actors SET ENABLED = 'NO', HISTORY = 'NO'
 -> WHERE HOST = '%' AND USER = '%';

mysql> INSERT INTO performance_schema.setup_actors (HOST,USER,ROLE,ENABLED,HISTORY)
 -> VALUES('localhost','test_user','%','YES','YES');

Data in the setup_actors table should now appear similar to the following:

mysql> SELECT * FROM performance_schema.setup_actors;
+-----------+-----------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+-----------+-----------+------+---------+---------+
| % | % | % | NO | NO |
| localhost | test_user | % | YES | YES |
+-----------+-----------+------+---------+---------+

2. Ensure that statement and stage instrumentation is enabled by updating the setup_instruments
table. Some instruments may already be enabled by default.

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES', TIMED = 'YES'
 -> WHERE NAME LIKE '%statement/%';

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES', TIMED = 'YES'
 -> WHERE NAME LIKE '%stage/%';

3. Ensure that events_statements_* and events_stages_* consumers are enabled. Some
consumers may already be enabled by default.

mysql> UPDATE performance_schema.setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%events_statements_%';

mysql> UPDATE performance_schema.setup_consumers SET ENABLED = 'YES'
 -> WHERE NAME LIKE '%events_stages_%';

4. Under the user account you are monitoring, run the statement that you want to profile. For example:

mysql> SELECT * FROM employees.employees WHERE emp_no = 10001;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10001 | 1953-09-02 | Georgi | Facello | M | 1986-06-26 |
+--------+------------+------------+-----------+--------+------------+

5. Identify the EVENT_ID of the statement by querying the events_statements_history_long
table. This step is similar to running SHOW PROFILES to identify the Query_ID. The following
query produces output similar to SHOW PROFILES:

mysql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT

Migrating to Performance Schema System and Status Variable Tables

2916

 -> FROM performance_schema.events_statements_history_long WHERE SQL_TEXT like '%10001%';
+----------+----------+--+
| event_id | duration | sql_text |
+----------+----------+--+
| 31 | 0.028310 | SELECT * FROM employees.employees WHERE emp_no = 10001 |
+----------+----------+--+

6. Query the events_stages_history_long table to retrieve the statement's stage events. Stages
are linked to statements using event nesting. Each stage event record has a NESTING_EVENT_ID
column that contains the EVENT_ID of the parent statement.

mysql> SELECT event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration
 -> FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID=31;
+--------------------------------+----------+
| Stage | Duration |
+--------------------------------+----------+
stage/sql/starting	0.000080
stage/sql/checking permissions	0.000005
stage/sql/Opening tables	0.027759
stage/sql/init	0.000052
stage/sql/System lock	0.000009
stage/sql/optimizing	0.000006
stage/sql/statistics	0.000082
stage/sql/preparing	0.000008
stage/sql/executing	0.000000
stage/sql/Sending data	0.000017
stage/sql/end	0.000001
stage/sql/query end	0.000004
stage/sql/closing tables	0.000006
stage/sql/freeing items	0.000272
stage/sql/cleaning up	0.000001
+--------------------------------+----------+
15 rows in set (0.00 sec)

21.17 Migrating to Performance Schema System and Status
Variable Tables

The INFORMATION_SCHEMA has tables that contain system and status variable information (see
Section 20.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”, and Section 20.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables”). As of MySQL 5.7.6, the Performance Schema also contains system
and status variable tables (see Section 21.9.12, “Performance Schema System Variable Tables”, and
Section 21.9.13, “Performance Schema Status Variable Tables”). The Performance Schema tables are
intended to replace the INFORMATION_SCHEMA tables, which are deprecated as of MySQL 5.7.6 and
will be removed in a future MySQL release.

This section describes the intended migration path away from the INFORMATION_SCHEMA system and
status variable tables to the corresponding Performance Schema tables. Application developers should
use this information as guidance regarding the changes required to access system and status variables
in MySQL 5.7.6 and up as the INFORMATION_SCHEMA tables become deprecated and eventually are
removed.

MySQL 5.6

In MySQL 5.6, system and status variable information is available from these SHOW statements:

SHOW VARIABLES
SHOW STATUS

And from these INFORMATION_SCHEMA tables:

INFORMATION_SCHEMA.GLOBAL_VARIABLES
INFORMATION_SCHEMA.SESSION_VARIABLES

Migrating to Performance Schema System and Status Variable Tables

2917

INFORMATION_SCHEMA.GLOBAL_STATUS
INFORMATION_SCHEMA.SESSION_STATUS

MySQL 5.7

As of MySQL 5.7.6, the Performance Schema includes these tables as new sources of system and
status variable information:

performance_schema.global_variables
performance_schema.session_variables
performance_schema.variables_by_thread

performance_schema.global_status
performance_schema.session_status
performance_schema.status_by_thread
performance_schema.status_by_account
performance_schema.status_by_host
performance_schema.status_by_user

MySQL 5.7.6 also adds a show_compatibility_56 system variable to control how the server
makes system and status variable information available.

When show_compatibility_56 is ON, compatibility with MySQL 5.6 is enabled. The older system
and status variable sources (SHOW statements, INFORMATION_SCHEMA tables) are available with
semantics identical to MySQL 5.6. Applications should run as is, with no code changes, and should see
the same variable names and values as in MySQL 5.6. Warnings occur under these circumstances:

• A deprecation warning is raised when selecting from the INFORMATION_SCHEMA tables.

• In MySQL 5.7.6 and 5.7.7, a deprecation warning is raised when using a WHERE clause with the
SHOW statements. This behavior does not occur as of MySQL 5.7.8.

When show_compatibility_56 is OFF, compatibility with MySQL 5.6 is disabled and several
changes result. Applications must be revised as follows to run properly:

• Selecting from the INFORMATION_SCHEMA tables produces an error. Applications that access the
INFORMATION_SCHEMA tables should be revised to use the corresponding Performance Schema
tables instead.

Before MySQL 5.7.9, selecting from the INFORMATION_SCHEMA tables produces an empty
result set plus a deprecation warning. This was not sufficient notice to signal the need to migrate
to the corresponding Performance Schema system and status variable tables for the case that
show_compatibility_56=OFF. Producing an error in MySQL 5.7.9 and higher makes it more
evident that an application is operating under conditions that require modification, as well as where
the problem lies.

In MySQL 5.7.6 and 5.7.7, the Performance Schema session_variables and session_status
tables do not fully reflect all variable values in effect for the current session; they include no rows for
global variables that have no session counterpart. This is corrected in MySQL 5.7.8.

• Output for the SHOW statements is produced using the underlying Performance Schema tables.
Applications written to use these statements can still use them, but it is best to use MySQL 5.7.8 or
higher. In MySQL 5.7.6 and 5.7.7, the results may differ:

• SHOW [SESSION] VARIABLES output does not include global variables that have no session
counterpart.

• Using a WHERE clause with the SHOW statements produces an error.

• These Slave_xxx status variables become unavailable through SHOW STATUS:

Slave_heartbeat_period

Migrating to Performance Schema System and Status Variable Tables

2918

Slave_last_heartbeat
Slave_received_heartbeats
Slave_retried_transactions
Slave_running

Applications that use these status variables should be revised to obtain this information using the
replication-related Performance Schema tables. For details, see Effect of show_compatibility_56 on
Slave Status Variables.

Migration and Privileges

Initially, with the introduction of Performance Schema system and status variable tables in MySQL
5.7.6, access to those tables required the SELECT privilege, just as for other Performance Schema
tables. However, this had the consequence that when show_compatibility_56=OFF, the SHOW
VARIABLES and SHOW STATUS statements also required the SELECT privilege: With compatibility
disabled, output for those statements was taken from the Performance Schema global_variables,
session_variables, global_status, and session_status tables.

As of MySQL 5.7.9, those Performance Schema tables are world readable and accessible without
the SELECT privilege. Consequently, SHOW VARIABLES and SHOW STATUS do not require
privileges on the underlying Performance Schema tables from which their output is produced when
show_compatibility_56=OFF.

Beyond MySQL 5.7

In a future MySQL release, the INFORMATION_SCHEMA variable tables and the
show_compatibility_56 system variable will be removed, and output from the SHOW statements
will always be based on the underlying Performance Schema tables.

Applications that have been revised to work in MySQL 5.7 when show_compatibility_56=OFF
should work without further changes, except that it will not be possible to test or set
show_compatibility_56 because it will not exist.

2919

Chapter 22 MySQL sys Schema

Table of Contents
22.1 Prerequisites for Using the sys Schema ... 2919
22.2 Using the sys Schema .. 2920
22.3 sys Schema Progress Reporting .. 2921
22.4 sys Schema Object Reference ... 2922

22.4.1 sys Schema Object Index ... 2922
22.4.2 sys Schema Tables and Triggers .. 2926
22.4.3 sys Schema Views ... 2929
22.4.4 sys Schema Stored Procedures .. 2968
22.4.5 sys Schema Stored Functions ... 2987

MySQL 5.7.7 and higher includes the sys schema, a set of objects that helps DBAs and developers
interpret data collected by the Performance Schema. sys schema objects can be used for typical
tuning and diagnosis use cases. Objects in this schema include:

• Views that summarize Performance Schema data into more easily understandable form.

• Stored procedures that perform operations such as Performance Schema configuration and
generating diagnostic reports.

• Stored functions that query Performance Schema configuration and provide formatting services.

For new installations, the sys schema is installed by default during data directory initialization if
you use mysqld with the --initialize or --initialize-insecure option, or if you use
mysql_install_db. To permit this behavior to be suppressed, mysql_install_db has a --skip-
sys-schema option. mysqld has no such option, but if you initialize the data directory using mysqld
--initialize (or --initialize-insecure) rather than mysql_install_db, you can drop the
sys schema manually after initialization if it is unneeded.

For upgrades, mysql_upgrade installs the sys schema if it is not installed, and upgrades it to the
current version otherwise. To permit this behavior to be suppressed, mysql_upgrade has a --skip-
sys-schema option.

mysql_upgrade returns an error if a sys schema exists but has no version view, on the assumption
that absence of this view indicates a user-created sys schema. To upgrade in this case, remove or
rename the existing sys schema first.

As of MySQL 5.7.9, sys schema objects have a DEFINER of 'mysql.sys'@'localhost'. (Before
MySQL 5.7.9, the DEFINER is 'root'@'localhost'.) Use of the dedicated mysql.sys account
avoids problems that occur if a DBA renames or removes the root account.

22.1 Prerequisites for Using the sys Schema
Before using the sys schema, the prerequisites described in this section must be satisfied.

The sys schema requires MySQL 5.6 or higher.

Because the sys schema provides an alternative means of accessing the Performance Schema, the
Performance Schema must be enabled for the sys schema to work. See Section 21.2.2, “Performance
Schema Startup Configuration”.

For full access to the sys schema, a user must have these privileges:

• SELECT on all sys tables and views

• EXECUTE on all sys stored procedures and functions

• INSERT and UPDATE for the sys_config table, if changes are to be made to it

Using the sys Schema

2920

• Additional privileges for certain sys schema stored procedures and functions, as noted in their
descriptions; for example, the ps_setup_save() procedure

It is also necessary to have privileges for the objects underlying the sys schema objects:

• SELECT on any Performance Schema tables accessed by sys schema objects, and UPDATE for any
tables to be updated using sys schema objects

• PROCESS for the INFORMATION_SCHEMA INNODB_BUFFER_PAGE table

Certain Performance Schema instruments and consumers must be enabled and (for instruments) timed
to take full advantage of sys schema capabilities:

• All wait instruments

• All stage instruments

• All statement instruments

• xxx_current and xxx_history_long consumers for all events

You can use the sys schema itself to enable all of the additional instruments and consumers:

CALL sys.ps_setup_enable_instrument('wait');
CALL sys.ps_setup_enable_instrument('stage');
CALL sys.ps_setup_enable_instrument('statement');
CALL sys.ps_setup_enable_consumer('current');
CALL sys.ps_setup_enable_consumer('history_long');

Note

For many uses of the sys schema, the default Performance Schema is
sufficient for data collection. Enabling all the instruments and consumers just
mentioned has a performance impact, so it is preferable to enable only the
additional configuration you need. Also, remember that if you enable additional
configuration, you can easily restore the default configuration like this:

CALL sys.ps_setup_reset_to_default(TRUE);

22.2 Using the sys Schema
You can make the sys schema the default schema so that references to its objects need not be
qualified with the schema name:

mysql> USE sys;
Database changed
mysql> SELECT * FROM version;
+-------------+-----------------+
| sys_version | mysql_version |
+-------------+-----------------+
| 1.5.0 | 5.7.9-debug-log |
+-------------+-----------------+

(The version view shows the sys schema and MySQL server versions.)

To access sys schema objects while a different schema is the default (or simply to be explicit), qualify
object references with the schema name:

mysql> SELECT * FROM sys.version;
+-------------+-----------------+
| sys_version | mysql_version |
+-------------+-----------------+
| 1.5.0 | 5.7.9-debug-log |
+-------------+-----------------+

sys Schema Progress Reporting

2921

Examples in this chapter usually assume sys as the default schema.

The sys schema contains many views that summarize Performance Schema tables in various ways.
Most of these views come in pairs, such that one member of the pair has the same name as the other
member, plus a x$ prefix. For example, the host_summary_by_file_io view summarizes file I/
O grouped by host and displays latencies converted from picoseconds to more readable values (with
units);

mysql> SELECT * FROM host_summary_by_file_io;
+------------+-------+------------+
| host | ios | io_latency |
+------------+-------+------------+
| localhost | 67570 | 5.38 s |
| background | 3468 | 4.18 s |
+------------+-------+------------+

The x$host_summary_by_file_io view summarizes the same data but displays unformatted
picosecond latencies:

mysql> SELECT * FROM x$host_summary_by_file_io;
+------------+-------+---------------+
| host | ios | io_latency |
+------------+-------+---------------+
| localhost | 67574 | 5380678125144 |
| background | 3474 | 4758696829416 |
+------------+-------+---------------+

The view without the x$ prefix is intended to provide output that is more user friendly and easier for
humans to read. The view with the x$ prefix that displays the same values in raw form is intended more
for use with other tools that perform their own processing on the data. For additional information about
the differences between non-x$ and x$ views, see Section 22.4.3, “sys Schema Views”.

To examine sys schema object definitions, use the appropriate SHOW statement or
INFORMATION_SCHEMA query. For example, to examine the definitions of the session view and
format_bytes() function, use these statements:

mysql> SHOW CREATE VIEW session;
mysql> SHOW CREATE FUNCTION format_bytes;

However, those statements display the definitions in relatively unformatted form. To view object
definitions with more readable formatting, access the individual .sql files available from the sys
schema development web site at https://github.com/MarkLeith/mysql-sys.

Neither mysqldump nor mysqlpump dump the sys schema by default. To generate a dump file, name
the sys schema explicitly on the command line using either of these commands:

mysqldump --databases --routines sys > sys_dump.sql
mysqlpump sys > sys_dump.sql

To reinstall the schema from the dump file, use this command:

mysql < sys_dump.sql

22.3 sys Schema Progress Reporting
As of MySQL 5.7.9, the following sys schema views provide progress reporting for long-running
transactions:

processlist
session
x$processlist
x$session

https://github.com/MarkLeith/mysql-sys

sys Schema Object Reference

2922

Assuming that the required instruments and consumers are enabled, the progress column of these
views shows the percentage of work completed for stages that support progress reporting.

Stage progress reporting requires that the events_stages_current consumer be enabled, as well
as the instruments for which progress information is desired. Instruments for these stages currently
support progress reporting:

stage/sql/Copying to tmp table
stage/innodb/alter table (end)
stage/innodb/alter table (flush)
stage/innodb/alter table (insert)
stage/innodb/alter table (log apply index)
stage/innodb/alter table (log apply table)
stage/innodb/alter table (merge sort)
stage/innodb/alter table (read PK and internal sort)
stage/innodb/buffer pool load

For stages that do not support estimated and completed work reporting, or if the required instruments
or consumers are not enabled, the progress column is NULL.

22.4 sys Schema Object Reference
The sys schema includes tables and triggers, views, and stored procedures and functions. The
following sections provide details for each of these objects.

22.4.1 sys Schema Object Index

The following tables list sys schema objects and provide a short description of each one.

Table 22.1 sys Schema Tables and Triggers

Table or Trigger Name Description

sys_config sys schema configuration options

sys_config_insert_set_user sys_config insert trigger

sys_config_update_set_user sys_config update trigger

Table 22.2 sys Schema Views

View Name Description

host_summary, x$host_summary Statement activity, file I/O, and
connections, grouped by host

host_summary_by_file_io, x
$host_summary_by_file_io

File I/O, grouped by host

host_summary_by_file_io_type, x
$host_summary_by_file_io_type

File I/O, grouped by host and event type

host_summary_by_stages, x
$host_summary_by_stages

Statement stages, grouped by host

host_summary_by_statement_latency, x
$host_summary_by_statement_latency

Statement statistics, grouped by host

host_summary_by_statement_type, x
$host_summary_by_statement_type

Statements executed, grouped by host
and statement

innodb_buffer_stats_by_schema, x
$innodb_buffer_stats_by_schema

InnoDB buffer information, grouped by
schema

innodb_buffer_stats_by_table, x
$innodb_buffer_stats_by_table

InnoDB buffer information, grouped by
schema and table

innodb_lock_waits, x$innodb_lock_waits InnoDB lock information

sys Schema Object Index

2923

View Name Description

io_by_thread_by_latency, x
$io_by_thread_by_latency

I/O consumers, grouped by thread

io_global_by_file_by_bytes, x
$io_global_by_file_by_bytes

Global I/O consumers, grouped by file
and bytes

io_global_by_file_by_latency, x
$io_global_by_file_by_latency

Global I/O consumers, grouped by file
and latency

io_global_by_wait_by_bytes, x
$io_global_by_wait_by_bytes

Global I/O consumers, grouped by
bytes

io_global_by_wait_by_latency, x
$io_global_by_wait_by_latency

Global I/O consumers, grouped by
latency

latest_file_io, x$latest_file_io Most recent I/O, grouped by file and
thread

memory_by_host_by_current_bytes, x
$memory_by_host_by_current_bytes

Memory use, grouped by host

memory_by_thread_by_current_bytes, x
$memory_by_thread_by_current_bytes

Memory use, grouped by thread

memory_by_user_by_current_bytes, x
$memory_by_user_by_current_bytes

Memory use, grouped by user

memory_global_by_current_bytes, x
$memory_global_by_current_bytes

Memory use, grouped by allocation type

memory_global_total, x$memory_global_total Total memory use

metrics Server metrics

processlist, x$processlist Processlist information

ps_check_lost_instrumentation Variables that have lost instruments

schema_auto_increment_columns AUTO_INCREMENT column information

schema_index_statistics, x
$schema_index_statistics

Index statistics

schema_object_overview Types of objects within each schema

schema_redundant_indexes Duplicate or redundant indexes

schema_table_lock_waits, x
$schema_table_lock_waits

Sessions waiting for metadata locks

schema_table_statistics, x
$schema_table_statistics

Table statistics

schema_table_statistics_with_buffer, x
$schema_table_statistics_with_buffer

Table statistics, including InnoDB buffer
pool statistics

schema_tables_with_full_table_scans, x
$schema_tables_with_full_table_scans

Tables being accessed with full scans

schema_unused_indexes Indexes not in active use

session, x$session Processlist information for user
sessions

session_ssl_status Connection SSL information

statement_analysis, x$statement_analysis Statement aggregate statistics

statements_with_errors_or_warnings, x
$statements_with_errors_or_warnings

Statements that have produced errors
or warnings

statements_with_full_table_scans, x
$statements_with_full_table_scans

Statements that have done full table
scans

sys Schema Object Index

2924

View Name Description

statements_with_runtimes_in_95th_percentile, x
$statements_with_runtimes_in_95th_percentile

Statements with highest average
runtime

statements_with_sorting, x
$statements_with_sorting

Statements that performed sorts

statements_with_temp_tables, x
$statements_with_temp_tables

Statements that used temporary tables

user_summary, x$user_summary User statement and connection activity

user_summary_by_file_io, x
$user_summary_by_file_io

File I/O, grouped by user

user_summary_by_file_io_type, x
$user_summary_by_file_io_type

File I/O, grouped by user and event

user_summary_by_stages, x
$user_summary_by_stages

Stage events, grouped by user

user_summary_by_statement_latency, x
$user_summary_by_statement_latency

Statement statistics, grouped by user

user_summary_by_statement_type, x
$user_summary_by_statement_type

Statements executed, grouped by user
and statement

version Current sys schema and MySQL server
versions

wait_classes_global_by_avg_latency, x
$wait_classes_global_by_avg_latency

Wait class average latency, grouped by
event class

wait_classes_global_by_latency, x
$wait_classes_global_by_latency

Wait class total latency, grouped by
event class

waits_by_host_by_latency, x
$waits_by_host_by_latency

Wait events, grouped by host and event

waits_by_user_by_latency, x
$waits_by_user_by_latency

Wait events, grouped by user and event

waits_global_by_latency, x
$waits_global_by_latency

Wait events, grouped by event

x$ps_digest_95th_percentile_by_avg_us Helper view for 95th-percentile views

x$ps_digest_avg_latency_distribution Helper view for 95th-percentile views

x$ps_schema_table_statistics_io Helper view for table-statistics views

x$schema_flattened_keys Helper view for
schema_redundant_indexes

Table 22.3 sys Schema Stored Procedures

Procedure Name Description

create_synonym_db() Create synonym for schema

diagnostics() Collect system diagnostic information

execute_prepared_stmt() Execute prepared statement

ps_setup_disable_background_threads() Disable background thread
instrumentation

ps_setup_disable_consumer() Disable consumers

ps_setup_disable_instrument() Disable instruments

ps_setup_disable_thread() Disable instrumentation for thread

sys Schema Object Index

2925

Procedure Name Description

ps_setup_enable_background_threads() Enable background thread
instrumentation

ps_setup_enable_consumer() Enable consumers

ps_setup_enable_instrument() Enable instruments

ps_setup_enable_thread() Enable instrumentation for thread

ps_setup_reload_saved() Reload saved Performance Schema
configuration

ps_setup_reset_to_default() Reset saved Performance Schema
configuration

ps_setup_save() Save Performance Schema
configuration

ps_setup_show_disabled() Display disabled Performance Schema
configuration

ps_setup_show_disabled_consumers() Display disabled Performance Schema
consumers

ps_setup_show_disabled_instruments() Display disabled Performance Schema
instruments

ps_setup_show_enabled() Display enabled Performance Schema
configuration

ps_setup_show_enabled_consumers() Display enabled Performance Schema
consumers

ps_setup_show_enabled_instruments() Display enabled Performance Schema
instruments

ps_statement_avg_latency_histogram() Display statement latency histogram

ps_trace_statement_digest() Trace Performance Schema
instrumentation for digest

ps_trace_thread() Dump Performance Schema data for
thread

ps_truncate_all_tables() Truncate Performance Schema
summary tables

statement_performance_analyzer() Report of statements running on server

table_exists() Whether a table exists

Table 22.4 sys Schema Stored Functions

Function Name Description

extract_schema_from_file_name() Extract schema name from file path
name

extract_table_from_file_name() Extract table name from file path name

format_bytes() Convert byte value to value with units

format_path() Replace data and temp-file directories
in path name with symbolic values

format_statement() Truncate long statement to fixed length

format_time() Convert picoseconds value to value with
units

list_add() Add item to list

list_drop() Remove item from list

sys Schema Tables and Triggers

2926

Function Name Description

ps_is_account_enabled() Check whether account instrumentation
is enabled

ps_is_consumer_enabled() Check whether consumer is enabled

ps_is_instrument_default_enabled() Check whether instrument is enabled

ps_is_instrument_default_timed() Check whether instrument is timed

ps_is_thread_instrumented() Check whether thread is instrumented

ps_thread_account() Return account for thread ID

ps_thread_id() Return thread ID for connection ID

ps_thread_stack() Return event information for thread ID

ps_thread_trx_info() Return transaction information for
thread ID

sys_get_config() Return sys schema configuration
option

version_major() MySQL server major version number

version_minor() MySQL server minor version number

version_patch() MySQL server patch release version
number

22.4.2 sys Schema Tables and Triggers

The following sections describe sys schema tables and triggers.

22.4.2.1 The sys_config Table

This table contains sys schema configuration options, one row per option. Configuration changes
made by updating this table persist across client sessions and server restarts.

The sys_config table has these columns:

• variable

The configuration option name.

• value

The configuration option value.

• set_time

The timestamp of the most recent modification to the row.

• set_by

The account that made the most recent modification to the row. The value is NULL if the row has not
been changed since the sys schema was installed.

As an efficiency measure to minimize the number of direct reads from the sys_config table,
sys schema functions that use a value from this table check for a user-defined variable with a
corresponding name, which is the user-defined variable having the same name plus a @sys.
prefix. (For example, the variable corresponding to the diagnostics.include_raw option is
@sys.diagnostics.include_raw.) If the user-defined variable exists in the current session
and is non-NULL, the function uses its value in preference to the value in the sys_config table.
Otherwise, the function reads and uses the value from the table. In the latter case, the calling function
conventionally also sets the corresponding user-defined variable to the table value so that further

sys Schema Tables and Triggers

2927

references to the configuration option within the same session use the variable and need not read the
table again.

For example, the statement_truncate_len option controls the maximum length of statements
returned by the format_statement() function. The default is 64. To temporarily change the value
to 32 for your current session, set the corresponding @sys.statement_truncate_len user-defined
variable:

mysql> SET @stmt = 'SELECT variable, value, set_time, set_by FROM sys_config';
mysql> SELECT format_statement(@stmt);
+--+
| format_statement(@stmt) |
+--+
| SELECT variable, value, set_time, set_by FROM sys_config |
+--+
mysql> SET @sys.statement_truncate_len = 32;
mysql> SELECT format_statement(@stmt);
+-----------------------------------+
| format_statement(@stmt) |
+-----------------------------------+
| SELECT variabl ... ROM sys_config |
+-----------------------------------+

Subsequent invocations of format_statement() within the session continue to use the user-defined
variable value (32), rather than the value stored in the table (64).

To stop using the user-defined variable and revert to using the value in the table, set the variable to
NULL within your session:

mysql> SET @sys.statement_truncate_len = NULL;
mysql> SELECT format_statement(@stmt);
+--+
| format_statement(@stmt) |
+--+
| SELECT variable, value, set_time, set_by FROM sys_config |
+--+

Alternatively, end your current session (causing the user-defined variable to no longer exist) and begin
a new session.

The conventional relationship just described between options in the sys_config table and user-
defined variables can be exploited to make temporary configuration changes that end when your
session ends. However, if you set a user-defined variable and then subsequently change the
corresponding table value within the same session, the changed table value will not be used in that
session as long as the user-defined variable exists with a non-NULL value. (The changed table value
will be used in other sessions that do not have the user-defined variable assigned.)

The following list describes the options in the sys_config table and the corresponding user-defined
variables:

• diagnostics.allow_i_s_tables, @sys.diagnostics.allow_i_s_tables

If this option is ON, the diagnostics() procedure is permitted to perform table scans on the
INFORMATION_SCHEMA.TABLES table. This can be expensive if there are many tables. The default
is OFF.

This option was added in MySQL 5.7.9.

• diagnostics.include_raw, @sys.diagnostics.include_raw

If this option is ON, the diagnostics() procedure includes the raw output from querying the
metrics view. The default is OFF.

This option was added in MySQL 5.7.9.

sys Schema Tables and Triggers

2928

• ps_thread_trx_info.max_length, @sys.ps_thread_trx_info.max_length

The maximum length for JSON output produced by the ps_thread_trx_info() function. The
default is 65535.

This option was added in MySQL 5.7.9.

• statement_performance_analyzer.limit,
@sys.statement_performance_analyzer.limit

The maximum number of rows to return for views that have no built-in limit. (For example, the
statements_with_runtimes_in_95th_percentile view has a built-in limit in the sense that it
returns only statements with average execution time in the 95th percentile.) The default is 100.

This option was added in MySQL 5.7.9.

• statement_performance_analyzer.view,
@sys.statement_performance_analyzer.view

The custom query or view to be used by the statement_performance_analyzer() procedure
(which is itself invoked by the diagnostics() procedure). If the option value contains a space,
it is interpreted as a query. Otherwise, it must be the name of an existing view that queries the
Performance Schema events_statements_summary_by_digest table. There cannot be any
LIMIT clause in the query or view definition if the statement_performance_analyzer.limit
configuration option is greater than 0. The default is NULL (no custom view defined).

This option was added in MySQL 5.7.9.

• statement_truncate_len, @sys.statement_truncate_len

The maximum length of statements returned by the format_statement() function. Longer
statements are truncated to this length. The default is 64.

Other options can be added to the sys_config table. For example, the diagnostics() and
execute_prepared_stmt() procedures use the debug option if it exists, but this option is not part
of the sys_config table by default because debug output normally is enabled only temporarily, by
setting the corresponding @sys.debug user-defined variable. To enable debug output without having
to set that variable in individual sessions, add the option to the table:

mysql> INSERT INTO sys_config (variable, value) VALUES('debug', 'ON');

To change the debug setting in the table, do two things. First, modify the value in the table itself:

mysql> UPDATE sys_config SET value = 'OFF' WHERE variable = 'debug';

Second, to also ensure that procedure invocations within the current session use the changed value
from the table, set the corresponding user-defined variable to NULL:

mysql> SET @sys.debug = NULL;

22.4.2.2 The sys_config_insert_set_user Trigger

For rows added to the sys_config table by INSERT statements, the
sys_config_insert_set_user trigger sets the set_by column to the current user.

22.4.2.3 The sys_config_update_set_user Trigger

The sys_config_update_set_user trigger for the sys_config table is similar to the
sys_config_insert_set_user trigger, but for UPDATE statements.

sys Schema Views

2929

22.4.3 sys Schema Views

The following sections describe sys schema views.

The sys schema contains many views that summarize Performance Schema tables in various ways.
Most of these views come in pairs, such that one member of the pair has the same name as the other
member, plus a x$ prefix. For example, the host_summary_by_file_io view summarizes file I/
O grouped by host and displays latencies converted from picoseconds to more readable values (with
units);

mysql> SELECT * FROM host_summary_by_file_io;
+------------+-------+------------+
| host | ios | io_latency |
+------------+-------+------------+
| localhost | 67570 | 5.38 s |
| background | 3468 | 4.18 s |
+------------+-------+------------+

The x$host_summary_by_file_io view summarizes the same data but displays unformatted
picosecond latencies:

mysql> SELECT * FROM x$host_summary_by_file_io;
+------------+-------+---------------+
| host | ios | io_latency |
+------------+-------+---------------+
| localhost | 67574 | 5380678125144 |
| background | 3474 | 4758696829416 |
+------------+-------+---------------+

The view without the x$ prefix is intended to provide output that is more user friendly and easier to
read. The view with the x$ prefix that displays the same values in raw form is intended more for use
with other tools that perform their own processing on the data.

Views without the x$ prefix differ from the corresponding x$ views in these ways:

• Byte values are formatted with size units using format_bytes().

• Time values are formatted with temporal units using format_time().

• SQL statements are truncated to a maximum display width using format_statement().

• Path name are shortened using format_path().

22.4.3.1 The host_summary and x$host_summary Views

These views summarize statement activity, file I/O, and connections, grouped by host.

The host_summary and x$host_summary views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• statements

The total number of statements for the host.

• statement_latency

The total wait time of timed statements for the host.

sys Schema Views

2930

• statement_avg_latency

The average wait time per timed statement for the host.

• table_scans

The total number of table scans for the host.

• file_ios

The total number of file I/O events for the host.

• file_io_latency

The total wait time of timed file I/O events for the host.

• current_connections

The current number of connections for the host.

• total_connections

The total number of connections for the host.

• unique_users

The number of distinct users for the host.

• current_memory

The current amount of allocated memory for the host.

• total_memory_allocated

The total amount of allocated memory for the host.

22.4.3.2 The host_summary_by_file_io and x$host_summary_by_file_io Views

These views summarize file I/O, grouped by host. By default, rows are sorted by descending total file I/
O latency.

The host_summary_by_file_io and x$host_summary_by_file_io views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• ios

The total number of file I/O events for the host.

• io_latency

The total wait time of timed file I/O events for the host.

22.4.3.3 The host_summary_by_file_io_type and x$host_summary_by_file_io_type
Views

These views summarize file I/O, grouped by host and event type. By default, rows are sorted by host
and descending total I/O latency.

sys Schema Views

2931

The host_summary_by_file_io_type and x$host_summary_by_file_io_type views have
these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• event_name

The file I/O event name.

• total

The total number of occurrences of the file I/O event for the host.

• total_latency

The total wait time of timed occurrences of the file I/O event for the host.

• max_latency

The maximum single wait time of timed occurrences of the file I/O event for the host.

22.4.3.4 The host_summary_by_stages and x$host_summary_by_stages Views

These views summarize statement stages, grouped by host. By default, rows are sorted by host and
descending total latency.

The host_summary_by_stages and x$host_summary_by_stages views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• event_name

The stage event name.

• total

The total number of occurrences of the stage event for the host.

• total_latency

The total wait time of timed occurrences of the stage event for the host.

• avg_latency

The average wait time per timed occurrence of the stage event for the host.

22.4.3.5 The host_summary_by_statement_latency and x
$host_summary_by_statement_latency Views

These views summarize overall statement statistics, grouped by host. By default, rows are sorted by
descending total latency.

The host_summary_by_statement_latency and x$host_summary_by_statement_latency
views have these columns:

sys Schema Views

2932

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• total

The total number of statements for the host.

• total_latency

The total wait time of timed statements for the host.

• max_latency

The maximum single wait time of timed statements for the host.

• lock_latency

The total time waiting for locks by timed statements for the host.

• rows_sent

The total number of rows returned by statements for the host.

• rows_examined

The total number of rows read from storage engines by statements for the host.

• rows_affected

The total number of rows affected by statements for the host.

• full_scans

The total number of full table scans by statements for the host.

22.4.3.6 The host_summary_by_statement_type and x
$host_summary_by_statement_type Views

These views summarize informaion about statements executed, grouped by host and statement type.
By default, rows are sorted by host and descending total latency.

The host_summary_by_statement_type and x$host_summary_by_statement_type views
have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• statement

The final component of the statement event name.

• total

The total number of occurrences of the statement event for the host.

• total_latency

sys Schema Views

2933

The total wait time of timed occurrences of the statement event for the host.

• max_latency

The maximum single wait time of timed occurrences of the statement event for the host.

• lock_latency

The total time waiting for locks by timed occurrences of the statement event for the host.

• rows_sent

The total number of rows returned by occurrences of the statement event for the host.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement event for the
host.

• rows_affected

The total number of rows affected by occurrences of the statement event for the host.

• full_scans

The total number of full table scans by occurrences of the statement event for the host.

22.4.3.7 The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema
Views

These views summarize the information in the INFORMATION_SCHEMA INNODB_BUFFER_PAGE table,
grouped by schema. By default, rows are sorted by descending buffer size.

The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema views have
these columns:

• object_schema

The schema name for the object, or InnoDB System if the table belongs to the InnoDB storage
engine.

• allocated

The total number of bytes allocated for the schema.

• data

The total number of data bytes allocated for the schema.

• pages

The total number of pages allocated for the schema.

• pages_hashed

The total number of hashed pages allocated for the schema.

• pages_old

The total number of old pages allocated for the schema.

• rows_cached

sys Schema Views

2934

The total number of cached rows for the schema.

22.4.3.8 The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table Views

These views summarize the information in the INFORMATION_SCHEMA INNODB_BUFFER_PAGE table,
grouped by schema and table. By default, rows are sorted by descending buffer size.

The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table views have
these columns:

• object_schema

The schema name for the object, or InnoDB System if the table belongs to the InnoDB storage
engine.

• object_name

The table name.

• allocated

The total number of bytes allocated for the table.

• data

The number of data bytes allocated for the table.

• pages

The total number of pages allocated for the table.

• pages_hashed

The number of hashed pages allocated for the table.

• pages_old

The number of old pages allocated for the table.

• rows_cached

The number of cached rows for the table.

22.4.3.9 The innodb_lock_waits and x$innodb_lock_waits Views

These views summarize the InnoDB locks that transactions are waiting for. By default, rows are sorted
by descending lock age.

The innodb_lock_waits and x$innodb_lock_waits views have these columns:

• wait_started

The time at which the lock wait started.

• wait_age

How long the lock has been waited for, as a TIME value.

• wait_age_secs

How long the lock has been waited for, in seconds.

sys Schema Views

2935

This column was added in MySQL 5.7.9.

• locked_table

The table that is locked.

• locked_index

The index that is locked.

• locked_type

The type of the waiting lock.

• waiting_trx_id

The ID of the waiting transaction.

• waiting_trx_started

The time at which the waiting transaction started.

• waiting_trx_age

How long the waiting transaction has been waiting, as a TIME value.

• waiting_trx_rows_locked

The number of rows locked by the waiting transaction.

• waiting_trx_rows_modified

The number of rows modified by the waiting transaction.

• waiting_pid

The processlist ID of the waiting transaction.

• waiting_query

The statement that is waiting for the lock.

• waiting_lock_id

The ID of the waiting lock.

• waiting_lock_mode

The mode of the waiting lock.

• blocking_trx_id

The ID of the transaction that is blocking the waiting lock.

• blocking_pid

The processlist ID of the blocking transaction.

• blocking_query

The statement the blocking transaction is executing.

• blocking_lock_id

sys Schema Views

2936

The ID of the lock that is blocking the waiting lock.

• blocking_lock_mode

The mode of the lock that is blocking the waiting lock.

• blocking_trx_started

The time at which the blocking transaction started.

• blocking_trx_age

How long the blocking transaction has been executing, as a TIME value.

• blocking_trx_rows_locked

The number of rows locked by the blocking transaction.

• blocking_trx_rows_modified

The number of rows modified by the blocking transaction.

• sql_kill_blocking_query

The KILL statement to execute to kill the blocking statement.

This column was added in MySQL 5.7.9.

• sql_kill_blocking_connection

The KILL statement to execute to kill the session running the blocking statement.

This column was added in MySQL 5.7.9.

22.4.3.10 The io_by_thread_by_latency and x$io_by_thread_by_latency Views

These views summarize I/O consumers to display time waiting for I/O, grouped by thread. By default,
rows are sorted by descending total I/O latency.

The io_by_thread_by_latency and x$io_by_thread_by_latency views have these columns:

• user

For foreground threads, the account associated with the thread. For background threads, the thread
name.

• total

The total number of I/O events for the thread.

• total_latency

The total wait time of timed I/O events for the thread.

• min_latency

The minimum single wait time of timed I/O events for the thread.

• avg_latency

The average wait time per timed I/O event for the thread.

• max_latency

sys Schema Views

2937

The maximum single wait time of timed I/O events for the thread.

• thread_id

The thread ID.

• processlist_id

For foreground threads, the processlist ID of the thread. For background threads, NULL.

22.4.3.11 The io_global_by_file_by_bytes and x$io_global_by_file_by_bytes Views

These views summarize global I/O consumers to display amount of I/O, grouped by file. By default,
rows are sorted by descending total I/O (bytes read and written).

The io_global_by_file_by_bytes and x$io_global_by_file_by_bytes views have these
columns:

• file

The file path name.

• count_read

The total number of read events for the file.

• total_read

The total number of bytes read from the file.

• avg_read

The average number of bytes per read from the file.

• count_write

The total number of write events for the file.

• total_written

The total number of bytes written to the file.

• avg_write

The average number of bytes per write to the file.

• total

The total number of bytes read and written for the file.

• write_pct

The percentage of total bytes of I/O that were writes.

22.4.3.12 The io_global_by_file_by_latency and x$io_global_by_file_by_latency Views

These views summarize global I/O consumers to display time waiting for I/O, grouped by file. By
default, rows are sorted by descending total latency.

The io_global_by_file_by_latency and x$io_global_by_file_by_latency views have
these columns:

• file

sys Schema Views

2938

The file path name.

• total

The total number of I/O events for the file.

• total_latency

The total wait time of timed I/O events for the file.

• count_read

The total number of read I/O events for the file.

• read_latency

The total wait time of timed read I/O events for the file.

• count_write

The total number of write I/O events for the file.

• write_latency

The total wait time of timed write I/O events for the file.

• count_misc

The total number of other I/O events for the file.

• misc_latency

The total wait time of timed other I/O events for the file.

22.4.3.13 The io_global_by_wait_by_bytes and x$io_global_by_wait_by_bytes Views

These views summarize global I/O consumers to display amount of I/O and time waiting for I/O,
grouped by event. By default, rows are sorted by descending total I/O (bytes read and written).

The io_global_by_wait_by_bytes and x$io_global_by_wait_by_bytes views have these
columns:

• event_name

The I/O event name, with the wait/io/file/ prefix stripped.

• total

The total number of occurrences of the I/O event.

• total_latency

The total wait time of timed occurrences of the I/O event.

• min_latency

The minimum single wait time of timed occurrences of the I/O event.

• avg_latency

The average wait time per timed occurrence of the I/O event.

• max_latency

sys Schema Views

2939

The maximum single wait time of timed occurrences of the I/O event.

• count_read

The number of read requests for the I/O event.

• total_read

The number of bytes read for the I/O event.

• avg_read

The average number of bytes per read for the I/O event.

• count_write

The number of write requests for the I/O event.

• total_written

The number of bytes written for the I/O event.

• avg_written

The average number of bytes per write for the I/O event.

• total_requested

The total number of bytes read and written for the I/O event.

22.4.3.14 The io_global_by_wait_by_latency and x$io_global_by_wait_by_latency Views

These views summarize global I/O consumers to display amount of I/O and time waiting for I/O,
grouped by event. By default, rows are sorted by descending total latency.

The io_global_by_wait_by_latency and x$io_global_by_wait_by_latency views have
these columns:

• event_name

The I/O event name, with the wait/io/file/ prefix stripped.

• total

The total number of occurrences of the I/O event.

• total_latency

The total wait time of timed occurrences of the I/O event.

• avg_latency

The average wait time per timed occurrence of the I/O event.

• max_latency

The maximum single wait time of timed occurrences of the I/O event.

• read_latency

The total wait time of timed read occurrences of the I/O event.

• write_latency

sys Schema Views

2940

The total wait time of timed write occurrences of the I/O event.

• misc_latency

The total wait time of timed other occurrences of the I/O event.

• count_read

The number of read requests for the I/O event.

• total_read

The number of bytes read for the I/O event.

• avg_read

The average number of bytes per read for the I/O event.

• count_write

The number of write requests for the I/O event.

• total_written

The number of bytes written for the I/O event.

• avg_written

The average number of bytes per write for the I/O event.

22.4.3.15 The latest_file_io and x$latest_file_io Views

These views summarize file I/O activity, grouped by file and thread. By default, rows are sorted with
most recent I/O first.

The latest_file_io and x$latest_file_io views have these columns:

• thread

For foreground threads, the account associated with the thread (and port number for TCP/IP
connections). For background threads, the thread name and thread ID

• file

The file path name.

• latency

The wait time of the file I/O event.

• operation

The type of operation.

• requested

The number of data bytes requested for the file I/O event.

22.4.3.16 The memory_by_host_by_current_bytes and x
$memory_by_host_by_current_bytes Views

These views summarize memory use, grouped by host. By default, rows are sorted by descending
amount of memory used.

sys Schema Views

2941

The memory_by_host_by_current_bytes and x$memory_by_host_by_current_bytes views
have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• current_count_used

The current number of allocated memory blocks that have not been freed yet for the host.

• current_allocated

The current number of allocated bytes that have not been freed yet for the host.

• current_avg_alloc

The current number of allocated bytes per memory block for the host.

• current_max_alloc

The largest single current memory allocation in bytes for the host.

• total_allocated

The total memory allocation in bytes for the host.

22.4.3.17 The memory_by_thread_by_current_bytes and x
$memory_by_thread_by_current_bytes Views

These views summarize memory use, grouped by thread. By default, rows are sorted by descending
amount of memory used.

The memory_by_thread_by_current_bytes and x$memory_by_thread_by_current_bytes
views have these columns:

• thread_id

The thread ID.

• user

The thread user or thread name.

• current_count_used

The current number of allocated memory blocks that have not been freed yet for the thread.

• current_allocated

The current number of allocated bytes that have not been freed yet for the thread.

• current_avg_alloc

The current number of allocated bytes per memory block for the thread.

• current_max_alloc

The largest single current memory allocation in bytes for the thread.

• total_allocated

sys Schema Views

2942

The total memory allocation in bytes for the thread.

22.4.3.18 The memory_by_user_by_current_bytes and x
$memory_by_user_by_current_bytes Views

These views summarize memory use, grouped by user. By default, rows are sorted by descending
amount of memory used.

The memory_by_user_by_current_bytes and x$memory_by_user_by_current_bytes views
have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• current_count_used

The current number of allocated memory blocks that have not been freed yet for the user.

• current_allocated

The current number of allocated bytes that have not been freed yet for the user.

• current_avg_alloc

The current number of allocated bytes per memory block for the user.

• current_max_alloc

The largest single current memory allocation in bytes for the user.

• total_allocated

The total memory allocation in bytes for the user.

22.4.3.19 The memory_global_by_current_bytes and x
$memory_global_by_current_bytes Views

These views summarize memory use, grouped by allocation type (that is, by event). By default, rows
are sorted by descending amount of memory used.

The memory_global_by_current_bytes and x$memory_global_by_current_bytes views
have these columns:

• event_name

The memory event name.

• current_count

The total number of occurrences of the event.

• current_alloc

The current number of allocated bytes that have not been freed yet for the event.

• current_avg_alloc

The current number of allocated bytes per memory block for the event.

sys Schema Views

2943

• high_count

The high-water mark for number of memory blocks allocated for the event.

• high_alloc

The high-water mark for number of bytes allocated for the event.

• high_avg_alloc

The high-water mark for average number of bytes per memory block allocated for the event.

22.4.3.20 The memory_global_total and x$memory_global_total Views

These views summarize total memory use within the server.

The memory_global_total and x$memory_global_total views have these columns:

• total_allocated

The total bytes of memory allocated within the server.

22.4.3.21 The metrics View

This view summarizes MySQL server metrics to show variable names, values, types, and whether they
are enabled. By default, rows are sorted by variable type and name.

This view was added in MySQL 5.7.9.

The metrics view includes this information:

• Global status variables from the Performance Schema global_status table

• InnoDB metrics from the INFORMATION_SCHEMA INNODB_METRICS table

• Current and total memory allocation, based on the Performance Schema memory instrumentation

• The current time (human readable and Unix timestamp formats)

There is some duplication of information between the global_status and INNODB_METRICS tables,
which the metrics view eliminates.

The metrics view has these columns:

• Variable_name

The metric name. The metric type determines the source from which the name is taken:

• For global status variables: The VARIABLE_NAME column of the global_status table

• For InnoDB metrics: The NAME column of the INNODB_METRICS table

• For other metrics: A view-provided descriptive string

• Variable_value

The metric value. The metric type determines the source from which the value is taken:

• For global status variables: The VARIABLE_VALUE column of the global_status table

• For InnoDB metrics: The COUNT column of the INNODB_METRICS table

• For memory metrics: The relevant column from the Performance Schema
memory_summary_global_by_event_name table

sys Schema Views

2944

• For the current time: The value of NOW(3) or UNIX_TIMESTAMP(NOW(3))

• Type

The metric type:

• For global status variables: Global Status

• For InnoDB metrics: InnoDB Metrics - %, where % is replaced by the value of the SUBSYSTEM
column of the INNODB_METRICS table

• For memory metrics: Performance Schema

• For the current time: System Time

• Enabled

Whether the metric is enabled:

• For global status variables: YES

• For InnoDB metrics: YES if the STATUS column of the INNODB_METRICS table is enabled, NO
otherwise

• For memory metrics: NO, YES, or PARTIAL (currently, PARTIAL occurs only for memory metrics
and indicates that not all memory/% instruments are enabled; Performance Schema memory
instruments are always enabled)

• For the current time: YES

22.4.3.22 The processlist and x$processlist Views

These views summarize processlist information. They provide more complete information than the
SHOW PROCESSLIST statement and the INFORMATION_SCHEMA PROCESSLIST table, and are also
nonblocking. By default, rows are sorted by descending process time and descending wait time.

The column descriptions here are brief. For additional information, see the description of the
Performance Schema threads table at Section 21.9.15.3, “The threads Table”.

The processlist and x$processlist views have these columns:

• thd_id

The thread ID.

• conn_id

The connection ID.

• user

The thread user or thread name.

• db

The default database for the thread, or NULL if there is none.

• command

For foreground threads, the type of command the thread is executing on behalf of the client, or
Sleep if the session is idle.

• state

sys Schema Views

2945

An action, event, or state that indicates what the thread is doing.

• time

The time in seconds that the thread has been in its current state.

• current_statement

The statement the thread is executing, or NULL if it is not executing any statement.

• statement_latency

How long the statement has been executing.

This column was added in MySQL 5.7.9.

• progress

The percentage of work completed for stages that support progress reporting. See Section 22.3, “sys
Schema Progress Reporting”.

This column was added in MySQL 5.7.9.

• lock_latency

The time spent waiting for locks by the current statement.

• rows_examined

The number of rows read from storage engines by the current statement.

• rows_sent

The number of rows returned by the current statement.

• rows_affected

The number of rows affected by the current statement.

• tmp_tables

The number of internal in-memory temporary tables created by the current statement.

• tmp_disk_tables

The number of internal on-disk temporary tables created by the current statement.

• full_scan

The number of full table scans performed by the current statement.

• last_statement

The last statement executed by the thread, if there is no currently executing statement or wait.

• last_statement_latency

How long the last statement executed.

• current_memory

The number of bytes allocated by the thread.

• last_wait

sys Schema Views

2946

The name of the most recent wait event for the thread.

• last_wait_latency

The wait time of the most recent wait event for the thread.

• source

The source file and line number containing the instrumented code that produced the event.

• trx_latency

The wait time of the current transaction for the thread.

This column was added in MySQL 5.7.9.

• trx_state

The state for the current transaction for the thread.

This column was added in MySQL 5.7.9.

• trx_autocommit

Whether autocommit mode was enabled when the current transaction started.

This column was added in MySQL 5.7.9.

• pid

The client process ID.

This column was added in MySQL 5.7.9.

• program_name

The client program name.

This column was added in MySQL 5.7.9.

22.4.3.23 The ps_check_lost_instrumentation View

This view returns information about lost Performance Schema instruments, to indicate whether the
Performance Schema is unable to monitor all runtime data.

The ps_check_lost_instrumentation view has these columns:

• variable_name

The Performance Schema status variable name indicating which type of instrument was lost.

• variable_value

The number of instruments lost.

22.4.3.24 The schema_auto_increment_columns View

This view indicates which tables have AUTO_INCREMENT columns and provides information about
those columns, such as the current and maximum column values and the usage ratio (ratio of used to
possible values). By default, rows are sorted by descending usage ratio and maximum column value.

Tables in these schemas are excluded from view output: mysql, sys, INFORMATION_SCHEMA,
performance_schema.

sys Schema Views

2947

This view was added in MySQL 5.7.9.

The schema_auto_increment_columns view has these columns:

• table_schema

The schema that contains the table.

• table_name

The table that contains the AUTO_INCREMENT column.

• column_name

The name of the AUTO_INCREMENT column.

• data_type

The data type of the column.

• column_type

The column type of the column, which is the data type plus possibly other information. For example,
for a column with a bigint(20) unsigned column type, the data type is just bigint.

• is_signed

Whether the column type is signed.

• is_unsigned

Whether the column type is unsigned.

• max_value

The maximum permitted value for the column.

• auto_increment

The current AUTO_INCREMENT value for the column.

• auto_increment_ratio

The ratio of used to permitted values for the column. This indicates how much of the sequence of
values is “used up.”

22.4.3.25 The schema_index_statistics and x$schema_index_statistics Views

These views provide index statistics. By default, rows are sorted by descending total index latency.

The schema_index_statistics and x$schema_index_statistics views have these columns:

• table_schema

The schema that contains the table.

• table_name

The table that contains the index.

• index_name

The name of the index.

sys Schema Views

2948

• rows_selected

The total number of rows read using the index.

• select_latency

The total wait time of timed reads using the index.

• rows_inserted

The total number of rows inserted into the index.

• insert_latency

The total wait time of timed inserts into the index.

• rows_updated

The total number of rows updated in the index.

• update_latency

The total wait time of timed updates in the index.

• rows_deleted

The total number of rows deleted from the index.

• delete_latency

The total wait time of timed deletes from the index.

22.4.3.26 The schema_object_overview View

This view summarizes the types of objects within each schema. By default, rows are sorted by schema
and object type.

Note

For MySQL instances with a large number of objects, this view might take a
long time to execute.

The schema_object_overview view has these columns:

• db

The schema name.

• object_type

The object type: BASE TABLE, INDEX (index_type), EVENT, FUNCTION, PROCEDURE, TRIGGER,
VIEW.

• count

The number of objects in the schema of the given type.

22.4.3.27 The schema_redundant_indexes and x$schema_flattened_keys Views

The schema_redundant_indexes view displays indexes that duplicate other indexes or
are made redundant by them. The x$schema_flattened_keys view is a helper view for
schema_redundant_indexes.

sys Schema Views

2949

These views were added in MySQL 5.7.9.

In the following column descriptions, the dominant index is the one that makes the redundant index
redundant.

The schema_redundant_indexes view has these columns:

• table_schema

The schema that contains the table.

• table_name

The table that contains the index.

• redundant_index_name

The name of the redundant index.

• redundant_index_columns

The names of the columns in the redundant index.

• redundant_index_non_unique

The number of nonunique columns in the redundant index.

• dominant_index_name

The name of the dominant index.

• dominant_index_columns

The names of the columns in the dominant index.

• dominant_index_non_unique

The number of nonunique columns in the dominant index.

• subpart_exists

Whether the index indexes only part of a column.

• sql_drop_index

The statement to execute to drop the redundant index.

The x$schema_flattened_keys view has these columns:

• table_schema

The schema that contains the table.

• table_name

The table that contains the index.

• index_name

An index name.

• non_unique

The number of nonunique columns in the index.

sys Schema Views

2950

• subpart_exists

Whether the index indexes only part of a column.

• index_columns

The name of the columns in the index.

22.4.3.28 The schema_table_lock_waits and x$schema_table_lock_waits Views

These views display which sessions are blocked waiting on metadata locks, and what is blocking them.

These views were added in MySQL 5.7.9.

The column descriptions here are brief. For additional information, see the description of the
Performance Schema metadata_locks table at Section 21.9.11.1, “The metadata_locks Table”.

The schema_table_lock_waits and x$schema_table_lock_waits views have these columns:

• object_schema

The schema containing the object to be locked.

• object_name

The name of the instrumented object.

• waiting_thread_id

The thread ID of the thread that is waiting for the lock.

• waiting_pid

The processlist ID of the thread that is waiting for the lock.

• waiting_account

The account associated with the session that is waiting for the lock.

• waiting_lock_type

The type of the waiting lock.

• waiting_lock_duration

How long the waiting lock has been waiting.

• waiting_query

The statement that is waiting for the lock.

• waiting_query_secs

How long the statement has been waiting, in seconds.

• waiting_query_rows_affected

The number of rows affected by the statement.

• waiting_query_rows_examined

The number of rows read from storage engines by the statement.

• blocking_thread_id

sys Schema Views

2951

The thread ID of the thread that is blocking the waiting lock.

• blocking_pid

The processlist ID of the thread that is blocking the waiting lock.

• blocking_account

The account associated with the thread that is blocking the waiting lock.

• blocking_lock_type

The type of lock that is blocking the waiting lock.

• blocking_lock_duration

How long the blocking lock has been held.

• sql_kill_blocking_query

The KILL statement to execute to kill the blocking statement.

• sql_kill_blocking_connection

The KILL statement to execute to kill the session running the blocking statement.

22.4.3.29 The schema_table_statistics and x$schema_table_statistics Views

These views summarize table statistics. By default, rows are sorted by descending total wait time
(tables with most contention first).

These views user a helper view, x$ps_schema_table_statistics_io.

The schema_table_statistics and x$schema_table_statistics views have these columns:

• table_schema

The schema that contains the table.

• table_name

The table name.

• total_latency

The total wait time of timed I/O events for the table.

• rows_fetched

The total number of rows read from the table.

• fetch_latency

The total wait time of timed read I/O events for the table.

• rows_inserted

The total number of rows inserted into the table.

• insert_latency

The total wait time of timed insert I/O events for the table.

sys Schema Views

2952

• rows_updated

The total number of rows updated in the table.

• update_latency

The total wait time of timed update I/O events for the table.

• rows_deleted

The total number of rows deleted from the table.

• delete_latency

The total wait time of timed delete I/O events for the table.

• io_read_requests

The total number of read requests for the table.

• io_read

The total number of bytes read from the table.

• io_read_latency

The total wait time of reads from the table.

• io_write_requests

The total number of write requests for the table.

• io_write

The total number of bytes written to the table.

• io_write_latency

The total wait time of writes to the table.

• io_misc_requests

The total number of miscellaneous I/O requests for the table.

• io_misc_latency

The total wait time of miscellaneous I/O requests for the table.

22.4.3.30 The schema_table_statistics_with_buffer and x
$schema_table_statistics_with_buffer Views

These views summarize table statistics, including InnoDB buffer pool statistics. By default, rows are
sorted by descending total wait time (tables with most contention first).

These views user a helper view, x$ps_schema_table_statistics_io.

The schema_table_statistics_with_buffer and x
$schema_table_statistics_with_buffer views have these columns:

• table_schema

The schema that contains the table.

• table_name

sys Schema Views

2953

The table name.

• rows_fetched

The total number of rows read from the table.

• fetch_latency

The total wait time of timed read I/O events for the table.

• rows_inserted

The total number of rows inserted into the table.

• insert_latency

The total wait time of timed insert I/O events for the table.

• rows_updated

The total number of rows updated in the table.

• update_latency

The total wait time of timed update I/O events for the table.

• rows_deleted

The total number of rows deleted from the table.

• delete_latency

The total wait time of timed delete I/O events for the table.

• io_read_requests

The total number of read requests for the table.

• io_read

The total number of bytes read from the table.

• io_read_latency

The total wait time of reads from the table.

• io_write_requests

The total number of write requests for the table.

• io_write

The total number of bytes written to the table.

• io_write_latency

The total wait time of writes to the table.

• io_misc_requests

The total number of miscellaneous I/O requests for the table.

• io_misc_latency

sys Schema Views

2954

The total wait time of miscellaneous I/O requests for the table.

• innodb_buffer_allocated

The total number of InnoDB buffer bytes allocated for the table.

• innodb_buffer_data

The total number of InnoDB data bytes allocated for the table.

• innodb_buffer_free

The total number of InnoDB nondata bytes allocated for the table (innodb_buffer_allocated −
innodb_buffer_data).

• innodb_buffer_pages

The total number of InnoDB pages allocated for the table.

• innodb_buffer_pages_hashed

The total number of InnoDB hashed pages allocated for the table.

• innodb_buffer_pages_old

The total number of InnoDB old pages allocated for the table.

• innodb_buffer_rows_cached

The total number of InnoDB cached rows for the table.

22.4.3.31 The schema_tables_with_full_table_scans and x
$schema_tables_with_full_table_scans Views

These views display which tables are being accessed with full table scans. By default, rows are sorted
by descending rows scanned.

The schema_tables_with_full_table_scans and x
$schema_tables_with_full_table_scans views have these columns:

• object_schema

The schema name.

• object_name

The table name.

• rows_full_scanned

The total number of rows scanned by full scans of the table.

• latency

The total wait time of full scans of the table.

22.4.3.32 The schema_unused_indexes View

These views display indexes for which there are no events, which indicates that they are not being
used. By default, rows are sorted by schema and table.

This view is most useful when the server has been up and processing long enough that its workload is
representative. Otherwise, presence of an index in this view may not be meaningful.

sys Schema Views

2955

The schema_unused_indexes view has these columns:

• object_schema

The schema name.

• object_name

The table name.

• index_name

The unused index name.

22.4.3.33 The session and x$session Views

These views are similar to processlist and x$processlist, but they filter out background
processes to display only user sessions. For descriptions of the columns, see Section 22.4.3.22, “The
processlist and x$processlist Views”.

These views were added in MySQL 5.7.9.

22.4.3.34 The session_ssl_status View

For each connection, this view displays the SSL version, cipher, and count of reused SSL sessions.

This view was added in MySQL 5.7.9.

The session_ssl_status view has these columns:

• thread_id

The thread ID for the connection.

• ssl_version

The version of SSL used for the connection.

• ssl_cipher

The SSL cipher used for the connection.

• ssl_sessions_reused

The number of reused SSL sessions for the connection.

22.4.3.35 The statement_analysis and x$statement_analysis Views

These views list normalized statements with aggregated statistics. The content mimics the MySQL
Enterprise Monitor Query Analysis view. By default, rows are sorted by descending total latency.

The statement_analysis and x$statement_analysis views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• full_scan

sys Schema Views

2956

The total number of full table scans performed by occurrences of the statement.

• exec_count

The total number of times the statement has executed.

• err_count

The total number of errors produced by occurrences of the statement.

• warn_count

The total number of warnings produced by occurrences of the statement.

• total_latency

The total wait time of timed occurrences of the statement.

• max_latency

The maximum single wait time of timed occurrences of the statement.

• avg_latency

The average wait time per timed occurrence of the statement.

• lock_latency

The total time waiting for locks by timed occurrences of the statement.

• rows_sent

The total number of rows returned by occurrences of the statement.

• rows_sent_avg

The average number of rows returned per occurrence of the statement.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement.

• rows_examined_avg

The average number of rows read from storage engines per occurrence of the statement.

• rows_affected

The total number of rows affected by occurrences of the statement.

• rows_affected_avg

The average number of rows affected per occurrence of the statement.

• tmp_tables

The total number of internal in-memory temporary tables created by occurrences of the statement.

• tmp_disk_tables

The total number of internal on-disk temporary tables created by occurrences of the statement.

• rows_sorted

sys Schema Views

2957

The total number of rows sorted by occurrences of the statement.

• sort_merge_passes

The total number of sort merge passes by occurrences of the statement.

• digest

The statement digest.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

22.4.3.36 The statements_with_errors_or_warnings and x
$statements_with_errors_or_warnings Views

These views display normalized statements that have produced errors or warnings. By default, rows
are sorted by descending error and warning counts.

The statements_with_errors_or_warnings and x
$statements_with_errors_or_warnings views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• errors

The total number of errors produced by occurrences of the statement.

• error_pct

The percentage of statement occurrences that produced errors.

• warnings

The total number of warnings produced by occurrences of the statement.

• warning_pct

The percentage of statement occurrences that produced warnings.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

sys Schema Views

2958

• digest

The statement digest.

22.4.3.37 The statements_with_full_table_scans and x
$statements_with_full_table_scans Views

These views display normalized statements that have done full table scans. By default, rows are sorted
by descending percentage of time a full scan was done and descending total latency.

The statements_with_full_table_scans and x$statements_with_full_table_scans
views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• total_latency

The total wait time of timed statement events for the statement.

• no_index_used_count

The total number of times no index was used to scan the table.

• no_good_index_used_count

The total number of times no good index was used to scan the table.

• no_index_used_pct

The percentage of the time no index was used to scan the table.

• rows_sent

The total number of rows returned from the table.

• rows_examined

The total number of rows read from the storage engine for the table.

• rows_sent_avg

The average number of rows returned from the table.

• rows_examined_avg

The average number of rows read from the storage engine for the table.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

sys Schema Views

2959

• digest

The statement digest.

22.4.3.38 The statements_with_runtimes_in_95th_percentile and x
$statements_with_runtimes_in_95th_percentile Views

These views list statements with runtimes in the 95th percentile. By default, rows are sorted by
descending average latency.

Both views use two helper views, x$ps_digest_avg_latency_distribution and x
$ps_digest_95th_percentile_by_avg_us.

The statements_with_runtimes_in_95th_percentile and x
$statements_with_runtimes_in_95th_percentile views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• full_scan

The total number of full table scans performed by occurrences of the statement.

• exec_count

The total number of times the statement has executed.

• err_count

The total number of errors produced by occurrences of the statement.

• warn_count

The total number of warnings produced by occurrences of the statement.

• total_latency

The total wait time of timed occurrences of the statement.

• max_latency

The maximum single wait time of timed occurrences of the statement.

• avg_latency

The average wait time per timed occurrence of the statement.

• rows_sent

The total number of rows returned by occurrences of the statement.

• rows_sent_avg

The average number of rows returned per occurrence of the statement.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement.

sys Schema Views

2960

• rows_examined_avg

The average number of rows read from storage engines per occurrence of the statement.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

The statement digest.

22.4.3.39 The statements_with_sorting and x$statements_with_sorting Views

These views list normalized statements that have performed sorts. By default, rows are sorted by
descending total latency.

The statements_with_sorting and x$statements_with_sorting views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• total_latency

The total wait time of timed occurrences of the statement.

• sort_merge_passes

The total number of sort merge passes by occurrences of the statement.

• avg_sort_merges

The average number of sort merge passes per occurrence of the statement.

• sorts_using_scans

The total number of sorts using table scans by occurrences of the statement.

• sort_using_range

The total number of sorts using range accesses by occurrences of the statement.

• rows_sorted

The total number of rows sorted by occurrences of the statement.

• avg_rows_sorted

The average number of rows sorted per occurrence of the statement.

• first_seen

sys Schema Views

2961

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

The statement digest.

22.4.3.40 The statements_with_temp_tables and x$statements_with_temp_tables Views

These views list normalized statements that have used temporary tables. By default, rows are sorted
by descending number of on-disk temporary tables used and descending number of in-memory
temporary tables used.

The statements_with_temp_tables and x$statements_with_temp_tables views have
these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• total_latency

The total wait time of timed occurrences of the statement.

• memory_tmp_tables

The total number of internal in-memory temporary tables created by occurrences of the statement.

• disk_tmp_tables

The total number of internal on-disk temporary tables created by occurrences of the statement.

• avg_tmp_tables_per_query

The average number of internal temporary tables created per occurrence of the statement.

• tmp_tables_to_disk_pct

The percentage of internal in-memory temporary tables that were converted to on-disk tables.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

The statement digest.

sys Schema Views

2962

22.4.3.41 The user_summary and x$user_summary Views

These views summarize statement activity, file I/O, and connections, grouped by user. By default, rows
are sorted by descending total latency.

The user_summary and x$user_summary views have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• statements

The total number of statements for the user.

• statement_latency

The total wait time of timed statements for the user.

• statement_avg_latency

The average wait time per timed statement for the user.

• table_scans

The total number of table scans for the user.

• file_ios

The total number of file I/O events for the user.

• file_io_latency

The total wait time of timed file I/O events for the user.

• current_connections

The current number of connections for the user.

• total_connections

The total number of connections for the user.

• unique_hosts

The number of distinct hosts from which connections for the user have originated.

• current_memory

The current amount of allocated memory for the user.

• total_memory_allocated

The total amount of allocated memory for the user.

22.4.3.42 The user_summary_by_file_io and x$user_summary_by_file_io Views

These views summarize file I/O, grouped by user. By default, rows are sorted by descending total file I/
O latency.

The user_summary_by_file_io and x$user_summary_by_file_io views have these columns:

sys Schema Views

2963

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• ios

The total number of file I/O events for the user.

• io_latency

The total wait time of timed file I/O events for the user.

22.4.3.43 The user_summary_by_file_io_type and x$user_summary_by_file_io_type
Views

These views summarize file I/O, grouped by user and event type. By default, rows are sorted by user
and descending total latency.

The user_summary_by_file_io_type and x$user_summary_by_file_io_type views have
these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• event_name

The file I/O event name.

• total

The total number of occurrences of the file I/O event for the user.

• latency

The total wait time of timed occurrences of the file I/O event for the user.

• max_latency

The maximum single wait time of timed occurrences of the file I/O event for the user.

22.4.3.44 The user_summary_by_stages and x$user_summary_by_stages Views

These views summarize stages, grouped by user. By default, rows are sorted by user and descending
total stage latency.

The user_summary_by_stages and x$user_summary_by_stages views have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• event_name

The stage event name.

• total

sys Schema Views

2964

The total number of occurrences of the stage event for the user.

• total_latency

The total wait time of timed occurrences of the stage event for the user.

• avg_latency

The average wait time per timed occurrence of the stage event for the user.

22.4.3.45 The user_summary_by_statement_latency and x
$user_summary_by_statement_latency Views

These views summarize overall statement statistics, grouped by user. By default, rows are sorted by
descending total latency.

The user_summary_by_statement_latency and x$user_summary_by_statement_latency
views have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• total

The total number of statements for the user.

• total_latency

The total wait time of timed statements for the user.

• max_latency

The maximum single wait time of timed statements for the user.

• lock_latency

The total time waiting for locks by timed statements for the user.

• rows_sent

The total number of rows returned by statements for the user.

• rows_examined

The total number of rows read from storage engines by statements for the user.

• rows_affected

The total number of rows affected by statements for the user.

• full_scans

The total number of full table scans by statements for the user.

22.4.3.46 The user_summary_by_statement_type and x
$user_summary_by_statement_type Views

These views summarize informaion about statements executed, grouped by user and statement type.
By default, rows are sorted by user and descending total latency.

sys Schema Views

2965

The user_summary_by_statement_type and x$user_summary_by_statement_type views
have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• statement

The final component of the statement event name.

• total

The total number of occurrences of the statement event for the user.

• total_latency

The total wait time of timed occurrences of the statement event for the user.

• max_latency

The maximum single wait time of timed occurrences of the statement event for the user.

• lock_latency

The total time waiting for locks by timed occurrences of the statement event for the user.

• rows_sent

The total number of rows returned by occurrences of the statement event for the user.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement event for the
user.

• rows_affected

The total number of rows affected by occurrences of the statement event for the user.

• full_scans

The total number of full table scans by occurrences of the statement event for the user.

22.4.3.47 The version View

This view provides the current sys schema and MySQL server versions.

The version view has these columns:

• sys_version

The sys schema version.

• mysql_version

The MySQL server version.

22.4.3.48 The wait_classes_global_by_avg_latency and x
$wait_classes_global_by_avg_latency Views

sys Schema Views

2966

These views summarize wait class average latencies, grouped by event class. By default, rows are
sorted by descending average latency. Idle events are ignored.

An event class is determined by stripping from the event name everything after the first three
components. For example, the class for wait/io/file/sql/slow_log is wait/io/file.

The wait_classes_global_by_avg_latency and x
$wait_classes_global_by_avg_latency views have these columns:

• event_class

The event class.

• total

The total number of occurrences of events in the class.

• total_latency

The total wait time of timed occurrences of events in the class.

• min_latency

The minimum single wait time of timed occurrences of events in the class.

• avg_latency

The average wait time per timed occurrence of events in the class.

• max_latency

The maximum single wait time of timed occurrences of events in the class.

22.4.3.49 The wait_classes_global_by_latency and x$wait_classes_global_by_latency
Views

These views summarize wait class total latencies, grouped by event class. By default, rows are sorted
by descending total latency. Idle events are ignored.

An event class is determined by stripping from the event name everything after the first three
components. For example, the class for wait/io/file/sql/slow_log is wait/io/file.

The wait_classes_global_by_latency and x$wait_classes_global_by_latency views
have these columns:

• event_class

The event class.

• total

The total number of occurrences of events in the class.

• total_latency

The total wait time of timed occurrences of events in the class.

• min_latency

The minimum single wait time of timed occurrences of events in the class.

• avg_latency

sys Schema Views

2967

The average wait time per timed occurrence of events in the class.

• max_latency

The maximum single wait time of timed occurrences of events in the class.

22.4.3.50 The waits_by_host_by_latency and x$waits_by_host_by_latency Views

These views summarize wait events, grouped by host and event. By default, rows are sorted by host
and descending total latency. Idle events are ignored.

The waits_by_host_by_latency and x$waits_by_host_by_latency views have these
columns:

• host

The host from which the connection originated.

• event

The event name.

• total

The total number of occurrences of the event for the host.

• total_latency

The total wait time of timed occurrences of the event for the host.

• avg_latency

The average wait time per timed occurrence of the event for the host.

• max_latency

The maximum single wait time of timed occurrences of the event for the host.

22.4.3.51 The waits_by_user_by_latency and x$waits_by_user_by_latency Views

These views summarize wait events, grouped by user and event. By default, rows are sorted by user
and descending total latency. Idle events are ignored.

The waits_by_user_by_latency and x$waits_by_user_by_latency views have these
columns:

• user

The user associated with the connection.

• event

The event name.

• total

The total number of occurrences of the event for the user.

• total_latency

The total wait time of timed occurrences of the event for the user.

• avg_latency

sys Schema Stored Procedures

2968

The average wait time per timed occurrence of the event for the user.

• max_latency

The maximum single wait time of timed occurrences of the event for the user.

22.4.3.52 The waits_global_by_latency and x$waits_global_by_latency Views

These views summarize wait events, grouped by event. By default, rows are sorted by descending total
latency. Idle events are ignored.

The waits_global_by_latency and x$waits_global_by_latency views have these columns:

• events

The event name.

• total

The total number of occurrences of the event.

• total_latency

The total wait time of timed occurrences of the event.

• avg_latency

The average wait time per timed occurrence of the event.

• max_latency

The maximum single wait time of timed occurrences of the event.

22.4.4 sys Schema Stored Procedures

The following sections describe sys schema stored procedures.

22.4.4.1 The create_synonym_db() Procedure

Given a schema name, this procedure creates a synonym schema containing views that refer to all the
tables and views in the original schema. This can be used, for example, to create a shorter name by
which to refer to a schema with a long name (such as info rather than INFORMATION_SCHEMA).

Parameters

• in_db_name VARCHAR(64): The name of the schema for which to create the synonym.

• in_synonym VARCHAR(64): The name to use for the synonym schema. This schema must not
already exist.

Example

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
| world |
+--------------------+
mysql> CALL create_synonym_db('INFORMATION_SCHEMA', 'info');

sys Schema Stored Procedures

2969

+---------------------------------------+
| summary |
+---------------------------------------+
| Created 63 views in the info database |
+---------------------------------------+
mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| info |
| mysql |
| performance_schema |
| sys |
| world |
+--------------------+
mysql> SHOW FULL TABLES FROM info;
+---------------------------------------+------------+
| Tables_in_info | Table_type |
+---------------------------------------+------------+
character_sets	VIEW
collation_character_set_applicability	VIEW
collations	VIEW
column_privileges	VIEW
columns	VIEW
...

22.4.4.2 The diagnostics() Procedure

Creates a report of the current server status for diagnostic purposes.

This procedure requires the SUPER privilege because it manipulates the session sql_log_bin system
variable to disable binary logging during its execution.

This procedure was added in MySQL 5.7.9. For MySQL 5.6, it requires MySQL 5.6.10 or higher. For
MySQL 5.7, it requires MySQL 5.7.9 or higher.

Data collected for diagnostics() includes this information:

• Information from the metrics view (see Section 22.4.3.21, “The metrics View”)

• Information from other relevant sys schema views, such as the one that detemines queries in the
95th percentile

• Information from the ndbinfo schema, if the MySQL server is part of MySQL Cluster

• Replication status (both master and slave)

Some of the sys schema views are calculated as initial (optional), overall, and delta values:

• The initial view is the content of the view at the start of the diagnostics() procedure. This
output is the same as the start values used for the delta view. The initial view is included if the
diagnostics.include_raw configuration option is ON.

• The overall view is the content of the view at the end of the diagnostics() procedure. This output
is the same as the end values used for the delta view. The overall view is always included.

• The delta view is the difference from the beginning to the end of procedure execution. The minimum
and maximum values are the minimum and maximum values from the end view, respectively. They
do not necessarily reflect the minimum and maximum values in the monitored period. Except for the
metrics view, the delta is calculated only between the first and last outputs.

Parameters

• in_max_runtime INT UNSIGNED: The maximum data collection time in seconds. Use NULL to
collect data for the default of 60 seconds. Otherwise, use a value greater than 0.

sys Schema Stored Procedures

2970

• in_interval INT UNSIGNED: The sleep time between data collections in seconds. Use NULL to
sleep for the default of 30 seconds. Otherwise, use a value greater than 0.

• in_auto_config ENUM('current', 'medium', 'full'): The Performance Schema
configuration to use. Permitted values are:

• current: Use the current instrument and consumer settings.

• medium: Enable some instruments and consumers.

• full: Enable all instruments and consumers.

Note

The more instruments and consumers enabled, the more impact on MySQL
server performance. Be careful with the medium setting and especially the
full setting, which has a large performance impact.

Use of the medium or full setting requires the SUPER privilege.

If a setting other than current is chosen, the current settings are restored at the end of the
procedure.

Configuration Options

diagnostics() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 22.4.2.1, “The sys_config Table”):

• debug, @sys.debug

If this option is ON, produce debugging output. The default is OFF.

• diagnostics.allow_i_s_tables, @sys.diagnostics.allow_i_s_tables

If this option is ON, the diagnostics() procedure is permitted to perform table scans on the
INFORMATION_SCHEMA.TABLES table. This can be expensive if there are many tables. The default
is OFF.

• diagnostics.include_raw, @sys.diagnostics.include_raw

If this option is ON, the diagnostics() procedure output includes the raw output from querying the
metrics view. The default is OFF.

• statement_truncate_len, @sys.statement_truncate_len

The maximum length of statements returned by the format_statement() function. Longer
statements are truncated to this length. The default is 64.

Example

Create a diagnostics report that starts an iteration every 30 seconds and runs for at most 120 seconds
using the current Performance Schema settings:

mysql> CALL diagnostics(120, 30, 'current');

To capture the output from the diagnostics() procedure in a file as it runs, use the mysql client
tee filename and notee commands (see Section 4.5.1.2, “mysql Commands”):

mysql> tee diag.out;
mysql> CALL diagnostics(120, 30, 'current');
mysql> notee;

sys Schema Stored Procedures

2971

22.4.4.3 The execute_prepared_stmt() Procedure

Given a SQL statement as a string, executes it as a prepared statement. The prepared statement is
deallocated after execution, so it is not subject to reuse. Thus, this procedure is useful primarily for
executing dynamic statements on a one-time basis.

This procedure uses sys_execute_prepared_stmt as the prepared statement name. If that
statement name exists when the procedure is called, its previous content is destroyed.

This procedure was added in MySQL 5.7.9.

Parameters

• in_query LONGTEXT CHARACTER SET utf8: The statement string to execute.

Configuration Options

execute_prepared_stmt() operation can be modified using the following configuration options or
their corresponding user-defined variables (see Section 22.4.2.1, “The sys_config Table”):

• debug, @sys.debug

If this option is ON, produce debugging output. The default is OFF.

Example

mysql> CALL execute_prepared_stmt('SELECT COUNT(*) FROM mysql.user');
+----------+
| COUNT(*) |
+----------+
| 15 |
+----------+

22.4.4.4 The ps_setup_disable_background_threads() Procedure

Disables Performance Schema instrumentation for all background threads. Produces a result set
indicating how many background threads were disabled. Already disabled threads do not count.

Parameters

None.

Example

mysql> CALL ps_setup_disable_background_threads();
+--------------------------------+
| summary |
+--------------------------------+
| Disabled 24 background threads |
+--------------------------------+

22.4.4.5 The ps_setup_disable_consumer() Procedure

Disables Performance Schema consumers with names that contain the argument. Produces a result
set indicating how many consumers were disabled. Already disabled consumers do not count.

Parameters

• consumer VARCHAR(128): The value used to match consumer names, which are identified by
using %consumer% as an operand for a LIKE pattern match.

A value of '' matches all consumers.

sys Schema Stored Procedures

2972

Example

Disable all statement consumers:

mysql> CALL ps_setup_disable_consumer('statement');
+----------------------+
| summary |
+----------------------+
| Disabled 4 consumers |
+----------------------+

22.4.4.6 The ps_setup_disable_instrument() Procedure

Disables Performance Schema instruments with names that contain the argument. Produces a result
set indicating how many instruments were disabled. Already disabled instruments do not count.

Parameters

• in_pattern VARCHAR(128): The value used to match instrument names, which are identified by
using %in_pattern% as an operand for a LIKE pattern match.

A value of '' matches all instruments.

Example

Disable a specific instrument:

mysql> CALL ps_setup_disable_instrument('wait/lock/metadata/sql/mdl');
+-----------------------+
| summary |
+-----------------------+
| Disabled 1 instrument |
+-----------------------+

Disable all mutex instruments:

mysql> CALL ps_setup_disable_instrument('mutex');
+--------------------------+
| summary |
+--------------------------+
| Disabled 177 instruments |
+--------------------------+

22.4.4.7 The ps_setup_disable_thread() Procedure

Given a connection ID, disables Performance Schema instrumentation for the thread. Produces a result
set indicating how many threads were disabled. Already disabled threads do not count.

Parameters

• in_connection_id BIGINT: The connection ID. This is a connection ID as given in the
PROCESSLIST_ID column of the Performance Schema threads table or the Id column of SHOW
PROCESSLIST output.

Example

Disable a specific connection by its connection ID:

mysql> CALL ps_setup_disable_thread(225);
+-------------------+
| summary |
+-------------------+

sys Schema Stored Procedures

2973

| Disabled 1 thread |
+-------------------+

Disable the current connection:

mysql> CALL ps_setup_disable_thread(CONNECTION_ID());
+-------------------+
| summary |
+-------------------+
| Disabled 1 thread |
+-------------------+

22.4.4.8 The ps_setup_enable_background_threads() Procedure

Enables Performance Schema instrumentation for all background threads. Produces a result set
indicating how many background threads were enabled. Already enabled threads do not count.

Parameters

None.

Example

mysql> CALL ps_setup_enable_background_threads();
+-------------------------------+
| summary |
+-------------------------------+
| Enabled 24 background threads |
+-------------------------------+

22.4.4.9 The ps_setup_enable_consumer() Procedure

Enables Performance Schema consumers with names that contain the argument. Produces a result set
indicating how many consumers were enabled. Already enabled consumers do not count.

Parameters

• consumer VARCHAR(128): The value used to match consumer names, which are identified by
using %consumer% as an operand for a LIKE pattern match.

A value of '' matches all consumers.

Example

Enable all statement consumers:

mysql> CALL ps_setup_enable_consumer('statement');
+---------------------+
| summary |
+---------------------+
| Enabled 4 consumers |
+---------------------+

22.4.4.10 The ps_setup_enable_instrument() Procedure

Enables Performance Schema instruments with names that contain the argument. Produces a result
set indicating how many instruments were enabled. Already enabled instruments do not count.

Parameters

• in_pattern VARCHAR(128): The value used to match instrument names, which are identified by
using %in_pattern% as an operand for a LIKE pattern match.

sys Schema Stored Procedures

2974

A value of '' matches all instruments.

Example

Enable a specific instrument:

mysql> CALL ps_setup_enable_instrument('wait/lock/metadata/sql/mdl');
+----------------------+
| summary |
+----------------------+
| Enabled 1 instrument |
+----------------------+

Enable all mutex instruments:

mysql> CALL ps_setup_enable_instrument('mutex');
+-------------------------+
| summary |
+-------------------------+
| Enabled 177 instruments |
+-------------------------+

22.4.4.11 The ps_setup_enable_thread() Procedure

Given a connection ID, enables Performance Schema instrumentation for the thread. Produces a result
set indicating how many threads were enabled. Already enabled threads do not count.

Parameters

• in_connection_id BIGINT: The connection ID. This is a connection ID as given in the
PROCESSLIST_ID column of the Performance Schema threads table or the Id column of SHOW
PROCESSLIST output.

Example

Enable a specific connection by its connection ID:

mysql> CALL ps_setup_enable_thread(225);
+------------------+
| summary |
+------------------+
| Enabled 1 thread |
+------------------+

Enable the current connection:

mysql> CALL ps_setup_enable_thread(CONNECTION_ID());
+------------------+
| summary |
+------------------+
| Enabled 1 thread |
+------------------+

22.4.4.12 The ps_setup_reload_saved() Procedure

Reloads a Performance Schema configuration saved earlier within the same session using
ps_setup_save(). For more information, see the description of ps_setup_save().

This procedure requires the SUPER privilege because it manipulates the session sql_log_bin system
variable to disable binary logging during its execution.

sys Schema Stored Procedures

2975

Parameters

None.

22.4.4.13 The ps_setup_reset_to_default() Procedure

Resets the Performance Schema configuration to its default settings.

Parameters

• in_verbose BOOLEAN: Whether to display information about each setup stage during procedure
execution. This includes the SQL statements executed.

Example

mysql> CALL ps_setup_reset_to_default(TRUE)\G
*************************** 1. row ***************************
status: Resetting: setup_actors
DELETE
FROM performance_schema.setup_actors
WHERE NOT (HOST = '%' AND USER = '%' AND ROLE = '%')

*************************** 1. row ***************************
status: Resetting: setup_actors
INSERT IGNORE INTO performance_schema.setup_actors
VALUES ('%', '%', '%')

...

22.4.4.14 The ps_setup_save() Procedure

Saves the current Performance Schema configuration. This enables you to alter the configuration
temporarily for debugging or other purposes, then restore it to the previous state by invoking the
ps_setup_reload_saved() procedure.

To prevent other simultaneous calls to save the configuration, ps_setup_save() acquires an
advisory lock named sys.ps_setup_save by calling the GET_LOCK() function. ps_setup_save()
takes a timeout parameter to indicate how many seconds to wait if the lock already exists (which
indicates that some other session has a saved configuration outstanding). If the timeout expires without
obtaining the lock, ps_setup_save() fails.

It is intended you call ps_setup_reload_saved() later within the same session as
ps_setup_save() because the configuration is saved in TEMPORARY tables. ps_setup_save()
drops the temporary talbes and releases the lock. If you end your session without invoking
ps_setup_save(), the tables and lock disappear automatically.

This procedure requires the SUPER privilege because it manipulates the session sql_log_bin system
variable to disable binary logging during its execution.

Parameters

• in_timeout INT: How many seconds to wait to obtain the sys.ps_setup_save lock. A negative
timeout value means infinite timeout.

Example

mysql> CALL ps_setup_save(10);

... make Performance Schema configuration changes ...

mysql> CALL ps_setup_reload_saved();

sys Schema Stored Procedures

2976

22.4.4.15 The ps_setup_show_disabled() Procedure

Displays all currently disabled Performance Schema configuration.

Parameters

• in_show_instruments BOOLEAN: Whether to display disabled instruments. This might be a long
list.

• in_show_threads BOOLEAN: Whether to display disabled threads.

Example

mysql> CALL ps_setup_show_disabled(TRUE, TRUE);
+----------------------------+
| performance_schema_enabled |
+----------------------------+
| 1 |
+----------------------------+

+---------------+
| enabled_users |
+---------------+
| '%'@'%' |
+---------------+

+-------------+----------------------+---------+-------+
| object_type | objects | enabled | timed |
+-------------+----------------------+---------+-------+
EVENT	mysql.%	NO	NO
EVENT	performance_schema.%	NO	NO
EVENT	information_schema.%	NO	NO
FUNCTION	mysql.%	NO	NO
FUNCTION	performance_schema.%	NO	NO
FUNCTION	information_schema.%	NO	NO
PROCEDURE	mysql.%	NO	NO
PROCEDURE	performance_schema.%	NO	NO
PROCEDURE	information_schema.%	NO	NO
TABLE	mysql.%	NO	NO
TABLE	performance_schema.%	NO	NO
TABLE	information_schema.%	NO	NO
TRIGGER	mysql.%	NO	NO
TRIGGER	performance_schema.%	NO	NO
TRIGGER	information_schema.%	NO	NO
+-------------+----------------------+---------+-------+

...

22.4.4.16 The ps_setup_show_disabled_consumers() Procedure

Displays all currently disabled Performance Schema consumers.

Parameters

None.

Example

mysql> CALL ps_setup_show_disabled_consumers();
+----------------------------------+
| disabled_consumers |
+----------------------------------+
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_statements_history |

sys Schema Stored Procedures

2977

| events_statements_history_long |
| events_transactions_history |
| events_transactions_history_long |
| events_waits_current |
| events_waits_history |
| events_waits_history_long |
+----------------------------------+

22.4.4.17 The ps_setup_show_disabled_instruments() Procedure

Displays all currently disabled Performance Schema instruments. This might be a long list.

Parameters

None.

Example

mysql> CALL ps_setup_show_disabled_instruments()\G
*************************** 1. row ***************************
disabled_instruments: wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_tc
 timed: NO
*************************** 2. row ***************************
disabled_instruments: wait/synch/mutex/sql/LOCK_des_key_file
 timed: NO
*************************** 3. row ***************************
disabled_instruments: wait/synch/mutex/sql/MYSQL_BIN_LOG::LOCK_commit
 timed: NO
...

22.4.4.18 The ps_setup_show_enabled() Procedure

Displays all currently enabled Performance Schema configuration.

Parameters

• in_show_instruments BOOLEAN: Whether to display enabled instruments. This might be a long
list.

• in_show_threads BOOLEAN: Whether to display enabled threads.

Example

mysql> CALL ps_setup_show_enabled(FALSE, FALSE);
+----------------------------+
| performance_schema_enabled |
+----------------------------+
| 1 |
+----------------------------+
1 row in set (0.00 sec)

+---------------+
| enabled_users |
+---------------+
| '%'@'%' |
+---------------+
1 row in set (0.00 sec)

+-------------+----------------------+---------+-------+
| object_type | objects | enabled | timed |
+-------------+----------------------+---------+-------+
EVENT	%.%	YES	YES
FUNCTION	%.%	YES	YES
PROCEDURE	%.%	YES	YES
TABLE	%.%	YES	YES

sys Schema Stored Procedures

2978

| TRIGGER | %.% | YES | YES |
+-------------+----------------------+---------+-------+
5 rows in set (0.01 sec)

+-----------------------------+
| enabled_consumers |
+-----------------------------+
| events_statements_current |
| events_transactions_current |
| global_instrumentation |
| thread_instrumentation |
| statements_digest |
+-----------------------------+

22.4.4.19 The ps_setup_show_enabled_consumers() Procedure

Displays all currently enabled Performance Schema consumers.

Parameters

None.

Example

mysql> CALL ps_setup_show_enabled_consumers();
+-----------------------------+
| enabled_consumers |
+-----------------------------+
| events_statements_current |
| events_transactions_current |
| global_instrumentation |
| thread_instrumentation |
| statements_digest |
+-----------------------------+

22.4.4.20 The ps_setup_show_enabled_instruments() Procedure

Displays all currently enabled Performance Schema instruments. This might be a long list.

Parameters

None.

Example

mysql> CALL ps_setup_show_enabled_instruments()\G
*************************** 1. row ***************************
enabled_instruments: wait/io/file/sql/map
 timed: YES
*************************** 2. row ***************************
enabled_instruments: wait/io/file/sql/binlog
 timed: YES
*************************** 3. row ***************************
enabled_instruments: wait/io/file/sql/binlog_cache
 timed: YES
...

22.4.4.21 The ps_statement_avg_latency_histogram() Procedure

Displays a textual histogram graph of the average latency values across all normalized statements
tracked within the Performance Schema events_statements_summary_by_digest table.

This procedure can be used to display a very high-level picture of the latency distribution of statements
running within this MySQL instance.

sys Schema Stored Procedures

2979

Parameters

None.

Example

The histogram output in statement units. For example, * = 2 units in the histogram legend means
that each * character represents 2 statements.

mysql> CALL ps_statement_avg_latency_histogram()\G
*************************** 1. row ***************************
Performance Schema Statement Digest Average Latency Histogram:

 . = 1 unit
 * = 2 units
 # = 3 units

(0 - 66ms) 88 | #############################
(66 - 133ms) 14 |
(133 - 199ms) 4 |
(199 - 265ms) 5 | **
(265 - 332ms) 1 | .
(332 - 398ms) 0 |
(398 - 464ms) 1 | .
(464 - 531ms) 0 |
(531 - 597ms) 0 |
(597 - 663ms) 0 |
(663 - 730ms) 0 |
(730 - 796ms) 0 |
(796 - 863ms) 0 |
(863 - 929ms) 0 |
(929 - 995ms) 0 |
(995 - 1062ms) 0 |

 Total Statements: 114; Buckets: 16; Bucket Size: 66 ms;

22.4.4.22 The ps_trace_statement_digest() Procedure

Traces all Performance Schema instrumentation for a specific statement digest.

If you find a statement of interest within the Performance Schema
events_statements_summary_by_digest table, specify its DIGEST column MD5 value to this
procedure and indicate the polling duration and interval. The result is a report of all statistics tracked
within Performance Schema for that digest for the interval.

The procedure also attempts to execute EXPLAIN for the longest running example of the digest during
the interval. This attempt might fail because the Performance Schema truncates long SQL_TEXT
values. Consequently, EXPLAIN will fail due to parse errors.

This procedure requires the SUPER privilege because it manipulates the session sql_log_bin system
variable to disable binary logging during its execution.

Parameters

• in_digest VARCHAR(32): The statement digest identifier to analyze.

• in_runtime INT: How long to run the analysis in seconds.

• in_interval DECIMAL(2,2): The analysis interval in seconds (which can be fractional) at which
to try to take snapshots.

• in_start_fresh BOOLEAN: Whether to truncate the Performance Schema
events_statements_history_long and events_stages_history_long tables before
starting.

sys Schema Stored Procedures

2980

• in_auto_enable BOOLEAN: Whether to automatically enable required consumers.

Example

mysql> CALL ps_trace_statement_digest('891ec6860f98ba46d89dd20b0c03652c', 10, 0.1, TRUE, TRUE);
+--------------------+
| SUMMARY STATISTICS |
+--------------------+
| SUMMARY STATISTICS |
+--------------------+
1 row in set (9.11 sec)

+------------+-----------+-----------+-----------+---------------+------------+------------+
| executions | exec_time | lock_time | rows_sent | rows_examined | tmp_tables | full_scans |
+------------+-----------+-----------+-----------+---------------+------------+------------+
| 21 | 4.11 ms | 2.00 ms | 0 | 21 | 0 | 0 |
+------------+-----------+-----------+-----------+---------------+------------+------------+
1 row in set (9.11 sec)

+--+-------+-----------+
| event_name | count | latency |
+--+-------+-----------+
stage/sql/checking query cache for query	16	724.37 us
stage/sql/statistics	16	546.92 us
stage/sql/freeing items	18	520.11 us
stage/sql/init	51	466.80 us
...		
stage/sql/cleaning up	18	11.92 us
stage/sql/executing	16	6.95 us
+--+-------+-----------+
17 rows in set (9.12 sec)

+---------------------------+
| LONGEST RUNNING STATEMENT |
+---------------------------+
| LONGEST RUNNING STATEMENT |
+---------------------------+
1 row in set (9.16 sec)

+-----------+-----------+-----------+-----------+---------------+------------+-----------+
| thread_id | exec_time | lock_time | rows_sent | rows_examined | tmp_tables | full_scan |
+-----------+-----------+-----------+-----------+---------------+------------+-----------+
| 166646 | 618.43 us | 1.00 ms | 0 | 1 | 0 | 0 |
+-----------+-----------+-----------+-----------+---------------+------------+-----------+
1 row in set (9.16 sec)

Truncated for clarity...
+---+
| sql_text |
+---+
| select hibeventhe0_.id as id1382_, hibeventhe0_.createdTime ... |
+---+
1 row in set (9.17 sec)

+--+-----------+
| event_name | latency |
+--+-----------+
stage/sql/init	8.61 us
stage/sql/Waiting for query cache lock	453.23 us
stage/sql/init	331.07 ns
stage/sql/checking query cache for query	43.04 us
...	
stage/sql/freeing items	30.46 us
stage/sql/cleaning up	662.13 ns
+--+-----------+
18 rows in set (9.23 sec)

+----+-------------+--------------+-------+---------------+-----------+---------+-------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------------+-------+---------------+-----------+---------+-------------+------+-------+
| 1 | SIMPLE | hibeventhe0_ | const | fixedTime | fixedTime | 775 | const,const | 1 | NULL |

sys Schema Stored Procedures

2981

+----+-------------+--------------+-------+---------------+-----------+---------+-------------+------+-------+
1 row in set (9.27 sec)

Query OK, 0 rows affected (9.28 sec)

22.4.4.23 The ps_trace_thread() Procedure

Dumps all Performance Schema data for an instrumented thread to a .dot formatted graph file (for the
DOT graph description language). Each result set returned from the procedure should be used for a
complete graph.

This procedure requires the SUPER privilege because it manipulates the session sql_log_bin system
variable to disable binary logging during its execution.

Parameters

• in_thread_id INT: The thread to trace.

• in_outfile VARCHAR(255): The name to use for the .dot output file.

• in_max_runtime DECIMAL(20,2): The maximum number of seconds (which can be fractional) to
collect data. Use NULL to collect data for the default of 60 seconds.

• in_interval DECIMAL(20,2): The number of seconds (which can be fractional) to sleep
between data collections. Use NULL to sleep for the default of 1 second.

• in_start_fresh BOOLEAN: Whether to reset all Performance Schema data before tracing.

• in_auto_setup BOOLEAN: Whether to disable all other threads and enable all instruments and
consumers. This also resets the settings at the end of the run.

• in_debug BOOLEAN: Whether to include file:lineno information in the graph.

Example

mysql> CALL ps_trace_thread(25, CONCAT('/tmp/stack-', REPLACE(NOW(), ' ', '-'), '.dot'), NULL, NULL, TRUE, TRUE, TRUE);
+-------------------+
| summary |
+-------------------+
| Disabled 1 thread |
+-------------------+
1 row in set (0.00 sec)

+---+
| Info |
+---+
| Data collection starting for THREAD_ID = 25 |
+---+
1 row in set (0.03 sec)

+---+
| Info |
+---+
| Stack trace written to /tmp/stack-2014-02-16-21:18:41.dot |
+---+
1 row in set (60.07 sec)

+---+
| Convert to PDF |
+---+
| dot -Tpdf -o /tmp/stack_25.pdf /tmp/stack-2014-02-16-21:18:41.dot |
+---+
1 row in set (60.07 sec)

+---+
| Convert to PNG |

sys Schema Stored Procedures

2982

+---+
| dot -Tpng -o /tmp/stack_25.png /tmp/stack-2014-02-16-21:18:41.dot |
+---+
1 row in set (60.07 sec)

+------------------+
| summary |
+------------------+
| Enabled 1 thread |
+------------------+
1 row in set (60.32 sec)

22.4.4.24 The ps_truncate_all_tables() Procedure

Truncates all Performance Schema summary tables, resetting all aggregated instrumentation as a
snapshot. Produces a result set indicating how many tables were truncated.

Parameters

• in_verbose BOOLEAN: Whether to display each TRUNCATE TABLE statement before executing it.

Example

mysql> CALL ps_truncate_all_tables(FALSE);
+---------------------+
| summary |
+---------------------+
| Truncated 44 tables |
+---------------------+

22.4.4.25 The statement_performance_analyzer() Procedure

Creates a report of the statements running on the server. The views are calculated based on the
overall and/or delta activity.

This procedure requires the SUPER privilege because it manipulates the session sql_log_bin system
variable to disable binary logging during its execution.

This procedure was added in MySQL 5.7.9.

Parameters

• in_action ENUM('snapshot', 'overall', 'delta', 'create_tmp',
'create_table', 'save', 'cleanup'): The action to take. These values are permitted:

• snapshot: Store a snapshot. The default is to make a snapshot of the current content of the
Performance Schema events_statements_summary_by_digest table. By setting in_table,
this can be overwritten to copy the content of the specified table. The snapshot is stored in the sys
schema tmp_digests temporary table.

• overall: Generate an analysis based on the content of the table specified by in_table.
For the overall analysis, in_table can be NOW() to use a fresh snapshot. This overwrites
an existing snapshot. Use NULL for in_table to use the existing snapshot. If in_table is
NULL and no snapshot exists, a new snapshot is created. The in_views parameter and the
statement_performance_analyzer.limit configuration option affect the operation of this
procedure.

• delta: Generate a delta analysis. The delta is calculated between the reference table
specified by in_table and the snapshot, which must exist. This action uses the sys
schema tmp_digests_delta temporary table. The in_views parameter and the
statement_performance_analyzer.limit configuration option affect the operation of this
procedure.

sys Schema Stored Procedures

2983

• create_table: Create a regular table suitable for storing the snapshot for later use (for example,
for calculating deltas).

• create_tmp: Create a temporary table suitable for storing the snapshot for later use (for
example, for calculating deltas).

• save: Save the snapshot in the table specified by in_table. The table must exist and have the
correct structure. If no snapshot exists, a new snapshot is created.

• cleanup: Remove the temporary tables used for the snapshot and delta.

• in_table VARCHAR(129): The table parameter used for some of the actions specified by the
in_action parameter. Use the format db_name.tbl_name or tbl_name without using any
backtick (`) identifier-quoting characters. Periods (.) are not supported in database and table
names.

The meaning of the in_table value for each in_action value is detailed in the individual
in_action value descriptions.

• in_views SET ('with_runtimes_in_95th_percentile', 'analysis',
'with_errors_or_warnings', 'with_full_table_scans', 'with_sorting',
'with_temp_tables', 'custom'): Which views to include. This parameter is a SET value, so
it can contain multiple view names, separated by commas. The default is to include all views except
custom. The following values are permitted:

• with_runtimes_in_95th_percentile: Use the
statements_with_runtimes_in_95th_percentile view.

• analysis: Use the statement_analysis view.

• with_errors_or_warnings: Use the statements_with_errors_or_warnings view.

• with_full_table_scans: Use the statements_with_full_table_scans view.

• with_sorting: Use the statements_with_sorting view.

• with_temp_tables: Use the statements_with_temp_tables view.

• custom: Use a custom view. This view must be specified using the
statement_performance_analyzer.view configuration option to name a query or an
existing view.

Configuration Options

statement_performance_analyzer() operation can be modified using the following configuration
options or their corresponding user-defined variables (see Section 22.4.2.1, “The sys_config Table”):

• debug, @sys.debug

If this option is ON, produce debugging output. The default is OFF.

• statement_performance_analyzer.limit,
@sys.statement_performance_analyzer.limit

The maximum number of rows to return for views that have no built-in limit. The default is 100.

• statement_performance_analyzer.view,
@sys.statement_performance_analyzer.view

The custom query or view to be used. If the option value contains a space, it is interpreted as a
query. Otherwise, it must be the name of an existing view that queries the Performance Schema

sys Schema Stored Procedures

2984

events_statements_summary_by_digest table. There cannot be any LIMIT clause in the
query or view definition if the statement_performance_analyzer.limit configuration option
is greater than 0. If specifying a view, use the same format as for the in_table parameter. The
default is NULL (no custom view defined).

This option was added in MySQL 5.7.9.

Example

To create a report with the queries in the 95th percentile since the last truncation of
events_statements_summary_by_digest and with a one-minute delta period:

1. Create a temporary table to store the initial snapshot.

2. Create the initial snapshot.

3. Save the initial snapshot in the temporary table.

4. Wait one minute.

5. Create a new snapshot.

6. Perform analysis based on the new snapshot.

7. Perform analysis based on the delta between the initial and new snapshots.

mysql> CALL statement_performance_analyzer('create_tmp', 'mydb.tmp_digests_ini', NULL);
Query OK, 0 rows affected (0.08 sec)

mysql> CALL statement_performance_analyzer('snapshot', NULL, NULL);
Query OK, 0 rows affected (0.02 sec)

mysql> CALL statement_performance_analyzer('save', 'mydb.tmp_digests_ini', NULL);
Query OK, 0 rows affected (0.00 sec)

mysql> DO SLEEP(60);
Query OK, 0 rows affected (1 min 0.00 sec)

mysql> CALL statement_performance_analyzer('snapshot', NULL, NULL);
Query OK, 0 rows affected (0.02 sec)

mysql> CALL statement_performance_analyzer('overall', NULL, 'with_runtimes_in_95th_percentile');
+---+
| Next Output |
+---+
| Queries with Runtime in 95th Percentile |
+---+
1 row in set (0.05 sec)

...

mysql> CALL statement_performance_analyzer('delta', 'mydb.tmp_digests_ini', 'with_runtimes_in_95th_percentile');
+---+
| Next Output |
+---+
| Queries with Runtime in 95th Percentile |
+---+
1 row in set (0.03 sec)

...

Create an overall report of the 95th percentile queries and the top 10 queries with full table scans:

mysql> CALL statement_performance_analyzer('snapshot', NULL, NULL);
Query OK, 0 rows affected (0.01 sec)

sys Schema Stored Procedures

2985

mysql> SET @sys.statement_performance_analyzer.limit = 10;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL statement_performance_analyzer('overall', NULL, 'with_runtimes_in_95th_percentile,with_full_table_scans');
+---+
| Next Output |
+---+
| Queries with Runtime in 95th Percentile |
+---+
1 row in set (0.01 sec)

...

+-------------------------------------+
| Next Output |
+-------------------------------------+
| Top 10 Queries with Full Table Scan |
+-------------------------------------+
1 row in set (0.09 sec)

...

Use a custom view showing the top 10 queries sorted by total execution time, refreshing the view every
minute using the watch command in Linux:

mysql> CREATE OR REPLACE VIEW mydb.my_statements AS
 -> SELECT sys.format_statement(DIGEST_TEXT) AS query,
 -> SCHEMA_NAME AS db,
 -> COUNT_STAR AS exec_count,
 -> sys.format_time(SUM_TIMER_WAIT) AS total_latency,
 -> sys.format_time(AVG_TIMER_WAIT) AS avg_latency,
 -> ROUND(IFNULL(SUM_ROWS_SENT / NULLIF(COUNT_STAR, 0), 0)) AS rows_sent_avg,
 -> ROUND(IFNULL(SUM_ROWS_EXAMINED / NULLIF(COUNT_STAR, 0), 0)) AS rows_examined_avg,
 -> ROUND(IFNULL(SUM_ROWS_AFFECTED / NULLIF(COUNT_STAR, 0), 0)) AS rows_affected_avg,
 -> DIGEST AS digest
 -> FROM performance_schema.events_statements_summary_by_digest
 -> ORDER BY SUM_TIMER_WAIT DESC;
Query OK, 0 rows affected (0.01 sec)

mysql> CALL statement_performance_analyzer('create_table', 'mydb.digests_prev', NULL);
Query OK, 0 rows affected (0.10 sec)

shell> watch -n 60 "mysql sys --table -e \"
> SET @sys.statement_performance_analyzer.view = 'mydb.my_statements';
> SET @sys.statement_performance_analyzer.limit = 10;
> CALL statement_performance_analyzer('snapshot', NULL, NULL);
> CALL statement_performance_analyzer('delta', 'mydb.digests_prev', 'custom');
> CALL statement_performance_analyzer('save', 'mydb.digests_prev', NULL);
> \""

Every 60.0s: mysql sys --table -e " ... Mon Dec 22 10:58:51 2014

+----------------------------------+
| Next Output |
+----------------------------------+
| Top 10 Queries Using Custom View |
+----------------------------------+
+-------------------+-------+------------+---------------+-------------+---------------+-------------------+-------------------+----------------------------------+
| query | db | exec_count | total_latency | avg_latency | rows_sent_avg | rows_examined_avg | rows_affected_avg | digest |
+-------------------+-------+------------+---------------+-------------+---------------+-------------------+-------------------+----------------------------------+
...

22.4.4.26 The table_exists() Procedure

Tests whether a given table exists as a regular table, a TEMPORARY table, or a view. The procedure
returns the table type in an OUT parameter. If both a temporary and a permanent table exist with the
given name, TEMPORARY is returned.

This procedure was added in MySQL 5.7.9.

sys Schema Stored Procedures

2986

Parameters

• in_db VARCHAR(64): The name of the database in which to check for table existance.

• in_table VARCHAR(64): The name of the table to check the existance of.

• out_exists ENUM('', 'BASE TABLE', 'VIEW', 'TEMPORARY'): The return value. This
is an OUT parameter, so it must be a variable into which the table type can be stored. When the
procedure returns, the variable has one of the following values to indicate whether the table exists:

• '': The table name does not exist as a base table, TEMPORARY table, or view.

• BASE TABLE: The table name exists as a base (permanent) table.

• VIEW: The table name exists as a view.

• TEMPORARY: The table name exists as a TEMPORARY table.

Example

mysql> CREATE DATABASE db1;
Query OK, 1 row affected (0.01 sec)

mysql> USE db1;
Database changed
mysql> CREATE TABLE t1 (id INT PRIMARY KEY);
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TABLE t2 (id INT PRIMARY KEY);
Query OK, 0 rows affected (0.20 sec)

mysql> CREATE view v_t1 AS SELECT * FROM t1;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TEMPORARY TABLE t1 (id INT PRIMARY KEY);
Query OK, 0 rows affected (0.00 sec)

mysql> CALL sys.table_exists('db1', 't1', @exists); SELECT @exists;
Query OK, 0 rows affected (0.01 sec)

+-----------+
| @exists |
+-----------+
| TEMPORARY |
+-----------+
1 row in set (0.00 sec)

mysql> CALL sys.table_exists('db1', 't2', @exists); SELECT @exists;
Query OK, 0 rows affected (0.02 sec)

+------------+
| @exists |
+------------+
| BASE TABLE |
+------------+
1 row in set (0.00 sec)

mysql> CALL sys.table_exists('db1', 'v_t1', @exists); SELECT @exists;
Query OK, 0 rows affected (0.02 sec)

+---------+
| @exists |
+---------+
| VIEW |
+---------+
1 row in set (0.00 sec)

mysql> CALL sys.table_exists('db1', 't3', @exists); SELECT @exists;
Query OK, 0 rows affected (0.00 sec)

sys Schema Stored Functions

2987

+---------+
| @exists |
+---------+
| |
+---------+
1 row in set (0.00 sec)

22.4.5 sys Schema Stored Functions

The following sections describe sys schema stored functions.

22.4.5.1 The extract_schema_from_file_name() Function

Given a file path name, returns the path component that represents the schema name. This function
assumes that the file name lies within the schema directory. For this reason, it will not work with
partitions or tables defined using their own DATA_DIRECTORY table option.

This function is useful when extracting file I/O information from the Performance Schema that includes
file path names. It provides a convenient way to display schema names, which can be more easily
understood than full path names, and can be used in joins against object schema names.

Parameters

• path VARCHAR(512): The full path to a data file from which to extract the schema name.

Return Value

A VARCHAR(64) value.

Example

mysql> SELECT extract_schema_from_file_name('/usr/local/mysql/data/world/City.ibd');
+---+
| extract_schema_from_file_name('/usr/local/mysql/data/world/City.ibd') |
+---+
| world |
+---+

22.4.5.2 The extract_table_from_file_name() Function

Given a file path name, returns the path component that represents the table name.

This function is useful when extracting file I/O information from the Performance Schema that includes
file path names. It provides a convenient way to display table names, which can be more easily
understood than full path names, and can be used in joins against object table names.

Parameters

• path VARCHAR(512): The full path to a data file from which to extract the table name.

Return Value

A VARCHAR(64) value.

Example

mysql> SELECT extract_table_from_file_name('/usr/local/mysql/data/world/City.ibd');
+--+
| extract_table_from_file_name('/usr/local/mysql/data/world/City.ibd') |
+--+
| City |

sys Schema Stored Functions

2988

+--+

22.4.5.3 The format_bytes() Function

Given a value in bytes, converts it to human-readable format and returns a string consisting of a value
and a units indicator. Depending on the size of the value, the units part is bytes, KiB (kibibytes), MiB
(mebibytes), GiB (gibibytes), TiB (tebibytes), or PiB (pebibytes).

Parameters

• bytes TEXT: The bytes value to format.

Return Value

A TEXT value.

Example

mysql> SELECT format_bytes(512), format_bytes(18446644073709551615);
+-------------------+------------------------------------+
| format_bytes(512) | format_bytes(18446644073709551615) |
+-------------------+------------------------------------+
| 512 bytes | 16383.91 PiB |
+-------------------+------------------------------------+

22.4.5.4 The format_path() Function

Given a path name, replaces subpaths that match the data directory or the temporary-file directory with
@@datadir or @@tmpdir, respectively, and returns the result. Backslashes in Windows path names
are converted to forward slashes in the result.

Parameters

• path VARCHAR(512): The path name to format.

Return Value

A VARCHAR(512) CHARACTER SET utf8 value.

Example

mysql> SELECT format_path('/usr/local/mysql/data/world/City.ibd');
+---+
| format_path('/usr/local/mysql/data/world/City.ibd') |
+---+
| @@datadir/world/City.ibd |
+---+

22.4.5.5 The format_statement() Function

Given a string (normally representing a SQL statement), reduces it to the length given by the
statement_truncate_len configuration option, and returns the result. No truncation occurs if the
string is shorter than statement_truncate_len. Otherwise, the middle part of the string is replaced
by an ellipsis (...).

This function is useful for formatting possibly lengthy statements retrieved from Performance Schema
tables to a known fixed maximum length.

Parameters

• statement LONGTEXT: The statement to format.

sys Schema Stored Functions

2989

Configuration Options

format_statement() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 22.4.2.1, “The sys_config Table”):

• statement_truncate_len, @sys.statement_truncate_len

The maximum length of statements returned by the format_statement() function. Longer
statements are truncated to this length. The default is 64.

Return Value

A LONGTEXT value.

Example

By default, format_statement() truncates statements to be no more than 64 characters. Setting
@sys.statement_truncate_len changes the truncation length for the current session:

mysql> SET @stmt = 'SELECT variable, value, set_time, set_by FROM sys_config';
mysql> SELECT format_statement(@stmt);
+--+
| format_statement(@stmt) |
+--+
| SELECT variable, value, set_time, set_by FROM sys_config |
+--+
mysql> SET @sys.statement_truncate_len = 32;
mysql> SELECT format_statement(@stmt);
+-----------------------------------+
| format_statement(@stmt) |
+-----------------------------------+
| SELECT variabl ... ROM sys_config |
+-----------------------------------+

22.4.5.6 The format_time() Function

Given a Performance Schema latency or wait time in picoseconds, converts it to human-readable
format and returns a string consisting of a value and a units indicator. Depending on the size of the
value, the units part is ns (nanoseconds), us (microseconds), ms (milliseconds), s (seconds), m
(minutes), h (hours), d (days), or w (weeks).

Parameters

• picoseconds TEXT: The picoseconds value to format.

Return Value

A TEXT value.

Example

mysql> SELECT format_time(3501), format_time(188732396662000);
+-------------------+------------------------------+
| format_time(3501) | format_time(188732396662000) |
+-------------------+------------------------------+
| 3.50 ns | 3.15 m |
+-------------------+------------------------------+

22.4.5.7 The list_add() Function

Adds a value to a comma-separated list of values and returns the result.

This function and list_drop() can be useful for manipulating the value of system variables such as
sql_mode and optimizer_switch that take a comma-separated list of values.

sys Schema Stored Functions

2990

This function was added in MySQL 5.7.9.

Parameters

• in_list TEXT: The list to be modified.

• in_add_value TEXT: The value to add to the list.

Return Value

A TEXT value.

Example

mysql> SELECT @@sql_mode;
+--+
| @@sql_mode |
+--+
| ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES |
+--+
mysql> SET @@sql_mode = list_add(@@sql_mode, 'NO_ENGINE_SUBSTITUTION');
mysql> SELECT @@sql_mode;
+---+
| @@sql_mode |
+---+
| ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+---+
mysql> SET @@sql_mode = list_drop(@@sql_mode, 'ONLY_FULL_GROUP_BY');
mysql> SELECT @@sql_mode;
+--+
| @@sql_mode |
+--+
| STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+--+

22.4.5.8 The list_drop() Function

Removes a value from a comma-separated list of values and returns the result. For more information,
see the description of list_add()

This function was added in MySQL 5.7.9.

Parameters

• in_list TEXT: The list to be modified.

• in_drop_value TEXT: The value to drop from the list.

Return Value

A TEXT value.

22.4.5.9 The ps_is_account_enabled() Function

Returns YES or NO to indicate whether Performance Schema instrumentation for a given account is
enabled.

Parameters

• in_host VARCHAR(60): The host name of the account to check.

• in_user VARCHAR(32): The user name of the account to check.

Return Value

An ENUM('YES','NO') value.

sys Schema Stored Functions

2991

Example

mysql> SELECT ps_is_account_enabled('localhost', 'root');
+--+
| ps_is_account_enabled('localhost', 'root') |
+--+
| YES |
+--+

22.4.5.10 The ps_is_consumer_enabled() Function

Returns YES or NO to indicate whether a given Performance Schema consumer is enabled, or NULL if
the argument is not a valid consumer name.

This function accounts for the consumer hierarchy, so a consumer is not considered enabled unless
all consumers on which depends are also enabled. For information about the consumer hierarchy, see
Pre-Filtering by Consumer.

Parameters

• in_consumer VARCHAR(64): The name of the consumer to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT ps_is_consumer_enabled('thread_instrumentation');
+--+
| ps_is_consumer_enabled('thread_instrumentation') |
+--+
| YES |
+--+

22.4.5.11 The ps_is_instrument_default_enabled() Function

Returns YES or NO to indicate whether a given Performance Schema instrument is enabled by default.

Parameters

• in_instrument VARCHAR(128): The name of the instrument to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT ps_is_instrument_default_enabled('memory/innodb/row_log_buf');
+---+
| ps_is_instrument_default_enabled('memory/innodb/row_log_buf') |
+---+
| NO |
+---+
mysql> SELECT ps_is_instrument_default_enabled('statement/sql/alter_user');
+--+
| ps_is_instrument_default_enabled('statement/sql/alter_user') |
+--+
| YES |
+--+

22.4.5.12 The ps_is_instrument_default_timed() Function

sys Schema Stored Functions

2992

Returns YES or NO to indicate whether a given Performance Schema instrument is timed by default.

Parameters

• in_instrument VARCHAR(128): The name of the instrument to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT ps_is_instrument_default_timed('memory/innodb/row_log_buf');
+---+
| ps_is_instrument_default_timed('memory/innodb/row_log_buf') |
+---+
| NO |
+---+
mysql> SELECT ps_is_instrument_default_timed('statement/sql/alter_user');
+--+
| ps_is_instrument_default_timed('statement/sql/alter_user') |
+--+
| YES |
+--+

22.4.5.13 The ps_is_thread_instrumented() Function

Returns YES or NO to indicate whether Performance Schema instrumentation for a given connection ID
is enabled, UNKNOWN if the ID is unknown, or NULL if the ID is NULL.

Parameters

• in_connection_id BIGINT UNSIGNED: The connection ID. This is a connection ID as given
in the PROCESSLIST_ID column of the Performance Schema threads table or the Id column of
SHOW PROCESSLIST output.

Return Value

An ENUM('YES','NO','UNKNOWN') value.

Example

mysql> SELECT ps_is_thread_instrumented(43);
+-------------------------------+
| ps_is_thread_instrumented(43) |
+-------------------------------+
| UNKNOWN |
+-------------------------------+
mysql> SELECT ps_is_thread_instrumented(CONNECTION_ID());
+--+
| ps_is_thread_instrumented(CONNECTION_ID()) |
+--+
| YES |
+--+

22.4.5.14 The ps_thread_account() Function

Given a Performance Schema thread ID, returns the user_name@host_name account associated with
the thread.

This function was added in MySQL 5.7.9.

sys Schema Stored Functions

2993

Parameters

• in_thread_id BIGINT UNSIGNED: The thread ID for which to return the account. The value
should match the THREAD_ID column from some Performance Schema threads table row.

Return Value

A TEXT value.

Example

mysql> SELECT ps_thread_account(ps_thread_id(CONNECTION_ID()));
+--+
| ps_thread_account(ps_thread_id(CONNECTION_ID())) |
+--+
| root@localhost |
+--+

22.4.5.15 The ps_thread_id() Function

Returns the Performance Schema thread ID for a given connection ID, or the thread ID for the current
connection if the connection ID is NULL.

Parameters

• in_connection_id BIGINT UNSIGNED: The ID of the connection for which to return the thread
ID. This is a connection ID as given in the PROCESSLIST_ID column of the Performance Schema
threads table or the Id column of SHOW PROCESSLIST output.

Return Value

A BIGINT UNSIGNED value.

Example

mysql> SELECT ps_thread_id(260);
+-------------------+
| ps_thread_id(260) |
+-------------------+
| 285 |
+-------------------+

22.4.5.16 The ps_thread_stack() Function

Returns a JSON formatted stack of all statements, stages, and events within the Performance Schema
for a given thread ID.

Parameters

• in_thread_id BIGINT: The ID of the thread to trace. The value should match the THREAD_ID
column from some Performance Schema threads table row.

• in_verbose BOOLEAN: Whether to include file:lineno information in the events.

Return Value

A LONGTEXT CHARACTER SET latin1 value.

Example

mysql> SELECT ps_thread_stack(37, FALSE) AS thread_stack\G

sys Schema Stored Functions

2994

*************************** 1. row ***************************
thread_stack: {"rankdir": "LR","nodesep": "0.10",
"stack_created": "2014-02-19 13:39:03", "mysql_version": "5.7.3-m13",
"mysql_user": "root@localhost","events": [{"nesting_event_id": "0",
"event_id": "10", "timer_wait": 256.35, "event_info": "sql/select",
"wait_info": "select @@version_comment limit 1\nerrors: 0\nwarnings: 0\nlock time:
...

22.4.5.17 The ps_thread_trx_info() Function

Returns a JSON object containing information about a given thread. The information includes the
current transaction, and the statements it has already executed, derived from the Performance Schema
events_transactions_current and events_statements_history tables. (The consumers for
those tables must be enabled to obtain full data in the JSON object.)

If the output exceeds the truncation length (65535 by default), a JSON error object is returned, such as:

{ "error": "Trx info truncated: Row 6 was cut by GROUP_CONCAT()" }

Similar error objects are returned for other warnings and exceptions raised during function execution.

This function was added in MySQL 5.7.9.

Parameters

• in_thread_id BIGINT UNSIGNED: The thread ID for which to return transaction information. The
value should match the THREAD_ID column from some Performance Schema threads table row.

Configuration Options

ps_thread_trx_info() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 22.4.2.1, “The sys_config Table”):

• ps_thread_trx_info.max_length, @sys.ps_thread_trx_info.max_length

The maximum length of the output. The default is 65535.

Return Value

A LONGTEXT value.

Example

mysql> SELECT ps_thread_trx_info(48)\G
*************************** 1. row ***************************
ps_thread_trx_info(48): [
 {
 "time": "790.70 us",
 "state": "COMMITTED",
 "mode": "READ WRITE",
 "autocommitted": "NO",
 "gtid": "AUTOMATIC",
 "isolation": "REPEATABLE READ",
 "statements_executed": [
 {
 "sql_text": "INSERT INTO info VALUES (1, \'foo\')",
 "time": "471.02 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 1,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,

sys Schema Stored Functions

2995

 "sort_merge_passes": 0
 },
 {
 "sql_text": "COMMIT",
 "time": "254.42 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 0,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 }
]
 },
 {
 "time": "426.20 us",
 "state": "COMMITTED",
 "mode": "READ WRITE",
 "autocommitted": "NO",
 "gtid": "AUTOMATIC",
 "isolation": "REPEATABLE READ",
 "statements_executed": [
 {
 "sql_text": "INSERT INTO info VALUES (2, \'bar\')",
 "time": "107.33 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 1,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 },
 {
 "sql_text": "COMMIT",
 "time": "213.23 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 0,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 }
]
 }
]

22.4.5.18 The sys_get_config() Function

Given a configuration option name, returns the option value from the sys_config table, or the
provided default value (which may be NULL) if the option does not exist in the table.

If sys_get_config() returns the default value and that value is NULL, it is expected that the caller is
able to handle NULL for the given configuration option.

By convention, routines that call sys_get_config() first check whether the corresponding user-
defined variable exists and is non-NULL. If so, the routine uses the variable value without reading the
sys_config table. If the variable does not exist or is NULL, the routine reads the option value from
the table and sets the user-defined variable to that value. For more information about the relationship
between configuration options and their corresponding user-defined variables, see Section 22.4.2.1,
“The sys_config Table”.

If you want to check whether the configuration option has already been set and, if not, use the return
value of sys_get_config(), you can use IFNULL(...) (see example later). However, this should

sys Schema Stored Functions

2996

not be done inside a loop (for example, for each row in a result set) because for repeated calls where
the assignment is needed only in the first iteration, using IFNULL(...) is expected to be significantly
slower than using an IF (...) THEN ... END IF; block (see example later).

Parameters

• in_variable_name VARCHAR(128): The name of the configuration option for which to return the
value.

• in_default_value VARCHAR(128): The default value to return if the configuration option is not
found in the sys_config table.

Return Value

A VARCHAR(128) value.

Example

Get a configuration value from the sys_config table, falling back to 128 as the default if the option is
not present in the table:

mysql> SELECT sys.sys_get_config('statement_truncate_len', 128) AS Value;
+-------+
| Value |
+-------+
| 64 |
+-------+

One-liner example: Check whether the option is already set; if not, assign the IFNULL(...) result
(using the value from the sys_config table):

mysql> SET @sys.statement_truncate_len =
 -> IFNULL(@sys.statement_truncate_len,
 -> sys.sys_get_config('statement_truncate_len', 64));

IF (...) THEN ... END IF; block example: Check whether the option is already set; if not,
assign the value from the sys_config table:

IF (@sys.statement_truncate_len IS NULL) THEN
 SET @sys.statement_truncate_len = sys.sys_get_config('statement_truncate_len', 64);
END IF;

22.4.5.19 The version_major() Function

This function returns the major version of the MySQL server. It was added in MySQL 5.7.9.

Parameters

None.

Return Value

A TINYINT UNSIGNED value.

Example

mysql> SELECT VERSION(), version_major();
+-----------------+-----------------+
| VERSION() | version_major() |
+-----------------+-----------------+
| 5.7.9-debug-log | 5 |

sys Schema Stored Functions

2997

+-----------------+-----------------+

22.4.5.20 The version_minor() Function

This function returns the minor version of the MySQL server. It was added in MySQL 5.7.9.

Parameters

None.

Return Value

A TINYINT UNSIGNED value.

Example

mysql> SELECT VERSION(), version_minor();
+-----------------+-----------------+
| VERSION() | version_minor() |
+-----------------+-----------------+
| 5.7.9-debug-log | 7 |
+-----------------+-----------------+

22.4.5.21 The version_patch() Function

This function returns the patch release version of the MySQL server. It was added in MySQL 5.7.9.

Parameters

None.

Return Value

A TINYINT UNSIGNED value.

Example

mysql> SELECT VERSION(), version_patch();
+-----------------+-----------------+
| VERSION() | version_patch() |
+-----------------+-----------------+
| 5.7.9-debug-log | 9 |
+-----------------+-----------------+

2998

2999

Chapter 23 Connectors and APIs

Table of Contents
23.1 MySQL Connector/ODBC .. 3002
23.2 MySQL Connector/Net .. 3003
23.3 MySQL Connector/J .. 3003
23.4 MySQL Connector/C++ ... 3003
23.5 MySQL Connector/C ... 3003
23.6 MySQL Connector/Python ... 3003
23.7 libmysqld, the Embedded MySQL Server Library .. 3003

23.7.1 Compiling Programs with libmysqld ... 3004
23.7.2 Restrictions When Using the Embedded MySQL Server ... 3004
23.7.3 Options with the Embedded Server ... 3005
23.7.4 Embedded Server Examples ... 3005

23.8 MySQL C API ... 3009
23.8.1 MySQL C API Implementations ... 3009
23.8.2 Simultaneous MySQL Server and Connector/C Installations 3010
23.8.3 Example C API Client Programs ... 3011
23.8.4 Building and Running C API Client Programs ... 3011
23.8.5 C API Data Structures .. 3017
23.8.6 C API Function Overview .. 3022
23.8.7 C API Function Descriptions ... 3026
23.8.8 C API Prepared Statements .. 3084
23.8.9 C API Prepared Statement Data Structures ... 3084
23.8.10 C API Prepared Statement Function Overview ... 3090
23.8.11 C API Prepared Statement Function Descriptions ... 3093
23.8.12 C API Threaded Function Descriptions .. 3115
23.8.13 C API Embedded Server Function Descriptions .. 3117
23.8.14 C API Client Plugin Functions ... 3117
23.8.15 Common Questions and Problems When Using the C API 3120
23.8.16 Controlling Automatic Reconnection Behavior .. 3122
23.8.17 C API Support for Multiple Statement Execution ... 3123
23.8.18 C API Prepared Statement Problems ... 3125
23.8.19 C API Prepared Statement Handling of Date and Time Values 3125
23.8.20 C API Support for Prepared CALL Statements ... 3127

23.9 MySQL PHP API .. 3130
23.10 MySQL Perl API ... 3131
23.11 MySQL Python API ... 3131
23.12 MySQL Ruby APIs .. 3132

23.12.1 The MySQL/Ruby API .. 3132
23.12.2 The Ruby/MySQL API .. 3132

23.13 MySQL Tcl API ... 3132
23.14 MySQL Eiffel Wrapper ... 3132

MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide low-
level access to the MySQL protocol and MySQL resources. Both Connectors and the APIs enable you
to connect and execute MySQL statements from another language or environment, including ODBC,
Java (JDBC), Perl, Python, PHP, Ruby, and native C and embedded MySQL instances.

Note

Connector version numbers do not correlate with MySQL Server version
numbers. See Table 23.2, “MySQL Connector Versions and MySQL Server
Versions”.

MySQL Connectors

3000

MySQL Connectors

Oracle develops a number of connectors:

• Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and OS X
platforms.

• Connector/Net enables developers to create .NET applications that connect to MySQL. Connector/
Net implements a fully functional ADO.NET interface and provides support for use with ADO.NET
aware tools. Applications that use Connector/Net can be written in any supported .NET language.

The MySQL Visual Studio Plugin works with Connector/Net and Visual Studio 2005. The plugin is
a MySQL DDEX Provider, which means that you can use the schema and data manipulation tools
available in Visual Studio to create and edit objects within a MySQL database.

• Connector/J provides driver support for connecting to MySQL from Java applications using the
standard Java Database Connectivity (JDBC) API.

• Connector/Python provides driver support for connecting to MySQL from Python applications using
an API that is compliant with the Python DB API version 2.0. No additional Python modules or
MySQL client libraries are required.

• Connector/C++ enables C++ applications to connect to MySQL.

• Connector/C is a standalone replacement for the MySQL Client Library (libmysqlclient), to be
used for C applications.

The MySQL C API

For direct access to using MySQL natively within a C application, there are two methods:

• The C API provides low-level access to the MySQL client/server protocol through the
libmysqlclient client library. This is the primary method used to connect to an instance of
the MySQL server, and is used both by MySQL command-line clients and many of the MySQL
Connectors and third-party APIs detailed here.

libmysqlclient is included in MySQL distributions and in Connector/C distributions.

• libmysqld is an embedded MySQL server library that enables you to embed an instance of the
MySQL server into your C applications.

libmysqld is included in MySQL distributions, but not in Connector/C distributions.

See also Section 23.8.1, “MySQL C API Implementations”.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported
by the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's
utilities are available to help with the process; see Section 4.7, “MySQL Program Development
Utilities”.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using libmysqlclient or
by implementing a native driver. The two solutions offer different benefits:

• Using libmysqlclient offers complete compatibility with MySQL because it uses the same
libraries as the MySQL client applications. However, the feature set is limited to the implementation

http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/connector-net/en/connector-net-visual-studio.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://www.python.org/dev/peps/pep-0249/
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://dev.mysql.com/doc/connector-c/en/index.html

Third-Party MySQL APIs

3001

and interfaces exposed through libmysqlclient and the performance may be lower as data is
copied between the native language, and the MySQL API components.

• Native drivers are an implementation of the MySQL network protocol entirely within the host
language or environment. Native drivers are fast, as there is less copying of data between
components, and they can offer advanced functionality not available through the standard MySQL
API. Native drivers are also easier for end users to build and deploy because no copy of the MySQL
client libraries is needed to build the native driver components.

Table 23.1, “MySQL APIs and Interfaces” lists many of the libraries and interfaces available for MySQL.
Table 23.2, “MySQL Connector Versions and MySQL Server Versions” shows which MySQL Server
versions each connector supports.

Table 23.1 MySQL APIs and Interfaces

EnvironmentAPI Type Notes

Ada GNU Ada MySQL Bindings libmysqlclientSee MySQL Bindings for GNU Ada

C C API libmysqlclientSee Section 23.8, “MySQL C API”.

C Connector/C Replacement
for
libmysqlclient

See MySQL Connector/C Developer
Guide.

C++ Connector/C++ libmysqlclientSee MySQL Connector/C++ Developer
Guide.

 MySQL++ libmysqlclientSee MySQL++ Web site.

 MySQL wrapped libmysqlclientSee MySQL wrapped.

Cocoa MySQL-Cocoa libmysqlclientCompatible with the Objective-C
Cocoa environment. See http://mysql-
cocoa.sourceforge.net/

D MySQL for D libmysqlclientSee MySQL for D.

Eiffel Eiffel MySQL libmysqlclientSee Section 23.14, “MySQL Eiffel
Wrapper”.

Erlang erlang-mysql-driver libmysqlclientSee erlang-mysql-driver.

Haskell Haskell MySQL Bindings Native Driver See Brian O'Sullivan's pure Haskell
MySQL bindings.

 hsql-mysql libmysqlclientSee MySQL driver for Haskell .

Java/
JDBC

Connector/J Native Driver See MySQL Connector/J Developer
Guide.

Kaya MyDB libmysqlclientSee MyDB.

Lua LuaSQL libmysqlclientSee LuaSQL.

.NET/
Mono

Connector/Net Native Driver See MySQL Connector/Net Developer
Guide.

Objective
Caml

OBjective Caml MySQL Bindings libmysqlclientSee MySQL Bindings for Objective
Caml.

Octave Database bindings for GNU
Octave

libmysqlclientSee Database bindings for GNU
Octave.

ODBC Connector/ODBC libmysqlclientSee MySQL Connector/ODBC
Developer Guide.

Perl DBI/DBD::mysql libmysqlclientSee Section 23.10, “MySQL Perl API”.

 Net::MySQL Native Driver See Net::MySQL at CPAN

PHP mysql, ext/mysql interface
(deprecated)

libmysqlclientSee Original MySQL API.

http://gnade.sourceforge.net/
http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://tangentsoft.net/mysql++/doc/
http://www.alhem.net/project/mysql/
http://mysql-cocoa.sourceforge.net/
http://mysql-cocoa.sourceforge.net/
http://www.steinmole.de/d/
http://code.google.com/p/erlang-mysql-driver/
http://www.serpentine.com/blog/software/mysql/
http://www.serpentine.com/blog/software/mysql/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://kayalang.org/library/latest/MyDB
http://keplerproject.github.io/luasql/doc/us/
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/connector-net/en/index.html
http://raevnos.pennmush.org/code/ocaml-mysql/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://octave.sourceforge.net/database/index.html
http://octave.sourceforge.net/database/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/connector-odbc/en/index.html
http://search.cpan.org/dist/Net-MySQL/MySQL.pm
http://dev.mysql.com/doc/apis-php/en/apis-php-mysql.html

MySQL Connector/ODBC

3002

EnvironmentAPI Type Notes

 mysqli, ext/mysqli interface libmysqlclientSee MySQL Improved Extension.

 PDO_MYSQL libmysqlclientSee MySQL Functions (PDO_MYSQL).

 PDO mysqlnd Native Driver

Python Connector/Python Native Driver See MySQL Connector/Python
Developer Guide.

Python Connector/Python C Extension libmysqlclientSee MySQL Connector/Python
Developer Guide.

 MySQLdb libmysqlclientSee Section 23.11, “MySQL Python
API”.

Ruby MySQL/Ruby libmysqlclientUses libmysqlclient. See
Section 23.12.1, “The MySQL/Ruby
API”.

 Ruby/MySQL Native Driver See Section 23.12.2, “The Ruby/
MySQL API”.

Scheme Myscsh libmysqlclientSee Myscsh.

SPL sql_mysql libmysqlclientSee sql_mysql for SPL.

Tcl MySQLtcl libmysqlclientSee Section 23.13, “MySQL Tcl API”.

Table 23.2 MySQL Connector Versions and MySQL Server Versions

Connector Connector version MySQL Server version

Connector/C 6.1.0 GA 5.6, 5.5, 5.1, 5.0, 4.1

Connector/C++ 1.0.5 GA 5.6, 5.5, 5.1

Connector/J 5.1.8 5.6, 5.5, 5.1, 5.0, 4.1

Connector/Net 6.5 5.6, 5.5, 5.1, 5.0

Connector/Net 6.4 5.6, 5.5, 5.1, 5.0

Connector/Net 6.3 5.6, 5.5, 5.1, 5.0

Connector/Net 6.2 (No longer
supported)

5.6, 5.5, 5.1, 5.0

Connector/Net 6.1 (No longer
supported)

5.6, 5.5, 5.1, 5.0

Connector/Net 6.0 (No longer
supported)

5.6, 5.5, 5.1, 5.0

Connector/Net 5.2 (No longer
supported)

5.6, 5.5, 5.1, 5.0

Connector/Net 1.0 (No longer
supported)

5.0, 4.0

Connector/ODBC 5.1 5.6, 5.5, 5.1, 5.0, 4.1.1+

Connector/ODBC 3.51 (Unicode not
supported)

5.6, 5.5, 5.1, 5.0, 4.1

Connector/Python 2.0 5.7, 5.6, 5.5

Connector/Python 1.2 5.7, 5.6, 5.5

23.1 MySQL Connector/ODBC

The MySQL Connector/ODBC manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

http://dev.mysql.com/doc/apis-php/en/apis-php-mysqli.html
http://dev.mysql.com/doc/apis-php/en/apis-php-pdo-mysql.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/connector-python/en/index.html
https://github.com/aehrisch/myscsh
http://www.clifford.at/spl/spldoc/sql_mysql.html

MySQL Connector/Net

3003

• Main manual: MySQL Connector/ODBC Developer Guide

• Release notes: MySQL Connector/ODBC Release Notes

23.2 MySQL Connector/Net
The MySQL Connector/Net manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Net Developer Guide

• Release notes: MySQL Connector/Net Release Notes

23.3 MySQL Connector/J
The MySQL Connector/J manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/J Developer Guide

• Release notes: MySQL Connector/J Release Notes

23.4 MySQL Connector/C++
The MySQL Connector/C++ manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/C++ Developer Guide

• Release notes: MySQL Connector/C++ Release Notes

23.5 MySQL Connector/C
The MySQL Connector/C manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/C Developer Guide

• Release notes: MySQL Connector/C Release Notes

23.6 MySQL Connector/Python
The MySQL Connector/Python manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Python Developer Guide

• Release notes: MySQL Connector/Python Release Notes

23.7 libmysqld, the Embedded MySQL Server Library
The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a
client application. The main benefits are increased speed and more simple management for embedded
applications.

The embedded server library is based on the client/server version of MySQL, which is written in C/C++.
Consequently, the embedded server also is written in C/C++. There is no embedded server available in
other languages.

The API is identical for the embedded MySQL version and the client/server version. To change a
threaded application to use the embedded library, you normally only have to add calls to the following
functions.

http://dev.mysql.com/doc/connector-odbc/en/index.html
http://dev.mysql.com/doc/relnotes/connector-odbc/en/
http://dev.mysql.com/doc/connector-net/en/index.html
http://dev.mysql.com/doc/relnotes/connector-net/en/
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/relnotes/connector-j/en/
http://dev.mysql.com/doc/connector-cpp/en/index.html
http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/relnotes/connector-c/en/
http://dev.mysql.com/doc/connector-python/en/index.html
http://dev.mysql.com/doc/relnotes/connector-python/en/

Compiling Programs with libmysqld

3004

Table 23.3 MySQL Embedded Server Library Functions

Function When to Call

mysql_library_init() Call it before any other MySQL function is called, preferably early in the
main() function.

mysql_library_end() Call it before your program exits.

mysql_thread_init() Call it in each thread you create that accesses MySQL.

mysql_thread_end() Call it before calling pthread_exit().

Then, link your code with libmysqld.a instead of libmysqlclient.a. To ensure binary
compatibility between your application and the server library, always compile your application against
headers for the same series of MySQL that was used to compile the server library. For example,
if libmysqld was compiled against MySQL 5.6 headers, do not compile your application against
MySQL 5.7 headers, or vice versa.

Because the mysql_library_xxx() functions are also included in libmysqlclient.a, you can
change between the embedded and the client/server version by just linking your application with the
right library. See Section 23.8.7.41, “mysql_library_init()”.

One difference between the embedded server and the standalone server is that for the embedded
server, authentication for connections is disabled by default.

23.7.1 Compiling Programs with libmysqld

In precompiled binary MySQL distributions that include libmysqld, the embedded server library,
MySQL builds the library using the appropriate vendor compiler if there is one.

To get a libmysqld library if you build MySQL from source yourself, you should configure MySQL
with the -DWITH_EMBEDDED_SERVER=1 option. See Section 2.9.4, “MySQL Source-Configuration
Options”.

When you link your program with libmysqld, you must also include the system-specific pthread
libraries and some libraries that the MySQL server uses. You can get the full list of libraries by
executing mysql_config --libmysqld-libs.

The correct flags for compiling and linking a threaded program must be used, even if you do not directly
call any thread functions in your code.

To compile a C program to include the necessary files to embed the MySQL server library into an
executable version of a program, the compiler will need to know where to find various files and need
instructions on how to compile the program. The following example shows how a program could be
compiled from the command line, assuming that you are using gcc, use the GNU C compiler:

gcc mysql_test.c -o mysql_test \
`/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Immediately following the gcc command is the name of the C program source file. After it, the -o
option is given to indicate that the file name that follows is the name that the compiler is to give to
the output file, the compiled program. The next line of code tells the compiler to obtain the location
of the include files and libraries and other settings for the system on which it is compiled. The
mysql_config command is contained in backticks, not single quotation marks.

On some non-gcc platforms, the embedded library depends on C++ runtime libraries and linking
against the embedded library might result in missing-symbol errors. To solve this, link using a C++
compiler or explicitly list the required libraries on the link command line.

23.7.2 Restrictions When Using the Embedded MySQL Server

The embedded server has the following limitations:

Options with the Embedded Server

3005

• No user-defined functions (UDFs).

• No stack trace on core dump.

• You cannot set this up as a master or a slave (no replication).

• Very large result sets may be unusable on low memory systems.

• You cannot connect to an embedded server from an outside process with sockets or TCP/IP.
However, you can connect to an intermediate application, which in turn can connect to an embedded
server on the behalf of a remote client or outside process.

• InnoDB is not reentrant in the embedded server and cannot be used for multiple connections, either
successively or simultaneously.

• The Event Scheduler is not available. Because of this, the event_scheduler system variable is
disabled.

• The embedded server cannot share the same secure_file_priv directory with another
server. As of MySQL 5.7.8, the default value for this directory can be set at build time with the
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR CMake option.

Some of these limitations can be changed by editing the mysql_embed.h include file and recompiling
MySQL.

23.7.3 Options with the Embedded Server

Any options that may be given with the mysqld server daemon, may be used with an
embedded server library. Server options may be given in an array as an argument to the
mysql_library_init(), which initializes the server. They also may be given in an option file like
my.cnf. To specify an option file for a C program, use the --defaults-file option as one of the
elements of the second argument of the mysql_library_init() function. See Section 23.8.7.41,
“mysql_library_init()”, for more information on the mysql_library_init() function.

Using option files can make it easier to switch between a client/server application and one where
MySQL is embedded. Put common options under the [server] group. These are read by both
MySQL versions. Client/server-specific options should go under the [mysqld] section. Put options
specific to the embedded MySQL server library in the [embedded] section. Options specific to
applications go under section labeled [ApplicationName_SERVER]. See Section 4.2.6, “Using
Option Files”.

23.7.4 Embedded Server Examples

These two example programs should work without any changes on a Linux or FreeBSD system.
For other operating systems, minor changes are needed, mostly with file paths. These examples
are designed to give enough details for you to understand the problem, without the clutter that is a
necessary part of a real application. The first example is very straightforward. The second example
is a little more advanced with some error checking. The first is followed by a command-line entry for
compiling the program. The second is followed by a GNUmake file that may be used for compiling
instead.

Example 1

test1_libmysqld.c

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "mysql.h"

MYSQL *mysql;
MYSQL_RES *results;
MYSQL_ROW record;

Embedded Server Examples

3006

static char *server_options[] = \
 { "mysql_test", "--defaults-file=my.cnf", NULL };
int num_elements = (sizeof(server_options) / sizeof(char *)) - 1;

static char *server_groups[] = { "libmysqld_server",
 "libmysqld_client", NULL };

int main(void)
{
 mysql_library_init(num_elements, server_options, server_groups);
 mysql = mysql_init(NULL);
 mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
 mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);

 mysql_real_connect(mysql, NULL,NULL,NULL, "database1", 0,NULL,0);

 mysql_query(mysql, "SELECT column1, column2 FROM table1");

 results = mysql_store_result(mysql);

 while((record = mysql_fetch_row(results))) {
 printf("%s - %s \n", record[0], record[1]);
 }

 mysql_free_result(results);
 mysql_close(mysql);
 mysql_library_end();

 return 0;
}

Here is the command line for compiling the above program:

gcc test1_libmysqld.c -o test1_libmysqld \
 `/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Example 2

To try the example, create an test2_libmysqld directory at the same level as the MySQL source
directory. Save the test2_libmysqld.c source and the GNUmakefile in the directory, and run
GNU make from inside the test2_libmysqld directory.

test2_libmysqld.c

/*
 * A simple example client, using the embedded MySQL server library
*/

#include <mysql.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

MYSQL *db_connect(const char *dbname);
void db_disconnect(MYSQL *db);
void db_do_query(MYSQL *db, const char *query);

const char *server_groups[] = {
 "test2_libmysqld_SERVER", "embedded", "server", NULL
};

int
main(int argc, char **argv)
{
 MYSQL *one, *two;

 /* mysql_library_init() must be called before any other mysql
 * functions.
 *

Embedded Server Examples

3007

 * You can use mysql_library_init(0, NULL, NULL), and it
 * initializes the server using groups = {
 * "server", "embedded", NULL
 * }.
 *
 * In your $HOME/.my.cnf file, you probably want to put:

[test2_libmysqld_SERVER]
language = /path/to/source/of/mysql/sql/share/english

 * You could, of course, modify argc and argv before passing
 * them to this function. Or you could create new ones in any
 * way you like. But all of the arguments in argv (except for
 * argv[0], which is the program name) should be valid options
 * for the MySQL server.
 *
 * If you link this client against the normal mysqlclient
 * library, this function is just a stub that does nothing.
 */
 mysql_library_init(argc, argv, (char **)server_groups);

 one = db_connect("test");
 two = db_connect(NULL);

 db_do_query(one, "SHOW TABLE STATUS");
 db_do_query(two, "SHOW DATABASES");

 mysql_close(two);
 mysql_close(one);

 /* This must be called after all other mysql functions */
 mysql_library_end();

 exit(EXIT_SUCCESS);
}

static void
die(MYSQL *db, char *fmt, ...)
{
 va_list ap;
 va_start(ap, fmt);
 vfprintf(stderr, fmt, ap);
 va_end(ap);
 (void)putc('\n', stderr);
 if (db)
 db_disconnect(db);
 exit(EXIT_FAILURE);
}

MYSQL *
db_connect(const char *dbname)
{
 MYSQL *db = mysql_init(NULL);
 if (!db)
 die(db, "mysql_init failed: no memory");
 /*
 * Notice that the client and server use separate group names.
 * This is critical, because the server does not accept the
 * client's options, and vice versa.
 */
 mysql_options(db, MYSQL_READ_DEFAULT_GROUP, "test2_libmysqld_CLIENT");
 if (!mysql_real_connect(db, NULL, NULL, NULL, dbname, 0, NULL, 0))
 die(db, "mysql_real_connect failed: %s", mysql_error(db));

 return db;
}

void
db_disconnect(MYSQL *db)
{
 mysql_close(db);
}

Embedded Server Examples

3008

void
db_do_query(MYSQL *db, const char *query)
{
 if (mysql_query(db, query) != 0)
 goto err;

 if (mysql_field_count(db) > 0)
 {
 MYSQL_RES *res;
 MYSQL_ROW row, end_row;
 int num_fields;

 if (!(res = mysql_store_result(db)))
 goto err;
 num_fields = mysql_num_fields(res);
 while ((row = mysql_fetch_row(res)))
 {
 (void)fputs(">> ", stdout);
 for (end_row = row + num_fields; row < end_row; ++row)
 (void)printf("%s\t", row ? (char*)*row : "NULL");
 (void)fputc('\n', stdout);
 }
 (void)fputc('\n', stdout);
 mysql_free_result(res);
 }
 else
 (void)printf("Affected rows: %lld\n", mysql_affected_rows(db));

 return;

err:
 die(db, "db_do_query failed: %s [%s]", mysql_error(db), query);
}

GNUmakefile

This assumes the MySQL software is installed in /usr/local/mysql
inc := /usr/local/mysql/include/mysql
lib := /usr/local/mysql/lib

If you have not installed the MySQL software yet, try this instead
#inc := $(HOME)/mysql-5.7/include
#lib := $(HOME)/mysql-5.7/libmysqld

CC := gcc
CPPFLAGS := -I$(inc) -D_THREAD_SAFE -D_REENTRANT
CFLAGS := -g -W -Wall
LDFLAGS := -static
You can change -lmysqld to -lmysqlclient to use the
client/server library
LDLIBS = -L$(lib) -lmysqld -lm -ldl -lcrypt

ifneq (,$(shell grep FreeBSD /COPYRIGHT 2>/dev/null))
FreeBSD
LDFLAGS += -pthread
else
Assume Linux
LDLIBS += -lpthread
endif

This works for simple one-file test programs
sources := $(wildcard *.c)
objects := $(patsubst %c,%o,$(sources))
targets := $(basename $(sources))

all: $(targets)

clean:
 rm -f $(targets) $(objects) *.core

MySQL C API

3009

23.8 MySQL C API

The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
libmysqlclient library. See Section 23.8.1, “MySQL C API Implementations”.

Most other client APIs use the libmysqlclient library to communicate with the MySQL server.
(Exceptions are except Connector/J and Connector/Net.) This means that, for example, you can take
advantage of many of the same environment variables that are used by other client programs because
they are referenced from the library. For a list of these variables, see Section 4.1, “Overview of MySQL
Programs”.

For instructions on building client programs using the C API, see Section 23.8.4.1, “Building C API
Client Programs”. For programming with threads, see Section 23.8.4.3, “Writing C API Threaded Client
Programs”. To create a standalone application which includes the "server" and "client" in the same
program (and does not communicate with an external MySQL server), see Section 23.7, “libmysqld, the
Embedded MySQL Server Library”.

Note

If, after an upgrade, you experience problems with compiled client programs,
such as Commands out of sync or unexpected core dumps, the programs
were probably compiled using old header or library files. In this case, check
the date of the mysql.h file and libmysqlclient.a library used for
compilation to verify that they are from the new MySQL distribution. If not,
recompile the programs with the new headers and libraries. Recompilation
might also be necessary for programs compiled against the shared client
library if the library major version number has changed (for example, from
libmysqlclient.so.17 to libmysqlclient.so.18). For additional
compatibility information, see Section 23.8.4.4, “Running C API Client
Programs”.

Clients have a maximum communication buffer size. The size of the buffer that is allocated initially
(16KB) is automatically increased up to the maximum size (16MB by default). Because buffer sizes
are increased only as demand warrants, simply increasing the maximum limit does not in itself cause
more resources to be used. This size check is mostly a precaution against erroneous statements and
communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-to-
server traffic) and one row of returned data (for server-to-client traffic). Each session's communication
buffer is dynamically enlarged to handle any query or row up to the maximum limit. For example, if
you have BLOB values that contain up to 16MB of data, you must have a communication buffer limit
of at least 16MB (in both server and client). The default maximum built into the client library is 1GB,
but the default maximum in the server is 1MB. You can increase this by changing the value of the
max_allowed_packet parameter at server startup. See Section 8.12.2, “Tuning Server Parameters”.

The MySQL server shrinks each communication buffer to net_buffer_length bytes after each
query. For clients, the size of the buffer associated with a connection is not decreased until the
connection is closed, at which time client memory is reclaimed.

23.8.1 MySQL C API Implementations

The MySQL C API is a C-based API that client applications written in C can use to communicate with
MySQL Server. Client programs refer to C API header files at compile time and link to a C API library
file at link time. The library comes in two versions, depending on how the application is intended to
communicate with the server:

• libmysqlclient: The client version of the library, used for applications that communicate over a
network connection as a client of a standalone server process.

Simultaneous MySQL Server and Connector/C Installations

3010

• libmysqld: The embedded server version of the library, used for applications intended to include
an embedded MySQL server within the application itself. The application communicates with its own
private server instance.

Both libraries have the same interface. In terms of C API calls, an application communicates with a
standalone server the same way it communicates with an embedded server. A given client can be
built to communicate with a standalone or embedded server, depending on whether it is linked against
libmysqlclient or libmysqld at build time.

There are two ways to obtain the C API header and library files required to build C API client programs:

• Install a MySQL Server distribution. Server distributions include both libmysqlclient and
libmysqld.

• Install a Connector/C distribution. Connector/C distributions include only libmysqlclient. They do
not include libmysqld.

For both MySQL Server and Connector/C, you can install a binary distribution that contains the C API
files pre-built, or you can use a source distribution and build the C API files yourself.

Normally, you install either a MySQL Server distribution or a Connector/C distribution, but not both. For
information about issues involved with simultaneous MySQL Server and Connector/C installations, see
Section 23.8.2, “Simultaneous MySQL Server and Connector/C Installations”.

The names of the library files to use when linking C API client applications depend on the library type
and platform for which a distribution is built:

• On Unix (and Unix-like) sytems, the static library is libmysqlclient.a. The dynamic library is
libmysqlclient.so on most Unix systems and libmysqlclient.dylib on OS X.

For distributions that include embedded server libraries, the corresponding library names begin with
libmysqld rather than libmysqlclient.

• On Windows, the static library is mysqlclient.lib and the dynamic library is libmysql.dll.
Windows distributions also include libmysql.lib, a static import library needed for using the
dynamic library.

For distributions that include embedded server libraries, the corresponding library names are
mysqlserver.lib, libmysqld.dll, and libmysqld.lib.

Windows distributions also include a set of debug libraries. These have the same names as the
nondebug libraries, but are located in the lib/debug library. You must use the debug libraries when
compiling clients built using the debug C runtime.

On Unix, you may also see libraries that include _r in the names. Before MySQL 5.5, these were
built as thread-safe (re-entrant) libraries separately from the non-_r libraries. As of 5.5, both libraries
are the same and the _r names are symbolic links to the corresponding non-_r names. There is
no need to use the _r libraries. For example, if you use mysql_config to obtain linker flags, you
can use mysql_config --libs in all cases, even for threaded clients. There is no need to use
mysql_config --libs_r.

23.8.2 Simultaneous MySQL Server and Connector/C Installations

MySQL Server and Connector/C installation packages both provide the files needed to build and run
MySQL C API client programs. This section discusses when it is possible to install both products on the
same system. For some packaging formats, this is possible without conflict. For others, both products
cannot be installed at the same time.

This discussion assumes the use of similar package types for both products (for example, RPM
packages for both products). It does not try to describe coexistence between packaging types (for
example, use of RPM packages for one product and a tar file package for the other). Nor does it
describe coexistence of packages provided by Oracle and those provided by third-party vendors.

Example C API Client Programs

3011

If you install both products, it may be necessary to adjust your development tools or runtime
environment to choose one set of header files and libraries over the other. See Section 23.8.4.1,
“Building C API Client Programs”, and Section 23.8.4.4, “Running C API Client Programs”.

tar and Zip file packages install under the directory into which you unpack them. For example, you
can unpack MySQL Server and Connector/C tar packages under /usr/local and they will unpack
into distinct directory names without conflict.

Windows MSI installers use their own installation directory, so MySQL Server and Connector/C
installers do not conflict.

OS X DMG packages install under the same parent directory but in a different subdirectory, so there is
no conflict. For example:

/usr/local/mysql-5.6.11-osx10.7-x86_64/
/usr/local/mysql-connector-c-6.1.0-osx10.7-x86/

Solaris PKG packages install under the same parent directory but in a different subdirectory, so there is
no conflict. For example:

/opt/mysql/mysql
/opt/mysql/connector-c

The Solaris Connector/C installer does not create any symlinks from system directories such as /
usr/bin or /usr/lib into the installation directory. That must be done manually if desired after
installation.

For RPM installations, there are several types of RPM packages. MySQL Server shared and devel
RPM packages are similar to the corresponding Connector/C RPM packages. These RPM package
types cannot coexist because the MySQL Server and Connector/C RPM packages use the same
installation locations for the client library-related files. This means the following conditions hold:

• If MySQL Server shared and devel RPM packages are installed, they provide the C API headers
and libraries, and there is no need to install the Connector/C RPM packages. To install the
Connector/C packages anyway, you must first remove the corresponding MySQL Server packages.

• To install MySQL Server RPM packages if you already have Connector/C RPM packages installed,
you must first remove the Connector/C RPM packages.

MySQL Server RPM packages other than shared and devel do not conflict with Connector/C
packages and can be installed if Connector/C is installed. This includes the main server RPM that
includes the mysqld server itself.

23.8.3 Example C API Client Programs

Many of the clients in MySQL source distributions are written in C, such as mysql, mysqladmin, and
mysqlshow. If you are looking for examples that demonstrate how to use the C API, take a look at
these clients: Obtain a source distribution and look in its client directory. See Section 2.1.2, “How to
Get MySQL”.

23.8.4 Building and Running C API Client Programs

The following sections provide information on building client programs that use the C API. Topics
include compiling and linking clients, writing threaded clients, and troubleshooting runtime problems.

23.8.4.1 Building C API Client Programs

This section provides guidelines for compiling C programs that use the MySQL C API.

Compiling MySQL Clients on Unix

Building and Running C API Client Programs

3012

The examples here use gcc as the compiler. A different compiler might be appropriate on some
systems (for example, clang on OS X or FreeBSD, or Sun Studio on Solaris). Adjust the examples as
necessary.

You may need to specify an -I option when you compile client programs that use MySQL header
files, so that the compiler can find them. For example, if the header files are installed in /usr/local/
mysql/include, use this option in the compile command:

-I/usr/local/mysql/include

MySQL clients must be linked using the -lmysqlclient option in the link command. You may also
need to specify a -L option to tell the linker where to find the library. For example, if the library is
installed in /usr/local/mysql/lib, use these options in the link command:

-L/usr/local/mysql/lib -lmysqlclient

The path names may differ on your system. Adjust the -I and -L options as necessary.

To make it simpler to compile MySQL programs on Unix, use the mysql_config script. See
Section 4.7.1, “mysql_config — Display Options for Compiling Clients”.

mysql_config displays the options needed for compiling or linking:

shell> mysql_config --cflags
shell> mysql_config --libs

You can run those commands to get the proper options and add them manually to compilation or link
commands. Alternatively, include the output from mysql_config directly within command lines using
backticks:

shell> gcc -c `mysql_config --cflags` progname.c
shell> gcc -o progname progname.o `mysql_config --libs`

On Unix, linking uses dynamic libraries by default. To link to the static client library instead, add its path
name to the link command. For example, if the library is located in /usr/local/mysql/lib, link like
this:

shell> gcc -o progname progname.o /usr/local/mysql/lib/libmysqlclient.a

Or use mysql_config to provide the library name:

shell> gcc -o progname progname.o `mysql_config --variable=pkglibdir`/libmysqlclient.a

mysql_config does not currently provide a way to list all libraries needed for static linking, so
it might be necessary to name additional libraries on the link command (for example, -lnsl -
lsocket on Solaris). To get an idea which libraries to add, use mysql_config --libs and ldd
libmysqlclient.so (or otool -L libmysqlclient.dylib on OS X).

As of MySQL 5.7.9, pkg-config can be used as an alternative to mysql_config for obtaining
information such as compiler flags or link libraries required to compile MySQL applications. For
example, the following pairs of commands are equivalent:

mysql_config --cflags
pkg-config --cflags mysqlclient

mysql_config --libs
pkg-config --libs mysqlclient

To produce flags for static linking, use this command:

Building and Running C API Client Programs

3013

pkg-config --static --libs mysqlclient

For more information, see Section 23.8.4.2, “Building C API Client Programs Using pkg-config”.

Compiling MySQL Clients on Microsoft Windows

To specify header and library file locations, use the facilities provided by your development
environment.

To build C API clients on Windows, you must link in the C client library, as well as the Windows ws2_32
sockets library and Secur32 security library.

On Windows, you can link your code with either the dynamic or static C client library. The static library
is named mysqlclient.lib and the dynamic library is named libmysql.dll. In addition, the
libmysql.lib static import library is needed for using the dynamic library.

If you link with the static library, failure can occur unless these conditions are satisfied:

• The client application must be compiled with the same version of Visual Studio used to compile the
library.

• The client application should link the C runtime statically by using the /MT compiler option.

If the client application is built in debug mode and uses the static debug C runtime (/MTd compiler
option), it can link to the mysqlclient.lib static library if that library was built using the same option.
If the client application uses the dynamic C runtime (/MD option, or /MDd option in debug mode), it
must be linked to the libmysql.dll dynamic library. It cannot link to the static client library.

The MSDN page describing the link options can be found here: http://msdn.microsoft.com/en-us/
library/2kzt1wy3.aspx

Troubleshooting Problems Linking to the MySQL Client Library

The MySQL client library includes SSL support built in. It is unnecessary to specify either -lssl or -
lcrypto at link time. Doing so may in fact result in problems at runtime.

If the linker cannot find the MySQL client library, you might get undefined-reference errors for symbols
that start with mysql_, such as those shown here:

/tmp/ccFKsdPa.o: In function `main':
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to `mysql_init'
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to `mysql_error'
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to `mysql_close'

You should be able to solve this problem by adding -Ldir_path -lmysqlclient at the end of your
link command, where dir_path represents the path name of the directory where the client library is
located. To determine the correct directory, try this command:

shell> mysql_config --libs

The output from mysql_config might indicate other libraries that should be specified on the link
command as well. You can include mysql_config output directly in your compile or link command
using backticks. For example:

shell> gcc -o progname progname.o `mysql_config --libs`

If an error occurs at link time that the floor symbol is undefined, link to the math library by adding -
lm to the end of the compile/link line. Similarly, if you get undefined-reference errors for other functions
that should exist on your system, such as connect(), check the manual page for the function in
question to determine which libraries you should add to the link command.

http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx
http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx

Building and Running C API Client Programs

3014

If you get undefined-reference errors such as the following for functions that do not exist on your
system, it usually means that your MySQL client library was compiled on a system that is not 100%
compatible with yours:

mf_format.o(.text+0x201): undefined reference to `__lxstat'

In this case, you should download the latest MySQL or Connector/C source distribution and compile
the MySQL client library yourself. See Section 2.9, “Installing MySQL from Source”, and MySQL
Connector/C Developer Guide.

23.8.4.2 Building C API Client Programs Using pkg-config

As of MySQL 5.7.9, MySQL distributions contain a mysqlclient.pc file that provides information
about MySQL configuration for use by the pkg-config command. This enables pkg-config to
be used as an alternative to mysql_config for obtaining information such as compiler flags or link
libraries required to compile MySQL applications. For example, the following pairs of commands are
equivalent:

mysql_config --cflags
pkg-config --cflags mysqlclient

mysql_config --libs
pkg-config --libs mysqlclient

The last pkg-config command produces flags for dynamic linking. To produce flags for static linking,
use this command:

pkg-config --static --libs mysqlclient

On some platforms, the output with and without --static might be the same.

Note

 If pkg-config does not find MySQL information, it might be necessary to
set the PKG_CONFIG_PATH environment variable to the directory in which the
mysqlclient.pc file is located, which by default is usually the pkgconfig
directory under the MySQL library directory. For example (adjust the location
appropriately):

export PKG_CONFIG_PATH=/usr/local/mysql/lib/pkgconfig # sh, bash, ...
setenv PKG_CONFIG_PATH /usr/local/mysql/lib/pkgconfig # csh, tcsh, ...

The mysqlconfig.pc installation location can be controlled using the
INSTALL_PKGCONFIGDIR CMake option. See Section 2.9.4, “MySQL Source-
Configuration Options”.

The --variable option takes a configuration variable name and displays the variable value:

pkg-config --variable=prefix mysqlclient # installation prefix directory
pkg-config --variable=includedir mysqlclient # header file directory
pkg-config --variable=libdir mysqlclient # library directory

To see which variable values pkg-config can display using the --variable option, use this
command:

pkg-config --print-variables mysqlclient

You can use pkg-config within a command line using backticks to include the output that it produces
for particular options. For example, to compile and link a MySQL client program, use pkg-config as
follows:

http://dev.mysql.com/doc/connector-c/en/index.html
http://dev.mysql.com/doc/connector-c/en/index.html

Building and Running C API Client Programs

3015

gcc -c `pkg-config --cflags mysqlclient` progname.c
gcc -o progname progname.o `pkg-config --libs mysqlclient`

23.8.4.3 Writing C API Threaded Client Programs

The client library is almost thread-safe. The biggest problem is that the subroutines in sql/
net_serv.cc that read from sockets are not interrupt-safe. This was done with the thought that
you might want to have your own alarm that can break a long read to a server. If you install interrupt
handlers for the SIGPIPE interrupt, socket handling should be thread-safe.

To avoid aborting the program when a connection terminates, MySQL blocks SIGPIPE on the first call
to mysql_library_init(), mysql_init(), or mysql_connect(). To use your own SIGPIPE
handler, first call mysql_library_init(), then install your handler.

If “undefined symbol” errors occur when linking against the libmysqlclient client library, in most
cases this is because you have not included the thread libraries on the link/compile command.

The client library is thread-safe per connection. You can let two threads share the same connection
with the following caveats:

• Multiple threads cannot send a query to the MySQL server at the same time on the same
connection. In particular, you must ensure that between calls to mysql_query() and
mysql_store_result() in one thread, no other thread uses the same connection. You must
have a mutex lock around your pair of mysql_query() and mysql_store_result() calls. After
mysql_store_result() returns, the lock can be released and other threads may query the same
connection.

If you use POSIX threads, you can use pthread_mutex_lock() and
pthread_mutex_unlock() to establish and release a mutex lock.

• Many threads can access different result sets that are retrieved with mysql_store_result().

• To use mysql_use_result(), you must ensure that no other thread is using the same connection
until the result set is closed. However, it really is best for threaded clients that share the same
connection to use mysql_store_result().

You need to know the following if you have a thread that did not create the connection to the MySQL
database but is calling MySQL functions:

When you call mysql_init(), MySQL creates a thread-specific variable for the thread that is used
by the debug library (among other things). If you call a MySQL function before the thread has called
mysql_init(), the thread does not have the necessary thread-specific variables in place and you are
likely to end up with a core dump sooner or later. To avoid problems, you must do the following:

1. Call mysql_library_init() before any other MySQL functions. It is not thread-safe, so call it
before threads are created, or protect the call with a mutex.

2. Arrange for mysql_thread_init() to be called early in the thread handler before calling any
MySQL function. If you call mysql_init(), it will call mysql_thread_init() for you.

3. In the thread, call mysql_thread_end() before calling pthread_exit(). This frees the
memory used by MySQL thread-specific variables.

The preceding notes regarding mysql_init() also apply to mysql_connect(), which calls
mysql_init().

23.8.4.4 Running C API Client Programs

If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, the programs were probably compiled using old header
or library files. In this case, check the date of the mysql.h file and libmysqlclient.a library used
for compilation to verify that they are from the new MySQL distribution. If not, recompile the programs

Building and Running C API Client Programs

3016

with the new headers and libraries. Recompilation might also be necessary for programs compiled
against the shared client library if the library major version number has changed (for example, from
libmysqlclient.so.17 to libmysqlclient.so.18).

The major client library version determines compatibility. (For example, for
libmysqlclient.so.18.1.0, the major version is 18.) For this reason, the libraries shipped
with newer versions of MySQL are drop-in replacements for older versions that have the same
major number. As long as the major library version is the same, you can upgrade the library and old
applications should continue to work with it.

Undefined-reference errors might occur at runtime when you try to execute a MySQL program. If these
errors specify symbols that start with mysql_ or indicate that the libmysqlclient library cannot be
found, it means that your system cannot find the shared libmysqlclient.so library. The solution
to this problem is to tell your system to search for shared libraries in the directory where that library is
located. Use whichever of the following methods is appropriate for your system:

• Add the path of the directory where libmysqlclient.so is located to the LD_LIBRARY_PATH or
LD_LIBRARY environment variable.

• On OS X, add the path of the directory where libmysqlclient.dylib is located to the
DYLD_LIBRARY_PATH environment variable.

• Copy the shared-library files (such as libmysqlclient.so) to some directory that is searched
by your system, such as /lib, and update the shared library information by executing ldconfig.
Be sure to copy all related files. A shared library might exist under several names, using symlinks to
provide the alternate names.

If the application is linked to the embedded server library, runtime error messages will indicate the
libmysqld rather than libmysqlclient library, but the solution to the problem is the same as just
described.

23.8.4.5 C API Server and Client Library Versions

The string and numeric forms of the MySQL server version are available at compile time as the values
of the MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as the values of
the mysql_get_server_info() and mysql_get_server_version() functions.

As of MySQL 5.7.4 and Connector/C 6.1.3, the MySQL client library version depends on the type of
distribution that provides the library:

• For MySQL distributions, the client library version is the MySQL version. The string
and numeric forms of this version are available at compile time as the values of the
MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as the values of the
mysql_get_client_info() and mysql_get_client_version() functions.

The LIBMYSQL_VERSION and LIBMYSQL_VERSION_ID macros have the same values as
MYSQL_SERVER_VERSION and MYSQL_VERSION_ID and the two sets of macros can be used
interchangeably.

• For Connector/C distributions, the client library version is the Connector/C version. The
string and numeric forms of this version are available at compile time as the values of the
LIBMYSQL_VERSION and LIBMYSQL_VERSION_ID macros, and at runtime as the values of the
mysql_get_client_info() and mysql_get_client_version() functions.

The MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros indicate the string and numeric
forms of the MySQL version on which the Connector/C distribution is based.

Prior to MySQL 5.7.4 and Connector/C 6.1.3, the client library version is the MySQL version.
For Connector/C, this is the MySQL version on which the Connector/C distribution is based.
The string and numeric forms of this version are available at compile time as the values of the
MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as the values of the
mysql_get_client_info() and mysql_get_client_version() functions.

C API Data Structures

3017

The LIBMYSQL_VERSION and LIBMYSQL_VERSION_ID macros are not defined before MySQL 5.7.4
and Connector/C 6.1.3.

23.8.5 C API Data Structures

This section describes C API data structures other than those used for prepared statements. For
information about the latter, see Section 23.8.9, “C API Prepared Statement Data Structures”.

• MYSQL

This structure represents a handle to one database connection. It is used for almost all MySQL
functions. Do not try to make a copy of a MYSQL structure. There is no guarantee that such a copy
will be usable.

• MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW, DESCRIBE,
EXPLAIN). The information returned from a query is called the result set in the remainder of this
section.

• MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of
counted byte strings. (You cannot treat these as null-terminated strings if field values may contain
binary data, because such values may contain null bytes internally.) Rows are obtained by calling
mysql_fetch_row().

• MYSQL_FIELD

This structure contains metadata: information about a field, such as the field's name, type, and size.
Its members are described in more detail later in this section. You may obtain the MYSQL_FIELD
structures for each field by calling mysql_fetch_field() repeatedly. Field values are not part of
this structure; they are contained in a MYSQL_ROW structure.

• MYSQL_FIELD_OFFSET

This is a type-safe representation of an offset into a MySQL field list. (Used by
mysql_field_seek().) Offsets are field numbers within a row, beginning at zero.

• my_ulonglong

The type used for the number of rows and for mysql_affected_rows(), mysql_num_rows(),
and mysql_insert_id(). This type provides a range of 0 to 1.84e19.

Some functions that return a row count using this type return -1 as an unsigned value to
indicate an error or exceptional condition. You can check for -1 by comparing the return value to
(my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).

On some systems, attempting to print a value of type my_ulonglong does not work. To print such a
value, convert it to unsigned long and use a %lu print format. Example:

printf ("Number of rows: %lu\n",
 (unsigned long) mysql_num_rows(result));

• my_bool

A boolean type, for values that are true (nonzero) or false (zero).

The MYSQL_FIELD structure contains the members described in the following list. The definitions apply
primarily for columns of result sets such as those produced by SELECT statements. MYSQL_FIELD
structures are also used to provide metadata for OUT and INOUT parameters returned from stored

C API Data Structures

3018

procedures executed using prepared CALL statements. For such parameters, some of the structure
members have a meaning different from the meaning for column values.

• char * name

The name of the field, as a null-terminated string. If the field was given an alias with an AS clause,
the value of name is the alias. For a procedure parameter, the parameter name.

• char * org_name

The name of the field, as a null-terminated string. Aliases are ignored. For expressions, the value is
an empty string. For a procedure parameter, the parameter name.

• char * table

The name of the table containing this field, if it is not a calculated field. For calculated fields, the
table value is an empty string. If the column is selected from a view, table names the view. If the
table or view was given an alias with an AS clause, the value of table is the alias. For a UNION, the
value is the empty string. For a procedure parameter, the procedure name.

• char * org_table

The name of the table, as a null-terminated string. Aliases are ignored. If the column is selected from
a view, org_table names the view. For a UNION, the value is the empty string. For a procedure
parameter, the procedure name.

• char * db

The name of the database that the field comes from, as a null-terminated string. If the field is a
calculated field, db is an empty string. For a UNION, the value is the empty string. For a procedure
parameter, the name of the database containing the procedure.

• char * catalog

The catalog name. This value is always "def".

• char * def

The default value of this field, as a null-terminated string. This is set only if you use
mysql_list_fields().

• unsigned long length

The width of the field. This corresponds to the display length, in bytes.

The server determines the length value before it generates the result set, so this is the minimum
length required for a data type capable of holding the largest possible value from the result column,
without knowing in advance the actual values that will be produced by the query for the result set.

• unsigned long max_length

The maximum width of the field for the result set (the length in bytes of the longest field value for the
rows actually in the result set). If you use mysql_store_result() or mysql_list_fields(),
this contains the maximum length for the field. If you use mysql_use_result(), the value of this
variable is zero.

The value of max_length is the length of the string representation of the values in the result set. For
example, if you retrieve a FLOAT column and the “widest” value is -12.345, max_length is 7 (the
length of '-12.345').

If you are using prepared statements, max_length is not set by default because for the binary
protocol the lengths of the values depend on the types of the values in the result set. (See
Section 23.8.9, “C API Prepared Statement Data Structures”.) If you want the max_length values

C API Data Structures

3019

anyway, enable the STMT_ATTR_UPDATE_MAX_LENGTH option with mysql_stmt_attr_set()
and the lengths will be set when you call mysql_stmt_store_result(). (See Section 23.8.11.3,
“mysql_stmt_attr_set()”, and Section 23.8.11.28, “mysql_stmt_store_result()”.)

• unsigned int name_length

The length of name.

• unsigned int org_name_length

The length of org_name.

• unsigned int table_length

The length of table.

• unsigned int org_table_length

The length of org_table.

• unsigned int db_length

The length of db.

• unsigned int catalog_length

The length of catalog.

• unsigned int def_length

The length of def.

• unsigned int flags

Bit-flags that describe the field. The flags value may have zero or more of the bits set that are
shown in the following table.

Flag Value Flag Description

NOT_NULL_FLAG Field cannot be NULL

PRI_KEY_FLAG Field is part of a primary key

UNIQUE_KEY_FLAG Field is part of a unique key

MULTIPLE_KEY_FLAG Field is part of a nonunique key

UNSIGNED_FLAG Field has the UNSIGNED attribute

ZEROFILL_FLAG Field has the ZEROFILL attribute

BINARY_FLAG Field has the BINARY attribute

AUTO_INCREMENT_FLAG Field has the AUTO_INCREMENT attribute

ENUM_FLAG Field is an ENUM

SET_FLAG Field is a SET

BLOB_FLAG Field is a BLOB or TEXT (deprecated)

TIMESTAMP_FLAG Field is a TIMESTAMP (deprecated)

NUM_FLAG Field is numeric; see additional notes following table

NO_DEFAULT_VALUE_FLAG Field has no default value; see additional notes following
table

Some of these flags indicate data type information and are superseded by or used in conjunction
with the MYSQL_TYPE_xxx value in the field->type member described later:

C API Data Structures

3020

• To check for BLOB or TIMESTAMP values, check whether type is MYSQL_TYPE_BLOB or
MYSQL_TYPE_TIMESTAMP. (The BLOB_FLAG and TIMESTAMP_FLAG flags are unneeded.)

• ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

NUM_FLAG indicates that a column is numeric. This includes columns with a type of
MYSQL_TYPE_DECIMAL, MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_TINY, MYSQL_TYPE_SHORT,
MYSQL_TYPE_LONG, MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, MYSQL_TYPE_NULL,
MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, and MYSQL_TYPE_YEAR.

NO_DEFAULT_VALUE_FLAG indicates that a column has no DEFAULT clause in its definition.
This does not apply to NULL columns (because such columns have a default of NULL), or to
AUTO_INCREMENT columns (which have an implied default value).

The following example illustrates a typical use of the flags value:

if (field->flags & NOT_NULL_FLAG)
 printf("Field cannot be null\n");

You may use the convenience macros shown in the following table to determine the boolean status
of the flags value.

Flag Status Description

IS_NOT_NULL(flags) True if this field is defined as NOT NULL

IS_PRI_KEY(flags) True if this field is a primary key

IS_BLOB(flags) True if this field is a BLOB or TEXT (deprecated; test
field->type instead)

• unsigned int decimals

The number of decimals for numeric fields, and the fractional seconds precision for temporal fields.

• unsigned int charsetnr

An ID number that indicates the character set/collation pair for the field.

Normally, character values in result sets are converted to the character set indicated by the
character_set_results system variable. In this case, charsetnr corresponds to the
character set indicated by that variable. Character set conversion can be suppressed by setting
character_set_results to NULL. In this case, charsetnr corresponds to the character set of
the original table column or expression. See also Section 10.1.4, “Connection Character Sets and
Collations”.

To distinguish between binary and nonbinary data for string data types, check whether the
charsetnr value is 63. If so, the character set is binary, which indicates binary rather than
nonbinary data. This enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and
the BLOB types from the TEXT types.

charsetnr values are the same as those displayed in the Id column of the SHOW COLLATION
statement or the ID column of the INFORMATION_SCHEMA COLLATIONS table. You can use those
information sources to see which character set and collation specific charsetnr values indicate:

mysql> SHOW COLLATION WHERE Id = 63;
+-----------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-----------+---------+----+---------+----------+---------+
| binary | binary | 63 | Yes | Yes | 1 |

C API Data Structures

3021

+-----------+---------+----+---------+----------+---------+

mysql> SELECT COLLATION_NAME, CHARACTER_SET_NAME
 -> FROM INFORMATION_SCHEMA.COLLATIONS WHERE ID = 33;
+-----------------+--------------------+
| COLLATION_NAME | CHARACTER_SET_NAME |
+-----------------+--------------------+
| utf8_general_ci | utf8 |
+-----------------+--------------------+

• enum enum_field_types type

The type of the field. The type value may be one of the MYSQL_TYPE_ symbols shown in the
following table.

Type Value Type Description

MYSQL_TYPE_TINY TINYINT field

MYSQL_TYPE_SHORT SMALLINT field

MYSQL_TYPE_LONG INTEGER field

MYSQL_TYPE_INT24 MEDIUMINT field

MYSQL_TYPE_LONGLONG BIGINT field

MYSQL_TYPE_DECIMAL DECIMAL or NUMERIC field

MYSQL_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC

MYSQL_TYPE_FLOAT FLOAT field

MYSQL_TYPE_DOUBLE DOUBLE or REAL field

MYSQL_TYPE_BIT BIT field

MYSQL_TYPE_TIMESTAMP TIMESTAMP field

MYSQL_TYPE_DATE DATE field

MYSQL_TYPE_TIME TIME field

MYSQL_TYPE_DATETIME DATETIME field

MYSQL_TYPE_YEAR YEAR field

MYSQL_TYPE_STRING CHAR or BINARY field

MYSQL_TYPE_VAR_STRING VARCHAR or VARBINARY field

MYSQL_TYPE_BLOB BLOB or TEXT field (use max_length to determine the
maximum length)

MYSQL_TYPE_SET SET field

MYSQL_TYPE_ENUM ENUM field

MYSQL_TYPE_GEOMETRY Spatial field

MYSQL_TYPE_NULL NULL-type field

The MYSQL_TYPE_TIME2, MYSQL_TYPE_DATETIME2, and MYSQL_TYPE_TIMESTAMP2) type codes
are used only on the server side. Clients see the MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME,
and MYSQL_TYPE_TIMESTAMP codes.

You can use the IS_NUM() macro to test whether a field has a numeric type. Pass the type value
to IS_NUM() and it evaluates to TRUE if the field is numeric:

if (IS_NUM(field->type))
 printf("Field is numeric\n");

ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

C API Function Overview

3022

23.8.6 C API Function Overview

The functions available in the C API are summarized here and described in greater detail in a later
section. See Section 23.8.7, “C API Function Descriptions”.

Table 23.4 C API Function Names and Descriptions

Function Description

my_init() Initialize global variables, and thread handler in thread-safe
programs

mysql_affected_rows() Returns the number of rows changed/deleted/inserted by the last
UPDATE, DELETE, or INSERT query

mysql_autocommit() Toggles autocommit mode on/off

mysql_change_user() Changes user and database on an open connection

mysql_character_set_name()Return default character set name for current connection

mysql_client_find_plugin()Return pointer to plugin

mysql_client_register_plugin()Register a plugin

mysql_close() Closes a server connection

mysql_commit() Commits the transaction

mysql_connect() Connects to a MySQL server (this function is deprecated; use
mysql_real_connect() instead)

mysql_create_db() Creates a database (this function is deprecated; use the SQL
statement CREATE DATABASE instead)

mysql_data_seek() Seeks to an arbitrary row number in a query result set

mysql_debug() Does a DBUG_PUSH with the given string

mysql_drop_db() Drops a database (this function is deprecated; use the SQL
statement DROP DATABASE instead)

mysql_dump_debug_info() Makes the server write debug information to the log

mysql_eof() Determines whether the last row of a result set has been read (this
function is deprecated; mysql_errno() or mysql_error() may
be used instead)

mysql_errno() Returns the error number for the most recently invoked MySQL
function

mysql_error() Returns the error message for the most recently invoked MySQL
function

mysql_escape_string() Escapes special characters in a string for use in an SQL statement

mysql_fetch_field() Returns the type of the next table field

mysql_fetch_field_direct()Returns the type of a table field, given a field number

mysql_fetch_fields() Returns an array of all field structures

mysql_fetch_lengths() Returns the lengths of all columns in the current row

mysql_fetch_row() Fetches the next row from the result set

mysql_field_count() Returns the number of result columns for the most recent statement

mysql_field_seek() Puts the column cursor on a specified column

mysql_field_tell() Returns the position of the field cursor used for the last
mysql_fetch_field()

mysql_free_result() Frees memory used by a result set

mysql_get_character_set_info()Return information about default character set

C API Function Overview

3023

Function Description

mysql_get_client_info() Returns client version information as a string

mysql_get_client_version()Returns client version information as an integer

mysql_get_host_info() Returns a string describing the connection

mysql_get_option() Returns the value of a mysql_options() option

mysql_get_proto_info() Returns the protocol version used by the connection

mysql_get_server_info() Returns the server version number

mysql_get_server_version()Returns version number of server as an integer

mysql_get_ssl_cipher() Return current SSL cipher

mysql_hex_string() Encode string in hexadecimal format

mysql_info() Returns information about the most recently executed query

mysql_init() Gets or initializes a MYSQL structure

mysql_insert_id() Returns the ID generated for an AUTO_INCREMENT column by the
previous query

mysql_kill() Kills a given thread

mysql_library_end() Finalize the MySQL C API library

mysql_library_init() Initialize the MySQL C API library

mysql_list_dbs() Returns database names matching a simple regular expression

mysql_list_fields() Returns field names matching a simple regular expression

mysql_list_processes() Returns a list of the current server threads

mysql_list_tables() Returns table names matching a simple regular expression

mysql_load_plugin() Load a plugin

mysql_load_plugin_v() Load a plugin

mysql_more_results() Checks whether any more results exist

mysql_next_result() Returns/initiates the next result in multiple-result executions

mysql_num_fields() Returns the number of columns in a result set

mysql_num_rows() Returns the number of rows in a result set

mysql_options() Sets connect options for mysql_real_connect()

mysql_options4() Sets connect options for mysql_real_connect()

mysql_ping() Checks whether the connection to the server is working,
reconnecting as necessary

mysql_plugin_options() Set a plugin option

mysql_query() Executes an SQL query specified as a null-terminated string

mysql_real_connect() Connects to a MySQL server

mysql_real_escape_string()Escapes special characters in a string for use in an SQL statement,
taking into account the current character set of the connection

mysql_real_escape_string_quote()Escapes special characters in a string for use in an SQL statement,
taking into account the current character set of the connection and
the quoting context

mysql_real_query() Executes an SQL query specified as a counted string

mysql_refresh() Flush or reset tables and caches

mysql_reload() Tells the server to reload the grant tables

mysql_reset_connection() Reset connection to clear session state

C API Function Overview

3024

Function Description

mysql_rollback() Rolls back the transaction

mysql_row_seek() Seeks to a row offset in a result set, using value returned from
mysql_row_tell()

mysql_row_tell() Returns the row cursor position

mysql_select_db() Selects a database

mysql_server_end() Finalize the MySQL C API library

mysql_server_init() Initialize the MySQL C API library

mysql_session_track_get_first()Get first part of session state-change information

mysql_session_track_get_next()Get next part of session state-change information

mysql_set_character_set()Set default character set for current connection

mysql_set_local_infile_default()Set the LOAD DATA LOCAL INFILE handler callbacks to their
default values

mysql_set_local_infile_handler()Install application-specific LOAD DATA LOCAL INFILE handler
callbacks

mysql_set_server_option()Sets an option for the connection (like multi-statements)

mysql_sqlstate() Returns the SQLSTATE error code for the last error

mysql_shutdown() Shuts down the database server

mysql_ssl_set() Prepare to establish SSL connection to server

mysql_stat() Returns the server status as a string

mysql_store_result() Retrieves a complete result set to the client

mysql_thread_end() Finalize thread handler

mysql_thread_id() Returns the current thread ID

mysql_thread_init() Initialize thread handler

mysql_thread_safe() Returns 1 if the clients are compiled as thread-safe

mysql_use_result() Initiates a row-by-row result set retrieval

mysql_warning_count() Returns the warning count for the previous SQL statement

Application programs should use this general outline for interacting with MySQL:

1. Initialize the MySQL library by calling mysql_library_init(). This function exists in both the
libmysqlclient C client library and the libmysqld embedded server library, so it is used
whether you build a regular client program by linking with the -libmysqlclient flag, or an
embedded server application by linking with the -libmysqld flag.

2. Initialize a connection handler by calling mysql_init() and connect to the server by calling
mysql_real_connect().

3. Issue SQL statements and process their results. (The following discussion provides more
information about how to do this.)

4. Close the connection to the MySQL server by calling mysql_close().

5. End use of the MySQL library by calling mysql_library_end().

The purpose of calling mysql_library_init() and mysql_library_end() is to provide proper
initialization and finalization of the MySQL library. For applications that are linked with the client library,
they provide improved memory management. If you do not call mysql_library_end(), a block of
memory remains allocated. (This does not increase the amount of memory used by the application, but
some memory leak detectors will complain about it.) For applications that are linked with the embedded
server, these calls start and stop the server.

C API Function Overview

3025

In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any
threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or
indirectly through mysql_init(). This should be done prior to any other client library call.

To connect to the server, call mysql_init() to initialize a connection handler, then call
mysql_real_connect() with that handler (along with other information such as the host name, user
name, and password). Upon connection, mysql_real_connect() sets the reconnect flag (part of
the MYSQL structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A
value of 1 for this flag indicates that if a statement cannot be performed because of a lost connection,
to try reconnecting to the server before giving up. You can use the MYSQL_OPT_RECONNECT option
to mysql_options() to control reconnection behavior. When you are done with the connection, call
mysql_close() to terminate it.

While a connection is active, the client may send SQL statements to the server using mysql_query()
or mysql_real_query(). The difference between the two is that mysql_query() expects the query
to be specified as a null-terminated string whereas mysql_real_query() expects a counted string. If
the string contains binary data (which may include null bytes), you must use mysql_real_query().

For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how many
rows were changed (affected) by calling mysql_affected_rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are
SELECT-like in that they return rows. These include SHOW, DESCRIBE, and EXPLAIN. Treat these
statements the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at
once by calling mysql_store_result(). This function acquires from the server all the rows returned
by the query and stores them in the client. The second way is for the client to initiate a row-by-row
result set retrieval by calling mysql_use_result(). This function initializes the retrieval, but does not
actually get any rows from the server.

In both cases, you access rows by calling mysql_fetch_row(). With mysql_store_result(),
mysql_fetch_row() accesses rows that have previously been fetched from the server. With
mysql_use_result(), mysql_fetch_row() actually retrieves the row from the server. Information
about the size of the data in each row is available by calling mysql_fetch_lengths().

After you are done with a result set, call mysql_free_result() to free the memory used for it.

The two retrieval mechanisms are complementary. Choose the approach that is most appropriate for
each client application. In practice, clients tend to use mysql_store_result() more commonly.

An advantage of mysql_store_result() is that because the rows have all been fetched to the
client, you not only can access rows sequentially, you can move back and forth in the result set using
mysql_data_seek() or mysql_row_seek() to change the current row position within the result set.
You can also find out how many rows there are by calling mysql_num_rows(). On the other hand,
the memory requirements for mysql_store_result() may be very high for large result sets and you
are more likely to encounter out-of-memory conditions.

An advantage of mysql_use_result() is that the client requires less memory for the result
set because it maintains only one row at a time (and because there is less allocation overhead,
mysql_use_result() can be faster). Disadvantages are that you must process each row quickly to
avoid tying up the server, you do not have random access to rows within the result set (you can only
access rows sequentially), and the number of rows in the result set is unknown until you have retrieved
them all. Furthermore, you must retrieve all the rows even if you determine in mid-retrieval that you've
found the information you were looking for.

The API makes it possible for clients to respond appropriately to statements (retrieving rows
only as necessary) without knowing whether the statement is a SELECT. You can do this by

C API Function Descriptions

3026

calling mysql_store_result() after each mysql_query() (or mysql_real_query()).
If the result set call succeeds, the statement was a SELECT and you can read the rows. If the
result set call fails, call mysql_field_count() to determine whether a result was actually
to be expected. If mysql_field_count() returns zero, the statement returned no data
(indicating that it was an INSERT, UPDATE, DELETE, and so forth), and was not expected to
return rows. If mysql_field_count() is nonzero, the statement should have returned rows,
but did not. This indicates that the statement was a SELECT that failed. See the description for
mysql_field_count() for an example of how this can be done.

Both mysql_store_result() and mysql_use_result() enable you to obtain information about
the fields that make up the result set (the number of fields, their names and types, and so forth). You
can access field information sequentially within the row by calling mysql_fetch_field() repeatedly,
or by field number within the row by calling mysql_fetch_field_direct(). The current field
cursor position may be changed by calling mysql_field_seek(). Setting the field cursor affects
subsequent calls to mysql_fetch_field(). You can also get information for fields all at once by
calling mysql_fetch_fields().

For detecting and reporting errors, MySQL provides access to error information by means of the
mysql_errno() and mysql_error() functions. These return the error code or error message for
the most recently invoked function that can succeed or fail, enabling you to determine when an error
occurred and what it was.

23.8.7 C API Function Descriptions

In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C
programming language, not a MySQL NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise,
functions returning a pointer return a non-NULL value to indicate success or a NULL value to indicate
an error, and functions returning an integer return zero to indicate success or nonzero to indicate an
error. Note that “nonzero” means just that. Unless the function description says otherwise, do not test
against a value other than zero:

if (result) /* correct */
 ... error ...

if (result < 0) /* incorrect */
 ... error ...

if (result == -1) /* incorrect */
 ... error ...

When a function returns an error, the Errors subsection of the function description lists the possible
types of errors. You can find out which of these occurred by calling mysql_errno(). A string
representation of the error may be obtained by calling mysql_error().

23.8.7.1 mysql_affected_rows()

my_ulonglong mysql_affected_rows(MYSQL *mysql)

Description

mysql_affected_rows() may be called immediately after executing a statement with
mysql_query() or mysql_real_query(). It returns the number of rows changed, deleted, or
inserted by the last statement if it was an UPDATE, DELETE, or INSERT. For SELECT statements,
mysql_affected_rows() works like mysql_num_rows().

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If
you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld,
the affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

C API Function Descriptions

3027

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if
the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its
current values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if an
existing row is set to its current values.

Following a CALL statement for a stored procedure, mysql_affected_rows() returns the value
that it would return for the last statement executed within the procedure, or 0 if that statement would
return -1. Within the procedure, you can use ROW_COUNT() at the SQL level to obtain the affected-
rows value for individual statements.

In MySQL 5.7, mysql_affected_rows() returns a meaningful value for a wider range of statements.
For details, see the description for ROW_COUNT() in Section 12.14, “Information Functions”.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or
that no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT
query, mysql_affected_rows() was called prior to calling mysql_store_result().

Because mysql_affected_rows() returns an unsigned value, you can check for -1 by comparing
the return value to (my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).

Errors

None.

Example

char *stmt = "UPDATE products SET cost=cost*1.25
 WHERE group=10";
mysql_query(&mysql,stmt);
printf("%ld products updated",
 (long) mysql_affected_rows(&mysql));

23.8.7.2 mysql_autocommit()

my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)

Description

Sets autocommit mode on if mode is 1, off if mode is 0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

23.8.7.3 mysql_change_user()

my_bool mysql_change_user(MYSQL *mysql, const char *user, const char
*password, const char *db)

C API Function Descriptions

3028

Description

Changes the user and causes the database specified by db to become the default (current) database
on the connection specified by mysql. In subsequent queries, this database is the default for table
references that include no explicit database specifier.

mysql_change_user() fails if the connected user cannot be authenticated or does not have
permission to use the database. In this case, the user and database are not changed.

Pass a db parameter of NULL if you do not want to have a default database.

This function resets the session state as if one had done a new connect and reauthenticated. (See
Section 23.8.16, “Controlling Automatic Reconnection Behavior”.) It always performs a ROLLBACK of
any active transactions, closes and drops all temporary tables, and unlocks all locked tables. Session
system variables are reset to the values of the corresponding global system variables. Prepared
statements are released and HANDLER variables are closed. Locks acquired with GET_LOCK() are
released. These effects occur even if the user did not change.

To reset the connection state in a more lightweight manner without changing the user, use
mysql_reset_connection().

Return Values

Zero for success. Nonzero if an error occurred.

Errors

The same that you can get from mysql_real_connect(), plus:

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• ER_UNKNOWN_COM_ERROR

The MySQL server does not implement this command (probably an old server).

• ER_ACCESS_DENIED_ERROR

The user or password was wrong.

• ER_BAD_DB_ERROR

The database did not exist.

• ER_DBACCESS_DENIED_ERROR

The user did not have access rights to the database.

• ER_WRONG_DB_NAME

C API Function Descriptions

3029

The database name was too long.

Example

if (mysql_change_user(&mysql, "user", "password", "new_database"))
{
 fprintf(stderr, "Failed to change user. Error: %s\n",
 mysql_error(&mysql));
}

23.8.7.4 mysql_character_set_name()

const char *mysql_character_set_name(MYSQL *mysql)

Description

Returns the default character set name for the current connection.

Return Values

The default character set name

Errors

None.

23.8.7.5 mysql_close()

void mysql_close(MYSQL *mysql)

Description

Closes a previously opened connection. mysql_close() also deallocates the connection
handle pointed to by mysql if the handle was allocated automatically by mysql_init() or
mysql_connect().

Return Values

None.

Errors

None.

23.8.7.6 mysql_commit()

my_bool mysql_commit(MYSQL *mysql)

Description

Commits the current transaction.

The action of this function is subject to the value of the completion_type system variable. In
particular, if the value of completion_type is RELEASE (or 2), the server performs a release after
terminating a transaction and closes the client connection. Call mysql_close() from the client
program to close the connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

C API Function Descriptions

3030

Errors

None.

23.8.7.7 mysql_connect()

MYSQL *mysql_connect(MYSQL *mysql, const char *host, const char *user, const
char *passwd)

Description

This function is deprecated. Use mysql_real_connect() instead.

mysql_connect() attempts to establish a connection to a MySQL database engine running on
host. mysql_connect() must complete successfully before you can execute any of the other API
functions, with the exception of mysql_get_client_info().

The meanings of the parameters are the same as for the corresponding parameters for
mysql_real_connect() with the difference that the connection parameter may be NULL. In this
case, the C API allocates memory for the connection structure automatically and frees it when you call
mysql_close(). The disadvantage of this approach is that you cannot retrieve an error message if
the connection fails. (To get error information from mysql_errno() or mysql_error(), you must
provide a valid MYSQL pointer.)

Return Values

Same as for mysql_real_connect().

Errors

Same as for mysql_real_connect().

23.8.7.8 mysql_create_db()

int mysql_create_db(MYSQL *mysql, const char *db)

Description

Creates the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL CREATE
DATABASE statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

C API Function Descriptions

3031

An unknown error occurred.

Example

if(mysql_create_db(&mysql, "my_database"))
{
 fprintf(stderr, "Failed to create new database. Error: %s\n",
 mysql_error(&mysql));
}

23.8.7.9 mysql_data_seek()

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)

Description

Seeks to an arbitrary row in a query result set. The offset value is a row number. Specify a value in
the range from 0 to mysql_num_rows(result)-1.

This function requires that the result set structure contains the entire result of the query, so
mysql_data_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

None.

Errors

None.

23.8.7.10 mysql_debug()

void mysql_debug(const char *debug)

Description

Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To use
this function, you must compile the client library to support debugging. See Section 24.5.3, “The DBUG
Package”.

Return Values

None.

Errors

None.

Example

The call shown here causes the client library to generate a trace file in /tmp/client.trace on the
client machine:

mysql_debug("d:t:O,/tmp/client.trace");

23.8.7.11 mysql_drop_db()

int mysql_drop_db(MYSQL *mysql, const char *db)

C API Function Descriptions

3032

Description

Drops the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL DROP DATABASE
statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_drop_db(&mysql, "my_database"))
 fprintf(stderr, "Failed to drop the database: Error: %s\n",
 mysql_error(&mysql));

23.8.7.12 mysql_dump_debug_info()

int mysql_dump_debug_info(MYSQL *mysql)

Description

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

C API Function Descriptions

3033

An unknown error occurred.

23.8.7.13 mysql_eof()

my_bool mysql_eof(MYSQL_RES *result)

Description

This function is deprecated. mysql_errno() or mysql_error() may be used instead.

mysql_eof() determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to mysql_store_result(), the client receives the
entire set in one operation. In this case, a NULL return from mysql_fetch_row() always means the
end of the result set has been reached and it is unnecessary to call mysql_eof(). When used with
mysql_store_result(), mysql_eof() always returns true.

On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the rows of
the set are obtained from the server one by one as you call mysql_fetch_row() repeatedly.
Because an error may occur on the connection during this process, a NULL return value from
mysql_fetch_row() does not necessarily mean the end of the result set was reached normally. In
this case, you can use mysql_eof() to determine what happened. mysql_eof() returns a nonzero
value if the end of the result set was reached and zero if an error occurred.

Historically, mysql_eof() predates the standard MySQL error functions mysql_errno()
and mysql_error(). Because those error functions provide the same information, their use is
preferred over mysql_eof(), which is deprecated. (In fact, they provide more information, because
mysql_eof() returns only a boolean value whereas the error functions indicate a reason for the error
when one occurs.)

Return Values

Zero for success. Nonzero if the end of the result set has been reached.

Errors

None.

Example

The following example shows how you might use mysql_eof():

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
 // do something with data
}
if(!mysql_eof(result)) // mysql_fetch_row() failed due to an error
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
 // do something with data
}

C API Function Descriptions

3034

if(mysql_errno(&mysql)) // mysql_fetch_row() failed due to an error
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

23.8.7.14 mysql_errno()

unsigned int mysql_errno(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_errno() returns the error code for the most recently
invoked API function that can succeed or fail. A return value of zero means that no error occurred.
Client error message numbers are listed in the MySQL errmsg.h header file. Server error message
numbers are listed in mysqld_error.h. Errors also are listed at Appendix B, Errors, Error Codes, and
Common Problems.

Note

Some functions such as mysql_fetch_row() do not set mysql_errno() if
they succeed. A rule of thumb is that all functions that have to ask the server for
information reset mysql_errno() if they succeed.

MySQL-specific error numbers returned by mysql_errno() differ from SQLSTATE values
returned by mysql_sqlstate(). For example, the mysql client program displays errors using
the following format, where 1146 is the mysql_errno() value and '42S02' is the corresponding
mysql_sqlstate() value:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

An error code value for the last mysql_xxx() call, if it failed. zero means no error occurred.

Errors

None.

23.8.7.15 mysql_error()

const char *mysql_error(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_error() returns a null-terminated string containing
the error message for the most recently invoked API function that failed. If a function did not fail, the
return value of mysql_error() may be the previous error or an empty string to indicate no error.

A rule of thumb is that all functions that have to ask the server for information reset mysql_error() if
they succeed.

For functions that reset mysql_error(), either of these two tests can be used to check for an error:

if(*mysql_error(&mysql))
{
 // an error occurred
}

if(mysql_error(&mysql)[0])
{
 // an error occurred

C API Function Descriptions

3035

}

The language of the client error messages may be changed by recompiling the MySQL client library.
You can choose error messages in several different languages. See Section 10.2, “Setting the Error
Message Language”.

Return Values

A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

23.8.7.16 mysql_escape_string()

Note

Do not use this function. mysql_escape_string() does not have arguments
that enable it to respect the current character set or the quoting context. Use
mysql_real_escape_string_quote() instead.

23.8.7.17 mysql_fetch_field()

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)

Description

Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this function
repeatedly to retrieve information about all columns in the result set. mysql_fetch_field() returns
NULL when no more fields are left.

mysql_fetch_field() is reset to return information about the first field each time you execute
a new SELECT query. The field returned by mysql_fetch_field() is also affected by calls to
mysql_field_seek().

If you've called mysql_query() to perform a SELECT on a table but have not called
mysql_store_result(), MySQL returns the default blob length (8KB) if you call
mysql_fetch_field() to ask for the length of a BLOB field. (The 8KB size is chosen because
MySQL does not know the maximum length for the BLOB. This should be made configurable
sometime.) Once you've retrieved the result set, field->max_length contains the length of the
largest value for this column in the specific query.

Return Values

The MYSQL_FIELD structure for the current column. NULL if no columns are left.

Errors

None.

Example

MYSQL_FIELD *field;

while((field = mysql_fetch_field(result)))
{
 printf("field name %s\n", field->name);
}

23.8.7.18 mysql_fetch_field_direct()

C API Function Descriptions

3036

MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result, unsigned int
fieldnr)

Description

Given a field number fieldnr for a column within a result set, returns that column's field definition as
a MYSQL_FIELD structure. Use this function to retrieve the definition for an arbitrary column. Specify a
value for fieldnr in the range from 0 to mysql_num_fields(result)-1.

Return Values

The MYSQL_FIELD structure for the specified column.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;

num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{
 field = mysql_fetch_field_direct(result, i);
 printf("Field %u is %s\n", i, field->name);
}

23.8.7.19 mysql_fetch_fields()

MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)

Description

Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides the field
definition for one column of the result set.

Return Values

An array of MYSQL_FIELD structures for all columns of a result set.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;

num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{
 printf("Field %u is %s\n", i, fields[i].name);
}

23.8.7.20 mysql_fetch_lengths()

unsigned long *mysql_fetch_lengths(MYSQL_RES *result)

C API Function Descriptions

3037

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field
values, this length information is also useful for optimization, because you can avoid calling strlen().
In addition, if the result set contains binary data, you must use this function to determine the size of the
data, because strlen() returns incorrect results for any field containing null characters.

The length for empty columns and for columns containing NULL values is zero. To see how to
distinguish these two cases, see the description for mysql_fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminating
null bytes). NULL if an error occurred.

Errors

mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL if you call
it before calling mysql_fetch_row() or after retrieving all rows in the result.

Example

MYSQL_ROW row;
unsigned long *lengths;
unsigned int num_fields;
unsigned int i;

row = mysql_fetch_row(result);
if (row)
{
 num_fields = mysql_num_fields(result);
 lengths = mysql_fetch_lengths(result);
 for(i = 0; i < num_fields; i++)
 {
 printf("Column %u is %lu bytes in length.\n",
 i, lengths[i]);
 }
}

23.8.7.21 mysql_fetch_row()

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Description

Retrieves the next row of a result set. When used after mysql_store_result(),
mysql_fetch_row() returns NULL when there are no more rows to retrieve. When used after
mysql_use_result(), mysql_fetch_row() returns NULL when there are no more rows to retrieve
or if an error occurred.

The number of values in the row is given by mysql_num_fields(result). If row holds the
return value from a call to mysql_fetch_row(), pointers to the values are accessed as row[0] to
row[mysql_num_fields(result)-1]. NULL values in the row are indicated by NULL pointers.

The lengths of the field values in the row may be obtained by calling mysql_fetch_lengths().
Empty fields and fields containing NULL both have length 0; you can distinguish these by checking the
pointer for the field value. If the pointer is NULL, the field is NULL; otherwise, the field is empty.

Return Values

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve or if an error
occurred.

C API Function Descriptions

3038

Errors

Errors are not reset between calls to mysql_fetch_row()

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;

num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{
 unsigned long *lengths;
 lengths = mysql_fetch_lengths(result);
 for(i = 0; i < num_fields; i++)
 {
 printf("[%.*s] ", (int) lengths[i],
 row[i] ? row[i] : "NULL");
 }
 printf("\n");
}

23.8.7.22 mysql_field_count()

unsigned int mysql_field_count(MYSQL *mysql)

Description

Returns the number of columns for the most recent query on the connection.

The normal use of this function is when mysql_store_result() returned NULL (and thus you
have no result set pointer). In this case, you can call mysql_field_count() to determine whether
mysql_store_result() should have produced a nonempty result. This enables the client program
to take proper action without knowing whether the query was a SELECT (or SELECT-like) statement.
The example shown here illustrates how this may be done.

See Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query()
Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{

C API Function Descriptions

3039

 // error
}
else // query succeeded, process any data returned by it
{
 result = mysql_store_result(&mysql);
 if (result) // there are rows
 {
 num_fields = mysql_num_fields(result);
 // retrieve rows, then call mysql_free_result(result)
 }
 else // mysql_store_result() returned nothing; should it have?
 {
 if(mysql_field_count(&mysql) == 0)
 {
 // query does not return data
 // (it was not a SELECT)
 num_rows = mysql_affected_rows(&mysql);
 }
 else // mysql_store_result() should have returned data
 {
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 }
 }
}

An alternative is to replace the mysql_field_count(&mysql) call with mysql_errno(&mysql).
In this case, you are checking directly for an error from mysql_store_result() rather than inferring
from the value of mysql_field_count() whether the statement was a SELECT.

23.8.7.23 mysql_field_seek()

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result, MYSQL_FIELD_OFFSET
offset)

Description

Sets the field cursor to the given offset. The next call to mysql_fetch_field() retrieves the field
definition of the column associated with that offset.

To seek to the beginning of a row, pass an offset value of zero.

Return Values

The previous value of the field cursor.

Errors

None.

23.8.7.24 mysql_field_tell()

MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last mysql_fetch_field(). This value can be
used as an argument to mysql_field_seek().

Return Values

The current offset of the field cursor.

Errors

None.

C API Function Descriptions

3040

23.8.7.25 mysql_free_result()

void mysql_free_result(MYSQL_RES *result)

Description

Frees the memory allocated for a result set by mysql_store_result(), mysql_use_result(),
mysql_list_dbs(), and so forth. When you are done with a result set, you must free the memory it
uses by calling mysql_free_result().

Do not attempt to access a result set after freeing it.

Return Values

None.

Errors

None.

23.8.7.26 mysql_get_character_set_info()

void mysql_get_character_set_info(MYSQL *mysql, MY_CHARSET_INFO *cs)

Description

This function provides information about the default client character set. The default character set may
be changed with the mysql_set_character_set() function.

Example

This example shows the fields that are available in the MY_CHARSET_INFO structure:

if (!mysql_set_character_set(&mysql, "utf8"))
{
 MY_CHARSET_INFO cs;
 mysql_get_character_set_info(&mysql, &cs);
 printf("character set information:\n");
 printf("character set+collation number: %d\n", cs.number);
 printf("character set name: %s\n", cs.name);
 printf("collation name: %s\n", cs.csname);
 printf("comment: %s\n", cs.comment);
 printf("directory: %s\n", cs.dir);
 printf("multi byte character min. length: %d\n", cs.mbminlen);
 printf("multi byte character max. length: %d\n", cs.mbmaxlen);
}

23.8.7.27 mysql_get_client_info()

const char *mysql_get_client_info(void)

Description

Returns a string that represents the MySQL client library version; for example, "5.7.11".

As of MySQL 5.7.4 and Connector/C 6.1.3, the function value is the version of MySQL or Connector/
C that provides the client library. Before MySQL 5.7.4 and Connector/C 6.1.3, the function value is the
MySQL version. For Connector/C, this is the MySQL version on which the Connector/C distribution is
based. For more information, see Section 23.8.4.5, “C API Server and Client Library Versions”.

Return Values

A character string that represents the MySQL client library version.

C API Function Descriptions

3041

Errors

None.

23.8.7.28 mysql_get_client_version()

unsigned long mysql_get_client_version(void)

Description

Returns an integer that represents the MySQL client library version. The value has the format XYYZZ
where X is the major version, YY is the release level (or minor version), and ZZ is the sub-version within
the release level:

major_version*10000 + release_level*100 + sub_version

For example, "5.7.11" is returned as 50711.

As of MySQL 5.7.4 and Connector/C 6.1.3, the function value is the version of MySQL or Connector/
C that provides the client library. Before MySQL 5.7.4 and Connector/C 6.1.3, the function value is the
MySQL version. For Connector/C, this is the MySQL version on which the Connector/C distribution is
based. For more information, see Section 23.8.4.5, “C API Server and Client Library Versions”.

Return Values

An integer that represents the MySQL client library version.

Errors

None.

23.8.7.29 mysql_get_host_info()

const char *mysql_get_host_info(MYSQL *mysql)

Description

Returns a string describing the type of connection in use, including the server host name.

Return Values

A character string representing the server host name and the connection type.

Errors

None.

23.8.7.30 mysql_get_option()

int mysql_get_option(MYSQL *mysql, enum mysql_option option, const void
*arg)

Description

Returns the current value of an option settable using mysql_options(). The value should be treated
as read only. This function was added in MySQL 5.7.3.

The option argument is the option for which you want its value. The arg argument is a pointer to a
variable in which to store the option value. arg must be a pointer to a variable of the type appropriate
for the option argument. The following table shows which variable type to use for each option value.

C API Function Descriptions

3042

arg Type Applicable option Values

unsigned int MYSQL_OPT_CONNECT_TIMEOUT, MYSQL_OPT_PROTOCOL,
MYSQL_OPT_READ_TIMEOUT, MYSQL_OPT_WRITE_TIMEOUT

unsigned long MYSQL_OPT_MAX_ALLOWED_PACKET (added in MySQL 5.7.9),
MYSQL_OPT_NET_BUFFER_LENGTH (added in MySQL 5.7.9)

my_bool MYSQL_ENABLE_CLEARTEXT_PLUGIN,
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS,
MYSQL_OPT_COMPRESS, MYSQL_OPT_GUESS_CONNECTION,
MYSQL_OPT_LOCAL_INFILE, MYSQL_OPT_RECONNECT,
MYSQL_OPT_SSL_ENFORCE, MYSQL_OPT_SSL_VERIFY_SERVER_CERT,
MYSQL_OPT_USE_EMBEDDED_CONNECTION,
MYSQL_OPT_USE_REMOTE_CONNECTION,
MYSQL_REPORT_DATA_TRUNCATION, MYSQL_SECURE_AUTH

const char * MYSQL_DEFAULT_AUTH, MYSQL_OPT_BIND, MYSQL_OPT_SSL_CA,
MYSQL_OPT_SSL_CAPATH , MYSQL_OPT_SSL_CERT,
MYSQL_OPT_SSL_CIPHER, MYSQL_OPT_SSL_CRL,
MYSQL_OPT_SSL_CRLPATH, MYSQL_OPT_SSL_KEY, MYSQL_PLUGIN_DIR,
MYSQL_READ_DEFAULT_FILE, MYSQL_READ_DEFAULT_GROUP,
MYSQL_SERVER_PUBLIC_KEY, MYSQL_SET_CHARSET_DIR,
MYSQL_SET_CHARSET_NAME, MYSQL_SET_CLIENT_IP,
MYSQL_SHARED_MEMORY_BASE_NAME

cannot be queried
(error is returned)

MYSQL_INIT_COMMAND, MYSQL_OPT_CONNECT_ATTR_DELETE,
MYSQL_OPT_CONNECT_ATTR_RESET, MYSQL_OPT_NAMED_PIPE

Return Values

Zero for success. Nonzero if an error occurred; this occurs for option values that cannot be queried.

Example

The following call tests the MYSQL_OPT_RECONNECT option. After the call returns successfully, the
value of reconnect is true or false to indicate whether automatic reconnection is enabled.

my_bool reconnect;

if (mysql_get_option(mysql, MYSQL_OPT_RECONNECT, &reconnect))
 fprintf(stderr, "mysql_get_options() failed\n");

23.8.7.31 mysql_get_proto_info()

unsigned int mysql_get_proto_info(MYSQL *mysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors

None.

23.8.7.32 mysql_get_server_info()

const char *mysql_get_server_info(MYSQL *mysql)

C API Function Descriptions

3043

Description

Returns a string that represents the MySQL server version; for example, "5.7.11".

Return Values

A character string that represents the MySQL server version.

Errors

None.

23.8.7.33 mysql_get_server_version()

unsigned long mysql_get_server_version(MYSQL *mysql)

Description

Returns an integer that represents the MySQL server version. The value has the format XYYZZ where
X is the major version, YY is the release level (or minor version), and ZZ is the sub-version within the
release level:

major_version*10000 + release_level*100 + sub_version

For example, "5.7.11" is returned as 50711.

This function is useful in client programs for determining whether some version-specific server
capability exists.

Return Values

An integer that represents the MySQL server version.

Errors

None.

23.8.7.34 mysql_get_ssl_cipher()

const char *mysql_get_ssl_cipher(MYSQL *mysql)

Description

mysql_get_ssl_cipher() returns the SSL cipher used for the given connection to the server.
mysql is the connection handler returned from mysql_init().

Return Values

A string naming the SSL cipher used for the connection, or NULL if no cipher is being used.

23.8.7.35 mysql_hex_string()

unsigned long mysql_hex_string(char *to, const char *from, unsigned long
length)

Description

This function creates a legal SQL string for use in an SQL statement. See Section 9.1.1, “String
Literals”.

The string in the from argument is encoded in hexadecimal format, with each character encoded as
two hexadecimal digits. The result is placed in the to argument, followed by a terminating null byte.

C API Function Descriptions

3044

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at
least length*2+1 bytes long. When mysql_hex_string() returns, the contents of to is a null-
terminated string. The return value is the length of the encoded string, not including the terminating null
byte.

The return value can be placed into an SQL statement using either X'value' or 0xvalue format.
However, the return value does not include the X'...' or 0x. The caller must supply whichever of
those is desired.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
end = strmov(end,"X'");
end += mysql_hex_string(end,"What is this",12);
end = strmov(end,"',X'");
end += mysql_hex_string(end,"binary data: \0\r\n",16);
end = strmov(end,"')");

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The strmov() function used in the example is included in the libmysqlclient library and works
like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into to, not including the terminating null character.

Errors

None.

23.8.7.36 mysql_info()

const char *mysql_info(MYSQL *mysql)

Description

Retrieves a string providing information about the most recently executed statement, but only for the
statements listed here. For other statements, mysql_info() returns NULL. The format of the string
varies depending on the type of statement, as described here. The numbers are illustrative only; the
string contains values appropriate for the statement.

• INSERT INTO ... SELECT ...

String format: Records: 100 Duplicates: 0 Warnings: 0

• INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 3 Duplicates: 0 Warnings: 0

• LOAD DATA INFILE ...

String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

• ALTER TABLE

String format: Records: 3 Duplicates: 0 Warnings: 0

C API Function Descriptions

3045

• UPDATE

String format: Rows matched: 40 Changed: 40 Warnings: 0

mysql_info() returns a non-NULL value for INSERT ... VALUES only for the multiple-row form of
the statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed statement.
NULL if no information is available for the statement.

Errors

None.

23.8.7.37 mysql_init()

MYSQL *mysql_init(MYSQL *mysql)

Description

Allocates or initializes a MYSQL object suitable for mysql_real_connect(). If mysql is a NULL
pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is initialized
and the address of the object is returned. If mysql_init() allocates a new object, it is freed when
mysql_close() is called to close the connection.

In a nonmulti-threaded environment, mysql_init() invokes mysql_library_init()
automatically as necessary. However, mysql_library_init() is not thread-safe in a multi-
threaded environment, and thus neither is mysql_init(). Before calling mysql_init(), either
call mysql_library_init() prior to spawning any threads, or use a mutex to protect the
mysql_library_init() call. This should be done prior to any other client library call.

Return Values

An initialized MYSQL* handle. NULL if there was insufficient memory to allocate a new object.

Errors

In case of insufficient memory, NULL is returned.

23.8.7.38 mysql_insert_id()

my_ulonglong mysql_insert_id(MYSQL *mysql)

Description

Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE
statement. Use this function after you have performed an INSERT statement into a table that
contains an AUTO_INCREMENT field, or have used INSERT or UPDATE to set a column value with
LAST_INSERT_ID(expr).

The return value of mysql_insert_id() is always zero unless explicitly updated under one of the
following conditions:

• INSERT statements that store a value into an AUTO_INCREMENT column. This is true whether the
value is automatically generated by storing the special values NULL or 0 into the column, or is an
explicit nonspecial value.

• In the case of a multiple-row INSERT statement, mysql_insert_id() returns the first
automatically generated AUTO_INCREMENT value that was successfully inserted.

C API Function Descriptions

3046

If no rows are successfully inserted, mysql_insert_id() returns 0.

• If an INSERT ... SELECT statement is executed, and no automatically generated value is
successfully inserted, mysql_insert_id() returns the ID of the last inserted row.

• If an INSERT ... SELECT statement uses LAST_INSERT_ID(expr), mysql_insert_id()
returns expr.

• INSERT statements that generate an AUTO_INCREMENT value by inserting
LAST_INSERT_ID(expr) into any column or by updating any column to
LAST_INSERT_ID(expr).

• If the previous statement returned an error, the value of mysql_insert_id() is undefined.

The return value of mysql_insert_id() can be simplified to the following sequence:

1. If there is an AUTO_INCREMENT column, and an automatically generated value was successfully
inserted, return the first such value.

2. If LAST_INSERT_ID(expr) occurred in the statement, return expr, even if there was an
AUTO_INCREMENT column in the affected table.

3. The return value varies depending on the statement used. When called after an INSERT statement:

• If there is an AUTO_INCREMENT column in the table, and there were some explicit values for this
column that were successfully inserted into the table, return the last of the explicit values.

When called after an INSERT ... ON DUPLICATE KEY UPDATE statement:

• If there is an AUTO_INCREMENT column in the table and there were some explicit successfully
inserted values or some updated values, return the last of the inserted or updated values.

mysql_insert_id() returns 0 if the previous statement does not use an AUTO_INCREMENT value.
If you need to save the value for later, be sure to call mysql_insert_id() immediately after the
statement that generates the value.

The value of mysql_insert_id() is affected only by statements issued within the current client
connection. It is not affected by statements issued by other clients.

The LAST_INSERT_ID() SQL function will contain the value of the first automatically generated value
that was successfully inserted. LAST_INSERT_ID() is not reset between statements because the
value of that function is maintained in the server. Another difference from mysql_insert_id() is that
LAST_INSERT_ID() is not updated if you set an AUTO_INCREMENT column to a specific nonspecial
value. See Section 12.14, “Information Functions”.

mysql_insert_id() returns 0 following a CALL statement for a stored procedure that generates
an AUTO_INCREMENT value because in this case mysql_insert_id() applies to CALL and not the
statement within the procedure. Within the procedure, you can use LAST_INSERT_ID() at the SQL
level to obtain the AUTO_INCREMENT value.

The reason for the differences between LAST_INSERT_ID() and mysql_insert_id() is that
LAST_INSERT_ID() is made easy to use in scripts while mysql_insert_id() tries to provide more
exact information about what happens to the AUTO_INCREMENT column.

Return Values

Described in the preceding discussion.

Errors

• ER_AUTO_INCREMENT_CONFLICT

C API Function Descriptions

3047

A user-specified AUTO_INCREMENT value in a multi INSERT statement falls within the range
between the current AUTO_INCREMENT value and the sum of the current and number of rows
affected values.

23.8.7.39 mysql_kill()

int mysql_kill(MYSQL *mysql, unsigned long pid)

Description

Note

As of MySQL 5.7.11, mysql_kill() is deprecated and will be removed in a
future version of MySQL. Instead, use mysql_query() to execute a KILL
statement.

Asks the server to kill the thread specified by pid.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL KILL statement
instead.

mysql_kill() cannot handle values larger than 32 bits, but to guard against killing the wrong thread
returns an error in these cases:

• If given an ID larger than 32 bits, mysql_kill() returns a CR_INVALID_CONN_HANDLE error.

• After the server's internal thread ID counter reaches a value larger than 32 bits, it returns an
ER_DATA_OUT_OF_RANGE error for any mysql_kill() invocation and mysql_kill() fails.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_INVALID_CONN_HANDLE

The pid was larger than 32 bits.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• ER_DATA_OUT_OF_RANGE

The server's internal thread ID counter has reached a value larger than 32 bits, at which point it
rejects all mysql_kill() invocations.

23.8.7.40 mysql_library_end()

void mysql_library_end(void)

C API Function Descriptions

3048

Description

This function finalizes the MySQL library. Call it when you are done using the library (for example, after
disconnecting from the server). The action taken by the call depends on whether your application is
linked to the MySQL client library or the MySQL embedded server library. For a client program linked
against the libmysqlclient library by using the -lmysqlclient flag, mysql_library_end()
performs some memory management to clean up. For an embedded server application linked against
the libmysqld library by using the -lmysqld flag, mysql_library_end() shuts down the
embedded server and then cleans up.

For usage information, see Section 23.8.6, “C API Function Overview”, and Section 23.8.7.41,
“mysql_library_init()”.

23.8.7.41 mysql_library_init()

int mysql_library_init(int argc, char **argv, char **groups)

Description

Call this function to initialize the MySQL library before you call any other MySQL function, whether
your application is a regular client program or uses the embedded server. If the application uses the
embedded server, this call starts the server and initializes any subsystems (mysys, InnoDB, and so
forth) that the server uses.

After your application is done using the MySQL library, call mysql_library_end() to clean up. See
Section 23.8.7.40, “mysql_library_end()”.

The choice of whether the application operates as a regular client or uses the embedded server
depends on whether you use the libmysqlclient or libmysqld library at link time to produce the
final executable. For additional information, see Section 23.8.6, “C API Function Overview”.

In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any
threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or
indirectly through mysql_init(). Do this prior to any other client library call.

The argc and argv arguments are analogous to the arguments to main(), and enable passing of
options to the embedded server. For convenience, argc may be 0 (zero) if there are no command-
line arguments for the server. This is the usual case for applications intended for use only as regular
(nonembedded) clients, and the call typically is written as mysql_library_init(0, NULL, NULL).

#include <mysql.h>
#include <stdlib.h>

int main(void) {
 if (mysql_library_init(0, NULL, NULL)) {
 fprintf(stderr, "could not initialize MySQL library\n");
 exit(1);
 }

 /* Use any MySQL API functions here */

 mysql_library_end();

 return EXIT_SUCCESS;
}

When arguments are to be passed (argc is greater than 0), the first element of argv is ignored (it
typically contains the program name). mysql_library_init() makes a copy of the arguments so it
is safe to destroy argv or groups after the call.

C API Function Descriptions

3049

For embedded applications, if you want to connect to an external server without starting the embedded
server, you have to specify a negative value for argc.

The groups argument is an array of strings that indicate the groups in option files from which to
read options. See Section 4.2.6, “Using Option Files”. Make the final entry in the array NULL. For
convenience, if the groups argument itself is NULL, the [server] and [embedded] groups are used
by default.

#include <mysql.h>
#include <stdlib.h>

static char *server_args[] = {
 "this_program", /* this string is not used */
 "--datadir=.",
 "--key_buffer_size=32M"
};
static char *server_groups[] = {
 "embedded",
 "server",
 "this_program_SERVER",
 (char *)NULL
};

int main(void) {
 if (mysql_library_init(sizeof(server_args) / sizeof(char *),
 server_args, server_groups)) {
 fprintf(stderr, "could not initialize MySQL library\n");
 exit(1);
 }

 /* Use any MySQL API functions here */

 mysql_library_end();

 return EXIT_SUCCESS;
}

Return Values

Zero for success. Nonzero if an error occurred.

23.8.7.42 mysql_list_dbs()

MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of database names on the server that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters “%” or “_”, or
may be a NULL pointer to match all databases. Calling mysql_list_dbs() is similar to executing the
query SHOW DATABASES [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

C API Function Descriptions

3050

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.43 mysql_list_fields()

MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table, const char
*wild)

Description

Note

As of MySQL 5.7.11, mysql_list_fields() is deprecated and will be
removed in a future version of MySQL. Instead, use mysql_query() to
execute a SHOW COLUMNS statement.

Returns an empty result set for which the metadata provides information about the columns in the
given table that match the simple regular expression specified by the wild parameter. wild may
contain the wildcard characters “%” or “_”, or may be a NULL pointer to match all fields. Calling
mysql_list_fields() is similar to executing the query SHOW COLUMNS FROM tbl_name [LIKE
wild].

It is preferable to use SHOW COLUMNS FROM tbl_name instead of mysql_list_fields().

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

int i;

C API Function Descriptions

3051

MYSQL_RES *tbl_cols = mysql_list_fields(mysql, "mytbl", "f%");

unsigned int field_cnt = mysql_num_fields(tbl_cols);
printf("Number of columns: %d\n", field_cnt);

for (i=0; i < field_cnt; ++i)
{
 /* col describes i-th column of the table */
 MYSQL_FIELD *col = mysql_fetch_field_direct(tbl_cols, i);
 printf ("Column %d: %s\n", i, col->name);
}
mysql_free_result(tbl_cols);

23.8.7.44 mysql_list_processes()

MYSQL_RES *mysql_list_processes(MYSQL *mysql)

Description

Note

As of MySQL 5.7.11, mysql_list_processes() is deprecated and will
be removed in a future version of MySQL. Instead, use mysql_query() to
execute a SHOW PROCESSLIST statement.

Returns a result set describing the current server threads. This is the same kind of information as that
reported by mysqladmin processlist or a SHOW PROCESSLIST query.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.45 mysql_list_tables()

MYSQL_RES *mysql_list_tables(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of table names in the current database that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters “%” or “_”, or
may be a NULL pointer to match all tables. Calling mysql_list_tables() is similar to executing the
query SHOW TABLES [LIKE wild].

You must free the result set with mysql_free_result().

C API Function Descriptions

3052

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.46 mysql_more_results()

my_bool mysql_more_results(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or
when you execute CALL statements, which can return multiple result sets.

mysql_more_results() true if more results exist from the currently executed statement, in which
case the application must call mysql_next_result() to fetch the results.

Return Values

TRUE (1) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call mysql_next_result() instead to test whether more results exist and
initiate retrieval if so.

See Section 23.8.17, “C API Support for Multiple Statement Execution”, and Section 23.8.7.47,
“mysql_next_result()”.

Errors

None.

23.8.7.47 mysql_next_result()

int mysql_next_result(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or
when you use CALL statements to execute stored procedures, which can return multiple result sets.

mysql_next_result() reads the next statement result and returns a status to indicate whether
more results exist. If mysql_next_result() returns an error, there are no more results.

Before each call to mysql_next_result(), you must call mysql_free_result() for the current
statement if it is a statement that returned a result set (rather than just a result status).

C API Function Descriptions

3053

After calling mysql_next_result() the state of the connection is as if you had called
mysql_real_query() or mysql_query() for the next statement. This means that you can call
mysql_store_result(), mysql_warning_count(), mysql_affected_rows(), and so forth.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS
flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition
to any result sets that might be returned by statements executed within the procedure. Because CALL
can return multiple results, process them using a loop that calls mysql_next_result() to determine
whether there are more results.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). In MySQL 5.7,
CLIENT_MULTI_RESULTS is enabled by default.

It is also possible to test whether there are more results by calling mysql_more_results().
However, this function does not change the connection state, so if it returns true, you must still call
mysql_next_result() to advance to the next result.

For an example that shows how to use mysql_next_result(), see Section 23.8.17, “C API Support
for Multiple Statement Execution”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example, if you did not call
mysql_use_result() for a previous result set.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.48 mysql_num_fields()

unsigned int mysql_num_fields(MYSQL_RES *result)

To pass a MYSQL* argument instead, use unsigned int mysql_field_count(MYSQL *mysql).

Description

Returns the number of columns in a result set.

You can get the number of columns either from a pointer to a result set or to a connection handle. You
would use the connection handle if mysql_store_result() or mysql_use_result() returned
NULL (and thus you have no result set pointer). In this case, you can call mysql_field_count() to

C API Function Descriptions

3054

determine whether mysql_store_result() should have produced a nonempty result. This enables
the client program to take proper action without knowing whether the query was a SELECT (or SELECT-
like) statement. The example shown here illustrates how this may be done.

See Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query()
Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{
 // error
}
else // query succeeded, process any data returned by it
{
 result = mysql_store_result(&mysql);
 if (result) // there are rows
 {
 num_fields = mysql_num_fields(result);
 // retrieve rows, then call mysql_free_result(result)
 }
 else // mysql_store_result() returned nothing; should it have?
 {
 if (mysql_errno(&mysql))
 {
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 }
 else if (mysql_field_count(&mysql) == 0)
 {
 // query does not return data
 // (it was not a SELECT)
 num_rows = mysql_affected_rows(&mysql);
 }
 }
}

An alternative (if you know that your query should have returned a result set) is to replace the
mysql_errno(&mysql) call with a check whether mysql_field_count(&mysql) returns 0. This
happens only if something went wrong.

23.8.7.49 mysql_num_rows()

my_ulonglong mysql_num_rows(MYSQL_RES *result)

Description

Returns the number of rows in the result set.

The use of mysql_num_rows() depends on whether you use mysql_store_result()
or mysql_use_result() to return the result set. If you use mysql_store_result(),
mysql_num_rows() may be called immediately. If you use mysql_use_result(),
mysql_num_rows() does not return the correct value until all the rows in the result set have been
retrieved.

C API Function Descriptions

3055

mysql_num_rows() is intended for use with statements that return a result set, such as SELECT. For
statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
mysql_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

23.8.7.50 mysql_options()

int mysql_options(MYSQL *mysql, enum mysql_option option, const void *arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be
called multiple times to set several options. (To retrieve option values, use mysql_get_option().)

Call mysql_options() after mysql_init() and before mysql_connect() or
mysql_real_connect().

The option argument is the option that you want to set; the arg argument is the value for the option.
If the option is an integer, specify a pointer to the value of the integer as the arg argument.

The following list describes the possible options, their effect, and how arg is used for each option.
Several of the options apply only when the application is linked against the libmysqld embedded
server library and are unused for applications linked against the libmysqlclient client library. For
option descriptions that indicate arg is unused, its value is irrelevant; it is conventional to pass 0.

• MYSQL_DEFAULT_AUTH (argument type: char *)

The name of the authentication plugin to use.

• MYSQL_ENABLE_CLEARTEXT_PLUGIN (argument type: my_bool *)

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.9.8, “The
Cleartext Client-Side Authentication Plugin”.)

• MYSQL_INIT_COMMAND (argument type: char *)

SQL statement to execute when connecting to the MySQL server. Automatically re-executed if
reconnection occurs.

• MYSQL_OPT_BIND (argument: char *)

The network interface from which to connect to the server. This is used when the client host has
multiple network interfaces. The argument is a host name or IP address (specified as a string).

• MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS (argument type: my_bool *)

Indicate whether the client can handle expired passwords. For more information, see Section 6.3.7,
“Password Expiration and Sandbox Mode”.

• MYSQL_OPT_COMPRESS (argument: not used)

Use the compressed client/server protocol.

• MYSQL_OPT_CONNECT_ATTR_DELETE (argument types: char *)

C API Function Descriptions

3056

Given a key name, this option deletes a key/value pair from the current set of connection attributes to
pass to the server at connect time. The argument is a pointer to a null-terminated string naming the
key. Comparison of the key name with existing keys is case sensitive.

See also the description for the MYSQL_OPT_CONNECT_ATTR_RESET option, as well as
the description for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the
mysql_options4() function. That function description also includes a usage example.

Connection attributes are exposed through the session_connect_attrs and
session_account_connect_attrs Performance Schema tables. See Section 21.9.9,
“Performance Schema Connection Attribute Tables”.

• MYSQL_OPT_CONNECT_ATTR_RESET (argument not used)

This option resets (clears) the current set of connection attributes to pass to the server at connect
time.

See also the description for the MYSQL_OPT_CONNECT_ATTR_DELETE option, as well as
the description for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the
mysql_options4() function. That function description also includes a usage example.

Connection attributes are exposed through the session_connect_attrs and
session_account_connect_attrs Performance Schema tables. See Section 21.9.9,
“Performance Schema Connection Attribute Tables”.

• MYSQL_OPT_CONNECT_TIMEOUT (argument type: unsigned int *)

The connect timeout in seconds.

• MYSQL_OPT_GUESS_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this enables the library
to guess whether to use the embedded server or a remote server. “Guess” means that if the
host name is set and is not localhost, it uses a remote server. This behavior is the default.
MYSQL_OPT_USE_EMBEDDED_CONNECTION and MYSQL_OPT_USE_REMOTE_CONNECTION can be
used to override it. This option is ignored for applications linked against the libmysqlclient client
library.

• MYSQL_OPT_LOCAL_INFILE (argument type: optional pointer to unsigned int)

If no pointer is given or if pointer points to an unsigned int that has a nonzero value, the LOAD
DATA LOCAL INFILE statement is enabled.

• MYSQL_OPT_MAX_ALLOWED_PACKET (argument: unsigned long *)

This option sets the max_allowed_packet system variable. If the mysql argument is non-NULL,
the call sets the session system variable value for that session. If mysql is NULL, the call sets the
global system variable value. This option was added in MySQL 5.7.9.

• MYSQL_OPT_NAMED_PIPE (argument: not used)

Use a named pipe to connect to the MySQL server on Windows, if the server permits named-pipe
connections.

• MYSQL_OPT_NET_BUFFER_LENGTH (argument: unsigned long *)

This option sets the net_buffer_length system variable. If the mysql argument is non-NULL, the
call sets the session system variable value for that session. If mysql is NULL, the call sets the global
system variable value. This option was added in MySQL 5.7.9.

• MYSQL_OPT_PROTOCOL (argument type: unsigned int *)

C API Function Descriptions

3057

Type of protocol to use. Specify one of the enum values of mysql_protocol_type defined in
mysql.h.

• MYSQL_OPT_READ_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to read from the server. There are retries if necessary, so
the total effective timeout value is three times the option value. You can set the value so that a lost
connection can be detected earlier than the TCP/IP Close_Wait_Timeout value of 10 minutes.

• MYSQL_OPT_RECONNECT (argument type: my_bool *)

Enable or disable automatic reconnection to the server if the connection is found to have been lost.
Reconnect is off by default; this option provides a way to set reconnection behavior explicitly.

• MYSQL_OPT_SSL_CA (argument type: char *)

The path to a file in PEM format that contains a list of trusted SSL CAs.

• MYSQL_OPT_SSL_CAPATH (argument type: char *)

The path to a directory that contains trusted SSL CA certificates in PEM format.

• MYSQL_OPT_SSL_CERT (argument type: char *)

The name of an SSL certificate file in PEM format to use for establishing a secure connection.

• MYSQL_OPT_SSL_CIPHER (argument type: char *)

A list of permissible ciphers to use for SSL encryption.

• MYSQL_OPT_SSL_CRL (argument type: char *)

The path to a file containing certificate revocation lists in PEM format.

• MYSQL_OPT_SSL_CRLPATH (argument type: char *)

The path to a directory that contains files containing certificate revocation lists in PEM format.

• MYSQL_OPT_SSL_ENFORCE (argument type: my_bool *)

Whether to require the connection to use SSL. If enabled and an encrypted connection cannot be
established, the connection attempt fails. This option was added in MySQL 5.7.3.

• MYSQL_OPT_SSL_KEY (argument type: char *)

The name of an SSL key file in PEM format to use for establishing a secure connection.

• MYSQL_OPT_SSL_VERIFY_SERVER_CERT (argument type: my_bool *)

Enable or disable verification of the server's Common Name value in its certificate against the host
name used when connecting to the server. The connection is rejected if there is a mismatch. This
feature can be used to prevent man-in-the-middle attacks. Verification is disabled by default.

• MYSQL_OPT_TLS_VERSION (argument type: char *)

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more protocol names. The protocols that can be named for this option depend
on the SSL library used to compile MySQL. For details, see Section 6.3.12.2, “Secure Connection
Protocols and Ciphers”.

This option was added in MySQL 5.7.10.

• MYSQL_OPT_USE_EMBEDDED_CONNECTION (argument: not used)

C API Function Descriptions

3058

For an application linked against the libmysqld embedded server library, this forces the use of
the embedded server for the connection. This option is ignored for applications linked against the
libmysqlclient client library.

• MYSQL_OPT_USE_REMOTE_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this forces the use
of a remote server for the connection. This option is ignored for applications linked against the
libmysqlclient client library.

• MYSQL_OPT_USE_RESULT (argument: not used)

This option is unused.

• MYSQL_OPT_WRITE_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to write to the server. There is a retry if necessary, so the
total effective timeout value is two times the option value.

• MYSQL_PLUGIN_DIR (argument type: char *)

The directory in which to look for client plugins.

• MYSQL_READ_DEFAULT_FILE (argument type: char *)

Read options from the named option file instead of from my.cnf.

• MYSQL_READ_DEFAULT_GROUP (argument type: char *)

Read options from the named group from my.cnf or the file specified with
MYSQL_READ_DEFAULT_FILE.

• MYSQL_REPORT_DATA_TRUNCATION (argument type: my_bool *)

Enable or disable reporting of data truncation errors for prepared statements using the error
member of MYSQL_BIND structures. (Default: enabled.)

• MYSQL_SECURE_AUTH (argument type: my_bool *)

Whether to connect to a server that does not support the password hashing used in MySQL 4.1.1
and later. This option is enabled by default.

• MYSQL_SERVER_PUBLIC_KEY (argument type: char *)

The path name to a file containing the server RSA public key. The file must be in PEM format. The
public key is used for RSA encryption of the client password for connections to the server made
using accounts that authenticate with the sha256_password plugin. This option is ignored for client
accounts that do not authenticate with that plugin. It is also ignored if password encryption is not
needed, as is the case when the client connects to the server using an SSL connection.

The server sends the public key to the client as needed, so it is not necessary to use this option for
RSA password encryption to occur. It is more efficient to do so because then the server need not
send the key.

For additional discussion regarding use of the sha256_password plugin, including how to get the
RSA public key, see Section 6.3.9.4, “The SHA-256 Authentication Plugin”.

• MYSQL_SET_CHARSET_DIR (argument type: char *)

The path name to the directory that contains character set definition files.

• MYSQL_SET_CHARSET_NAME (argument type: char *)

C API Function Descriptions

3059

The name of the character set to use as the default character set. The argument can be
MYSQL_AUTODETECT_CHARSET_NAME to cause the character set to be autodetected based on the
operating system setting (see Section 10.1.4, “Connection Character Sets and Collations”).

• MYSQL_SET_CLIENT_IP (argument type: char *)

For an application linked against the libmysqld embedded server library (when libmysqld is
compiled with authentication support), this means that the user is considered to have connected from
the specified IP address (specified as a string) for authentication purposes. This option is ignored for
applications linked against the libmysqlclient client library.

• MYSQL_SHARED_MEMORY_BASE_NAME (argument type: char *)

The name of the shared-memory object for communication to the server on Windows, if the server
supports shared-memory connections. Specify the same value as the --shared-memory-base-
name option used for the mysqld server you want to connect to.

The client group is always read if you use MYSQL_READ_DEFAULT_FILE or
MYSQL_READ_DEFAULT_GROUP.

The specified group in the option file may contain the following options.

Option Description

character-sets-
dir=dir_name

The directory where character sets are installed.

compress Use the compressed client/server protocol.

connect-timeout=seconds The connect timeout in seconds. On Linux this timeout is also
used for waiting for the first answer from the server.

database=db_name Connect to this database if no database was specified in the
connect command.

debug Debug options.

default-character-
set=charset_name

The default character set to use.

disable-local-infile Disable use of LOAD DATA LOCAL INFILE.

enable-cleartext-plugin Enable the mysql_clear_password cleartext authentication
plugin.

host=host_name Default host name.

init-command=stmt Statement to execute when connecting to MySQL server.
Automatically re-executed if reconnection occurs.

interactive-
timeout=seconds

Same as specifying CLIENT_INTERACTIVE to
mysql_real_connect(). See Section 23.8.7.54,
“mysql_real_connect()”.

local-infile[={0|1}] If no argument or nonzero argument, enable use of LOAD DATA
LOCAL; otherwise disable.

max_allowed_packet=bytes Maximum size of packet that client can read from server.

multi-queries, multi-
results

Enable multiple result sets from multiple-statement executions or
stored procedures.

multi-statements Enable the client to send multiple statements in a single string
(separated by ; characters).

password=password Default password.

pipe Use named pipes to connect to a MySQL server on Windows.

port=port_num Default port number.

C API Function Descriptions

3060

Option Description

protocol={TCP|SOCKET|
PIPE|MEMORY}

The protocol to use when connecting to the server.

return-found-rows Tell mysql_info() to return found rows instead of updated rows
when using UPDATE.

shared-memory-base-
name=name

Shared-memory name to use to connect to server.

socket={file_name|pipe_name}Default socket file.

ssl-ca=file_name Certificate Authority file.

ssl-capath=dir_name Certificate Authority directory.

ssl-cert=file_name Certificate file.

ssl-cipher=cipher_list Permissible SSL ciphers.

ssl-key=file_name Key file.

timeout=seconds Like connect-timeout.

user Default user.

timeout has been replaced by connect-timeout, but timeout is still supported for backward
compatibility.

For more information about option files used by MySQL programs, see Section 4.2.6, “Using Option
Files”.

Return Values

Zero for success. Nonzero if you specify an unknown option.

Example

The following mysql_options() calls request the use of compression in the client/server protocol,
cause options to be read from the [odbc] group of option files, and disable transaction autocommit
mode:

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
mysql_options(&mysql,MYSQL_INIT_COMMAND,"SET autocommit=0");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

This code requests that the client use the compressed client/server protocol and read the additional
options from the odbc section in the my.cnf file.

23.8.7.51 mysql_options4()

int mysql_options4(MYSQL *mysql, enum mysql_option option, const void *arg1,
const void *arg2)

Description

mysql_options4() is similar to mysql_options() but has an extra fourth argument so that two
values can be passed for the option specified in the second argument.

C API Function Descriptions

3061

The following list describes the permitted options, their effect, and how arg1 and arg2 are used.

• MYSQL_OPT_CONNECT_ATTR_ADD (argument types: char *, char *)

This option adds a key/value pair to the current set of connection attributes to pass to the server at
connect time. Both arguments are pointers to null-terminated strings. The first and second strings
indicate the key and value, respectively. If the key already exists in the current set of connection
attributes, an error occurs. Comparison of the key name with existing keys is case sensitive.

Key names that begin with an underscore (_) are reserved for internal use and should not be used
by application programs.

See also the descriptions for the MYSQL_OPT_CONNECT_ATTR_RESET
MYSQL_OPT_CONNECT_ATTR_DELETE options in the description of the mysql_options()
function.

Connection attributes are exposed through the session_connect_attrs and
session_account_connect_attrs Performance Schema tables. See Section 21.9.9,
“Performance Schema Connection Attribute Tables”.

Return Values

Zero for success. Nonzero if you specify an unknown option.

Example

This example demonstrates the calls that specify connection attributes:

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_CONNECT_ATTR_RESET, 0);
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key1", "value1");
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key2", "value2");
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key3", "value3");
mysql_options(&mysql,MYSQL_OPT_CONNECT_ATTR_DELETE, "key1");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}
mysql_options(&mysql,MYSQL_OPT_CONNECT_ATTR_RESET, 0);

23.8.7.52 mysql_ping()

int mysql_ping(MYSQL *mysql)

Description

Checks whether the connection to the server is working. If the connection has gone down and auto-
reconnect is enabled an attempt to reconnect is made. If the connection is down and auto-reconnect is
disabled, mysql_ping() returns an error.

Auto-reconnect is disabled by default. To enable it, call mysql_options() with the
MYSQL_OPT_RECONNECT option. For details, see Section 23.8.7.50, “mysql_options()”.

mysql_ping() can be used by clients that remain idle for a long while, to check whether the server
has closed the connection and reconnect if necessary.

If mysql_ping()) does cause a reconnect, there is no explicit indication of it. To determine whether
a reconnect occurs, call mysql_thread_id() to get the original connection identifier before calling
mysql_ping(), then call mysql_thread_id() again to see whether the identifier has changed.

C API Function Descriptions

3062

If reconnect occurs, some characteristics of the connection will have been reset. For details about
these characteristics, see Section 23.8.16, “Controlling Automatic Reconnection Behavior”.

Return Values

Zero if the connection to the server is active. Nonzero if an error occurred. A nonzero return does not
indicate whether the MySQL server itself is down; the connection might be broken for other reasons
such as network problems.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.53 mysql_query()

int mysql_query(MYSQL *mysql, const char *stmt_str)

Description

Executes the SQL statement pointed to by the null-terminated string stmt_str. Normally, the string
must consist of a single SQL statement without a terminating semicolon (“;”) or \g. If multiple-
statement execution has been enabled, the string can contain several statements separated by
semicolons. See Section 23.8.17, “C API Support for Multiple Statement Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the “\0” character, which mysql_query()
interprets as the end of the statement string.)

If you want to know whether the statement returns a result set, you can use mysql_field_count()
to check for this. See Section 23.8.7.22, “mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

C API Function Descriptions

3063

An unknown error occurred.

23.8.7.54 mysql_real_connect()

MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const char
*user, const char *passwd, const char *db, unsigned int port, const char
*unix_socket, unsigned long client_flag)

Description

mysql_real_connect() attempts to establish a connection to a MySQL database engine running on
host. mysql_real_connect() must complete successfully before you can execute any other API
functions that require a valid MYSQL connection handle structure.

The parameters are specified as follows:

• For the first parameter, specify the address of an existing MYSQL structure. Before calling
mysql_real_connect(), call mysql_init() to initialize the MYSQL structure. You can change a
lot of connect options with the mysql_options() call. See Section 23.8.7.50, “mysql_options()”.

• The value of host may be either a host name or an IP address. If host is NULL or the string
"localhost", a connection to the local host is assumed. For Windows, the client connects
using a shared-memory connection, if the server has shared-memory connections enabled.
Otherwise, TCP/IP is used. For Unix, the client connects using a Unix socket file. For local
connections, you can also influence the type of connection to use with the MYSQL_OPT_PROTOCOL
or MYSQL_OPT_NAMED_PIPE options to mysql_options(). The type of connection must be
supported by the server. For a host value of "." on Windows, the client connects using a named
pipe, if the server has named-pipe connections enabled. If named-pipe connections are not enabled,
an error occurs.

• The user parameter contains the user's MySQL login ID. If user is NULL or the empty string "",
the current user is assumed. Under Unix, this is the current login name. Under Windows ODBC, the
current user name must be specified explicitly. See the Connector/ODBC section of Chapter 23,
Connectors and APIs.

• The passwd parameter contains the password for user. If passwd is NULL, only entries in the user
table for the user that have a blank (empty) password field are checked for a match. This enables the
database administrator to set up the MySQL privilege system in such a way that users get different
privileges depending on whether they have specified a password.

Note

Do not attempt to encrypt the password before calling
mysql_real_connect(); password encryption is handled automatically by
the client API.

• The user and passwd parameters use whatever character set has been configured for the MYSQL
object. By default, this is latin1, but can be changed by calling mysql_options(mysql,
MYSQL_SET_CHARSET_NAME, "charset_name") prior to connecting.

• db is the database name. If db is not NULL, the connection sets the default database to this value.

• If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host
parameter determines the type of the connection.

• If unix_socket is not NULL, the string specifies the socket or named pipe to use. Note that the
host parameter determines the type of the connection.

• The value of client_flag is usually 0, but can be set to a combination of the following flags to
enable certain features.

C API Function Descriptions

3064

Flag Name Flag Description

CAN_HANDLE_EXPIRED_PASSWORDSThe client can handle expired passwords. For more information,
see Section 6.3.7, “Password Expiration and Sandbox Mode”.

CLIENT_COMPRESS Use compression in the client/server protocol.

CLIENT_FOUND_ROWS Return the number of found (matched) rows, not the number of
changed rows.

CLIENT_IGNORE_SIGPIPE Prevents the client library from installing a SIGPIPE signal
handler. This can be used to avoid conflicts with a handler that
the application has already installed.

CLIENT_IGNORE_SPACE Permit spaces after function names. Makes all functions names
reserved words.

CLIENT_INTERACTIVE Permit interactive_timeout seconds of inactivity (rather
than wait_timeout seconds) before closing the connection.
The client's session wait_timeout variable is set to the value
of the session interactive_timeout variable.

CLIENT_LOCAL_FILES Enable LOAD DATA LOCAL handling.

CLIENT_MULTI_RESULTS Tell the server that the client can handle multiple result sets from
multiple-statement executions or stored procedures. This flag
is automatically enabled if CLIENT_MULTI_STATEMENTS is
enabled. See the note following this table for more information
about this flag.

CLIENT_MULTI_STATEMENTS Tell the server that the client may send multiple statements in a
single string (separated by ; characters). If this flag is not set,
multiple-statement execution is disabled. See the note following
this table for more information about this flag.

CLIENT_NO_SCHEMA Do not permit db_name.tbl_name.col_name syntax. This is
for ODBC. It causes the parser to generate an error if you use
that syntax, which is useful for trapping bugs in some ODBC
programs.

CLIENT_ODBC Unused.

CLIENT_SSL Use SSL (encrypted protocol). Do not set this option within
an application program; it is set internally in the client
library. Instead, use mysql_ssl_set() before calling
mysql_real_connect().

CLIENT_REMEMBER_OPTIONS Remember options specified by calls to mysql_options().
Without this option, if mysql_real_connect() fails, you must
repeat the mysql_options() calls before trying to connect
again. With this option, the mysql_options() calls need not
be repeated.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS
flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition
to any result sets that might be returned by statements executed within the procedure. Because CALL
can return multiple results, process them using a loop that calls mysql_next_result() to determine
whether there are more results.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). In MySQL 5.7,
CLIENT_MULTI_RESULTS is enabled by default.

If you enable CLIENT_MULTI_STATEMENTS or CLIENT_MULTI_RESULTS, process the
result for every call to mysql_query() or mysql_real_query() by using a loop that calls

C API Function Descriptions

3065

mysql_next_result() to determine whether there are more results. For an example, see
Section 23.8.17, “C API Support for Multiple Statement Execution”.

For some parameters, it is possible to have the value taken from an option file rather than from
an explicit value in the mysql_real_connect() call. To do this, call mysql_options() with
the MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP option before calling
mysql_real_connect(). Then, in the mysql_real_connect() call, specify the “no-value” value
for each parameter to be read from an option file:

• For host, specify a value of NULL or the empty string ("").

• For user, specify a value of NULL or the empty string.

• For passwd, specify a value of NULL. (For the password, a value of the empty string in the
mysql_real_connect() call cannot be overridden in an option file, because the empty string
indicates explicitly that the MySQL account must have an empty password.)

• For db, specify a value of NULL or the empty string.

• For port, specify a value of 0.

• For unix_socket, specify a value of NULL.

If no value is found in an option file for a parameter, its default value is used as indicated in the
descriptions given earlier in this section.

Return Values

A MYSQL* connection handle if the connection was successful, NULL if the connection was
unsuccessful. For a successful connection, the return value is the same as the value of the first
parameter.

Errors

• CR_CONN_HOST_ERROR

Failed to connect to the MySQL server.

• CR_CONNECTION_ERROR

Failed to connect to the local MySQL server.

• CR_IPSOCK_ERROR

Failed to create an IP socket.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SOCKET_CREATE_ERROR

Failed to create a Unix socket.

• CR_UNKNOWN_HOST

Failed to find the IP address for the host name.

• CR_VERSION_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that uses a
different protocol version.

C API Function Descriptions

3066

• CR_NAMEDPIPEOPEN_ERROR

Failed to create a named pipe on Windows.

• CR_NAMEDPIPEWAIT_ERROR

Failed to wait for a named pipe on Windows.

• CR_NAMEDPIPESETSTATE_ERROR

Failed to get a pipe handler on Windows.

• CR_SERVER_LOST

If connect_timeout > 0 and it took longer than connect_timeout seconds to connect to the
server or if the server died while executing the init-command.

• CR_ALREADY_CONNECTED

The MYSQL connection handle is already connected.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

By using mysql_options() the MySQL library reads the [client] and [your_prog_name]
sections in the my.cnf file which ensures that your program works, even if someone has set up
MySQL in some nonstandard way.

Upon connection, mysql_real_connect() sets the reconnect flag (part of the MYSQL structure)
to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A value of 1 for this flag
indicates that if a statement cannot be performed because of a lost connection, to try reconnecting to
the server before giving up. You can use the MYSQL_OPT_RECONNECT option to mysql_options()
to control reconnection behavior.

23.8.7.55 mysql_real_escape_string()

unsigned long mysql_real_escape_string(MYSQL *mysql, char *to, const char
*from, unsigned long length)

Description

This function creates a legal SQL string for use in an SQL statement. See Section 9.1.1, “String
Literals”.

Note

As of MySQL 5.7.6, mysql_real_escape_string() fails and produces
an CR_INSECURE_API_ERR error if the NO_BACKSLASH_ESCAPES
SQL mode is enabled. In this case, the function cannot escape quote
characters except by doubling them, and to do this properly, it must know
more information about the quoting context than is available. Instead, use
mysql_real_escape_string_quote(), which takes an extra argument for
specifying the quoting context.

C API Function Descriptions

3067

The mysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

The string in the from argument is encoded to produce an escaped SQL string, taking into account
the current character set of the connection. The result is placed in the to argument, followed by a
terminating null byte.

Characters encoded are “\”, “'”, “"”, NUL (ASCII 0), “\n”, “\r”, and Control+Z. Strictly speaking,
MySQL requires only that backslash and the quote character used to quote the string in the query be
escaped. mysql_real_escape_string() quotes the other characters to make them easier to read
in log files. For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in
Section 9.1.1, “String Literals”, and Section 12.5, “String Functions”.

The string pointed to by from must be length bytes long. You must allocate the to buffer
to be at least length*2+1 bytes long. (In the worst case, each character may need to be
encoded as using two bytes, and there must be room for the terminating null byte.) When
mysql_real_escape_string() returns, the contents of to is a null-terminated string. The return
value is the length of the encoded string, not including the terminating null byte.

If you must change the character set of the connection, use the mysql_set_character_set()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.
mysql_set_character_set() works like SET NAMES but also affects the character set used by
mysql_real_escape_string(), which SET NAMES does not.

Example

The following example inserts two escaped strings into an INSERT statement, each within single quote
characters:

char query[1000],*end;

end = my_stpcpy(query,"INSERT INTO test_table VALUES('");
end += mysql_real_escape_string(&mysql,end,"What is this",12);
end = my_stpcpy(end,"','");
end += mysql_real_escape_string(&mysql,end,"binary data: \0\r\n",16);
end = my_stpcpy(end,"')");

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The my_stpcpy() function used in the example is included in the libmysqlclient library and
works like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into the to argument, not including the terminating null
byte, or -1 if an error occurs.

Because mysql_real_escape_string() returns an unsigned value, you can check for -1
by comparing the return value to (unsigned long)-1 (or to (unsigned long)~0, which is
equivalent).

Errors

• CR_INSECURE_API_ERR

This error occurs as of MySQL 5.7.6 if the NO_BACKSLASH_ESCAPES SQL mode is enabled
because, in that case, mysql_real_escape_string() cannot be guaranteed to produce a
properly encoded result. To avoid this error, use mysql_real_escape_string_quote() instead.

C API Function Descriptions

3068

23.8.7.56 mysql_real_escape_string_quote()

unsigned long mysql_real_escape_string_quote(MYSQL *mysql, char *to, const
char *from, unsigned long length, char quote)

Description

This function creates a legal SQL string for use in an SQL statement. See Section 9.1.1, “String
Literals”.

The mysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

The string in the from argument is encoded to produce an escaped SQL string, taking into account
the current character set of the connection. The result is placed in the to argument, followed by a
terminating null byte.

Characters encoded are “\”, “'”, “"”, NUL (ASCII 0), “\n”, “\r”, Control+Z, and (as of MySQL 5.7.8)
“`”. Strictly speaking, MySQL requires only that backslash and the quote character used to quote the
string in the query be escaped. mysql_real_escape_string_quote() quotes the other characters
to make them easier to read in log files. For comparison, see the quoting rules for literal strings and the
QUOTE() SQL function in Section 9.1.1, “String Literals”, and Section 12.5, “String Functions”.

Note

If the ANSI_QUOTES SQL mode is enabled,
mysql_real_escape_string_quote() cannot be used to escape double
quote characters for use within double-quoted identifiers. (The function cannot
tell whether the mode is enabled to determine the proper escaping character.)

The string pointed to by from must be length bytes long. You must allocate the to buffer
to be at least length*2+1 bytes long. (In the worst case, each character may need to be
encoded as using two bytes, and there must be room for the terminating null byte.) When
mysql_real_escape_string_quote() returns, the contents of to is a null-terminated string. The
return value is the length of the encoded string, not including the terminating null byte.

The quote argument indicates the context in which the escaped string is to be placed. Suppose that
you intend to escape the from argument and insert the escaped string (designated here by str) into
one of the following statements:

1) SELECT * FROM table WHERE name = 'str'
2) SELECT * FROM table WHERE name = "str"
3) SELECT * FROM `str` WHERE id = 103

To perform escaping properly for each statement, call mysql_real_escape_string_quote() as
follows, where the final argument indicates the quoting context:

1) len = mysql_real_escape_string_quote(&mysql,to,from,from_len,'\'');
2) len = mysql_real_escape_string_quote(&mysql,to,from,from_len,'"');
3) len = mysql_real_escape_string_quote(&mysql,to,from,from_len,'`');

If you must change the character set of the connection, use the mysql_set_character_set()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.
mysql_set_character_set() works like SET NAMES but also affects the character set used by
mysql_real_escape_string_quote(), which SET NAMES does not.

This function was added in MySQL 5.7.6.

Example

The following example inserts two escaped strings into an INSERT statement, each within single quote
characters:

C API Function Descriptions

3069

char query[1000],*end;

end = my_stpcpy(query,"INSERT INTO test_table VALUES('");
end += mysql_real_escape_string_quote(&mysql,end,"What is this",12,'\'');
end = my_stpcpy(end,"','");
end += mysql_real_escape_string_quote(&mysql,end,"binary data: \0\r\n",16,'\'');
end = my_stpcpy(end,"')");

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The my_stpcpy() function used in the example is included in the libmysqlclient library and
works like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into the to argument, not including the terminating null
byte.

Errors

None.

23.8.7.57 mysql_real_query()

int mysql_real_query(MYSQL *mysql, const char *stmt_str, unsigned long
length)

Description

Executes the SQL statement pointed to by stmt_str, a string length bytes long. Normally, the
string must consist of a single SQL statement without a terminating semicolon (“;”) or \g. If multiple-
statement execution has been enabled, the string can contain several statements separated by
semicolons. See Section 23.8.17, “C API Support for Multiple Statement Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the “\0” character, which mysql_query()
interprets as the end of the statement string.) In addition, mysql_real_query() is faster than
mysql_query() because it does not call strlen() on the statement string.

If you want to know whether the statement returns a result set, you can use mysql_field_count()
to check for this. See Section 23.8.7.22, “mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

C API Function Descriptions

3070

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.58 mysql_refresh()

int mysql_refresh(MYSQL *mysql, unsigned int options)

Description

Note

As of MySQL 5.7.11, mysql_refresh() is deprecated and will be removed in
a future version of MySQL. Instead, use mysql_query() to execute a FLUSH
statement.

This function flushes tables or caches, or resets replication server information. The connected user
must have the RELOAD privilege.

The options argument is a bit mask composed from any combination of the following values. Multiple
values can be OR'ed together to perform multiple operations with a single call.

• REFRESH_GRANT

Refresh the grant tables, like FLUSH PRIVILEGES.

• REFRESH_LOG

Flush the logs, like FLUSH LOGS.

• REFRESH_TABLES

Flush the table cache, like FLUSH TABLES.

• REFRESH_HOSTS

Flush the host cache, like FLUSH HOSTS.

• REFRESH_STATUS

Reset status variables, like FLUSH STATUS.

• REFRESH_THREADS

Flush the thread cache.

• REFRESH_SLAVE

On a slave replication server, reset the master server information and restart the slave, like RESET
SLAVE.

• REFRESH_MASTER

On a master replication server, remove the binary log files listed in the binary log index and truncate
the index file, like RESET MASTER.

Return Values

Zero for success. Nonzero if an error occurred.

C API Function Descriptions

3071

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.59 mysql_reload()

int mysql_reload(MYSQL *mysql)

Description

Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD
privilege.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL FLUSH
PRIVILEGES statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.60 mysql_reset_connection()

int mysql_reset_connection(MYSQL *mysql)

Description

Resets the connection to clear the session state. This function was added in MySQL 5.7.3.

mysql_reset_connection() has effects similar to mysql_change_user() or an auto-
reconnect except that the connection is not closed and reopened, and reauthentication is not done.

C API Function Descriptions

3072

See Section 23.8.7.3, “mysql_change_user()”) and see Section 23.8.16, “Controlling Automatic
Reconnection Behavior”).

The connection-related state is affected as follows:

• Any active transactions are rolled back and autocommit mode is reset.

• All table locks are released.

• All TEMPORARY tables are closed (and dropped).

• Session system variables are reinitialized to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NAMES.

• User variable settings are lost.

• Prepared statements are released.

• HANDLER variables are closed.

• The value of LAST_INSERT_ID() is reset to 0.

• Locks acquired with GET_LOCK() are released.

Return Values

Zero for success. Nonzero if an error occurred.

23.8.7.61 mysql_rollback()

my_bool mysql_rollback(MYSQL *mysql)

Description

Rolls back the current transaction.

The action of this function is subject to the value of the completion_type system variable. In
particular, if the value of completion_type is RELEASE (or 2), the server performs a release after
terminating a transaction and closes the client connection. Call mysql_close() from the client
program to close the connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

23.8.7.62 mysql_row_seek()

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a query result set. The offset value is a row offset, typically
a value returned from mysql_row_tell() or from mysql_row_seek(). This value is not a row
number; to seek to a row within a result set by number, use mysql_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_row_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

C API Function Descriptions

3073

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_row_seek().

Errors

None.

23.8.7.63 mysql_row_tell()

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql_fetch_row(). This value can be
used as an argument to mysql_row_seek().

Use mysql_row_tell() only after mysql_store_result(), not after mysql_use_result().

Return Values

The current offset of the row cursor.

Errors

None.

23.8.7.64 mysql_select_db()

int mysql_select_db(MYSQL *mysql, const char *db)

Description

Causes the database specified by db to become the default (current) database on the connection
specified by mysql. In subsequent queries, this database is the default for table references that include
no explicit database specifier.

mysql_select_db() fails unless the connected user can be authenticated as having permission to
use the database.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

C API Function Descriptions

3074

23.8.7.65 mysql_session_track_get_first()

int mysql_session_track_get_first(MYSQL *mysql, enum enum_session_state_type
type, const char **data, size_t *length)

Description

This function fetches the first session state-change information received from the server. It was added
in MySQL 5.7.4.

To control notification for changes to session state, use the session_track_state_change,
session_track_schema, session_track_system_variables, and session_track_gtids
system variables (see Section 5.1.4, “Server System Variables”).

The function parameters are used as follows. These descriptions also apply to
mysql_session_track_get_first(), which takes the same parameters.

• mysql: The connection handle.

• type: The type of information to retrieve. Permitted values for this parameter are the members of the
enum_session_state_type enumeration defined in mysql_com.h:

enum enum_session_state_type
{
 SESSION_TRACK_SYSTEM_VARIABLES, /* Session system variables */
 SESSION_TRACK_SCHEMA, /* Current schema */
 SESSION_TRACK_STATE_CHANGE /* track session state changes */
 SESSION_TRACK_GTIDS, /* track GTIDs/*
};

To make it easy to loop over all possible types of session information, the SESSION_TRACK_BEGIN
and SESSION_TRACK_END macros are defined to be equal to the first and last members of
the enum_session_state_type enumeration. The example code shown later in this section
demonstrates this technique.

• data: The address of a const char * variable. Following a successful call, this variable points to
the returned data, which should be considered read only.

• length: The address of a size_t variable. Following a successful call, this variable contains the
length of the data pointed to by the data parameter.

Following a successful call, interpret the data and length values according to the type value, as
follows:

• SESSION_TRACK_SCHEMA: data is the new default schema name and length is the name length.

• SESSION_TRACK_SYSTEM_VARIABLES: When a session system variable changes, two values per
variable are returned (in separate calls). For the first call, data is the variable name and length
is the name length. For the second call, data is the variable value and length is the value length.
value Both data values are represented as strings.

• SESSION_TRACK_STATE_CHANGE: data is a byte containing a boolean flag that indicates whether
session state changes occurred and length should be 1. The flag is represented as an ASCII value,
not a binary (for example, '1', not 0x01).

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

C API Function Descriptions

3075

Example

The following example shows how to call mysql_session_track_get_first() and
mysql_session_track_get_next() to retrieve and display all available session state-change
information following successful execution of a SQL statement string (represented by stmt_str).

printf("Execute: %s\n", stmt_str);

if (mysql_query(mysql, stmt_str) != 0)
{
 fprintf(stderr, "Error %u: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 return;
}

MYSQL_RES *result = mysql_store_result(mysql);
if (result) /* there is a result set to fetch */
{
 /* ... process rows here ... */
 printf("Number of rows returned: %lu\n",
 (unsigned long) mysql_num_rows(result));
 mysql_free_result(result);
}
else /* there is no result set */
{
 if (mysql_field_count(mysql) == 0)
 {
 printf("Number of rows affected: %lu\n",
 (unsigned long) mysql_affected_rows(mysql));
 }
 else /* an error occurred */
 {
 fprintf(stderr, "Error %u: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 }
}

/* extract any available session state-change information */
enum enum_session_state_type type;
for (type = SESSION_TRACK_BEGIN; type <= SESSION_TRACK_END; type++)
{
 const char *data;
 size_t length;

 if (mysql_session_track_get_first(mysql, type, &data, &length) == 0)
 {
 printf("Type=%d:\n", type);
 printf("mysql_session_track_get_first() returns: %*.*s\n",
 (int) length, (int) length, data);

 /* check for more data */
 while (mysql_session_track_get_next(mysql, type, &data, &length) == 0)
 {
 printf("mysql_session_track_get_next() returns: %*.*s\n",
 (int) length, (int) length, data);
 }
 }
}

23.8.7.66 mysql_session_track_get_next()

int mysql_session_track_get_next(MYSQL *mysql, enum enum_session_state_type
type, const char **data, size_t *length)

Description

This function fetches session state-change information received from the server, following that
retrieved by mysql_session_track_get_first(). It was added in MySQL 5.7.4.

C API Function Descriptions

3076

Following a successful call to mysql_session_track_get_first(), call
mysql_session_track_get_next() repeatedly until it returns nonzero to indicate no more
information is available. The calling sequence for mysql_session_track_get_next() is similar
to that for mysql_session_track_get_first(). For more information and an example that
demonstrates both functions, see Section 23.8.7.65, “mysql_session_track_get_first()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

23.8.7.67 mysql_set_character_set()

int mysql_set_character_set(MYSQL *mysql, const char *csname)

Description

This function is used to set the default character set for the current connection. The string csname
specifies a valid character set name. The connection collation becomes the default collation of the
character set. This function works like the SET NAMES statement, but also sets the value of mysql-
>charset, and thus affects the character set used by mysql_real_escape_string()

Return Values

Zero for success. Nonzero if an error occurred.

Example

MYSQL mysql;

mysql_init(&mysql);
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

if (!mysql_set_character_set(&mysql, "utf8"))
{
 printf("New client character set: %s\n",
 mysql_character_set_name(&mysql));
}

23.8.7.68 mysql_set_local_infile_default()

void mysql_set_local_infile_default(MYSQL *mysql);

Description

Sets the LOAD DATA LOCAL INFILE callback functions to the defaults used internally by the C client
library. The library calls this function automatically if mysql_set_local_infile_handler() has
not been called or does not supply valid functions for each of its callbacks.

Return Values

None.

Errors

None.

C API Function Descriptions

3077

23.8.7.69 mysql_set_local_infile_handler()

void mysql_set_local_infile_handler(MYSQL *mysql, int (*local_infile_init)
(void **, const char *, void *), int (*local_infile_read)(void *, char *,
unsigned int), void (*local_infile_end)(void *), int (*local_infile_error)
(void *, char*, unsigned int), void *userdata);

Description

This function installs callbacks to be used during the execution of LOAD DATA LOCAL INFILE
statements. It enables application programs to exert control over local (client-side) data file reading.
The arguments are the connection handler, a set of pointers to callback functions, and a pointer to a
data area that the callbacks can use to share information.

To use mysql_set_local_infile_handler(), you must write the following callback functions:

int
local_infile_init(void **ptr, const char *filename, void *userdata);

The initialization function. This is called once to do any setup necessary, open the data file, allocate
data structures, and so forth. The first void** argument is a pointer to a pointer. You can set the
pointer (that is, *ptr) to a value that will be passed to each of the other callbacks (as a void*). The
callbacks can use this pointed-to value to maintain state information. The userdata argument is the
same value that is passed to mysql_set_local_infile_handler().

Make the initialization function return zero for success, nonzero for an error.

int
local_infile_read(void *ptr, char *buf, unsigned int buf_len);

The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where
the read data is stored, and buf_len is the maximum number of bytes that the callback can read and
store in the buffer. (It can read fewer bytes, but should not read more.)

The return value is the number of bytes read, or zero when no more data could be read (this indicates
EOF). Return a value less than zero if an error occurs.

void
local_infile_end(void *ptr)

The termination function. This is called once after local_infile_read() has returned zero (EOF)
or an error. Within this function, deallocate any memory allocated by local_infile_init() and
perform any other cleanup necessary. It is invoked even if the initialization function returns an error.

int
local_infile_error(void *ptr,
 char *error_msg,
 unsigned int error_msg_len);

The error-handling function. This is called to get a textual error message to return to the user in case
any of your other functions returns an error. error_msg points to the buffer into which the message is
written, and error_msg_len is the length of the buffer. Write the message as a null-terminated string,
at most error_msg_len−1 bytes long.

The return value is the error number.

Typically, the other callbacks store the error message in the data structure pointed to by ptr, so that
local_infile_error() can copy the message from there into error_msg.

C API Function Descriptions

3078

After calling mysql_set_local_infile_handler() in your C code and passing pointers
to your callback functions, you can then issue a LOAD DATA LOCAL INFILE statement (for
example, by using mysql_query()). The client library automatically invokes your callbacks. The
file name specified in LOAD DATA LOCAL INFILE will be passed as the second parameter to the
local_infile_init() callback.

Return Values

None.

Errors

None.

23.8.7.70 mysql_set_server_option()

int mysql_set_server_option(MYSQL *mysql, enum enum_mysql_set_option option)

Description

Enables or disables an option for the connection. option can have one of the following values.

Option Description

MYSQL_OPTION_MULTI_STATEMENTS_ON Enable multiple-statement support

MYSQL_OPTION_MULTI_STATEMENTS_OFF Disable multiple-statement support

If you enable multiple-statement support, you should retrieve results from calls to mysql_query()
or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 23.8.17, “C API Support for Multiple Statement
Execution”.

Enabling multiple-statement support with MYSQL_OPTION_MULTI_STATEMENTS_ON does not
have quite the same effect as enabling it by passing the CLIENT_MULTI_STATEMENTS flag to
mysql_real_connect(): CLIENT_MULTI_STATEMENTS also enables CLIENT_MULTI_RESULTS.
If you are using the CALL SQL statement in your programs, multiple-result support must be enabled;
this means that MYSQL_OPTION_MULTI_STATEMENTS_ON by itself is insufficient to permit the use of
CALL.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• ER_UNKNOWN_COM_ERROR

The server did not support mysql_set_server_option() (which is the case that the server is
older than 4.1.1) or the server did not support the option one tried to set.

C API Function Descriptions

3079

23.8.7.71 mysql_shutdown()

int mysql_shutdown(MYSQL *mysql, enum mysql_enum_shutdown_level
shutdown_level)

Description

Note

As of MySQL 5.7.9, mysql_shutdown() is deprecated and will be removed
in a future version of MySQL. Instead, use mysql_query() to execute a
SHUTDOWN statement.

Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.
MySQL servers support only one type of shutdown; shutdown_level must be equal to
SHUTDOWN_DEFAULT. Dynamically linked executables which have been compiled with older versions
of the libmysqlclient headers and call mysql_shutdown() need to be used with the old
libmysqlclient dynamic library.

As of MySQL 5.7.9, an alternative to mysql_shutdown() is to use the SHUTDOWN SQL statement.

The shutdown process is described in Section 5.1.12, “The Server Shutdown Process”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.72 mysql_sqlstate()

const char *mysql_sqlstate(MYSQL *mysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the most recently executed
SQL statement. The error code consists of five characters. '00000' means “no error.” The values are
specified by ANSI SQL and ODBC. For a list of possible values, see Appendix B, Errors, Error Codes,
and Common Problems.

SQLSTATE values returned by mysql_sqlstate() differ from MySQL-specific error numbers
returned by mysql_errno(). For example, the mysql client program displays errors using the
following format, where 1146 is the mysql_errno() value and '42S02' is the corresponding
mysql_sqlstate() value:

C API Function Descriptions

3080

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Not all MySQL error numbers are mapped to SQLSTATE error codes. The value 'HY000' (general
error) is used for unmapped error numbers.

If you call mysql_sqlstate() after mysql_real_connect() fails, mysql_sqlstate() might not
return a useful value. For example, this happens if a host is blocked by the server and the connection is
closed without any SQLSTATE value being sent to the client.

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 23.8.7.14, “mysql_errno()”, Section 23.8.7.15, “mysql_error()”, and Section 23.8.11.27,
“mysql_stmt_sqlstate()”.

23.8.7.73 mysql_ssl_set()

my_bool mysql_ssl_set(MYSQL *mysql, const char *key, const char *cert, const
char *ca, const char *capath, const char *cipher)

Description

mysql_ssl_set() is used for establishing secure connections using SSL. It must be called before
mysql_real_connect().

mysql_ssl_set() does nothing unless SSL support is enabled in the client library.

mysql is the connection handler returned from mysql_init(). The other parameters are specified as
follows:

• key is the path name to the key file.

• cert is the path name to the certificate file.

• ca is the path name to the certificate authority file.

• capath is the path name to a directory that contains trusted SSL CA certificates in PEM format.

• cipher is a list of permissible ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL.

Return Values

This function always returns 0. If SSL setup is incorrect, mysql_real_connect() returns an error
when you attempt to connect.

23.8.7.74 mysql_stat()

const char *mysql_stat(MYSQL *mysql)

Description

Returns a character string containing information similar to that provided by the mysqladmin status
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.

C API Function Descriptions

3081

Return Values

A character string describing the server status. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.75 mysql_store_result()

MYSQL_RES *mysql_store_result(MYSQL *mysql)

Description

After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after
you are done with the result set.

You need not call mysql_store_result() or mysql_use_result() for other statements,
but it does not do any harm or cause any notable performance degradation if you call
mysql_store_result() in all cases. You can detect whether the statement has a result set by
checking whether mysql_store_result() returns a nonzero value (more about this later).

If you enable multiple-statement support, you should retrieve results from calls to mysql_query()
or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 23.8.17, “C API Support for Multiple Statement
Execution”.

If you want to know whether a statement should return a result set, you can use
mysql_field_count() to check for this. See Section 23.8.7.22, “mysql_field_count()”.

mysql_store_result() reads the entire result of a query to the client, allocates a MYSQL_RES
structure, and places the result into this structure.

mysql_store_result() returns a null pointer if the statement did not return a result set (for
example, if it was an INSERT statement).

mysql_store_result() also returns a null pointer if reading of the result set failed. You can
check whether an error occurred by checking whether mysql_error() returns a nonempty string,
mysql_errno() returns nonzero, or mysql_field_count() returns zero.

An empty result set is returned if there are no rows returned. (An empty result set differs from a null
pointer as a return value.)

After you have called mysql_store_result() and gotten back a result that is not a null pointer, you
can call mysql_num_rows() to find out how many rows are in the result set.

C API Function Descriptions

3082

You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek() and
mysql_row_tell() to obtain or set the current row position within the result set.

See Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query()
Returns Success”.

Return Values

A MYSQL_RES result structure with the results. NULL (0) if an error occurred.

Errors

mysql_store_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.76 mysql_thread_id()

unsigned long mysql_thread_id(MYSQL *mysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to
mysql_kill() to kill the thread.

If the connection is lost and you reconnect with mysql_ping(), the thread ID changes. This means
you should not get the thread ID and store it for later. You should get it when you need it.

Note

This function does not work correctly if thread IDs become larger than
32 bits, which can occur on some systems. To avoid problems with
mysql_thread_id(), do not use it. To get the connection ID, execute a
SELECT CONNECTION_ID() query and retrieve the result.

Return Values

The thread ID of the current connection.

Errors

None.

23.8.7.77 mysql_use_result()

C API Function Descriptions

3083

MYSQL_RES *mysql_use_result(MYSQL *mysql)

Description

After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after
you are done with the result set.

mysql_use_result() initiates a result set retrieval but does not actually read the result set into the
client like mysql_store_result() does. Instead, each row must be retrieved individually by making
calls to mysql_fetch_row(). This reads the result of a query directly from the server without storing
it in a temporary table or local buffer, which is somewhat faster and uses much less memory than
mysql_store_result(). The client allocates memory only for the current row and a communication
buffer that may grow up to max_allowed_packet bytes.

On the other hand, you should not use mysql_use_result() for locking reads if you are doing a lot
of processing for each row on the client side, or if the output is sent to a screen on which the user may
type a ^S (stop scroll). This ties up the server and prevent other threads from updating any tables from
which the data is being fetched.

When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL value is
returned, otherwise, the unfetched rows are returned as part of the result set for your next query. The C
API gives the error Commands out of sync; you can't run this command now if you forget
to do this!

You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(),
mysql_num_rows(), or mysql_affected_rows() with a result returned from
mysql_use_result(), nor may you issue other queries until mysql_use_result() has finished.
(However, after you have fetched all the rows, mysql_num_rows() accurately returns the number of
rows fetched.)

You must call mysql_free_result() once you are done with the result set.

When using the libmysqld embedded server, the memory benefits are essentially lost because
memory usage incrementally increases with each row retrieved until mysql_free_result() is
called.

Return Values

A MYSQL_RES result structure. NULL if an error occurred.

Errors

mysql_use_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

C API Prepared Statements

3084

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.78 mysql_warning_count()

unsigned int mysql_warning_count(MYSQL *mysql)

Description

Returns the number of errors, warnings, and notes generated during execution of the previous SQL
statement.

Return Values

The warning count.

Errors

None.

23.8.8 C API Prepared Statements

The MySQL client/server protocol provides for the use of prepared statements. This capability uses
the MYSQL_STMT statement handler data structure returned by the mysql_stmt_init() initialization
function. Prepared execution is an efficient way to execute a statement more than once. The statement
is first parsed to prepare it for execution. Then it is executed one or more times at a later time, using
the statement handle returned by the initialization function.

Prepared execution is faster than direct execution for statements executed more than once, primarily
because the query is parsed only once. In the case of direct execution, the query is parsed every time
it is executed. Prepared execution also can provide a reduction of network traffic because for each
execution of the prepared statement, it is necessary only to send the data for the parameters.

Prepared statements might not provide a performance increase in some situations. For best results,
test your application both with prepared and nonprepared statements and choose whichever yields
best performance.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

For a list of SQL statements that can be used as prepared statements, see Section 13.5, “SQL Syntax
for Prepared Statements”.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”.

23.8.9 C API Prepared Statement Data Structures

Prepared statements use several data structures:

• To obtain a statement handle, pass a MYSQL connection handler to mysql_stmt_init(), which
returns a pointer to a MYSQL_STMT data structure. This structure is used for further operations with
the statement. To specify the statement to prepare, pass the MYSQL_STMT pointer and the statement
string to mysql_stmt_prepare().

• To provide input parameters for a prepared statement, set up MYSQL_BIND structures and pass
them to mysql_stmt_bind_param(). To receive output column values, set up MYSQL_BIND
structures and pass them to mysql_stmt_bind_result().

C API Prepared Statement Data Structures

3085

• The MYSQL_TIME structure is used to transfer temporal data in both directions.

The following discussion describes the prepared statement data types in detail. For examples that
show how to use them, see Section 23.8.11.10, “mysql_stmt_execute()”, and Section 23.8.11.11,
“mysql_stmt_fetch()”.

• MYSQL_STMT

This structure is a handle for a prepared statement. A handle is created by calling
mysql_stmt_init(), which returns a pointer to a MYSQL_STMT. The handle is used for all
subsequent operations with the statement until you close it with mysql_stmt_close(), at which
point the handle becomes invalid.

The MYSQL_STMT structure has no members intended for application use. Applications should not try
to copy a MYSQL_STMT structure. There is no guarantee that such a copy will be usable.

Multiple statement handles can be associated with a single connection. The limit on the number of
handles depends on the available system resources.

• MYSQL_BIND

This structure is used both for statement input (data values sent to the server) and output (result
values returned from the server):

• For input, use MYSQL_BIND structures with mysql_stmt_bind_param() to bind parameter data
values to buffers for use by mysql_stmt_execute().

• For output, use MYSQL_BIND structures with mysql_stmt_bind_result() to bind buffers to
result set columns, for use in fetching rows with mysql_stmt_fetch().

To use a MYSQL_BIND structure, zero its contents to initialize it, then set its members appropriately.
For example, to declare and initialize an array of three MYSQL_BIND structures, use this code:

MYSQL_BIND bind[3];
memset(bind, 0, sizeof(bind));

The MYSQL_BIND structure contains the following members for use by application programs. For
several of the members, the manner of use depends on whether the structure is used for input or
output.

• enum enum_field_types buffer_type

The type of the buffer. This member indicates the data type of the C language variable bound
to a statement parameter or result set column. For input, buffer_type indicates the type
of the variable containing the value to be sent to the server. For output, it indicates the type
of the variable into which a value received from the server should be stored. For permissible
buffer_type values, see Section 23.8.9.1, “C API Prepared Statement Type Codes”.

• void *buffer

A pointer to the buffer to be used for data transfer. This is the address of a C language variable.

For input, buffer is a pointer to the variable in which you store the data value for a statement
parameter. When you call mysql_stmt_execute(), MySQL use the value stored in the variable
in place of the corresponding parameter marker in the statement (specified with ? in the statement
string).

For output, buffer is a pointer to the variable in which to return a result set column value. When
you call mysql_stmt_fetch(), MySQL stores a column value from the current row of the result
set in this variable. You can access the value when the call returns.

C API Prepared Statement Data Structures

3086

To minimize the need for MySQL to perform type conversions between C language values on the
client side and SQL values on the server side, use C variables that have types similar to those of
the corresponding SQL values:

• For numeric data types, buffer should point to a variable of the proper numeric C type.
For integer variables (which can be char for single-byte values or an integer type for larger
values), you should also indicate whether the variable has the unsigned attribute by setting the
is_unsigned member, described later.

• For character (nonbinary) and binary string data types, buffer should point to a character
buffer.

• For date and time data types, buffer should point to a MYSQL_TIME structure.

For guidelines about mapping between C types and SQL types and notes about type conversions,
see Section 23.8.9.1, “C API Prepared Statement Type Codes”, and Section 23.8.9.2, “C API
Prepared Statement Type Conversions”.

• unsigned long buffer_length

The actual size of *buffer in bytes. This indicates the maximum amount of data that can be
stored in the buffer. For character and binary C data, the buffer_length value specifies the
length of *buffer when used with mysql_stmt_bind_param() to specify input values, or
the maximum number of output data bytes that can be fetched into the buffer when used with
mysql_stmt_bind_result().

• unsigned long *length

A pointer to an unsigned long variable that indicates the actual number of bytes of data stored
in *buffer. length is used for character or binary C data.

For input parameter data binding, set *length to indicate the actual length of the parameter value
stored in *buffer. This is used by mysql_stmt_execute().

For output value binding, MySQL sets *length when you call mysql_stmt_fetch(). The
mysql_stmt_fetch() return value determines how to interpret the length:

• If the return value is 0, *length indicates the actual length of the parameter value.

• If the return value is MYSQL_DATA_TRUNCATED, *length indicates the nontruncated length of
the parameter value. In this case, the minimum of *length and buffer_length indicates the
actual length of the value.

length is ignored for numeric and temporal data types because the buffer_type value
determines the length of the data value.

If you must determine the length of a returned value before fetching it, see Section 23.8.11.11,
“mysql_stmt_fetch()”, for some strategies.

• my_bool *is_null

This member points to a my_bool variable that is true if a value is NULL, false if it is not NULL.
For input, set *is_null to true to indicate that you are passing a NULL value as a statement
parameter.

is_null is a pointer to a boolean scalar, not a boolean scalar, to provide flexibility in how you
specify NULL values:

• If your data values are always NULL, use MYSQL_TYPE_NULL as the buffer_type value when
you bind the column. The other MYSQL_BIND members, including is_null, do not matter.

C API Prepared Statement Data Structures

3087

• If your data values are always NOT NULL, set is_null = (my_bool*) 0, and set the other
members appropriately for the variable you are binding.

• In all other cases, set the other members appropriately and set is_null to the address of a
my_bool variable. Set that variable's value to true or false appropriately between executions to
indicate whether the corresponding data value is NULL or NOT NULL, respectively.

For output, when you fetch a row, MySQL sets the value pointed to by is_null to true or false
according to whether the result set column value returned from the statement is or is not NULL.

• my_bool is_unsigned

This member applies for C variables with data types that can be unsigned (char, short
int, int, long long int). Set is_unsigned to true if the variable pointed to by buffer is
unsigned and false otherwise. For example, if you bind a signed char variable to buffer,
specify a type code of MYSQL_TYPE_TINY and set is_unsigned to false. If you bind an
unsigned char instead, the type code is the same but is_unsigned should be true. (For
char, it is not defined whether it is signed or unsigned, so it is best to be explicit about signedness
by using signed char or unsigned char.)

is_unsigned applies only to the C language variable on the client side. It indicates nothing
about the signedness of the corresponding SQL value on the server side. For example, if you use
an int variable to supply a value for a BIGINT UNSIGNED column, is_unsigned should be
false because int is a signed type. If you use an unsigned int variable to supply a value for
a BIGINT column, is_unsigned should be true because unsigned int is an unsigned type.
MySQL performs the proper conversion between signed and unsigned values in both directions,
although a warning occurs if truncation results.

• my_bool *error

For output, set this member to point to a my_bool variable to have truncation information
for the parameter stored there after a row fetching operation. When truncation reporting is
enabled, mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED and *error is true in
the MYSQL_BIND structures for parameters in which truncation occurred. Truncation indicates
loss of sign or significant digits, or that a string was too long to fit in a column. Truncation
reporting is enabled by default, but can be controlled by calling mysql_options() with the
MYSQL_REPORT_DATA_TRUNCATION option.

• MYSQL_TIME

This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP data
directly to and from the server. Set the buffer member to point to a MYSQL_TIME structure,
and set the buffer_type member of a MYSQL_BIND structure to one of the temporal types
(MYSQL_TYPE_TIME, MYSQL_TYPE_DATE, MYSQL_TYPE_DATETIME, MYSQL_TYPE_TIMESTAMP).

The MYSQL_TIME structure contains the members listed in the following table.

Member Description

unsigned int year The year

unsigned int month The month of the year

unsigned int day The day of the month

unsigned int hour The hour of the day

unsigned int minute The minute of the hour

unsigned int second The second of the minute

my_bool neg A boolean flag indicating whether the time is negative

C API Prepared Statement Data Structures

3088

Member Description

unsigned long second_part The fractional part of the second in microseconds

Only those parts of a MYSQL_TIME structure that apply to a given type of temporal value are used.
The year, month, and day elements are used for DATE, DATETIME, and TIMESTAMP values. The
hour, minute, and second elements are used for TIME, DATETIME, and TIMESTAMP values. See
Section 23.8.19, “C API Prepared Statement Handling of Date and Time Values”.

23.8.9.1 C API Prepared Statement Type Codes

The buffer_type member of MYSQL_BIND structures indicates the data type of the C language
variable bound to a statement parameter or result set column. For input, buffer_type indicates the
type of the variable containing the value to be sent to the server. For output, it indicates the type of the
variable into which a value received from the server should be stored.

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for input values sent to the server. The table shows the C variable types that you can use,
the corresponding type codes, and the SQL data types for which the supplied value can be used
without conversion. Choose the buffer_type value according to the data type of the C language
variable that you are binding. For the integer types, you should also set the is_unsigned member to
indicate whether the variable is signed or unsigned.

Input Variable C Type buffer_type Value SQL Type of Destination Value

signed char MYSQL_TYPE_TINY TINYINT

short int MYSQL_TYPE_SHORT SMALLINT

int MYSQL_TYPE_LONG INT

long long int MYSQL_TYPE_LONGLONG BIGINT

float MYSQL_TYPE_FLOAT FLOAT

double MYSQL_TYPE_DOUBLE DOUBLE

MYSQL_TIME MYSQL_TYPE_TIME TIME

MYSQL_TIME MYSQL_TYPE_DATE DATE

MYSQL_TIME MYSQL_TYPE_DATETIME DATETIME

MYSQL_TIME MYSQL_TYPE_TIMESTAMP TIMESTAMP

char[] MYSQL_TYPE_STRING TEXT, CHAR, VARCHAR

char[] MYSQL_TYPE_BLOB BLOB, BINARY, VARBINARY

 MYSQL_TYPE_NULL NULL

Use MYSQL_TYPE_NULL as indicated in the description for the is_null member in Section 23.8.9, “C
API Prepared Statement Data Structures”.

For input string data, use MYSQL_TYPE_STRING or MYSQL_TYPE_BLOB depending on whether the
value is a character (nonbinary) or binary string:

• MYSQL_TYPE_STRING indicates character input string data. The value is assumed to be in the
character set indicated by the character_set_client system variable. If the server stores the
value into a column with a different character set, it converts the value to that character set.

• MYSQL_TYPE_BLOB indicates binary input string data. The value is treated as having the binary
character set. That is, it is treated as a byte string and no conversion occurs.

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for output values received from the server. The table shows the SQL types of received
values, the corresponding type codes that such values have in result set metadata, and the
recommended C language data types to bind to the MYSQL_BIND structure to receive the SQL values
without conversion. Choose the buffer_type value according to the data type of the C language

C API Prepared Statement Data Structures

3089

variable that you are binding. For the integer types, you should also set the is_unsigned member to
indicate whether the variable is signed or unsigned.

SQL Type of Received
Value

buffer_type Value Output Variable C Type

TINYINT MYSQL_TYPE_TINY signed char

SMALLINT MYSQL_TYPE_SHORT short int

MEDIUMINT MYSQL_TYPE_INT24 int

INT MYSQL_TYPE_LONG int

BIGINT MYSQL_TYPE_LONGLONG long long int

FLOAT MYSQL_TYPE_FLOAT float

DOUBLE MYSQL_TYPE_DOUBLE double

DECIMAL MYSQL_TYPE_NEWDECIMAL char[]

YEAR MYSQL_TYPE_SHORT short int

TIME MYSQL_TYPE_TIME MYSQL_TIME

DATE MYSQL_TYPE_DATE MYSQL_TIME

DATETIME MYSQL_TYPE_DATETIME MYSQL_TIME

TIMESTAMP MYSQL_TYPE_TIMESTAMP MYSQL_TIME

CHAR, BINARY MYSQL_TYPE_STRING char[]

VARCHAR, VARBINARY MYSQL_TYPE_VAR_STRING char[]

TINYBLOB, TINYTEXT MYSQL_TYPE_TINY_BLOB char[]

BLOB, TEXT MYSQL_TYPE_BLOB char[]

MEDIUMBLOB, MEDIUMTEXT MYSQL_TYPE_MEDIUM_BLOB char[]

LONGBLOB, LONGTEXT MYSQL_TYPE_LONG_BLOB char[]

BIT MYSQL_TYPE_BIT char[]

23.8.9.2 C API Prepared Statement Type Conversions

Prepared statements transmit data between the client and server using C language variables on the
client side that correspond to SQL values on the server side. If there is a mismatch between the C
variable type on the client side and the corresponding SQL value type on the server side, MySQL
performs implicit type conversions in both directions.

MySQL knows the type code for the SQL value on the server side. The buffer_type value in the
MYSQL_BIND structure indicates the type code of the C variable that holds the value on the client
side. The two codes together tell MySQL what conversion must be performed, if any. Here are some
examples:

• If you use MYSQL_TYPE_LONG with an int variable to pass an integer value to the server that is to
be stored into a FLOAT column, MySQL converts the value to floating-point format before storing it.

• If you fetch an SQL MEDIUMINT column value, but specify a buffer_type value of
MYSQL_TYPE_LONGLONG and use a C variable of type long long int as the destination buffer,
MySQL converts the MEDIUMINT value (which requires less than 8 bytes) for storage into the long
long int (an 8-byte variable).

• If you fetch a numeric column with a value of 255 into a char[4] character array and specify a
buffer_type value of MYSQL_TYPE_STRING, the resulting value in the array is a 4-byte string
'255\0'.

• MySQL returns DECIMAL values as the string representation of the original server-side value,
which is why the corresponding C type is char[]. For example, 12.345 is returned to the client as

C API Prepared Statement Function Overview

3090

'12.345'. If you specify MYSQL_TYPE_NEWDECIMAL and bind a string buffer to the MYSQL_BIND
structure, mysql_stmt_fetch() stores the value in the buffer as a string without conversion. If
instead you specify a numeric variable and type code, mysql_stmt_fetch() converts the string-
format DECIMAL value to numeric form.

• For the MYSQL_TYPE_BIT type code, BIT values are returned into a string buffer, which is why the
corresponding C type is char[]. The value represents a bit string that requires interpretation on the
client side. To return the value as a type that is easier to deal with, you can cause the value to be
cast to integer using either of the following types of expressions:

SELECT bit_col + 0 FROM t
SELECT CAST(bit_col AS UNSIGNED) FROM t

To retrieve the value, bind an integer variable large enough to hold the value and specify the
appropriate corresponding integer type code.

Before binding variables to the MYSQL_BIND structures that are to be used for fetching column
values, you can check the type codes for each column of the result set. This might be desirable if you
want to determine which variable types would be best to use to avoid type conversions. To get the
type codes, call mysql_stmt_result_metadata() after executing the prepared statement with
mysql_stmt_execute(). The metadata provides access to the type codes for the result set as
described in Section 23.8.11.23, “mysql_stmt_result_metadata()”, and Section 23.8.5, “C API Data
Structures”.

To determine whether output string values in a result set returned from the server contain binary
or nonbinary data, check whether the charsetnr value of the result set metadata is 63 (see
Section 23.8.5, “C API Data Structures”). If so, the character set is binary, which indicates binary
rather than nonbinary data. This enables you to distinguish BINARY from CHAR, VARBINARY from
VARCHAR, and the BLOB types from the TEXT types.

If you cause the max_length member of the MYSQL_FIELD column metadata structures to be set
(by calling mysql_stmt_attr_set()), be aware that the max_length values for the result set
indicate the lengths of the longest string representation of the result values, not the lengths of the
binary representation. That is, max_length does not necessarily correspond to the size of the buffers
needed to fetch the values with the binary protocol used for prepared statements. Choose the size
of the buffers according to the types of the variables into which you fetch the values. For example,
a TINYINT column containing the value -128 might have a max_length value of 4. But the binary
representation of any TINYINT value requires only 1 byte for storage, so you can supply a signed
char variable in which to store the value and set is_unsigned to indicate that values are signed.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”.

23.8.10 C API Prepared Statement Function Overview

The functions available for prepared statement processing are summarized here and described
in greater detail in a later section. See Section 23.8.11, “C API Prepared Statement Function
Descriptions”.

Function Description

mysql_stmt_affected_rows()Returns the number of rows changed, deleted, or inserted by
prepared UPDATE, DELETE, or INSERT statement

mysql_stmt_attr_get() Gets value of an attribute for a prepared statement

mysql_stmt_attr_set() Sets an attribute for a prepared statement

mysql_stmt_bind_param() Associates application data buffers with the parameter markers in a
prepared SQL statement

mysql_stmt_bind_result() Associates application data buffers with columns in a result set

C API Prepared Statement Function Overview

3091

Function Description

mysql_stmt_close() Frees memory used by a prepared statement

mysql_stmt_data_seek() Seeks to an arbitrary row number in a statement result set

mysql_stmt_errno() Returns the error number for the last statement execution

mysql_stmt_error() Returns the error message for the last statement execution

mysql_stmt_execute() Executes a prepared statement

mysql_stmt_fetch() Fetches the next row of data from a result set and returns data for all
bound columns

mysql_stmt_fetch_column()Fetch data for one column of the current row of a result set

mysql_stmt_field_count() Returns the number of result columns for the most recent statement

mysql_stmt_free_result() Free the resources allocated to a statement handle

mysql_stmt_init() Allocates memory for a MYSQL_STMT structure and initializes it

mysql_stmt_insert_id() Returns the ID generated for an AUTO_INCREMENT column by a
prepared statement

mysql_stmt_next_result() Returns/initiates the next result in a multiple-result execution

mysql_stmt_num_rows() Returns the row count from a buffered statement result set

mysql_stmt_param_count() Returns the number of parameters in a prepared statement

mysql_stmt_param_metadata()(Return parameter metadata in the form of a result set) This function
does nothing

mysql_stmt_prepare() Prepares an SQL statement string for execution

mysql_stmt_reset() Resets the statement buffers in the server

mysql_stmt_result_metadata()Returns prepared statement metadata in the form of a result set

mysql_stmt_row_seek() Seeks to a row offset in a statement result set, using value returned
from mysql_stmt_row_tell()

mysql_stmt_row_tell() Returns the statement row cursor position

mysql_stmt_send_long_data()Sends long data in chunks to server

mysql_stmt_sqlstate() Returns the SQLSTATE error code for the last statement execution

mysql_stmt_store_result()Retrieves a complete result set to the client

Call mysql_stmt_init() to create a statement handle, then mysql_stmt_prepare()
to prepare the statement string, mysql_stmt_bind_param() to supply the parameter
data, and mysql_stmt_execute() to execute the statement. You can repeat the
mysql_stmt_execute() by changing parameter values in the respective buffers supplied through
mysql_stmt_bind_param().

You can send text or binary data in chunks to server using mysql_stmt_send_long_data(). See
Section 23.8.11.26, “mysql_stmt_send_long_data()”.

If the statement is a SELECT or any other statement that produces a result set,
mysql_stmt_prepare() also returns the result set metadata information in the form of a
MYSQL_RES result set through mysql_stmt_result_metadata().

You can supply the result buffers using mysql_stmt_bind_result(), so that the
mysql_stmt_fetch() automatically returns data to these buffers. This is row-by-row fetching.

When statement execution has been completed, close the statement handle using
mysql_stmt_close() so that all resources associated with it can be freed.

If you obtained a SELECT statement's result set metadata by calling
mysql_stmt_result_metadata(), you should also free the metadata using
mysql_free_result().

C API Prepared Statement Function Overview

3092

Execution Steps

To prepare and execute a statement, an application follows these steps:

1. Create a prepared statement handle with mysql_stmt_init(). To prepare the statement on the
server, call mysql_stmt_prepare() and pass it a string containing the SQL statement.

2. If the statement will produce a result set, call mysql_stmt_result_metadata() to obtain the
result set metadata. This metadata is itself in the form of result set, albeit a separate one from the
one that contains the rows returned by the query. The metadata result set indicates how many
columns are in the result and contains information about each column.

3. Set the values of any parameters using mysql_stmt_bind_param(). All parameters must be
set. Otherwise, statement execution returns an error or produces unexpected results.

4. Call mysql_stmt_execute() to execute the statement.

5. If the statement produces a result set, bind the data buffers to use for retrieving the row values by
calling mysql_stmt_bind_result().

6. Fetch the data into the buffers row by row by calling mysql_stmt_fetch() repeatedly until no
more rows are found.

7. Repeat steps 3 through 6 as necessary, by changing the parameter values and re-executing the
statement.

When mysql_stmt_prepare() is called, the MySQL client/server protocol performs these actions:

• The server parses the statement and sends the okay status back to the client by assigning a
statement ID. It also sends total number of parameters, a column count, and its metadata if it is a
result set oriented statement. All syntax and semantics of the statement are checked by the server
during this call.

• The client uses this statement ID for the further operations, so that the server can identify the
statement from among its pool of statements.

When mysql_stmt_execute() is called, the MySQL client/server protocol performs these actions:

• The client uses the statement handle and sends the parameter data to the server.

• The server identifies the statement using the ID provided by the client, replaces the parameter
markers with the newly supplied data, and executes the statement. If the statement produces a result
set, the server sends the data back to the client. Otherwise, it sends an okay status and the number
of rows changed, deleted, or inserted.

When mysql_stmt_fetch() is called, the MySQL client/server protocol performs these actions:

• The client reads the data from the current row of the result set and places it into the application data
buffers by doing the necessary conversions. If the application buffer type is same as that of the field
type returned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error number, error message, and SQLSTATE code using
mysql_stmt_errno(), mysql_stmt_error(), and mysql_stmt_sqlstate(), respectively.

Prepared Statement Logging

For prepared statements that are executed with the mysql_stmt_prepare() and
mysql_stmt_execute() C API functions, the server writes Prepare and Execute lines to the
general query log so that you can tell when statements are prepared and executed.

Suppose that you prepare and execute a statement as follows:

1. Call mysql_stmt_prepare() to prepare the statement string "SELECT ?".

2. Call mysql_stmt_bind_param() to bind the value 3 to the parameter in the prepared statement.

C API Prepared Statement Function Descriptions

3093

3. Call mysql_stmt_execute() to execute the prepared statement.

As a result of the preceding calls, the server writes the following lines to the general query log:

Prepare [1] SELECT ?
Execute [1] SELECT 3

Each Prepare and Execute line in the log is tagged with a [N] statement identifier so that you can
keep track of which prepared statement is being logged. N is a positive integer. If there are multiple
prepared statements active simultaneously for the client, N may be greater than 1. Each Execute lines
shows a prepared statement after substitution of data values for ? parameters.

23.8.11 C API Prepared Statement Function Descriptions

To prepare and execute queries, use the functions described in detail in the following sections.

All functions that operate with a MYSQL_STMT structure begin with the prefix mysql_stmt_.

To create a MYSQL_STMT handle, use the mysql_stmt_init() function.

23.8.11.1 mysql_stmt_affected_rows()

my_ulonglong mysql_stmt_affected_rows(MYSQL_STMT *stmt)

Description

mysql_stmt_affected_rows() may be called immediately after executing a statement with
mysql_stmt_execute(). It is like mysql_affected_rows() but for prepared statements. For
a description of what the affected-rows value returned by this function means, See Section 23.8.7.1,
“mysql_affected_rows()”.

Errors

None.

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

23.8.11.2 mysql_stmt_attr_get()

my_bool mysql_stmt_attr_get(MYSQL_STMT *stmt, enum enum_stmt_attr_type
option, void *arg)

Description

Can be used to get the current value for a statement attribute.

The option argument is the option that you want to get; the arg should point to a variable that should
contain the option value. If the option is an integer, arg should point to the value of the integer.

See Section 23.8.11.3, “mysql_stmt_attr_set()”, for a list of options and option types.

Return Values

Zero for success. Nonzero if option is unknown.

Errors

None.

23.8.11.3 mysql_stmt_attr_set()

my_bool mysql_stmt_attr_set(MYSQL_STMT *stmt, enum enum_stmt_attr_type
option, const void *arg)

C API Prepared Statement Function Descriptions

3094

Description

Can be used to affect behavior for a prepared statement. This function may be called multiple times to
set several options.

The option argument is the option that you want to set. The arg argument is the value for the option.
arg should point to a variable that is set to the desired attribute value. The variable type is as indicated
in the following table.

The following table shows the possible option values.

Option Argument Type Function

STMT_ATTR_UPDATE_MAX_LENGTH my_bool * If set to 1, causes
mysql_stmt_store_result() to
update the metadata MYSQL_FIELD-
>max_length value.

STMT_ATTR_CURSOR_TYPE unsigned long
*

Type of cursor to open for statement
when mysql_stmt_execute()
is invoked. *arg can be
CURSOR_TYPE_NO_CURSOR
(the default) or
CURSOR_TYPE_READ_ONLY.

STMT_ATTR_PREFETCH_ROWS unsigned long
*

Number of rows to fetch from server
at a time when using a cursor. *arg
can be in the range from 1 to the
maximum value of unsigned long.
The default is 1.

If you use the STMT_ATTR_CURSOR_TYPE option with CURSOR_TYPE_READ_ONLY, a cursor is
opened for the statement when you invoke mysql_stmt_execute(). If there is already an open
cursor from a previous mysql_stmt_execute() call, it closes the cursor before opening a new one.
mysql_stmt_reset() also closes any open cursor before preparing the statement for re-execution.
mysql_stmt_free_result() closes any open cursor.

If you open a cursor for a prepared statement, mysql_stmt_store_result() is unnecessary,
because that function causes the result set to be buffered on the client side.

Return Values

Zero for success. Nonzero if option is unknown.

Errors

None.

Example

The following example opens a cursor for a prepared statement and sets the number of rows to fetch at
a time to 5:

MYSQL_STMT *stmt;
int rc;
unsigned long type;
unsigned long prefetch_rows = 5;

stmt = mysql_stmt_init(mysql);
type = (unsigned long) CURSOR_TYPE_READ_ONLY;
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_CURSOR_TYPE, (void*) &type);
/* ... check return value ... */
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_PREFETCH_ROWS,
 (void*) &prefetch_rows);

C API Prepared Statement Function Descriptions

3095

/* ... check return value ... */

23.8.11.4 mysql_stmt_bind_param()

my_bool mysql_stmt_bind_param(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_param() is used to bind input data for the parameter markers in the SQL
statement that was passed to mysql_stmt_prepare(). It uses MYSQL_BIND structures to supply the
data. bind is the address of an array of MYSQL_BIND structures. The client library expects the array to
contain one element for each ? parameter marker that is present in the query.

Suppose that you prepare the following statement:

INSERT INTO mytbl VALUES(?,?,?)

When you bind the parameters, the array of MYSQL_BIND structures must contain three elements, and
can be declared like this:

MYSQL_BIND bind[3];

Section 23.8.9, “C API Prepared Statement Data Structures”, describes the members of each
MYSQL_BIND element and how they should be set to provide input values.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

23.8.11.5 mysql_stmt_bind_result()

my_bool mysql_stmt_bind_result(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_result() is used to associate (that is, bind) output columns in the result set
to data buffers and length buffers. When mysql_stmt_fetch() is called to fetch data, the MySQL
client/server protocol places the data for the bound columns into the specified buffers.

All columns must be bound to buffers prior to calling mysql_stmt_fetch(). bind is the
address of an array of MYSQL_BIND structures. The client library expects the array to contain one
element for each column of the result set. If you do not bind columns to MYSQL_BIND structures,
mysql_stmt_fetch() simply ignores the data fetch. The buffers should be large enough to hold the
data values, because the protocol does not return data values in chunks.

C API Prepared Statement Function Descriptions

3096

A column can be bound or rebound at any time, even after a result set has been partially retrieved.
The new binding takes effect the next time mysql_stmt_fetch() is called. Suppose that an
application binds the columns in a result set and calls mysql_stmt_fetch(). The client/server
protocol returns data in the bound buffers. Then suppose that the application binds the columns to a
different set of buffers. The protocol places data into the newly bound buffers when the next call to
mysql_stmt_fetch() occurs.

To bind a column, an application calls mysql_stmt_bind_result() and passes the type, address,
and length of the output buffer into which the value should be stored. Section 23.8.9, “C API Prepared
Statement Data Structures”, describes the members of each MYSQL_BIND element and how they
should be set to receive output values.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 23.8.11.11, “mysql_stmt_fetch()”.

23.8.11.6 mysql_stmt_close()

my_bool mysql_stmt_close(MYSQL_STMT *)

Description

Closes the prepared statement. mysql_stmt_close() also deallocates the statement handle pointed
to by stmt.

If the current statement has pending or unread results, this function cancels them so that the next
query can be executed.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

C API Prepared Statement Function Descriptions

3097

23.8.11.7 mysql_stmt_data_seek()

void mysql_stmt_data_seek(MYSQL_STMT *stmt, my_ulonglong offset)

Description

Seeks to an arbitrary row in a statement result set. The offset value is a row number and should be
in the range from 0 to mysql_stmt_num_rows(stmt)-1.

This function requires that the statement result set structure contains the entire result of the
last executed query, so mysql_stmt_data_seek() may be used only in conjunction with
mysql_stmt_store_result().

Return Values

None.

Errors

None.

23.8.11.8 mysql_stmt_errno()

unsigned int mysql_stmt_errno(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_errno() returns the error code for the most
recently invoked statement API function that can succeed or fail. A return value of zero means that no
error occurred. Client error message numbers are listed in the MySQL errmsg.h header file. Server
error message numbers are listed in mysqld_error.h. Errors also are listed at Appendix B, Errors,
Error Codes, and Common Problems.

Return Values

An error code value. Zero if no error occurred.

Errors

None.

23.8.11.9 mysql_stmt_error()

const char *mysql_stmt_error(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string
containing the error message for the most recently invoked statement API function that can succeed or
fail. An empty string ("") is returned if no error occurred. Either of these two tests can be used to check
for an error:

if(*mysql_stmt_errno(stmt))
{
 // an error occurred
}

if (mysql_stmt_error(stmt)[0])
{
 // an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client library.
You can choose error messages in several different languages.

C API Prepared Statement Function Descriptions

3098

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

23.8.11.10 mysql_stmt_execute()

int mysql_stmt_execute(MYSQL_STMT *stmt)

Description

mysql_stmt_execute() executes the prepared query associated with the statement handle. The
currently bound parameter marker values are sent to server during this call, and the server replaces the
markers with this newly supplied data.

Statement processing following mysql_stmt_execute() depends on the type of statement:

• For an UPDATE, DELETE, or INSERT, the number of changed, deleted, or inserted rows can be found
by calling mysql_stmt_affected_rows().

• For a statement such as SELECT that generates a result set, you must call mysql_stmt_fetch()
to fetch the data prior to calling any other functions that result in query processing. For more
information on how to fetch the results, refer to Section 23.8.11.11, “mysql_stmt_fetch()”.

Do not following invocation of mysql_stmt_execute() with a call to mysql_store_result()
or mysql_use_result(). Those functions are not intended for processing results from prepared
statements.

For statements that generate a result set, you can request that mysql_stmt_execute() open a
cursor for the statement by calling mysql_stmt_attr_set() before executing the statement. If you
execute a statement multiple times, mysql_stmt_execute() closes any open cursor before opening
a new one.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

C API Prepared Statement Function Descriptions

3099

Example

The following example demonstrates how to create and populate a table using mysql_stmt_init(),
mysql_stmt_prepare(), mysql_stmt_param_count(), mysql_stmt_bind_param(),
mysql_stmt_execute(), and mysql_stmt_affected_rows(). The mysql variable is
assumed to be a valid connection handle. For an example that shows how to retrieve data, see
Section 23.8.11.11, “mysql_stmt_fetch()”.

#define STRING_SIZE 50

#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\
 col2 VARCHAR(40),\
 col3 SMALLINT,\
 col4 TIMESTAMP)"
#define INSERT_SAMPLE "INSERT INTO \
 test_table(col1,col2,col3) \
 VALUES(?,?,?)"

MYSQL_STMT *stmt;
MYSQL_BIND bind[3];
my_ulonglong affected_rows;
int param_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
unsigned long str_length;
my_bool is_null;

if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{
 fprintf(stderr, " DROP TABLE failed\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

if (mysql_query(mysql, CREATE_SAMPLE_TABLE))
{
 fprintf(stderr, " CREATE TABLE failed\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; the server */
/* sets it to the current date and time) */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_SAMPLE, strlen(INSERT_SAMPLE)))
{
 fprintf(stderr, " mysql_stmt_prepare(), INSERT failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}
fprintf(stdout, " prepare, INSERT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);

if (param_count != 3) /* validate parameter count */
{
 fprintf(stderr, " invalid parameter count returned by MySQL\n");
 exit(0);
}

C API Prepared Statement Function Descriptions

3100

/* Bind the data for all 3 parameters */

memset(bind, 0, sizeof(bind));

/* INTEGER PARAM */
/* This is a number type, so there is no need
 to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;

/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;

/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
 fprintf(stderr, " mysql_stmt_bind_param() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Specify the data values for the first row */
int_data= 10; /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string */
str_length= strlen(str_data);

/* INSERT SMALLINT data as NULL */
is_null= 1;

/* Execute the INSERT statement - 1*/
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute(), 1 failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get the number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %lu\n",
 (unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
 fprintf(stderr, " invalid affected rows by MySQL\n");
 exit(0);
}

/* Specify data values for second row,
 then re-execute the statement */
int_data= 1000;
strncpy(str_data, "
 The most popular Open Source database",
 STRING_SIZE);
str_length= strlen(str_data);
small_data= 1000; /* smallint */
is_null= 0; /* reset */

/* Execute the INSERT statement - 2*/
if (mysql_stmt_execute(stmt))

C API Prepared Statement Function Descriptions

3101

{
 fprintf(stderr, " mysql_stmt_execute, 2 failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %lu\n",
 (unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
 fprintf(stderr, " invalid affected rows by MySQL\n");
 exit(0);
}

/* Close the statement */
if (mysql_stmt_close(stmt))
{
 fprintf(stderr, " failed while closing the statement\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

Note

For complete examples on the use of prepared statement functions, refer to the
file tests/mysql_client_test.c. This file can be obtained from a MySQL
source distribution or from the source repository (see Section 2.9, “Installing
MySQL from Source”).

23.8.11.11 mysql_stmt_fetch()

int mysql_stmt_fetch(MYSQL_STMT *stmt)

Description

mysql_stmt_fetch() returns the next row in the result set. It can be called only while the result set
exists; that is, after a call to mysql_stmt_execute() for a statement such as SELECT that produces
a result set.

mysql_stmt_fetch() returns row data using the buffers bound by mysql_stmt_bind_result().
It returns the data in those buffers for all the columns in the current row set and the lengths are
returned to the length pointer. All columns must be bound by the application before it calls
mysql_stmt_fetch().

By default, result sets are fetched unbuffered a row at a time from the server. To buffer the entire result
set on the client, call mysql_stmt_store_result() after binding the data buffers and before calling
mysql_stmt_fetch().

If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_BIND
structure contains TRUE (1). Otherwise, the data and its length are returned in the *buffer and
*length elements based on the buffer type specified by the application. Each numeric and temporal
type has a fixed length, as listed in the following table. The length of the string types depends on the
length of the actual data value, as indicated by data_length.

Type Length

MYSQL_TYPE_TINY 1

MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4

MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4

C API Prepared Statement Function Descriptions

3102

Type Length

MYSQL_TYPE_DOUBLE 8

MYSQL_TYPE_TIME sizeof(MYSQL_TIME)

MYSQL_TYPE_DATE sizeof(MYSQL_TIME)

MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)

MYSQL_TYPE_STRING data length

MYSQL_TYPE_BLOB data_length

In some cases you might want to determine the length of a column value before fetching it with
mysql_stmt_fetch(). For example, the value might be a long string or BLOB value for which you
want to know how much space must be allocated. To accomplish this, you can use these strategies:

• Before invoking mysql_stmt_fetch() to retrieve individual rows, pass
STMT_ATTR_UPDATE_MAX_LENGTH to mysql_stmt_attr_set(), then invoke
mysql_stmt_store_result() to buffer the entire result on the client side. Setting
the STMT_ATTR_UPDATE_MAX_LENGTH attribute causes the maximal length of column
values to be indicated by the max_length member of the result set metadata returned by
mysql_stmt_result_metadata().

• Invoke mysql_stmt_fetch() with a zero-length buffer for the column in question and a pointer in
which the real length can be stored. Then use the real length with mysql_stmt_fetch_column().

real_length= 0;

bind[0].buffer= 0;
bind[0].buffer_length= 0;
bind[0].length= &real_length
mysql_stmt_bind_result(stmt, bind);

mysql_stmt_fetch(stmt);
if (real_length > 0)
{
 data= malloc(real_length);
 bind[0].buffer= data;
 bind[0].buffer_length= real_length;
 mysql_stmt_fetch_column(stmt, bind, 0, 0);
}

Return Values

Return Value Description

0 Successful, the data has been fetched to application data buffers.

1 Error occurred. Error code and message can be obtained by
calling mysql_stmt_errno() and mysql_stmt_error().

MYSQL_NO_DATA No more rows/data exists

MYSQL_DATA_TRUNCATED Data truncation occurred

MYSQL_DATA_TRUNCATED is returned when truncation reporting is enabled. To determine which
column values were truncated when this value is returned, check the error members of the
MYSQL_BIND structures used for fetching values. Truncation reporting is enabled by default, but can be
controlled by calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION option.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

C API Prepared Statement Function Descriptions

3103

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• CR_UNSUPPORTED_PARAM_TYPE

The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or
MYSQL_TYPE_TIMESTAMP, but the data type is not DATE, TIME, DATETIME, or TIMESTAMP.

• All other unsupported conversion errors are returned from mysql_stmt_bind_result().

Example

The following example demonstrates how to fetch data from a table using
mysql_stmt_result_metadata(), mysql_stmt_bind_result(), and mysql_stmt_fetch().
(This example expects to retrieve the two rows inserted by the example shown in Section 23.8.11.10,
“mysql_stmt_execute()”.) The mysql variable is assumed to be a valid connection handle.

#define STRING_SIZE 50

#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 \
 FROM test_table"

MYSQL_STMT *stmt;
MYSQL_BIND bind[4];
MYSQL_RES *prepare_meta_result;
MYSQL_TIME ts;
unsigned long length[4];
int param_count, column_count, row_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
my_bool is_null[4];
my_bool error[4];

/* Prepare a SELECT query to fetch data from test_table */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))
{
 fprintf(stderr, " mysql_stmt_prepare(), SELECT failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}
fprintf(stdout, " prepare, SELECT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);

if (param_count != 0) /* validate parameter count */
{
 fprintf(stderr, " invalid parameter count returned by MySQL\n");

C API Prepared Statement Function Descriptions

3104

 exit(0);
}

/* Fetch result set meta information */
prepare_meta_result = mysql_stmt_result_metadata(stmt);
if (!prepare_meta_result)
{
 fprintf(stderr,
 " mysql_stmt_result_metadata(), \
 returned no meta information\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout,
 " total columns in SELECT statement: %d\n",
 column_count);

if (column_count != 4) /* validate column count */
{
 fprintf(stderr, " invalid column count returned by MySQL\n");
 exit(0);
}

/* Execute the SELECT query */
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute(), failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Bind the result buffers for all 4 columns before fetching them */

memset(bind, 0, sizeof(bind));

/* INTEGER COLUMN */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];
bind[0].error= &error[0];

/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];
bind[1].error= &error[1];

/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];
bind[2].error= &error[2];

/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];
bind[3].error= &error[3];

/* Bind the result buffers */
if (mysql_stmt_bind_result(stmt, bind))
{
 fprintf(stderr, " mysql_stmt_bind_result() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));

C API Prepared Statement Function Descriptions

3105

 exit(0);
}

/* Now buffer all results to client (optional step) */
if (mysql_stmt_store_result(stmt))
{
 fprintf(stderr, " mysql_stmt_store_result() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Fetch all rows */
row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_stmt_fetch(stmt))
{
 row_count++;
 fprintf(stdout, " row %d\n", row_count);

 /* column 1 */
 fprintf(stdout, " column1 (integer) : ");
 if (is_null[0])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %d(%ld)\n", int_data, length[0]);

 /* column 2 */
 fprintf(stdout, " column2 (string) : ");
 if (is_null[1])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %s(%ld)\n", str_data, length[1]);

 /* column 3 */
 fprintf(stdout, " column3 (smallint) : ");
 if (is_null[2])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %d(%ld)\n", small_data, length[2]);

 /* column 4 */
 fprintf(stdout, " column4 (timestamp): ");
 if (is_null[3])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",
 ts.year, ts.month, ts.day,
 ts.hour, ts.minute, ts.second,
 length[3]);
 fprintf(stdout, "\n");
}

/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{
 fprintf(stderr, " MySQL failed to return all rows\n");
 exit(0);
}

/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);

/* Close the statement */
if (mysql_stmt_close(stmt))
{
 fprintf(stderr, " failed while closing the statement\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

C API Prepared Statement Function Descriptions

3106

23.8.11.12 mysql_stmt_fetch_column()

int mysql_stmt_fetch_column(MYSQL_STMT *stmt, MYSQL_BIND *bind, unsigned int
column, unsigned long offset)

Description

Fetch one column from the current result set row. bind provides the buffer where data should be
placed. It should be set up the same way as for mysql_stmt_bind_result(). column indicates
which column to fetch. The first column is numbered 0. offset is the offset within the data value at
which to begin retrieving data. This can be used for fetching the data value in pieces. The beginning of
the value is offset 0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_INVALID_PARAMETER_NO

Invalid column number.

• CR_NO_DATA

The end of the result set has already been reached.

23.8.11.13 mysql_stmt_field_count()

unsigned int mysql_stmt_field_count(MYSQL_STMT *stmt)

Description

Returns the number of columns for the most recent statement for the statement handler. This value is
zero for statements such as INSERT or DELETE that do not produce result sets.

mysql_stmt_field_count() can be called after you have prepared a statement by invoking
mysql_stmt_prepare().

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

23.8.11.14 mysql_stmt_free_result()

my_bool mysql_stmt_free_result(MYSQL_STMT *stmt)

Description

Releases memory associated with the result set produced by execution of the prepared statement. If
there is a cursor open for the statement, mysql_stmt_free_result() closes it.

Return Values

Zero for success. Nonzero if an error occurred.

C API Prepared Statement Function Descriptions

3107

Errors

23.8.11.15 mysql_stmt_init()

MYSQL_STMT *mysql_stmt_init(MYSQL *mysql)

Description

Create a MYSQL_STMT handle. The handle should be freed with mysql_stmt_close(MYSQL_STMT
*).

See also Section 23.8.9, “C API Prepared Statement Data Structures”, for more information.

Return Values

A pointer to a MYSQL_STMT structure in case of success. NULL if out of memory.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

23.8.11.16 mysql_stmt_insert_id()

my_ulonglong mysql_stmt_insert_id(MYSQL_STMT *stmt)

Description

Returns the value generated for an AUTO_INCREMENT column by the prepared INSERT or UPDATE
statement. Use this function after you have executed a prepared INSERT statement on a table which
contains an AUTO_INCREMENT field.

See Section 23.8.7.38, “mysql_insert_id()”, for more information.

Return Values

Value for AUTO_INCREMENT column which was automatically generated or explicitly set during
execution of prepared statement, or value generated by LAST_INSERT_ID(expr) function. Return
value is undefined if statement does not set AUTO_INCREMENT value.

Errors

None.

23.8.11.17 mysql_stmt_next_result()

int mysql_stmt_next_result(MYSQL_STMT *mysql)

Description

This function is used when you use prepared CALL statements to execute stored procedures, which
can return multiple result sets. Use a loop that calls mysql_stmt_next_result() to determine
whether there are more results. If a procedure has OUT or INOUT parameters, their values will be
returned as a single-row result set following any other result sets. The values will appear in the order in
which they are declared in the procedure parameter list.

mysql_stmt_next_result() returns a status to indicate whether more results exist. If
mysql_stmt_next_result() returns an error, there are no more results.

Before each call to mysql_stmt_next_result(), you must call mysql_stmt_free_result() for
the current result if it produced a result set (rather than just a result status).

C API Prepared Statement Function Descriptions

3108

After calling mysql_stmt_next_result() the state of the connection is as if you had called
mysql_stmt_execute(). This means that you can call mysql_stmt_bind_result(),
mysql_stmt_affected_rows(), and so forth.

It is also possible to test whether there are more results by calling mysql_more_results().
However, this function does not change the connection state, so if it returns true, you must still call
mysql_stmt_next_result() to advance to the next result.

For an example that shows how to use mysql_stmt_next_result(), see Section 23.8.20, “C API
Support for Prepared CALL Statements”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.11.18 mysql_stmt_num_rows()

my_ulonglong mysql_stmt_num_rows(MYSQL_STMT *stmt)

Description

Returns the number of rows in the result set.

The use of mysql_stmt_num_rows() depends on whether you used
mysql_stmt_store_result() to buffer the entire result set in the statement handle. If you use
mysql_stmt_store_result(), mysql_stmt_num_rows() may be called immediately. Otherwise,
the row count is unavailable unless you count the rows as you fetch them.

mysql_stmt_num_rows() is intended for use with statements that return a result set, such as
SELECT. For statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be
obtained with mysql_stmt_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

C API Prepared Statement Function Descriptions

3109

23.8.11.19 mysql_stmt_param_count()

unsigned long mysql_stmt_param_count(MYSQL_STMT *stmt)

Description

Returns the number of parameter markers present in the prepared statement.

Return Values

An unsigned long integer representing the number of parameters in a statement.

Errors

None.

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

23.8.11.20 mysql_stmt_param_metadata()

MYSQL_RES *mysql_stmt_param_metadata(MYSQL_STMT *stmt)

This function currently does nothing.

Description

Return Values

Errors

23.8.11.21 mysql_stmt_prepare()

int mysql_stmt_prepare(MYSQL_STMT *stmt, const char *stmt_str, unsigned long
length)

Description

Given the statement handle returned by mysql_stmt_init(), prepares the SQL statement pointed
to by the string stmt_str and returns a status value. The string length should be given by the length
argument. The string must consist of a single SQL statement. You should not add a terminating
semicolon (“;”) or \g to the statement.

The application can include one or more parameter markers in the SQL statement by embedding
question mark (?) characters into the SQL string at the appropriate positions.

The markers are legal only in certain places in SQL statements. For example, they are permitted in
the VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison
with a column in a WHERE clause to specify a comparison value. However, they are not permitted for
identifiers (such as table or column names), or to specify both operands of a binary operator such
as the = equal sign. The latter restriction is necessary because it would be impossible to determine
the parameter type. In general, parameters are legal only in Data Manipulation Language (DML)
statements, and not in Data Definition Language (DDL) statements.

The parameter markers must be bound to application variables using mysql_stmt_bind_param()
before executing the statement.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”.

C API Prepared Statement Function Descriptions

3110

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql_stmt_prepare() returns nonzero), the
error message can be obtained by calling mysql_stmt_error().

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

23.8.11.22 mysql_stmt_reset()

my_bool mysql_stmt_reset(MYSQL_STMT *stmt)

Description

Resets a prepared statement on client and server to state after prepare. It resets the statement on the
server, data sent using mysql_stmt_send_long_data(), unbuffered result sets and current errors.
It does not clear bindings or stored result sets. Stored result sets will be cleared when executing the
prepared statement (or closing it).

To re-prepare the statement with another query, use mysql_stmt_prepare().

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

C API Prepared Statement Function Descriptions

3111

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.11.23 mysql_stmt_result_metadata()

MYSQL_RES *mysql_stmt_result_metadata(MYSQL_STMT *stmt)

Description

If a statement passed to mysql_stmt_prepare() is one that produces a result set,
mysql_stmt_result_metadata() returns the result set metadata in the form of a pointer to a
MYSQL_RES structure that can be used to process the meta information such as number of fields and
individual field information. This result set pointer can be passed as an argument to any of the field-
based API functions that process result set metadata, such as:

• mysql_num_fields()

• mysql_fetch_field()

• mysql_fetch_field_direct()

• mysql_fetch_fields()

• mysql_field_count()

• mysql_field_seek()

• mysql_field_tell()

• mysql_free_result()

The result set structure should be freed when you are done with it, which you can do by passing it
to mysql_free_result(). This is similar to the way you free a result set obtained from a call to
mysql_store_result().

The result set returned by mysql_stmt_result_metadata() contains only metadata. It
does not contain any row results. The rows are obtained by using the statement handle with
mysql_stmt_fetch().

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared query.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 23.8.11.11, “mysql_stmt_fetch()”.

23.8.11.24 mysql_stmt_row_seek()

MYSQL_ROW_OFFSET mysql_stmt_row_seek(MYSQL_STMT *stmt, MYSQL_ROW_OFFSET
offset)

C API Prepared Statement Function Descriptions

3112

Description

Sets the row cursor to an arbitrary row in a statement result set. The offset value is a row offset that
should be a value returned from mysql_stmt_row_tell() or from mysql_stmt_row_seek().
This value is not a row number; if you want to seek to a row within a result set by number, use
mysql_stmt_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_stmt_row_seek() may be used only in conjunction with mysql_stmt_store_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_stmt_row_seek().

Errors

None.

23.8.11.25 mysql_stmt_row_tell()

MYSQL_ROW_OFFSET mysql_stmt_row_tell(MYSQL_STMT *stmt)

Description

Returns the current position of the row cursor for the last mysql_stmt_fetch(). This value can be
used as an argument to mysql_stmt_row_seek().

You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().

Return Values

The current offset of the row cursor.

Errors

None.

23.8.11.26 mysql_stmt_send_long_data()

my_bool mysql_stmt_send_long_data(MYSQL_STMT *stmt, unsigned int
parameter_number, const char *data, unsigned long length)

Description

Enables an application to send parameter data to the server in pieces (or “chunks”). Call this function
after mysql_stmt_bind_param() and before mysql_stmt_execute(). It can be called multiple
times to send the parts of a character or binary data value for a column, which must be one of the TEXT
or BLOB data types.

parameter_number indicates which parameter to associate the data with. Parameters are numbered
beginning with 0. data is a pointer to a buffer containing data to be sent, and length indicates the
number of bytes in the buffer.

Note

The next mysql_stmt_execute() call ignores the bind buffer for all
parameters that have been used with mysql_stmt_send_long_data()
since last mysql_stmt_execute() or mysql_stmt_reset().

If you want to reset/forget the sent data, you can do it with mysql_stmt_reset(). See
Section 23.8.11.22, “mysql_stmt_reset()”.

C API Prepared Statement Function Descriptions

3113

The max_allowed_packet system variable controls the maximum size of parameter values that can
be sent with mysql_stmt_send_long_data().

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_INVALID_BUFFER_USE

The parameter does not have a string or binary type.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the
data value 'MySQL - The most popular Open Source database' into the text_column
column. The mysql variable is assumed to be a valid connection handle.

#define INSERT_QUERY "INSERT INTO \
 test_long_data(text_column) VALUES(?)"

MYSQL_BIND bind[1];
long length;

stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_QUERY, strlen(INSERT_QUERY)))
{
 fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}
 memset(bind, 0, sizeof(bind));
 bind[0].buffer_type= MYSQL_TYPE_STRING;
 bind[0].length= &length;
 bind[0].is_null= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
 fprintf(stderr, "\n param bind failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

C API Prepared Statement Function Descriptions

3114

 /* Supply data in chunks to server */
 if (mysql_stmt_send_long_data(stmt,0,"MySQL",5))
{
 fprintf(stderr, "\n send_long_data failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

 /* Supply the next piece of data */
 if (mysql_stmt_send_long_data(stmt,0,
 " - The most popular Open Source database",40))
{
 fprintf(stderr, "\n send_long_data failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

 /* Now, execute the query */
 if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, "\n mysql_stmt_execute failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

23.8.11.27 mysql_stmt_sqlstate()

const char *mysql_stmt_sqlstate(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated string
containing the SQLSTATE error code for the most recently invoked prepared statement API function
that can succeed or fail. The error code consists of five characters. "00000" means “no error.” The
values are specified by ANSI SQL and ODBC. For a list of possible values, see Appendix B, Errors,
Error Codes, and Common Problems.

Not all MySQL errors are mapped to SQLSTATE codes. The value "HY000" (general error) is used for
unmapped errors.

Return Values

A null-terminated character string containing the SQLSTATE error code.

23.8.11.28 mysql_stmt_store_result()

int mysql_stmt_store_result(MYSQL_STMT *stmt)

Description

Result sets are produced by calling mysql_stmt_execute() to executed prepared
statements for SQL statements such as SELECT, SHOW, DESCRIBE, and EXPLAIN. By default,
result sets for successfully executed prepared statements are not buffered on the client and
mysql_stmt_fetch() fetches them one at a time from the server. To cause the complete result
set to be buffered on the client, call mysql_stmt_store_result() after binding data buffers with
mysql_stmt_bind_result() and before calling mysql_stmt_fetch() to fetch rows. (For an
example, see Section 23.8.11.11, “mysql_stmt_fetch()”.)

mysql_stmt_store_result() is optional for result set processing, unless you will call
mysql_stmt_data_seek(), mysql_stmt_row_seek(), or mysql_stmt_row_tell(). Those
functions require a seekable result set.

It is unnecessary to call mysql_stmt_store_result() after executing an SQL statement
that does not produce a result set, but if you do, it does not harm or cause any notable

C API Threaded Function Descriptions

3115

performance problem. You can detect whether the statement produced a result set by checking if
mysql_stmt_result_metadata() returns NULL. For more information, refer to Section 23.8.11.23,
“mysql_stmt_result_metadata()”.

Note

MySQL does not by default calculate MYSQL_FIELD->max_length for
all columns in mysql_stmt_store_result() because calculating this
would slow down mysql_stmt_store_result() considerably and
most applications do not need max_length. If you want max_length
to be updated, you can call mysql_stmt_attr_set(MYSQL_STMT,
STMT_ATTR_UPDATE_MAX_LENGTH, &flag) to enable this. See
Section 23.8.11.3, “mysql_stmt_attr_set()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.12 C API Threaded Function Descriptions

To create a threaded client, use the functions described in the following sections. See also
Section 23.8.4.3, “Writing C API Threaded Client Programs”.

23.8.12.1 my_init()

void my_init(void)

Description

my_init() initializes some global variables that MySQL needs. It also calls mysql_thread_init()
for this thread.

It is necessary for my_init() to be called early in the initialization phase of a program's
use of the MySQL library. However, my_init() is automatically called by mysql_init(),
mysql_library_init(), mysql_server_init(), and mysql_connect(). If you ensure that
your program invokes one of those functions before any other MySQL calls, there is no need to invoke
my_init() explicitly.

To access the prototype for my_init(), your program should include these header files:

C API Threaded Function Descriptions

3116

#include <my_global.h>
#include <my_sys.h>

Return Values

None.

23.8.12.2 mysql_thread_end()

void mysql_thread_end(void)

Description

Call this function before calling pthread_exit() to free memory allocated by
mysql_thread_init().

mysql_thread_end() is not invoked automatically by the client library. Before MySQL 5.7.9,
it must be called for each mysql_thread_init() call to avoid a memory leak. As of MySQL
5.7.9, C API internals were reimplemented to reduce the amount of information allocated by
mysql_thread_init() that must be freed by mysql_thread_end():

• For release/production builds without debugging support enabled, mysql_thread_end() need not
be called.

• For debug builds, mysql_thread_init() allocates debugging information for the DBUG package
(see Section 24.5.3, “The DBUG Package”). mysql_thread_end() must be called for each
mysql_thread_init() call to avoid a memory leak.

Return Values

None.

23.8.12.3 mysql_thread_init()

my_bool mysql_thread_init(void)

Description

This function must be called early within each created thread to initialize thread-specific variables.
However, you may not necessarily need to invoke it explicitly: mysql_thread_init() is
automatically called by my_init(), which itself is automatically called by mysql_init(),
mysql_library_init(), mysql_server_init(), and mysql_connect(). If you invoke any of
those functions, mysql_thread_init() will be called for you.

Return Values

Zero for success. Nonzero if an error occurred.

23.8.12.4 mysql_thread_safe()

unsigned int mysql_thread_safe(void)

Description

This function indicates whether the client library is compiled as thread-safe.

Return Values

1 if the client library is thread-safe, 0 otherwise.

C API Embedded Server Function Descriptions

3117

23.8.13 C API Embedded Server Function Descriptions

MySQL applications can be written to use an embedded server. See Section 23.7, “libmysqld,
the Embedded MySQL Server Library”. To write such an application, you must link it against the
libmysqld library by using the -lmysqld flag rather than linking it against the libmysqlclient
client library by using the -lmysqlclient flag. However, the calls to initialize and finalize the library
are the same whether you write a client application or one that uses the embedded server: Call
mysql_library_init() to initialize the library and mysql_library_end() when you are done
with it. See Section 23.8.6, “C API Function Overview”.

23.8.13.1 mysql_server_init()

int mysql_server_init(int argc, char **argv, char **groups)

Description

This function initializes the MySQL library, which must be done before you call any other
MySQL function. However, mysql_server_init() is deprecated and you should call
mysql_library_init() instead. See Section 23.8.7.41, “mysql_library_init()”.

Return Values

Zero for success. Nonzero if an error occurred.

23.8.13.2 mysql_server_end()

void mysql_server_end(void)

Description

This function finalizes the MySQL library, which should be done when you are done using the library.
However, mysql_server_end() is deprecated and mysql_library_end() should be used
instead. See Section 23.8.7.40, “mysql_library_end()”.

Return Values

None.

23.8.14 C API Client Plugin Functions

This section describes functions used for the client-side plugin API. They enable management of client
plugins. For a description of the st_mysql_client_plugin structure used by these functions, see
Client Plugin Descriptors.

It is unlikely that a client program needs to call the functions in this section. For example, a client
that supports the use of authentication plugins normally causes a plugin to be loaded by calling
mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable
users to override the default values.

23.8.14.1 mysql_client_find_plugin()

C API Client Plugin Functions

3118

struct st_mysql_client_plugin *mysql_client_find_plugin(MYSQL *mysql, const
char *name, int type)

Description

Returns a pointer to a loaded plugin, loading the plugin first if necessary. An error occurs if the type is
invalid or the plugin cannot be found or loaded.

Specify the parameters as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

• name: The plugin name.

• type: The plugin type.

Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 23.8.7.15,
“mysql_error()”, and Section 23.8.7.14, “mysql_errno()”.

Example

MYSQL mysql;
struct st_mysql_client_plugin *p;

if ((p = mysql_client_find_plugin(&mysql, "myplugin",
 MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0)))
{
 printf("Plugin version: %d.%d.%d\n", p->version[0], p->version[1], p->version[2]);
}

23.8.14.2 mysql_client_register_plugin()

struct st_mysql_client_plugin *mysql_client_register_plugin(MYSQL *mysql,
struct st_mysql_client_plugin *plugin)

Description

Adds a plugin structure to the list of loaded plugins. An error occurs if the plugin is already loaded.

Specify the parameters as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

• plugin: A pointer to the plugin structure.

Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 23.8.7.15,
“mysql_error()”, and Section 23.8.7.14, “mysql_errno()”.

C API Client Plugin Functions

3119

23.8.14.3 mysql_load_plugin()

struct st_mysql_client_plugin *mysql_load_plugin(MYSQL *mysql, const char
*name, int type, int argc, ...)

Description

Loads a MySQL client plugin, specified by name and type. An error occurs if the type is invalid or the
plugin cannot be loaded.

It is not possible to load multiple plugins of the same type. An error occurs if you try to load a plugin of
a type already loaded.

Specify the parameters as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

• name: The name of the plugin to load.

• type: The type of plugin to load, or −1 to disable type checking. If type is not −1, only plugins
matching the type are considered for loading.

• argc: The number of following arguments (0 if there are none). Interpretation of any following
arguments depends on the plugin type.

Another way to cause plugins to be loaded is to set the LIBMYSQL_PLUGINS environment variable to a
semicolon-separated list of plugin names. For example:

shell> export LIBMYSQL_PLUGINS="myplugin1;myplugin2"

Plugins named by LIBMYSQL_PLUGINS are loaded when the client program calls
mysql_library_init(). No error is reported if problems occur loading these plugins.

As of MySQL 5.7.1, the LIBMYSQL_PLUGIN_DIR environment variable can be set to the path name of
the directory in which to look for client plugins. This variable is used in two ways:

• During client plugin preloading, the value of the --plugin-dir option is not available, so client
plugin loading fails unless the plugins are located in the hardwired default directory. If the plugins are
located elsewhere, LIBMYSQL_PLUGIN_DIR environment variable can be set to the proper directory
to enable plugin preloading to succeed.

• For explicit client plugin loading, the mysql_load_plugin() and mysql_load_plugin_v() C
API functions use the LIBMYSQL_PLUGIN_DIR value if it exists and the --plugin-dir option was
not given. If --plugin-dir is given, mysql_load_plugin() and mysql_load_plugin_v()
ignore LIBMYSQL_PLUGIN_DIR.

Return Values

A pointer to the plugin if it was loaded successfully. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 23.8.7.15,
“mysql_error()”, and Section 23.8.7.14, “mysql_errno()”.

Example

Common Questions and Problems When Using the C API

3120

MYSQL mysql;

if(!mysql_load_plugin(&mysql, "myplugin",
 MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0))
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 exit(-1);
}

See Also

See also Section 23.8.14.3, “mysql_load_plugin()”, Section 23.8.7.15, “mysql_error()”,
Section 23.8.7.14, “mysql_errno()”.

23.8.14.4 mysql_load_plugin_v()

struct st_mysql_client_plugin *mysql_load_plugin_v(MYSQL *mysql, const char
*name, int type, int argc, va_list args)

Description

This function is equivalent to mysql_load_plugin(), but it accepts a va_list instead of a variable
list of parameters.

See Also

See also Section 23.8.14.3, “mysql_load_plugin()”.

23.8.14.5 mysql_plugin_options()

int mysql_plugin_options(struct st_mysql_client_plugin *plugin, const char
*option, const void *value)

Description

Passes an option type and value to a plugin. This function can be called multiple times to set several
options. If the plugin does not have an option handler, an error occurs.

Specify the parameters as follows:

• plugin: A pointer to the plugin structure.

• option: The option to be set.

• value: A pointer to the option value.

Return Values

Zero for success, 1 if an error occurred. If the plugin has an option handler, that handler should also
return zero for success and 1 if an error occurred.

23.8.15 Common Questions and Problems When Using the C API

23.8.15.1 Why mysql_store_result() Sometimes Returns NULL After mysql_query()
Returns Success

It is possible for mysql_store_result() to return NULL following a successful call to
mysql_query(). When this happens, it means one of the following conditions occurred:

• There was a malloc() failure (for example, if the result set was too large).

• The data could not be read (an error occurred on the connection).

Common Questions and Problems When Using the C API

3121

• The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a nonempty result by calling
mysql_field_count(). If mysql_field_count() returns zero, the result is empty and the
last query was a statement that does not return values (for example, an INSERT or a DELETE). If
mysql_field_count() returns a nonzero value, the statement should have produced a nonempty
result. See the description of the mysql_field_count() function for an example.

You can test for an error by calling mysql_error() or mysql_errno().

23.8.15.2 What Results You Can Get from a Query

In addition to the result set returned by a query, you can also get the following information:

• mysql_affected_rows() returns the number of rows affected by the last query when doing an
INSERT, UPDATE, or DELETE.

For a fast re-create, use TRUNCATE TABLE.

• mysql_num_rows() returns the number of rows in a result set. With mysql_store_result(),
mysql_num_rows() may be called as soon as mysql_store_result() returns. With
mysql_use_result(), mysql_num_rows() may be called only after you have fetched all the
rows with mysql_fetch_row().

• mysql_insert_id() returns the ID generated by the last query that inserted a row into a table with
an AUTO_INCREMENT index. See Section 23.8.7.38, “mysql_insert_id()”.

• Some queries (LOAD DATA INFILE ..., INSERT INTO ... SELECT ..., UPDATE)
return additional information. The result is returned by mysql_info(). See the description for
mysql_info() for the format of the string that it returns. mysql_info() returns a NULL pointer if
there is no additional information.

23.8.15.3 How to Get the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO_INCREMENT column, you can obtain the value
stored into that column by calling the mysql_insert_id() function.

You can check from your C applications whether a value was stored in an AUTO_INCREMENT column
by executing the following code (which assumes that you've checked that the statement succeeded). It
determines whether the query was an INSERT with an AUTO_INCREMENT index:

if ((result = mysql_store_result(&mysql)) == 0 &&
 mysql_field_count(&mysql) == 0 &&
 mysql_insert_id(&mysql) != 0)
{
 used_id = mysql_insert_id(&mysql);
}

When a new AUTO_INCREMENT value has been generated, you can also obtain it by executing a
SELECT LAST_INSERT_ID() statement with mysql_query() and retrieving the value from the
result set returned by the statement.

When inserting multiple values, the last automatically incremented value is returned.

For LAST_INSERT_ID(), the most recently generated ID is maintained in the server on a per-
connection basis. It is not changed by another client. It is not even changed if you update another
AUTO_INCREMENT column with a nonmagic value (that is, a value that is not NULL and not 0). Using
LAST_INSERT_ID() and AUTO_INCREMENT columns simultaneously from multiple clients is perfectly
valid. Each client will receive the last inserted ID for the last statement that client executed.

If you want to use the ID that was generated for one table and insert it into a second table, you can use
SQL statements like this:

Controlling Automatic Reconnection Behavior

3122

INSERT INTO foo (auto,text)
 VALUES(NULL,'text'); # generate ID by inserting NULL
INSERT INTO foo2 (id,text)
 VALUES(LAST_INSERT_ID(),'text'); # use ID in second table

mysql_insert_id() returns the value stored into an AUTO_INCREMENT column, whether
that value is automatically generated by storing NULL or 0 or was specified as an explicit value.
LAST_INSERT_ID() returns only automatically generated AUTO_INCREMENT values. If you store an
explicit value other than NULL or 0, it does not affect the value returned by LAST_INSERT_ID().

For more information on obtaining the last ID in an AUTO_INCREMENT column:

• For information on LAST_INSERT_ID(), which can be used within an SQL statement, see
Section 12.14, “Information Functions”.

• For information on mysql_insert_id(), the function you use from within the C API, see
Section 23.8.7.38, “mysql_insert_id()”.

• For information on obtaining the auto-incremented value when using Connector/J, see Retrieving
AUTO_INCREMENT Column Values through JDBC.

• For information on obtaining the auto-incremented value when using Connector/ODBC, see
Obtaining Auto-Increment Values.

23.8.16 Controlling Automatic Reconnection Behavior

The MySQL client library can perform an automatic reconnection to the server if it finds that the
connection is down when you attempt to send a statement to the server to be executed. If auto-
reconnect is enabled, the library tries once to reconnect to the server and send the statement again.

Auto-reconnect is disabled by default.

If it is important for your application to know that the connection has been dropped (so that it can exit
or take action to adjust for the loss of state information), be sure that auto-reconnect is disabled. To
ensure this, call mysql_options() with the MYSQL_OPT_RECONNECT option:

my_bool reconnect = 0;
mysql_options(&mysql, MYSQL_OPT_RECONNECT, &reconnect);

If the connection has gone down, the effect of mysql_ping() depends on the auto-reconnect state. If
auto-reconnect is enabled, mysql_ping() performs a reconnect. Otherwise, it returns an error.

Some client programs might provide the capability of controlling automatic reconnection. For example,
mysql reconnects by default, but the --skip-reconnect option can be used to suppress this
behavior.

If an automatic reconnection does occur (for example, as a result of calling mysql_ping()), there
is no explicit indication of it. To check for reconnection, call mysql_thread_id() to get the original
connection identifier before calling mysql_ping(), then call mysql_thread_id() again to see
whether the identifier changed.

Automatic reconnection can be convenient because you need not implement your own reconnect code,
but if a reconnection does occur, several aspects of the connection state are reset on the server side
and your application will not be notified.

The connection-related state is affected as follows:

• Any active transactions are rolled back and autocommit mode is reset.

• All table locks are released.

http://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
http://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

C API Support for Multiple Statement Execution

3123

• All TEMPORARY tables are closed (and dropped).

• Session system variables are reinitialized to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NAMES.

• User variable settings are lost.

• Prepared statements are released.

• HANDLER variables are closed.

• The value of LAST_INSERT_ID() is reset to 0.

• Locks acquired with GET_LOCK() are released.

• The association of the client with the Performance Schema threads table row that determines
connection thread instrumentation is lost. If the client reconnects after a disconnect, the session is
associated with a new row in the threads table and the thread monitoring state may be different.
See Section 21.9.15.3, “The threads Table”.

If the connection drops, it is possible that the session associated with the connection on the server side
will still be running if the server has not yet detected that the client is no longer connected. In this case,
any locks held by the original connection still belong to that session, so you may want to kill it by calling
mysql_kill().

23.8.17 C API Support for Multiple Statement Execution

By default, mysql_query() and mysql_real_query() interpret their statement string argument
as a single statement to be executed, and you process the result according to whether the statement
produces a result set (a set of rows, as for SELECT) or an affected-rows count (as for INSERT,
UPDATE, and so forth).

MySQL also supports the execution of a string containing multiple statements separated by
semicolon (;) characters. This capability is enabled by special options that are specified either
when you connect to the server with mysql_real_connect() or after connecting by calling`
mysql_set_server_option().

Executing a multiple-statement string can produce multiple result sets or row-count indicators.
Processing these results involves a different approach than for the single-statement case: After
handling the result from the first statement, it is necessary to check whether more results exist
and process them in turn if so. To support multiple-result processing, the C API includes the
mysql_more_results() and mysql_next_result() functions. These functions are used at the
end of a loop that iterates as long as more results are available. Failure to process the result this way
may result in a dropped connection to the server.

Multiple-result processing also is required if you execute CALL statements for stored procedures.
Results from a stored procedure have these characteristics:

• Statements within the procedure may produce result sets (for example, if it executes SELECT
statements). These result sets are returned in the order that they are produced as the procedure
executes.

In general, the caller cannot know how many result sets a procedure will return. Procedure execution
may depend on loops or conditional statements that cause the execution path to differ from one call
to the next. Therefore, you must be prepared to retrieve multiple results.

• The final result from the procedure is a status result that includes no result set. The status indicates
whether the procedure succeeded or an error occurred.

The multiple statement and result capabilities can be used only with mysql_query() or
mysql_real_query(). They cannot be used with the prepared statement interface. Prepared

C API Support for Multiple Statement Execution

3124

statement handles are defined to work only with strings that contain a single statement. See
Section 23.8.8, “C API Prepared Statements”.

To enable multiple-statement execution and result processing, the following options may be used:

• The mysql_real_connect() function has a flags argument for which two option values are
relevant:

• CLIENT_MULTI_RESULTS enables the client program to process multiple results. This option
must be enabled if you execute CALL statements for stored procedures that produce result
sets. Otherwise, such procedures result in an error Error 1312 (0A000): PROCEDURE
proc_name can't return a result set in the given context. In MySQL 5.7,
CLIENT_MULTI_RESULTS is enabled by default.

• CLIENT_MULTI_STATEMENTS enables mysql_query() and mysql_real_query()
to execute statement strings containing multiple statements separated by semicolons.
This option also enables CLIENT_MULTI_RESULTS implicitly, so a flags argument
of CLIENT_MULTI_STATEMENTS to mysql_real_connect() is equivalent to an
argument of CLIENT_MULTI_STATEMENTS | CLIENT_MULTI_RESULTS. That is,
CLIENT_MULTI_STATEMENTS is sufficient to enable multiple-statement execution and all multiple-
result processing.

• After the connection to the server has been established, you can use the
mysql_set_server_option() function to enable or disable multiple-statement
execution by passing it an argument of MYSQL_OPTION_MULTI_STATEMENTS_ON or
MYSQL_OPTION_MULTI_STATEMENTS_OFF. Enabling multiple-statement execution with this
function also enables processing of “simple” results for a multiple-statement string where each
statement produces a single result, but is not sufficient to permit processing of stored procedures
that produce result sets.

The following procedure outlines a suggested strategy for handling multiple statements:

1. Pass CLIENT_MULTI_STATEMENTS to mysql_real_connect(), to fully enable multiple-
statement execution and multiple-result processing.

2. After calling mysql_query() or mysql_real_query() and verifying that it succeeds, enter a
loop within which you process statement results.

3. For each iteration of the loop, handle the current statement result, retrieving either a result set or an
affected-rows count. If an error occurs, exit the loop.

4. At the end of the loop, call mysql_next_result() to check whether another result exists and
initiate retrieval for it if so. If no more results are available, exit the loop.

One possible implementation of the preceding strategy is shown following. The final part of the loop
can be reduced to a simple test of whether mysql_next_result() returns nonzero. The code as
written distinguishes between no more results and an error, which enables a message to be printed for
the latter occurrence.

/* connect to server with the CLIENT_MULTI_STATEMENTS option */
if (mysql_real_connect (mysql, host_name, user_name, password,
 db_name, port_num, socket_name, CLIENT_MULTI_STATEMENTS) == NULL)
{
 printf("mysql_real_connect() failed\n");
 mysql_close(mysql);
 exit(1);
}

/* execute multiple statements */
status = mysql_query(mysql,
 "DROP TABLE IF EXISTS test_table;\
 CREATE TABLE test_table(id INT);\
 INSERT INTO test_table VALUES(10);\

C API Prepared Statement Problems

3125

 UPDATE test_table SET id=20 WHERE id=10;\
 SELECT * FROM test_table;\
 DROP TABLE test_table");
if (status)
{
 printf("Could not execute statement(s)");
 mysql_close(mysql);
 exit(0);
}

/* process each statement result */
do {
 /* did current statement return data? */
 result = mysql_store_result(mysql);
 if (result)
 {
 /* yes; process rows and free the result set */
 process_result_set(mysql, result);
 mysql_free_result(result);
 }
 else /* no result set or error */
 {
 if (mysql_field_count(mysql) == 0)
 {
 printf("%lld rows affected\n",
 mysql_affected_rows(mysql));
 }
 else /* some error occurred */
 {
 printf("Could not retrieve result set\n");
 break;
 }
 }
 /* more results? -1 = no, >0 = error, 0 = yes (keep looping) */
 if ((status = mysql_next_result(mysql)) > 0)
 printf("Could not execute statement\n");
} while (status == 0);

mysql_close(mysql);

23.8.18 C API Prepared Statement Problems

Here follows a list of the currently known problems with prepared statements:

• TIME, TIMESTAMP, and DATETIME do not support parts of seconds (for example, from
DATE_FORMAT()).

• When converting an integer to string, ZEROFILL is honored with prepared statements in some
cases where the MySQL server does not print the leading zeros. (For example, with MIN(number-
with-zerofill)).

• When converting a floating-point number to a string in the client, the rightmost digits of the converted
value may differ slightly from those of the original value.

• Prepared statements use the query cache under the conditions described in Section 8.10.3.1, “How
the Query Cache Operates”.

• Prepared statements do not support multi-statements (that is, multiple statements within a single
string separated by ; characters).

• The capabilities of prepared CALL statements are described in Section 23.8.20, “C API Support for
Prepared CALL Statements”.

23.8.19 C API Prepared Statement Handling of Date and Time Values

The binary (prepared statement) protocol enables you to send and receive date and time values (DATE,
TIME, DATETIME, and TIMESTAMP), using the MYSQL_TIME structure. The members of this structure
are described in Section 23.8.9, “C API Prepared Statement Data Structures”.

C API Prepared Statement Handling of Date and Time Values

3126

To send temporal data values, create a prepared statement using mysql_stmt_prepare(). Then,
before calling mysql_stmt_execute() to execute the statement, use the following procedure to set
up each temporal parameter:

1. In the MYSQL_BIND structure associated with the data value, set the buffer_type member to
the type that indicates what kind of temporal value you're sending. For DATE, TIME, DATETIME,
or TIMESTAMP values, set buffer_type to MYSQL_TYPE_DATE, MYSQL_TYPE_TIME,
MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respectively.

2. Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME structure
in which you pass the temporal value.

3. Fill in the members of the MYSQL_TIME structure that are appropriate for the type of temporal value
to pass.

Use mysql_stmt_bind_param() to bind the parameter data to the statement. Then you can call
mysql_stmt_execute().

To retrieve temporal values, the procedure is similar, except that you set the buffer_type member
to the type of value you expect to receive, and the buffer member to the address of a MYSQL_TIME
structure into which the returned value should be placed. Use mysql_stmt_bind_result() to bind
the buffers to the statement after calling mysql_stmt_execute() and before fetching the results.

Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable is
assumed to be a valid connection handle.

 MYSQL_TIME ts;
 MYSQL_BIND bind[3];
 MYSQL_STMT *stmt;

 strmov(query, "INSERT INTO test_table(date_field, time_field, \
 timestamp_field) VALUES(?,?,?");

 stmt = mysql_stmt_init(mysql);
 if (!stmt)
 {
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
 }
 if (mysql_stmt_prepare(mysql, query, strlen(query)))
 {
 fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
 }

 /* set up input buffers for all 3 parameters */
 bind[0].buffer_type= MYSQL_TYPE_DATE;
 bind[0].buffer= (char *)&ts;
 bind[0].is_null= 0;
 bind[0].length= 0;
 ...
 bind[1]= bind[2]= bind[0];
 ...

 mysql_stmt_bind_param(stmt, bind);

 /* supply the data to be sent in the ts structure */
 ts.year= 2002;
 ts.month= 02;
 ts.day= 03;

 ts.hour= 10;
 ts.minute= 45;
 ts.second= 20;

C API Support for Prepared CALL Statements

3127

 mysql_stmt_execute(stmt);
 ..

23.8.20 C API Support for Prepared CALL Statements

This section describes prepared-statement support in the C API for stored procedures executed using
CALL statements:

Stored procedures executed using prepared CALL statements can be used in the following ways:

• A stored procedure can produce any number of result sets. The number of columns and the data
types of the columns need not be the same for all result sets.

• The final values of OUT and INOUT parameters are available to the calling application after the
procedure returns. These parameters are returned as an extra single-row result set following any
result sets produced by the procedure itself. The row contains the values of the OUT and INOUT
parameters in the order in which they are declared in the procedure parameter list.

The following discussion shows how to use these capabilities through the C API for prepared
statements. To use prepared CALL statements through the PREPARE and EXECUTE statements, see
Section 13.2.1, “CALL Syntax”.

If an application might be compiled or executed in a context where a version of MySQL older than 5.5.3
is used, prepared CALL capabilities for multiple result sets and OUT or INOUT parameters might not be
available:

• For the client side, the application will not compile unless the libraries are from MySQL 5.5.3 or
higher (the API function and symbols introduced in that version will not be present).

• To verify at runtime that the server is recent enough, a client can use this test:

if (mysql_get_server_version(mysql) < 50503)
{
 fprintf(stderr,
 "Server does not support required CALL capabilities\n");
 mysql_close(mysql);
 exit (1);
}

An application that executes a prepared CALL statement should use a loop that fetches a result and
then invokes mysql_stmt_next_result() to determine whether there are more results. The
results consist of any result sets produced by the stored procedure followed by a final status value that
indicates whether the procedure terminated successfully.

If the procedure has OUT or INOUT parameters, the result set preceding the final status value
contains their values. To determine whether a result set contains parameter values, test whether
the SERVER_PS_OUT_PARAMS bit is set in the server_status member of the MYSQL connection
handler:

mysql->server_status & SERVER_PS_OUT_PARAMS

The following example uses a prepared CALL statement to execute a stored procedure that produces
multiple result sets and that provides parameter values back to the caller by means of OUT and INOUT
parameters. The procedure takes parameters of all three types (IN, OUT, INOUT), displays their initial
values, assigns new values, displays the updated values, and returns. The expected return information
from the procedure therefore consists of multiple result sets and a final status:

• One result set from a SELECT that displays the initial parameter values: 10, NULL, 30. (The OUT
parameter is assigned a value by the caller, but this assignment is expected to be ineffective: OUT
parameters are seen as NULL within a procedure until assigned a value within the procedure.)

• One result set from a SELECT that displays the modified parameter values: 100, 200, 300.

C API Support for Prepared CALL Statements

3128

• One result set containing the final OUT and INOUT parameter values: 200, 300.

• A final status packet.

The code to execute the procedure:

MYSQL_STMT *stmt;
MYSQL_BIND ps_params[3]; /* input parameter buffers */
int int_data[3]; /* input/output values */
my_bool is_null[3]; /* output value nullability */
int status;

/* set up stored procedure */
status = mysql_query(mysql, "DROP PROCEDURE IF EXISTS p1");
test_error(mysql, status);

status = mysql_query(mysql,
 "CREATE PROCEDURE p1("
 " IN p_in INT, "
 " OUT p_out INT, "
 " INOUT p_inout INT) "
 "BEGIN "
 " SELECT p_in, p_out, p_inout; "
 " SET p_in = 100, p_out = 200, p_inout = 300; "
 " SELECT p_in, p_out, p_inout; "
 "END");
test_error(mysql, status);

/* initialize and prepare CALL statement with parameter placeholders */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 printf("Could not initialize statement\n");
 exit(1);
}
status = mysql_stmt_prepare(stmt, "CALL p1(?, ?, ?)", 16);
test_stmt_error(stmt, status);

/* initialize parameters: p_in, p_out, p_inout (all INT) */
memset(ps_params, 0, sizeof (ps_params));

ps_params[0].buffer_type = MYSQL_TYPE_LONG;
ps_params[0].buffer = (char *) &int_data[0];
ps_params[0].length = 0;
ps_params[0].is_null = 0;

ps_params[1].buffer_type = MYSQL_TYPE_LONG;
ps_params[1].buffer = (char *) &int_data[1];
ps_params[1].length = 0;
ps_params[1].is_null = 0;

ps_params[2].buffer_type = MYSQL_TYPE_LONG;
ps_params[2].buffer = (char *) &int_data[2];
ps_params[2].length = 0;
ps_params[2].is_null = 0;

/* bind parameters */
status = mysql_stmt_bind_param(stmt, ps_params);
test_stmt_error(stmt, status);

/* assign values to parameters and execute statement */
int_data[0]= 10; /* p_in */
int_data[1]= 20; /* p_out */
int_data[2]= 30; /* p_inout */

status = mysql_stmt_execute(stmt);
test_stmt_error(stmt, status);

/* process results until there are no more */
do {
 int i;

C API Support for Prepared CALL Statements

3129

 int num_fields; /* number of columns in result */
 MYSQL_FIELD *fields; /* for result set metadata */
 MYSQL_BIND *rs_bind; /* for output buffers */

 /* the column count is > 0 if there is a result set */
 /* 0 if the result is only the final status packet */
 num_fields = mysql_stmt_field_count(stmt);

 if (num_fields > 0)
 {
 /* there is a result set to fetch */
 printf("Number of columns in result: %d\n", (int) num_fields);

 /* what kind of result set is this? */
 printf("Data: ");
 if(mysql->server_status & SERVER_PS_OUT_PARAMS)
 printf("this result set contains OUT/INOUT parameters\n");
 else
 printf("this result set is produced by the procedure\n");

 MYSQL_RES *rs_metadata = mysql_stmt_result_metadata(stmt);
 test_stmt_error(stmt, rs_metadata == NULL);

 fields = mysql_fetch_fields(rs_metadata);

 rs_bind = (MYSQL_BIND *) malloc(sizeof (MYSQL_BIND) * num_fields);
 if (!rs_bind)
 {
 printf("Cannot allocate output buffers\n");
 exit(1);
 }
 memset(rs_bind, 0, sizeof (MYSQL_BIND) * num_fields);

 /* set up and bind result set output buffers */
 for (i = 0; i < num_fields; ++i)
 {
 rs_bind[i].buffer_type = fields[i].type;
 rs_bind[i].is_null = &is_null[i];

 switch (fields[i].type)
 {
 case MYSQL_TYPE_LONG:
 rs_bind[i].buffer = (char *) &(int_data[i]);
 rs_bind[i].buffer_length = sizeof (int_data);
 break;

 default:
 fprintf(stderr, "ERROR: unexpected type: %d.\n", fields[i].type);
 exit(1);
 }
 }

 status = mysql_stmt_bind_result(stmt, rs_bind);
 test_stmt_error(stmt, status);

 /* fetch and display result set rows */
 while (1)
 {
 status = mysql_stmt_fetch(stmt);

 if (status == 1 || status == MYSQL_NO_DATA)
 break;

 for (i = 0; i < num_fields; ++i)
 {
 switch (rs_bind[i].buffer_type)
 {
 case MYSQL_TYPE_LONG:
 if (*rs_bind[i].is_null)
 printf(" val[%d] = NULL;", i);
 else
 printf(" val[%d] = %ld;",

MySQL PHP API

3130

 i, (long) *((int *) rs_bind[i].buffer));
 break;

 default:
 printf(" unexpected type (%d)\n",
 rs_bind[i].buffer_type);
 }
 }
 printf("\n");
 }

 mysql_free_result(rs_metadata); /* free metadata */
 free(rs_bind); /* free output buffers */
 }
 else
 {
 /* no columns = final status packet */
 printf("End of procedure output\n");
 }

 /* more results? -1 = no, >0 = error, 0 = yes (keep looking) */
 status = mysql_stmt_next_result(stmt);
 if (status > 0)
 test_stmt_error(stmt, status);
} while (status == 0);

mysql_stmt_close(stmt);

Execution of the procedure should produce the following output:

Number of columns in result: 3
Data: this result set is produced by the procedure
 val[0] = 10; val[1] = NULL; val[2] = 30;
Number of columns in result: 3
Data: this result set is produced by the procedure
 val[0] = 100; val[1] = 200; val[2] = 300;
Number of columns in result: 2
Data: this result set contains OUT/INOUT parameters
 val[0] = 200; val[1] = 300;
End of procedure output

The code uses two utility routines, test_error() and test_stmt_error(), to check for errors and
terminate after printing diagnostic information if an error occurred:

static void test_error(MYSQL *mysql, int status)
{
 if (status)
 {
 fprintf(stderr, "Error: %s (errno: %d)\n",
 mysql_error(mysql), mysql_errno(mysql));
 exit(1);
 }
}

static void test_stmt_error(MYSQL_STMT *stmt, int status)
{
 if (status)
 {
 fprintf(stderr, "Error: %s (errno: %d)\n",
 mysql_stmt_error(stmt), mysql_stmt_errno(stmt));
 exit(1);
 }
}

23.9 MySQL PHP API

The MySQL PHP API manual is now published in standalone form, not as part of the MySQL
Reference Manual. See MySQL and PHP.

http://dev.mysql.com/doc/apis-php/en/index.html

MySQL Perl API

3131

23.10 MySQL Perl API
The Perl DBI module provides a generic interface for database access. You can write a DBI script
that works with many different database engines without change. To use DBI with MySQL, install the
following:

1. The DBI module.

2. The DBD::mysql module. This is the DataBase Driver (DBD) module for Perl.

3. Optionally, the DBD module for any other type of database server you want to access.

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which
should be considered obsolete.

These sections contain information about using Perl with MySQL and writing MySQL applications in
Perl:

• For installation instructions for Perl DBI support, see Section 2.13, “Perl Installation Notes”.

• For an example of reading options from option files, see Section 5.3.4, “Using Client Programs in a
Multiple-Server Environment”.

• For secure coding tips, see Section 6.1.1, “Security Guidelines”.

• For debugging tips, see Section 24.5.1.4, “Debugging mysqld under gdb”.

• For some Perl-specific environment variables, see Section 2.12, “Environment Variables”.

• For considerations for running on OS X, see Section 2.4, “Installing MySQL on OS X”.

• For ways to quote string literals, see Section 9.1.1, “String Literals”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about them at
the command line with the perldoc command:

shell> perldoc DBI
shell> perldoc DBI::FAQ
shell> perldoc DBD::mysql

You can also use pod2man, pod2html, and so on to translate this information into other formats.

• For online information about Perl DBI, visit the DBI Web site, http://dbi.perl.org/. That site hosts
a general DBI mailing list. Oracle Corporation hosts a list specifically about DBD::mysql; see
Section 1.6.1, “MySQL Mailing Lists”.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes and
Tim Bunce, O'Reilly & Associates, 2000). Information about the book is available at the DBI Web
site, http://dbi.perl.org/.

For information that focuses specifically on using DBI with MySQL, see MySQL and Perl for the Web
(Paul DuBois, New Riders, 2001). This book's Web site is http://www.kitebird.com/mysql-perl/.

23.11 MySQL Python API
MySQLdb is a third-party driver that provides MySQL support for Python, compliant with the Python DB
API version 2.0. It can be found at http://sourceforge.net/projects/mysql-python/.

The new MySQL Connector/Python component provides an interface to the same Python API, and is
built into the MySQL Server and supported by Oracle. See MySQL Connector/Python Developer Guide

http://dbi.perl.org/
http://dbi.perl.org/
http://www.kitebird.com/mysql-perl/
http://sourceforge.net/projects/mysql-python/
http://dev.mysql.com/doc/connector-python/en/index.html

MySQL Ruby APIs

3132

for details on the Connector, as well as coding guidelines for Python applications and sample Python
code.

23.12 MySQL Ruby APIs

Two APIs are available for Ruby programmers developing MySQL applications:

• The MySQL/Ruby API is based on the libmysqlclient API library. For information on installing
and using the MySQL/Ruby API, see Section 23.12.1, “The MySQL/Ruby API”.

• The Ruby/MySQL API is written to use the native MySQL network protocol (a native driver). For
information on installing and using the Ruby/MySQL API, see Section 23.12.2, “The Ruby/MySQL
API”.

For background and syntax information about the Ruby language, see Ruby Programming Language.

23.12.1 The MySQL/Ruby API

The MySQL/Ruby module provides access to MySQL databases using Ruby through
libmysqlclient.

For information on installing the module, and the functions exposed, see MySQL/Ruby.

23.12.2 The Ruby/MySQL API

The Ruby/MySQL module provides access to MySQL databases using Ruby through a native driver
interface using the MySQL network protocol.

For information on installing the module, and the functions exposed, see Ruby/MySQL.

23.13 MySQL Tcl API

MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming
language. It can be found at http://www.xdobry.de/mysqltcl/.

23.14 MySQL Eiffel Wrapper

Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language,
written by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

http://www.ruby-lang.org
http://tmtm.org/en/mysql/ruby/
http://tmtm.org/en/ruby/mysql/README_en.html
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://www.xdobry.de/mysqltcl/
http://en.wikipedia.org/wiki/Eiffel_(programming_language)
http://efsa.sourceforge.net/archive/ravits/mysql.htm

3133

Chapter 24 Extending MySQL

Table of Contents
24.1 MySQL Internals ... 3133

24.1.1 MySQL Threads ... 3133
24.1.2 The MySQL Test Suite ... 3134

24.2 The MySQL Plugin API ... 3134
24.2.1 Plugin API Characteristics ... 3135
24.2.2 Plugin API Components .. 3136
24.2.3 Types of Plugins .. 3137
24.2.4 Writing Plugins ... 3141

24.3 MySQL Services for Plugins .. 3193
24.3.1 The Locking Service ... 3195

24.4 Adding New Functions to MySQL .. 3200
24.4.1 Features of the User-Defined Function Interface ... 3201
24.4.2 Adding a New User-Defined Function .. 3201
24.4.3 Adding a New Native Function .. 3211

24.5 Debugging and Porting MySQL ... 3212
24.5.1 Debugging a MySQL Server ... 3212
24.5.2 Debugging a MySQL Client .. 3219
24.5.3 The DBUG Package ... 3220

24.1 MySQL Internals
This chapter describes a lot of things that you need to know when working on the MySQL code.
To track or contribute to MySQL development, follow the instructions in Section 2.9.3, “Installing
MySQL Using a Development Source Tree”. If you are interested in MySQL internals, you should
also subscribe to our internals mailing list. This list has relatively low traffic. For details on how
to subscribe, please see Section 1.6.1, “MySQL Mailing Lists”. Many MySQL developers at Oracle
Corporation are on the internals list and we help other people who are working on the MySQL code.
Feel free to use this list both to ask questions about the code and to send patches that you would like
to contribute to the MySQL project!

24.1.1 MySQL Threads

The MySQL server creates the following threads:

• Connection manager threads handle client connection requests on the network interfaces that
the server listens to. On all platforms, one manager thread handles TCP/IP connection requests.
On Unix, this manager thread also handles Unix socket file connection requests. On Windows, a
manager thread handles shared-memory connection requests, and another handles named-pipe
connection requests. The server does not create threads to handle interfaces that it does not listen
to. For example, a Windows server that does not have support for named-pipe connections enabled
does not create a thread to handle them.

• Connection manager threads associate each client connection with a thread dedicated to it that
handles authentication and request processing for that connection. Manager threads create a new
thread when necessary but try to avoid doing so by consulting the thread cache first to see whether
it contains a thread that can be used for the connection. When a connection ends, its thread is
returned to the thread cache if the cache is not full.

For information about tuning the parameters that control thread resources, see Section 8.12.6.1,
“How MySQL Uses Threads for Client Connections”.

• On a master replication server, connections from slave servers are handled like client connections:
There is one thread per connected slave.

The MySQL Test Suite

3134

• On a slave replication server, an I/O thread is started to connect to the master server and read
updates from it. An SQL thread is started to apply updates read from the master. These two threads
run independently and can be started and stopped independently.

• A signal thread handles all signals. This thread also normally handles alarms and calls
process_alarm() to force timeouts on connections that have been idle too long.

• If InnoDB is used, there will be additional read and write threads by default. The number of these are
controlled by the innodb_read_io_threads and innodb_write_io_threads parameters. See
Section 14.11, “InnoDB Startup Options and System Variables”.

• If the server is started with the --flush_time=val option, a dedicated thread is created to flush all
tables every val seconds.

• If the event scheduler is active, there is one thread for the scheduler, and a thread for each event
currently running. See Section 19.4.1, “Event Scheduler Overview”.

mysqladmin processlist only shows the connection, replication, and event threads.

24.1.2 The MySQL Test Suite

The test system that is included in Unix source and binary distributions makes it possible for users and
developers to perform regression tests on the MySQL code. These tests can be run on Unix.

You can also write your own test cases. For information about the MySQL Test Framework, including
system requirements, see the manual available at http://dev.mysql.com/doc/mysqltest/2.0/en/.

The current set of test cases doesn't test everything in MySQL, but it should catch most obvious
bugs in the SQL processing code, operating system or library issues, and is quite thorough in testing
replication. Our goal is to have the tests cover 100% of the code. We welcome contributions to our test
suite. You may especially want to contribute tests that examine the functionality critical to your system
because this ensures that all future MySQL releases work well with your applications.

The test system consists of a test language interpreter (mysqltest), a Perl script to run all tests
(mysql-test-run.pl), the actual test cases written in a special test language, and their expected
results. To run the test suite on your system after a build, type make test from the source root
directory, or change location to the mysql-test directory and type ./mysql-test-run.pl. If you
have installed a binary distribution, change location to the mysql-test directory under the installation
root directory (for example, /usr/local/mysql/mysql-test), and run ./mysql-test-run.pl.
All tests should succeed. If any do not, feel free to try to find out why and report the problem if it
indicates a bug in MySQL. See Section 1.7, “How to Report Bugs or Problems”.

If one test fails, you should run mysql-test-run.pl with the --force option to check whether any
other tests fail.

If you have a copy of mysqld running on the machine where you want to run the test suite, you do
not have to stop it, as long as it is not using ports 9306 or 9307. If either of those ports is taken, you
should set the MTR_BUILD_THREAD environment variable to an appropriate value, and the test suite
will use a different set of ports for master, slave, and NDB). For example:

shell> export MTR_BUILD_THREAD=31
shell> ./mysql-test-run.pl [options] [test_name]

In the mysql-test directory, you can run an individual test case with ./mysql-test-run.pl
test_name.

If you have a question about the test suite, or have a test case to contribute, send an email message to
the MySQL internals mailing list. See Section 1.6.1, “MySQL Mailing Lists”.

24.2 The MySQL Plugin API

http://dev.mysql.com/doc/mysqltest/2.0/en/

Additional Resources

3135

MySQL supports a plugin API that enables creation of server components. Plugins can be loaded at
server startup, or loaded and unloaded at runtime without restarting the server. The API is generic and
does not specify what plugins can do. The components supported by this interface include, but are not
limited to, storage engines, full-text parser plugins, and server extensions.

For example, full-text parser plugins can be used to replace or augment the built-in full-text parser.
A plugin can parse text into words using rules that differ from those used by the built-in parser. This
can be useful if you need to parse text with characteristics different from those expected by the built-in
parser.

The plugin interface is more general than the older user-defined function (UDF) interface.

The plugin interface uses the plugin table in the mysql database to record information about plugins
that have been installed permanently with the INSTALL PLUGIN statement. This table is created as
part of the MySQL installation process. Plugins can also be installed for a single server invocation with
the --plugin-load option. Plugins installed this way are not recorded in the plugin table. See
Section 5.1.8.1, “Installing and Uninstalling Plugins”.

MySQL supports an API for client plugins in addition to that for server plugins. This is used, for
example, by authentication plugins where a server-side plugin and a client-side plugin cooperate to
enable clients to connect to the server through a variety of authentication methods.

Additional Resources

The book MySQL 5.1 Plugin Development by Sergei Golubchik and Andrew Hutchings provides a
wealth of detail about the plugin API. Despite the fact that the book's title refers to MySQL Server 5.1,
most of the information in it applies to later versions as well.

24.2.1 Plugin API Characteristics

The server plugin API has these characteristics:

• All plugins have several things in common.

Each plugin has a name that it can be referred to in SQL statements, as well as other metadata such
as an author and a description that provide other information. This information can be examined in
the INFORMATION_SCHEMA.PLUGINS table or using the SHOW PLUGINS statement.

• The plugin framework is extendable to accommodate different kinds of plugins.

Although some aspects of the plugin API are common to all types of plugins, the API also permits
type-specific interface elements so that different types of plugins can be created. A plugin with one
purpose can have an interface most appropriate to its own requirements and not the requirements of
some other plugin type.

Interfaces for several types of plugins exist, such as storage engines, full-text parser, and
INFORMATION_SCHEMA tables. Others can be added.

• Plugins can expose information to users.

A plugin can implement system and status variables that are available through the SHOW
VARIABLES and SHOW STATUS statements.

• The plugin API includes versioning information.

The version information included in the plugin API enables a plugin library and each plugin that it
contains to be self-identifying with respect to the API version that was used to build the library. If the
API changes over time, the version numbers will change, but a server can examine a given plugin
library's version information to determine whether it supports the plugins in the library.

There are two types of version numbers. The first is the version for the general plugin framework
itself. Each plugin library includes this kind of version number. The second type of version applies

Plugin API Components

3136

to individual plugins. Each specific type of plugin has a version for its interface, so each plugin in a
library has a type-specific version number. For example, a library containing a full-text parser plugin
has a general plugin API version number, and the plugin has a version number specific to the full-text
plugin interface.

• The plugin API implements security restrictions.

A plugin library must be installed in a specific dedicated directory for which the location is controlled
by the server and cannot be changed at runtime. Also, the library must contain specific symbols that
identify it as a plugin library. The server will not load something as a plugin if it was not built as a
plugin.

• Plugins have access to server services.

The services interface exposes server functionality that plugins can access using ordinary function
calls. For details, see Section 24.3, “MySQL Services for Plugins”.

In some respects, the server plugin API is similar to the older user-defined function (UDF) API that it
supersedes, but the plugin API has several advantages over the older interface. For example, UDFs
had no versioning information. Also, the newer plugin interface eliminates the security issues of the
older UDF interface. The older interface for writing nonplugin UDFs permitted libraries to be loaded
from any directory searched by the system's dynamic linker, and the symbols that identified the UDF
library were relatively nonspecific.

The client plugin API has similar architectural characteristics, but client plugins have no direct access to
the server the way server plugins do.

24.2.2 Plugin API Components

The server plugin implementation comprises several components.

SQL statements:

• INSTALL PLUGIN registers a plugin in the mysql.plugin table and loads the plugin code.

• UNINSTALL PLUGIN unregisters a plugin from the mysql.plugin table and unloads the plugin
code.

• The WITH PARSER clause for full-text index creation associates a full-text parser plugin with a given
FULLTEXT index.

• SHOW PLUGINS displays information about server plugins.

Command-line options and system variables:

• The --plugin-load option enables plugins to be loaded at server startup time.

• The plugin_dir system variable indicates the location of the directory where all plugins
must be installed. The value of this variable can be specified at server startup with a --
plugin_dir=dir_name option. mysql_config --plugindir displays the default plugin
directory path name.

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

Plugin-related tables:

• The INFORMATION_SCHEMA.PLUGINS table contains plugin information.

• The mysql.plugin table lists each plugin that was installed with INSTALL PLUGIN and is required
for plugin use. For new MySQL installations, this table is created during the installation process.

The client plugin implementation is simpler:

Types of Plugins

3137

• For the mysql_options() C API function, the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR
options enable client programs to load authentication plugins.

• There are C API functions that enable management of client plugins.

To examine how MySQL implements plugins, consult the following source files in a MySQL source
distribution:

• In the include/mysql directory, plugin.h exposes the public plugin API. This file should be
examined by anyone who wants to write a plugin library. plugin_xxx.h files provide additional
information that pertains to specific types of plugins. client_plugin.h contains information
specific to client plugins.

• In the sql directory, sql_plugin.h and sql_plugin.cc comprise the internal plugin
implementation. sql_acl.cc is where the server uses authentication plugins. These files need not
be consulted by plugin developers. They may be of interest for those who want to know more about
how the server handles plugins.

• In the sql-common directory, client_plugin.h implements the C API client plugin functions, and
client.c implements client authentication support. These files need not be consulted by plugin
developers. They may be of interest for those who want to know more about how the server handles
plugins.

24.2.3 Types of Plugins

The plugin API enables creation of plugins that implement several capabilities:

• Storage engines

• Full-text parsers

• Daemons

• INFORMATION_SCHEMA tables

• Semisynchronous replication

• Auditing

• Authentication

• Password validation and strength checking

• Protocol tracing

The following sections provide an overview of these plugin types.

24.2.3.1 Storage Engine Plugins

The pluggable storage engine architecture used by MySQL Server enables storage engines to be
written as plugins and loaded into and unloaded from a running server. For a description of this
architecture, see Section 15.11, “Overview of MySQL Storage Engine Architecture”.

For information on how to use the plugin API to write storage engines, see MySQL Internals: Writing a
Custom Storage Engine.

24.2.3.2 Full-Text Parser Plugins

MySQL has a built-in parser that it uses by default for full-text operations (parsing text to be indexed,
or parsing a query string to determine the terms to be used for a search). The built-in full-text parser is
supported with InnoDB and MyISAM tables.

A character-based ngram full-text parser that supports Chinese, Japanese, and Korean (CJK), and a
word-based MeCab parser plugin that supports Japanese were introduced in MySQL 5.7.6, for use with
InnoDB and MyISAM tables.

http://dev.mysql.com/doc/internals/en/custom-engine.html
http://dev.mysql.com/doc/internals/en/custom-engine.html

Types of Plugins

3138

For full-text processing, “parsing” means extracting words (or “tokens”, in the case of an n-gram
character-based parser) from text or a query string based on rules that define which character
sequences make up a word and where word boundaries lie.

When parsing for indexing purposes, the parser passes each word to the server, which adds it to a full-
text index. When parsing a query string, the parser passes each word to the server, which accumulates
the words for use in a search.

The parsing properties of the built-in full-text parser are described in Section 12.9, “Full-Text Search
Functions”. These properties include rules for determining how to extract words from text. The parser
is influenced by certain system variables that cause words shorter or longer to be excluded, and by the
stopword list that identifies common words to be ignored. For more information, see Section 12.9.4,
“Full-Text Stopwords”, and Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”.

The plugin API enables you to use a full-text parser other than the default built-in full-text parser. For
example, if you are working with Japanese, you may choose to use the MeCab full-text parser. The
plugin API also enables you to provide a full-text parser of your own so that you have control over the
basic duties of a parser. A parser plugin can operate in either of two roles:

• The plugin can replace the built-in parser. In this role, the plugin reads the input to be parsed, splits
it up into words, and passes the words to the server (either for indexing or for token accumulation).
The ngram and MeCab parsers introduced in MySQL 5.7.6 operate as replacements for the built-in
full-text parser.

You may choose to provide your own full-text parser if you need to use different rules from those of
the built-in parser for determining how to split up input into words. For example, the built-in parser
considers the text “case-sensitive” to consist of two words “case” and “sensitive,” whereas an
application might need to treat the text as a single word.

• The plugin can act in conjunction with the built-in parser by serving as a front end for it. In this role,
the plugin extracts text from the input and passes the text to the parser, which splits up the text into
words using its normal parsing rules. This parsing is affected by the innodb_ft_xxx or ft_xxx
system variables and the stopword list.

One reason to use a parser this way is that you need to index content such as PDF documents, XML
documents, or .doc files. The built-in parser is not intended for those types of input but a plugin can
pull out the text from these input sources and pass it to the built-in parser.

It is also possible for a parser plugin to operate in both roles. That is, it could extract text from
noncleartext input (the front end role), and also parse the text into words (thus replacing the built-in
parser).

A full-text plugin is associated with full-text indexes on a per-index basis. That is, when you install a
parser plugin initially, that does not cause it to be used for any full-text operations. It simply becomes
available. For example, a full-text parser plugin becomes available to be named in a WITH PARSER
clause when creating individual FULLTEXT indexes. To create such an index at table-creation time, do
this:

CREATE TABLE t
(
 doc CHAR(255),
 FULLTEXT INDEX (doc) WITH PARSER parser_name
) ENGINE=InnoDB;

Or you can add the index after the table has been created:

ALTER TABLE t ADD FULLTEXT INDEX (doc) WITH PARSER parser_name;

The only SQL change for associating the parser with the index is the WITH PARSER clause. Searches
are specified as before, with no changes needed for queries.

Types of Plugins

3139

When you associate a parser plugin with a FULLTEXT index, the plugin is required for using the index.
If the parser plugin is dropped, any index associated with it becomes unusable. Any attempt to use a
table for which a plugin is not available results in an error, although DROP TABLE is still possible.

For more information about full-text plugins, see Section 24.2.4.4, “Writing Full-Text Parser Plugins”.
MySQL 5.7 supports full-text plugins with MyISAM and InnoDB. InnoDB support for full-text plugins
was added in MySQL 5.7.3.

24.2.3.3 Daemon Plugins

A daemon plugin is a simple type of plugin used for code that should be run by the server but that does
not communicate with it. MySQL distributions include an example daemon plugin that writes periodic
heartbeat messages to a file.

For more information about daemon plugins, see Section 24.2.4.5, “Writing Daemon Plugins”.

24.2.3.4 INFORMATION_SCHEMA Plugins

INFORMATION_SCHEMA plugins enable the creation of tables containing server metadata that
are exposed to users through the INFORMATION_SCHEMA database. For example, InnoDB uses
INFORMATION_SCHEMA plugins to provide tables that contain information about current transactions
and locks.

For more information about INFORMATION_SCHEMA plugins, see Section 24.2.4.6, “Writing
INFORMATION_SCHEMA Plugins”.

24.2.3.5 Semisynchronous Replication Plugins

MySQL replication is asynchronous by default. With semisynchronous replication, a commit performed
on the master side blocks before returning to the session that performed the transaction until
at least one slave acknowledges that it has received and logged the events for the transaction.
Semisynchronous replication is implemented through complementary master and client plugins. See
Section 17.3.8, “Semisynchronous Replication”.

For more information about semisynchronous replication plugins, see Section 24.2.4.7, “Writing
Semisynchronous Replication Plugins”.

24.2.3.6 Audit Plugins

The MySQL server provides a pluggable audit interface that enables information about server
operations to be reported to interested parties. Audit notification occurs for these operations (although
the interface is general and the server could be modified to report others):

• Write a message to the general query log (if the log is enabled)

• Write a message to the error log

• Send a query result to a client

Audit plugins may register with the audit interface to receive notification about server operations. When
an auditable event occurs within the server, the server determines whether notification is needed. For
each registered audit plugin, the server checks the event against those event classes in which the
plugin is interested and passes the event to the plugin if there is a match.

This interface enables audit plugins to receive notifications only about operations in event classes they
consider significant and to ignore others. The interface provides for categorization of operations into
event classes and further division into event subclasses within each class.

When an audit plugin is notified of an auditable event, it receives a pointer to the current THD structure
and a pointer to a structure that contains information about the event. The plugin can examine the
event and perform whatever auditing actions are appropriate. For example, the plugin can see what
statement produced a result set or was logged, the number of rows in a result, who the current user
was for an operation, or the error code for failed operations.

Types of Plugins

3140

For more information about audit plugins, see Section 24.2.4.8, “Writing Audit Plugins”.

24.2.3.7 Authentication Plugins

MySQL supports pluggable authentication. Authentication plugins exist on both the server and client
sides. Plugins on the server side implement authentication methods for use by clients when they
connect to the server. A plugin on the client side communicates with a server-side plugin to provide the
authentication information that it requires. A client-side plugin may interact with the user, performing
tasks such as soliciting a password or other authentication credentials to be sent to the server. See
Section 6.3.8, “Pluggable Authentication”.

Pluggable authentication also enables proxy user capability, in which one user takes the identity of
another user. A server-side authentication plugin can return to the server the name of the user whose
identity the connecting user should have. See Section 6.3.10, “Proxy Users”.

For more information about authentication plugins, see Section 24.2.4.9, “Writing Authentication
Plugins”.

24.2.3.8 Password-Validation Plugins

The MySQL server provides an interface for writing plugins that test passwords. Such a plugin
implements two capabilities:

• Rejection of too-weak passwords in statements that assign passwords (such as CREATE USER,
GRANT, and SET PASSWORD statements), and passwords given as arguments to the PASSWORD()
and OLD_PASSWORD() functions.

• Assessing the strength of potential passwords for the VALIDATE_PASSWORD_STRENGTH() SQL
function.

For information about writing this type of plugin, see Section 24.2.4.10, “Writing Password-Validation
Plugins”.

24.2.3.9 Protocol Trace Plugins

MySQL supports the use of protocol trace plugins: client-side plugins that implement tracing of
communication between a client and the server that takes place using the client/server protocol. This
capability can be used in MySQL 5.7.2 and up.

For more information about protocol trace plugins, see Section 24.2.4.11, “Writing Protocol Trace
Plugins”.

24.2.3.10 Query Rewrite Plugins

As of MySQL 5.7.6, MySQL Server supports query rewrite plugins that can examine and possibly
modify statements received by the server before the server executes them. A query rewrite plugin
takes statements either before or after the server has parsed them.

A preparse query rewrite plugin has these characteristics:

• The plugin enables rewriting of SQL statements arriving at the server before the server processes
them.

• The plugin receives a statement string and may return a different string.

A postparse query rewrite plugin has these characteristics:

• The plugin enables statement rewriting based on parse trees.

• The server parses each statement and passes its parse tree to the plugin, which may traverse
the tree. The plugin can return the original tree to the server for further processing, or construct a
different tree and return that instead.

Writing Plugins

3141

• The plugin can use the mysql_parser plugin service for these purposes:

• To activate statement digest calculation and obtain the normalized version of statements
independent of whether the Performance Schema produces digests.

• To traverse parse trees.

• To parse statements. This is useful if the plugin constructs a new statement string from the parse
tree. The plugin can have the server parse the string to produce a new tree, then return that tree
as the representation of the rewritten statement.

For more information about plugin services, see Section 24.3, “MySQL Services for Plugins”.

Preparse and postparse query rewrite plugins share these characteristics:

• If a query rewrite plugin is installed, the --log-raw option affects statement logging as follows:

• Without --log-raw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

• With --log-raw, the server logs the original statement as received.

• If a plugin rewrites a statement, the server decides whether to write it to the binary log (and thus
to any replication slaves) based on the rewritten statement, not the original statement. If a plugin
rewrites only SELECT statements to SELECT statements, there is no impact on binary logging
because the server does not write SELECT statements to the binary log.

• If a plugin rewrites a statement, the server produces a Note message that the client can view
using SHOW WARNINGS. Messages have this format, where stmt_in is the original statement and
stmt_out is the rewritten statement:

Query 'stmt_in' rewritten to 'stmt_out' by a query rewrite plugin

MySQL distributions include a postparse query rewrite plugin named Rewriter. This plugin is rule
based. You can add rows to its rules table to cause SELECT statement rewriting. For more information,
and Section 5.1.8.3, “The Rewriter Query Rewrite Plugin”.

24.2.4 Writing Plugins

To create a plugin library, you must provide the required descriptor information that indicates what
plugins the library file contains, and write the interface functions for each plugin.

Every server plugin must have a general descriptor that provides information to the plugin API, and a
type-specific descriptor that provides information about the plugin interface for a given type of plugin.
The structure of the general descriptor is the same for all plugin types. The structure of the type-
specific descriptor varies among plugin types and is determined by the requirements of what the plugin
needs to do. The server plugin interface also enables plugins to expose status and system variables.
These variables become visible through the SHOW STATUS and SHOW VARIABLES statements and the
corresponding INFORMATION_SCHEMA tables.

For client-side plugins, the architecture is a bit different. Each plugin must have a descriptor, but there
is no division into separate general and type-specific descriptors. Instead, the descriptor begins with a
fixed set of members common to all client plugin types, and the common members are followed by any
additional members required to implement the specific plugin type.

You can write plugins in C or C++ (or another language that can use C calling conventions). Plugins
are loaded and unloaded dynamically, so your operating system must support dynamic loading and you
must have compiled the calling application dynamically (not statically). For server plugins, this means
that mysqld must be compiled dynamically.

Writing Plugins

3142

A server plugin contains code that becomes part of the running server, so when you write the plugin,
you are bound by any and all constraints that otherwise apply to writing server code. For example, you
may have problems if you attempt to use functions from the libstdc++ library. These constraints may
change in future versions of the server, so it is possible that server upgrades will require revisions to
plugins originally written for older servers. For information about these constraints, see Section 2.9.4,
“MySQL Source-Configuration Options”, and Section 2.9.5, “Dealing with Problems Compiling MySQL”.

Client plugin writers should avoid dependencies on what symbols the calling application has because
you cannot be sure what applications will use the plugin.

24.2.4.1 Overview of Plugin Writing

The following procedure provides an overview of the steps needed to create a plugin library. The next
sections provide additional details on setting plugin data structures and writing specific types of plugins.

1. In the plugin source file, include the header files that the plugin library needs. The plugin.h file is
required, and the library might require other files as well. For example:

#include <stdlib.h>
#include <ctype.h>
#include <mysql/plugin.h>

2. Set up the descriptor information for the plugin library file. For server plugins, write the library
descriptor, which must contain the general plugin descriptor for each server plugin in the file. For
more information, see Server Plugin Library and Plugin Descriptors. In addition, set up the type-
specific descriptor for each server plugin in the library. Each plugin's general descriptor points to its
type-specific descriptor.

For client plugins, write the client descriptor. For more information, see Client Plugin Descriptors.

3. Write the plugin interface functions for each plugin. For example, each plugin's general plugin
descriptor points to the initialization and deinitialization functions that the server should invoke when
it loads and unloads the plugin. The plugin's type-specific description may also point to interface
functions.

4. For server plugins, set up the status and system variables, if there are any.

5. Compile the plugin library as a shared library and install it in the plugin directory. For more
information, see Section 24.2.4.3, “Compiling and Installing Plugin Libraries”.

6. For server plugins, register the plugin with the server. For more information, see Section 5.1.8.1,
“Installing and Uninstalling Plugins”.

7. Test the plugin to verify that it works properly.

24.2.4.2 Plugin Data Structures

A plugin library file includes descriptor information to indicate what plugins it contains.

If the plugin library contains any server plugins, it must include the following descriptor information:

• A library descriptor indicates the general server plugin API version number used by the library and
contains a general plugin descriptor for each server plugin in the library. To provide the framework
for this descriptor, invoke two macros from the plugin.h header file:

mysql_declare_plugin(name)
 ... one or more server plugin descriptors here ...
mysql_declare_plugin_end;

The macros expand to provide a declaration for the API version automatically. You must provide the
plugin descriptors.

Writing Plugins

3143

• Within the library descriptor, each general server plugin is described by a st_mysql_plugin
structure. This plugin descriptor structure contains information that is common to every type of server
plugin: A value that indicates the plugin type; the plugin name, author, description, and license type;
pointers to the initialization and deinitialization functions that the server invokes when it loads and
unloads the plugin, and pointers to any status or system variables the plugin implements.

• Each general server plugin descriptor within the library descriptor also contains a pointer to a type-
specific plugin descriptor. The structure of the type-specific descriptors varies from one plugin type to
another because each type of plugin can have its own API. A type-specific plugin descriptor contains
a type-specific API version number and pointers to the functions that are needed to implement that
plugin type. For example, a full-text parser plugin has initialization and deinitialization functions, and
a main parsing function. The server invokes these functions when it uses the plugin to parse text.

The plugin library also contains the interface functions that are referenced by the general and type-
specific descriptors for each plugin in the library.

If the plugin library contains a client plugin, it must include a descriptor for the plugin. The descriptor
begins with a fixed set of members common to all client plugins, followed by any members specific to
the plugin type. To provide the descriptor framework, invoke two macros from the client_plugin.h
header file:

mysql_declare_client_plugin(plugin_type)
 ... members common to all client plugins ...
 ... type-specific extra members ...
mysql_end_client_plugin;

The plugin library also contains any interface functions referenced by the client descriptor.

The mysql_declare_plugin() and mysql_declare_client_plugin() macros differ somewhat
in how they can be invoked, which has implications for the contents of plugin libraries. The following
guidelines summarize the rules:

• mysql_declare_plugin() and mysql_declare_client_plugin() can both be used in
the same source file, which means that a plugin library can contain both server and client plugins.
However, each of mysql_declare_plugin() and mysql_declare_client_plugin() can be
used at most once.

• mysql_declare_plugin() permits multiple server plugin declarations, so a plugin library can
contain multiple server plugins.

• mysql_declare_client_plugin() permits only a single client plugin declaration. To create
multiple client plugins, separate plugin libraries must be used.

When a client program looks for a client plugin that is in a plugin library and not built into
libmysqlclient, it looks for a file with a base name that is the same as the plugin name. For
example, if a program needs to use a client authentication plugin named auth_xxx on a system that
uses .so as the library suffix, it looks in the file named auth_xxx.so. (On OS X, the program looks
first for auth_xxx.dylib, then for auth_xxx.so.) For this reason, if a plugin library contains a client
plugin, the library must have the same base name as that plugin.

The same is not true for a library that contains server plugins. The --plugin-load option and the
INSTALL PLUGIN statement provide the library file name explicitly, so there need be no explicit
relationship between the library name and the name of any server plugins it contains.

Server Plugin Library and Plugin Descriptors

Every plugin library that contains server plugins must include a library descriptor that contains the
general plugin descriptor for each server plugin in the file. This section discusses how to write the
library and general descriptors for server plugins.

The library descriptor must define two symbols:

Writing Plugins

3144

• _mysql_plugin_interface_version_ specifies the version number of the general plugin
framework. This is given by the MYSQL_PLUGIN_INTERFACE_VERSION symbol, which is defined in
the plugin.h file.

• _mysql_plugin_declarations_ defines an array of plugin declarations, terminated by a
declaration with all members set to 0. Each declaration is an instance of the st_mysql_plugin
structure (also defined in plugin.h). There must be one of these for each server plugin in the
library.

If the server does not find those two symbols in a library, it does not accept it as a legal plugin library
and rejects it with an error. This prevents use of a library for plugin purposes unless it was built
specifically as a plugin library.

The conventional way to define the two required symbols is by using the mysql_declare_plugin()
and mysql_declare_plugin_end macros from the plugin.h file:

mysql_declare_plugin(name)
 ... one or more server plugin descriptors here ...
mysql_declare_plugin_end;

Each server plugin must have a general descriptor that provides information to the server plugin API.
The general descriptor has the same structure for all plugin types. The st_mysql_plugin structure in
the plugin.h file defines this descriptor:

struct st_mysql_plugin
{
 int type; /* the plugin type (a MYSQL_XXX_PLUGIN value) */
 void *info; /* pointer to type-specific plugin descriptor */
 const char *name; /* plugin name */
 const char *author; /* plugin author (for I_S.PLUGINS) */
 const char *descr; /* general descriptive text (for I_S.PLUGINS) */
 int license; /* the plugin license (PLUGIN_LICENSE_XXX) */
 int (*init)(void *); /* the function to invoke when plugin is loaded */
 int (*deinit)(void *);/* the function to invoke when plugin is unloaded */
 unsigned int version; /* plugin version (for I_S.PLUGINS) */
 struct st_mysql_show_var *status_vars;
 struct st_mysql_sys_var **system_vars;
 void * __reserved1; /* reserved for dependency checking */
 unsigned long flags; /* flags for plugin */
};

The st_mysql_plugin descriptor structure members are used as follows. char * members should
be specified as null-terminated strings.

• type: The plugin type. This must be one of the plugin-type values from plugin.h:

/*
 The allowable types of plugins
*/
#define MYSQL_UDF_PLUGIN 0 /* User-defined function */
#define MYSQL_STORAGE_ENGINE_PLUGIN 1 /* Storage Engine */
#define MYSQL_FTPARSER_PLUGIN 2 /* Full-text parser plugin */
#define MYSQL_DAEMON_PLUGIN 3 /* The daemon/raw plugin type */
#define MYSQL_INFORMATION_SCHEMA_PLUGIN 4 /* The I_S plugin type */
#define MYSQL_AUDIT_PLUGIN 5 /* The Audit plugin type */
#define MYSQL_REPLICATION_PLUGIN 6 /* The replication plugin type */
#define MYSQL_AUTHENTICATION_PLUGIN 7 /* The authentication plugin type */
...

For example, for a full-text parser plugin, the type value is MYSQL_FTPARSER_PLUGIN.

• info: A pointer to the type-specific descriptor for the plugin. This descriptor's structure depends on
the particular type of plugin, unlike that of the general plugin descriptor structure. For version-control
purposes, the first member of the type-specific descriptor for every plugin type is expected to be the
interface version for the type. This enables the server to check the type-specific version for every

Writing Plugins

3145

plugin no matter its type. Following the version number, the descriptor includes any other members
needed, such as callback functions and other information needed by the server to invoke the plugin
properly. Later sections on writing particular types of server plugins describe the structure of their
type-specific descriptors.

• name: A string that gives the plugin name. This is the name that will be listed in the mysql.plugin
table and by which you refer to the plugin in SQL statements such as INSTALL PLUGIN and
UNINSTALL PLUGIN, or with the --plugin-load option. The name is also visible in the
INFORMATION_SCHEMA.PLUGINS table or the output from SHOW PLUGINS.

The plugin name should not begin with the name of any server option. If it does, the server will fail
to initialize it. For example, the server has a --socket option, so you should not use a plugin name
such as socket, socket_plugin, and so forth.

• author: A string naming the plugin author. This can be whatever you like.

• desc: A string that provides a general description of the plugin. This can be whatever you like.

• license: The plugin license type. The value can be one of PLUGIN_LICENSE_PROPRIETARY,
PLUGIN_LICENSE_GPL, or PLUGIN_LICENSE_BSD.

• init: A once-only initialization function, or NULL if there is no such function. The server executes
this function when it loads the plugin, which happens for INSTALL PLUGIN or, for plugins listed
in the mysql.plugin table, at server startup. The function takes one argument that points to the
internal structure used to identify the plugin. It returns zero for success and nonzero for failure.

• deinit: A once-only deinitialization function, or NULL if there is no such function. The server
executes this function when it unloads the plugin, which happens for UNINSTALL PLUGIN or, for
plugins listed in the mysql.plugin table, at server shutdown. The function takes one argument that
points to the internal structure used to identify the plugin It returns zero for success and nonzero for
failure.

• version: The plugin version number. When the plugin is installed, this value can be retrieved from
the INFORMATION_SCHEMA.PLUGINS table. The value includes major and minor numbers. If you
write the value as a hex constant, the format is 0xMMNN, where MM and NN are the major and minor
numbers, respectively. For example, 0x0302 represents version 3.2.

• status_vars: A pointer to a structure for status variables associated with the plugin, or NULL if
there are no such variables. When the plugin is installed, these variables are displayed in the output
of the SHOW STATUS statement.

The status_vars member, if not NULL, points to an array of st_mysql_show_var structures that
describe status variables. See Server Plugin Status and System Variables.

• system_vars: A pointer to a structure for system variables associated with the plugin, or NULL
if there are no such variables. These options and system variables can be used to help initialize
variables within the plugin.

The system_vars member, if not NULL, points to an array of st_mysql_sys_var structures that
describe system variables. See Server Plugin Status and System Variables.

• __reserved1: A placeholder for the future. It should be set to NULL.

• flags: Plugin flags. Individual bits correspond to different flags. The value should be set to the OR
of the applicable flags. These flags are available:

#define PLUGIN_OPT_NO_INSTALL 1UL /* Not dynamically loadable */
#define PLUGIN_OPT_NO_UNINSTALL 2UL /* Not dynamically unloadable */

PLUGIN_OPT_NO_INSTALL indicates that the plugin cannot be loaded at runtime with the INSTALL
PLUGIN statement. This is appropriate for plugins that must be loaded at server startup with the --

Writing Plugins

3146

plugin-load option. PLUGIN_OPT_NO_UNINSTALL indicates that the plugin cannot be unloaded
at runtime with the UNINSTALL PLUGIN statement.

The server invokes the init and deinit functions in the general plugin descriptor only when loading
and unloading the plugin. They have nothing to do with use of the plugin such as happens when an
SQL statement causes the plugin to be invoked.

For example, the descriptor information for a library that contains a single full-text parser plugin named
simple_parser looks like this:

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 "simple_parser", /* name */
 "Oracle Corporation", /* author */
 "Simple Full-Text Parser", /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

For a full-text parser plugin, the type must be MYSQL_FTPARSER_PLUGIN. This is the value that
identifies the plugin as being legal for use in a WITH PARSER clause when creating a FULLTEXT index.
(No other plugin type is legal for this clause.)

plugin.h defines the mysql_declare_plugin() and mysql_declare_plugin_end macros like
this:

#ifndef MYSQL_DYNAMIC_PLUGIN
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
MYSQL_PLUGIN_EXPORT int VERSION= MYSQL_PLUGIN_INTERFACE_VERSION; \
MYSQL_PLUGIN_EXPORT int PSIZE= sizeof(struct st_mysql_plugin); \
MYSQL_PLUGIN_EXPORT struct st_mysql_plugin DECLS[]= {
#else
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
MYSQL_PLUGIN_EXPORT int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION; \
MYSQL_PLUGIN_EXPORT int _mysql_sizeof_struct_st_plugin_= sizeof(struct st_mysql_plugin); \
MYSQL_PLUGIN_EXPORT struct st_mysql_plugin _mysql_plugin_declarations_[]= {
#endif

#define mysql_declare_plugin(NAME) \
__MYSQL_DECLARE_PLUGIN(NAME, \
 builtin_ ## NAME ## _plugin_interface_version, \
 builtin_ ## NAME ## _sizeof_struct_st_plugin, \
 builtin_ ## NAME ## _plugin)

#define mysql_declare_plugin_end ,{0,0,0,0,0,0,0,0,0,0,0,0,0}}

Note

Those declarations define the _mysql_plugin_interface_version_
symbol only if the MYSQL_DYNAMIC_PLUGIN symbol is defined. This means
that -DMYSQL_DYNAMIC_PLUGIN must be provided as part of the compilation
command to build the plugin as a shared library.

When the macros are used as just shown, they expand to the following code, which
defines both of the required symbols (_mysql_plugin_interface_version_ and
_mysql_plugin_declarations_):

Writing Plugins

3147

int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION;
int _mysql_sizeof_struct_st_plugin_= sizeof(struct st_mysql_plugin);
struct st_mysql_plugin _mysql_plugin_declarations_[]= {
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 "simple_parser", /* name */
 "Oracle Corporation", /* author */
 "Simple Full-Text Parser", /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
 ,{0,0,0,0,0,0,0,0,0,0,0,0}}
};

The preceding example declares a single plugin in the general descriptor, but it is possible to declare
multiple plugins. List the declarations one after the other between mysql_declare_plugin() and
mysql_declare_plugin_end, separated by commas.

MySQL server plugins can be written in C or C++ (or another language that can use C calling
conventions). If you write a C++ plugin, one C++ feature that you should not use is nonconstant
variables to initialize global structures. Members of structures such as the st_mysql_plugin
structure should be initialized only with constant variables. The simple_parser descriptor shown
earlier is permissible in a C++ plugin because it satisfies that requirement:

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 "simple_parser", /* name */
 "Oracle Corporation", /* author */
 "Simple Full-Text Parser", /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

Here is another valid way to write the general descriptor. It uses constant variables to indicate the
plugin name, author, and description:

const char *simple_parser_name = "simple_parser";
const char *simple_parser_author = "Oracle Corporation";
const char *simple_parser_description = "Simple Full-Text Parser";

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 simple_parser_name, /* name */
 simple_parser_author, /* author */
 simple_parser_description, /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */

Writing Plugins

3148

 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

However, the following general descriptor is invalid. It uses structure members to indicate the plugin
name, author, and description, but structures are not considered constant initializers in C++:

typedef struct
{
 const char *name;
 const char *author;
 const char *description;
} plugin_info;

plugin_info parser_info = {
 "simple_parser",
 "Oracle Corporation",
 "Simple Full-Text Parser"
};

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 parser_info.name, /* name */
 parser_info.author, /* author */
 parser_info.description, /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

Server Plugin Status and System Variables

The server plugin interface enables plugins to expose status and system variables using the
status_vars and system_vars members of the general plugin descriptor.

The status_vars member of the general plugin descriptor, if not 0, points to an array of
st_mysql_show_var structures, each of which describes one status variable, followed by a structure
with all members set to 0. The st_mysql_show_var structure has this definition:

struct st_mysql_show_var {
 const char *name;
 char *value;
 enum enum_mysql_show_type type;
};

When the plugin is installed, the plugin name and the name value are joined with an underscore to form
the name displayed by SHOW STATUS.

The following table shows the permissible status variable type values and what the corresponding
variable should be.

Table 24.1 Server Plugin Status Variable Types

Variable Type Meaning

SHOW_BOOL Pointer to a boolean variable

Writing Plugins

3149

Variable Type Meaning

SHOW_INT Pointer to an integer variable

SHOW_LONG Pointer to a long integer variable

SHOW_LONGLONG Pointer to a longlong integer variable

SHOW_CHAR A string

SHOW_CHAR_PTR Pointer to a string

SHOW_ARRAY Pointer to another st_mysql_show_var array

SHOW_FUNC Pointer to a function

SHOW_DOUBLE Pointer to a double

For the SHOW_FUNC type, the function is called and fills in its out parameter, which then provides
information about the variable to be displayed. The function has this signature:

#define SHOW_VAR_FUNC_BUFF_SIZE 1024

typedef int (*mysql_show_var_func) (void *thd,
 struct st_mysql_show_var *out,
 char *buf);

The system_vars member, if not 0, points to an array of st_mysql_sys_var structures, each of
which describes one system variable (which can also be set from the command-line or configuration
file), followed by a structure with all members set to 0. The st_mysql_sys_var structure is defined as
follows:

struct st_mysql_sys_var {
 int flags;
 const char *name, *comment;
 int (*check)(THD*, struct st_mysql_sys_var *, void*, st_mysql_value*);
 void (*update)(THD*, struct st_mysql_sys_var *, void*, const void*);
};

Additional fields are append as required depending upon the flags.

For convenience, a number of macros are defined that make creating new system variables within a
plugin much simpler.

Throughout the macros, the following fields are available:

• name: An unquoted identifier for the system variable.

• varname: The identifier for the static variable. Where not available, it is the same as the name field.

• opt: Additional use flags for the system variable. The following table shows the permissible flags.

Table 24.2 Server Plugin System Variable Flags

Flag Value Description

PLUGIN_VAR_READONLYThe system variable is read only

PLUGIN_VAR_NOSYSVARThe system variable is not user visible at runtime

PLUGIN_VAR_NOCMDOPTThe system variable is not configurable from the command line

PLUGIN_VAR_NOCMDARGNo argument is required at the command line (typically used for boolean
variables)

PLUGIN_VAR_RQCMDARGAn argument is required at the command line (this is the default)

PLUGIN_VAR_OPCMDARGAn argument is optional at the command line

PLUGIN_VAR_MEMALLOCUsed for string variables; indicates that memory is to be allocated for
storage of the string

Writing Plugins

3150

• comment: A descriptive comment to be displayed in the server help message. NULL if this variable is
to be hidden.

• check: The check function, NULL for default.

• update: The update function, NULL for default.

• default: The variable default value.

• minimum: The variable minimum value.

• maximum: The variable maximum value.

• blocksize: The variable block size. When the value is set, it is rounded to the nearest multiple of
blocksize.

A system variable may be accessed either by using the static variable directly or by using the
SYSVAR()accessor macro. The SYSVAR() macro is provided for completeness. Usually it should be
used only when the code cannot directly access the underlying variable.

For example:

static int my_foo;
static MYSQL_SYSVAR_INT(foo_var, my_foo,
 PLUGIN_VAR_RQCMDARG, "foo comment",
 NULL, NULL, 0, 0, INT_MAX, 0);
 ...
 SYSVAR(foo_var)= value;
 value= SYSVAR(foo_var);
 my_foo= value;
 value= my_foo;

Session variables may be accessed only through the THDVAR() accessor macro. For example:

static MYSQL_THDVAR_BOOL(some_flag,
 PLUGIN_VAR_NOCMDARG, "flag comment",
 NULL, NULL, FALSE);
 ...
 if (THDVAR(thd, some_flag))
 {
 do_something();
 THDVAR(thd, some_flag)= FALSE;
 }

All global and session system variables must be published to mysqld before use. This is done by
constructing a NULL-terminated array of the variables and linking to it in the plugin public interface. For
example:

static struct st_mysql_sys_var *my_plugin_vars[]= {
 MYSQL_SYSVAR(foo_var),
 MYSQL_SYSVAR(some_flag),
 NULL
};
mysql_declare_plugin(fooplug)
{
 MYSQL_..._PLUGIN,
 &plugin_data,
 "fooplug",
 "foo author",
 "This does foo!",
 PLUGIN_LICENSE_GPL,
 foo_init,
 foo_fini,
 0x0001,
 NULL,
 my_plugin_vars,

Writing Plugins

3151

 NULL,
 0
}
mysql_declare_plugin_end;

The following convenience macros enable you to declare different types of system variables:

• Boolean system variables of type my_bool, which is a 1-byte boolean. (0 = FALSE, 1 = TRUE)

MYSQL_THDVAR_BOOL(name, opt, comment, check, update, default)
MYSQL_SYSVAR_BOOL(name, varname, opt, comment, check, update, default)

• String system variables of type char*, which is a pointer to a null-terminated string.

MYSQL_THDVAR_STR(name, opt, comment, check, update, default)
MYSQL_SYSVAR_STR(name, varname, opt, comment, check, update, default)

• Integer system variables, of which there are several varieties.

• An int system variable, which is typically a 4-byte signed word.

MYSQL_THDVAR_INT(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_INT(name, varname, opt, comment, check, update, default,
 minimum, maximum, blocksize)

• An unsigned int system variable, which is typically a 4-byte unsigned word.

MYSQL_THDVAR_UINT(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_UINT(name, varname, opt, comment, check, update, default,
 minimum, maximum, blocksize)

• A long system variable, which is typically either a 4- or 8-byte signed word.

MYSQL_THDVAR_LONG(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_LONG(name, varname, opt, comment, check, update, default,
 minimum, maximum, blocksize)

• An unsigned long system variable, which is typically either a 4- or 8-byte unsigned word.

MYSQL_THDVAR_ULONG(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_ULONG(name, varname, opt, comment, check, update, default,
 minimum, maximum, blocksize)

• A long long system variable, which is typically an 8-byte signed word.

MYSQL_THDVAR_LONGLONG(name, opt, comment, check, update,
 default, minimum, maximum, blocksize)
MYSQL_SYSVAR_LONGLONG(name, varname, opt, comment, check, update,
 default, minimum, maximum, blocksize)

• An unsigned long long system variable, which is typically an 8-byte unsigned word.

MYSQL_THDVAR_ULONGLONG(name, opt, comment, check, update,
 default, minimum, maximum, blocksize)
MYSQL_SYSVAR_ULONGLONG(name, varname, opt, comment, check, update,
 default, minimum, maximum, blocksize)

• A double system variable, which is typically an 8-byte signed word. These accessor macros were
added in MySQL 5.7.2.

Writing Plugins

3152

MYSQL_THDVAR_DOUBLE(name, opt, comment, check, update,
 default, minimum, maximum, blocksize)
MYSQL_SYSVAR_DOUBLE(name, varname, opt, comment, check, update,
 default, minimum, maximum, blocksize)

• An unsigned long system variable, which is typically either a 4- or 8-byte unsigned word. The
range of possible values is an ordinal of the number of elements in the typelib, starting from 0.

MYSQL_THDVAR_ENUM(name, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR_ENUM(name, varname, opt, comment, check, update,
 default, typelib)

• An unsigned long long system variable, which is typically an 8-byte unsigned word. Each bit
represents an element in the typelib.

MYSQL_THDVAR_SET(name, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR_SET(name, varname, opt, comment, check, update,
 default, typelib)

Internally, all mutable and plugin system variables are stored in a HASH structure.

Display of the server command-line help text is handled by compiling a DYNAMIC_ARRAY of all
variables relevant to command-line options, sorting them, and then iterating through them to display
each option.

When a command-line option has been handled, it is then removed from the argv by the
handle_option() function (my_getopt.c); in effect, it is consumed.

The server processes command-line options during the plugin installation process, immediately after
the plugin has been successfully loaded but before the plugin initialization function has been called

Plugins loaded at runtime do not benefit from any configuration options and must have usable defaults.
Once they are installed, they are loaded at mysqld initialization time and configuration options can be
set at the command line or within my.cnf.

Plugins should consider the thd parameter to be read only.

Client Plugin Descriptors

Each client plugin must have a descriptor that provides information to the client plugin API. The
descriptor structure begins with a fixed set of members common to all client plugins, followed by any
members specific to the plugin type.

The st_mysql_client_plugin structure in the client_plugin.h file defines a “generic”
descriptor that contains the common members:

struct st_mysql_client_plugin
{
 int type;
 unsigned int interface_version;
 const char *name;
 const char *author;
 const char *desc;
 unsigned int version[3];
 const char *license;
 void *mysql_api;
 int (*init)(char *, size_t, int, va_list);
 int (*deinit)();
 int (*options)(const char *option, const void *);
};

The common st_mysql_client_plugin descriptor structure members are used as follows. char *
members should be specified as null-terminated strings.

Writing Plugins

3153

• type: The plugin type. This must be one of the plugin-type values from client_plugin.h, such as
MYSQL_CLIENT_AUTHENTICATION_PLUGIN.

• interface_version: The plugin interface version. For example, this is
MYSQL_CLIENT_AUTHENTICATION_PLUGIN_INTERFACE_VERSION for an authentication plugin.

• name: A string that gives the plugin name. This is the name by which you refer to the plugin when
you call mysql_options() with the MYSQL_DEFAULT_AUTH option or specify the --default-
auth option to a MySQL client program.

• author: A string naming the plugin author. This can be whatever you like.

• desc: A string that provides a general description of the plugin. This can be whatever you like.

• version: The plugin version as an array of three integers indicating the major, minor, and teeny
versions. For example, {1,2,3} indicates version 1.2.3.

• license: A string that specifies the license type.

• mysql_api: For internal use. Specify it as NULL in the plugin descriptor.

• init: A once-only initialization function, or NULL if there is no such function. The client library
executes this function when it loads the plugin. The function returns zero for success and nonzero for
failure.

The init function uses its first two arguments to return an error message if an error occurs. The first
argument is a pointer to a char buffer, and the second argument indicates the buffer length. Any
message returned by the init function must be null-terminated, so the maximum message length is
the buffer length minus one. The next arguments are passed to mysql_load_plugin(). The first
indicates how many more arguments there are (0 if none), followed by any remaining arguments.

• deinit: A once-only deinitialization function, or NULL if there is no such function. The client library
executes this function when it unloads the plugin. The function takes no arguments. It returns zero
for success and nonzero for failure.

• options: A function for handling options passed to the plugin, or NULL if there is no such function.
The function takes two arguments representing the option name and a pointer to its value. The
function returns zero for success and nonzero for failure.

For a given client plugin type, the common descriptor members may be followed by
additional members necessary to implement plugins of that type. For example, the
st_mysql_client_plugin_AUTHENTICATION structure for authentication plugins has a function at
the end that the client library calls to perform authentication.

To declare a plugin, use the mysql_declare_client_plugin() and
mysql_end_client_plugin macros:

mysql_declare_client_plugin(plugin_type)
 ... members common to all client plugins ...
 ... type-specific extra members ...
mysql_end_client_plugin;

Do not specify the type or interface_version member explicitly. The
mysql_declare_client_plugin() macro uses the plugin_type argument to generate their
values automatically. For example, declare an authentication client plugin like this:

mysql_declare_client_plugin(AUTHENTICATION)
 "my_auth_plugin",
 "Author Name",
 "My Client Authentication Plugin",
 {1,0,0},

Writing Plugins

3154

 "GPL",
 NULL,
 my_auth_init,
 my_auth_deinit,
 my_auth_options,
 my_auth_main
mysql_end_client_plugin;

This declaration uses the AUTHENTICATION argument to set the type and
interface_version members to MYSQL_CLIENT_AUTHENTICATION_PLUGIN and
MYSQL_CLIENT_AUTHENTICATION_PLUGIN_INTERFACE_VERSION.

Depending on the plugin type, the descriptor may have other members following the common
members. For example, for an authentication plugin, there is a function (my_auth_main() in the
descriptor just shown) that handles communication with the server. See Section 24.2.4.9, “Writing
Authentication Plugins”.

Normally, a client program that supports the use of authentication plugins causes a plugin to be loaded
by calling mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable
users to override the default values.

Should a client program require lower-level plugin management, the client library contains functions
that take an st_mysql_client_plugin argument. See Section 23.8.14, “C API Client Plugin
Functions”.

24.2.4.3 Compiling and Installing Plugin Libraries

After your plugin is written, you must compile it and install it. The procedure for compiling shared
objects varies from system to system. If you build your library using CMake, it should be able to
generate the correct compilation commands for your system. If the library is named somepluglib, you
should end up with a shared object file that has a name something like somepluglib.so. (The .so
file name suffix might differ on your system.)

To use CMake, you'll need to set up the configuration files to enable the plugin to be compiled and
installed. Use the plugin examples under the plugin directory of a MySQL source distribution as a
guide.

Create CMakeLists.txt, which should look something like this:

MYSQL_ADD_PLUGIN(somepluglib somepluglib.c
 MODULE_ONLY MODULE_OUTPUT_NAME "somepluglib")

When CMake generates the Makefile, it should take care of passing to the compilation command
the -DMYSQL_DYNAMIC_PLUGIN flag, and passing to the linker the -lmysqlservices flag, which
is needed to link in any functions from services provided through the plugin services interface. See
Section 24.3, “MySQL Services for Plugins”.

Run CMake, then run make:

shell> cmake .

Writing Plugins

3155

shell> make

If you need to specify configuration options to CMake, see Section 2.9.4, “MySQL Source-Configuration
Options”, for a list. For example, you might want to specify CMAKE_INSTALL_PREFIX to indicate the
MySQL base directory under which the plugin should be installed. You can see what value to use for
this option with SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'basedir';
+---------------+------------------+
| Variable_name | Value |
+---------------+------------------+
| base | /usr/local/mysql |
+---------------+------------------+

The location of the plugin directory where you should install the library is given by the plugin_dir
system variable. For example:

mysql> SHOW VARIABLES LIKE 'plugin_dir';
+---------------+-----------------------------------+
| Variable_name | Value |
+---------------+-----------------------------------+
| plugin_dir | /usr/local/mysql/lib/mysql/plugin |
+---------------+-----------------------------------+

To install the plugin library, use make:

shell> make install

Verify that make install installed the plugin library in the proper directory. After installing it, make
sure that the library permissions permit it to be executed by the server.

24.2.4.4 Writing Full-Text Parser Plugins

MySQL supports server-side full-text parser plugins with MyISAM and InnoDB. Full-text parser plugins
are supported with InnoDB as of MySQL 5.7.3. For introductory information about full-text parser
plugins, see Section 24.2.3.2, “Full-Text Parser Plugins”.

A full-text parser plugin can be used to replace or modify the built-in full-text parser. This section
describes how to write a full-text parser plugin named simple_parser. This plugin performs parsing
based on simpler rules than those used by the MySQL built-in full-text parser: Words are nonempty
runs of whitespace characters.

The instructions use the source code in the plugin/fulltext directory of MySQL source
distributions, so change location into that directory. The following procedure describes how the plugin
library is created:

1. To write a full-text parser plugin, include the following header file in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin.h>

plugin.h defines the MYSQL_FTPARSER_PLUGIN server plugin type and the data structures
needed to declare the plugin.

2. Set up the library descriptor for the plugin library file.

This descriptor contains the general plugin descriptor for the server plugin. For a full-text parser
plugin, the type must be MYSQL_FTPARSER_PLUGIN. This is the value that identifies the plugin as

Writing Plugins

3156

being legal for use in a WITH PARSER clause when creating a FULLTEXT index. (No other plugin
type is legal for this clause.)

For example, the library descriptor for a library that contains a single full-text parser plugin named
simple_parser looks like this:

mysql_declare_plugin(ftexample)
{
 MYSQL_FTPARSER_PLUGIN, /* type */
 &simple_parser_descriptor, /* descriptor */
 "simple_parser", /* name */
 "Oracle Corporation", /* author */
 "Simple Full-Text Parser", /* description */
 PLUGIN_LICENSE_GPL, /* plugin license */
 simple_parser_plugin_init, /* init function (when loaded) */
 simple_parser_plugin_deinit,/* deinit function (when unloaded) */
 0x0001, /* version */
 simple_status, /* status variables */
 simple_system_variables, /* system variables */
 NULL,
 0
}
mysql_declare_plugin_end;

The name member (simple_parser) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed
by SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

For more information, see Server Plugin Library and Plugin Descriptors.

3. Set up the type-specific plugin descriptor.

Each general plugin descriptor in the library descriptor points to a type-specific descriptor. For a full-
text parser plugin, the type-specific descriptor is an instance of the st_mysql_ftparser structure
in the plugin.h file:

struct st_mysql_ftparser
{
 int interface_version;
 int (*parse)(MYSQL_FTPARSER_PARAM *param);
 int (*init)(MYSQL_FTPARSER_PARAM *param);
 int (*deinit)(MYSQL_FTPARSER_PARAM *param);
};

As shown by the structure definition, the descriptor has an interface version number and contains
pointers to three functions.

The interface version number is specified using a symbol, which is in the form:
MYSQL_xxx_INTERFACE_VERSION. For full-text parser plugins, the symbol is
“MYSQL_FTPARSER_INTERFACE_VERSION”. In the source code, you will find the actual interface
version number for the full-text parser plugin defined in include/mysql/plugin_ftparser.h.
With the introduction of full-text parser plugin support for InnoDB, the interface version number has
been incremented in MySQL 5.7.3 from 0x0100 to 0x0101.

The init and deinit members should point to a function or be set to 0 if the function is not
needed. The parse member must point to the function that performs the parsing.

In the simple_parser declaration, that descriptor is indicated by
&simple_parser_descriptor. The descriptor specifies the version number for the full-text
plugin interface (as given by MYSQL_FTPARSER_INTERFACE_VERSION), and the plugin's parsing,
initialization, and deinitialization functions:

static struct st_mysql_ftparser simple_parser_descriptor=

Writing Plugins

3157

{
 MYSQL_FTPARSER_INTERFACE_VERSION, /* interface version */
 simple_parser_parse, /* parsing function */
 simple_parser_init, /* parser init function */
 simple_parser_deinit /* parser deinit function */
};

A full-text parser plugin is used in two different contexts, indexing and searching. In both contexts,
the server calls the initialization and deinitialization functions at the beginning and end of
processing each SQL statement that causes the plugin to be invoked. However, during statement
processing, the server calls the main parsing function in context-specific fashion:

• For indexing, the server calls the parser for each column value to be indexed.

• For searching, the server calls the parser to parse the search string. The parser might also be
called for rows processed by the statement. In natural language mode, there is no need for the
server to call the parser. For boolean mode phrase searches or natural language searches with
query expansion, the parser is used to parse column values for information that is not in the
index. Also, if a boolean mode search is done for a column that has no FULLTEXT index, the
built-in parser will be called. (Plugins are associated with specific indexes. If there is no index, no
plugin is used.)

The plugin declaration in the general plugin descriptor has init and deinit members that point
initialization and deinitialization functions, and so does the type-specific plugin descriptor to which
it points. However, these pairs of functions have different purposes and are invoked for different
reasons:

• For the plugin declaration in the general plugin descriptor, the initialization and deinitialization
functions are invoked when the plugin is loaded and unloaded.

• For the type-specific plugin descriptor, the initialization and deinitialization functions are invoked
per SQL statement for which the plugin is used.

Each interface function named in the plugin descriptor should return zero for success or nonzero
for failure, and each of them receives an argument that points to a MYSQL_FTPARSER_PARAM
structure containing the parsing context. The structure has this definition:

typedef struct st_mysql_ftparser_param
{
 int (*mysql_parse)(struct st_mysql_ftparser_param *,
 char *doc, int doc_len);
 int (*mysql_add_word)(struct st_mysql_ftparser_param *,
 char *word, int word_len,
 MYSQL_FTPARSER_BOOLEAN_INFO *boolean_info);
 void *ftparser_state;
 void *mysql_ftparam;
 struct charset_info_st *cs;
 char *doc;
 int length;
 int flags;
 enum enum_ftparser_mode mode;
} MYSQL_FTPARSER_PARAM;

The structure members are used as follows:

• mysql_parse: A pointer to a callback function that invokes the server's built-in parser. Use
this callback when the plugin acts as a front end to the built-in parser. That is, when the plugin
parsing function is called, it should process the input to extract the text and pass the text to the
mysql_parse callback.

The first parameter for this callback function should be the param value itself:

Writing Plugins

3158

param->mysql_parse(param, ...);

A front end plugin can extract text and pass it all at once to the built-in parser, or it can extract
and pass text to the built-in parser a piece at a time. However, in this case, the built-in parser
treats the pieces of text as though there are implicit word breaks between them.

• mysql_add_word: A pointer to a callback function that adds a word to a full-text index or to the
list of search terms. Use this callback when the parser plugin replaces the built-in parser. That
is, when the plugin parsing function is called, it should parse the input into words and invoke the
mysql_add_word callback for each word.

The first parameter for this callback function should be the param value itself:

param->mysql_add_word(param, ...);

• ftparser_state: This is a generic pointer. The plugin can set it to point to information to be
used internally for its own purposes.

• mysql_ftparam: This is set by the server. It is passed as the first argument to the
mysql_parse or mysql_add_word callback.

• cs: A pointer to information about the character set of the text, or 0 if no information is available.

• doc: A pointer to the text to be parsed.

• length: The length of the text to be parsed, in bytes.

• flags: Parser flags. This is zero if there are no special flags. The only nonzero flag is
MYSQL_FTFLAGS_NEED_COPY, which means that mysql_add_word() must save a copy of
the word (that is, it cannot use a pointer to the word because the word is in a buffer that will be
overwritten.)

This flag might be set or reset by MySQL before calling the parser plugin, by the parser plugin
itself, or by the mysql_parse() function.

• mode: The parsing mode. This value will be one of the following constants:

• MYSQL_FTPARSER_SIMPLE_MODE: Parse in fast and simple mode, which is used for indexing
and for natural language queries. The parser should pass to the server only those words that
should be indexed. If the parser uses length limits or a stopword list to determine which words
to ignore, it should not pass such words to the server.

• MYSQL_FTPARSER_WITH_STOPWORDS: Parse in stopword mode. This is used in boolean
searches for phrase matching. The parser should pass all words to the server, even stopwords
or words that are outside any normal length limits.

• MYSQL_FTPARSER_FULL_BOOLEAN_INFO: Parse in boolean mode. This is used for parsing
boolean query strings. The parser should recognize not only words but also boolean-
mode operators and pass them to the server as tokens using the mysql_add_word
callback. To tell the server what kind of token is being passed, the plugin needs to fill in a
MYSQL_FTPARSER_BOOLEAN_INFO structure and pass a pointer to it.

Note

For MyISAM, the stopword list and ft_min_word_len and
ft_max_word_len are checked inside the tokenizer. For InnoDB,
the stopword list and equivalent word length variable settings
(innodb_ft_min_token_size and innodb_ft_max_token_size)
are checked outside of the tokenizer. As a result, InnoDB plugin parsers
do not need to check the stopword list, innodb_ft_min_token_size,

Writing Plugins

3159

or innodb_ft_max_token_size. Instead, it is recommended that all
words be returned to InnoDB. However, if you want to check stopwords
within your plugin parser, use MYSQL_FTPARSER_SIMPLE_MODE,
which is for full-text search index and natural language
search. For MYSQL_FTPARSER_WITH_STOPWORDS and
MYSQL_FTPARSER_FULL_BOOLEAN_INFO modes, it is recommended that
all words be returned to InnoDB including stopwords, in case of phrase
searches.

If the parser is called in boolean mode, the param->mode value will be
MYSQL_FTPARSER_FULL_BOOLEAN_INFO. The MYSQL_FTPARSER_BOOLEAN_INFO structure that
the parser uses for passing token information to the server looks like this:

typedef struct st_mysql_ftparser_boolean_info
{
 enum enum_ft_token_type type;
 int yesno;
 int weight_adjust;
 char wasign;
 char trunc;
 int position;
 /* These are parser state and must be removed. */
 char prev;
 char *quot;
} MYSQL_FTPARSER_BOOLEAN_INFO;

The parser should fill in the structure members as follows:

• type: The token type. The following table shows the permissible types.

Table 24.3 Full-Text Parser Token Types

Token Value Meaning

FT_TOKEN_EOF End of data

FT_TOKEN_WORD A regular word

FT_TOKEN_LEFT_PAREN The beginning of a group or subexpression

FT_TOKEN_RIGHT_PAREN The end of a group or subexpression

FT_TOKEN_STOPWORD A stopword

• yesno: Whether the word must be present for a match to occur. 0 means that the word is
optional but increases the match relevance if it is present. Values larger than 0 mean that the
word must be present. Values smaller than 0 mean that the word must not be present.

• weight_adjust: A weighting factor that determines how much a match for the word counts. It
can be used to increase or decrease the word's importance in relevance calculations. A value of
zero indicates no weight adjustment. Values greater than or less than zero mean higher or lower
weight, respectively. The examples at Section 12.9.2, “Boolean Full-Text Searches”, that use the
< and > operators illustrate how weighting works.

• wasign: The sign of the weighting factor. A negative value acts like the ~ boolean-search
operator, which causes the word's contribution to the relevance to be negative.

• trunc: Whether matching should be done as if the boolean-mode * truncation operator had
been given.

• position: Start position of the word in the document, in bytes. Used by InnoDB full-text search
(FTS). The position member is new as of MySQL 5.7.3. For existing plugins that are called in
boolean mode, support must be added for the position member.

Writing Plugins

3160

Plugins should not use the prev and quot members of the MYSQL_FTPARSER_BOOLEAN_INFO
structure.

Note

The plugin parser framework does not support:

• The @distance boolean operator.

• A leading plus sign (+) or minus sign (-) boolean operator followed by a
space and then a word ('+ apple' or '- apple'). The leading plus or
minus sign must be directly adjacent to the word, for example: '+apple'
or '-apple'.

For information about boolean full-text search operators, see Section 12.9.2,
“Boolean Full-Text Searches”.

4. Set up the plugin interface functions.

The general plugin descriptor in the library descriptor names the initialization and deinitialization
functions that the server should invoke when it loads and unloads the plugin. For simple_parser,
these functions do nothing but return zero to indicate that they succeeded:

static int simple_parser_plugin_init(void *arg __attribute__((unused)))
{
 return(0);
}

static int simple_parser_plugin_deinit(void *arg __attribute__((unused)))
{
 return(0);
}

Because those functions do not actually do anything, you could omit them and specify 0 for each of
them in the plugin declaration.

The type-specific plugin descriptor for simple_parser names the initialization, deinitialization,
and parsing functions that the server invokes when the plugin is used. For simple_parser, the
initialization and deinitialization functions do nothing:

static int simple_parser_init(MYSQL_FTPARSER_PARAM *param
 __attribute__((unused)))
{
 return(0);
}

static int simple_parser_deinit(MYSQL_FTPARSER_PARAM *param
 __attribute__((unused)))
{
 return(0);
}

Here too, because those functions do nothing, you could omit them and specify 0 for each of them
in the plugin descriptor.

The main parsing function, simple_parser_parse(), acts as a replacement for the built-in
full-text parser, so it needs to split text into words and pass each word to the server. The parsing
function's first argument is a pointer to a structure that contains the parsing context. This structure
has a doc member that points to the text to be parsed, and a length member that indicates how
long the text is. The simple parsing done by the plugin considers nonempty runs of whitespace
characters to be words, so it identifies words like this:

Writing Plugins

3161

static int simple_parser_parse(MYSQL_FTPARSER_PARAM *param)
{
 char *end, *start, *docend= param->doc + param->length;

 for (end= start= param->doc;; end++)
 {
 if (end == docend)
 {
 if (end > start)
 add_word(param, start, end - start);
 break;
 }
 else if (isspace(*end))
 {
 if (end > start)
 add_word(param, start, end - start);
 start= end + 1;
 }
 }
 return(0);
}

As the parser finds each word, it invokes a function add_word() to pass the word to the server.
add_word() is a helper function only; it is not part of the plugin interface. The parser passes the
parsing context pointer to add_word(), as well as a pointer to the word and a length value:

static void add_word(MYSQL_FTPARSER_PARAM *param, char *word, size_t len)
{
 MYSQL_FTPARSER_BOOLEAN_INFO bool_info=
 { FT_TOKEN_WORD, 0, 0, 0, 0, 0, ' ', 0 };

 param->mysql_add_word(param, word, len, &bool_info);
}

Note

Prior to MySQL 5.7.3, the sixth MYSQL_FTPARSER_BOOLEAN_INFO
member (just before the ' ' member) is not present.

For boolean-mode parsing, add_word() fills in the members of the bool_info structure as
described earlier in the discussion of the st_mysql_ftparser_boolean_info structure.

5. Set up the status variables. For the simple_parser plugin, the following status variable array sets
up one status variable with a value that is static text, and another with a value that is stored in a
long integer variable:

long number_of_calls= 0;

struct st_mysql_show_var simple_status[]=
{
 {"static", (char *)"just a static text", SHOW_CHAR},
 {"called", (char *)&number_of_calls, SHOW_LONG},
 {0,0,0}
};

When the plugin is installed, the plugin name and the name value are joined with an underscore to
form the name displayed by SHOW STATUS. For the array just shown, the resulting status variable
names are simple_parser_static and simple_parser_called. This convention means that
you can easily display the variables for a plugin using its name:

mysql> SHOW STATUS LIKE 'simple_parser%';
+----------------------+--------------------+
| Variable_name | Value |

Writing Plugins

3162

+----------------------+--------------------+
| simple_parser_static | just a static text |
| simple_parser_called | 0 |
+----------------------+--------------------+

6. To compile and install a plugin library object file, use the instructions in Section 24.2.4.3, “Compiling
and Installing Plugin Libraries”. To make the library file available for use, install it in the plugin
directory (the directory named by the plugin_dir system variable). For the simple_parser
plugin, it is compiled and installed when you build MySQL from source. It is also included in binary
distributions. The build process produces a shared object library with a name of mypluglib.so
(the .so suffix might differ depending on your platform).

7. To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement (changing the suffix as necessary):

mysql> INSTALL PLUGIN simple_parser SONAME 'mypluglib.so';

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

8. To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement.

9. Test the plugin to verify that it works properly.

Create a table that contains a string column and associate the parser plugin with a FULLTEXT index
on the column:

mysql> CREATE TABLE t (c VARCHAR(255),
 -> FULLTEXT (c) WITH PARSER simple_parser
 ->) ENGINE=MyISAM;
Query OK, 0 rows affected (0.01 sec)

Insert some text into the table and try some searches. These should verify that the parser plugin
treats all nonwhitespace characters as word characters:

mysql> INSERT INTO t VALUES
 -> ('latin1_general_cs is a case-sensitive collation'),
 -> ('I\'d like a case of oranges'),
 -> ('this is sensitive information'),
 -> ('another row'),
 -> ('yet another row');
Query OK, 5 rows affected (0.02 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT c FROM t;
+---+
| c |
+---+
| latin1_general_cs is a case-sensitive collation |
| I'd like a case of oranges |
| this is sensitive information |
| another row |
| yet another row |
+---+
5 rows in set (0.00 sec)

mysql> SELECT MATCH(c) AGAINST('case') FROM t;
+--------------------------+
| MATCH(c) AGAINST('case') |
+--------------------------+
| 0 |
| 1.2968142032623 |
| 0 |
| 0 |

Writing Plugins

3163

| 0 |
+--------------------------+
5 rows in set (0.00 sec)

mysql> SELECT MATCH(c) AGAINST('sensitive') FROM t;
+-------------------------------+
| MATCH(c) AGAINST('sensitive') |
+-------------------------------+
| 0 |
| 0 |
| 1.3253291845322 |
| 0 |
| 0 |
+-------------------------------+
5 rows in set (0.01 sec)

mysql> SELECT MATCH(c) AGAINST('case-sensitive') FROM t;
+------------------------------------+
| MATCH(c) AGAINST('case-sensitive') |
+------------------------------------+
| 1.3109166622162 |
| 0 |
| 0 |
| 0 |
| 0 |
+------------------------------------+
5 rows in set (0.01 sec)

mysql> SELECT MATCH(c) AGAINST('I\'d') FROM t;
+--------------------------+
| MATCH(c) AGAINST('I\'d') |
+--------------------------+
| 0 |
| 1.2968142032623 |
| 0 |
| 0 |
| 0 |
+--------------------------+
5 rows in set (0.01 sec)

Note how neither “case” nor “insensitive” match “case-insensitive” the way that they would for the
built-in parser.

24.2.4.5 Writing Daemon Plugins

A daemon plugin is a simple type of plugin used for code that should be run by the server but
that does not communicate with it. This section describes how to write a daemon server plugin,
using the example plugin found in the plugin/daemon_example directory of MySQL source
distributions. That directory contains the daemon_example.cc source file for a daemon plugin
named daemon_example that writes a heartbeat string at regular intervals to a file named mysql-
heartbeat.log in the data directory.

To write a daemon plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#include <mysql/plugin.h>

plugin.h defines the MYSQL_DAEMON_PLUGIN server plugin type and the data structures needed to
declare the plugin.

The daemon_example.cc file sets up the library descriptor as follows. The library descriptor includes
a single general server plugin descriptor.

mysql_declare_plugin(daemon_example)
{
 MYSQL_DAEMON_PLUGIN,
 &daemon_example_plugin,

Writing Plugins

3164

 "daemon_example",
 "Brian Aker",
 "Daemon example, creates a heartbeat beat file in mysql-heartbeat.log",
 PLUGIN_LICENSE_GPL,
 daemon_example_plugin_init, /* Plugin Init */
 daemon_example_plugin_deinit, /* Plugin Deinit */
 0x0100 /* 1.0 */,
 NULL, /* status variables */
 NULL, /* system variables */
 NULL, /* config options */
 0, /* flags */
}
mysql_declare_plugin_end;

The name member (daemon_example) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

The second member of the plugin descriptor, daemon_example_plugin, points to the type-specific
daemon plugin descriptor. This structure consists only of the type-specific API version number:

struct st_mysql_daemon daemon_example_plugin=
{ MYSQL_DAEMON_INTERFACE_VERSION };

The type-specific structure has no interface functions. There is no communication between the server
and the plugin, except that the server calls the initialization and deinitialization functions from the
general plugin descriptor to start and stop the plugin:

• daemon_example_plugin_init() opens the heartbeat file and spawns a thread that wakes up
periodically and writes the next message to the file.

• daemon_example_plugin_deinit() closes the file and performs other cleanup.

To compile and install a plugin library object file, use the instructions in Section 24.2.4.3, “Compiling
and Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the plugin_dir system variable). For the daemon_example plugin, it is
compiled and installed when you build MySQL from source. It is also included in binary distributions.
The build process produces a shared object library with a name of libdaemon_example.so (the .so
suffix might differ depending on your platform).

To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement (change the suffix as necessary):

mysql> INSTALL PLUGIN daemon_example SONAME 'libdaemon_example.so';

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement.

While the plugin is loaded, it writes a heartbeat string at regular intervals to a file named mysql-
heartbeat.log in the data directory. This file grows without limit, so after you have satistifed yourself
that the plugin operates correctly, unload it:

mysql> UNINSTALL PLUGIN daemon_example;

24.2.4.6 Writing INFORMATION_SCHEMA Plugins

This section describes how to write a server-side INFORMATION_SCHEMA table plugin. For example
code that implements such plugins, see the sql/sql_show.cc file of a MySQL source distribution.
You can also look at the example plugins found in the InnoDB source. See the handler/i_s.cc and
handler/ha_innodb.cc files within the InnoDB source tree (in the storage/innobase directory).

Writing Plugins

3165

To write an INFORMATION_SCHEMA table plugin, include the following header files in the plugin source
file. Other MySQL or general header files might also be needed, depending on the plugin capabilities
and requirements.

#include <sql_class.h>
#include <table.h>

These header files are located in the sql directory of MySQL source distributions. They contain C++
structures, so the source file for an INFORMATION_SCHEMA plugin must be compiled as C++ (not C)
code.

The source file for the example plugin developed here is named simple_i_s_table.cc. It creates a
simple INFORMATION_SCHEMA table named SIMPLE_I_S_TABLE that has two columns named NAME
and VALUE. The general descriptor for a plugin library that implements the table looks like this:

mysql_declare_plugin(simple_i_s_library)
{
 MYSQL_INFORMATION_SCHEMA_PLUGIN,
 &simple_table_info, /* type-specific descriptor */
 "SIMPLE_I_S_TABLE", /* table name */
 "Author Name", /* author */
 "Simple INFORMATION_SCHEMA table", /* description */
 PLUGIN_LICENSE_GPL, /* license type */
 simple_table_init, /* init function */
 NULL,
 0x0100, /* version = 1.0 */
 NULL, /* no status variables */
 NULL, /* no system variables */
 NULL, /* no reserved information */
 0 /* no flags */
}
mysql_declare_plugin_end;

The name member (SIMPLE_I_S_TABLE) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

The simple_table_info member of the general descriptor points to the type-specific descriptor,
which consists only of the type-specific API version number:

static struct st_mysql_information_schema simple_table_info =
{ MYSQL_INFORMATION_SCHEMA_INTERFACE_VERSION };

The general descriptor points to the initialization and deinitialization functions:

• The initialization function provides information about the table structure and a function that populates
the table.

• The deinitialization function performs any required cleanup. If no cleanup is needed, this descriptor
member can be NULL (as in the example shown).

The initialization function should return 0 for success, 1 if an error occurs. The function receives a
generic pointer, which it should interpret as a pointer to the table structure:

static int table_init(void *ptr)
{
 ST_SCHEMA_TABLE *schema_table= (ST_SCHEMA_TABLE*)ptr;

 schema_table->fields_info= simple_table_fields;
 schema_table->fill_table= simple_fill_table;
 return 0;
}

The function should set these two members of the table structure:

Writing Plugins

3166

• fields_info: An array of ST_FIELD_INFO structures that contain information about each column.

• fill_table: A function that populates the table.

The array pointed to by fields_info should contain one element per column of the
INFORMATION_SCHEMA plus a terminating element. The following simple_table_fields array for
the example plugin indicates that SIMPLE_I_S_TABLE has two columns. NAME is string-valued with a
length of 10 and VALUE is integer-valued with a display width of 20. The last structure marks the end of
the array.

static ST_FIELD_INFO simple_table_fields[]=
{
 {"NAME", 10, MYSQL_TYPE_STRING, 0, 0 0, 0},
 {"VALUE", 6, MYSQL_TYPE_LONG, 0, MY_I_S_UNSIGNED, 0, 0},
 {0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
};

For more information about the column information structure, see the definition of ST_FIELD_INFO in
the table.h header file. The permissible MYSQL_TYPE_xxx type values are those used in the C API;
see Section 23.8.5, “C API Data Structures”.

The fill_table member should be set to a function that populates the table and returns 0 for
success, 1 if an error occurs. For the example plugin, the simple_fill_table() function looks like
this:

static int simple_fill_table(THD *thd, TABLE_LIST *tables, Item *cond)
{
 TABLE *table= tables->table;

 table->field[0]->store("Name 1", 6, system_charset_info);
 table->field[1]->store(1);
 if (schema_table_store_record(thd, table))
 return 1;
 table->field[0]->store("Name 2", 6, system_charset_info);
 table->field[1]->store(2);
 if (schema_table_store_record(thd, table))
 return 1;
 return 0;
}

For each row of the INFORMATION_SCHEMA table, this function initializes each column, then calls
schema_table_store_record() to install the row. The store() method arguments depend on
the type of value to be stored. For column 0 (NAME, a string), store() takes a pointer to a string, its
length, and information about the character set of the string:

store(const char *to, uint length, CHARSET_INFO *cs);

For column 1 (VALUE, an integer), store() takes the value and a flag indicating whether it is
unsigned:

store(longlong nr, bool unsigned_value);

For other examples of how to populate INFORMATION_SCHEMA tables, search for instances of
schema_table_store_record() in sql_show.cc.

To compile and install a plugin library object file, use the instructions in Section 24.2.4.3, “Compiling
and Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the plugin_dir system variable).

To test the plugin, install it:

mysql> INSTALL PLUGIN SIMPLE_I_S_TABLE SONAME 'simple_i_s_table.so';

Writing Plugins

3167

Verify that the table is present:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_NAME = 'SIMPLE_I_S_TABLE';
+------------------+
| TABLE_NAME |
+------------------+
| SIMPLE_I_S_TABLE |
+------------------+

Try to select from it:

mysql> SELECT * FROM INFORMATION_SCHEMA.SIMPLE_I_S_TABLE;
+--------+-------+
| NAME | VALUE |
+--------+-------+
| Name 1 | 1 |
| Name 2 | 2 |
+--------+-------+

Uninstall it:

mysql> UNINSTALL PLUGIN SIMPLE_I_S_TABLE;

24.2.4.7 Writing Semisynchronous Replication Plugins

This section describes how to write server-side semisynchronous replication plugins, using the
example plugins found in the plugin/semisync directory of MySQL source distributions. That
directory contains the source files for master and slave plugins named rpl_semi_sync_master and
rpl_semi_sync_slave. The information here covers only how to set up the plugin framework. For
details about how the plugins implement replication functions, see the source.

To write a semisynchronous replication plugin, include the following header file in the plugin source file.
Other MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin.h>

plugin.h defines the MYSQL_REPLICATION_PLUGIN server plugin type and the data structures
needed to declare the plugin.

For the master side, semisync_master_plugin.cc contains this general descriptor for a plugin
named rpl_semi_sync_master:

mysql_declare_plugin(semi_sync_master)
{
 MYSQL_REPLICATION_PLUGIN,
 &semi_sync_master_plugin,
 "rpl_semi_sync_master",
 "He Zhenxing",
 "Semi-synchronous replication master",
 PLUGIN_LICENSE_GPL,
 semi_sync_master_plugin_init, /* Plugin Init */
 semi_sync_master_plugin_deinit, /* Plugin Deinit */
 0x0100 /* 1.0 */,
 semi_sync_master_status_vars, /* status variables */
 semi_sync_master_system_vars, /* system variables */
 NULL, /* config options */
 0, /* flags */
}
mysql_declare_plugin_end;

For the slave side, semisync_slave_plugin.cc contains this general descriptor for a plugin named
rpl_semi_sync_slave:

Writing Plugins

3168

mysql_declare_plugin(semi_sync_slave)
{
 MYSQL_REPLICATION_PLUGIN,
 &semi_sync_slave_plugin,
 "rpl_semi_sync_slave",
 "He Zhenxing",
 "Semi-synchronous replication slave",
 PLUGIN_LICENSE_GPL,
 semi_sync_slave_plugin_init, /* Plugin Init */
 semi_sync_slave_plugin_deinit, /* Plugin Deinit */
 0x0100 /* 1.0 */,
 semi_sync_slave_status_vars, /* status variables */
 semi_sync_slave_system_vars, /* system variables */
 NULL, /* config options */
 0, /* flags */
}
mysql_declare_plugin_end;

For both the master and slave plugins, the general descriptor has pointers to the type-specific
descriptor, the initialization and deinitialization functions, and to the status and system variables
implemented by the plugin. For information about variable setup, see Server Plugin Status and
System Variables. The following remarks discuss the type-specific descriptor and the initialization and
deinitialization functions for the master plugin but apply similarly to the slave plugin.

The semi_sync_master_plugin member of the master general descriptor points to the type-specific
descriptor, which consists only of the type-specific API version number:

struct Mysql_replication semi_sync_master_plugin= {
 MYSQL_REPLICATION_INTERFACE_VERSION
};

The initialization and deinitialization function declarations look like this:

static int semi_sync_master_plugin_init(void *p);
static int semi_sync_master_plugin_deinit(void *p);

The initialization function uses the pointer to register transaction and binary logging “observers”
with the server. After successful initialization, the server takes care of invoking the observers at the
appropriate times. (For details on the observers, see the source files.) The deinitialization function
cleans up by deregistering the observers. Each function returns 0 for success or 1 if an error occurs.

To compile and install a plugin library object file, use the instructions in Section 24.2.4.3, “Compiling
and Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the plugin_dir system variable). For the rpl_semi_sync_master and
rpl_semi_sync_slave plugins, they are compiled and installed when you build MySQL from source.
They are also included in binary distributions. The build process produces shared object libraries with
names of semisync_master.so and semisync_slave.so (the .so suffix might differ depending
on your platform).

24.2.4.8 Writing Audit Plugins

This section describes how to write a server-side audit plugin, using the example plugin found
in the plugin/audit_null directory of MySQL source distributions. The audit_null.c and
audit_null_variables.h source files in that directory implement an audit plugin named
NULL_AUDIT.

Note

Changes were made in MySQL 5.7.8 to reimplement query rewrite plugins
as audit plugins, and then the audit plugin API itself was extensively revised
in 5.7.9 (including the parts for query rewrite plugins). For these reasons, the
discussion here describes the audit plugin API as of MySQL 5.7.9. The API prior

Writing Plugins

3169

to 5.7.8 is much like that for MySQL 5.6. To write audit plugins against the older
API, see Writing Audit Plugins in MySQL 5.6 Reference Manual.

Note

Other examples of plugins that use the audit plugin API are the query rewrite
plugin (see Section 5.1.8.3, “The Rewriter Query Rewrite Plugin”) and the
Version Tokens plugin (see Section 5.1.8.4, “Version Tokens”).

Within the server, the pluggable audit interface is implemented in the sql_audit.h and
sql_audit.cc files in the sql directory of MySQL source distributions. Additionally, several places in
the server call the audit interface when an auditable event occurs, so that registered audit plugins can
be notified about the event if necessary. To see where such calls occur, search the server source files
for invocations of functions with names of the form mysql_audit_xxx(). Audit notification occurs for
server operations such as these:

• Client connect and disconnect events

• Writing a message to the general query log (if the log is enabled)

• Writing a message to the error log

• Sending a query result to a client

To write an audit plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#include <mysql/plugin_audit.h>

plugin_audit.h includes plugin.h, so you need not include the latter file explicitly. plugin.h
defines the MYSQL_AUDIT_PLUGIN server plugin type and the data structures needed to declare the
plugin. plugin_audit.h defines data structures specific to audit plugins.

Audit Plugin General Descriptor

An audit plugin, like any MySQL server plugin, has a general plugin descriptor (see Server Plugin
Library and Plugin Descriptors) and a type-specific plugin descriptor. In audit_null.c, the general
descriptor looks like this:

mysql_declare_plugin(audit_null)
{
 MYSQL_AUDIT_PLUGIN, /* type */
 &audit_null_descriptor, /* descriptor */
 "NULL_AUDIT", /* name */
 "Oracle Corp", /* author */
 "Simple NULL Audit", /* description */
 PLUGIN_LICENSE_GPL,
 audit_null_plugin_init, /* init function (when loaded) */
 audit_null_plugin_deinit, /* deinit function (when unloaded) */
 0x0003, /* version */
 simple_status, /* status variables */
 system_variables, /* system variables */
 NULL,
 0,
}
mysql_declare_plugin_end;

The first member, MYSQL_AUDIT_PLUGIN, identifies this plugin as an audit plugin.

audit_null_descriptor points to the type-specific plugin descriptor, described later.

The name member (NULL_AUDIT) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.

http://dev.mysql.com/doc/refman/5.6/en/writing-audit-plugins.html
http://dev.mysql.com/doc/refman/5.6/en/index.html

Writing Plugins

3170

The audit_null_plugin_init initialization function performs plugin initialization when the plugin is
loaded. The audit_null_plugin_deinit function performs cleanup with the plugin is unloaded.

The general plugin descriptor also refers to simple_status and system_variables, structures
that expose several status and system variables. When the plugin is enabled, these variables can be
inspected using SHOW statements (SHOW STATUS, SHOW VARIABLES) or the appropriate Performance
Schema tables.

The simple_status structure declares several status variables with names of the form
Audit_null_xxx. NULL_AUDIT increments the Audit_null_called status variable for every
notification that it receives. The other status variables are more specific and NULL_AUDIT increments
them only for notifications of specific events.

system_variables is an array of system variable elements, each of which is defined using a
MYSQL_THDVAR_xxx macro. These system variables have names of the form null_audit_xxx.
These variables can be used to communicate with the plugin at runtime.

Audit Plugin Type-Specific Descriptor

The audit_null_descriptor value in the general plugin descriptor points to the type-specific plugin
descriptor. For audit plugins, this descriptor has the following structure (defined in plugin_audit.h):

struct st_mysql_audit
{
 int interface_version;
 void (*release_thd)(MYSQL_THD);
 int (*event_notify)(MYSQL_THD, mysql_event_class_t, const void *);
 unsigned long class_mask[MYSQL_AUDIT_CLASS_MASK_SIZE];
};

The type-specific descriptor for audit plugins has these members:

• interface_version: By convention, type-specific plugin descriptors begin with the interface
version for the given plugin type. The server checks interface_version when it loads
the plugin to see whether the plugin is compatible with it. For audit plugins, the value of
the interface_version member is MYSQL_AUDIT_INTERFACE_VERSION (defined in
plugin_audit.h).

• release_thd: A function that the server calls to inform the plugin that it is being dissociated from its
thread context. This should be NULL if there is no such function.

• event_notify: A function that the server calls to notify the plugin that an auditable event has
occurred. This function should not be NULL; that would not make sense because no auditing would
occur.

• class_mask: An array of MYSQL_AUDIT_CLASS_MASK_SIZE elements. Each element specifies
a bit mask for a given event class to indicate the subclasses for which the plugin wants notification.
(This is how the plugin “subscribes” to events of interest.) An element should be 0 to ignore events
for the corresponding event class.

The server uses the event_notify and release_thd functions together. They are called within
the context of a specific thread, and a thread might perform an activity that produces several event
notifications. The first time the server calls event_notify for a thread, it creates a binding of the
plugin to the thread. The plugin cannot be uninstalled while this binding exists. When no more events
for the thread will occur, the server informs the plugin of this by calling the release_thd function,
and then destroys the binding. For example, when a client issues a statement, the thread processing
the statement might notify audit plugins about the result set produced by the statement and about the
statement being logged. After these notifications occur, the server releases the plugin before putting
the thread to sleep until the client issues another statement.

This design enables the plugin to allocate resources needed for a given thread in the first call to the
event_notify function and release them in the release_thd function:

Writing Plugins

3171

event_notify function:
 if memory is needed to service the thread
 allocate memory
 ... rest of notification processing ...

release_thd function:
 if memory was allocated
 release memory
 ... rest of release processing ...

That is more efficient than allocating and releasing memory repeatedly in the notification function.

For the NULL_AUDIT audit plugin, the type-specific plugin descriptor looks like this:

static struct st_mysql_audit audit_null_descriptor=
{
 MYSQL_AUDIT_INTERFACE_VERSION, /* interface version */
 NULL, /* release_thd function */
 audit_null_notify, /* notify function */
 { (unsigned long) MYSQL_AUDIT_GENERAL_ALL,
 (unsigned long) MYSQL_AUDIT_CONNECTION_ALL,
 (unsigned long) MYSQL_AUDIT_PARSE_ALL,
 (unsigned long) MYSQL_AUDIT_AUTHORIZATION_ALL,
 (unsigned long) MYSQL_AUDIT_TABLE_ACCESS_ALL,
 (unsigned long) MYSQL_AUDIT_GLOBAL_VARIABLE_ALL,
 (unsigned long) MYSQL_AUDIT_SERVER_STARTUP_ALL,
 (unsigned long) MYSQL_AUDIT_SERVER_SHUTDOWN_ALL,
 (unsigned long) MYSQL_AUDIT_COMMAND_ALL,
 (unsigned long) MYSQL_AUDIT_QUERY_ALL,
 (unsigned long) MYSQL_AUDIT_STORED_PROGRAM_ALL }
};

The server calls audit_null_notify() to pass audit event information to the plugin. There is no
release_thd function.

The class_mask member is an array that indicates which event classes the plugin subscribes to. As
shown, the array contents subscribe to all subclasses of all event classes that are available. To ignore
all notifications for a given event class, specify the corresponding class_mask element as 0.

The number of class_mask elements corresponds to the number of event classes, each of which is
listed in the mysql_event_class_t enumeration defined in plugin_audit.h:

typedef enum
{
 MYSQL_AUDIT_GENERAL_CLASS = 0,
 MYSQL_AUDIT_CONNECTION_CLASS = 1,
 MYSQL_AUDIT_PARSE_CLASS = 2,
 MYSQL_AUDIT_AUTHORIZATION_CLASS = 3,
 MYSQL_AUDIT_TABLE_ACCESS_CLASS = 4,
 MYSQL_AUDIT_GLOBAL_VARIABLE_CLASS = 5,
 MYSQL_AUDIT_SERVER_STARTUP_CLASS = 6,
 MYSQL_AUDIT_SERVER_SHUTDOWN_CLASS = 7,
 MYSQL_AUDIT_COMMAND_CLASS = 8,
 MYSQL_AUDIT_QUERY_CLASS = 9,
 MYSQL_AUDIT_STORED_PROGRAM_CLASS = 10,
 /* This item must be last in the list. */
 MYSQL_AUDIT_CLASS_MASK_SIZE
} mysql_event_class_t;

For any given event class, plugin_audit.h defines bit mask symbols for individual event
subclasses, as well as an xxx_ALL symbol that is the union of the all subclass bit masks. For example,
for MYSQL_AUDIT_CONNECTION_CLASS (the class that covers connect and disconnect events),
plugin_audit.h defines these symbols:

typedef enum
{

Writing Plugins

3172

 /** occurs after authentication phase is completed. */
 MYSQL_AUDIT_CONNECTION_CONNECT = 1 << 0,
 /** occurs after connection is terminated. */
 MYSQL_AUDIT_CONNECTION_DISCONNECT = 1 << 1,
 /** occurs after COM_CHANGE_USER RPC is completed. */
 MYSQL_AUDIT_CONNECTION_CHANGE_USER = 1 << 2,
 /** occurs before authentication. */
 MYSQL_AUDIT_CONNECTION_PRE_AUTHENTICATE = 1 << 3
} mysql_event_connection_subclass_t;

#define MYSQL_AUDIT_CONNECTION_ALL (MYSQL_AUDIT_CONNECTION_CONNECT | \
 MYSQL_AUDIT_CONNECTION_DISCONNECT | \
 MYSQL_AUDIT_CONNECTION_CHANGE_USER | \
 MYSQL_AUDIT_CONNECTION_PRE_AUTHENTICATE)

To subscribe to all subclasses of the connection event class (as the NULL_AUDIT plugin does), a
plugin specifies MYSQL_AUDIT_CONNECTION_ALL in the corresponding class_mask element
(class_mask[1] in this case). To subscribe to only some subclasses, the plugin sets the
class_mask element to the union of the subclasses of interest. For example, to subscribe only to the
connect and change-user subclasses, the plugin sets class_mask[1] to this value:

MYSQL_AUDIT_CONNECTION_CONNECT | MYSQL_AUDIT_CONNECTION_CHANGE_USER

Audit Plugin Notification Function

Most of the work for an audit plugin occurs in the notification function (the event_notify member of
the type-specific plugin descriptor). The server calls this function for each auditable event. Audit plugin
notification functions have this prototype:

int (*event_notify)(MYSQL_THD, mysql_event_class_t, const void *);

The second and third parameters of the event_notify function prototype represent the event class
and a generic pointer to an event structure. (Events in different classes have different structures.
The notification function can use the event class value to determine which event structure applies.)
The function processes the event and returns a status indicating whether the server should continue
processing the event or terminate it.

For NULL_AUDIT, the notification function is audit_null_notify(). This function increments a
global event counter (which the plugin exposes as the value of the Audit_null_called status
value), and then examines the event class to determine how to process the event structure:

static int audit_null_notify(MYSQL_THD thd __attribute__((unused)),
 mysql_event_class_t event_class,
 const void *event)
{
 ...

 number_of_calls++;

 if (event_class == MYSQL_AUDIT_GENERAL_CLASS)
 {
 const struct mysql_event_general *event_general=
 (const struct mysql_event_general *)event;
 ...
 }
 else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS)
 {
 const struct mysql_event_connection *event_connection=
 (const struct mysql_event_connection *) event;
 ...

 }
 else if (event_class == MYSQL_AUDIT_PARSE_CLASS)
 {
 const struct mysql_event_parse *event_parse =

Writing Plugins

3173

 (const struct mysql_event_parse *)event;
 ...
 }
 ...
}

The notification function interprets the event argument according to the value of event_class. The
event argument is a generic pointer to the event record, the structure of which differs per event class.
(The plugin_audit.h file contains the structures that define the contents of each event class.) For
each class, audit_null_notify() casts the event to the appropriate class-specific structure and
then checks its subclass to determine which subclass counter to increment. For example, the code to
handle events in the connection-event class looks like this:

else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS)
{
 const struct mysql_event_connection *event_connection=
 (const struct mysql_event_connection *) event;

 switch (event_connection->event_subclass)
 {
 case MYSQL_AUDIT_CONNECTION_CONNECT:
 number_of_calls_connection_connect++;
 break;
 case MYSQL_AUDIT_CONNECTION_DISCONNECT:
 number_of_calls_connection_disconnect++;
 break;
 case MYSQL_AUDIT_CONNECTION_CHANGE_USER:
 number_of_calls_connection_change_user++;
 break;
 case MYSQL_AUDIT_CONNECTION_PRE_AUTHENTICATE:
 number_of_calls_connection_pre_authenticate++;
 break;
 default:
 break;
 }
}

Note

The general event class (MYSQL_AUDIT_GENERAL_CLASS) is deprecated as of
MySQL 5.7.9 and will be removed in a future MySQL release. To reduce plugin
overhead, it is preferable to subscribe only to the more specific event classes of
interest.

For some event classes, the NULL_AUDIT plugin performs other processing in addition to incrementing
a counter. In any case, when the notification function finishes processing the event, it should return a
status indicating whether the server should continue processing the event or terminate it.

Audit Plugin Error Handling

Audit plugin notification functions can report a status value for the current event two ways:

• Use the notification function return value. In this case, the function returns zero if the server should
continue processing the event, or nonzero if the server should terminate the event.

• Call the my_message() function to set the error state before returning from the notification function.
In this case, the notification function return value is ignored and the server terminates event
processing with an error. The my_message() arguments indicate which error to report, and its
message. For example:

my_message(ER_AUDIT_API_ABORT, "This is my error message.", MYF(0));

Some events cannot be aborted. A nonzero return value is not taken into consideration and the
my_message() error call must follow an is_error() check. For example:

Writing Plugins

3174

if (!thd->get_stmt_da()->is_error())
{
 my_message(ER_AUDIT_API_ABORT, "This is my error message.", MYF(0));
}

Some events cannot be terminated:

• MYSQL_AUDIT_CONNECTION_DISCONNECT: The server cannot prevent a client from disconnecting.

• MYSQL_AUDIT_COMMAND_END: This event provides the status of a command that has finished
executing, so there is no purpose to terminating it.

If an audit plugin returns nonzero status for a nonterminable event, the server ignores the status
and continues processing the event. As of MySQL 5.7.9, that is also true if an audit plugin uses the
my_message() function to terminate a nonterminable event.

Audit Plugin Usage

To compile and install a plugin library object file, use the instructions in Section 24.2.4.3, “Compiling
and Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the plugin_dir system variable). For the NULL_AUDIT plugin, it is compiled
and installed when you build MySQL from source. It is also included in binary distributions. The build
process produces a shared object library with a name of adt_null.so (the .so suffix might differ
depending on your platform).

To register the plugin at runtime, use this statement (change the suffix as necessary):

mysql> INSTALL PLUGIN NULL_AUDIT SONAME 'adt_null.so';

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement.

While the audit plugin is installed, it exposes status variables that indicate the events for which the
plugin has been called:

mysql> SHOW STATUS LIKE 'Audit_null%';
+--+--------+
| Variable_name | Value |
+--+--------+
Audit_null_authorization_column	0
Audit_null_authorization_db	0
Audit_null_authorization_procedure	0
Audit_null_authorization_proxy	0
Audit_null_authorization_table	0
Audit_null_authorization_user	0
Audit_null_called	185547
Audit_null_command_end	20999
Audit_null_command_start	21001
Audit_null_connection_change_user	0
Audit_null_connection_connect	5823
Audit_null_connection_disconnect	5818
Audit_null_connection_pre_authenticate	5823
Audit_null_general_error	1
Audit_null_general_log	26559
Audit_null_general_result	19922
Audit_null_general_status	21000
Audit_null_global_variable_get	0
Audit_null_global_variable_set	0
Audit_null_parse_postparse	14648
Audit_null_parse_preparse	14648

Writing Plugins

3175

Audit_null_query_nested_start	6
Audit_null_query_nested_status_end	6
Audit_null_query_start	14648
Audit_null_query_status_end	14647
Audit_null_server_shutdown	0
Audit_null_server_startup	1
Audit_null_table_access_delete	104
Audit_null_table_access_insert	2839
Audit_null_table_access_read	97842
Audit_null_table_access_update	278
+--+--------+

Audit_null_called counts all events, and the other variables count instances of specific event
subclasses. For example, the preceding SHOW STATUS statement causes the server to send a result
to the client and to write a message to the general query log if that log is enabled. Thus, a client that
issues the statement repeatedly causes Audit_null_called, Audit_null_general_result,
and Audit_null_general_log to be incremented each time. (Before MySQL 5.7.5, notification of
events for the general query log occur only if the general query log is enabled. As of 5.7.5, notifications
occur whether or not that log is enabled.)

The status variables values are aggregated across all sessions. There are no counters for individual
sessions.

NULL_AUDIT exposes several system variables that enable communication with the plugin at runtime:

mysql> SHOW VARIABLES LIKE 'null_audit%';
+------------------------------------+-------+
| Variable_name | Value |
+------------------------------------+-------+
null_audit_abort_message	
null_audit_abort_value	1
null_audit_event_order_check	
null_audit_event_order_check_exact	1
null_audit_event_order_started	0
null_audit_event_record	
null_audit_event_record_def	
+------------------------------------+-------+

To check the order of audit API calls, set the null_audit_event_order_check variable to the
expected event order. For example:

SET null_audit_event_order_check =
 'MYSQL_AUDIT_CONNECTION_PRE_AUTHENTICATE;;;'
 'MYSQL_AUDIT_GENERAL_LOG;;;'
 'MYSQL_AUDIT_CONNECTION_CONNECT;;';

The statement takes advantage of the SQL syntax that concatenates adjacent strings into a single
string.

The format of the value is:

'event_name;event_data;command' [';event_name;event_data;command'] ...

After the event order is matched, the null_audit_event_order_check value is replaced with a
value of EVENT-ORDER-OK.

Specifying a command value of ABORT_RET makes it possible to abort the audit API call
on the specified event. The following example aborts INSERT statement execution when its
MYSQL_AUDIT_QUERY_STATUS_END event occurs:

SET null_audit_event_order_check =
 'MYSQL_AUDIT_COMMAND_START;command_id="3";;'
 'MYSQL_AUDIT_GENERAL_LOG;;;'
 'MYSQL_AUDIT_QUERY_START;;;'

Writing Plugins

3176

 'MYSQL_AUDIT_QUERY_STATUS_END;;ABORT_RET';

After the audit plugin matches the preceding sequence, it aborts event processing and sends an error
message to the client:

ERROR 3164 (HY000): Aborted by Audit API ('MYSQL_AUDIT_QUERY_STATUS_END';1).

Returning a nonzero value from the audit API notification routine is the standard way to
abort event execution. It is also possible to specify a custom error code by setting the
null_audit_abort_value variable to the value that the notification routine should return:

SET null_audit_abort_value = 123;

Aborting a sequence results in a standard message with the custom error code. Suppose that you set
audit log system variables like this:

SET null_audit_abort_value = 123;
SET null_audit_event_order_check =
 'MYSQL_AUDIT_COMMAND_START;command_id="3";;'
 'MYSQL_AUDIT_GENERAL_LOG;;;'
 'MYSQL_AUDIT_QUERY_START;;ABORT_RET';

Then execution of SELECT 1 results in this error:

ERROR 3164 (HY000): Aborted by Audit API ('MYSQL_AUDIT_QUERY_START';123).

An event can be also aborted with a custom message, specified by setting the
null_audit_abort_message variable: Suppose that you set audit log system variables like this:

SET null_audit_abort_message = 'Custom error text.';
SET null_audit_event_order_check =
 'MYSQL_AUDIT_COMMAND_START;command_id="3";;'
 'MYSQL_AUDIT_GENERAL_LOG;;;'
 'MYSQL_AUDIT_QUERY_START;;ABORT_RET';

Then aborting a sequence results in the following error:

ERROR 3164 (HY000): Custom error text.

For test-creation purposes, it is possible to record events that pass through the plugin. Recording starts
by specifying start and end events in the null_audit_event_record_def variable:

SET null_audit_event_record_def =
 'MYSQL_AUDIT_COMMAND_START;MYSQL_AUDIT_COMMAND_END';

Statement execution results in storing the events that occur in the null_audit_event_record
variable.

To disable the plugin after testing it, use this statement to unload it:

mysql> UNINSTALL PLUGIN NULL_AUDIT;

24.2.4.9 Writing Authentication Plugins

MySQL supports pluggable authentication, in which plugins are invoked to authenticate client
connections. Authentication plugins enable the use of authentication methods other than the built-in
method of passwords stored in the mysql.user table. For example, plugins can be written to access
external authentication methods. Also, authentication plugins can support the proxy user capability,
such that the connecting user is a proxy for another user and is treated, for purposes of access control,

Writing Plugins

3177

as having the privileges of a different user. For more information, see Section 6.3.8, “Pluggable
Authentication”, and Section 6.3.10, “Proxy Users”.

An authentication plugin can be written for the server side or the client side. Server-side plugins use the
same plugin API that is used for the other server plugin types such as full-text parser or audit plugins
(although with a different type-specific descriptor). Client-side plugins use the client plugin API.

Several header files contain information relevant to authentication plugins:

• plugin.h: Defines the MYSQL_AUTHENTICATION_PLUGIN server plugin type.

• client_plugin.h: Defines the API for client plugins. This includes the client plugin descriptor
and function prototypes for client plugin C API calls (see Section 23.8.14, “C API Client Plugin
Functions”).

• plugin_auth.h: Defines the part of the server plugin API specific to authentication plugins.
This includes the type-specific descriptor for server-side authentication plugins and the
MYSQL_SERVER_AUTH_INFO structure.

• plugin_auth_common.h: Contains common elements of client and server authentication plugins.
This includes return value definitions and the MYSQL_PLUGIN_VIO structure.

To write an authentication plugin, include the following header files in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

• For a source file that implements a server authentication plugin, include this file:

#include <mysql/plugin_auth.h>

• For a source file that implements a client authentication plugin, or both client and server plugins,
include these files:

#include <mysql/plugin_auth.h>
#include <mysql/client_plugin.h>
#include <mysql.h>

plugin_auth.h includes plugin.h and plugin_auth_common.h, so you need not include the
latter files explicitly.

This section describes how to write a pair of simple server and client authentication plugins that work
together.

Warning

These plugins accept any non-empty password and the password is sent in
clear text. This is insecure, so the plugins should not be used in production
environments.

The server-side and client-side plugins developed here both are named auth_simple. As described
in Section 24.2.4.2, “Plugin Data Structures”, the plugin library file must have the same base name
as the client plugin, so the source file name is auth_simple.c and produces a library named
auth_simple.so (assuming that your system uses .so as the suffix for library files).

In MySQL source distributions, authentication plugin source is located in the plugin/auth directory
and can be examined as a guide to writing other authentication plugins. Also, to see how the built-
in authentication plugins are implemented, see sql/sql_acl.cc for plugins that are built in to the
MySQL server and sql-common/client.c for plugins that are built in to the libmysqlclient
client library. (For the built-in client plugins, note that the auth_plugin_t structures used there differ
from the structures used with the usual client plugin declaration macros. In particular, the first two
members are provided explicitly, not by declaration macros.)

Writing Plugins

3178

Writing the Server-Side Authentication Plugin

Declare the server-side plugin with the usual general descriptor format that is used for all server plugin
types (see Server Plugin Library and Plugin Descriptors). For the auth_simple plugin, the descriptor
looks like this:

mysql_declare_plugin(auth_simple)
{
 MYSQL_AUTHENTICATION_PLUGIN,
 &auth_simple_handler, /* type-specific descriptor */
 "auth_simple", /* plugin name */
 "Author Name", /* author */
 "Any-password authentication plugin", /* description */
 PLUGIN_LICENSE_GPL, /* license type */
 NULL, /* no init function */
 NULL, /* no deinit function */
 0x0100, /* version = 1.0 */
 NULL, /* no status variables */
 NULL, /* no system variables */
 NULL, /* no reserved information */
 0 /* no flags */
}
mysql_declare_plugin_end;

The name member (auth_simple) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

The auth_simple_handler member of the general descriptor points to the type-specific descriptor.
For an authentication plugin, the type-specific descriptor is an instance of the st_mysql_auth
structure (defined in plugin_auth.h):

struct st_mysql_auth
{
 int interface_version;
 const char *client_auth_plugin;
 int (*authenticate_user)(MYSQL_PLUGIN_VIO *vio, MYSQL_SERVER_AUTH_INFO *info);
 int (*generate_authentication_string)(char *outbuf,
 unsigned int *outbuflen, const char *inbuf, unsigned int inbuflen);
 int (*validate_authentication_string)(char* const inbuf, unsigned int buflen);
 int (*set_salt)(const char *password, unsigned int password_len,
 unsigned char* salt, unsigned char *salt_len);
 const unsigned long authentication_flags;
};

The st_mysql_auth structure has these members:

• interface_version: The type-specific API version number, always
MYSQL_AUTHENTICATION_INTERFACE_VERSION

• client_auth_plugin: The client plugin name

• authenticate_user: A pointer to the main plugin function that communicates with the client

• generate_authentication_string: A pointer to a plugin function that generates a password
digest from an authentication string (added in MySQL 5.7.6)

• validate_authentication_string: A pointer to a plugin function that validates a password
digest (added in MySQL 5.7.6)

• set_salt: A pointer to a plugin function that converts a scrambled password to binary form (added
in MySQL 5.7.6)

• authentication_flags: A flags word (added in MySQL 5.7.8)

Writing Plugins

3179

The client_auth_plugin member should indicate the name of the client plugin if a specific plugin is
required. A value of NULL means “any plugin.” In the latter case, whatever plugin the client uses will do.
This is useful if the server plugin does not care about the client plugin or what user name or password
it sends. For example, this might be true if the server plugin authenticates only local clients and uses
some property of the operating system rather than the information sent by the client plugin.

For auth_simple, the type-specific descriptor looks like this:

static struct st_mysql_auth auth_simple_handler =
{
 MYSQL_AUTHENTICATION_INTERFACE_VERSION,
 "auth_simple", /* required client-side plugin name */
 auth_simple_server /* server-side plugin main function */
 generate_auth_string_hash, /* generate digest from password string */
 validate_auth_string_hash, /* validate password digest */
 set_salt, /* generate password salt value */
 AUTH_FLAG_PRIVILEGED_USER_FOR_PASSWORD_CHANGE
};

The main function, auth_simple_server(), takes two arguments representing an I/O structure and
a MYSQL_SERVER_AUTH_INFO structure. The structure definition, found in plugin_auth.h, looks
like this:

typedef struct st_mysql_server_auth_info
{
 char *user_name;
 unsigned int user_name_length;
 const char *auth_string;
 unsigned long auth_string_length;
 char authenticated_as[MYSQL_USERNAME_LENGTH+1];
 char external_user[512];
 int password_used;
 const char *host_or_ip;
 unsigned int host_or_ip_length;
} MYSQL_SERVER_AUTH_INFO;

The character set for string members is UTF-8. If there is a _length member associated with a string,
it indicates the string length in bytes. Strings are also null-terminated.

When an authentication plugin is invoked by the server, it should interpret the
MYSQL_SERVER_AUTH_INFO structure members as follows. Some of these are used to set the value
of SQL functions or system variables within the client session, as indicated.

• user_name: The user name sent by the client. The value becomes the USER() function value.

• user_name_length: The length of user_name in bytes.

• auth_string: The value of the authentication_string column of the mysql.user table row
for the matching account name (that is, the row that matches the client user name and host name
and that the server uses to determine how to authenticate the client).

Suppose that you create an account using the following statement:

CREATE USER 'my_user'@'localhost'
 IDENTIFIED WITH my_plugin AS 'my_auth_string';

When my_user connects from the local host, the server invokes my_plugin and passes
'my_auth_string' to it as the auth_string value.

• auth_string_length: The length of auth_string in bytes.

• authenticated_as: The server sets this to the user name (the value of user_name). The plugin
can alter it to indicate that the client should have the privileges of a different user. For example, if

Writing Plugins

3180

the plugin supports proxy users, the initial value is the name of the connecting (proxy) user, and
the plugin can change this member to the proxied user name. The server then treats the proxy
user as having the privileges of the proxied user (assuming that the other conditions for proxy user
support are satisfied; see Implementing Proxy User Support in Authentication Plugins). The value is
represented as a string at most MYSQL_USER_NAME_LENGTH bytes long, plus a terminating null. The
value becomes the CURRENT_USER() function value.

• external_user: The server sets this to the empty string (null terminated). Its value becomes the
external_user system variable value. If the plugin wants that system variable to have a different
value, it should set this member accordingly; for example, to the connecting user name. The value is
represented as a string at most 511 bytes long, plus a terminating null.

• password_used: This member applies when authentication fails. The plugin can set it or ignore it.
The value is used to construct the failure error message of Authentication fails. Password
used: %s. The value of password_used determines how %s is handled, as shown in the following
table.

password_used %s Handling

0 NO

1 YES

2 There will be no %s

• host_or_ip: The name of the client host if it can be resolved, or the IP address otherwise.

• host_or_ip_length: The length of host_or_ip in bytes.

The auth_simple main function, auth_simple_server(), reads the password (a null-terminated
string) from the client and succeeds if the password is nonempty (first byte not null):

static int auth_simple_server (MYSQL_PLUGIN_VIO *vio,
 MYSQL_SERVER_AUTH_INFO *info)
{
 unsigned char *pkt;
 int pkt_len;

 /* read the password as null-terminated string, fail on error */
 if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
 return CR_ERROR;

 /* fail on empty password */
 if (!pkt_len || *pkt == '\0')
 {
 info->password_used= PASSWORD_USED_NO;
 return CR_ERROR;
 }

 /* accept any nonempty password */
 info->password_used= PASSWORD_USED_YES;

 return CR_OK;
}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR_OK Success

CR_OK_HANDSHAKE_COMPLETE Do not send a status packet back to client

CR_ERROR Error

CR_AUTH_USER_CREDENTIALS Authentication failure

CR_AUTH_HANDSHAKE Authentication handshake failure

Writing Plugins

3181

Error Code Meaning

CR_AUTH_PLUGIN_ERROR Internal plugin error

For an example of how the handshake works, see the plugin/auth/dialog.c source file.

The server counts plugin errors in the Performance Schema host_cache table.

auth_simple_server() is so basic that it does not use the authentication information structure
except to set the member that indicates whether a password was received.

A plugin that supports proxy users must return to the server the name of the proxied user (the
MySQL user whose privileges the client user should get). To do this, the plugin must set the info-
>authenticated_as member to the proxied user name. For information about proxying, see
Section 6.3.10, “Proxy Users”, and Implementing Proxy User Support in Authentication Plugins.

The generate_authentication_string member of the plugin descriptor takes the password and
generates a password hash (digest) from it:

• The first two arguments are pointers to the output buffer and its maximum length in bytes. The
function should write the password hash to the output buffer and reset the length to the actual hash
length.

• The second two arguments indicate the password input buffer and its length in bytes.

• The function returns 0 for success, 1 if an error occurred.

For the auth_simple plugin, the generate_auth_string_hash() function implements the
generate_authentication_string member. It just makes a copy of the password, unless it is too
long to fit in the output buffer.

int generate_auth_string_hash(char *outbuf, unsigned int *buflen,
 const char *inbuf, unsigned int inbuflen)
{
 /*
 fail if buffer specified by server cannot be copied to output buffer
 */
 if (*buflen < inbuflen)
 return 1; /* error */
 strncpy(outbuf, inbuf, inbuflen);
 *buflen= strlen(inbuf);
 return 0; /* success */
}

The validate_authentication_string member of the plugin descriptor validates a password
hash:

• The arguments are a pointer to the password hash and its length in bytes.

• The function returns 0 for success, 1 if the password hash cannot be validated.

For the auth_simple plugin, the validate_auth_string_hash() function implements the
validate_authentication_string member. It returns success unconditionally:

int validate_auth_string_hash(char* const inbuf __attribute__((unused)),
 unsigned int buflen __attribute__((unused)))
{
 return 0; /* success */
}

The set_salt member of the plugin descriptor is used only by the mysql_native_password plugin
(see Section 6.3.9.1, “The Native Authentication Plugin”). For other authentication plugins, you can use
this trivial implementation:

Writing Plugins

3182

int set_salt(const char* password __attribute__((unused)),
 unsigned int password_len __attribute__((unused)),
 unsigned char* salt __attribute__((unused)),
 unsigned char* salt_len)
{
 *salt_len= 0;
 return 0; /* success */
}

The authentication_flags member of the plugin descriptor contains flags that affect plugin
operation. The permitted flags are:

• AUTH_FLAG_PRIVILEGED_USER_FOR_PASSWORD_CHANGE: Credential changes are a privileged
operation. If this flag is set, the server requires that the user has the global CREATE USER privilege
or the UPDATE privilege for the mysql database.

• AUTH_FLAG_USES_INTERNAL_STORAGE: Whether the plugin uses internal storage (in the
authentication_string column of mysql.user rows). If this flag is not set, attempts to set the
password using SET PASSWORD fail and the server produces a warning.

Writing the Client-Side Authentication Plugin

Declare the client-side plugin descriptor with the mysql_declare_client_plugin() and
mysql_end_client_plugin macros (see Client Plugin Descriptors). For the auth_simple plugin,
the descriptor looks like this:

mysql_declare_client_plugin(AUTHENTICATION)
 "auth_simple", /* plugin name */
 "Author Name", /* author */
 "Any-password authentication plugin", /* description */
 {1,0,0}, /* version = 1.0.0 */
 "GPL", /* license type */
 NULL, /* for internal use */
 NULL, /* no init function */
 NULL, /* no deinit function */
 NULL, /* no option-handling function */
 auth_simple_client /* main function */
mysql_end_client_plugin;

The descriptor members from the plugin name through the option-handling function are common to all
client plugin types. (For descriptions, see Client Plugin Descriptors.) Following the common members,
the descriptor has an additional member specific to authentication plugins. This is the “main” function,
which handles communication with the server. The function takes two arguments representing an I/
O structure and a connection handler. For our simple any-password plugin, the main function does
nothing but write to the server the password provided by the user:

static int auth_simple_client (MYSQL_PLUGIN_VIO *vio, MYSQL *mysql)
{
 int res;

 /* send password as null-terminated string in clear text */
 res= vio->write_packet(vio, (const unsigned char *) mysql->passwd,
 strlen(mysql->passwd) + 1);

 return res ? CR_ERROR : CR_OK;
}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR_OK Success

CR_OK_HANDSHAKE_COMPLETE Success, client done

Writing Plugins

3183

Error Code Meaning

CR_ERROR Error

CR_OK_HANDSHAKE_COMPLETE indicates that the client has done its part successfully and has read
the last packet. A client plugin may return CR_OK_HANDSHAKE_COMPLETE if the number of round
trips in the authentication protocol is not known in advance and the plugin must read another packet to
determine whether authentication is finished.

Using the Authentication Plugins

To compile and install a plugin library object file, use the instructions in Section 24.2.4.3, “Compiling
and Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the plugin_dir system variable).

Register the server-side plugin with the server. For example, to load the plugin at server startup, use a
--plugin-load=auth_simple.so option (change the library suffix as necessary for your system).

Create a user for whom the server will use the auth_simple plugin for authentication:

mysql> CREATE USER 'x'@'localhost'
 -> IDENTIFIED WITH auth_simple;

Use a client program to connect to the server as user x. The server-side auth_simple plugin
communicates with the client program that it should use the client-side auth_simple plugin, and
the latter sends the password to the server. The server plugin should reject connections that send an
empty password and accept connections that send a nonempty password. Invoke the client program
each way to verify this:

shell> mysql --user=x --skip-password
ERROR 1045 (28000): Access denied for user 'x'@'localhost' (using password: NO)

shell> mysql --user=x --password=abc
mysql>

Because the server plugin accepts any nonempty password, it should be considered insecure. After
testing the plugin to verify that it works, restart the server without the --plugin-load option so as not
to indavertently leave the server running with an insecure authentication plugin loaded. Also, drop the
user with DROP USER 'x'@'localhost'.

For additional information about loading and using authentication plugins, see Section 5.1.8.1,
“Installing and Uninstalling Plugins”, and Section 6.3.8, “Pluggable Authentication”.

If you are writing a client program that supports the use of authentication plugins, normally
such a program causes a plugin to be loaded by calling mysql_options() to set the
MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable
users to override the default values.

Should a client program require lower-level plugin management, the client library contains functions
that take an st_mysql_client_plugin argument. See Section 23.8.14, “C API Client Plugin
Functions”.

Writing Plugins

3184

Implementing Proxy User Support in Authentication Plugins

One of the capabilities that pluggable authentication makes possible is proxy users (see
Section 6.3.10, “Proxy Users”). For a server-side authentication plugin to participate in proxy user
support, these conditions must be satisfied:

• When a connecting client should be treated as a proxy user, the plugin must return a different name
in the authenticated_as member of the MYSQL_SERVER_AUTH_INFO structure, to indicate the
proxied user name. It may also optionally set the external_user member, to set the value of the
external_user system variable.

• Proxy user accounts must be set up to be authenticated by the plugin. Use the CREATE USER or
GRANT statement to associate accounts with plugins.

• Proxy user accounts must have the PROXY privilege for the proxied accounts. Use the GRANT
statement to grant this privilege.

In other words, the only aspect of proxy user support required of the plugin is that it set
authenticated_as to the proxied user name. The rest is optional (setting external_user) or done
by the DBA using SQL statements.

How does an authentication plugin determine which proxied user to return when the proxy user
connects? That depends on the plugin. Typically, the plugin maps clients to proxied users based on the
authentication string passed to it by the server. This string comes from the AS part of the IDENTIFIED
WITH clause of the CREATE USER statement that specifies use of the plugin for authentication.

The plugin developer determines the syntax rules for the authentication string and implements the
plugin according to those rules. Suppose that a plugin takes a comma-separated list of pairs that map
external users to MySQL users. For example:

CREATE USER ''@'%.example.com'
 IDENTIFIED WITH my_plugin AS 'extuser1=mysqlusera, extuser2=mysqluserb'
CREATE USER ''@'%.example.org'
 IDENTIFIED WITH my_plugin AS 'extuser1=mysqluserc, extuser2=mysqluserd'

When the server invokes a plugin to authenticate a client, it passes the appropriate authentication
string to the plugin. The plugin is responsible to:

1. Parse the string into its components to determine the mapping to use

2. Compare the client user name to the mapping

3. Return the proper MySQL user name

For example, if extuser2 connects from an example.com host, the server passes
'extuser1=mysqlusera, extuser2=mysqluserb' to the plugin, and the plugin should copy
mysqluserb into authenticated_as, with a terminating null byte. If extuser2 connects from an
example.org host, the server passes 'extuser1=mysqluserc, extuser2=mysqluserd', and
the plugin should copy mysqluserd instead.

If there is no match in the mapping, the action depends on the plugin. If a match is required, the plugin
likely will return an error. Or the plugin might simply return the client name; in this case, it should not
change authenticated_as, and the server will not treat the client as a proxy.

The following example demonstrates how to handle proxy users using a plugin named
auth_simple_proxy. Like the auth_simple plugin described earlier, auth_simple_proxy
accepts any nonempty password as valid (and thus should not be used in production environments). In
addition, it examines the auth_string authentication string member and uses these very simple rules
for interpreting it:

• If the string is empty, the plugin returns the user name as given and no proxying occurs. That is, the
plugin leaves the value of authenticated_as unchanged.

Writing Plugins

3185

• If the string is nonempty, the plugin treats it as the name of the proxied user and copies it to
authenticated_as so that proxying occurs.

For testing, set up one account that is not proxied according to the preceding rules, and one that is.
This means that one account has no AS clause, and one includes an AS clause that names the proxied
user:

CREATE USER 'plugin_user1'@'localhost'
 IDENTIFIED WITH auth_simple_proxy;
CREATE USER 'plugin_user2'@'localhost'
 IDENTIFIED WITH auth_simple_proxy AS 'proxied_user';

In addition, create an account for the proxied user and grant plugin_user2 the PROXY privilege for it:

CREATE USER 'proxied_user'@'localhost'
 IDENTIFIED BY 'proxied_user_pass';
GRANT PROXY
 ON 'proxied_user'@'localhost'
 TO 'plugin_user2'@'localhost';

Before the server invokes an authentication plugin, it sets authenticated_as to the client user
name. To indicate that the user is a proxy, the plugin should set authenticated_as to the proxied
user name. For auth_simple_proxy, this means that it must examine the auth_string value, and,
if the value is nonempty, copy it to the authenticated_as member to return it as the name of the
proxied user. In addition, when proxying occurs, the plugin sets the external_user member to the
client user name; this becomes the value of the external_user system variable.

static int auth_simple_proxy_server (MYSQL_PLUGIN_VIO *vio,
 MYSQL_SERVER_AUTH_INFO *info)
{
 unsigned char *pkt;
 int pkt_len;

 /* read the password as null-terminated string, fail on error */
 if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
 return CR_ERROR;

 /* fail on empty password */
 if (!pkt_len || *pkt == '\0')
 {
 info->password_used= PASSWORD_USED_NO;
 return CR_ERROR;
 }

 /* accept any nonempty password */
 info->password_used= PASSWORD_USED_YES;

 /* if authentication string is nonempty, use as proxied user name */
 /* and use client name as external_user value */
 if (info->auth_string_length > 0)
 {
 strcpy (info->authenticated_as, info->auth_string);
 strcpy (info->external_user, info->user_name);
 }

 return CR_OK;
}

After a successful connection, the USER() function should indicate the connecting client user and host
name, and CURRENT_USER() should indicate the account whose privileges apply during the session.
The latter value should be the connecting user account if no proxying occurs or the proxied account if
proxying does occur.

Compile and install the plugin, then test it. First, connect as plugin_user1:

Writing Plugins

3186

shell> mysql --user=plugin_user1 --password=x

In this case, there should be no proxying:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user, @@external_user\G
*************************** 1. row ***************************
 USER(): plugin_user1@localhost
 CURRENT_USER(): plugin_user1@localhost
 @@proxy_user: NULL
@@external_user: NULL

Then connect as plugin_user2:

shell> mysql --user=plugin_user2 --password=x

In this case, plugin_user2 should be proxied to proxied_user:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user, @@external_user\G
*************************** 1. row ***************************
 USER(): plugin_user2@localhost
 CURRENT_USER(): proxied_user@localhost
 @@proxy_user: 'plugin_user2'@'localhost'
@@external_user: 'plugin_user2'@'localhost'

24.2.4.10 Writing Password-Validation Plugins

This section describes how to write a server-side password-validation plugin. The instructions are
based on the source code in the plugin/password_validation directory of MySQL source
distributions. The validate_password.cc source file in that directory implements the plugin named
validate_password.

To write a password-validation plugin, include the following header file in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin_validate_password.h>

plugin_validate_password.h includes plugin.h, so you need not include the latter file
explicitly. plugin.h defines the MYSQL_VALIDATE_PASSWORD_PLUGIN server plugin type and
the data structures needed to declare the plugin. plugin_validate_password.h defines data
structures specific to password-validation plugins.

A password-validation plugin, like any MySQL server plugin, has a general plugin descriptor (see
Server Plugin Library and Plugin Descriptors). In validate_password.cc, the general descriptor
looks like this:

mysql_declare_plugin(validate_password)
{
 MYSQL_VALIDATE_PASSWORD_PLUGIN, /* type */
 &validate_password_descriptor, /* descriptor */
 "validate_password", /* name */
 "Oracle Corporation", /* author */
 "check password strength", /* description */
 PLUGIN_LICENSE_GPL,
 validate_password_init, /* init function (when loaded) */
 validate_password_deinit, /* deinit function (when unloaded) */
 0x0100, /* version */
 NULL,
 validate_password_system_variables, /* system variables */
 NULL,
 0,
}
mysql_declare_plugin_end;

Writing Plugins

3187

The name member (validate_password) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.

The general descriptor also refers to validate_password_system_variables, a structure that
exposes several system variables to the SHOW VARIABLES statement:

static struct st_mysql_sys_var* validate_password_system_variables[]= {
 MYSQL_SYSVAR(length),
 MYSQL_SYSVAR(number_count),
 MYSQL_SYSVAR(mixed_case_count),
 MYSQL_SYSVAR(special_char_count),
 MYSQL_SYSVAR(policy),
 MYSQL_SYSVAR(dictionary_file),
 NULL
};

The validate_password_init initialization function reads the dictionary file if one was specified,
and the validate_password_deinit function frees data structures associated with the file.

The validate_password_descriptor value in the general descriptor points to the type-specific
descriptor. For password-validation plugins, this descriptor has the following structure:

struct st_mysql_validate_password
{
 int interface_version;
 /*
 This function returns TRUE for passwords which satisfy the password
 policy (as chosen by plugin variable) and FALSE for all other
 password
 */
 int (*validate_password)(mysql_string_handle password);
 /*
 This function returns the password strength (0-100) depending
 upon the policies
 */
 int (*get_password_strength)(mysql_string_handle password);
};

The type-specific descriptor has these members:

• interface_version: By convention, type-specific plugin descriptors begin with the interface
version for the given plugin type. The server checks interface_version when it loads the plugin
to see whether the plugin is compatible with it. For password-validation plugins, the value of the
interface_version member is MYSQL_VALIDATE_PASSWORD_INTERFACE_VERSION (defined
in plugin_validate_password.h).

• validate_password: A function that the server calls to test whether a password satisfies the
current password policy. It returns 1 if the password is okay and 0 otherwise. The argument
is the password, passed as a mysql_string_handle value. This data type is implemented
by the mysql_string server service. For details, see the string_service.h and
string_service.cc source files in the sql directory.

• get_password_strength: A function that the server calls to assess the strength of a password.
It returns a value from 0 (weak) to 100 (strong). The argument is the password, passed as a
mysql_string_handle value.

For the validate_password plugin, the type-specific descriptor looks like this:

static struct st_mysql_validate_password validate_password_descriptor=
{
 MYSQL_VALIDATE_PASSWORD_INTERFACE_VERSION,
 validate_password, /* validate function */
 get_password_strength /* validate strength function */

Writing Plugins

3188

};

To compile and install a plugin library object file, use the instructions in Section 24.2.4.3, “Compiling
and Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the plugin_dir system variable). For the validate_password plugin, it
is compiled and installed when you build MySQL from source. It is also included in binary distributions.
The build process produces a shared object library with a name of validate_password.so (the .so
suffix might differ depending on your platform).

To register the plugin at runtime, use this statement (change the suffix as necessary):

mysql> INSTALL PLUGIN validate_password SONAME 'validate_password.so';

For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling
Plugins”.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement.

While the validate_password plugin is installed, it exposes system variables that indicate the
password-checking parameters:

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	8
validate_password_mixed_case_count	1
validate_password_number_count	1
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+

For descriptions of these variables, see Password Validation Plugin Options and Variables.

To disable the plugin after testing it, use this statement to unload it:

mysql> UNINSTALL PLUGIN validate_password;

24.2.4.11 Writing Protocol Trace Plugins

MySQL supports the use of protocol trace plugins: client-side plugins that implement tracing of
communication between a client and the server that takes place using the client/server protocol. This
capability can be used in MySQL 5.7.2 and up.

Using the Test Protocol Trace Plugin

MySQL includes a test protocol trace plugin that serves to illustrate the information available from such
plugins, and as a guide to writing other protocol trace plugins. To see how the test plugin works, use a
MySQL source distribution; binary distributions are built with the test plugin disabled.

Enable the test protocol trace plugin by configuring MySQL with the WITH_TEST_TRACE_PLUGIN
CMake option enabled. This causes the test trace plugin to be built and MySQL client programs to load
it, but the plugin has no effect by default. Control the plugin using these environment variables:

• MYSQL_TEST_TRACE_DEBUG: Set this variable to a value other than 0 to cause the test plugin to
produce diagnostic output on stderr.

• MYSQL_TEST_TRACE_CRASH: Set this variable to a value other than 0 to cause the test plugin to
abort the client program if it detects an invalid trace event.

Writing Plugins

3189

Caution

Diagnostic output from the test protocol trace plugin can disclose passwords
and other sensitive information.

Given a MySQL installation built from source with the test plugin enabled, you can see a trace of the
communication between the mysql client and the MySQL server as follows:

shell> export MYSQL_TEST_TRACE_DEBUG=1
shqll> mysql
test_trace: Test trace plugin initialized
test_trace: Starting tracing in stage CONNECTING
test_trace: stage: CONNECTING, event: CONNECTING
test_trace: stage: CONNECTING, event: CONNECTED
test_trace: stage: WAIT_FOR_INIT_PACKET, event: READ_PACKET
test_trace: stage: WAIT_FOR_INIT_PACKET, event: PACKET_RECEIVED
test_trace: packet received: 87 bytes
 0A 35 2E 37 2E 33 2D 6D 31 33 2D 64 65 62 75 67 .5.7.3-m13-debug
 2D 6C 6F 67 00 04 00 00 00 2B 7C 4F 55 3F 79 67 -log.....+|OU?yg
test_trace: 004: stage: WAIT_FOR_INIT_PACKET, event: INIT_PACKET_RECEIVED
test_trace: 004: stage: AUTHENTICATE, event: AUTH_PLUGIN
test_trace: 004: Using authentication plugin: mysql_native_password
test_trace: 004: stage: AUTHENTICATE, event: SEND_AUTH_RESPONSE
test_trace: 004: sending packet: 188 bytes
 85 A6 7F 00 00 00 00 01 21 00 00 00 00 00 00 00 .?......!.......
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
mysql> quit
test_trace: 008: stage: READY_FOR_COMMAND, event: SEND_COMMAND
test_trace: 008: QUIT
test_trace: 008: stage: READY_FOR_COMMAND, event: PACKET_SENT
test_trace: 008: packet sent: 0 bytes
test_trace: 008: stage: READY_FOR_COMMAND, event: DISCONNECTED
test_trace: 008: Connection closed
test_trace: 008: Tracing connection has ended
Bye
test_trace: Test trace plugin de-initialized

To disable trace output, do this:

shell> MYSQL_TEST_TRACE_DEBUG=

Using Your Own Protocol Trace Plugins

Note

To use your own protocol trace plugins, you must configure MySQL with the
WITH_TEST_TRACE_PLUGIN CMake option disabled because only one protocol
trace plugin can be loaded at a time and an error occurs for attempts to load a
second one. If you have already built MySQL with the test protocol trace plugin
enabled to see how it works, you must rebuild MySQL without it before you can
use your own plugins.

This section discusses how to write a basic protocol trace plugin named simple_trace. This
plugin provides a framework showing how to set up the client plugin descriptor and create
the trace-related callback functions. In simple_trace, these functions are rudimentary and
do little other than illustrate the arguments required. To see in detail how a trace plugin can
make use of trace event information, check the source file for the test protocol trace plugin
(test_trace_plugin.cc in the libmysql directory of a MySQL source distribution). However, note
that the st_mysql_client_plugin_TRACE structure used there differs from the structures used with
the usual client plugin declaration macros. In particular, the first two members are defined explicitly, not
implicitly by declaration macros.

Several header files contain information relevant to protocol trace plugins:

Writing Plugins

3190

• client_plugin.h: Defines the API for client plugins. This includes the client plugin descriptor
and function prototypes for client plugin C API calls (see Section 23.8.14, “C API Client Plugin
Functions”).

• plugin_trace.h: Contains declarations for client-side plugins of type
MYSQL_CLIENT_TRACE_PLUGIN. It also contains descriptions of the permitted protocol stages,
transitions between stages, and the types of events permitted at each stage.

To write a protocol trace plugin, include the following header files in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin_trace.h>
#include <mysql.h>

plugin_trace.h includes client_plugin.h, so you need not include the latter file explicitly.

Declare the client-side plugin descriptor with the mysql_declare_client_plugin() and
mysql_end_client_plugin macros (see Client Plugin Descriptors). For the simple_trace plugin,
the descriptor looks like this:

mysql_declare_client_plugin(TRACE)
 "simple_trace", /* plugin name */
 "Author Name", /* author */
 "Simple protocol trace plugin", /* description */
 {1,0,0}, /* version = 1.0.0 */
 "GPL", /* license type */
 NULL, /* for internal use */
 plugin_init, /* initialization function */
 plugin_deinit, /* deinitialization function */
 plugin_options, /* option-handling function */
 trace_start, /* start-trace function */
 trace_stop, /* stop-trace function */
 trace_event /* event-handling function */
mysql_end_client_plugin;

The descriptor members from the plugin name through the option-handling function are common to all
client plugin types. The members following the common members implement trace event handling.

Function members for which the plugin needs no processing can be declared as NULL in the
descriptor, in which case you need not write any corresponding function. For illustration purposes and
to show the argument syntax, the following discussion implements all functions listed in the descriptor,
even though some of them do nothing,

The initialization, deinitialization, and options functions common to all client plugins are declared as
follows. For a description of the arguments and return values, see Client Plugin Descriptors.

static int
plugin_init(char *errbuf, size_t errbuf_len, int argc, va_list args)
{
 return 0;
}

static int
plugin_deinit()
{
 return 0;
}

static int
plugin_options(const char *option, const void *value)
{
 return 0;
}

Writing Plugins

3191

The trace-specific members of the client plugin descriptor are callback functions. The following
descriptions provide more detail on how they are used. Each has a first argument that is a pointer to
the plugin instance in case your implementation needs to access it.

trace_start(): This function is called at the start of each traced connection (each connection that
starts after the plugin is loaded). It is passed the connection handler and the protocol stage at which
tracing starts. trace_start() allocates memory needed by the trace_event() function, if any,
and returns a pointer to it. If no memory is needed, this function returns NULL.

static void*
trace_start(struct st_mysql_client_plugin_TRACE *self,
 MYSQL *conn,
 enum protocol_stage stage)
{
 struct st_trace_data *plugin_data= malloc(sizeof(struct st_trace_data));

 fprintf(stderr, "Initializing trace: stage %d\n", stage);
 if (plugin_data)
 {
 memset(plugin_data, 0, sizeof(struct st_trace_data));
 fprintf(stderr, "Trace initialized\n");
 return plugin_data;
 }
 fprintf(stderr, "Could not initialize trace\n");
 exit(1);
}

trace_stop(): This function is called when tracing of the connection ends. That usually happens
when the connection is closed, but can happen earlier. For example, trace_event() can return a
nonzero value at any time and that causes tracing of the connection to terminate. trace_stop() is
then called even though the connection has not ended.

trace_stop() is passed the connection handler and a pointer to the memory allocated by
trace_start() (NULL if none). If the pointer is non-NULL, trace_stop() should deallocate the
memory. This function returns no value.

static void
trace_stop(struct st_mysql_client_plugin_TRACE *self,
 MYSQL *conn,
 void *plugin_data)
{
 fprintf(stderr, "Terminating trace\n");
 if (plugin_data)
 free(plugin_data);
}

trace_event(): This function is called for each event occurrence. It is passed a pointer to the
memory allocated by trace_start() (NULL if none), the connection handler, the current protocol
stage and event codes, and event data. This function returns 0 to continue tracing, nonzero if tracing
should stop.

static int
trace_event(struct st_mysql_client_plugin_TRACE *self,
 void *plugin_data,
 MYSQL *conn,
 enum protocol_stage stage,
 enum trace_event event,
 struct st_trace_event_args args)
{
 fprintf(stderr, "Trace event received: stage %d, event %d\n", stage, event);
 if (event == TRACE_EVENT_DISCONNECTED)
 fprintf(stderr, "Connection closed\n");
 return 0;
}

Writing Plugins

3192

The tracing framework shuts down tracing of the connection when the connection ends, so
trace_event() should return nonzero only if you want to terminate tracing of the connection early.
Suppose that you want to trace only connections for a certain MySQL account. After authentication,
you can check the user name for the connection and stop tracing if it is not the user in whom you are
interested.

For each call to trace_event(), the st_trace_event_args structure contains the event data. It
has this definition:

struct st_trace_event_args
{
 const char *plugin_name;
 int cmd;
 const unsigned char *hdr;
 size_t hdr_len;
 const unsigned char *pkt;
 size_t pkt_len;
};

For different event types, the st_trace_event_args structure contains the information described
following. All lengths are in bytes. Unused members are set to 0/NULL.

AUTH_PLUGIN event:

plugin_name The name of the plugin

SEND_COMMAND event:

cmd The command code
hdr Pointer to the command packet header
hdr_len Length of the header
pkt Pointer to the command arguments
pkt_len Length of the arguments

Other SEND_xxx and xxx_RECEIVED events:

pkt Pointer to the data sent or received
pkt_len Length of the data

PACKET_SENT event:

pkt_len Number of bytes sent

To compile and install a plugin library object file, use the instructions in Section 24.2.4.3, “Compiling
and Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the plugin_dir system variable).

After the plugin library file is compiled and installed in the plugin directory, you can test it easily by
setting the LIBMYSQL_PLUGINS environment variable to the plugin name, which affects any client
program that uses that variable. mysql is one such program:

shell> export LIBMYSQL_PLUGINS=simple_trace
shqll> mysql
Initializing trace: stage 0
Trace initialized
Trace event received: stage 0, event 1
Trace event received: stage 0, event 2
...
Welcome to the MySQL monitor. Commands end with ; or \g.
Trace event received
Trace event received
...

MySQL Services for Plugins

3193

mysql> SELECT 1;
Trace event received: stage 4, event 12
Trace event received: stage 4, event 16
...
Trace event received: stage 8, event 14
Trace event received: stage 8, event 15
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

mysql> quit
Trace event received: stage 4, event 12
Trace event received: stage 4, event 16
Trace event received: stage 4, event 3
Connection closed
Terminating trace
Bye

To stop the trace plugin from being loaded, do this:

shell> LIBMYSQL_PLUGINS=

It is also possible to write client programs that directly load the plugin. You can tell the client where the
plugin directory is located by calling mysql_options() to set the MYSQL_PLUGIN_DIR option:

char *plugin_dir = "path_to_plugin_dir";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);

Typically, the program will also accept a --plugin-dir option that enables users to override the
default value.

Should a client program require lower-level plugin management, the client library contains functions
that take an st_mysql_client_plugin argument. See Section 23.8.14, “C API Client Plugin
Functions”.

24.3 MySQL Services for Plugins
MySQL server plugins have access to server “services.” The services interface exposes server
functionality that plugins can call. It complements the plugin API and has these characteristics:

• Services enable plugins to access code inside the server using ordinary function calls. Services are
also available to user-defined functions (UDFs).

• Services are portable and work on multiple platforms.

• The interface includes a versioning mechanism so that service versions supported by the server
can be checked at load time against plugin versions. Versioning protects against incompatibilities
between the version of a service that the server provides and the version of the service expected or
required by a plugin.

• For information about plugins for testing plugin services, see Plugins for Testing Plugin Services, in
The MySQL Test Framework, Version 2.0.

To determine what services exist and what functions they provide, look in the include/mysql
directory of a MySQL source distribution. The relevant files are:

• plugin.h includes services.h, which is the “umbrella” header that includes all available service-
specific header files.

http://dev.mysql.com/doc/mysqltest/2.0/en/service-testing-plugins.html
http://dev.mysql.com/doc/mysqltest/2.0/en/index.html

MySQL Services for Plugins

3194

• Service-specific headers have names of the form service_xxx.h.

Each service-specific header should contain comments that provide full usage documentation for a
given service, including what service functions are available, their calling sequences, and return values.

Current services include the following, and others can be implemented:

• locking_service: A service that implements locks with three attributes: Lock namespace, lock
name, and lock mode. This locking interface is available at two levels: 1) As a C language interface,
callable as a plugin service from server plugins or user-defined functions; 2) At the SQL level, as a
set of user-defined functions that map onto calls to the service routines. For more information, see
Section 24.3.1, “The Locking Service”.

• my_plugin_log_service: A service that enables plugins to report errors and specify error
messages. The server writes the messages to its error log.

• my_snprintf: A string-formatting service that produces consistent results across platforms.

• my_thd_scheduler: A service for plugins to select a thread scheduler.

• mysql_password_policy: A service for password validation and strength checking.

• mysql_string: A service for string manipulation.

• security_context: A service that enables plugins to examine or manipulate thread security
contexts. This service provides setter and getter routines to access attributes of the server
Security_context class, which includes attributes such as login user and host, authenticated
user and host, and client IP address.

• thd_alloc: A memory-allocation service.

• thd_wait: A service for plugins to report when they are going to sleep or stall.

The plugin services interface differs from the plugin API as follows:

• The plugin API enables plugins to be used by the server. The calling initiative lies with the server to
invoke plugins. This enables plugins to extend server functionality or register to receive notifications
about server processing.

• The plugin services interface enables plugins to call code inside the server. The calling initiative lies
with plugins to invoke service functions. This enables functionality already implemented in the server
to be used by many plugins; they need not individually implement it themselves.

For developers who wish to modify the server to add a new service, see MySQL Internals: MySQL
Services for Plugins.

The remainder of this section describes how a plugin uses server functionality that is available as a
service. See also the source for the “daemon” example plugin, which uses the my_snprintf service.
Within a MySQL source distribution, that plugin is located in the plugin/daemon_example directory.

To use a service or services from within a plugin, the plugin source file must include the plugin.h
header file to access service-related information:

#include <mysql/plugin.h>

This does not represent any additional setup cost. A plugin must include that file anyway because it
contains definitions and structures that every plugin needs.

To access a service, a plugin calls service functions like any other function. For example, to format a
string into a buffer for printing, call the my_snprintf() function provided by the service of the same
name:

http://dev.mysql.com/doc/internals/en/mysql-services-for-plugins.html
http://dev.mysql.com/doc/internals/en/mysql-services-for-plugins.html

The Locking Service

3195

char buffer[BUFFER_SIZE];

my_snprintf(buffer, sizeof(buffer), format_string, argument_to_format, ...);

To report an error that the server will write to it error log, first choose an error level. mysql/
service_my_plugin_log.h defines these levels:

enum plugin_log_level
{
 MY_ERROR_LEVEL,
 MY_WARNING_LEVEL,
 MY_INFORMATION_LEVEL
};

Then invoke my_plugin_log_message():

int my_plugin_log_message(MYSQL_PLUGIN *plugin, enum plugin_log_level level,
 const char *format, ...);

For example:

my_plugin_log_message(plugin_ptr, MY_ERROR_LEVEL, "Cannot initialize plugin");

When you build your plugin, use the -lmysqlservices flag at link time to link in the
libmysqlservices library. For example, for CMake, put this in the top-level CMakeLists.txt file:

FIND_LIBRARY(MYSQLSERVICES_LIB mysqlservices
 PATHS "${MYSQL_SRCDIR}/libservices" NO_DEFAULT_PATH)

Put this in the CMakeLists.txt file in the directory containing the plugin source:

the plugin needs the mysql services library for error logging
TARGET_LINK_LIBRARIES (your_plugin_library_name ${MYSQLSERVICES_LIB})

24.3.1 The Locking Service

Distributions of MySQL 5.7.8 or higher provide a locking interface that is available at two levels:

• As a C language interface, callable as a plugin service from server plugins or user-defined functions

• At the SQL level, as a set of user-defined functions that map onto calls to the service routines

For general information about plugin services, see Section 24.3, “MySQL Services for Plugins”. For
general information about user-defined functions, see Section 24.4.2, “Adding a New User-Defined
Function”.

The locking interface has these characteristics:

• Locks have three attributes: Lock namespace, lock name, and lock mode:

• Locks are identified by the combination of namespace and lock name. The namespace enables
different applications to use the same lock names without colliding by creating locks in separate
namespaces. For example, if applications A and B use namespaces of ns1 and ns2, respectively,
each application can use lock names lock1 and lock2 without interfering with the other
application.

• A lock mode is either read or write. Read locks are shared: If a session has a read lock on a
given lock identifier, other sessions can acquire a read lock on the same identifier. Write locks are
exclusive: If a session has a write lock on a given lock identifier, other sessions cannot acquire a
read or write lock on the same identifier.

The Locking Service

3196

• Namespace and lock names must be non-NULL, nonempty, and have a maximum length of 64
characters. A namespace or lock name specified as NULL, the empty string, or a string longer than
64 characters results in an ER_LOCKING_SERVICE_WRONG_NAME error.

• The locking interface treats namespace and lock names as binary strings, so comparisons are case
sensitive.

• The locking interface provides functions to acquire locks and release locks. No special privilege is
required to call these functions. Privilege checking is the responsibility of the calling application.

• Locks can be waited for if not immediately available. Lock acquisition calls take an integer timeout
value that indicates how many seconds to wait to acquire locks before giving up. If the timeout is
reached without successful lock acquisition, an ER_LOCKING_SERVICE_TIMEOUT error occurs.
If the timeout is 0, there is no waiting and the call produces an error if locks cannot be acquired
immediately.

• The locking interface detects deadlock between lock-acquisition calls in different sessions. In
this case, the locking service chooses a caller and terminates its lock-acquisition request with an
ER_LOCKING_SERVICE_DEADLOCK error. This error does not cause transactions to roll back. To
choose a session in case of deadlock, the locking service prefers sessions that hold read locks over
sessions that hold write locks.

• A session can acquire multiple locks with a single lock-acquisition call. For a given call, lock
acquisition is atomic: The call succeeeds if all locks are acquired. If acquisition of any lock fails,
the call acquires no locks and fails, typically with an ER_LOCKING_SERVICE_TIMEOUT or
ER_LOCKING_SERVICE_DEADLOCK error.

• A session can acquire multiple locks for the same lock identifier (namespace and lock name
combination). These lock instances can be read locks, write locks, or a mix of both.

• Locks acquired within a session are released explicitly by calling a release-locks function, or
implicitly when the session terminates (either normally or abnormally). Locks are not released when
transactions commit or roll back.

• Within a session, all locks for a given namespace when released are released together.

The interface provided by the locking service is distinct from that provided by GET_LOCK() and related
SQL functions (see Section 12.19, “Miscellaneous Functions”). For example, GET_LOCK() does not
implement namespaces and provides only exclusive locks, not distinct read and write locks.

24.3.1.1 The Locking Service C Interface

This section describes how to use the locking service C language interface. To use the UDF interface
instead, see Section 24.3.1.2, “The Locking Service UDF Interface” For general characteristics of the
locking service interface, see Section 24.3.1, “The Locking Service”. For general information about
plugin services, see Section 24.3, “MySQL Services for Plugins”.

Source files that use the locking service should include this header file:

#include <mysql/service_locking.h>

To acquire one or more locks, call this function:

int mysql_acquire_locking_service_locks(MYSQL_THD opaque_thd,
 const char* lock_namespace,
 const char**lock_names,
 size_t lock_num,
 enum enum_locking_service_lock_type lock_type,
 unsigned long lock_timeout);

The arguments have these meanings:

The Locking Service

3197

• opaque_thd: A thread handle. If specified as NULL, the handle for the current thread is used.

• lock_namespace: A null-terminated string that indicates the lock namespace.

• lock_names: An array of null-terminated strings that provides the names of the locks to acquire.

• lock_num: The number of names in the lock_names array.

• lock_type: The lock mode, either LOCKING_SERVICE_READ or LOCKING_SERVICE_WRITE to
acquire read locks or write locks, respectively.

• lock_timeout: An integer number of seconds to wait to acquire the locks before giving up.

To release locks acquired for a given namespace, call this function:

int mysql_release_locking_service_locks(MYSQL_THD opaque_thd,
 const char* lock_namespace);

The arguments have these meanings:

• opaque_thd: A thread handle. If specified as NULL, the handle for the current thread is used.

• lock_namespace: A null-terminated string that indicates the lock namespace.

Locks acquired or waited for by the locking service can be monitored at the SQL level using the
Performance Schema. For details, see Locking Service Monitoring.

24.3.1.2 The Locking Service UDF Interface

This section describes how to use the locking service user-defined function (UDF) interface. To use
the C language interface instead, see Section 24.3.1.1, “The Locking Service C Interface” For general
characteristics of the locking service interface, see Section 24.3.1, “The Locking Service”. For general
information about user-defined functions, see Section 24.4.2, “Adding a New User-Defined Function”.

Installing or Uninstalling the UDF Locking Interface

The locking service routines described in Section 24.3.1.1, “The Locking Service C Interface” need not
be installed because they are built into the server. The same is not true of the user-defined functions
(UDFs) that map onto calls to the service routines: The UDFs must be installed before use. This
section describes how to do that. For general information about UDF installation, see Section 24.4.2.5,
“UDF Compiling and Installing”.

The locking service UDFs are implemented in a plugin library file located in the directory named by the
plugin_dir system variable. The file base name is locking_service. The file name suffix differs
per platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

To install the locking service UDFs, use the CREATE FUNCTION statement (the .so suffix might differ
on your platform; adjust it as necessary):

CREATE FUNCTION service_get_read_locks RETURNS INT SONAME 'locking_service.so';
CREATE FUNCTION service_get_write_locks RETURNS INT SONAME 'locking_service.so';
CREATE FUNCTION service_release_locks RETURNS INT SONAME 'locking_service.so';

If the UDFs are used on a master replication server, install them on all slave servers as well to avoid
replication problems.

Once installed, the UDFs remain installed until uninstalled. To remove them, use the DROP FUNCTION
statement:

DROP FUNCTION service_get_read_locks;

The Locking Service

3198

DROP FUNCTION service_get_write_locks;
DROP FUNCTION service_release_locks;

Using the UDF Locking Interface

Before using the locking service UDFs, install them according to the instructions at Installing or
Uninstalling the UDF Locking Interface.

To acquire one or more read locks, call this function:

mysql> SELECT service_get_read_locks('mynamespace', 'rlock1', 'rlock2', 10);
+---+
| service_get_read_locks('mynamespace', 'rlock1', 'rlock2', 10) |
+---+
| 1 |
+---+

The first argument is the lock namespace. The final argument is an integer timeout indicating how
many seconds to wait to acquire the locks before giving up. The arguments in between are the lock
names.

For the example just shown, the function acquires locks with lock identifiers (mynamespace,
rlock1) and (mynamespace, rlock2).

To acquire write locks rather than read locks, call this function:

mysql> SELECT service_get_write_locks('mynamespace', 'wlock1', 'wlock2', 10);
+--+
| service_get_write_locks('mynamespace', 'wlock1', 'wlock2', 10) |
+--+
| 1 |
+--+

In this case, the lock identifiers are (mynamespace, wlock1) and (mynamespace, wlock2).

To release all locks for a namespace, use this function:

mysql> SELECT service_release_locks('mynamespace');
+--------------------------------------+
| service_release_locks('mynamespace') |
+--------------------------------------+
| 1 |
+--------------------------------------+

Each locking function returns nonzero for success. If the function fails, an error occurs. For example,
the following error occurs because lock names cannot be empty:

mysql> SELECT service_get_read_locks('mynamespace', '', 10);
ERROR 3131 (42000): Incorrect locking service lock name ''.

A session can acquire multiple locks for the same lock identifier. As long as a different session does
not have a write lock for an identifier, the session can acquire any number of read or write locks. Each
lock request for the identifier acquires a new lock. The following statements acquire three write locks
with the same identifier, then three read locks for the same identifier:

SELECT service_get_write_locks('ns', 'lock1', 'lock1', 'lock1', 0);
SELECT service_get_read_locks('ns', 'lock1', 'lock1', 'lock1', 0);

If you examine the Performance Schema metadata_locks table at this point, you will find that the
session holds six distinct locks with the same (ns, lock1) identifier. (For details, see Locking
Service Monitoring.)

The Locking Service

3199

Because the session holds at least one write lock on (ns, lock1), no other session can acquire a
lock for it, either read or write. If the session held only read locks for the identifier, other sessions could
acquire read locks for it, but not write locks.

Locks for a single lock-acquisition call are acquired atomically, but atomicity does not hold across calls.
Thus, for a statement such as the following, where service_get_write_locks() is called once per
row of the result set, atomicity holds for each individual call, but not for the statement as a whole:

SELECT service_get_write_locks('ns', 'lock1', 'lock2', 0) FROM t1 WHERE ... ;

Caution

Because the locking service returns a separate lock for each successful request
for a given lock identifier, it is possible for a single statement to acquire a large
number of locks. For example:

INSERT INTO ... SELECT service_get_write_locks('ns', t1.col_name, 0) FROM t1;

These types of statements may have certain adverse effects. For example, if
the statement fails part way through and rolls back, locks acquired up to the
point of failure will still exist. If the intent is for there to be a correspondence
between rows inserted and locks acquired, that intent will not be satisfied. Also,
if it is important that locks are granted in a certain order, be aware that result set
order may differ depending on which execution plan the optimizer chooses. For
these reasons, it may be best to limit applications to a single lock-acquisition
call per statement.

Locking Service Monitoring

The locking service is implemented using the MySQL Server metadata locks framework, so you
monitor locking service locks acquired or waited for by examining the Performance Schema
metadata_locks table.

First, enable the metadata lock instrument:

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
 -> WHERE NAME = 'wait/lock/metadata/sql/mdl';

Then acquire some locks and check the contents of the metadata_locks table:

mysql> SELECT service_get_write_locks('mynamespace', 'lock1', 0);
+--+
| service_get_write_locks('mynamespace', 'lock1', 0) |
+--+
| 1 |
+--+
mysql> SELECT service_get_read_locks('mynamespace', 'lock2', 0);
+---+
| service_get_read_locks('mynamespace', 'lock2', 0) |
+---+
| 1 |
+---+
mysql> SELECT OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME, LOCK_TYPE, LOCK_STATUS
 -> FROM performance_schema.metadata_locks
 -> WHERE OBJECT_TYPE = 'LOCKING SERVICE'\G
*************************** 1. row ***************************
 OBJECT_TYPE: LOCKING SERVICE
OBJECT_SCHEMA: mynamespace
 OBJECT_NAME: lock1
 LOCK_TYPE: EXCLUSIVE
 LOCK_STATUS: GRANTED
*************************** 2. row ***************************

Adding New Functions to MySQL

3200

 OBJECT_TYPE: LOCKING SERVICE
OBJECT_SCHEMA: mynamespace
 OBJECT_NAME: lock2
 LOCK_TYPE: SHARED
 LOCK_STATUS: GRANTED

Locking service locks have an OBJECT_TYPE value of LOCKING SERVICE. This is distinct from, for
example, locks acquired with the GET_LOCK() function, which have an OBJECT_TYPE of USER LEVEL
LOCK.

The lock namespace, name, and mode appear in the OBJECT_SCHEMA, OBJECT_NAME, and
LOCK_TYPE columns. Read and write locks have LOCK_TYPE values of SHARED and EXCLUSIVE,
respectively.

The LOCK_STATUS value is GRANTED for an acquired lock, PENDING for a lock that is being waited for.
You will see PENDING if one session holds a write lock and another session is attempting to acquire a
lock having the same identifier.

Locking Service UDF Interface Reference

The SQL interface to the locking service implements the user-defined functions described in this
section. For usage examples, see Using the UDF Locking Interface.

The functions share these characteristics:

• The return value is nonzero for success. Otherwise, an error occurs.

• Namespace and lock names must be non-NULL, nonempty, and have a maximum length of 64
characters.

• Timeout values must be integers indicating how many seconds to wait to acquire locks before giving
up with an error. If the timeout is 0, there is no waiting and the function produces an error if locks
cannot be acquired immediately.

These locking service UDFs are available:

• service_get_read_locks(namespace, lock_name[, lock_name] ..., timeout)

Acquires one or more read (shared) locks in the given namespace using the given lock names,
timing out with an error if the locks are not acquired within the given timeout value.

• service_get_write_locks(namespace, lock_name[, lock_name] ..., timeout)

Acquires one or more write (exclusive) locks in the given namespace using the given lock names,
timing out with an error if the locks are not acquired within the given timeout value.

• service_release_locks(namespace)

For the given namespace, releases all locks that were acquired within the current session using
service_get_read_locks() and service_get_write_locks().

It is not an error for there to be no locks in the namespace.

24.4 Adding New Functions to MySQL

There are three ways to add new functions to MySQL:

• You can add functions through the user-defined function (UDF) interface. User-defined functions
are compiled as object files and then added to and removed from the server dynamically using the
CREATE FUNCTION and DROP FUNCTION statements. See Section 13.7.3.1, “CREATE FUNCTION
Syntax for User-Defined Functions”.

Features of the User-Defined Function Interface

3201

• You can add functions as native (built-in) MySQL functions. Native functions are compiled into the
mysqld server and become available on a permanent basis.

• Another way to add functions is by creating stored functions. These are written using SQL
statements rather than by compiling object code. The syntax for writing stored functions is not
covered here. See Section 19.2, “Using Stored Routines (Procedures and Functions)”.

Each method of creating compiled functions has advantages and disadvantages:

• If you write user-defined functions, you must install object files in addition to the server itself. If you
compile your function into the server, you don't need to do that.

• Native functions require you to modify a source distribution. UDFs do not. You can add UDFs to a
binary MySQL distribution. No access to MySQL source is necessary.

• If you upgrade your MySQL distribution, you can continue to use your previously installed UDFs,
unless you upgrade to a newer version for which the UDF interface changes. For native functions,
you must repeat your modifications each time you upgrade.

Whichever method you use to add new functions, they can be invoked in SQL statements just like
native functions such as ABS() or SOUNDEX().

See Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

The following sections describe features of the UDF interface, provide instructions for writing UDFs,
discuss security precautions that MySQL takes to prevent UDF misuse, and describe how to add native
MySQL functions.

For example source code that illustrates how to write UDFs, take a look at the sql/udf_example.cc
file that is provided in MySQL source distributions.

24.4.1 Features of the User-Defined Function Interface

The MySQL interface for user-defined functions provides the following features and capabilities:

• Functions can return string, integer, or real values and can accept arguments of those same types.

• You can define simple functions that operate on a single row at a time, or aggregate functions that
operate on groups of rows.

• Information is provided to functions that enables them to check the number, types, and names of the
arguments passed to them.

• You can tell MySQL to coerce arguments to a given type before passing them to a function.

• You can indicate that a function returns NULL or that an error occurred.

24.4.2 Adding a New User-Defined Function

For the UDF mechanism to work, functions must be written in C or C++ and your operating system
must support dynamic loading. MySQL source distributions include a file sql/udf_example.cc that
defines five UDF functions. Consult this file to see how UDF calling conventions work. The include/
mysql_com.h header file defines UDF-related symbols and data structures, although you need not
include this header file directly; it is included by mysql.h.

A UDF contains code that becomes part of the running server, so when you write a UDF, you are
bound by any and all constraints that apply to writing server code. For example, you may have
problems if you attempt to use functions from the libstdc++ library. These constraints may change
in future versions of the server, so it is possible that server upgrades will require revisions to UDFs that
were originally written for older servers. For information about these constraints, see Section 2.9.4,
“MySQL Source-Configuration Options”, and Section 2.9.5, “Dealing with Problems Compiling MySQL”.

Adding a New User-Defined Function

3202

To be able to use UDFs, you must link mysqld dynamically. If you want to use a UDF that needs to
access symbols from mysqld (for example, the metaphone function in sql/udf_example.cc uses
default_charset_info), you must link the program with -rdynamic (see man dlopen).

For each function that you want to use in SQL statements, you should define corresponding C (or C
++) functions. In the following discussion, the name “xxx” is used for an example function name. To
distinguish between SQL and C/C++ usage, XXX() (uppercase) indicates an SQL function call, and
xxx() (lowercase) indicates a C/C++ function call.

Note

When using C++ you can encapsulate your C functions within:

extern "C" { ... }

This ensures that your C++ function names remain readable in the completed
UDF.

The following list describes the C/C++ functions that you write to implement the interface for a function
named XXX(). The main function, xxx(), is required. In addition, a UDF requires at least one of the
other functions described here, for reasons discussed in Section 24.4.2.6, “UDF Security Precautions”.

• xxx()

The main function. This is where the function result is computed. The correspondence between the
SQL function data type and the return type of your C/C++ function is shown here.

SQL Type C/C++ Type

STRING char *

INTEGER long long

REAL double

It is also possible to declare a DECIMAL function, but currently the value is returned as a string, so
you should write the UDF as though it were a STRING function. ROW functions are not implemented.

• xxx_init()

The initialization function for xxx(). If present, it can be used for the following purposes:

• To check the number of arguments to XXX().

• To verify that the arguments are of a required type or, alternatively, to tell MySQL to coerce
arguments to the required types when the main function is called.

• To allocate any memory required by the main function.

• To specify the maximum length of the result.

• To specify (for REAL functions) the maximum number of decimal places in the result.

• To specify whether the result can be NULL.

• xxx_deinit()

The deinitialization function for xxx(). If present, it should deallocate any memory allocated by the
initialization function.

When an SQL statement invokes XXX(), MySQL calls the initialization function xxx_init() to let
it perform any required setup, such as argument checking or memory allocation. If xxx_init()
returns an error, MySQL aborts the SQL statement with an error message and does not call the main

Adding a New User-Defined Function

3203

or deinitialization functions. Otherwise, MySQL calls the main function xxx() once for each row. After
all rows have been processed, MySQL calls the deinitialization function xxx_deinit() so that it can
perform any required cleanup.

For aggregate functions that work like SUM(), you must also provide the following functions:

• xxx_clear()

Reset the current aggregate value but do not insert the argument as the initial aggregate value for a
new group.

• xxx_add()

Add the argument to the current aggregate value.

MySQL handles aggregate UDFs as follows:

1. Call xxx_init() to let the aggregate function allocate any memory it needs for storing results.

2. Sort the table according to the GROUP BY expression.

3. Call xxx_clear() for the first row in each new group.

4. Call xxx_add() for each row that belongs in the same group.

5. Call xxx() to get the result for the aggregate when the group changes or after the last row has
been processed.

6. Repeat steps 3 to 5 until all rows has been processed

7. Call xxx_deinit() to let the UDF free any memory it has allocated.

All functions must be thread-safe. This includes not just the main function, but the initialization and
deinitialization functions as well, and also the additional functions required by aggregate functions. A
consequence of this requirement is that you are not permitted to allocate any global or static variables
that change! If you need memory, you should allocate it in xxx_init() and free it in xxx_deinit().

24.4.2.1 UDF Calling Sequences for Simple Functions

This section describes the different functions that you need to define when you create a simple UDF.
Section 24.4.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls
these functions.

The main xxx() function should be declared as shown in this section. Note that the return type and
parameters differ, depending on whether you declare the SQL function XXX() to return STRING,
INTEGER, or REAL in the CREATE FUNCTION statement:

For STRING functions:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,
 char *result, unsigned long *length,
 char *is_null, char *error);

For INTEGER functions:

long long xxx(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

For REAL functions:

double xxx(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

Adding a New User-Defined Function

3204

DECIMAL functions return string values and should be declared the same way as STRING functions.
ROW functions are not implemented.

The initialization and deinitialization functions are declared like this:

my_bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *message);

void xxx_deinit(UDF_INIT *initid);

The initid parameter is passed to all three functions. It points to a UDF_INIT structure that is
used to communicate information between functions. The UDF_INIT structure members follow. The
initialization function should fill in any members that it wishes to change. (To use the default for a
member, leave it unchanged.)

• my_bool maybe_null

xxx_init() should set maybe_null to 1 if xxx() can return NULL. The default value is 1 if any of
the arguments are declared maybe_null.

• unsigned int decimals

The number of decimal digits to the right of the decimal point. The default value is the maximum
number of decimal digits in the arguments passed to the main function. For example, if the function is
passed 1.34, 1.345, and 1.3, the default would be 3, because 1.345 has 3 decimal digits.

For arguments that have no fixed number of decimals, the decimals value is set to 31, which is 1
more than the maximum number of decimals permitted for the DECIMAL, FLOAT, and DOUBLE data
types. This value is available as the constant NOT_FIXED_DEC in the mysql_com.h header file.

A decimals value of 31 is used for arguments in cases such as a FLOAT or DOUBLE column
declared without an explicit number of decimals (for example, FLOAT rather than FLOAT(10,3))
and for floating-point constants such as 1345E-3. It is also used for string and other nonnumber
arguments that might be converted within the function to numeric form.

The value to which the decimals member is initialized is only a default. It can be changed within the
function to reflect the actual calculation performed. The default is determined such that the largest
number of decimals of the arguments is used. If the number of decimals is NOT_FIXED_DEC for even
one of the arguments, that is the value used for decimals.

• unsigned int max_length

The maximum length of the result. The default max_length value differs depending on the result
type of the function. For string functions, the default is the length of the longest argument. For integer
functions, the default is 21 digits. For real functions, the default is 13 plus the number of decimal
digits indicated by initid->decimals. (For numeric functions, the length includes any sign or
decimal point characters.)

If you want to return a blob value, you can set max_length to 65KB or 16MB. This memory is not
allocated, but the value is used to decide which data type to use if there is a need to temporarily
store the data.

• char *ptr

A pointer that the function can use for its own purposes. For example, functions can use initid-
>ptr to communicate allocated memory among themselves. xxx_init() should allocate the
memory and assign it to this pointer:

initid->ptr = allocated_memory;

In xxx() and xxx_deinit(), refer to initid->ptr to use or deallocate the memory.

Adding a New User-Defined Function

3205

• my_bool const_item

xxx_init() should set const_item to 1 if xxx() always returns the same value and to 0
otherwise.

24.4.2.2 UDF Calling Sequences for Aggregate Functions

This section describes the different functions that you need to define when you create an aggregate
UDF. Section 24.4.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls
these functions.

• xxx_reset()

This function is called when MySQL finds the first row in a new group. It should reset any internal
summary variables and then use the given UDF_ARGS argument as the first value in your internal
summary value for the group. Declare xxx_reset() as follows:

void xxx_reset(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

xxx_reset() is not needed or used in MySQL 5.7, in which the UDF interface uses xxx_clear()
instead. However, you can define both xxx_reset() and xxx_clear() if you want to have your
UDF work with older versions of the server. (If you do include both functions, the xxx_reset()
function in many cases can be implemented internally by calling xxx_clear() to reset all variables,
and then calling xxx_add() to add the UDF_ARGS argument as the first value in the group.)

• xxx_clear()

This function is called when MySQL needs to reset the summary results. It is called at the beginning
for each new group but can also be called to reset the values for a query where there were no
matching rows. Declare xxx_clear() as follows:

void xxx_clear(UDF_INIT *initid, char *is_null, char *error);

is_null is set to point to CHAR(0) before calling xxx_clear().

If something went wrong, you can store a value in the variable to which the error argument points.
error points to a single-byte variable, not to a string buffer.

xxx_clear() is required by MySQL 5.7.

• xxx_add()

This function is called for all rows that belong to the same group. You should use it to add the value
in the UDF_ARGS argument to your internal summary variable.

void xxx_add(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

The xxx() function for an aggregate UDF should be declared the same way as for a nonaggregate
UDF. See Section 24.4.2.1, “UDF Calling Sequences for Simple Functions”.

For an aggregate UDF, MySQL calls the xxx() function after all rows in the group have been
processed. You should normally never access its UDF_ARGS argument here but instead return a value
based on your internal summary variables.

Return value handling in xxx() should be done the same way as for a nonaggregate UDF. See
Section 24.4.2.4, “UDF Return Values and Error Handling”.

The xxx_reset() and xxx_add() functions handle their UDF_ARGS argument the same way as
functions for nonaggregate UDFs. See Section 24.4.2.3, “UDF Argument Processing”.

Adding a New User-Defined Function

3206

The pointer arguments to is_null and error are the same for all calls to xxx_reset(),
xxx_clear(), xxx_add() and xxx(). You can use this to remember that you got an error or
whether the xxx() function should return NULL. You should not store a string into *error! error
points to a single-byte variable, not to a string buffer.

*is_null is reset for each group (before calling xxx_clear()). *error is never reset.

If *is_null or *error are set when xxx() returns, MySQL returns NULL as the result for the group
function.

24.4.2.3 UDF Argument Processing

The args parameter points to a UDF_ARGS structure that has the members listed here:

• unsigned int arg_count

The number of arguments. Check this value in the initialization function if you require your function to
be called with a particular number of arguments. For example:

if (args->arg_count != 2)
{
 strcpy(message,"XXX() requires two arguments");
 return 1;
}

For other UDF_ARGS member values that are arrays, array references are zero-based. That is, refer
to array members using index values from 0 to args->arg_count − 1.

• enum Item_result *arg_type

A pointer to an array containing the types for each argument. The possible type values are
STRING_RESULT, INT_RESULT, REAL_RESULT, and DECIMAL_RESULT.

To make sure that arguments are of a given type and return an error if they are not, check the
arg_type array in the initialization function. For example:

if (args->arg_type[0] != STRING_RESULT ||
 args->arg_type[1] != INT_RESULT)
{
 strcpy(message,"XXX() requires a string and an integer");
 return 1;
}

Arguments of type DECIMAL_RESULT are passed as strings, so you should handle them the same
way as STRING_RESULT values.

As an alternative to requiring your function's arguments to be of particular types, you can use the
initialization function to set the arg_type elements to the types you want. This causes MySQL to
coerce arguments to those types for each call to xxx(). For example, to specify that the first two
arguments should be coerced to string and integer, respectively, do this in xxx_init():

args->arg_type[0] = STRING_RESULT;
args->arg_type[1] = INT_RESULT;

Exact-value decimal arguments such as 1.3 or DECIMAL column values are passed with a type of
DECIMAL_RESULT. However, the values are passed as strings. If you want to receive a number, use
the initialization function to specify that the argument should be coerced to a REAL_RESULT value:

args->arg_type[2] = REAL_RESULT;

• char **args

Adding a New User-Defined Function

3207

args->args communicates information to the initialization function about the general nature of
the arguments passed to your function. For a constant argument i, args->args[i] points to the
argument value. (See later for instructions on how to access the value properly.) For a nonconstant
argument, args->args[i] is 0. A constant argument is an expression that uses only constants,
such as 3 or 4*7-2 or SIN(3.14). A nonconstant argument is an expression that refers to
values that may change from row to row, such as column names or functions that are called with
nonconstant arguments.

For each invocation of the main function, args->args contains the actual arguments that are
passed for the row currently being processed.

If argument i represents NULL, args->args[i] is a null pointer (0). If the argument is not NULL,
functions can refer to it as follows:

• An argument of type STRING_RESULT is given as a string pointer plus a length, to enable handling
of binary data or data of arbitrary length. The string contents are available as args->args[i]
and the string length is args->lengths[i]. Do not assume that the string is null-terminated.

• For an argument of type INT_RESULT, you must cast args->args[i] to a long long value:

long long int_val;
int_val = *((long long*) args->args[i]);

• For an argument of type REAL_RESULT, you must cast args->args[i] to a double value:

double real_val;
real_val = *((double*) args->args[i]);

• For an argument of type DECIMAL_RESULT, the value is passed as a string and should be
handled like a STRING_RESULT value.

• ROW_RESULT arguments are not implemented.

• unsigned long *lengths

For the initialization function, the lengths array indicates the maximum string length for each
argument. You should not change these. For each invocation of the main function, lengths
contains the actual lengths of any string arguments that are passed for the row currently being
processed. For arguments of types INT_RESULT or REAL_RESULT, lengths still contains the
maximum length of the argument (as for the initialization function).

• char *maybe_null

For the initialization function, the maybe_null array indicates for each argument whether the
argument value might be null (0 if no, 1 if yes).

• char **attributes

args->attributes communicates information about the names of the UDF arguments. For
argument i, the attribute name is available as a string in args->attributes[i] and the attribute
length is args->attribute_lengths[i]. Do not assume that the string is null-terminated.

By default, the name of a UDF argument is the text of the expression used to specify the argument.
For UDFs, an argument may also have an optional [AS] alias_name clause, in which case the
argument name is alias_name. The attributes value for each argument thus depends on
whether an alias was given.

Suppose that a UDF my_udf() is invoked as follows:

Adding a New User-Defined Function

3208

SELECT my_udf(expr1, expr2 AS alias1, expr3 alias2);

In this case, the attributes and attribute_lengths arrays will have these values:

args->attributes[0] = "expr1"
args->attribute_lengths[0] = 5

args->attributes[1] = "alias1"
args->attribute_lengths[1] = 6

args->attributes[2] = "alias2"
args->attribute_lengths[2] = 6

• unsigned long *attribute_lengths

The attribute_lengths array indicates the length of each argument name.

24.4.2.4 UDF Return Values and Error Handling

The initialization function should return 0 if no error occurred and 1 otherwise. If an error occurs,
xxx_init() should store a null-terminated error message in the message parameter. The message
is returned to the client. The message buffer is MYSQL_ERRMSG_SIZE characters long, but you should
try to keep the message to less than 80 characters so that it fits the width of a standard terminal
screen.

The return value of the main function xxx() is the function value, for long long and double
functions. A string function should return a pointer to the result and set *length to the length (in bytes)
of the return value. For example:

memcpy(result, "result string", 13);
*length = 13;

MySQL passes a buffer to the xxx() function using the result parameter. This buffer is sufficiently
long to hold 255 characters, which can be multibyte characters. The xxx() function can store the
result in this buffer if it fits, in which case the return value should be a pointer to the buffer. If the
function stores the result in a different buffer, it should return a pointer to that buffer.

If your string function does not use the supplied buffer (for example, if it needs to return a string
longer than 255 characters), you must allocate the space for your own buffer with malloc() in your
xxx_init() function or your xxx() function and free it in your xxx_deinit() function. You can
store the allocated memory in the ptr slot in the UDF_INIT structure for reuse by future xxx() calls.
See Section 24.4.2.1, “UDF Calling Sequences for Simple Functions”.

To indicate a return value of NULL in the main function, set *is_null to 1:

*is_null = 1;

To indicate an error return in the main function, set *error to 1:

*error = 1;

If xxx() sets *error to 1 for any row, the function value is NULL for the current row and for any
subsequent rows processed by the statement in which XXX() was invoked. (xxx() is not even called
for subsequent rows.)

24.4.2.5 UDF Compiling and Installing

Files implementing UDFs must be compiled and installed on the host where the server runs. This
process is described below for the example UDF file sql/udf_example.cc that is included in
MySQL source distributions.

Adding a New User-Defined Function

3209

If a UDF will be referred to in statements that will be replicated to slave servers, you must ensure that
every slave also has the function available. Otherwise, replication will fail on the slaves when they
attempt to invoke the function.

The immediately following instructions are for Unix. Instructions for Windows are given later in this
section.

The udf_example.cc file contains the following functions:

• metaphon() returns a metaphon string of the string argument. This is something like a soundex
string, but it is more tuned for English.

• myfunc_double() returns the sum of the ASCII values of the characters in its arguments, divided
by the sum of the length of its arguments.

• myfunc_int() returns the sum of the length of its arguments.

• sequence([const int]) returns a sequence starting from the given number or 1 if no number
has been given.

• lookup() returns the IP address for a host name.

• reverse_lookup() returns the host name for an IP address. The function may be called either
with a single string argument of the form 'xxx.xxx.xxx.xxx' or with four numbers.

• avgcost() returns an average cost. This is an aggregate function.

A dynamically loadable file should be compiled as a sharable object file, using a command something
like this:

shell> gcc -shared -o udf_example.so udf_example.cc

If you are using gcc with CMake (which is how MySQL is configured), you should be able to create
udf_example.so with a simpler command:

shell> make udf_example

After you compile a shared object containing UDFs, you must install it and tell MySQL about
it. Compiling a shared object from udf_example.cc using gcc directly produces a file
named udf_example.so. Copy the shared object to the server's plugin directory and name it
udf_example.so. This directory is given by the value of the plugin_dir system variable.

On some systems, the ldconfig program that configures the dynamic linker does not recognize
a shared object unless its name begins with lib. In this case you should rename a file such as
udf_example.so to libudf_example.so.

On Windows, you can compile user-defined functions by using the following procedure:

1. Obtain a MySQL source distribution. See Section 2.1.2, “How to Get MySQL”.

2. Obtain the CMake build utility, if necessary, from http://www.cmake.org. (Version 2.6 or later is
required).

3. In the source tree, look in the sql directory. There are files named udf_example.def
udf_example.cc there. Copy both files from this directory to your working directory.

4. Create a CMake makefile (CMakeLists.txt) with these contents:

PROJECT(udf_example)

Path for MySQL include directory

http://www.cmake.org

Adding a New User-Defined Function

3210

INCLUDE_DIRECTORIES("c:/mysql/include")

ADD_DEFINITIONS("-DHAVE_DLOPEN")
ADD_LIBRARY(udf_example MODULE udf_example.cc udf_example.def)
TARGET_LINK_LIBRARIES(udf_example wsock32)

5. Create the VC project and solution files:

cmake -G "<Generator>"

Invoking cmake --help shows you a list of valid Generators.

6. Create udf_example.dll:

devenv udf_example.sln /build Release

After the shared object file has been installed, notify mysqld about the new functions with the following
statements. If object files have a suffix different from .so on your system, substitute the correct suffix
throughout (for example, .dll on Windows).

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION sequence RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION lookup RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION reverse_lookup
 -> RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE AGGREGATE FUNCTION avgcost
 -> RETURNS REAL SONAME 'udf_example.so';

Once installed, a function remains installed until it is uninstalled.

To delete functions, use DROP FUNCTION:

mysql> DROP FUNCTION metaphon;
mysql> DROP FUNCTION myfunc_double;
mysql> DROP FUNCTION myfunc_int;
mysql> DROP FUNCTION sequence;
mysql> DROP FUNCTION lookup;
mysql> DROP FUNCTION reverse_lookup;
mysql> DROP FUNCTION avgcost;

The CREATE FUNCTION and DROP FUNCTION statements update the func system table in the
mysql database. The function's name, type and shared library name are saved in the table. You must
have the INSERT or DELETE privilege for the mysql database to create or drop functions, respectively.

You should not use CREATE FUNCTION to add a function that has previously been created. If you
need to reinstall a function, you should remove it with DROP FUNCTION and then reinstall it with
CREATE FUNCTION. You would need to do this, for example, if you recompile a new version of your
function, so that mysqld gets the new version. Otherwise, the server continues to use the old version.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld
with the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are
unavailable.

24.4.2.6 UDF Security Precautions

MySQL takes several measures to prevent misuse of user-defined functions.

UDF object files cannot be placed in arbitrary directories. They must be located in the server's plugin
directory. This directory is given by the value of the plugin_dir system variable.

Adding a New Native Function

3211

To use CREATE FUNCTION or DROP FUNCTION, you must have the INSERT or DELETE privilege,
respectively, for the mysql database. This is necessary because those statements add and delete
rows from the mysql.func table.

UDFs should have at least one symbol defined in addition to the xxx symbol that corresponds to the
main xxx() function. These auxiliary symbols correspond to the xxx_init(), xxx_deinit(),
xxx_reset(), xxx_clear(), and xxx_add() functions. mysqld also supports an --allow-
suspicious-udfs option that controls whether UDFs that have only an xxx symbol can be loaded.
By default, the option is off, to prevent attempts at loading functions from shared object files other than
those containing legitimate UDFs. If you have older UDFs that contain only the xxx symbol and that
cannot be recompiled to include an auxiliary symbol, it may be necessary to specify the --allow-
suspicious-udfs option. Otherwise, you should avoid enabling this capability.

24.4.3 Adding a New Native Function

To add a new native MySQL function, use the procedure described here, which requires that you use
a source distribution. You cannot add native functions to a binary distribution because it is necessary
to modify MySQL source code and compile MySQL from the modified source. If you migrate to another
version of MySQL (for example, when a new version is released), you must repeat the procedure with
the new version.

If the new native function will be referred to in statements that will be replicated to slave servers, you
must ensure that every slave server also has the function available. Otherwise, replication will fail on
the slaves when they attempt to invoke the function.

To add a new native function, follow these steps to modify source files in the sql directory:

1. Create a subclass for the function in item_create.cc:

• If the function takes a fixed number of arguments, create a subclass of Create_func_arg0,
Create_func_arg1, Create_func_arg2, or Create_func_arg3, respectively, depending
on whether the function takes zero, one, two, or three arguments. For examples, see the
Create_func_uuid, Create_func_abs, Create_func_pow, and Create_func_lpad
classes.

• If the function takes a variable number of arguments, create a subclass of
Create_native_func. For an example, see Create_func_concat.

2. To provide a name by which the function can be referred to in SQL statements, register the name in
item_create.cc by adding a line to this array:

static Native_func_registry func_array[]

You can register several names for the same function. For example, see the lines for "LCASE" and
"LOWER", which are aliases for Create_func_lcase.

3. In item_func.h, declare a class inheriting from Item_num_func or Item_str_func, depending
on whether your function returns a number or a string.

4. In item_func.cc, add one of the following declarations, depending on whether you are defining a
numeric or string function:

double Item_func_newname::val()
longlong Item_func_newname::val_int()
String *Item_func_newname::Str(String *str)

If you inherit your object from any of the standard items (like Item_num_func), you probably only
have to define one of these functions and let the parent object take care of the other functions. For
example, the Item_str_func class defines a val() function that executes atof() on the value
returned by ::str().

Debugging and Porting MySQL

3212

5. If the function is nondeterministic, include the following statement in the item constructor to indicate
that function results should not be cached:

current_thd->lex->safe_to_cache_query=0;

A function is nondeterministic if, given fixed values for its arguments, it can return different results
for different invocations.

6. You should probably also define the following object function:

void Item_func_newname::fix_length_and_dec()

This function should at least calculate max_length based on the given arguments. max_length
is the maximum number of characters the function may return. This function should also set
maybe_null = 0 if the main function can't return a NULL value. The function can check whether
any of the function arguments can return NULL by checking the arguments' maybe_null variable.
Look at Item_func_mod::fix_length_and_dec for a typical example of how to do this.

All functions must be thread-safe. In other words, do not use any global or static variables in the
functions without protecting them with mutexes.

If you want to return NULL from ::val(), ::val_int(), or ::str(), you should set null_value
to 1 and return 0.

For ::str() object functions, there are additional considerations to be aware of:

• The String *str argument provides a string buffer that may be used to hold the result. (For more
information about the String type, take a look at the sql_string.h file.)

• The ::str() function should return the string that holds the result, or (char*) 0 if the result is
NULL.

• All current string functions try to avoid allocating any memory unless absolutely necessary!

24.5 Debugging and Porting MySQL
This section helps you port MySQL to other operating systems. Do check the list of currently supported
operating systems first. See http://www.mysql.com/support/supportedplatforms/database.html. If you
have created a new port of MySQL, please let us know so that we can list it here and on our Web site
(http://www.mysql.com/), recommending it to other users.

Note

If you create a new port of MySQL, you are free to copy and distribute it under
the GPL license, but it does not make you a copyright holder of MySQL.

A working POSIX thread library is needed for the server.

To build MySQL from source, your system must satisfy the tool requirements listed at Section 2.9,
“Installing MySQL from Source”.

If you run into problems with a new port, you may have to do some debugging of MySQL! See
Section 24.5.1, “Debugging a MySQL Server”.

Note

Before you start debugging mysqld, first get the test program mysys/
thr_lock to work. This ensures that your thread installation has even a remote
chance to work!

24.5.1 Debugging a MySQL Server

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/

Debugging a MySQL Server

3213

If you are using some functionality that is very new in MySQL, you can try to run mysqld with the --
skip-new (which disables all new, potentially unsafe functionality). See Section B.5.3.3, “What to Do If
MySQL Keeps Crashing”.

If mysqld doesn't want to start, you should verify that you don't have any my.cnf files that interfere
with your setup! You can check your my.cnf arguments with mysqld --print-defaults and avoid
using them by starting with mysqld --no-defaults

If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin processlist
status to find out if someone is executing a query that takes a long time. It may be a good idea to run
mysqladmin -i10 processlist status in some window if you are experiencing performance
problems or problems when new clients can't connect.

The command mysqladmin debug dumps some information about locks in use, used memory and
query usage to the MySQL log file. This may help solve some problems. This command also provides
some useful information even if you haven't compiled MySQL for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table
with OPTIMIZE TABLE or myisamchk. See Chapter 5, MySQL Server Administration. You should also
check the slow queries with EXPLAIN.

You should also read the OS-specific section in this manual for problems that may be unique to your
environment. See Section 2.1, “General Installation Guidance”.

24.5.1.1 Compiling MySQL for Debugging

If you have some very specific problem, you can always try to debug MySQL. To do this you must
configure MySQL with the -DWITH_DEBUG=1 option. You can check whether MySQL was compiled
with debugging by doing: mysqld --help. If the --debug flag is listed with the options then you have
debugging enabled. mysqladmin ver also lists the mysqld version as mysql ... --debug in this
case.

If mysqld stops crashing when you configure it with the -DWITH_DEBUG=1 CMake option, you
probably have found a compiler bug or a timing bug within MySQL. In this case, you can try to add -g
using the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options and not use -DWITH_DEBUG=1.
If mysqld dies, you can at least attach to it with gdb or use gdb on the core file to find out what
happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check
functions that monitor the health of mysqld. If they find something “unexpected,” an entry is written
to stderr, which mysqld_safe directs to the error log! This also means that if you are having some
unexpected problems with MySQL and are using a source distribution, the first thing you should do is to
configure MySQL for debugging! (The second thing is to send mail to a MySQL mailing list and ask for
help. See Section 1.6.1, “MySQL Mailing Lists”. If you believe that you have found a bug, please use
the instructions at Section 1.7, “How to Report Bugs or Problems”.

24.5.1.2 Creating Trace Files

If the mysqld server does not start or it crashes easily, you can try to create a trace file to find the
problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check
this by executing mysqld -V. If the version number ends with -debug, it is compiled with support for
trace files. (On Windows, the debugging server is named mysqld-debug rather than mysqld.)

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or \mysqld.trace on
Windows:

shell> mysqld --debug

Debugging a MySQL Server

3214

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a
console window, use this command:

C:\> mysqld-debug --debug --standalone

After this, you can use the mysql.exe command-line tool in a second console window to reproduce
the problem. You can stop the mysqld server with mysqladmin shutdown.

The trace file can become very large! To generate a smaller trace file, you can use debugging options
something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you make a bug report about this, please only send the lines from the trace file to the appropriate
mailing list where something seems to go wrong! If you can't locate the wrong place, you can open a
bug report and upload the trace file to the report, so that a MySQL developer can take a look at it. For
instructions, see Section 1.7, “How to Report Bugs or Problems”.

The trace file is made with the DBUG package by Fred Fish. See Section 24.5.3, “The DBUG
Package”.

24.5.1.3 Using WER with PDB to create a Windows crashdump

Program Database files (extension pdb) are included in the ZIP Archive Debug Binaries & Test Suite
distribution of MySQL. These files provide information for debugging your MySQL installation in the
event of a problem. This is a separate download from the standard MSI or Zip file.

Note

As of MySQL 5.7.6, the PDB files are available in a separate file labeled "ZIP
Archive Debug Binaries & Test Suite".

The PDB file contains more detailed information about mysqld and other tools that enables more
detailed trace and dump files to be created. You can use these with WinDbg or Visual Studio to debug
mysqld.

Note

The older Dr. Watson debugging tool was removed in Microsoft Vista, with
WinDbg being a common alternative.

For more information on PDB files, see Microsoft Knowledge Base Article 121366. For more
information on the debugging options available, see Debugging Tools for Windows.

To use WinDbg, either install the full Windows Driver Kit (WDK) or install the standalone version.

Important

The .exe and .pbd files must be an exact match (both version number and
MySQL server edition) or WinDBG will complain while attempting to load the
symbols.

1. To generate a minidump mysqld.dmp, enable the core-file option under the [mysqld] section in
my.ini. Restart the MySQL server after making these changes.

2. Create a directory to store the generated files, such as c:\symbols

3. Determine the path to your windbg.exe executable using the Find GUI or from the command line,
for example: dir /s /b windbg.exe -- a common default is C:\Program Files\Debugging Tools
for Windows (x64)\windbg.exe

http://support.microsoft.com/kb/121366/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Debugging a MySQL Server

3215

4. Launch windbg.exe giving it the paths to mysqld-debug.exe, mysqld.pdb, mysqld.dmp, and
the source code. Alternatively, pass in each path from the WinDbg GUI. For example:

windbg.exe -i "C:\mysql-5.7.11-winx64\bin\"^
 -z "C:\mysql-5.7.11-winx64\data\mysqld.dmp"^
 -srcpath "E:\ade\mysql_archives\5.7\5.7.11\mysql-5.7.11"^
 -y "C:\mysql-5.7.11-winx64\bin;SRV*c:\symbols*http://msdl.microsoft.com/download/symbols"^
 -v -n -c "!analyze -vvvvv"

Note

The ^ character and newline are removed by the Windows command line
processor, so be sure the spaces remain intact.

24.5.1.4 Debugging mysqld under gdb

On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able
to debug mysqld threads. In this case, you can only have one thread active at a time. It is best to
upgrade to gdb 5.1 because thread debugging works much better with this version!

NPTL threads (the new thread library on Linux) may cause problems while running mysqld under gdb.
Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

In this case, you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace to
be able to catch segfaults within gdb.

Use the --gdb option to mysqld to install an interrupt handler for SIGINT (needed to stop mysqld
with ^C to set breakpoints) and disable stack tracing and core file handling.

It is very hard to debug MySQL under gdb if you do a lot of new connections the whole time as
gdb doesn't free the memory for old threads. You can avoid this problem by starting mysqld with
thread_cache_size set to a value equal to max_connections + 1. In most cases just using --
thread_cache_size=5' helps a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld
with the --core-file option. This core file can be used to make a backtrace that may help you find
out why mysqld died:

shell> gdb mysqld core
gdb> backtrace full
gdb> quit

See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

If you are using gdb 4.17.x or above on Linux, you should install a .gdb file, with the following
information, in your current directory:

Debugging a MySQL Server

3216

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

If you have problems debugging threads with gdb, you should download gdb 5.x and try this instead.
The new gdb version has very improved thread handling!

Here is an example how to debug mysqld:

shell> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the preceding output in a bug report, which you can file using the instructions in Section 1.7,
“How to Report Bugs or Problems”.

If mysqld hangs, you can try to use some system tools like strace or /usr/proc/bin/pstack to
examine where mysqld has hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the trace
method or by setting the DBI_TRACE environment variable.

24.5.1.5 Using a Stack Trace

On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can
use this to find out where (and maybe why) mysqld died. See Section 5.2.2, “The Error Log”. To get
a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to gcc. See
Section 24.5.1.1, “Compiling MySQL for Debugging”.

A stack trace in the error log looks something like this:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
mysqld(my_print_stacktrace+0x32)[0x9da402]
mysqld(handle_segfault+0x28a)[0x6648e9]
/lib/libpthread.so.0[0x7f1a5af000f0]
/lib/libc.so.6(strcmp+0x2)[0x7f1a5a10f0f2]
mysqld(_Z21check_change_passwordP3THDPKcS2_Pcj+0x7c)[0x7412cb]
mysqld(_ZN16set_var_password5checkEP3THD+0xd0)[0x688354]
mysqld(_Z17sql_set_variablesP3THDP4ListI12set_var_baseE+0x68)[0x688494]
mysqld(_Z21mysql_execute_commandP3THD+0x41a0)[0x67a170]
mysqld(_Z11mysql_parseP3THDPKcjPS2_+0x282)[0x67f0ad]
mysqld(_Z16dispatch_command19enum_server_commandP3THDPcj+0xbb7[0x67fdf8]
mysqld(_Z10do_commandP3THD+0x24d)[0x6811b6]
mysqld(handle_one_connection+0x11c)[0x66e05e]

If resolution of function names for the trace fails, the trace contains less information:

mysqld got signal 11;

Debugging a MySQL Server

3217

Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
[0x9da402]
[0x6648e9]
[0x7f1a5af000f0]
[0x7f1a5a10f0f2]
[0x7412cb]
[0x688354]
[0x688494]
[0x67a170]
[0x67f0ad]
[0x67fdf8]
[0x6811b6]
[0x66e05e]

In the latter case, you can use the resolve_stack_dump utility to determine where mysqld died by
using the following procedure:

1. Copy the numbers from the stack trace to a file, for example mysqld.stack. The numbers should
not include the surrounding square brackets:

0x9da402
0x6648e9
0x7f1a5af000f0
0x7f1a5a10f0f2
0x7412cb
0x688354
0x688494
0x67a170
0x67f0ad
0x67fdf8
0x6811b6
0x66e05e

2. Make a symbol file for the mysqld server:

shell> nm -n libexec/mysqld > /tmp/mysqld.sym

If mysqld is not linked statically, use the following command instead:

shell> nm -D -n libexec/mysqld > /tmp/mysqld.sym

If you want to decode C++ symbols, use the --demangle, if available, to nm. If your version of nm
does not have this option, you will need to use the c++filt command after the stack dump has
been produced to demangle the C++ names.

3. Execute the following command:

shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack

If you were not able to include demangled C++ names in your symbol file, process the
resolve_stack_dump output using c++filt:

shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack | c++filt

This prints out where mysqld died. If that does not help you find out why mysqld died, you should
create a bug report and include the output from the preceding command with the bug report.

However, in most cases it does not help us to have just a stack trace to find the reason for the
problem. To be able to locate the bug or provide a workaround, in most cases we need to know the

Debugging a MySQL Server

3218

statement that killed mysqld and preferably a test case so that we can repeat the problem! See
Section 1.7, “How to Report Bugs or Problems”.

Newer versions of glibc stack trace functions also print the address as relative to the object. On
glibc-based systems (Linux), the trace for a crash within a plugin looks something like:

plugin/auth/auth_test_plugin.so(+0x9a6)[0x7ff4d11c29a6]

To translate the relative address (+0x9a6) into a file name and line number, use this command:

shell> addr2line -fie auth_test_plugin.so 0x9a6
auth_test_plugin
mysql-trunk/plugin/auth/test_plugin.c:65

The addr2line utility is part of the binutils package on Linux.

On Solaris, the procedure is similar. The Solaris printstack() already prints relative addresses:

plugin/auth/auth_test_plugin.so:0x1510

To translate, use this command:

shell> gaddr2line -fie auth_test_plugin.so 0x1510
mysql-trunk/plugin/auth/test_plugin.c:88

Windows already prints the address, function name and line:

000007FEF07E10A4 auth_test_plugin.dll!auth_test_plugin()[test_plugin.c:72]

24.5.1.6 Using Server Logs to Find Causes of Errors in mysqld

Note that before starting mysqld with the general query log enabled, you should check all your tables
with myisamchk. See Chapter 5, MySQL Server Administration.

If mysqld dies or hangs, you should start mysqld with the general query log enabled. See
Section 5.2.3, “The General Query Log”. When mysqld dies again, you can examine the end of the log
file for the query that killed mysqld.

If you use the default general query log file, the log is stored in the database directory as
host_name.log In most cases it is the last query in the log file that killed mysqld, but if possible you
should verify this by restarting mysqld and executing the found query from the mysql command-line
tools. If this works, you should also test all complicated queries that didn't complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure
that mysqld is using indexes properly. See Section 13.8.2, “EXPLAIN Syntax”.

You can find the queries that take a long time to execute by starting mysqld with the slow query log
enabled. See Section 5.2.5, “The Slow Query Log”.

If you find the text mysqld restarted in the error log file (normally named hostname.err) you
probably have found a query that causes mysqld to fail. If this happens, you should check all your
tables with myisamchk (see Chapter 5, MySQL Server Administration), and test the queries in the
MySQL log files to see whether one fails. If you find such a query, try first upgrading to the newest
MySQL version. If this doesn't help and you can't find anything in the mysql mail archive, you should
report the bug to a MySQL mailing list. The mailing lists are described at http://lists.mysql.com/, which
also has links to online list archives.

If you have started mysqld with --myisam-recover-options, MySQL automatically checks and
tries to repair MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens,
MySQL writes an entry in the hostname.err file 'Warning: Checking table ...' which is

http://lists.mysql.com/

Debugging a MySQL Client

3219

followed by Warning: Repairing table if the table needs to be repaired. If you get a lot of these
errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be
investigated further. See Section 5.1.3, “Server Command Options”.

When the server detects MyISAM table corruption, it writes additional information to the error log, such
as the name and line number of the source file, and the list of threads accessing the table. Example:
Got an error from thread_id=1, mi_dynrec.c:368. This is useful information to include in
bug reports.

It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the
Checking table... messages, but instead try to find out why mysqld died.

24.5.1.7 Making a Test Case If You Experience Table Corruption

The following procedure applies to MyISAM tables. For information about steps to take when
encountering InnoDB table corruption, see Section 1.7, “How to Report Bugs or Problems”.

If you encounter corrupted MyISAM tables or if mysqld always fails after some update statements, you
can test whether the issue is reproducible by doing the following:

1. Stop the MySQL daemon with mysqladmin shutdown.

2. Make a backup of the tables to guard against the very unlikely case that the repair does something
bad.

3. Check all tables with myisamchk -s database/*.MYI. Repair any corrupted tables with
myisamchk -r database/table.MYI.

4. Make a second backup of the tables.

5. Remove (or move away) any old log files from the MySQL data directory if you need more space.

6. Start mysqld with the binary log enabled. If you want to find a statement that crashes mysqld, you
should start the server with the general query log enabled as well. See Section 5.2.3, “The General
Query Log”, and Section 5.2.4, “The Binary Log”.

7. When you have gotten a crashed table, stop the mysqld server.

8. Restore the backup.

9. Restart the mysqld server without the binary log enabled.

10. Re-execute the statements with mysqlbinlog binary-log-file | mysql. The binary log is
saved in the MySQL database directory with the name hostname-bin.NNNNNN.

11. If the tables are corrupted again or you can get mysqld to die with the above command, you
have found a reproducible bug. FTP the tables and the binary log to our bugs database using the
instructions given in Section 1.7, “How to Report Bugs or Problems”. If you are a support customer,
you can use the MySQL Customer Support Center (http://www.mysql.com/support/) to alert the
MySQL team about the problem and have it fixed as soon as possible.

24.5.2 Debugging a MySQL Client

To be able to debug a MySQL client with the integrated debug package, you should configure MySQL
with -DWITH_DEBUG=1. See Section 2.9.4, “MySQL Source-Configuration Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

http://www.mysql.com/support/

The DBUG Package

3220

If you have problems with your own client code, you should attempt to connect to the server and
run your query using a client that is known to work. Do this by running mysql in debugging mode
(assuming that you have compiled MySQL with debugging on):

shell> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.7, “How to Report Bugs
or Problems”.

If your client crashes at some 'legal' looking code, you should check that your mysql.h include file
matches your MySQL library file. A very common mistake is to use an old mysql.h file from an old
MySQL installation with new MySQL library.

24.5.3 The DBUG Package

The MySQL server and most MySQL clients are compiled with the DBUG package originally created by
Fred Fish. When you have configured MySQL for debugging, this package makes it possible to get a
trace file of what the program is doing. See Section 24.5.1.2, “Creating Trace Files”.

This section summarizes the argument values that you can specify in debug options on the command
line for MySQL programs that have been built with debugging support. For more information about
programming with the DBUG package, see the DBUG manual in the dbug directory of MySQL source
distributions. It's best to use a recent distribution to get the most updated DBUG manual.

The DBUG package can be used by invoking a program with the --debug[=debug_options] or -#
[debug_options] option. If you specify the --debug or -# option without a debug_options value,
most MySQL programs use a default value. The server default is d:t:i:o,/tmp/mysqld.trace on
Unix and d:t:i:O,\mysqld.trace on Windows. The effect of this default is:

• d: Enable output for all debug macros

• t: Trace function calls and exits

• i: Add PID to output lines

• o,/tmp/mysqld.trace, O,\mysqld.trace: Set the debug output file.

Most client programs use a default debug_options value of d:t:o,/tmp/program_name.trace,
regardless of platform.

Here are some example debug control strings as they might be specified on a shell command line:

--debug=d:t
--debug=d:f,main,subr1:F:L:t,20
--debug=d,input,output,files:n
--debug=d:t:i:O,\\mysqld.trace

For mysqld, it is also possible to change DBUG settings at runtime by setting the debug system
variable. This variable has global and session values:

mysql> SET GLOBAL debug = 'debug_options';
mysql> SET SESSION debug = 'debug_options';

Changes at runtime require the SUPER privilege, even for the session value.

The debug_options value is a sequence of colon-separated fields:

field_1:field_2:...:field_N

Each field within the value consists of a mandatory flag character, optionally preceded by a + or -
character, and optionally followed by a comma-delimited list of modifiers:

The DBUG Package

3221

[+|-]flag[,modifier,modifier,...,modifier]

The following table describes the permitted flag characters. Unrecognized flag characters are silently
ignored.

Flag Description

d Enable output from DBUG_XXX macros for the current state. May be followed by a list of
keywords, which enables output only for the DBUG macros with that keyword. An empty list of
keywords enables output for all macros.

In MySQL, common debug macro keywords to enable are enter, exit, error, warning,
info, and loop.

D Delay after each debugger output line. The argument is the delay, in tenths of seconds,
subject to machine capabilities. For example, D,20 specifies a delay of two seconds.

f Limit debugging, tracing, and profiling to the list of named functions. An empty list enables all
functions. The appropriate d or t flags must still be given; this flag only limits their actions if
they are enabled.

F Identify the source file name for each line of debug or trace output.

i Identify the process with the PID or thread ID for each line of debug or trace output.

L Identify the source file line number for each line of debug or trace output.

n Print the current function nesting depth for each line of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the specified file. The default output is stderr.

O Like o, but the file is really flushed between each write. When needed, the file is closed and
reopened between each write.

p Limit debugger actions to specified processes. A process must be identified with the
DBUG_PROCESS macro and match one in the list for debugger actions to occur.

P Print the current process name for each line of debug or trace output.

r When pushing a new state, do not inherit the previous state's function nesting level. Useful
when the output is to start at the left margin.

S Do function _sanity(_file_,_line_) at each debugged function until _sanity()
returns something that differs from 0.

t Enable function call/exit trace lines. May be followed by a list (containing only one modifier)
giving a numeric maximum trace level, beyond which no output occurs for either debugging or
tracing macros. The default is a compile time option.

The leading + or - character and trailing list of modifiers are used for flag characters such as d or f
that can enable a debug operation for all applicable modifiers or just some of them:

• With no leading + or -, the flag value is set to exactly the modifier list as given.

• With a leading + or -, the modifiers in the list are added to or subtracted from the current modifier list.

The following examples show how this works for the d flag. An empty d list enabled output for all debug
macros. A nonempty list enables output only for the macro keywords in the list.

These statements set the d value to the modifier list as given:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+

The DBUG Package

3222

| d |
+---------+
mysql> SET debug = 'd,error,warning';
mysql> SELECT @@debug;
+-----------------+
| @@debug |
+-----------------+
| d,error,warning |
+-----------------+

A leading + or - adds to or subtracts from the current d value:

mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+----------------------+
| @@debug |
+----------------------+
| d,error,warning,loop |
+----------------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+-----------+
| @@debug |
+-----------+
| d,warning |
+-----------+

Adding to “all macros enabled” results in no change:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+
mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+

Disabling all enabled macros disables the d flag entirely:

mysql> SET debug = 'd,error,loop';
mysql> SELECT @@debug;
+--------------+
| @@debug |
+--------------+
| d,error,loop |
+--------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| |
+---------+

Note

Prior to MySQL 5.7.2, the + and - modifiers were not always handled correctly
and could leave a flag value in an incorrect state. Verify your debug-setting
sequence in advance or set it without using + or -.

3223

Chapter 25 MySQL Enterprise Edition

Table of Contents
25.1 MySQL Enterprise Monitor Overview .. 3223
25.2 MySQL Enterprise Backup Overview .. 3224
25.3 MySQL Enterprise Security Overview ... 3224
25.4 MySQL Enterprise Encryption Overview ... 3225
25.5 MySQL Enterprise Audit Overview ... 3225
25.6 MySQL Enterprise Firewall Overview ... 3225
25.7 MySQL Enterprise Thread Pool Overview ... 3226

MySQL Enterprise Edition is a commercial product. Like MySQL Community Edition, MySQL
Enterprise Edition includes MySQL Server, a fully integrated transaction-safe, ACID-compliant
database with full commit, rollback, crash-recovery, and row-level locking capabilities. In addition,
MySQL Enterprise Edition includes the following components designed to provide monitoring and
online backup, as well as improved security and scalability:

The following sections briefly discuss each of these components and indicate where to find more
detailed information. To learn more about commercial products, see http://www.mysql.com/products/.

• MySQL Enterprise Monitor

• MySQL Enterprise Backup

• MySQL Enterprise Security

• MySQL Enterprise Encryption

• MySQL Enterprise Audit

• MySQL Enterprise Firewall

• MySQL Enterprise Thread Pool

25.1 MySQL Enterprise Monitor Overview

MySQL Enterprise Monitor is an enterprise monitoring system for MySQL that keeps an eye on your
MySQL servers, notifies you of potential issues and problems, and advises you how to fix the issues.
MySQL Enterprise Monitor can monitor all kinds of configurations, from a single MySQL server that is
important to your business, all the way up to a huge farm of MySQL servers powering a busy web site.

The following discussion briefly summarizes the basic components that make up the MySQL Enterprise
Monitor product. For more information, see the MySQL Enterprise Monitor manual, available at http://
dev.mysql.com/doc/mysql-monitor/en/.

MySQL Enterprise Monitor components can be installed in various configurations depending on your
database and network topology, to give you the best combination of reliable and responsive monitoring
data, with minimal overhead on the database server machines. A typical MySQL Enterprise Monitor
installation consists of:

• One or more MySQL servers to monitor. MySQL Enterprise Monitor can monitor both Community
and Enterprise MySQL server releases.

• A MySQL Enterprise Monitor Agent for each monitored host.

• A single MySQL Enterprise Service Manager, which collates information from the agents and
provides the user interface to the collected data.

http://www.mysql.com/products/
http://dev.mysql.com/doc/mysql-monitor/en/
http://dev.mysql.com/doc/mysql-monitor/en/

MySQL Enterprise Backup Overview

3224

MySQL Enterprise Monitor is designed to monitor one or more MySQL servers. The monitoring
information is collected by using an agent, MySQL Enterprise Monitor Agent. The agent communicates
with the hosts and MySQL servers that it monitors, collecting variables, status and health information,
and sending this information to the MySQL Enterprise Service Manager.

The information collected by the agent about each MySQL server and host you are monitoring is sent
to the MySQL Enterprise Service Manager. This server collates all of the information from the agents.
As it collates the information sent by the agents, the MySQL Enterprise Service Manager continually
tests the collected data, comparing the status of the server to reasonable values. When thresholds are
reached, the server can trigger an event (including an alarm and notification) to highlight a potential
issue, such as low memory, high CPU usage, or more complex conditions such insufficient buffer sizes
and status information. We call each test, with its associated threshold value, a rule.

These rules, and the alarms and notifications, are each known as a MySQL Enterprise Advisors.
Advisors form a critical part of the MySQL Enterprise Service Manager, as they provide warning
information and troubleshooting advice about potential problems.

The MySQL Enterprise Service Manager includes a web server, and you interact with it through
any web browser. This interface, the MySQL Enterprise Monitor User Interface, displays all of the
information collected by the agents, and lets you view all of your servers and their current status as a
group or individually. You control and configure all aspects of the service using the MySQL Enterprise
Monitor User Interface.

The information supplied by the MySQL Enterprise Monitor Agent processes also includes statistical
and query information, which you can view in the form of graphs. For example, you can view aspects
such as server load, query numbers, or index usage information as a graph over time. The graph
lets you pinpoint problems or potential issues on your server, and can help diagnose the impact from
database or external problems (such as external system or network failure) by examining the data from
a specific time interval.

The MySQL Enterprise Monitor Agent can also be configured to collect detailed information about
the queries executed on your server, including the row counts and performance times for executing
each query. You can correlate the detailed query data with the graphical information to identify which
queries were executing when you experienced a particularly high load, index or other issue. The query
data is supported by a system called Query Analyzer, and the data can be presented in different ways
depending on your needs.

25.2 MySQL Enterprise Backup Overview
MySQL Enterprise Backup performs hot backup operations for MySQL databases. The product is
architected for efficient and reliable backups of tables created by the InnoDB storage engine. For
completeness, it can also back up tables from MyISAM and other storage engines.

The following discussion briefly summarizes MySQL Enterprise Backup. For more information, see the
MySQL Enterprise Backup manual, available at http://dev.mysql.com/doc/mysql-enterprise-backup/en/.

Hot backups are performed while the database is running and applications are reading and writing
to it. This type of backup does not block normal database operations, and it captures even changes
that occur while the backup is happening. For these reasons, hot backups are desirable when your
database “grows up” -- when the data is large enough that the backup takes significant time, and when
your data is important enough to your business that you must capture every last change, without taking
your application, web site, or web service offline.

MySQL Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For
tables using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the
database continues to run, but those tables cannot be modified while being backed up. For efficient
backup operations, you can designate InnoDB as the default storage engine for new tables, or convert
existing tables to use the InnoDB storage engine.

25.3 MySQL Enterprise Security Overview

http://dev.mysql.com/doc/mysql-enterprise-backup/en/

MySQL Enterprise Encryption Overview

3225

MySQL Enterprise Edition provides plugins that implement authentication using external services:

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a
standard interface to access various kinds of authentication methods, such as Unix passwords or an
LDAP directory.

• MySQL Enterprise Edition includes an authentication plugin that performs external authentication
on Windows, enabling MySQL Server to use native Windows services to authenticate client
connections. Users who have logged in to Windows can connect from MySQL client programs to the
server based on the information in their environment without specifying an additional password.

For more information, see Section 6.3.9.5, “The PAM Authentication Plugin”, and Section 6.3.9.6, “The
Windows Native Authentication Plugin”.

For other related Enterprise security features, see Section 25.4, “MySQL Enterprise Encryption
Overview”.

25.4 MySQL Enterprise Encryption Overview
In MySQL 5.6, MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL
library that expose OpenSSL capabilities at the SQL level. These functions enable Enterprise
applications to perform the following operations:

• Implement added data protection using public-key asymmetric cryptography

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

For more information, see Section 12.18, “MySQL Enterprise Encryption Functions”.

25.5 MySQL Enterprise Audit Overview
MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin.
MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring
and logging of connection and query activity executed on specific MySQL servers. Designed to meet
the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy to use auditing
and compliance solution for applications that are governed by both internal and external regulatory
guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

For more information, see Section 6.3.15, “MySQL Enterprise Audit Log Plugin”.

25.6 MySQL Enterprise Firewall Overview
MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that
enables database administrators to permit or deny SQL statement execution based on matching
against whitelists of accepted statement patterns. This helps harden MySQL Server against attacks
such as SQL injection or attempts to exploit applications by using them outside of their legitimate query
workload characteristics.

Each MySQL account registered with the firewall has its own statement whitelist, enabling protection to
be tailored per account. For a given account, the firewall can operate in recording or protecting mode,
for training in the accepted statement patterns or protection against unacceptable statements.

MySQL Enterprise Thread Pool Overview

3226

For more information, see Section 6.3.17, “MySQL Enterprise Firewall”.

25.7 MySQL Enterprise Thread Pool Overview

MySQL Enterprise Edition includes the MySQL Thread Pool, implemented using a server plugin. The
default thread-handling model in MySQL Server executes statements using one thread per client
connection. As more clients connect to the server and execute statements, overall performance
degrades. In MySQL Enterprise Edition, a thread pool plugin provides an alternative thread-handling
model designed to reduce overhead and improve performance. The plugin implements a thread pool
that increases server performance by efficiently managing statement execution threads for large
numbers of client connections.

For more information, see Section 8.12.7, “The Thread Pool Plugin”.

3227

Chapter 26 MySQL Workbench
MySQL Workbench provides a graphical tool for working with MySQL Servers and databases. MySQL
Workbench fully supports MySQL Server versions 5.1 and above. It is also compatible with MySQL
Server 5.0, but not every feature of 5.0 may be supported. It does not support MySQL Server versions
4.x.

The following discussion briefly describes MySQL Workbench capabilities. For more information, see
the MySQL Workbench manual, available at http://dev.mysql.com/doc/workbench/en/.

MySQL Workbench provides five main areas of functionality:

• SQL Development: Enables you to create and manage connections to database servers. As well
as enabling you to configure connection parameters, MySQL Workbench provides the capability to
execute SQL queries on the database connections using the built-in SQL Editor. This functionality
replaces that previously provided by the Query Browser standalone application.

• Data Modeling: Enables you to create models of your database schema graphically, reverse and
forward engineer between a schema and a live database, and edit all aspects of your database using
the comprehensive Table Editor. The Table Editor provides easy-to-use facilities for editing Tables,
Columns, Indexes, Triggers, Partitioning, Options, Inserts and Privileges, Routines and Views.

• Server Administration: Enables you to create and administer server instances.

• Data Migration: Allows you to migrate from Microsoft SQL Server, Sybase ASE, SQLite, SQL
Anywhere, PostreSQL, and other RDBMS tables, objects and data to MySQL. Migration also
supports migrating from earlier versions of MySQL to the latest releases.

• MySQL Enterprise Support: Support for Enterprise products such as MySQL Enterprise Backup
and MySQL Audit.

MySQL Workbench is available in two editions, the Community Edition and the Commercial Edition.
The Community Edition is available free of charge. The Commercial Edition provides additional
Enterprise features, such as database documentation generation, at low cost.

http://dev.mysql.com/doc/workbench/en/

3228

3229

Appendix A MySQL 5.7 Frequently Asked Questions

Table of Contents
A.1 MySQL 5.7 FAQ: General ... 3229
A.2 MySQL 5.7 FAQ: Storage Engines .. 3230
A.3 MySQL 5.7 FAQ: Server SQL Mode .. 3231
A.4 MySQL 5.7 FAQ: Stored Procedures and Functions ... 3232
A.5 MySQL 5.7 FAQ: Triggers .. 3236
A.6 MySQL 5.7 FAQ: Views .. 3238
A.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA .. 3238
A.8 MySQL 5.7 FAQ: Migration ... 3239
A.9 MySQL 5.7 FAQ: Security ... 3240
A.10 MySQL 5.7 FAQ: MySQL Cluster .. 3240
A.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 3241
A.12 MySQL 5.7 FAQ: Connectors & APIs .. 3253
A.13 MySQL 5.7 FAQ: Replication .. 3253
A.14 MySQL 5.7 FAQ: MySQL Enterprise Thread Pool ... 3257

A.1 MySQL 5.7 FAQ: General
A.1.1 Which version of MySQL is production-ready (GA)? ... 3229
A.1.2 What is the state of development (non-GA) versions? .. 3229
A.1.3 Can MySQL 5.7 do subqueries? ... 3230
A.1.4 Can MySQL 5.7 perform multiple-table inserts, updates, and deletes? 3230
A.1.5 Does MySQL 5.7 have a Query Cache? Does it work on Server, Instance or Database? 3230
A.1.6 Does MySQL 5.7 have Sequences? .. 3230
A.1.7 Does MySQL 5.7 have a NOW() function with fractions of seconds? 3230
A.1.8 Does MySQL 5.7 work with multi-core processors? .. 3230
A.1.9 Why do I see multiple processes for mysqld? ... 3230
A.1.10 Can MySQL 5.7 perform ACID transactions? ... 3230

A.1.1. Which version of MySQL is production-ready (GA)?

MySQL 5.7 and MySQL 5.6 are supported for production use.

MySQL 5.7 achieved General Availability (GA) status with MySQL 5.7.9, which was released for
production use on 21 October 2015.

MySQL 5.6 achieved General Availability (GA) status with MySQL 5.6.10, which was released
for production use on 5 February 2013.

MySQL 5.5 achieved General Availability (GA) status with MySQL 5.5.8, which was released
for production use on 3 December 2010. The MySQL 5.5 series is no longer current, but still
supported in production.

MySQL 5.1 achieved General Availability (GA) status with MySQL 5.1.30, which was released
for production use on 14 November 2008. Active development for MySQL 5.1 has ended.

MySQL 5.0 achieved General Availability (GA) status with MySQL 5.0.15, which was released
for production use on 19 October 2005. Active development for MySQL 5.0 has ended.

A.1.2. What is the state of development (non-GA) versions?

MySQL follows a milestone release model that introduces pre-production-quality features and
stabilizes them to release quality (see http://dev.mysql.com/doc/mysql-development-cycle/en/
index.html). This process then repeats, so releases cycle between pre-production and release
quality status. Please check the change logs to identify the status of a given release.

http://dev.mysql.com/doc/mysql-development-cycle/en/index.html
http://dev.mysql.com/doc/mysql-development-cycle/en/index.html

MySQL 5.7 FAQ: Storage Engines

3230

MySQL 5.4 was a development series. Work on this series has ceased.

A successor to MySQL 5.7 is being actively developed using the milestone release methodology
described above.

A.1.3. Can MySQL 5.7 do subqueries?

Yes. See Section 13.2.10, “Subquery Syntax”.

A.1.4. Can MySQL 5.7 perform multiple-table inserts, updates, and deletes?

Yes. For the syntax required to perform multiple-table updates, see Section 13.2.11, “UPDATE
Syntax”; for that required to perform multiple-table deletes, see Section 13.2.2, “DELETE
Syntax”.

A multiple-table insert can be accomplished using a trigger whose FOR EACH ROW clause
contains multiple INSERT statements within a BEGIN ... END block. See Section 19.3, “Using
Triggers”.

A.1.5. Does MySQL 5.7 have a Query Cache? Does it work on Server, Instance or Database?

Yes. The query cache operates on the server level, caching complete result sets matched with
the original query string. If an exactly identical query is made (which often happens, particularly
in web applications), no parsing or execution is necessary; the result is sent directly from the
cache. Various tuning options are available. See Section 8.10.3, “The MySQL Query Cache”.

A.1.6. Does MySQL 5.7 have Sequences?

No. However, MySQL has an AUTO_INCREMENT system, which in MySQL 5.7 can also handle
inserts in a multi-master replication setup. With the auto_increment_increment and
auto_increment_offset system variables, you can set each server to generate auto-
increment values that don't conflict with other servers. The auto_increment_increment
value should be greater than the number of servers, and each server should have a unique
offset.

A.1.7. Does MySQL 5.7 have a NOW() function with fractions of seconds?

Yes, see Section 11.3.6, “Fractional Seconds in Time Values”.

A.1.8. Does MySQL 5.7 work with multi-core processors?

Yes. MySQL is fully multi-threaded, and will make use of multiple CPUs, provided that the
operating system supports them.

A.1.9. Why do I see multiple processes for mysqld?

When using LinuxThreads, you should see a minimum of three mysqld processes running.
These are in fact threads. There is one thread for the LinuxThreads manager, one thread to
handle connections, and one thread to handle alarms and signals.

A.1.10.Can MySQL 5.7 perform ACID transactions?

Yes. All current MySQL versions support transactions. The InnoDB storage engine offers full
ACID transactions with row-level locking, multi-versioning, nonlocking repeatable reads, and all
four SQL standard isolation levels.

The NDB storage engine supports the READ COMMITTED transaction isolation level only.

A.2 MySQL 5.7 FAQ: Storage Engines
A.2.1 Where can I obtain complete documentation for MySQL storage engines? 3231
A.2.2 Are there any new storage engines in MySQL 5.7? .. 3231
A.2.3 Have any storage engines been removed in MySQL 5.7? ... 3231

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL 5.7 FAQ: Server SQL Mode

3231

A.2.4 What are the unique benefits of the ARCHIVE storage engine? ... 3231
A.2.5 Do the new features in MySQL 5.7 apply to all storage engines? 3231

A.2.1. Where can I obtain complete documentation for MySQL storage engines?

See Chapter 15, Alternative Storage Engines. That chapter contains information about all
MySQL storage engines except for the NDB storage engine used for MySQL Cluster; NDB is
covered in MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4.

A.2.2. Are there any new storage engines in MySQL 5.7?

No. InnoDB is the default storage engine for new tables. See Section 14.1.1, “InnoDB as the
Default MySQL Storage Engine” for details.

A.2.3. Have any storage engines been removed in MySQL 5.7?

No.

A.2.4. What are the unique benefits of the ARCHIVE storage engine?

The ARCHIVE storage engine is ideally suited for storing large amounts of data without indexes;
it has a very small footprint, and performs selects using table scans. See Section 15.5, “The
ARCHIVE Storage Engine”, for details.

A.2.5. Do the new features in MySQL 5.7 apply to all storage engines?

The general new features such as views, stored procedures, triggers, INFORMATION_SCHEMA,
precision math (DECIMAL column type), and the BIT column type, apply to all storage engines.
There are also additions and changes for specific storage engines.

A.3 MySQL 5.7 FAQ: Server SQL Mode
A.3.1 What are server SQL modes? .. 3231
A.3.2 How many server SQL modes are there? .. 3231
A.3.3 How do you determine the server SQL mode? .. 3231
A.3.4 Is the mode dependent on the database or connection? ... 3231
A.3.5 Can the rules for strict mode be extended? ... 3232
A.3.6 Does strict mode impact performance? ... 3232
A.3.7 What is the default server SQL mode when MySQL 5.7 is installed? 3232

A.3.1. What are server SQL modes?

Server SQL modes define what SQL syntax MySQL should support and what kind of data
validation checks it should perform. This makes it easier to use MySQL in different environments
and to use MySQL together with other database servers. The MySQL Server apply these modes
individually to different clients. For more information, see Section 5.1.7, “Server SQL Modes”.

A.3.2. How many server SQL modes are there?

Each mode can be independently switched on and off. See Section 5.1.7, “Server SQL Modes”,
for a complete list of available modes.

A.3.3. How do you determine the server SQL mode?

You can set the default SQL mode (for mysqld startup) with the --sql-mode option. Using the
statement SET [GLOBAL|SESSION] sql_mode='modes', you can change the settings from
within a connection, either locally to the connection, or to take effect globally. You can retrieve
the current mode by issuing a SELECT @@sql_mode statement.

A.3.4. Is the mode dependent on the database or connection?

A mode is not linked to a particular database. Modes can be set locally to the session
(connection), or globally for the server. you can change these settings using SET [GLOBAL|
SESSION] sql_mode='modes'.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL 5.7 FAQ: Stored Procedures and Functions

3232

A.3.5. Can the rules for strict mode be extended?

When we refer to strict mode, we mean a mode where at least one of the modes TRADITIONAL,
STRICT_TRANS_TABLES, or STRICT_ALL_TABLES is enabled. Options can be combined,
so you can add restrictions to a mode. See Section 5.1.7, “Server SQL Modes”, for more
information.

A.3.6. Does strict mode impact performance?

The intensive validation of input data that some settings requires more time than if the validation
is not done. While the performance impact is not that great, if you do not require such validation
(perhaps your application already handles all of this), then MySQL gives you the option of
leaving strict mode disabled. However—if you do require it—strict mode can provide such
validation.

A.3.7. What is the default server SQL mode when MySQL 5.7 is installed?

The default SQL mode in MySQL 5.7 includes these modes: ONLY_FULL_GROUP_BY,
STRICT_TRANS_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE,
ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and
NO_ENGINE_SUBSTITUTION.

The ONLY_FULL_GROUP_BY and STRICT_TRANS_TABLES modes were added in
MySQL 5.7.5. The NO_AUTO_CREATE_USER mode was added in MySQL 5.7.7. The
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes were
added in MySQL 5.7.8. For information about all available modes and MySQL's default behavior,
see Section 5.1.7, “Server SQL Modes”.

A.4 MySQL 5.7 FAQ: Stored Procedures and Functions
A.4.1 Does MySQL 5.7 support stored procedures and functions? ... 3233
A.4.2 Where can I find documentation for MySQL stored procedures and stored functions? 3233
A.4.3 Is there a discussion forum for MySQL stored procedures? .. 3233
A.4.4 Where can I find the ANSI SQL 2003 specification for stored procedures? 3233
A.4.5 How do you manage stored routines? ... 3233
A.4.6 Is there a way to view all stored procedures and stored functions in a given database? 3233
A.4.7 Where are stored procedures stored? ... 3233
A.4.8 Is it possible to group stored procedures or stored functions into packages? 3233
A.4.9 Can a stored procedure call another stored procedure? ... 3233
A.4.10 Can a stored procedure call a trigger? .. 3233
A.4.11 Can a stored procedure access tables? ... 3234
A.4.12 Do stored procedures have a statement for raising application errors? 3234
A.4.13 Do stored procedures provide exception handling? .. 3234
A.4.14 Can MySQL 5.7 stored routines return result sets? .. 3234
A.4.15 Is WITH RECOMPILE supported for stored procedures? ... 3234
A.4.16 Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly

to a stored procedure in the database? .. 3234
A.4.17 Can I pass an array as input to a stored procedure? .. 3234
A.4.18 Can I pass a cursor as an IN parameter to a stored procedure? 3234
A.4.19 Can I return a cursor as an OUT parameter from a stored procedure? 3234
A.4.20 Can I print out a variable's value within a stored routine for debugging purposes? 3234
A.4.21 Can I commit or roll back transactions inside a stored procedure? 3234
A.4.22 Do MySQL 5.7 stored procedures and functions work with replication? 3234
A.4.23 Are stored procedures and functions created on a master server replicated to a slave? 3234
A.4.24 How are actions that take place inside stored procedures and functions replicated? 3235
A.4.25 Are there special security requirements for using stored procedures and functions together

with replication? .. 3235
A.4.26 What limitations exist for replicating stored procedure and function actions? 3235
A.4.27 Do the preceding limitations affect MySQL's ability to do point-in-time recovery? 3235
A.4.28 What is being done to correct the aforementioned limitations? .. 3235

MySQL 5.7 FAQ: Stored Procedures and Functions

3233

A.4.1. Does MySQL 5.7 support stored procedures and functions?

Yes. MySQL 5.7 supports two types of stored routines—stored procedures and stored functions.

A.4.2. Where can I find documentation for MySQL stored procedures and stored functions?

See Section 19.2, “Using Stored Routines (Procedures and Functions)”.

A.4.3. Is there a discussion forum for MySQL stored procedures?

Yes. See http://forums.mysql.com/list.php?98.

A.4.4. Where can I find the ANSI SQL 2003 specification for stored procedures?

Unfortunately, the official specifications are not freely available (ANSI makes them available for
purchase). However, there are books—such as SQL-99 Complete, Really by Peter Gulutzan
and Trudy Pelzer—which give a comprehensive overview of the standard, including coverage of
stored procedures.

A.4.5. How do you manage stored routines?

It is always good practice to use a clear naming scheme for your stored routines. You can
manage stored procedures with CREATE [FUNCTION|PROCEDURE], ALTER [FUNCTION|
PROCEDURE], DROP [FUNCTION|PROCEDURE], and SHOW CREATE [FUNCTION|
PROCEDURE]. You can obtain information about existing stored procedures using the
ROUTINES table in the INFORMATION_SCHEMA database (see Section 20.19, “The
INFORMATION_SCHEMA ROUTINES Table”).

A.4.6. Is there a way to view all stored procedures and stored functions in a given database?

Yes. For a database named dbname, use this query on the INFORMATION_SCHEMA.ROUTINES
table:

SELECT ROUTINE_TYPE, ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_SCHEMA='dbname';

For more information, see Section 20.19, “The INFORMATION_SCHEMA ROUTINES Table”.

The body of a stored routine can be viewed using SHOW CREATE FUNCTION (for a stored
function) or SHOW CREATE PROCEDURE (for a stored procedure). See Section 13.7.5.9, “SHOW
CREATE PROCEDURE Syntax”, for more information.

A.4.7. Where are stored procedures stored?

In the proc table of the mysql system database. However, you should not access the
tables in the system database directly. Instead, use SHOW CREATE FUNCTION to obtain
information about stored functions, and SHOW CREATE PROCEDURE to obtain information about
stored procedures. See Section 13.7.5.9, “SHOW CREATE PROCEDURE Syntax”, for more
information about these statements.

You can also query the ROUTINES table in the INFORMATION_SCHEMA database—see
Section 20.19, “The INFORMATION_SCHEMA ROUTINES Table”, for information about this
table.

A.4.8. Is it possible to group stored procedures or stored functions into packages?

No. This is not supported in MySQL 5.7.

A.4.9. Can a stored procedure call another stored procedure?

Yes.

A.4.10.Can a stored procedure call a trigger?

http://forums.mysql.com/list.php?98

MySQL 5.7 FAQ: Stored Procedures and Functions

3234

A stored procedure can execute an SQL statement, such as an UPDATE, that causes a trigger to
activate.

A.4.11.Can a stored procedure access tables?

Yes. A stored procedure can access one or more tables as required.

A.4.12.Do stored procedures have a statement for raising application errors?

Yes. MySQL 5.7 implements the SQL standard SIGNAL and RESIGNAL statements. See
Section 13.6.7, “Condition Handling”.

A.4.13.Do stored procedures provide exception handling?

MySQL implements HANDLER definitions according to the SQL standard. See Section 13.6.7.2,
“DECLARE ... HANDLER Syntax”, for details.

A.4.14.Can MySQL 5.7 stored routines return result sets?

Stored procedures can, but stored functions cannot. If you perform an ordinary SELECT inside
a stored procedure, the result set is returned directly to the client. You need to use the MySQL
4.1 (or above) client/server protocol for this to work. This means that—for instance—in PHP, you
need to use the mysqli extension rather than the old mysql extension.

A.4.15.Is WITH RECOMPILE supported for stored procedures?

Not in MySQL 5.7.

A.4.16.Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a
stored procedure in the database?

There is no equivalent in MySQL 5.7.

A.4.17.Can I pass an array as input to a stored procedure?

Not in MySQL 5.7.

A.4.18.Can I pass a cursor as an IN parameter to a stored procedure?

In MySQL 5.7, cursors are available inside stored procedures only.

A.4.19.Can I return a cursor as an OUT parameter from a stored procedure?

In MySQL 5.7, cursors are available inside stored procedures only. However, if you do not open
a cursor on a SELECT, the result will be sent directly to the client. You can also SELECT INTO
variables. See Section 13.2.9, “SELECT Syntax”.

A.4.20.Can I print out a variable's value within a stored routine for debugging purposes?

Yes, you can do this in a stored procedure, but not in a stored function. If you perform an
ordinary SELECT inside a stored procedure, the result set is returned directly to the client. You
will need to use the MySQL 4.1 (or above) client/server protocol for this to work. This means
that—for instance—in PHP, you need to use the mysqli extension rather than the old mysql
extension.

A.4.21.Can I commit or roll back transactions inside a stored procedure?

Yes. However, you cannot perform transactional operations within a stored function.

A.4.22.Do MySQL 5.7 stored procedures and functions work with replication?

Yes, standard actions carried out in stored procedures and functions are replicated from a
master MySQL server to a slave server. There are a few limitations that are described in detail in
Section 19.7, “Binary Logging of Stored Programs”.

A.4.23.Are stored procedures and functions created on a master server replicated to a slave?

MySQL 5.7 FAQ: Stored Procedures and Functions

3235

Yes, creation of stored procedures and functions carried out through normal DDL statements on
a master server are replicated to a slave, so the objects will exist on both servers. ALTER and
DROP statements for stored procedures and functions are also replicated.

A.4.24.How are actions that take place inside stored procedures and functions replicated?

MySQL records each DML event that occurs in a stored procedure and replicates those
individual actions to a slave server. The actual calls made to execute stored procedures are not
replicated.

Stored functions that change data are logged as function invocations, not as the DML events
that occur inside each function.

A.4.25.Are there special security requirements for using stored procedures and functions together with
replication?

Yes. Because a slave server has authority to execute any statement read from a master's binary
log, special security constraints exist for using stored functions with replication. If replication or
binary logging in general (for the purpose of point-in-time recovery) is active, then MySQL DBAs
have two security options open to them:

1. Any user wishing to create stored functions must be granted the SUPER privilege.

2. Alternatively, a DBA can set the log_bin_trust_function_creators system variable
to 1, which enables anyone with the standard CREATE ROUTINE privilege to create stored
functions.

A.4.26.What limitations exist for replicating stored procedure and function actions?

Nondeterministic (random) or time-based actions embedded in stored procedures may not
replicate properly. By their very nature, randomly produced results are not predictable and
cannot be exactly reproduced, and therefore, random actions replicated to a slave will not mirror
those performed on a master. Declaring stored functions to be DETERMINISTIC or setting the
log_bin_trust_function_creators system variable to 0 will not allow random-valued
operations to be invoked.

In addition, time-based actions cannot be reproduced on a slave because the timing of such
actions in a stored procedure is not reproducible through the binary log used for replication. It
records only DML events and does not factor in timing constraints.

Finally, nontransactional tables for which errors occur during large DML actions (such as bulk
inserts) may experience replication issues in that a master may be partially updated from DML
activity, but no updates are done to the slave because of the errors that occurred. A workaround
is for a function's DML actions to be carried out with the IGNORE keyword so that updates on the
master that cause errors are ignored and updates that do not cause errors are replicated to the
slave.

A.4.27.Do the preceding limitations affect MySQL's ability to do point-in-time recovery?

The same limitations that affect replication do affect point-in-time recovery.

A.4.28.What is being done to correct the aforementioned limitations?

You can choose either statement-based replication or row-based replication. The original
replication implementation is based on statement-based binary logging. Row-based binary
logging resolves the limitations mentioned earlier.

Mixed replication is also available (by starting the server with --binlog-format=mixed). This
hybrid, “smart” form of replication “knows” whether statement-level replication can safely be
used, or row-level replication is required.

For additional information, see Section 17.2.1, “Replication Formats”.

MySQL 5.7 FAQ: Triggers

3236

A.5 MySQL 5.7 FAQ: Triggers
A.5.1 Where can I find the documentation for MySQL 5.7 triggers? .. 3236
A.5.2 Is there a discussion forum for MySQL Triggers? ... 3236
A.5.3 Does MySQL 5.7 have statement-level or row-level triggers? .. 3236
A.5.4 Are there any default triggers? .. 3236
A.5.5 How are triggers managed in MySQL? .. 3236
A.5.6 Is there a way to view all triggers in a given database? .. 3236
A.5.7 Where are triggers stored? ... 3236
A.5.8 Can a trigger call a stored procedure? .. 3237
A.5.9 Can triggers access tables? .. 3237
A.5.10 Can a table have multiple triggers with the same trigger event and action time? 3237
A.5.11 Can triggers call an external application through a UDF? .. 3237
A.5.12 Is it possible for a trigger to update tables on a remote server? 3237
A.5.13 Do triggers work with replication? .. 3237
A.5.14 How are actions carried out through triggers on a master replicated to a slave? 3237

A.5.1. Where can I find the documentation for MySQL 5.7 triggers?

See Section 19.3, “Using Triggers”.

A.5.2. Is there a discussion forum for MySQL Triggers?

Yes. It is available at http://forums.mysql.com/list.php?99.

A.5.3. Does MySQL 5.7 have statement-level or row-level triggers?

In MySQL 5.7, all triggers are FOR EACH ROW—that is, the trigger is activated for each row
that is inserted, updated, or deleted. MySQL 5.7 does not support triggers using FOR EACH
STATEMENT.

A.5.4. Are there any default triggers?

Not explicitly. MySQL does have specific special behavior for some TIMESTAMP columns, as
well as for columns which are defined using AUTO_INCREMENT.

A.5.5. How are triggers managed in MySQL?

In MySQL 5.7, triggers can be created using the CREATE TRIGGER statement, and dropped
using DROP TRIGGER. See Section 13.1.16, “CREATE TRIGGER Syntax”, and Section 13.1.26,
“DROP TRIGGER Syntax”, for more about these statements.

Information about triggers can be obtained by querying the INFORMATION_SCHEMA.TRIGGERS
table. See Section 20.27, “The INFORMATION_SCHEMA TRIGGERS Table”.

A.5.6. Is there a way to view all triggers in a given database?

Yes. You can obtain a listing of all triggers defined on database dbname using a query on the
INFORMATION_SCHEMA.TRIGGERS table such as the one shown here:

SELECT TRIGGER_NAME, EVENT_MANIPULATION, EVENT_OBJECT_TABLE, ACTION_STATEMENT
 FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='dbname';

For more information about this table, see Section 20.27, “The INFORMATION_SCHEMA
TRIGGERS Table”.

You can also use the SHOW TRIGGERS statement, which is specific to MySQL. See
Section 13.7.5.38, “SHOW TRIGGERS Syntax”.

A.5.7. Where are triggers stored?

Triggers for a table are currently stored in .TRG files, with one such file one per table.

http://forums.mysql.com/list.php?99

MySQL 5.7 FAQ: Triggers

3237

A.5.8. Can a trigger call a stored procedure?

Yes.

A.5.9. Can triggers access tables?

A trigger can access both old and new data in its own table. A trigger can also affect other
tables, but it is not permitted to modify a table that is already being used (for reading or writing)
by the statement that invoked the function or trigger.

A.5.10.Can a table have multiple triggers with the same trigger event and action time?

As of MySQL 5.7.2, it is possible to define multiple triggers for a given table that have the same
trigger event and action time. For example, you can have two BEFORE UPDATE triggers for a
table. By default, triggers that have the same trigger event and action time activate in the order
they were created. To affect trigger order, specify a clause after FOR EACH ROW that indicates
FOLLOWS or PRECEDES and the name of an existing trigger that also has the same trigger
event and action time. With FOLLOWS, the new trigger activates after the existing trigger. With
PRECEDES, the new trigger activates before the existing trigger.

A.5.11.Can triggers call an external application through a UDF?

Yes. For example, a trigger could invoke the sys_exec() UDF.

A.5.12.Is it possible for a trigger to update tables on a remote server?

Yes. A table on a remote server could be updated using the FEDERATED storage engine. (See
Section 15.8, “The FEDERATED Storage Engine”).

A.5.13.Do triggers work with replication?

Yes. However, the way in which they work depends whether you are using MySQL's “classic”
statement-based replication available in all versions of MySQL, or the row-based replication
format introduced in MySQL 5.1.

When using statement-based replication, triggers on the slave are executed by statements that
are executed on the master (and replicated to the slave).

When using row-based replication, triggers are not executed on the slave due to statements
that were run on the master and then replicated to the slave. Instead, when using row-based
replication, the changes caused by executing the trigger on the master are applied on the slave.

For more information, see Section 17.4.1.35, “Replication and Triggers”.

A.5.14.How are actions carried out through triggers on a master replicated to a slave?

Again, this depends on whether you are using statement-based or row-based replication.

Statement-based replication. First, the triggers that exist on a master must be re-created
on the slave server. Once this is done, the replication flow works as any other standard DML
statement that participates in replication. For example, consider a table EMP that has an AFTER
insert trigger, which exists on a master MySQL server. The same EMP table and AFTER insert
trigger exist on the slave server as well. The replication flow would be:

1. An INSERT statement is made to EMP.

2. The AFTER trigger on EMP activates.

3. The INSERT statement is written to the binary log.

4. The replication slave picks up the INSERT statement to EMP and executes it.

5. The AFTER trigger on EMP that exists on the slave activates.

MySQL 5.7 FAQ: Views

3238

Row-based replication. When you use row-based replication, the changes caused by
executing the trigger on the master are applied on the slave. However, the triggers themselves
are not actually executed on the slave under row-based replication. This is because, if both the
master and the slave applied the changes from the master and—in addition—the trigger causing
these changes were applied on the slave, the changes would in effect be applied twice on the
slave, leading to different data on the master and the slave.

In most cases, the outcome is the same for both row-based and statement-based replication.
However, if you use different triggers on the master and slave, you cannot use row-based
replication. (This is because the row-based format replicates the changes made by triggers
executing on the master to the slaves, rather than the statements that caused the triggers to
execute, and the corresponding triggers on the slave are not executed.) Instead, any statements
causing such triggers to be executed must be replicated using statement-based replication.

For more information, see Section 17.4.1.35, “Replication and Triggers”.

A.6 MySQL 5.7 FAQ: Views
A.6.1 Where can I find documentation covering MySQL Views? .. 3238
A.6.2 Is there a discussion forum for MySQL Views? .. 3238
A.6.3 What happens to a view if an underlying table is dropped or renamed? 3238
A.6.4 Does MySQL 5.7 have table snapshots? ... 3238
A.6.5 Does MySQL 5.7 have materialized views? ... 3238
A.6.6 Can you insert into views that are based on joins? .. 3238

A.6.1. Where can I find documentation covering MySQL Views?

See Section 19.5, “Using Views”.

A.6.2. Is there a discussion forum for MySQL Views?

Yes. See http://forums.mysql.com/list.php?100

A.6.3. What happens to a view if an underlying table is dropped or renamed?

After a view has been created, it is possible to drop or alter a table or view to which the definition
refers. To check a view definition for problems of this kind, use the CHECK TABLE statement.
(See Section 13.7.2.2, “CHECK TABLE Syntax”.)

A.6.4. Does MySQL 5.7 have table snapshots?

No.

A.6.5. Does MySQL 5.7 have materialized views?

No.

A.6.6. Can you insert into views that are based on joins?

It is possible, provided that your INSERT statement has a column list that makes it clear there is
only one table involved.

You cannot insert into multiple tables with a single insert on a view.

A.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA
A.7.1 Where can I find documentation for the MySQL INFORMATION_SCHEMA database? 3239
A.7.2 Is there a discussion forum for INFORMATION_SCHEMA? ... 3239
A.7.3 Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA? 3239
A.7.4 What is the difference between the Oracle Data Dictionary and MySQL's

INFORMATION_SCHEMA? ... 3239

http://forums.mysql.com/list.php?100

MySQL 5.7 FAQ: Migration

3239

A.7.5 Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA
database? ... 3239

A.7.1. Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See Chapter 20, INFORMATION_SCHEMA Tables

A.7.2. Is there a discussion forum for INFORMATION_SCHEMA?

See http://forums.mysql.com/list.php?101.

A.7.3. Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available
for purchase.) However, there are books available—such as SQL-99 Complete, Really by Peter
Gulutzan and Trudy Pelzer—which give a comprehensive overview of the standard, including
INFORMATION_SCHEMA.

A.7.4. What is the difference between the Oracle Data Dictionary and MySQL's
INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different
table names and column names. MySQL's implementation is more similar to those found in DB2
and SQL Server, which also support INFORMATION_SCHEMA as defined in the SQL standard.

A.7.5. Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

No. Since applications may rely on a certain standard structure, this should not be modified.
For this reason, we cannot support bugs or other issues which result from modifying
INFORMATION_SCHEMA tables or data.

A.8 MySQL 5.7 FAQ: Migration
A.8.1 Where can I find information on how to migrate from MySQL 5.6 to MySQL 5.7? 3239
A.8.2 How has storage engine (table type) support changed in MySQL 5.7 from previous

versions? .. 3239

A.8.1. Where can I find information on how to migrate from MySQL 5.6 to MySQL 5.7?

For detailed upgrade information, see Section 2.11.1, “Upgrading MySQL”. Do not skip a major
version when upgrading, but rather complete the process in steps, upgrading from one major
version to the next in each step. This may seem more complicated, but it will you save time and
trouble—if you encounter problems during the upgrade, their origin will be easier to identify,
either by you or—if you have a MySQL Enterprise subscription—by MySQL support.

A.8.2. How has storage engine (table type) support changed in MySQL 5.7 from previous versions?

Storage engine support has changed as follows:

• Support for ISAM tables was removed in MySQL 5.0 and you should now use the MyISAM
storage engine in place of ISAM. To convert a table tblname from ISAM to MyISAM, simply
issue a statement such as this one:

ALTER TABLE tblname ENGINE=MYISAM;

• Internal RAID for MyISAM tables was also removed in MySQL 5.0. This was formerly used to
allow large tables in file systems that did not support file sizes greater than 2GB. All modern
file systems allow for larger tables; in addition, there are now other solutions such as MERGE
tables and views.

• The VARCHAR column type now retains trailing spaces in all storage engines.

• MEMORY tables (formerly known as HEAP tables) can also contain VARCHAR columns.

http://forums.mysql.com/list.php?101

MySQL 5.7 FAQ: Security

3240

A.9 MySQL 5.7 FAQ: Security

A.9.1 Where can I find documentation that addresses security issues for MySQL? 3240
A.9.2 Does MySQL 5.7 have native support for SSL? ... 3240
A.9.3 Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable

it? ... 3240
A.9.4 Does MySQL 5.7 have built-in authentication against LDAP directories? 3240
A.9.5 Does MySQL 5.7 include support for Roles Based Access Control (RBAC)? 3240

A.9.1. Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 6, Security.

Other portions of the MySQL Documentation which you may find useful with regard to specific
security concerns include the following:

• Section 6.1.1, “Security Guidelines”.

• Section 6.1.3, “Making MySQL Secure Against Attackers”.

• Section B.5.3.2, “How to Reset the Root Password”.

• Section 6.1.5, “How to Run MySQL as a Normal User”.

• Section 24.4.2.6, “UDF Security Precautions”.

• Section 6.1.4, “Security-Related mysqld Options and Variables”.

• Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.

• Section 2.10, “Postinstallation Setup and Testing”.

• Section 6.3.12, “Using Secure Connections”.

A.9.2. Does MySQL 5.7 have native support for SSL?

Most 5.7 binaries have support for SSL connections between the client and server. See
Section 6.3.12, “Using Secure Connections”.

You can also tunnel a connection using SSH, if (for example) the client application does not
support SSL connections. For an example, see Section 6.3.14, “Connecting to MySQL Remotely
from Windows with SSH”.

A.9.3. Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it?

Most 5.7 binaries have SSL enabled for client/server connections that are secured,
authenticated, or both. See Section 6.3.12, “Using Secure Connections”.

A.9.4. Does MySQL 5.7 have built-in authentication against LDAP directories?

The Enterprise edition includes a PAM Authentication Plugin that supports authentication
against an LDAP directory.

A.9.5. Does MySQL 5.7 include support for Roles Based Access Control (RBAC)?

Not at this time.

A.10 MySQL 5.7 FAQ: MySQL Cluster

In the following section, we answer questions that are frequently asked about MySQL Cluster and the
NDB storage engine.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3241

A.10.1 Which versions of the MySQL software support Cluster? Do I have to compile from
source? ... 3241

A.10.2 What do “NDB” and “NDBCLUSTER” mean? ... 3241
A.10.3 How many computers do I need to run a MySQL Cluster, and why? 3241

A.10.1.Which versions of the MySQL software support Cluster? Do I have to compile from source?

MySQL Cluster is not supported in MySQL Server 5.7 releases. Instead, MySQL Cluster is
released as a separate product, available as MySQL Cluster NDB 7.3 and MySQL Cluster
NDB 7.4. You should use MySQL Cluster NDB 7.4 for new deployments, and plan to upgrade
if you are using a previous version of MySQL Cluster. For an overview of improvements made
in MySQL Cluster NDB 7.3, see MySQL Cluster Development in MySQL Cluster NDB 7.3;
for information about improvements made in MySQL Cluster NDB 7.4, see MySQL Cluster
Development in MySQL Cluster NDB 7.4.

For detailed information about deploying and using MySQL Cluster, see MySQL Cluster NDB
7.3 and MySQL Cluster NDB 7.4.

A.10.2.What do “NDB” and “NDBCLUSTER” mean?

“NDB” stands for “Network Database”. NDB and NDBCLUSTER are both names for the storage
engine that enables clustering support with MySQL. NDB is preferred, but either name is correct.

A.10.3.How many computers do I need to run a MySQL Cluster, and why?

A minimum of three computers is required to run a viable cluster. However, the minimum
recommended number of computers in a MySQL Cluster is four: one each to run the
management and SQL nodes, and two computers to serve as data nodes. The purpose of
the two data nodes is to provide redundancy; the management node must run on a separate
machine to guarantee continued arbitration services in the event that one of the data nodes fails.

To provide increased throughput and high availability, you should use multiple SQL nodes
(MySQL Servers connected to the cluster). It is also possible (although not strictly necessary) to
run multiple management servers.

A.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean
Character Sets

This set of Frequently Asked Questions derives from the experience of MySQL's Support and
Development groups in handling many inquiries about CJK (Chinese-Japanese-Korean) issues.

A.11.1 What CJK character sets are available in MySQL? .. 3242
A.11.2 I have inserted CJK characters into my table. Why does SELECT display them as “?”

characters? ... 3242
A.11.3 What problems should I be aware of when working with the Big5 Chinese character set? .. 3244
A.11.4 Why do Japanese character set conversions fail? .. 3245
A.11.5 What should I do if I want to convert SJIS 81CA to cp932? .. 3245
A.11.6 How does MySQL represent the Yen (¥) sign? .. 3246
A.11.7 Does MySQL plan to make a separate character set where 5C is the Yen sign, as at least

one other major DBMS does? .. 3246
A.11.8 Of what issues should I be aware when working with Korean character sets in MySQL? 3246
A.11.9 Why do I get Incorrect string value error messages? ... 3246
A.11.10 Why does my GUI front end or browser not display CJK characters correctly in my

application using Access, PHP, or another API? ... 3247
A.11.11 I've upgraded to MySQL 5.7. How can I revert to behavior like that in MySQL 4.0 with

regard to character sets? ... 3248
A.11.12 Why do some LIKE and FULLTEXT searches with CJK characters fail? 3249
A.11.13 How do I know whether character X is available in all character sets? 3249
A.11.14 Why do CJK strings sort incorrectly in Unicode? (I) .. 3251
A.11.15 Why do CJK strings sort incorrectly in Unicode? (II) ... 3251

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-development-5-6-ndb-7-3.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-development-5-6-ndb-7-4.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-development-5-6-ndb-7-4.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3242

A.11.16 Why are my supplementary characters rejected by MySQL? ... 3252
A.11.17 Shouldn't it be “CJKV”? .. 3252
A.11.18 Does MySQL allow CJK characters to be used in database and table names? 3253
A.11.19 Where can I get help with CJK and related issues in MySQL? 3253

A.11.1.What CJK character sets are available in MySQL?

The list of CJK character sets may vary depending on your MySQL version. For example,
the gb18030 character set was not supported prior to MySQL 5.7.4. However, since the
name of the applicable language appears in the DESCRIPTION column for every entry in the
INFORMATION_SCHEMA.CHARACTER_SETS table, you can obtain a current list of all the non-
Unicode CJK character sets using this query:

mysql> SELECT CHARACTER_SET_NAME, DESCRIPTION
 -> FROM INFORMATION_SCHEMA.CHARACTER_SETS
 -> WHERE DESCRIPTION LIKE '%Chin%'
 -> OR DESCRIPTION LIKE '%Japanese%'
 -> OR DESCRIPTION LIKE '%Korean%'
 -> ORDER BY CHARACTER_SET_NAME;
+--------------------+---------------------------------+
| CHARACTER_SET_NAME | DESCRIPTION |
+--------------------+---------------------------------+
big5	Big5 Traditional Chinese
cp932	SJIS for Windows Japanese
eucjpms	UJIS for Windows Japanese
euckr	EUC-KR Korean
gb18030	China National Standard GB18030
gb2312	GB2312 Simplified Chinese
gbk	GBK Simplified Chinese
sjis	Shift-JIS Japanese
ujis	EUC-JP Japanese
+--------------------+---------------------------------+
9 rows in set (0.01 sec)

(See Section 20.1, “The INFORMATION_SCHEMA CHARACTER_SETS Table”, for more
information.)

MySQL supports three variants of the GB (Guojia Biaozhun, or National Standard, or Simplified
Chinese) character sets which are official in the People's Republic of China: gb2312, gbk, and
gb18030 (added in MySQL 5.7.4).

Sometimes people try to insert gbk characters into gb2312, and it works most of the time
because gbk is a superset of gb2312—but eventually they try to insert a rarer Chinese
character and it doesn't work. (See Bug #16072 for an example).

Here, we try to clarify exactly what characters are legitimate in gb2312 or gbk, with reference to
the official documents. Please check these references before reporting gb2312 or gbk bugs.

• For a complete listing of the gb2312 characters, ordered according to the
gb2312_chinese_ci collation: gb2312

• MySQL's gbk is in reality “Microsoft code page 936”. This differs from the official gbk for
characters A1A4 (middle dot), A1AA (em dash), A6E0-A6F5, and A8BB-A8C0.

• For a listing of gbk/Unicode mappings, see http://www.unicode.org/Public/MAPPINGS/
VENDORS/MICSFT/WINDOWS/CP936.TXT.

• For MySQL's listing of gbk characters, see gbk.

A.11.2.I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?

This problem is usually due to a setting in MySQL that doesn't match the settings for the
application program or the operating system. Here are some common steps for correcting these
types of issues:

http://www.collation-charts.org/mysql60/by-charset.html#gb2312
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.collation-charts.org/mysql60/by-charset.html#gbk

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3243

• Be certain of what MySQL version you are using.

Use the statement SELECT VERSION(); to determine this.

• Make sure that the database is actually using the desired character set.

People often think that the client character set is always the same as either the server
character set or the character set used for display purposes. However, both of these are
false assumptions. You can make sure by checking the result of SHOW CREATE TABLE
tablename or—better yet—by using this statement:

SELECT character_set_name, collation_name
 FROM information_schema.columns
 WHERE table_schema = your_database_name
 AND table_name = your_table_name
 AND column_name = your_column_name;

• Determine the hexadecimal value of the character or characters that are not being displayed
correctly.

You can obtain this information for a column column_name in the table table_name using
the following query:

SELECT HEX(column_name)
FROM table_name;

3F is the encoding for the ? character; this means that ? is the character actually stored in the
column. This most often happens because of a problem converting a particular character from
your client character set to the target character set.

• Make sure that a round trip possible—that is, when you select literal (or _introducer
hexadecimal-value), you obtain literal as a result.

For example, the Japanese Katakana character Pe (ペ') exists in all CJK character sets, and
has the code point value (hexadecimal coding) 0x30da. To test a round trip for this character,
use this query:

SELECT 'ペ' AS `ペ`; /* or SELECT _ucs2 0x30da; */

If the result is not also ペ, then the round trip has failed.

For bug reports regarding such failures, we might ask you to follow up with SELECT
HEX('ペ');. Then we can determine whether the client encoding is correct.

• Make sure that the problem is not with the browser or other application, rather than with
MySQL.

Use the mysql client program (on Windows: mysql.exe) to accomplish this task. If mysql
displays correctly but your application doesn't, then your problem is probably due to system
settings.

To find out what your settings are, use the SHOW VARIABLES statement, whose output should
resemble what is shown here:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
| character_set_client | utf8 |

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3244

character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.03 sec)

These are typical character-set settings for an international-oriented client (notice the use of
utf8 Unicode) connected to a server in the West (latin1 is a West Europe character set
and a default for MySQL).

Although Unicode (usually the utf8 variant on Unix, and the ucs2 variant on Windows) is
preferable to Latin, it is often not what your operating system utilities support best. Many
Windows users find that a Microsoft character set, such as cp932 for Japanese Windows, is
suitable.

If you cannot control the server settings, and you have no idea what your underlying computer
is, then try changing to a common character set for the country that you're in (euckr =
Korea; gb18030, gb2312 or gbk = People's Republic of China; big5 = Taiwan; sjis,
ujis, cp932, or eucjpms = Japan; ucs2 or utf8 = anywhere). Usually it is necessary to
change only the client and connection and results settings. There is a simple statement which
changes all three at once: SET NAMES. For example:

SET NAMES 'big5';

Once the setting is correct, you can make it permanent by editing my.cnf or my.ini. For
example you might add lines looking like these:

[mysqld]
character-set-server=big5
[client]
default-character-set=big5

It is also possible that there are issues with the API configuration setting being used in
your application; see Why does my GUI front end or browser not display CJK characters
correctly...? for more information.

A.11.3.What problems should I be aware of when working with the Big5 Chinese character set?

MySQL supports the Big5 character set which is common in Hong Kong and Taiwan (Republic
of China). MySQL's big5 is in reality Microsoft code page 950, which is very similar to the
original big5 character set. We changed to this character set starting with MySQL version
4.1.16 / 5.0.16 (as a result of Bug #12476). For example, the following statements work in
current versions of MySQL, but not in old versions:

mysql> CREATE TABLE big5 (BIG5 CHAR(1) CHARACTER SET BIG5);
Query OK, 0 rows affected (0.13 sec)

mysql> INSERT INTO big5 VALUES (0xf9dc);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM big5;
+------+
| big5 |
+------+
| 嫺 |
+------+
1 row in set (0.02 sec)

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3245

A feature request for adding HKSCS extensions has been filed. People who need this extension
may find the suggested patch for Bug #13577 to be of interest.

A.11.4.Why do Japanese character set conversions fail?

MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A
common need is to convert between character sets. For example, there might be a Unix server
(typically with sjis or ujis) and a Windows client (typically with cp932).

In the following conversion table, the ucs2 column represents the source, and the sjis, cp932,
ujis, and eucjpms columns represent the destinations—that is, the last 4 columns provide the
hexadecimal result when we use CONVERT(ucs2) or we assign a ucs2 column containing the
value to an sjis, cp932, ujis, or eucjpms column.

Character Name ucs2 sjis cp932 ujis eucjpms

BROKEN BAR 00A6 3F 3F 8FA2C3 3F

FULLWIDTH BROKEN BAR FFE4 3F FA55 3F 8FA2

YEN SIGN 00A5 3F 3F 20 3F

FULLWIDTH YEN SIGN FFE5 818F 818F A1EF 3F

TILDE 007E 7E 7E 7E 7E

OVERLINE 203E 3F 3F 20 3F

HORIZONTAL BAR 2015 815C 815C A1BD A1BD

EM DASH 2014 3F 3F 3F 3F

REVERSE SOLIDUS 005C 815F 5C 5C 5C

FULLWIDTH "" FF3C 3F 815F 3F A1C0

WAVE DASH 301C 8160 3F A1C1 3F

FULLWIDTH TILDE FF5E 3F 8160 3F A1C1

DOUBLE VERTICAL LINE 2016 8161 3F A1C2 3F

PARALLEL TO 2225 3F 8161 3F A1C2

MINUS SIGN 2212 817C 3F A1DD 3F

FULLWIDTH HYPHEN-MINUS FF0D 3F 817C 3F A1DD

CENT SIGN 00A2 8191 3F A1F1 3F

FULLWIDTH CENT SIGN FFE0 3F 8191 3F A1F1

POUND SIGN 00A3 8192 3F A1F2 3F

FULLWIDTH POUND SIGN FFE1 3F 8192 3F A1F2

NOT SIGN 00AC 81CA 3F A2CC 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA 3F A2CC

Now consider the following portion of the table.

 ucs2 sjis cp932

NOT SIGN 00AC 81CA 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA

This means that MySQL converts the NOT SIGN (Unicode U+00AC) to sjis code point 0x81CA
and to cp932 code point 3F. (3F is the question mark (“?”)—this is what is always used when
the conversion cannot be performed.

A.11.5.What should I do if I want to convert SJIS 81CA to cp932?

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3246

Our answer is: “?”. There are serious complaints about this: many people would prefer a “loose”
conversion, so that 81CA (NOT SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in
cp932. We are considering a change to this behavior.

A.11.6.How does MySQL represent the Yen (¥) sign?

A problem arises because some versions of Japanese character sets (both sjis and euc) treat
5C as a reverse solidus (\—also known as a backslash), and others treat it as a yen sign (¥).

MySQL follows only one version of the JIS (Japanese Industrial Standards) standard
description. In MySQL, 5C is always the reverse solidus (\).

A.11.7.Does MySQL plan to make a separate character set where 5C is the Yen sign, as at least one
other major DBMS does?

This is one possible solution to the Yen sign issue; however, this will not happen in MySQL 5.1
or 6.0.

A.11.8.Of what issues should I be aware when working with Korean character sets in MySQL?

In theory, while there have been several versions of the euckr (Extended Unix Code Korea)
character set, only one problem has been noted.

We use the “ASCII” variant of EUC-KR, in which the code point 0x5c is REVERSE SOLIDUS,
that is \, instead of the “KS-Roman” variant of EUC-KR, in which the code point 0x5c is WON
SIGN(₩). This means that you cannot convert Unicode U+20A9 to euckr:

mysql> SELECT
 -> CONVERT('₩' USING euckr) AS euckr,

 -> HEX(CONVERT('₩' USING euckr)) AS hexeuckr;
+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ? | 3F |
+-------+----------+
1 row in set (0.00 sec)

MySQL's graphic Korean chart is here: euckr.

A.11.9.Why do I get Incorrect string value error messages?

For illustration, we'll create a table with one Unicode (ucs2) column and one Chinese (gb2312)
column.

mysql> CREATE TABLE ch
 -> (ucs2 CHAR(3) CHARACTER SET ucs2,
 -> gb2312 CHAR(3) CHARACTER SET gb2312);
Query OK, 0 rows affected (0.05 sec)

We'll try to place the rare character 汌 in both columns.

mysql> INSERT INTO ch VALUES ('A汌B','A汌B');
Query OK, 1 row affected, 1 warning (0.00 sec)

Ah, there is a warning. Use the following statement to see what it is:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1366
Message: Incorrect string value: '\xE6\xB1\x8CB' for column 'gb2312' at row 1
1 row in set (0.00 sec)

http://www.collation-charts.org/mysql60/by-charset.html#euckr

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3247

So it is a warning about the gb2312 column only.

mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;
+-------+--------------+--------+-------------+
| ucs2 | HEX(ucs2) | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A汌B | 00416C4C0042 | A?B | 413F42 |
+-------+--------------+--------+-------------+
1 row in set (0.00 sec)

Several things need explanation here:

1. The fact that it is a “warning” rather than an “error” is characteristic of MySQL. We like to try
to do what we can, to get the best fit, rather than give up.

2. The 汌 character is not in the gb2312 character set. We described that problem earlier.

3. If you are using an old version of MySQL, you will probably see a different message.

4. With sql_mode=TRADITIONAL, there would be an error message, rather than a warning.

A.11.10.Why does my GUI front end or browser not display CJK characters correctly in my application
using Access, PHP, or another API?

Obtain a direct connection to the server using the mysql client (Windows: mysql.exe), and try
the same query there. If mysql responds correctly, then the trouble may be that your application
interface requires initialization. Use mysql to tell you what character set or sets it uses with the
statement SHOW VARIABLES LIKE 'char%';. If you are using Access, then you are most
likely connecting with Connector/ODBC. In this case, you should check Configuring Connector/
ODBC. If, for instance, you use big5, you would enter SET NAMES 'big5'. (Note that no ;
is required in this case). If you are using ASP, you might need to add SET NAMES in the code.
Here is an example that has worked in the past:

<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=server;uid=username;" \
 & "pwd=password;database=database;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open strConnection
%>

In much the same way, if you are using any character set other than latin1 with Connector/
Net, then you must specify the character set in the connection string. See Connecting to MySQL
Using Connector/Net, for more information.

If you are using PHP, try this:

<?php
 $link = new mysqli($host, $usr, $pwd, $db);

 if(mysqli_connect_errno())
 {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
 }

 $link->query("SET NAMES 'utf8'");
?>

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting.html

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3248

In this case, we used SET NAMES to change character_set_client and
character_set_connection and character_set_results.

Another issue often encountered in PHP applications has to do with assumptions made by
the browser. Sometimes adding or changing a <meta> tag suffices to correct the problem: for
example, to insure that the user agent interprets page content as UTF-8, you should include
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"> in
the <head> of the HTML page.

If you are using Connector/J, see Using Character Sets and Unicode.

A.11.11.I've upgraded to MySQL 5.7. How can I revert to behavior like that in MySQL 4.0 with regard to
character sets?

In MySQL Version 4.0, there was a single “global” character set for both server and client,
and the decision as to which character to use was made by the server administrator. This
changed starting with MySQL Version 4.1. What happens now is a “handshake”, as described in
Section 10.1.4, “Connection Character Sets and Collations”:

When a client connects, it sends to the server the name of the character set that
it wants to use. The server uses the name to set the character_set_client,
character_set_results, and character_set_connection system
variables. In effect, the server performs a SET NAMES operation using the
character set name.

The effect of this is that you cannot control the client character set by starting mysqld with
--character-set-server=utf8. However, some of our Asian customers have said that
they prefer the MySQL 4.0 behavior. To make it possible to retain this behavior, we added a
mysqld switch, --character-set-client-handshake, which can be turned off with --
skip-character-set-client-handshake. If you start mysqld with --skip-character-
set-client-handshake, then, when a client connects, it sends to the server the name of the
character set that it wants to use—however, the server ignores this request from the client.

By way of example, suppose that your favorite server character set is latin1 (unlikely in a CJK
area, but this is the default value). Suppose further that the client uses utf8 because this is
what the client's operating system supports. Now, start the server with latin1 as its default
character set:

mysqld --character-set-server=latin1

And then start the client with the default character set utf8:

mysql --default-character-set=utf8

The current settings can be seen by viewing the output of SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.01 sec)

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-charsets.html

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3249

Now stop the client, and then stop the server using mysqladmin. Then start the server again,
but this time tell it to skip the handshake like so:

mysqld --character-set-server=utf8 --skip-character-set-client-handshake

Start the client with utf8 once again as the default character set, then display the current
settings:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_filesystem	binary
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.01 sec)

As you can see by comparing the differing results from SHOW VARIABLES, the server ignores
the client's initial settings if the --skip-character-set-client-handshake is used.

A.11.12.Why do some LIKE and FULLTEXT searches with CJK characters fail?

There is a very simple problem with LIKE searches on BINARY and BLOB columns: we need
to know the end of a character. With multibyte character sets, different characters might have
different octet lengths. For example, in utf8, A requires one byte but ペ requires three bytes, as
shown here:

+-------------------------+---------------------------+
| OCTET_LENGTH(_utf8 'A') | OCTET_LENGTH(_utf8 'ペ') |
+-------------------------+---------------------------+
| 1 | 3 |
+-------------------------+---------------------------+
1 row in set (0.00 sec)

If we don't know where the first character ends, then we don't know where the second character
begins, in which case even very simple searches such as LIKE '_A%' fail. The solution is to
use a regular CJK character set in the first place, or to convert to a CJK character set before
comparing.

This is one reason why MySQL cannot allow encodings of nonexistent characters. If it is not
strict about rejecting bad input, then it has no way of knowing where characters end.

For FULLTEXT searches, we need to know where words begin and end. With Western
languages, this is rarely a problem because most (if not all) of these use an easy-to-identify
word boundary—the space character. However, this is not usually the case with Asian writing.
We could use arbitrary halfway measures, like assuming that all Han characters represent
words, or (for Japanese) depending on changes from Katakana to Hiragana due to grammatical
endings. However, the only sure solution requires a comprehensive word list, which means that
we would have to include a dictionary in the server for each Asian language supported. This is
simply not feasible.

A.11.13.How do I know whether character X is available in all character sets?

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3250

The majority of simplified Chinese and basic nonhalfwidth Japanese Kana characters appear in
all CJK character sets. This stored procedure accepts a UCS-2 Unicode character, converts it to
all other character sets, and displays the results in hexadecimal.

DELIMITER //

CREATE PROCEDURE p_convert(ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN

CREATE TABLE tj
 (ucs2 CHAR(1) character set ucs2,
 utf8 CHAR(1) character set utf8,
 big5 CHAR(1) character set big5,
 cp932 CHAR(1) character set cp932,
 eucjpms CHAR(1) character set eucjpms,
 euckr CHAR(1) character set euckr,
 gb2312 CHAR(1) character set gb2312,
 gbk CHAR(1) character set gbk,
 sjis CHAR(1) character set sjis,
 ujis CHAR(1) character set ujis);

INSERT INTO tj (ucs2) VALUES (ucs2_char);

UPDATE tj SET utf8=ucs2,
 big5=ucs2,
 cp932=ucs2,
 eucjpms=ucs2,
 euckr=ucs2,
 gb2312=ucs2,
 gbk=ucs2,
 sjis=ucs2,
 ujis=ucs2;

/* If there is a conversion problem, UPDATE will produce a warning. */

SELECT hex(ucs2) AS ucs2,
 hex(utf8) AS utf8,
 hex(big5) AS big5,
 hex(cp932) AS cp932,
 hex(eucjpms) AS eucjpms,
 hex(euckr) AS euckr,
 hex(gb2312) AS gb2312,
 hex(gbk) AS gbk,
 hex(sjis) AS sjis,
 hex(ujis) AS ujis
FROM tj;

DROP TABLE tj;

END//

The input can be any single ucs2 character, or it can be the code point value (hexadecimal
representation) of that character. For example, from Unicode's list of ucs2 encodings and
names (http://www.unicode.org/Public/UNIDATA/UnicodeData.txt), we know that the Katakana
character Pe appears in all CJK character sets, and that its code point value is 0x30da. If we
use this value as the argument to p_convert(), the result is as shown here:

mysql> CALL p_convert(0x30da)//
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8 | big5 | cp932 | eucjpms | euckr | gb2312 | gbk | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379 | A5DA | ABDA | A5DA | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+
1 row in set (0.04 sec)

Since none of the column values is 3F—that is, the question mark character (?)—we know that
every conversion worked.

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3251

A.11.14.Why do CJK strings sort incorrectly in Unicode? (I)

Sometimes people observe that the result of a utf8_unicode_ci or ucs2_unicode_ci
search, or of an ORDER BY sort is not what they think a native would expect. Although we never
rule out the possibility that there is a bug, we have found in the past that many people do not
read correctly the standard table of weights for the Unicode Collation Algorithm. MySQL uses
the table found at http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. This is not the first
table you will find by navigating from the unicode.org home page, because MySQL uses the
older 4.0.0 “allkeys” table, rather than the more recent 4.1.0 table. (The newer '520' collations
in MySQL 5.6 use the 5.2 “allkeys” table.) This is because we are very wary about changing
ordering which affects indexes, lest we bring about situations such as that reported in Bug
#16526, illustrated as follows:

mysql< CREATE TABLE tj (s1 CHAR(1) CHARACTER SET utf8 COLLATE utf8_unicode_ci);
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO tj VALUES ('が'),('か');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM tj WHERE s1 = 'か';
+------+
| s1 |
+------+
| が |

| か |
+------+
2 rows in set (0.00 sec)

The character in the first result row is not the one that we searched for. Why did MySQL retrieve
it? First we look for the Unicode code point value, which is possible by reading the hexadecimal
number for the ucs2 version of the characters:

mysql> SELECT s1, HEX(CONVERT(s1 USING ucs2)) FROM tj;
+------+-----------------------------+
| s1 | HEX(CONVERT(s1 USING ucs2)) |
+------+-----------------------------+
| が | 304C |

| か | 304B |
+------+-----------------------------+
2 rows in set (0.03 sec)

Now we search for 304B and 304C in the 4.0.0 allkeys table, and find these lines:

304B ; [.1E57.0020.000E.304B] # HIRAGANA LETTER KA
304C ; [.1E57.0020.000E.304B][.0000.0140.0002.3099] # HIRAGANA LETTER GA; QQCM

The official Unicode names (following the “#” mark) tell us the Japanese syllabary (Hiragana),
the informal classification (letter, digit, or punctuation mark), and the Western identifier (KA
or GA, which happen to be voiced and unvoiced components of the same letter pair). More
importantly, the primary weight (the first hexadecimal number inside the square brackets) is
1E57 on both lines. For comparisons in both searching and sorting, MySQL pays attention to the
primary weight only, ignoring all the other numbers. This means that we are sorting が and か
correctly according to the Unicode specification. If we wanted to distinguish them, we'd have to
use a non-UCA (Unicode Collation Algorithm) collation (utf8_bin or utf8_general_ci), or
to compare the HEX() values, or use ORDER BY CONVERT(s1 USING sjis). Being correct
“according to Unicode” isn't enough, of course: the person who submitted the bug was equally
correct. We plan to add another collation for Japanese according to the JIS X 4061 standard, in
which voiced/unvoiced letter pairs like KA/GA are distinguishable for ordering purposes.

A.11.15.Why do CJK strings sort incorrectly in Unicode? (II)

http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

3252

If you are using Unicode (ucs2 or utf8), and you know what the Unicode sort order is (see
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”), but
MySQL still seems to sort your table incorrectly, then you should first verify the table character
set:

mysql> SHOW CREATE TABLE t\G
******************** 1. row ******************
Table: t
Create Table: CREATE TABLE `t` (
`s1` char(1) CHARACTER SET ucs2 DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Since the character set appears to be correct, let's see what information the
INFORMATION_SCHEMA.COLUMNS table can provide about this column:

mysql> SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
 -> FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE COLUMN_NAME = 's1'
 -> AND TABLE_NAME = 't';
+-------------+--------------------+-----------------+
| COLUMN_NAME | CHARACTER_SET_NAME | COLLATION_NAME |
+-------------+--------------------+-----------------+
| s1 | ucs2 | ucs2_general_ci |
+-------------+--------------------+-----------------+
1 row in set (0.01 sec)

(See Section 20.4, “The INFORMATION_SCHEMA COLUMNS Table”, for more information.)

You can see that the collation is ucs2_general_ci instead of ucs2_unicode_ci. The
reason why this is so can be found using SHOW CHARSET, as shown here:

mysql> SHOW CHARSET LIKE 'ucs2%';
+---------+---------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
+---------+---------------+-------------------+--------+
1 row in set (0.00 sec)

For ucs2 and utf8, the default collation is “general”. To specify a Unicode collation, use
COLLATE ucs2_unicode_ci.

A.11.16.Why are my supplementary characters rejected by MySQL?

Before MySQL 5.5.3, MySQL does not support supplementary characters—that is, characters
which need more than 3 bytes—for UTF-8. We support only what Unicode calls the Basic
Multilingual Plane / Plane 0. Only a few very rare Han characters are supplementary; support for
them is uncommon. This has led to reports such as that found in Bug #12600, which we rejected
as “not a bug”. With utf8, we must truncate an input string when we encounter bytes that we
don't understand. Otherwise, we wouldn't know how long the bad multibyte character is.

One possible workaround is to use ucs2 instead of utf8, in which case the “bad” characters
are changed to question marks; however, no truncation takes place. You can also change the
data type to BLOB or BINARY, which perform no validity checking.

As of MySQL 5.5.3, Unicode support is extended to include supplementary characters by means
of additional Unicode character sets: utf16, utf32, and 4-byte utf8mb4. These character sets
support supplementary Unicode characters outside the Basic Multilingual Plane (BMP).

A.11.17.Shouldn't it be “CJKV”?

MySQL 5.7 FAQ: Connectors & APIs

3253

No. The term “CJKV” (Chinese Japanese Korean Vietnamese) refers to Vietnamese character
sets which contain Han (originally Chinese) characters. MySQL has no plan to support the
old Vietnamese script using Han characters. MySQL does of course support the modern
Vietnamese script with Western characters.

As of MySQL 5.6, there are Vietnamese collations for Unicode character sets, as described in
Section 10.1.14.1, “Unicode Character Sets”.

A.11.18.Does MySQL allow CJK characters to be used in database and table names?

This issue is fixed in MySQL 5.1, by automatically rewriting the names of the corresponding
directories and files.

For example, if you create a database named 楮 on a server whose operating system does not
support CJK in directory names, MySQL creates a directory named @0w@00a5@00ae, which
is just a fancy way of encoding E6A5AE—that is, the Unicode hexadecimal representation for
the 楮 character. However, if you run a SHOW DATABASES statement, you can see that the
database is listed as 楮.

A.11.19.Where can I get help with CJK and related issues in MySQL?

The following resources are available:

• A listing of MySQL user groups can be found at https://wikis.oracle.com/display/mysql/List+of
+MySQL+User+Groups.

• View feature requests relating to character set issues at http://tinyurl.com/y6xcuf.

• Visit the MySQL Character Sets, Collation, Unicode Forum. http://forums.mysql.com/ also
provides foreign-language forums.

A.12 MySQL 5.7 FAQ: Connectors & APIs
For common questions, issues, and answers relating to the MySQL Connectors and other APIs, see
the following areas of the Manual:

• Section 23.8.15, “Common Questions and Problems When Using the C API”

• Common Problems with MySQL and PHP

• Connector/ODBC Notes and Tips

• Connector/Net Programming

• MySQL Connector/J Developer Guide

A.13 MySQL 5.7 FAQ: Replication
In the following section, we provide answers to questions that are most frequently asked about MySQL
Replication.

A.13.1 Must the slave be connected to the master all the time? ... 3254
A.13.2 Must I enable networking on my master and slave to enable replication? 3254
A.13.3 How do I know how late a slave is compared to the master? In other words, how do I know

the date of the last statement replicated by the slave? .. 3254
A.13.4 How do I force the master to block updates until the slave catches up? 3254
A.13.5 What issues should I be aware of when setting up two-way replication? 3255
A.13.6 How can I use replication to improve performance of my system? 3255
A.13.7 What should I do to prepare client code in my own applications to use performance-

enhancing replication? ... 3255
A.13.8 When and how much can MySQL replication improve the performance of my system? 3255
A.13.9 How can I use replication to provide redundancy or high availability? 3256

https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
http://tinyurl.com/y6xcuf
http://forums.mysql.com/list.php?103
http://forums.mysql.com/
http://dev.mysql.com/doc/apis-php/en/apis-php-problems.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming.html
http://dev.mysql.com/doc/connector-j/en/index.html

MySQL 5.7 FAQ: Replication

3254

A.13.10 How do I tell whether a master server is using statement-based or row-based binary
logging format? ... 3256

A.13.11 How do I tell a slave to use row-based replication? .. 3257
A.13.12 How do I prevent GRANT and REVOKE statements from replicating to slave machines? 3257
A.13.13 Does replication work on mixed operating systems (for example, the master runs on

Linux while slaves run on OS X and Windows)? ... 3257
A.13.14 Does replication work on mixed hardware architectures (for example, the master runs on

a 64-bit machine while slaves run on 32-bit machines)? .. 3257

A.13.1.Must the slave be connected to the master all the time?

No, it does not. The slave can go down or stay disconnected for hours or even days, and then
reconnect and catch up on updates. For example, you can set up a master/slave relationship
over a dial-up link where the link is up only sporadically and for short periods of time. The
implication of this is that, at any given time, the slave is not guaranteed to be in synchrony with
the master unless you take some special measures.

To ensure that catchup can occur for a slave that has been disconnected, you must not remove
binary log files from the master that contain information that has not yet been replicated to the
slaves. Asynchronous replication can work only if the slave is able to continue reading the binary
log from the point where it last read events.

A.13.2.Must I enable networking on my master and slave to enable replication?

Yes, networking must be enabled on the master and slave. If networking is not enabled,
the slave cannot connect to the master and transfer the binary log. Check that the skip-
networking option has not been enabled in the configuration file for either server.

A.13.3.How do I know how late a slave is compared to the master? In other words, how do I know the
date of the last statement replicated by the slave?

Check the Seconds_Behind_Master column in the output from SHOW SLAVE STATUS. See
Section 17.1.7.1, “Checking Replication Status”.

When the slave SQL thread executes an event read from the master, it modifies its own time
to the event timestamp. (This is why TIMESTAMP is well replicated.) In the Time column in the
output of SHOW PROCESSLIST, the number of seconds displayed for the slave SQL thread is
the number of seconds between the timestamp of the last replicated event and the real time
of the slave machine. You can use this to determine the date of the last replicated event. Note
that if your slave has been disconnected from the master for one hour, and then reconnects,
you may immediately see large Time values such as 3600 for the slave SQL thread in SHOW
PROCESSLIST. This is because the slave is executing statements that are one hour old. See
Section 17.2.2, “Replication Implementation Details”.

A.13.4.How do I force the master to block updates until the slave catches up?

Use the following procedure:

1. On the master, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Record the replication coordinates (the current binary log file name and position) from the
output of the SHOW statement.

2. On the slave, issue the following statement, where the arguments to the
MASTER_POS_WAIT() function are the replication coordinate values obtained in the
previous step:

MySQL 5.7 FAQ: Replication

3255

mysql> SELECT MASTER_POS_WAIT('log_name', log_pos);

The SELECT statement blocks until the slave reaches the specified log file and position. At
that point, the slave is in synchrony with the master and the statement returns.

3. On the master, issue the following statement to enable the master to begin processing
updates again:

mysql> UNLOCK TABLES;

A.13.5.What issues should I be aware of when setting up two-way replication?

MySQL replication currently does not support any locking protocol between master and slave
to guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible
for client A to make an update to co-master 1, and in the meantime, before it propagates to co-
master 2, client B could make an update to co-master 2 that makes the update of client A work
differently than it did on co-master 1. Thus, when the update of client A makes it to co-master
2, it produces tables that are different from what you have on co-master 1, even after all the
updates from co-master 2 have also propagated. This means that you should not chain two
servers together in a two-way replication relationship unless you are sure that your updates can
safely happen in any order, or unless you take care of mis-ordered updates somehow in the
client code.

You should also realize that two-way replication actually does not improve performance very
much (if at all) as far as updates are concerned. Each server must do the same number of
updates, just as you would have a single server do. The only difference is that there is a little
less lock contention because the updates originating on another server are serialized in one
slave thread. Even this benefit might be offset by network delays.

A.13.6.How can I use replication to improve performance of my system?

Set up one server as the master and direct all writes to it. Then configure as many slaves as you
have the budget and rackspace for, and distribute the reads among the master and the slaves.
You can also start the slaves with the --skip-innodb, --low-priority-updates, and --
delay-key-write=ALL options to get speed improvements on the slave end. In this case,
the slave uses nontransactional MyISAM tables instead of InnoDB tables to get more speed by
eliminating transactional overhead.

A.13.7.What should I do to prepare client code in my own applications to use performance-enhancing
replication?

See the guide to using replication as a scale-out solution, Section 17.3.3, “Using Replication for
Scale-Out”.

A.13.8.When and how much can MySQL replication improve the performance of my system?

MySQL replication is most beneficial for a system that processes frequent reads and infrequent
writes. In theory, by using a single-master/multiple-slave setup, you can scale the system by
adding more slaves until you either run out of network bandwidth, or your update load grows to
the point that the master cannot handle it.

To determine how many slaves you can use before the added benefits begin to level out, and
how much you can improve performance of your site, you must know your query patterns, and
determine empirically by benchmarking the relationship between the throughput for reads and
writes on a typical master and a typical slave. The example here shows a rather simplified
calculation of what you can get with replication for a hypothetical system. Let reads and
writes denote the number of reads and writes per second, respectively.

Let's say that system load consists of 10% writes and 90% reads, and we have determined
by benchmarking that reads is 1200 - 2 * writes. In other words, the system can do 1,200
reads per second with no writes, the average write is twice as slow as the average read, and the

MySQL 5.7 FAQ: Replication

3256

relationship is linear. Suppose that the master and each slave have the same capacity, and that
we have one master and N slaves. Then we have for each server (master or slave):

reads = 1200 - 2 * writes

reads = 9 * writes / (N + 1) (reads are split, but writes replicated to all slaves)

9 * writes / (N + 1) + 2 * writes = 1200

writes = 1200 / (2 + 9/(N + 1))

The last equation indicates the maximum number of writes for N slaves, given a maximum
possible read rate of 1,200 per second and a ratio of nine reads per write.

This analysis yields the following conclusions:

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109
writes per second.

• If N = 1, we get up to 184 writes per second.

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close
to 600 writes per second, increasing system throughput about 5.5 times. However, with only
eight servers, we increase it nearly four times.

These computations assume infinite network bandwidth and neglect several other factors
that could be significant on your system. In many cases, you may not be able to perform a
computation similar to the one just shown that accurately predicts what will happen on your
system if you add N replication slaves. However, answering the following questions should help
you decide whether and by how much replication will improve the performance of your system:

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many slaves do you have bandwidth available on your network?

A.13.9.How can I use replication to provide redundancy or high availability?

How you implement redundancy is entirely dependent on your application and circumstances.
High-availability solutions (with automatic failover) require active monitoring and either custom
scripts or third party tools to provide the failover support from the original MySQL server to the
slave.

To handle the process manually, you should be able to switch from a failed master to a pre-
configured slave by altering your application to talk to the new server or by adjusting the DNS for
the MySQL server from the failed server to the new server.

For more information and some example solutions, see Section 17.3.6, “Switching Masters
During Failover”.

A.13.10.How do I tell whether a master server is using statement-based or row-based binary logging
format?

Check the value of the binlog_format system variable:

mysql> SHOW VARIABLES LIKE 'binlog_format';

MySQL 5.7 FAQ: MySQL Enterprise Thread Pool

3257

The value shown will be one of STATEMENT, ROW, or MIXED. For MIXED mode, statement-based
logging is used by default but replication switches automatically to row-based logging under
certain conditions, such as unsafe statements. For information about when this may occur, see
Section 5.2.4.3, “Mixed Binary Logging Format”.

A.13.11.How do I tell a slave to use row-based replication?

Slaves automatically know which format to use.

A.13.12.How do I prevent GRANT and REVOKE statements from replicating to slave machines?

Start the server with the --replicate-wild-ignore-table=mysql.% option to ignore
replication for tables in the mysql database.

A.13.13.Does replication work on mixed operating systems (for example, the master runs on Linux while
slaves run on OS X and Windows)?

Yes.

A.13.14.Does replication work on mixed hardware architectures (for example, the master runs on a 64-bit
machine while slaves run on 32-bit machines)?

Yes.

A.14 MySQL 5.7 FAQ: MySQL Enterprise Thread Pool
A.14.1 What is the Thread Pool and what problem does it solve? .. 3257
A.14.2 How does the Thead Pool limit and manage concurrent sessions and transactions for

optimal performance and throughput? .. 3257
A.14.3 How is the Thread Pool different from the client side Connection Pool? 3258
A.14.4 When should I use the Thread Pool? .. 3258
A.14.5 Are there recommended Thread Pool configurations? .. 3258

A.14.1.What is the Thread Pool and what problem does it solve?

The MySQL Thread Pool is a MySQL server plugin that extends the default connection-handling
capabilities of the MySQL server to limit the number of concurrently executing statements/
queries and transactions to ensure that each has sufficient CPU and memory resources to fulfill
its task. Commercial distributions of MySQL 5.5 and 5.6 include the Thread Pool plugin.

The default thread-handling model in MySQL Server executes statements using one thread
per client connection. As more clients connect to the server and execute statements, overall
performance degrades. The Thread Pool plugin provides an alternative thread-handling model
designed to reduce overhead and improve performance. The Thread Pool plugin increases
server performance by efficiently managing statement execution threads for large numbers of
client connections, especially on modern multi-CPU/Core systems.

For more information, see Section 8.12.7, “The Thread Pool Plugin”.

A.14.2.How does the Thead Pool limit and manage concurrent sessions and transactions for optimal
performance and throughput?

The Thread Pool uses a “divide and conquer” approach to limiting and balancing concurrency.
Unlike the default connection handling of the MySQL Server, the Thread Pool separates
connections and threads, so there is no fixed relationship between connections and the threads
that execute statements received from those connections. The Thread Pool then manages client
connections within configurable thread groups, where they are prioritized and queued based on
the nature of the work they were submitted to accomplish.

For more information, see Section 8.12.7.2, “Thread Pool Operation”.

MySQL 5.7 FAQ: MySQL Enterprise Thread Pool

3258

A.14.3.How is the Thread Pool different from the client side Connection Pool?

The MySQL Connection Pool operates on the client side to ensure that a MySQL client does
not constantly connect to and disconnect from the MySQL server. It is designed to cache idle
connections in the MySQL client for use by other users as they are needed. This minimizes the
overhead and expense of establishing and tearing down connections as queries are submitted
to the MySQL server. The MySQL Connection Pool has no visibility as to the query handling
capabilities or load of the backend MySQL server. By contrast, the Thread Pool operates on the
MySQL server side and is designed to manage the execution of inbound concurrent connections
and queries as they are received from the client connections accessing the backend MySQL
database. Because of the separation of duties, the MySQL Connection Pool and Thread Pool
are orthogonal and can be used independent of each other.

MySQL Connection Pooling via the MySQL Connectors is covered in Chapter 23, Connectors
and APIs.

A.14.4.When should I use the Thread Pool?

There are a few rules of thumb to consider for optimal Thread Pool use cases:

The MySQL Threads_running variable keeps track of the number of concurrent statements
currently executing in the MySQL Server. If this variable consistently exceeds a region where
the server won't operate optimally (usually going beyond 40 for InnoDB workloads), the Thread
Pool will be beneficial, especially in extreme parallel overload situations.

If you are using the innodb_thread_concurrency to limit the number of concurrently
executing statements, you will find the Thread Pool solves the same problem, only better,
by assigning connections to thread groups, then queuing executions based on transactional
content, user defined designations, and so forth.

Lastly, if your workload comprises mainly short queries, the Thread Pool will be beneficial.

To learn more, see Section 8.12.7.3, “Thread Pool Tuning”.

A.14.5.Are there recommended Thread Pool configurations?

The Thread Pool has a number of user case driven configuration parameters that affect its
performance. To learn about these and tips on tuning, see Section 8.12.7.3, “Thread Pool
Tuning”.

3259

Appendix B Errors, Error Codes, and Common Problems

Table of Contents
B.1 Sources of Error Information ... 3259
B.2 Types of Error Values ... 3259
B.3 Server Error Codes and Messages .. 3260
B.4 Client Error Codes and Messages ... 3341
B.5 Problems and Common Errors .. 3345

B.5.1 How to Determine What Is Causing a Problem .. 3345
B.5.2 Common Errors When Using MySQL Programs ... 3346
B.5.3 Administration-Related Issues ... 3359
B.5.4 Query-Related Issues .. 3368
B.5.5 Optimizer-Related Issues ... 3375
B.5.6 Table Definition-Related Issues .. 3375
B.5.7 Known Issues in MySQL .. 3376

This appendix lists common problems and errors that may occur and potential resolutions, in addition
to listing the errors that may appear when you call MySQL from any host language. The first section
covers problems and resolutions. Detailed information on errors is provided: One list displays server
error messages. Another list displays client program messages.

B.1 Sources of Error Information
There are several sources of error information in MySQL:

• Each SQL statement executed results in an error code, an SQLSTATE value, and an error message,
as described in Section B.2, “Types of Error Values”. These errors are returned from the server side;
see Section B.3, “Server Error Codes and Messages”.

• Errors can occur on the client side, usually involving problems communicating with the server; see
Section B.4, “Client Error Codes and Messages”.

• SQL statement warning and error information is available through the SHOW WARNINGS and
SHOW ERRORS statements. The warning_count system variable indicates the number of errors,
warnings, and notes. The error_count system variable indicates the number of errors. Its value
excludes warnings and notes.

• The GET DIAGNOSTICS statement may be used to inspect the diagnostic information in the
diagnostics area. See Section 13.6.7.3, “GET DIAGNOSTICS Syntax”.

• SHOW SLAVE STATUS statement output includes information about replication errors occurring on
the slave side.

• SHOW ENGINE INNODB STATUS statement output includes information about the most recent
foreign key error if a CREATE TABLE statement for an InnoDB table fails.

• The perror program provides information from the command line about error numbers. See
Section 4.8.2, “perror — Explain Error Codes”.

Descriptions of server and client errors are provided later in this Appendix. For information about errors
related to InnoDB, see Section 14.18.4, “InnoDB Error Handling”.

B.2 Types of Error Values
When an error occurs in MySQL, the server returns two types of error values:

• A MySQL-specific error code. This value is numeric. It is not portable to other database systems.

Server Error Codes and Messages

3260

• An SQLSTATE value. The value is a five-character string (for example, '42S02'). The values are
taken from ANSI SQL and ODBC and are more standardized.

A message string that provides a textual description of the error is also available.

When an error occurs, the MySQL error code, SQLSTATE value, and message string are available
using C API functions:

• MySQL error code: Call mysql_errno()

• SQLSTATE value: Call mysql_sqlstate()

• Error message: Call mysql_error()

For prepared statements, the corresponding error functions are mysql_stmt_errno(),
mysql_stmt_sqlstate(), and mysql_stmt_error(). All error functions are described in
Section 23.8, “MySQL C API”.

The number of errors, warnings, and notes for the previous statement can be obtained by calling
mysql_warning_count(). See Section 23.8.7.78, “mysql_warning_count()”.

The first two characters of an SQLSTATE value indicate the error class:

• Class = '00' indicates success.

• Class = '01' indicates a warning.

• Class = '02' indicates “not found.” This is relevant within the context of cursors and is used to
control what happens when a cursor reaches the end of a data set. This condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• Class > '02' indicates an exception.

B.3 Server Error Codes and Messages
MySQL programs have access to several types of error information when the server returns an error.
For example, the mysql client program displays errors using the following format:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

The message displayed contains three types of information:

• A numeric error code (1146). This number is MySQL-specific and is not portable to other database
systems.

• A five-character SQLSTATE value ('42S02'). The values are taken from ANSI SQL and ODBC and
are more standardized. Not all MySQL error numbers have corresponding SQLSTATE values. In
these cases, 'HY000' (general error) is used.

• A message string that provides a textual description of the error.

For error checking, use error codes, not error messages. Error messages do not change often, but it is
possible. Also if the database administrator changes the language setting, that affects the language of
error messages.

Error codes are stable across GA releases of a given MySQL series. Before a series reaches GA
status, new codes may still be under development and subject to change.

Server error information comes from the following source files. For details about the way that error
information is defined, see the MySQL Internals Manual.

• Error message information is listed in the share/errmsg.txt file. %d and %s represent numbers
and strings, respectively, that are substituted into the Message values when they are displayed.

http://dev.mysql.com/doc/internals/en

Server Error Codes and Messages

3261

• The Error values listed in share/errmsg.txt are used to generate the definitions in the include/
mysqld_error.h and include/mysqld_ername.h MySQL source files.

• The SQLSTATE values listed in share/errmsg.txt are used to generate the definitions in the
include/sql_state.h MySQL source file.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

• Error: 1000 SQLSTATE: HY000 (ER_HASHCHK)

Message: hashchk

Unused.

• Error: 1001 SQLSTATE: HY000 (ER_NISAMCHK)

Message: isamchk

Unused.

• Error: 1002 SQLSTATE: HY000 (ER_NO)

Message: NO

Used in the construction of other messages.

• Error: 1003 SQLSTATE: HY000 (ER_YES)

Message: YES

Used in the construction of other messages.

Extended EXPLAIN format generates Note messages. ER_YES is used in the Code column for these
messages in subsequent SHOW WARNINGS output.

• Error: 1004 SQLSTATE: HY000 (ER_CANT_CREATE_FILE)

Message: Can't create file '%s' (errno: %d - %s)

Occurs for failure to copy an .frm file to a new location, during execution of a CREATE TABLE dst
LIKE src statement when the server tries to copy the source table .frm file to the destination table
.frm file.

Possible causes: Permissions problem for source .frm file; destination .frm file already exists but
is not writeable.

• Error: 1005 SQLSTATE: HY000 (ER_CANT_CREATE_TABLE)

Message: Can't create table '%s' (errno: %d)

• Error: 1006 SQLSTATE: HY000 (ER_CANT_CREATE_DB)

Message: Can't create database '%s' (errno: %d)

• Error: 1007 SQLSTATE: HY000 (ER_DB_CREATE_EXISTS)

Message: Can't create database '%s'; database exists

An attempt to create a database failed because the database already exists.

Drop the database first if you really want to replace an existing database, or add an IF NOT
EXISTS clause to the CREATE DATABASE statement if to retain an existing database without having
the statement produce an error.

Server Error Codes and Messages

3262

• Error: 1008 SQLSTATE: HY000 (ER_DB_DROP_EXISTS)

Message: Can't drop database '%s'; database doesn't exist

• Error: 1009 SQLSTATE: HY000 (ER_DB_DROP_DELETE)

Message: Error dropping database (can't delete '%s', errno: %d)

• Error: 1010 SQLSTATE: HY000 (ER_DB_DROP_RMDIR)

Message: Error dropping database (can't rmdir '%s', errno: %d)

• Error: 1011 SQLSTATE: HY000 (ER_CANT_DELETE_FILE)

Message: Error on delete of '%s' (errno: %d - %s)

• Error: 1012 SQLSTATE: HY000 (ER_CANT_FIND_SYSTEM_REC)

Message: Can't read record in system table

Returned by InnoDB for attempts to access InnoDB INFORMATION_SCHEMA tables when InnoDB
is unavailable.

• Error: 1013 SQLSTATE: HY000 (ER_CANT_GET_STAT)

Message: Can't get status of '%s' (errno: %d - %s)

• Error: 1014 SQLSTATE: HY000 (ER_CANT_GET_WD)

Message: Can't get working directory (errno: %d - %s)

• Error: 1015 SQLSTATE: HY000 (ER_CANT_LOCK)

Message: Can't lock file (errno: %d - %s)

• Error: 1016 SQLSTATE: HY000 (ER_CANT_OPEN_FILE)

Message: Can't open file: '%s' (errno: %d - %s)

• Error: 1017 SQLSTATE: HY000 (ER_FILE_NOT_FOUND)

Message: Can't find file: '%s' (errno: %d - %s)

• Error: 1018 SQLSTATE: HY000 (ER_CANT_READ_DIR)

Message: Can't read dir of '%s' (errno: %d - %s)

• Error: 1019 SQLSTATE: HY000 (ER_CANT_SET_WD)

Message: Can't change dir to '%s' (errno: %d - %s)

• Error: 1020 SQLSTATE: HY000 (ER_CHECKREAD)

Message: Record has changed since last read in table '%s'

• Error: 1021 SQLSTATE: HY000 (ER_DISK_FULL)

Message: Disk full (%s); waiting for someone to free some space... (errno: %d - %s)

• Error: 1022 SQLSTATE: 23000 (ER_DUP_KEY)

Message: Can't write; duplicate key in table '%s'

• Error: 1023 SQLSTATE: HY000 (ER_ERROR_ON_CLOSE)

Server Error Codes and Messages

3263

Message: Error on close of '%s' (errno: %d - %s)

• Error: 1024 SQLSTATE: HY000 (ER_ERROR_ON_READ)

Message: Error reading file '%s' (errno: %d - %s)

• Error: 1025 SQLSTATE: HY000 (ER_ERROR_ON_RENAME)

Message: Error on rename of '%s' to '%s' (errno: %d - %s)

• Error: 1026 SQLSTATE: HY000 (ER_ERROR_ON_WRITE)

Message: Error writing file '%s' (errno: %d - %s)

• Error: 1027 SQLSTATE: HY000 (ER_FILE_USED)

Message: '%s' is locked against change

• Error: 1028 SQLSTATE: HY000 (ER_FILSORT_ABORT)

Message: Sort aborted

• Error: 1029 SQLSTATE: HY000 (ER_FORM_NOT_FOUND)

Message: View '%s' doesn't exist for '%s'

• Error: 1030 SQLSTATE: HY000 (ER_GET_ERRNO)

Message: Got error %d from storage engine

Check the %d value to see what the OS error means. For example, 28 indicates that you have run
out of disk space.

• Error: 1031 SQLSTATE: HY000 (ER_ILLEGAL_HA)

Message: Table storage engine for '%s' doesn't have this option

• Error: 1032 SQLSTATE: HY000 (ER_KEY_NOT_FOUND)

Message: Can't find record in '%s'

• Error: 1033 SQLSTATE: HY000 (ER_NOT_FORM_FILE)

Message: Incorrect information in file: '%s'

• Error: 1034 SQLSTATE: HY000 (ER_NOT_KEYFILE)

Message: Incorrect key file for table '%s'; try to repair it

• Error: 1035 SQLSTATE: HY000 (ER_OLD_KEYFILE)

Message: Old key file for table '%s'; repair it!

• Error: 1036 SQLSTATE: HY000 (ER_OPEN_AS_READONLY)

Message: Table '%s' is read only

• Error: 1037 SQLSTATE: HY001 (ER_OUTOFMEMORY)

Message: Out of memory; restart server and try again (needed %d bytes)

• Error: 1038 SQLSTATE: HY001 (ER_OUT_OF_SORTMEMORY)

Message: Out of sort memory, consider increasing server sort buffer size

Server Error Codes and Messages

3264

• Error: 1039 SQLSTATE: HY000 (ER_UNEXPECTED_EOF)

Message: Unexpected EOF found when reading file '%s' (errno: %d - %s)

• Error: 1040 SQLSTATE: 08004 (ER_CON_COUNT_ERROR)

Message: Too many connections

• Error: 1041 SQLSTATE: HY000 (ER_OUT_OF_RESOURCES)

Message: Out of memory; check if mysqld or some other process uses all available memory; if not,
you may have to use 'ulimit' to allow mysqld to use more memory or you can add more swap space

• Error: 1042 SQLSTATE: 08S01 (ER_BAD_HOST_ERROR)

Message: Can't get hostname for your address

• Error: 1043 SQLSTATE: 08S01 (ER_HANDSHAKE_ERROR)

Message: Bad handshake

• Error: 1044 SQLSTATE: 42000 (ER_DBACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' to database '%s'

• Error: 1045 SQLSTATE: 28000 (ER_ACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' (using password: %s)

• Error: 1046 SQLSTATE: 3D000 (ER_NO_DB_ERROR)

Message: No database selected

• Error: 1047 SQLSTATE: 08S01 (ER_UNKNOWN_COM_ERROR)

Message: Unknown command

• Error: 1048 SQLSTATE: 23000 (ER_BAD_NULL_ERROR)

Message: Column '%s' cannot be null

• Error: 1049 SQLSTATE: 42000 (ER_BAD_DB_ERROR)

Message: Unknown database '%s'

• Error: 1050 SQLSTATE: 42S01 (ER_TABLE_EXISTS_ERROR)

Message: Table '%s' already exists

• Error: 1051 SQLSTATE: 42S02 (ER_BAD_TABLE_ERROR)

Message: Unknown table '%s'

• Error: 1052 SQLSTATE: 23000 (ER_NON_UNIQ_ERROR)

Message: Column '%s' in %s is ambiguous

%s = column name
%s = location of column (for example, "field list")

Likely cause: A column appears in a query without appropriate qualification, such as in a select list or
ON clause.

Examples:

Server Error Codes and Messages

3265

mysql> SELECT i FROM t INNER JOIN t AS t2;
ERROR 1052 (23000): Column 'i' in field list is ambiguous

mysql> SELECT * FROM t LEFT JOIN t AS t2 ON i = i;
ERROR 1052 (23000): Column 'i' in on clause is ambiguous

Resolution:

• Qualify the column with the appropriate table name:

mysql> SELECT t2.i FROM t INNER JOIN t AS t2;

• Modify the query to avoid the need for qualification:

mysql> SELECT * FROM t LEFT JOIN t AS t2 USING (i);

• Error: 1053 SQLSTATE: 08S01 (ER_SERVER_SHUTDOWN)

Message: Server shutdown in progress

• Error: 1054 SQLSTATE: 42S22 (ER_BAD_FIELD_ERROR)

Message: Unknown column '%s' in '%s'

• Error: 1055 SQLSTATE: 42000 (ER_WRONG_FIELD_WITH_GROUP)

Message: '%s' isn't in GROUP BY

• Error: 1056 SQLSTATE: 42000 (ER_WRONG_GROUP_FIELD)

Message: Can't group on '%s'

• Error: 1057 SQLSTATE: 42000 (ER_WRONG_SUM_SELECT)

Message: Statement has sum functions and columns in same statement

• Error: 1058 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT)

Message: Column count doesn't match value count

• Error: 1059 SQLSTATE: 42000 (ER_TOO_LONG_IDENT)

Message: Identifier name '%s' is too long

• Error: 1060 SQLSTATE: 42S21 (ER_DUP_FIELDNAME)

Message: Duplicate column name '%s'

• Error: 1061 SQLSTATE: 42000 (ER_DUP_KEYNAME)

Message: Duplicate key name '%s'

• Error: 1062 SQLSTATE: 23000 (ER_DUP_ENTRY)

Message: Duplicate entry '%s' for key %d

The message returned with this error uses the format string for ER_DUP_ENTRY_WITH_KEY_NAME.

• Error: 1063 SQLSTATE: 42000 (ER_WRONG_FIELD_SPEC)

Message: Incorrect column specifier for column '%s'

Server Error Codes and Messages

3266

• Error: 1064 SQLSTATE: 42000 (ER_PARSE_ERROR)

Message: %s near '%s' at line %d

• Error: 1065 SQLSTATE: 42000 (ER_EMPTY_QUERY)

Message: Query was empty

• Error: 1066 SQLSTATE: 42000 (ER_NONUNIQ_TABLE)

Message: Not unique table/alias: '%s'

• Error: 1067 SQLSTATE: 42000 (ER_INVALID_DEFAULT)

Message: Invalid default value for '%s'

• Error: 1068 SQLSTATE: 42000 (ER_MULTIPLE_PRI_KEY)

Message: Multiple primary key defined

• Error: 1069 SQLSTATE: 42000 (ER_TOO_MANY_KEYS)

Message: Too many keys specified; max %d keys allowed

• Error: 1070 SQLSTATE: 42000 (ER_TOO_MANY_KEY_PARTS)

Message: Too many key parts specified; max %d parts allowed

• Error: 1071 SQLSTATE: 42000 (ER_TOO_LONG_KEY)

Message: Specified key was too long; max key length is %d bytes

• Error: 1072 SQLSTATE: 42000 (ER_KEY_COLUMN_DOES_NOT_EXITS)

Message: Key column '%s' doesn't exist in table

• Error: 1073 SQLSTATE: 42000 (ER_BLOB_USED_AS_KEY)

Message: BLOB column '%s' can't be used in key specification with the used table type

• Error: 1074 SQLSTATE: 42000 (ER_TOO_BIG_FIELDLENGTH)

Message: Column length too big for column '%s' (max = %lu); use BLOB or TEXT instead

• Error: 1075 SQLSTATE: 42000 (ER_WRONG_AUTO_KEY)

Message: Incorrect table definition; there can be only one auto column and it must be defined as a
key

• Error: 1076 SQLSTATE: HY000 (ER_READY)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d

• Error: 1077 SQLSTATE: HY000 (ER_NORMAL_SHUTDOWN)

Message: %s: Normal shutdown

• Error: 1078 SQLSTATE: HY000 (ER_GOT_SIGNAL)

Message: %s: Got signal %d. Aborting!

• Error: 1079 SQLSTATE: HY000 (ER_SHUTDOWN_COMPLETE)

Message: %s: Shutdown complete

Server Error Codes and Messages

3267

• Error: 1080 SQLSTATE: 08S01 (ER_FORCING_CLOSE)

Message: %s: Forcing close of thread %ld user: '%s'

• Error: 1081 SQLSTATE: 08S01 (ER_IPSOCK_ERROR)

Message: Can't create IP socket

• Error: 1082 SQLSTATE: 42S12 (ER_NO_SUCH_INDEX)

Message: Table '%s' has no index like the one used in CREATE INDEX; recreate the table

• Error: 1083 SQLSTATE: 42000 (ER_WRONG_FIELD_TERMINATORS)

Message: Field separator argument is not what is expected; check the manual

• Error: 1084 SQLSTATE: 42000 (ER_BLOBS_AND_NO_TERMINATED)

Message: You can't use fixed rowlength with BLOBs; please use 'fields terminated by'

• Error: 1085 SQLSTATE: HY000 (ER_TEXTFILE_NOT_READABLE)

Message: The file '%s' must be in the database directory or be readable by all

• Error: 1086 SQLSTATE: HY000 (ER_FILE_EXISTS_ERROR)

Message: File '%s' already exists

• Error: 1087 SQLSTATE: HY000 (ER_LOAD_INFO)

Message: Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld

• Error: 1088 SQLSTATE: HY000 (ER_ALTER_INFO)

Message: Records: %ld Duplicates: %ld

• Error: 1089 SQLSTATE: HY000 (ER_WRONG_SUB_KEY)

Message: Incorrect prefix key; the used key part isn't a string, the used length is longer than the key
part, or the storage engine doesn't support unique prefix keys

• Error: 1090 SQLSTATE: 42000 (ER_CANT_REMOVE_ALL_FIELDS)

Message: You can't delete all columns with ALTER TABLE; use DROP TABLE instead

• Error: 1091 SQLSTATE: 42000 (ER_CANT_DROP_FIELD_OR_KEY)

Message: Can't DROP '%s'; check that column/key exists

• Error: 1092 SQLSTATE: HY000 (ER_INSERT_INFO)

Message: Records: %ld Duplicates: %ld Warnings: %ld

• Error: 1093 SQLSTATE: HY000 (ER_UPDATE_TABLE_USED)

Message: You can't specify target table '%s' for update in FROM clause

• Error: 1094 SQLSTATE: HY000 (ER_NO_SUCH_THREAD)

Message: Unknown thread id: %lu

• Error: 1095 SQLSTATE: HY000 (ER_KILL_DENIED_ERROR)

Message: You are not owner of thread %lu

Server Error Codes and Messages

3268

• Error: 1096 SQLSTATE: HY000 (ER_NO_TABLES_USED)

Message: No tables used

• Error: 1097 SQLSTATE: HY000 (ER_TOO_BIG_SET)

Message: Too many strings for column %s and SET

• Error: 1098 SQLSTATE: HY000 (ER_NO_UNIQUE_LOGFILE)

Message: Can't generate a unique log-filename %s.(1-999)

• Error: 1099 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED_FOR_WRITE)

Message: Table '%s' was locked with a READ lock and can't be updated

• Error: 1100 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED)

Message: Table '%s' was not locked with LOCK TABLES

• Error: 1101 SQLSTATE: 42000 (ER_BLOB_CANT_HAVE_DEFAULT)

Message: BLOB, TEXT, GEOMETRY or JSON column '%s' can't have a default value

• Error: 1102 SQLSTATE: 42000 (ER_WRONG_DB_NAME)

Message: Incorrect database name '%s'

• Error: 1103 SQLSTATE: 42000 (ER_WRONG_TABLE_NAME)

Message: Incorrect table name '%s'

• Error: 1104 SQLSTATE: 42000 (ER_TOO_BIG_SELECT)

Message: The SELECT would examine more than MAX_JOIN_SIZE rows; check your WHERE and
use SET SQL_BIG_SELECTS=1 or SET MAX_JOIN_SIZE=# if the SELECT is okay

• Error: 1105 SQLSTATE: HY000 (ER_UNKNOWN_ERROR)

Message: Unknown error

• Error: 1106 SQLSTATE: 42000 (ER_UNKNOWN_PROCEDURE)

Message: Unknown procedure '%s'

• Error: 1107 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_PROCEDURE)

Message: Incorrect parameter count to procedure '%s'

• Error: 1108 SQLSTATE: HY000 (ER_WRONG_PARAMETERS_TO_PROCEDURE)

Message: Incorrect parameters to procedure '%s'

• Error: 1109 SQLSTATE: 42S02 (ER_UNKNOWN_TABLE)

Message: Unknown table '%s' in %s

• Error: 1110 SQLSTATE: 42000 (ER_FIELD_SPECIFIED_TWICE)

Message: Column '%s' specified twice

• Error: 1111 SQLSTATE: HY000 (ER_INVALID_GROUP_FUNC_USE)

Message: Invalid use of group function

Server Error Codes and Messages

3269

• Error: 1112 SQLSTATE: 42000 (ER_UNSUPPORTED_EXTENSION)

Message: Table '%s' uses an extension that doesn't exist in this MySQL version

• Error: 1113 SQLSTATE: 42000 (ER_TABLE_MUST_HAVE_COLUMNS)

Message: A table must have at least 1 column

• Error: 1114 SQLSTATE: HY000 (ER_RECORD_FILE_FULL)

Message: The table '%s' is full

• Error: 1115 SQLSTATE: 42000 (ER_UNKNOWN_CHARACTER_SET)

Message: Unknown character set: '%s'

• Error: 1116 SQLSTATE: HY000 (ER_TOO_MANY_TABLES)

Message: Too many tables; MySQL can only use %d tables in a join

• Error: 1117 SQLSTATE: HY000 (ER_TOO_MANY_FIELDS)

Message: Too many columns

• Error: 1118 SQLSTATE: 42000 (ER_TOO_BIG_ROWSIZE)

Message: Row size too large. The maximum row size for the used table type, not counting BLOBs, is
%ld. This includes storage overhead, check the manual. You have to change some columns to TEXT
or BLOBs

• Error: 1119 SQLSTATE: HY000 (ER_STACK_OVERRUN)

Message: Thread stack overrun: Used: %ld of a %ld stack. Use 'mysqld --thread_stack=#' to specify
a bigger stack if needed

• Error: 1120 SQLSTATE: 42000 (ER_WRONG_OUTER_JOIN)

Message: Cross dependency found in OUTER JOIN; examine your ON conditions

• Error: 1121 SQLSTATE: 42000 (ER_NULL_COLUMN_IN_INDEX)

Message: Table handler doesn't support NULL in given index. Please change column '%s' to be NOT
NULL or use another handler

• Error: 1122 SQLSTATE: HY000 (ER_CANT_FIND_UDF)

Message: Can't load function '%s'

• Error: 1123 SQLSTATE: HY000 (ER_CANT_INITIALIZE_UDF)

Message: Can't initialize function '%s'; %s

• Error: 1124 SQLSTATE: HY000 (ER_UDF_NO_PATHS)

Message: No paths allowed for shared library

• Error: 1125 SQLSTATE: HY000 (ER_UDF_EXISTS)

Message: Function '%s' already exists

• Error: 1126 SQLSTATE: HY000 (ER_CANT_OPEN_LIBRARY)

Message: Can't open shared library '%s' (errno: %d %s)

Server Error Codes and Messages

3270

• Error: 1127 SQLSTATE: HY000 (ER_CANT_FIND_DL_ENTRY)

Message: Can't find symbol '%s' in library

• Error: 1128 SQLSTATE: HY000 (ER_FUNCTION_NOT_DEFINED)

Message: Function '%s' is not defined

• Error: 1129 SQLSTATE: HY000 (ER_HOST_IS_BLOCKED)

Message: Host '%s' is blocked because of many connection errors; unblock with 'mysqladmin flush-
hosts'

• Error: 1130 SQLSTATE: HY000 (ER_HOST_NOT_PRIVILEGED)

Message: Host '%s' is not allowed to connect to this MySQL server

• Error: 1131 SQLSTATE: 42000 (ER_PASSWORD_ANONYMOUS_USER)

Message: You are using MySQL as an anonymous user and anonymous users are not allowed to
change passwords

• Error: 1132 SQLSTATE: 42000 (ER_PASSWORD_NOT_ALLOWED)

Message: You must have privileges to update tables in the mysql database to be able to change
passwords for others

• Error: 1133 SQLSTATE: 42000 (ER_PASSWORD_NO_MATCH)

Message: Can't find any matching row in the user table

• Error: 1134 SQLSTATE: HY000 (ER_UPDATE_INFO)

Message: Rows matched: %ld Changed: %ld Warnings: %ld

• Error: 1135 SQLSTATE: HY000 (ER_CANT_CREATE_THREAD)

Message: Can't create a new thread (errno %d); if you are not out of available memory, you can
consult the manual for a possible OS-dependent bug

• Error: 1136 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT_ON_ROW)

Message: Column count doesn't match value count at row %ld

• Error: 1137 SQLSTATE: HY000 (ER_CANT_REOPEN_TABLE)

Message: Can't reopen table: '%s'

• Error: 1138 SQLSTATE: 22004 (ER_INVALID_USE_OF_NULL)

Message: Invalid use of NULL value

• Error: 1139 SQLSTATE: 42000 (ER_REGEXP_ERROR)

Message: Got error '%s' from regexp

• Error: 1140 SQLSTATE: 42000 (ER_MIX_OF_GROUP_FUNC_AND_FIELDS)

Message: Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP columns is illegal
if there is no GROUP BY clause

• Error: 1141 SQLSTATE: 42000 (ER_NONEXISTING_GRANT)

Message: There is no such grant defined for user '%s' on host '%s'

Server Error Codes and Messages

3271

• Error: 1142 SQLSTATE: 42000 (ER_TABLEACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for table '%s'

• Error: 1143 SQLSTATE: 42000 (ER_COLUMNACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for column '%s' in table '%s'

• Error: 1144 SQLSTATE: 42000 (ER_ILLEGAL_GRANT_FOR_TABLE)

Message: Illegal GRANT/REVOKE command; please consult the manual to see which privileges can
be used

• Error: 1145 SQLSTATE: 42000 (ER_GRANT_WRONG_HOST_OR_USER)

Message: The host or user argument to GRANT is too long

• Error: 1146 SQLSTATE: 42S02 (ER_NO_SUCH_TABLE)

Message: Table '%s.%s' doesn't exist

• Error: 1147 SQLSTATE: 42000 (ER_NONEXISTING_TABLE_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on table '%s'

• Error: 1148 SQLSTATE: 42000 (ER_NOT_ALLOWED_COMMAND)

Message: The used command is not allowed with this MySQL version

• Error: 1149 SQLSTATE: 42000 (ER_SYNTAX_ERROR)

Message: You have an error in your SQL syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use

• Error: 1150 SQLSTATE: HY000 (ER_UNUSED1)

Message: Delayed insert thread couldn't get requested lock for table %s

• Error: 1151 SQLSTATE: HY000 (ER_UNUSED2)

Message: Too many delayed threads in use

• Error: 1152 SQLSTATE: 08S01 (ER_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' (%s)

• Error: 1153 SQLSTATE: 08S01 (ER_NET_PACKET_TOO_LARGE)

Message: Got a packet bigger than 'max_allowed_packet' bytes

• Error: 1154 SQLSTATE: 08S01 (ER_NET_READ_ERROR_FROM_PIPE)

Message: Got a read error from the connection pipe

• Error: 1155 SQLSTATE: 08S01 (ER_NET_FCNTL_ERROR)

Message: Got an error from fcntl()

• Error: 1156 SQLSTATE: 08S01 (ER_NET_PACKETS_OUT_OF_ORDER)

Message: Got packets out of order

• Error: 1157 SQLSTATE: 08S01 (ER_NET_UNCOMPRESS_ERROR)

Message: Couldn't uncompress communication packet

Server Error Codes and Messages

3272

• Error: 1158 SQLSTATE: 08S01 (ER_NET_READ_ERROR)

Message: Got an error reading communication packets

• Error: 1159 SQLSTATE: 08S01 (ER_NET_READ_INTERRUPTED)

Message: Got timeout reading communication packets

• Error: 1160 SQLSTATE: 08S01 (ER_NET_ERROR_ON_WRITE)

Message: Got an error writing communication packets

• Error: 1161 SQLSTATE: 08S01 (ER_NET_WRITE_INTERRUPTED)

Message: Got timeout writing communication packets

• Error: 1162 SQLSTATE: 42000 (ER_TOO_LONG_STRING)

Message: Result string is longer than 'max_allowed_packet' bytes

• Error: 1163 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_BLOB)

Message: The used table type doesn't support BLOB/TEXT columns

• Error: 1164 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_AUTO_INCREMENT)

Message: The used table type doesn't support AUTO_INCREMENT columns

• Error: 1165 SQLSTATE: HY000 (ER_UNUSED3)

Message: INSERT DELAYED can't be used with table '%s' because it is locked with LOCK TABLES

• Error: 1166 SQLSTATE: 42000 (ER_WRONG_COLUMN_NAME)

Message: Incorrect column name '%s'

• Error: 1167 SQLSTATE: 42000 (ER_WRONG_KEY_COLUMN)

Message: The used storage engine can't index column '%s'

• Error: 1168 SQLSTATE: HY000 (ER_WRONG_MRG_TABLE)

Message: Unable to open underlying table which is differently defined or of non-MyISAM type or
doesn't exist

• Error: 1169 SQLSTATE: 23000 (ER_DUP_UNIQUE)

Message: Can't write, because of unique constraint, to table '%s'

• Error: 1170 SQLSTATE: 42000 (ER_BLOB_KEY_WITHOUT_LENGTH)

Message: BLOB/TEXT column '%s' used in key specification without a key length

• Error: 1171 SQLSTATE: 42000 (ER_PRIMARY_CANT_HAVE_NULL)

Message: All parts of a PRIMARY KEY must be NOT NULL; if you need NULL in a key, use UNIQUE
instead

• Error: 1172 SQLSTATE: 42000 (ER_TOO_MANY_ROWS)

Message: Result consisted of more than one row

• Error: 1173 SQLSTATE: 42000 (ER_REQUIRES_PRIMARY_KEY)

Message: This table type requires a primary key

Server Error Codes and Messages

3273

• Error: 1174 SQLSTATE: HY000 (ER_NO_RAID_COMPILED)

Message: This version of MySQL is not compiled with RAID support

• Error: 1175 SQLSTATE: HY000 (ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE)

Message: You are using safe update mode and you tried to update a table without a WHERE that
uses a KEY column

• Error: 1176 SQLSTATE: 42000 (ER_KEY_DOES_NOT_EXITS)

Message: Key '%s' doesn't exist in table '%s'

• Error: 1177 SQLSTATE: 42000 (ER_CHECK_NO_SUCH_TABLE)

Message: Can't open table

• Error: 1178 SQLSTATE: 42000 (ER_CHECK_NOT_IMPLEMENTED)

Message: The storage engine for the table doesn't support %s

• Error: 1179 SQLSTATE: 25000 (ER_CANT_DO_THIS_DURING_AN_TRANSACTION)

Message: You are not allowed to execute this command in a transaction

• Error: 1180 SQLSTATE: HY000 (ER_ERROR_DURING_COMMIT)

Message: Got error %d during COMMIT

• Error: 1181 SQLSTATE: HY000 (ER_ERROR_DURING_ROLLBACK)

Message: Got error %d during ROLLBACK

• Error: 1182 SQLSTATE: HY000 (ER_ERROR_DURING_FLUSH_LOGS)

Message: Got error %d during FLUSH_LOGS

• Error: 1183 SQLSTATE: HY000 (ER_ERROR_DURING_CHECKPOINT)

Message: Got error %d during CHECKPOINT

• Error: 1184 SQLSTATE: 08S01 (ER_NEW_ABORTING_CONNECTION)

Message: Aborted connection %u to db: '%s' user: '%s' host: '%s' (%s)

• Error: 1185 SQLSTATE: HY000 (ER_DUMP_NOT_IMPLEMENTED)

Message: The storage engine for the table does not support binary table dump

• Error: 1186 SQLSTATE: HY000 (ER_FLUSH_MASTER_BINLOG_CLOSED)

Message: Binlog closed, cannot RESET MASTER

• Error: 1187 SQLSTATE: HY000 (ER_INDEX_REBUILD)

Message: Failed rebuilding the index of dumped table '%s'

• Error: 1188 SQLSTATE: HY000 (ER_MASTER)

Message: Error from master: '%s'

• Error: 1189 SQLSTATE: 08S01 (ER_MASTER_NET_READ)

Message: Net error reading from master

• Error: 1190 SQLSTATE: 08S01 (ER_MASTER_NET_WRITE)

Server Error Codes and Messages

3274

Message: Net error writing to master

• Error: 1191 SQLSTATE: HY000 (ER_FT_MATCHING_KEY_NOT_FOUND)

Message: Can't find FULLTEXT index matching the column list

• Error: 1192 SQLSTATE: HY000 (ER_LOCK_OR_ACTIVE_TRANSACTION)

Message: Can't execute the given command because you have active locked tables or an active
transaction

• Error: 1193 SQLSTATE: HY000 (ER_UNKNOWN_SYSTEM_VARIABLE)

Message: Unknown system variable '%s'

• Error: 1194 SQLSTATE: HY000 (ER_CRASHED_ON_USAGE)

Message: Table '%s' is marked as crashed and should be repaired

• Error: 1195 SQLSTATE: HY000 (ER_CRASHED_ON_REPAIR)

Message: Table '%s' is marked as crashed and last (automatic?) repair failed

• Error: 1196 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK)

Message: Some non-transactional changed tables couldn't be rolled back

• Error: 1197 SQLSTATE: HY000 (ER_TRANS_CACHE_FULL)

Message: Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage;
increase this mysqld variable and try again

• Error: 1198 SQLSTATE: HY000 (ER_SLAVE_MUST_STOP)

Message: This operation cannot be performed with a running slave; run STOP SLAVE first

• Error: 1199 SQLSTATE: HY000 (ER_SLAVE_NOT_RUNNING)

Message: This operation requires a running slave; configure slave and do START SLAVE

• Error: 1200 SQLSTATE: HY000 (ER_BAD_SLAVE)

Message: The server is not configured as slave; fix in config file or with CHANGE MASTER TO

• Error: 1201 SQLSTATE: HY000 (ER_MASTER_INFO)

Message: Could not initialize master info structure; more error messages can be found in the MySQL
error log

• Error: 1202 SQLSTATE: HY000 (ER_SLAVE_THREAD)

Message: Could not create slave thread; check system resources

• Error: 1203 SQLSTATE: 42000 (ER_TOO_MANY_USER_CONNECTIONS)

Message: User %s already has more than 'max_user_connections' active connections

• Error: 1204 SQLSTATE: HY000 (ER_SET_CONSTANTS_ONLY)

Message: You may only use constant expressions with SET

• Error: 1205 SQLSTATE: HY000 (ER_LOCK_WAIT_TIMEOUT)

Message: Lock wait timeout exceeded; try restarting transaction

Server Error Codes and Messages

3275

• Error: 1206 SQLSTATE: HY000 (ER_LOCK_TABLE_FULL)

Message: The total number of locks exceeds the lock table size

• Error: 1207 SQLSTATE: 25000 (ER_READ_ONLY_TRANSACTION)

Message: Update locks cannot be acquired during a READ UNCOMMITTED transaction

• Error: 1208 SQLSTATE: HY000 (ER_DROP_DB_WITH_READ_LOCK)

Message: DROP DATABASE not allowed while thread is holding global read lock

• Error: 1209 SQLSTATE: HY000 (ER_CREATE_DB_WITH_READ_LOCK)

Message: CREATE DATABASE not allowed while thread is holding global read lock

• Error: 1210 SQLSTATE: HY000 (ER_WRONG_ARGUMENTS)

Message: Incorrect arguments to %s

• Error: 1211 SQLSTATE: 42000 (ER_NO_PERMISSION_TO_CREATE_USER)

Message: '%s'@'%s' is not allowed to create new users

• Error: 1212 SQLSTATE: HY000 (ER_UNION_TABLES_IN_DIFFERENT_DIR)

Message: Incorrect table definition; all MERGE tables must be in the same database

• Error: 1213 SQLSTATE: 40001 (ER_LOCK_DEADLOCK)

Message: Deadlock found when trying to get lock; try restarting transaction

• Error: 1214 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_FT)

Message: The used table type doesn't support FULLTEXT indexes

• Error: 1215 SQLSTATE: HY000 (ER_CANNOT_ADD_FOREIGN)

Message: Cannot add foreign key constraint

• Error: 1216 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW)

Message: Cannot add or update a child row: a foreign key constraint fails

• Error: 1217 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED)

Message: Cannot delete or update a parent row: a foreign key constraint fails

• Error: 1218 SQLSTATE: 08S01 (ER_CONNECT_TO_MASTER)

Message: Error connecting to master: %s

• Error: 1219 SQLSTATE: HY000 (ER_QUERY_ON_MASTER)

Message: Error running query on master: %s

• Error: 1220 SQLSTATE: HY000 (ER_ERROR_WHEN_EXECUTING_COMMAND)

Message: Error when executing command %s: %s

• Error: 1221 SQLSTATE: HY000 (ER_WRONG_USAGE)

Message: Incorrect usage of %s and %s

• Error: 1222 SQLSTATE: 21000 (ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)

Server Error Codes and Messages

3276

Message: The used SELECT statements have a different number of columns

• Error: 1223 SQLSTATE: HY000 (ER_CANT_UPDATE_WITH_READLOCK)

Message: Can't execute the query because you have a conflicting read lock

• Error: 1224 SQLSTATE: HY000 (ER_MIXING_NOT_ALLOWED)

Message: Mixing of transactional and non-transactional tables is disabled

• Error: 1225 SQLSTATE: HY000 (ER_DUP_ARGUMENT)

Message: Option '%s' used twice in statement

• Error: 1226 SQLSTATE: 42000 (ER_USER_LIMIT_REACHED)

Message: User '%s' has exceeded the '%s' resource (current value: %ld)

• Error: 1227 SQLSTATE: 42000 (ER_SPECIFIC_ACCESS_DENIED_ERROR)

Message: Access denied; you need (at least one of) the %s privilege(s) for this operation

• Error: 1228 SQLSTATE: HY000 (ER_LOCAL_VARIABLE)

Message: Variable '%s' is a SESSION variable and can't be used with SET GLOBAL

• Error: 1229 SQLSTATE: HY000 (ER_GLOBAL_VARIABLE)

Message: Variable '%s' is a GLOBAL variable and should be set with SET GLOBAL

• Error: 1230 SQLSTATE: 42000 (ER_NO_DEFAULT)

Message: Variable '%s' doesn't have a default value

• Error: 1231 SQLSTATE: 42000 (ER_WRONG_VALUE_FOR_VAR)

Message: Variable '%s' can't be set to the value of '%s'

• Error: 1232 SQLSTATE: 42000 (ER_WRONG_TYPE_FOR_VAR)

Message: Incorrect argument type to variable '%s'

• Error: 1233 SQLSTATE: HY000 (ER_VAR_CANT_BE_READ)

Message: Variable '%s' can only be set, not read

• Error: 1234 SQLSTATE: 42000 (ER_CANT_USE_OPTION_HERE)

Message: Incorrect usage/placement of '%s'

• Error: 1235 SQLSTATE: 42000 (ER_NOT_SUPPORTED_YET)

Message: This version of MySQL doesn't yet support '%s'

• Error: 1236 SQLSTATE: HY000 (ER_MASTER_FATAL_ERROR_READING_BINLOG)

Message: Got fatal error %d from master when reading data from binary log: '%s'

• Error: 1237 SQLSTATE: HY000 (ER_SLAVE_IGNORED_TABLE)

Message: Slave SQL thread ignored the query because of replicate-*-table rules

• Error: 1238 SQLSTATE: HY000 (ER_INCORRECT_GLOBAL_LOCAL_VAR)

Message: Variable '%s' is a %s variable

Server Error Codes and Messages

3277

• Error: 1239 SQLSTATE: 42000 (ER_WRONG_FK_DEF)

Message: Incorrect foreign key definition for '%s': %s

• Error: 1240 SQLSTATE: HY000 (ER_KEY_REF_DO_NOT_MATCH_TABLE_REF)

Message: Key reference and table reference don't match

• Error: 1241 SQLSTATE: 21000 (ER_OPERAND_COLUMNS)

Message: Operand should contain %d column(s)

• Error: 1242 SQLSTATE: 21000 (ER_SUBQUERY_NO_1_ROW)

Message: Subquery returns more than 1 row

• Error: 1243 SQLSTATE: HY000 (ER_UNKNOWN_STMT_HANDLER)

Message: Unknown prepared statement handler (%.*s) given to %s

• Error: 1244 SQLSTATE: HY000 (ER_CORRUPT_HELP_DB)

Message: Help database is corrupt or does not exist

• Error: 1245 SQLSTATE: HY000 (ER_CYCLIC_REFERENCE)

Message: Cyclic reference on subqueries

• Error: 1246 SQLSTATE: HY000 (ER_AUTO_CONVERT)

Message: Converting column '%s' from %s to %s

• Error: 1247 SQLSTATE: 42S22 (ER_ILLEGAL_REFERENCE)

Message: Reference '%s' not supported (%s)

• Error: 1248 SQLSTATE: 42000 (ER_DERIVED_MUST_HAVE_ALIAS)

Message: Every derived table must have its own alias

• Error: 1249 SQLSTATE: 01000 (ER_SELECT_REDUCED)

Message: Select %u was reduced during optimization

• Error: 1250 SQLSTATE: 42000 (ER_TABLENAME_NOT_ALLOWED_HERE)

Message: Table '%s' from one of the SELECTs cannot be used in %s

• Error: 1251 SQLSTATE: 08004 (ER_NOT_SUPPORTED_AUTH_MODE)

Message: Client does not support authentication protocol requested by server; consider upgrading
MySQL client

• Error: 1252 SQLSTATE: 42000 (ER_SPATIAL_CANT_HAVE_NULL)

Message: All parts of a SPATIAL index must be NOT NULL

• Error: 1253 SQLSTATE: 42000 (ER_COLLATION_CHARSET_MISMATCH)

Message: COLLATION '%s' is not valid for CHARACTER SET '%s'

• Error: 1254 SQLSTATE: HY000 (ER_SLAVE_WAS_RUNNING)

Message: Slave is already running

Server Error Codes and Messages

3278

• Error: 1255 SQLSTATE: HY000 (ER_SLAVE_WAS_NOT_RUNNING)

Message: Slave already has been stopped

• Error: 1256 SQLSTATE: HY000 (ER_TOO_BIG_FOR_UNCOMPRESS)

Message: Uncompressed data size too large; the maximum size is %d (probably, length of
uncompressed data was corrupted)

• Error: 1257 SQLSTATE: HY000 (ER_ZLIB_Z_MEM_ERROR)

Message: ZLIB: Not enough memory

• Error: 1258 SQLSTATE: HY000 (ER_ZLIB_Z_BUF_ERROR)

Message: ZLIB: Not enough room in the output buffer (probably, length of uncompressed data was
corrupted)

• Error: 1259 SQLSTATE: HY000 (ER_ZLIB_Z_DATA_ERROR)

Message: ZLIB: Input data corrupted

• Error: 1260 SQLSTATE: HY000 (ER_CUT_VALUE_GROUP_CONCAT)

Message: Row %u was cut by GROUP_CONCAT()

• Error: 1261 SQLSTATE: 01000 (ER_WARN_TOO_FEW_RECORDS)

Message: Row %ld doesn't contain data for all columns

• Error: 1262 SQLSTATE: 01000 (ER_WARN_TOO_MANY_RECORDS)

Message: Row %ld was truncated; it contained more data than there were input columns

• Error: 1263 SQLSTATE: 22004 (ER_WARN_NULL_TO_NOTNULL)

Message: Column set to default value; NULL supplied to NOT NULL column '%s' at row %ld

• Error: 1264 SQLSTATE: 22003 (ER_WARN_DATA_OUT_OF_RANGE)

Message: Out of range value for column '%s' at row %ld

• Error: 1265 SQLSTATE: 01000 (WARN_DATA_TRUNCATED)

Message: Data truncated for column '%s' at row %ld

• Error: 1266 SQLSTATE: HY000 (ER_WARN_USING_OTHER_HANDLER)

Message: Using storage engine %s for table '%s'

• Error: 1267 SQLSTATE: HY000 (ER_CANT_AGGREGATE_2COLLATIONS)

Message: Illegal mix of collations (%s,%s) and (%s,%s) for operation '%s'

• Error: 1268 SQLSTATE: HY000 (ER_DROP_USER)

Message: Cannot drop one or more of the requested users

• Error: 1269 SQLSTATE: HY000 (ER_REVOKE_GRANTS)

Message: Can't revoke all privileges for one or more of the requested users

• Error: 1270 SQLSTATE: HY000 (ER_CANT_AGGREGATE_3COLLATIONS)

Message: Illegal mix of collations (%s,%s), (%s,%s), (%s,%s) for operation '%s'

Server Error Codes and Messages

3279

• Error: 1271 SQLSTATE: HY000 (ER_CANT_AGGREGATE_NCOLLATIONS)

Message: Illegal mix of collations for operation '%s'

• Error: 1272 SQLSTATE: HY000 (ER_VARIABLE_IS_NOT_STRUCT)

Message: Variable '%s' is not a variable component (can't be used as XXXX.variable_name)

• Error: 1273 SQLSTATE: HY000 (ER_UNKNOWN_COLLATION)

Message: Unknown collation: '%s'

• Error: 1274 SQLSTATE: HY000 (ER_SLAVE_IGNORED_SSL_PARAMS)

Message: SSL parameters in CHANGE MASTER are ignored because this MySQL slave was
compiled without SSL support; they can be used later if MySQL slave with SSL is started

• Error: 1275 SQLSTATE: HY000 (ER_SERVER_IS_IN_SECURE_AUTH_MODE)

Message: Server is running in --secure-auth mode, but '%s'@'%s' has a password in the old format;
please change the password to the new format

• Error: 1276 SQLSTATE: HY000 (ER_WARN_FIELD_RESOLVED)

Message: Field or reference '%s%s%s%s%s' of SELECT #%d was resolved in SELECT #%d

• Error: 1277 SQLSTATE: HY000 (ER_BAD_SLAVE_UNTIL_COND)

Message: Incorrect parameter or combination of parameters for START SLAVE UNTIL

• Error: 1278 SQLSTATE: HY000 (ER_MISSING_SKIP_SLAVE)

Message: It is recommended to use --skip-slave-start when doing step-by-step replication with
START SLAVE UNTIL; otherwise, you will get problems if you get an unexpected slave's mysqld
restart

• Error: 1279 SQLSTATE: HY000 (ER_UNTIL_COND_IGNORED)

Message: SQL thread is not to be started so UNTIL options are ignored

• Error: 1280 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_INDEX)

Message: Incorrect index name '%s'

• Error: 1281 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_CATALOG)

Message: Incorrect catalog name '%s'

• Error: 1282 SQLSTATE: HY000 (ER_WARN_QC_RESIZE)

Message: Query cache failed to set size %lu; new query cache size is %lu

• Error: 1283 SQLSTATE: HY000 (ER_BAD_FT_COLUMN)

Message: Column '%s' cannot be part of FULLTEXT index

• Error: 1284 SQLSTATE: HY000 (ER_UNKNOWN_KEY_CACHE)

Message: Unknown key cache '%s'

• Error: 1285 SQLSTATE: HY000 (ER_WARN_HOSTNAME_WONT_WORK)

Message: MySQL is started in --skip-name-resolve mode; you must restart it without this switch for
this grant to work

Server Error Codes and Messages

3280

• Error: 1286 SQLSTATE: 42000 (ER_UNKNOWN_STORAGE_ENGINE)

Message: Unknown storage engine '%s'

• Error: 1287 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX)

Message: '%s' is deprecated and will be removed in a future release. Please use %s instead

• Error: 1288 SQLSTATE: HY000 (ER_NON_UPDATABLE_TABLE)

Message: The target table %s of the %s is not updatable

• Error: 1289 SQLSTATE: HY000 (ER_FEATURE_DISABLED)

Message: The '%s' feature is disabled; you need MySQL built with '%s' to have it working

• Error: 1290 SQLSTATE: HY000 (ER_OPTION_PREVENTS_STATEMENT)

Message: The MySQL server is running with the %s option so it cannot execute this statement

• Error: 1291 SQLSTATE: HY000 (ER_DUPLICATED_VALUE_IN_TYPE)

Message: Column '%s' has duplicated value '%s' in %s

• Error: 1292 SQLSTATE: 22007 (ER_TRUNCATED_WRONG_VALUE)

Message: Truncated incorrect %s value: '%s'

• Error: 1293 SQLSTATE: HY000 (ER_TOO_MUCH_AUTO_TIMESTAMP_COLS)

Message: Incorrect table definition; there can be only one TIMESTAMP column with
CURRENT_TIMESTAMP in DEFAULT or ON UPDATE clause

• Error: 1294 SQLSTATE: HY000 (ER_INVALID_ON_UPDATE)

Message: Invalid ON UPDATE clause for '%s' column

• Error: 1295 SQLSTATE: HY000 (ER_UNSUPPORTED_PS)

Message: This command is not supported in the prepared statement protocol yet

• Error: 1296 SQLSTATE: HY000 (ER_GET_ERRMSG)

Message: Got error %d '%s' from %s

• Error: 1297 SQLSTATE: HY000 (ER_GET_TEMPORARY_ERRMSG)

Message: Got temporary error %d '%s' from %s

• Error: 1298 SQLSTATE: HY000 (ER_UNKNOWN_TIME_ZONE)

Message: Unknown or incorrect time zone: '%s'

• Error: 1299 SQLSTATE: HY000 (ER_WARN_INVALID_TIMESTAMP)

Message: Invalid TIMESTAMP value in column '%s' at row %ld

• Error: 1300 SQLSTATE: HY000 (ER_INVALID_CHARACTER_STRING)

Message: Invalid %s character string: '%s'

• Error: 1301 SQLSTATE: HY000 (ER_WARN_ALLOWED_PACKET_OVERFLOWED)

Message: Result of %s() was larger than max_allowed_packet (%ld) - truncated

Server Error Codes and Messages

3281

• Error: 1302 SQLSTATE: HY000 (ER_CONFLICTING_DECLARATIONS)

Message: Conflicting declarations: '%s%s' and '%s%s'

• Error: 1303 SQLSTATE: 2F003 (ER_SP_NO_RECURSIVE_CREATE)

Message: Can't create a %s from within another stored routine

• Error: 1304 SQLSTATE: 42000 (ER_SP_ALREADY_EXISTS)

Message: %s %s already exists

• Error: 1305 SQLSTATE: 42000 (ER_SP_DOES_NOT_EXIST)

Message: %s %s does not exist

• Error: 1306 SQLSTATE: HY000 (ER_SP_DROP_FAILED)

Message: Failed to DROP %s %s

• Error: 1307 SQLSTATE: HY000 (ER_SP_STORE_FAILED)

Message: Failed to CREATE %s %s

• Error: 1308 SQLSTATE: 42000 (ER_SP_LILABEL_MISMATCH)

Message: %s with no matching label: %s

• Error: 1309 SQLSTATE: 42000 (ER_SP_LABEL_REDEFINE)

Message: Redefining label %s

• Error: 1310 SQLSTATE: 42000 (ER_SP_LABEL_MISMATCH)

Message: End-label %s without match

• Error: 1311 SQLSTATE: 01000 (ER_SP_UNINIT_VAR)

Message: Referring to uninitialized variable %s

• Error: 1312 SQLSTATE: 0A000 (ER_SP_BADSELECT)

Message: PROCEDURE %s can't return a result set in the given context

• Error: 1313 SQLSTATE: 42000 (ER_SP_BADRETURN)

Message: RETURN is only allowed in a FUNCTION

• Error: 1314 SQLSTATE: 0A000 (ER_SP_BADSTATEMENT)

Message: %s is not allowed in stored procedures

• Error: 1315 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_IGNORED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE
has been ignored.

• Error: 1316 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_TRANSLATED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE
has been translated to SET SQL_LOG_BIN.

• Error: 1317 SQLSTATE: 70100 (ER_QUERY_INTERRUPTED)

Message: Query execution was interrupted

Server Error Codes and Messages

3282

• Error: 1318 SQLSTATE: 42000 (ER_SP_WRONG_NO_OF_ARGS)

Message: Incorrect number of arguments for %s %s; expected %u, got %u

• Error: 1319 SQLSTATE: 42000 (ER_SP_COND_MISMATCH)

Message: Undefined CONDITION: %s

• Error: 1320 SQLSTATE: 42000 (ER_SP_NORETURN)

Message: No RETURN found in FUNCTION %s

• Error: 1321 SQLSTATE: 2F005 (ER_SP_NORETURNEND)

Message: FUNCTION %s ended without RETURN

• Error: 1322 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_QUERY)

Message: Cursor statement must be a SELECT

• Error: 1323 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_SELECT)

Message: Cursor SELECT must not have INTO

• Error: 1324 SQLSTATE: 42000 (ER_SP_CURSOR_MISMATCH)

Message: Undefined CURSOR: %s

• Error: 1325 SQLSTATE: 24000 (ER_SP_CURSOR_ALREADY_OPEN)

Message: Cursor is already open

• Error: 1326 SQLSTATE: 24000 (ER_SP_CURSOR_NOT_OPEN)

Message: Cursor is not open

• Error: 1327 SQLSTATE: 42000 (ER_SP_UNDECLARED_VAR)

Message: Undeclared variable: %s

• Error: 1328 SQLSTATE: HY000 (ER_SP_WRONG_NO_OF_FETCH_ARGS)

Message: Incorrect number of FETCH variables

• Error: 1329 SQLSTATE: 02000 (ER_SP_FETCH_NO_DATA)

Message: No data - zero rows fetched, selected, or processed

• Error: 1330 SQLSTATE: 42000 (ER_SP_DUP_PARAM)

Message: Duplicate parameter: %s

• Error: 1331 SQLSTATE: 42000 (ER_SP_DUP_VAR)

Message: Duplicate variable: %s

• Error: 1332 SQLSTATE: 42000 (ER_SP_DUP_COND)

Message: Duplicate condition: %s

• Error: 1333 SQLSTATE: 42000 (ER_SP_DUP_CURS)

Message: Duplicate cursor: %s

• Error: 1334 SQLSTATE: HY000 (ER_SP_CANT_ALTER)

Server Error Codes and Messages

3283

Message: Failed to ALTER %s %s

• Error: 1335 SQLSTATE: 0A000 (ER_SP_SUBSELECT_NYI)

Message: Subquery value not supported

• Error: 1336 SQLSTATE: 0A000 (ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: %s is not allowed in stored function or trigger

• Error: 1337 SQLSTATE: 42000 (ER_SP_VARCOND_AFTER_CURSHNDLR)

Message: Variable or condition declaration after cursor or handler declaration

• Error: 1338 SQLSTATE: 42000 (ER_SP_CURSOR_AFTER_HANDLER)

Message: Cursor declaration after handler declaration

• Error: 1339 SQLSTATE: 20000 (ER_SP_CASE_NOT_FOUND)

Message: Case not found for CASE statement

• Error: 1340 SQLSTATE: HY000 (ER_FPARSER_TOO_BIG_FILE)

Message: Configuration file '%s' is too big

• Error: 1341 SQLSTATE: HY000 (ER_FPARSER_BAD_HEADER)

Message: Malformed file type header in file '%s'

• Error: 1342 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_COMMENT)

Message: Unexpected end of file while parsing comment '%s'

• Error: 1343 SQLSTATE: HY000 (ER_FPARSER_ERROR_IN_PARAMETER)

Message: Error while parsing parameter '%s' (line: '%s')

• Error: 1344 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER)

Message: Unexpected end of file while skipping unknown parameter '%s'

• Error: 1345 SQLSTATE: HY000 (ER_VIEW_NO_EXPLAIN)

Message: EXPLAIN/SHOW can not be issued; lacking privileges for underlying table

• Error: 1346 SQLSTATE: HY000 (ER_FRM_UNKNOWN_TYPE)

Message: File '%s' has unknown type '%s' in its header

• Error: 1347 SQLSTATE: HY000 (ER_WRONG_OBJECT)

Message: '%s.%s' is not %s

• Error: 1348 SQLSTATE: HY000 (ER_NONUPDATEABLE_COLUMN)

Message: Column '%s' is not updatable

• Error: 1349 SQLSTATE: HY000 (ER_VIEW_SELECT_DERIVED)

Message: View's SELECT contains a subquery in the FROM clause

ER_VIEW_SELECT_DERIVED was removed after 5.7.6.

• Error: 1349 SQLSTATE: HY000 (ER_VIEW_SELECT_DERIVED_UNUSED)

Server Error Codes and Messages

3284

Message: View's SELECT contains a subquery in the FROM clause

ER_VIEW_SELECT_DERIVED_UNUSED was added in 5.7.7.

• Error: 1350 SQLSTATE: HY000 (ER_VIEW_SELECT_CLAUSE)

Message: View's SELECT contains a '%s' clause

• Error: 1351 SQLSTATE: HY000 (ER_VIEW_SELECT_VARIABLE)

Message: View's SELECT contains a variable or parameter

• Error: 1352 SQLSTATE: HY000 (ER_VIEW_SELECT_TMPTABLE)

Message: View's SELECT refers to a temporary table '%s'

• Error: 1353 SQLSTATE: HY000 (ER_VIEW_WRONG_LIST)

Message: View's SELECT and view's field list have different column counts

• Error: 1354 SQLSTATE: HY000 (ER_WARN_VIEW_MERGE)

Message: View merge algorithm can't be used here for now (assumed undefined algorithm)

• Error: 1355 SQLSTATE: HY000 (ER_WARN_VIEW_WITHOUT_KEY)

Message: View being updated does not have complete key of underlying table in it

• Error: 1356 SQLSTATE: HY000 (ER_VIEW_INVALID)

Message: View '%s.%s' references invalid table(s) or column(s) or function(s) or definer/invoker of
view lack rights to use them

• Error: 1357 SQLSTATE: HY000 (ER_SP_NO_DROP_SP)

Message: Can't drop or alter a %s from within another stored routine

• Error: 1358 SQLSTATE: HY000 (ER_SP_GOTO_IN_HNDLR)

Message: GOTO is not allowed in a stored procedure handler

• Error: 1359 SQLSTATE: HY000 (ER_TRG_ALREADY_EXISTS)

Message: Trigger already exists

• Error: 1360 SQLSTATE: HY000 (ER_TRG_DOES_NOT_EXIST)

Message: Trigger does not exist

• Error: 1361 SQLSTATE: HY000 (ER_TRG_ON_VIEW_OR_TEMP_TABLE)

Message: Trigger's '%s' is view or temporary table

• Error: 1362 SQLSTATE: HY000 (ER_TRG_CANT_CHANGE_ROW)

Message: Updating of %s row is not allowed in %strigger

• Error: 1363 SQLSTATE: HY000 (ER_TRG_NO_SUCH_ROW_IN_TRG)

Message: There is no %s row in %s trigger

• Error: 1364 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_FIELD)

Message: Field '%s' doesn't have a default value

Server Error Codes and Messages

3285

• Error: 1365 SQLSTATE: 22012 (ER_DIVISION_BY_ZERO)

Message: Division by 0

• Error: 1366 SQLSTATE: HY000 (ER_TRUNCATED_WRONG_VALUE_FOR_FIELD)

Message: Incorrect %s value: '%s' for column '%s' at row %ld

• Error: 1367 SQLSTATE: 22007 (ER_ILLEGAL_VALUE_FOR_TYPE)

Message: Illegal %s '%s' value found during parsing

• Error: 1368 SQLSTATE: HY000 (ER_VIEW_NONUPD_CHECK)

Message: CHECK OPTION on non-updatable view '%s.%s'

• Error: 1369 SQLSTATE: HY000 (ER_VIEW_CHECK_FAILED)

Message: CHECK OPTION failed '%s.%s'

• Error: 1370 SQLSTATE: 42000 (ER_PROCACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for routine '%s'

• Error: 1371 SQLSTATE: HY000 (ER_RELAY_LOG_FAIL)

Message: Failed purging old relay logs: %s

• Error: 1372 SQLSTATE: HY000 (ER_PASSWD_LENGTH)

Message: Password hash should be a %d-digit hexadecimal number

• Error: 1373 SQLSTATE: HY000 (ER_UNKNOWN_TARGET_BINLOG)

Message: Target log not found in binlog index

• Error: 1374 SQLSTATE: HY000 (ER_IO_ERR_LOG_INDEX_READ)

Message: I/O error reading log index file

• Error: 1375 SQLSTATE: HY000 (ER_BINLOG_PURGE_PROHIBITED)

Message: Server configuration does not permit binlog purge

• Error: 1376 SQLSTATE: HY000 (ER_FSEEK_FAIL)

Message: Failed on fseek()

• Error: 1377 SQLSTATE: HY000 (ER_BINLOG_PURGE_FATAL_ERR)

Message: Fatal error during log purge

• Error: 1378 SQLSTATE: HY000 (ER_LOG_IN_USE)

Message: A purgeable log is in use, will not purge

• Error: 1379 SQLSTATE: HY000 (ER_LOG_PURGE_UNKNOWN_ERR)

Message: Unknown error during log purge

• Error: 1380 SQLSTATE: HY000 (ER_RELAY_LOG_INIT)

Message: Failed initializing relay log position: %s

• Error: 1381 SQLSTATE: HY000 (ER_NO_BINARY_LOGGING)

Server Error Codes and Messages

3286

Message: You are not using binary logging

• Error: 1382 SQLSTATE: HY000 (ER_RESERVED_SYNTAX)

Message: The '%s' syntax is reserved for purposes internal to the MySQL server

• Error: 1383 SQLSTATE: HY000 (ER_WSAS_FAILED)

Message: WSAStartup Failed

• Error: 1384 SQLSTATE: HY000 (ER_DIFF_GROUPS_PROC)

Message: Can't handle procedures with different groups yet

• Error: 1385 SQLSTATE: HY000 (ER_NO_GROUP_FOR_PROC)

Message: Select must have a group with this procedure

• Error: 1386 SQLSTATE: HY000 (ER_ORDER_WITH_PROC)

Message: Can't use ORDER clause with this procedure

• Error: 1387 SQLSTATE: HY000 (ER_LOGGING_PROHIBIT_CHANGING_OF)

Message: Binary logging and replication forbid changing the global server %s

• Error: 1388 SQLSTATE: HY000 (ER_NO_FILE_MAPPING)

Message: Can't map file: %s, errno: %d

• Error: 1389 SQLSTATE: HY000 (ER_WRONG_MAGIC)

Message: Wrong magic in %s

• Error: 1390 SQLSTATE: HY000 (ER_PS_MANY_PARAM)

Message: Prepared statement contains too many placeholders

• Error: 1391 SQLSTATE: HY000 (ER_KEY_PART_0)

Message: Key part '%s' length cannot be 0

• Error: 1392 SQLSTATE: HY000 (ER_VIEW_CHECKSUM)

Message: View text checksum failed

• Error: 1393 SQLSTATE: HY000 (ER_VIEW_MULTIUPDATE)

Message: Can not modify more than one base table through a join view '%s.%s'

• Error: 1394 SQLSTATE: HY000 (ER_VIEW_NO_INSERT_FIELD_LIST)

Message: Can not insert into join view '%s.%s' without fields list

• Error: 1395 SQLSTATE: HY000 (ER_VIEW_DELETE_MERGE_VIEW)

Message: Can not delete from join view '%s.%s'

• Error: 1396 SQLSTATE: HY000 (ER_CANNOT_USER)

Message: Operation %s failed for %s

• Error: 1397 SQLSTATE: XAE04 (ER_XAER_NOTA)

Message: XAER_NOTA: Unknown XID

Server Error Codes and Messages

3287

• Error: 1398 SQLSTATE: XAE05 (ER_XAER_INVAL)

Message: XAER_INVAL: Invalid arguments (or unsupported command)

• Error: 1399 SQLSTATE: XAE07 (ER_XAER_RMFAIL)

Message: XAER_RMFAIL: The command cannot be executed when global transaction is in the %s
state

• Error: 1400 SQLSTATE: XAE09 (ER_XAER_OUTSIDE)

Message: XAER_OUTSIDE: Some work is done outside global transaction

• Error: 1401 SQLSTATE: XAE03 (ER_XAER_RMERR)

Message: XAER_RMERR: Fatal error occurred in the transaction branch - check your data for
consistency

• Error: 1402 SQLSTATE: XA100 (ER_XA_RBROLLBACK)

Message: XA_RBROLLBACK: Transaction branch was rolled back

• Error: 1403 SQLSTATE: 42000 (ER_NONEXISTING_PROC_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on routine '%s'

• Error: 1404 SQLSTATE: HY000 (ER_PROC_AUTO_GRANT_FAIL)

Message: Failed to grant EXECUTE and ALTER ROUTINE privileges

• Error: 1405 SQLSTATE: HY000 (ER_PROC_AUTO_REVOKE_FAIL)

Message: Failed to revoke all privileges to dropped routine

• Error: 1406 SQLSTATE: 22001 (ER_DATA_TOO_LONG)

Message: Data too long for column '%s' at row %ld

• Error: 1407 SQLSTATE: 42000 (ER_SP_BAD_SQLSTATE)

Message: Bad SQLSTATE: '%s'

• Error: 1408 SQLSTATE: HY000 (ER_STARTUP)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d %s

• Error: 1409 SQLSTATE: HY000 (ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR)

Message: Can't load value from file with fixed size rows to variable

• Error: 1410 SQLSTATE: 42000 (ER_CANT_CREATE_USER_WITH_GRANT)

Message: You are not allowed to create a user with GRANT

• Error: 1411 SQLSTATE: HY000 (ER_WRONG_VALUE_FOR_TYPE)

Message: Incorrect %s value: '%s' for function %s

• Error: 1412 SQLSTATE: HY000 (ER_TABLE_DEF_CHANGED)

Message: Table definition has changed, please retry transaction

• Error: 1413 SQLSTATE: 42000 (ER_SP_DUP_HANDLER)

Message: Duplicate handler declared in the same block

Server Error Codes and Messages

3288

• Error: 1414 SQLSTATE: 42000 (ER_SP_NOT_VAR_ARG)

Message: OUT or INOUT argument %d for routine %s is not a variable or NEW pseudo-variable in
BEFORE trigger

• Error: 1415 SQLSTATE: 0A000 (ER_SP_NO_RETSET)

Message: Not allowed to return a result set from a %s

• Error: 1416 SQLSTATE: 22003 (ER_CANT_CREATE_GEOMETRY_OBJECT)

Message: Cannot get geometry object from data you send to the GEOMETRY field

• Error: 1417 SQLSTATE: HY000 (ER_FAILED_ROUTINE_BREAK_BINLOG)

Message: A routine failed and has neither NO SQL nor READS SQL DATA in its declaration and
binary logging is enabled; if non-transactional tables were updated, the binary log will miss their
changes

• Error: 1418 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_ROUTINE)

Message: This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA
in its declaration and binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

• Error: 1419 SQLSTATE: HY000 (ER_BINLOG_CREATE_ROUTINE_NEED_SUPER)

Message: You do not have the SUPER privilege and binary logging is enabled (you *might* want to
use the less safe log_bin_trust_function_creators variable)

• Error: 1420 SQLSTATE: HY000 (ER_EXEC_STMT_WITH_OPEN_CURSOR)

Message: You can't execute a prepared statement which has an open cursor associated with it.
Reset the statement to re-execute it.

• Error: 1421 SQLSTATE: HY000 (ER_STMT_HAS_NO_OPEN_CURSOR)

Message: The statement (%lu) has no open cursor.

• Error: 1422 SQLSTATE: HY000 (ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: Explicit or implicit commit is not allowed in stored function or trigger.

• Error: 1423 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_VIEW_FIELD)

Message: Field of view '%s.%s' underlying table doesn't have a default value

• Error: 1424 SQLSTATE: HY000 (ER_SP_NO_RECURSION)

Message: Recursive stored functions and triggers are not allowed.

• Error: 1425 SQLSTATE: 42000 (ER_TOO_BIG_SCALE)

Message: Too big scale %d specified for column '%s'. Maximum is %lu.

• Error: 1426 SQLSTATE: 42000 (ER_TOO_BIG_PRECISION)

Message: Too-big precision %d specified for '%s'. Maximum is %lu.

• Error: 1427 SQLSTATE: 42000 (ER_M_BIGGER_THAN_D)

Message: For float(M,D), double(M,D) or decimal(M,D), M must be >= D (column '%s').

• Error: 1428 SQLSTATE: HY000 (ER_WRONG_LOCK_OF_SYSTEM_TABLE)

Server Error Codes and Messages

3289

Message: You can't combine write-locking of system tables with other tables or lock types

• Error: 1429 SQLSTATE: HY000 (ER_CONNECT_TO_FOREIGN_DATA_SOURCE)

Message: Unable to connect to foreign data source: %s

• Error: 1430 SQLSTATE: HY000 (ER_QUERY_ON_FOREIGN_DATA_SOURCE)

Message: There was a problem processing the query on the foreign data source. Data source error:
%s

• Error: 1431 SQLSTATE: HY000 (ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST)

Message: The foreign data source you are trying to reference does not exist. Data source error: %s

• Error: 1432 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE)

Message: Can't create federated table. The data source connection string '%s' is not in the correct
format

• Error: 1433 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID)

Message: The data source connection string '%s' is not in the correct format

• Error: 1434 SQLSTATE: HY000 (ER_CANT_CREATE_FEDERATED_TABLE)

Message: Can't create federated table. Foreign data src error: %s

• Error: 1435 SQLSTATE: HY000 (ER_TRG_IN_WRONG_SCHEMA)

Message: Trigger in wrong schema

• Error: 1436 SQLSTATE: HY000 (ER_STACK_OVERRUN_NEED_MORE)

Message: Thread stack overrun: %ld bytes used of a %ld byte stack, and %ld bytes needed. Use
'mysqld --thread_stack=#' to specify a bigger stack.

• Error: 1437 SQLSTATE: 42000 (ER_TOO_LONG_BODY)

Message: Routine body for '%s' is too long

• Error: 1438 SQLSTATE: HY000 (ER_WARN_CANT_DROP_DEFAULT_KEYCACHE)

Message: Cannot drop default keycache

• Error: 1439 SQLSTATE: 42000 (ER_TOO_BIG_DISPLAYWIDTH)

Message: Display width out of range for column '%s' (max = %lu)

• Error: 1440 SQLSTATE: XAE08 (ER_XAER_DUPID)

Message: XAER_DUPID: The XID already exists

• Error: 1441 SQLSTATE: 22008 (ER_DATETIME_FUNCTION_OVERFLOW)

Message: Datetime function: %s field overflow

• Error: 1442 SQLSTATE: HY000 (ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG)

Message: Can't update table '%s' in stored function/trigger because it is already used by statement
which invoked this stored function/trigger.

• Error: 1443 SQLSTATE: HY000 (ER_VIEW_PREVENT_UPDATE)

Server Error Codes and Messages

3290

Message: The definition of table '%s' prevents operation %s on table '%s'.

• Error: 1444 SQLSTATE: HY000 (ER_PS_NO_RECURSION)

Message: The prepared statement contains a stored routine call that refers to that same statement.
It's not allowed to execute a prepared statement in such a recursive manner

• Error: 1445 SQLSTATE: HY000 (ER_SP_CANT_SET_AUTOCOMMIT)

Message: Not allowed to set autocommit from a stored function or trigger

• Error: 1446 SQLSTATE: HY000 (ER_MALFORMED_DEFINER)

Message: Definer is not fully qualified

• Error: 1447 SQLSTATE: HY000 (ER_VIEW_FRM_NO_USER)

Message: View '%s'.'%s' has no definer information (old table format). Current user is used as
definer. Please recreate the view!

• Error: 1448 SQLSTATE: HY000 (ER_VIEW_OTHER_USER)

Message: You need the SUPER privilege for creation view with '%s'@'%s' definer

• Error: 1449 SQLSTATE: HY000 (ER_NO_SUCH_USER)

Message: The user specified as a definer ('%s'@'%s') does not exist

• Error: 1450 SQLSTATE: HY000 (ER_FORBID_SCHEMA_CHANGE)

Message: Changing schema from '%s' to '%s' is not allowed.

• Error: 1451 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED_2)

Message: Cannot delete or update a parent row: a foreign key constraint fails (%s)

• Error: 1452 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW_2)

Message: Cannot add or update a child row: a foreign key constraint fails (%s)

• Error: 1453 SQLSTATE: 42000 (ER_SP_BAD_VAR_SHADOW)

Message: Variable '%s' must be quoted with `...`, or renamed

• Error: 1454 SQLSTATE: HY000 (ER_TRG_NO_DEFINER)

Message: No definer attribute for trigger '%s'.'%s'. The trigger will be activated under the
authorization of the invoker, which may have insufficient privileges. Please recreate the trigger.

• Error: 1455 SQLSTATE: HY000 (ER_OLD_FILE_FORMAT)

Message: '%s' has an old format, you should re-create the '%s' object(s)

• Error: 1456 SQLSTATE: HY000 (ER_SP_RECURSION_LIMIT)

Message: Recursive limit %d (as set by the max_sp_recursion_depth variable) was exceeded for
routine %s

• Error: 1457 SQLSTATE: HY000 (ER_SP_PROC_TABLE_CORRUPT)

Message: Failed to load routine %s. The table mysql.proc is missing, corrupt, or contains bad data
(internal code %d)

Server Error Codes and Messages

3291

• Error: 1458 SQLSTATE: 42000 (ER_SP_WRONG_NAME)

Message: Incorrect routine name '%s'

• Error: 1459 SQLSTATE: HY000 (ER_TABLE_NEEDS_UPGRADE)

Message: Table upgrade required. Please do "REPAIR TABLE `%s`" or dump/reload to fix it!

• Error: 1460 SQLSTATE: 42000 (ER_SP_NO_AGGREGATE)

Message: AGGREGATE is not supported for stored functions

• Error: 1461 SQLSTATE: 42000 (ER_MAX_PREPARED_STMT_COUNT_REACHED)

Message: Can't create more than max_prepared_stmt_count statements (current value: %lu)

• Error: 1462 SQLSTATE: HY000 (ER_VIEW_RECURSIVE)

Message: `%s`.`%s` contains view recursion

• Error: 1463 SQLSTATE: 42000 (ER_NON_GROUPING_FIELD_USED)

Message: Non-grouping field '%s' is used in %s clause

• Error: 1464 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_SPKEYS)

Message: The used table type doesn't support SPATIAL indexes

• Error: 1465 SQLSTATE: HY000 (ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA)

Message: Triggers can not be created on system tables

• Error: 1466 SQLSTATE: HY000 (ER_REMOVED_SPACES)

Message: Leading spaces are removed from name '%s'

• Error: 1467 SQLSTATE: HY000 (ER_AUTOINC_READ_FAILED)

Message: Failed to read auto-increment value from storage engine

• Error: 1468 SQLSTATE: HY000 (ER_USERNAME)

Message: user name

• Error: 1469 SQLSTATE: HY000 (ER_HOSTNAME)

Message: host name

• Error: 1470 SQLSTATE: HY000 (ER_WRONG_STRING_LENGTH)

Message: String '%s' is too long for %s (should be no longer than %d)

• Error: 1471 SQLSTATE: HY000 (ER_NON_INSERTABLE_TABLE)

Message: The target table %s of the %s is not insertable-into

• Error: 1472 SQLSTATE: HY000 (ER_ADMIN_WRONG_MRG_TABLE)

Message: Table '%s' is differently defined or of non-MyISAM type or doesn't exist

• Error: 1473 SQLSTATE: HY000 (ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT)

Message: Too high level of nesting for select

• Error: 1474 SQLSTATE: HY000 (ER_NAME_BECOMES_EMPTY)

Server Error Codes and Messages

3292

Message: Name '%s' has become ''

• Error: 1475 SQLSTATE: HY000 (ER_AMBIGUOUS_FIELD_TERM)

Message: First character of the FIELDS TERMINATED string is ambiguous; please use non-optional
and non-empty FIELDS ENCLOSED BY

• Error: 1476 SQLSTATE: HY000 (ER_FOREIGN_SERVER_EXISTS)

Message: The foreign server, %s, you are trying to create already exists.

• Error: 1477 SQLSTATE: HY000 (ER_FOREIGN_SERVER_DOESNT_EXIST)

Message: The foreign server name you are trying to reference does not exist. Data source error: %s

• Error: 1478 SQLSTATE: HY000 (ER_ILLEGAL_HA_CREATE_OPTION)

Message: Table storage engine '%s' does not support the create option '%s'

• Error: 1479 SQLSTATE: HY000 (ER_PARTITION_REQUIRES_VALUES_ERROR)

Message: Syntax error: %s PARTITIONING requires definition of VALUES %s for each partition

• Error: 1480 SQLSTATE: HY000 (ER_PARTITION_WRONG_VALUES_ERROR)

Message: Only %s PARTITIONING can use VALUES %s in partition definition

• Error: 1481 SQLSTATE: HY000 (ER_PARTITION_MAXVALUE_ERROR)

Message: MAXVALUE can only be used in last partition definition

• Error: 1482 SQLSTATE: HY000 (ER_PARTITION_SUBPARTITION_ERROR)

Message: Subpartitions can only be hash partitions and by key

• Error: 1483 SQLSTATE: HY000 (ER_PARTITION_SUBPART_MIX_ERROR)

Message: Must define subpartitions on all partitions if on one partition

• Error: 1484 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_PART_ERROR)

Message: Wrong number of partitions defined, mismatch with previous setting

• Error: 1485 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_SUBPART_ERROR)

Message: Wrong number of subpartitions defined, mismatch with previous setting

• Error: 1486 SQLSTATE: HY000 (ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR)

Message: Constant, random or timezone-dependent expressions in (sub)partitioning function are not
allowed

• Error: 1487 SQLSTATE: HY000 (ER_NO_CONST_EXPR_IN_RANGE_OR_LIST_ERROR)

Message: Expression in RANGE/LIST VALUES must be constant

• Error: 1488 SQLSTATE: HY000 (ER_FIELD_NOT_FOUND_PART_ERROR)

Message: Field in list of fields for partition function not found in table

• Error: 1489 SQLSTATE: HY000 (ER_LIST_OF_FIELDS_ONLY_IN_HASH_ERROR)

Message: List of fields is only allowed in KEY partitions

Server Error Codes and Messages

3293

• Error: 1490 SQLSTATE: HY000 (ER_INCONSISTENT_PARTITION_INFO_ERROR)

Message: The partition info in the frm file is not consistent with what can be written into the frm file

• Error: 1491 SQLSTATE: HY000 (ER_PARTITION_FUNC_NOT_ALLOWED_ERROR)

Message: The %s function returns the wrong type

• Error: 1492 SQLSTATE: HY000 (ER_PARTITIONS_MUST_BE_DEFINED_ERROR)

Message: For %s partitions each partition must be defined

• Error: 1493 SQLSTATE: HY000 (ER_RANGE_NOT_INCREASING_ERROR)

Message: VALUES LESS THAN value must be strictly increasing for each partition

• Error: 1494 SQLSTATE: HY000 (ER_INCONSISTENT_TYPE_OF_FUNCTIONS_ERROR)

Message: VALUES value must be of same type as partition function

• Error: 1495 SQLSTATE: HY000 (ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR)

Message: Multiple definition of same constant in list partitioning

• Error: 1496 SQLSTATE: HY000 (ER_PARTITION_ENTRY_ERROR)

Message: Partitioning can not be used stand-alone in query

• Error: 1497 SQLSTATE: HY000 (ER_MIX_HANDLER_ERROR)

Message: The mix of handlers in the partitions is not allowed in this version of MySQL

• Error: 1498 SQLSTATE: HY000 (ER_PARTITION_NOT_DEFINED_ERROR)

Message: For the partitioned engine it is necessary to define all %s

• Error: 1499 SQLSTATE: HY000 (ER_TOO_MANY_PARTITIONS_ERROR)

Message: Too many partitions (including subpartitions) were defined

• Error: 1500 SQLSTATE: HY000 (ER_SUBPARTITION_ERROR)

Message: It is only possible to mix RANGE/LIST partitioning with HASH/KEY partitioning for
subpartitioning

• Error: 1501 SQLSTATE: HY000 (ER_CANT_CREATE_HANDLER_FILE)

Message: Failed to create specific handler file

• Error: 1502 SQLSTATE: HY000 (ER_BLOB_FIELD_IN_PART_FUNC_ERROR)

Message: A BLOB field is not allowed in partition function

• Error: 1503 SQLSTATE: HY000 (ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF)

Message: A %s must include all columns in the table's partitioning function

• Error: 1504 SQLSTATE: HY000 (ER_NO_PARTS_ERROR)

Message: Number of %s = 0 is not an allowed value

• Error: 1505 SQLSTATE: HY000 (ER_PARTITION_MGMT_ON_NONPARTITIONED)

Message: Partition management on a not partitioned table is not possible

Server Error Codes and Messages

3294

• Error: 1506 SQLSTATE: HY000 (ER_FOREIGN_KEY_ON_PARTITIONED)

Message: Foreign keys are not yet supported in conjunction with partitioning

• Error: 1507 SQLSTATE: HY000 (ER_DROP_PARTITION_NON_EXISTENT)

Message: Error in list of partitions to %s

• Error: 1508 SQLSTATE: HY000 (ER_DROP_LAST_PARTITION)

Message: Cannot remove all partitions, use DROP TABLE instead

• Error: 1509 SQLSTATE: HY000 (ER_COALESCE_ONLY_ON_HASH_PARTITION)

Message: COALESCE PARTITION can only be used on HASH/KEY partitions

• Error: 1510 SQLSTATE: HY000 (ER_REORG_HASH_ONLY_ON_SAME_NO)

Message: REORGANIZE PARTITION can only be used to reorganize partitions not to change their
numbers

• Error: 1511 SQLSTATE: HY000 (ER_REORG_NO_PARAM_ERROR)

Message: REORGANIZE PARTITION without parameters can only be used on auto-partitioned
tables using HASH PARTITIONs

• Error: 1512 SQLSTATE: HY000 (ER_ONLY_ON_RANGE_LIST_PARTITION)

Message: %s PARTITION can only be used on RANGE/LIST partitions

• Error: 1513 SQLSTATE: HY000 (ER_ADD_PARTITION_SUBPART_ERROR)

Message: Trying to Add partition(s) with wrong number of subpartitions

• Error: 1514 SQLSTATE: HY000 (ER_ADD_PARTITION_NO_NEW_PARTITION)

Message: At least one partition must be added

• Error: 1515 SQLSTATE: HY000 (ER_COALESCE_PARTITION_NO_PARTITION)

Message: At least one partition must be coalesced

• Error: 1516 SQLSTATE: HY000 (ER_REORG_PARTITION_NOT_EXIST)

Message: More partitions to reorganize than there are partitions

• Error: 1517 SQLSTATE: HY000 (ER_SAME_NAME_PARTITION)

Message: Duplicate partition name %s

• Error: 1518 SQLSTATE: HY000 (ER_NO_BINLOG_ERROR)

Message: It is not allowed to shut off binlog on this command

• Error: 1519 SQLSTATE: HY000 (ER_CONSECUTIVE_REORG_PARTITIONS)

Message: When reorganizing a set of partitions they must be in consecutive order

• Error: 1520 SQLSTATE: HY000 (ER_REORG_OUTSIDE_RANGE)

Message: Reorganize of range partitions cannot change total ranges except for last partition where it
can extend the range

• Error: 1521 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_FAILURE)

Server Error Codes and Messages

3295

Message: Partition function not supported in this version for this handler

• Error: 1522 SQLSTATE: HY000 (ER_PART_STATE_ERROR)

Message: Partition state cannot be defined from CREATE/ALTER TABLE

• Error: 1523 SQLSTATE: HY000 (ER_LIMITED_PART_RANGE)

Message: The %s handler only supports 32 bit integers in VALUES

• Error: 1524 SQLSTATE: HY000 (ER_PLUGIN_IS_NOT_LOADED)

Message: Plugin '%s' is not loaded

• Error: 1525 SQLSTATE: HY000 (ER_WRONG_VALUE)

Message: Incorrect %s value: '%s'

• Error: 1526 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE)

Message: Table has no partition for value %s

• Error: 1527 SQLSTATE: HY000 (ER_FILEGROUP_OPTION_ONLY_ONCE)

Message: It is not allowed to specify %s more than once

• Error: 1528 SQLSTATE: HY000 (ER_CREATE_FILEGROUP_FAILED)

Message: Failed to create %s

• Error: 1529 SQLSTATE: HY000 (ER_DROP_FILEGROUP_FAILED)

Message: Failed to drop %s

• Error: 1530 SQLSTATE: HY000 (ER_TABLESPACE_AUTO_EXTEND_ERROR)

Message: The handler doesn't support autoextend of tablespaces

• Error: 1531 SQLSTATE: HY000 (ER_WRONG_SIZE_NUMBER)

Message: A size parameter was incorrectly specified, either number or on the form 10M

• Error: 1532 SQLSTATE: HY000 (ER_SIZE_OVERFLOW_ERROR)

Message: The size number was correct but we don't allow the digit part to be more than 2 billion

• Error: 1533 SQLSTATE: HY000 (ER_ALTER_FILEGROUP_FAILED)

Message: Failed to alter: %s

• Error: 1534 SQLSTATE: HY000 (ER_BINLOG_ROW_LOGGING_FAILED)

Message: Writing one row to the row-based binary log failed

• Error: 1535 SQLSTATE: HY000 (ER_BINLOG_ROW_WRONG_TABLE_DEF)

Message: Table definition on master and slave does not match: %s

• Error: 1536 SQLSTATE: HY000 (ER_BINLOG_ROW_RBR_TO_SBR)

Message: Slave running with --log-slave-updates must use row-based binary logging to be able to
replicate row-based binary log events

• Error: 1537 SQLSTATE: HY000 (ER_EVENT_ALREADY_EXISTS)

Server Error Codes and Messages

3296

Message: Event '%s' already exists

• Error: 1538 SQLSTATE: HY000 (ER_EVENT_STORE_FAILED)

Message: Failed to store event %s. Error code %d from storage engine.

• Error: 1539 SQLSTATE: HY000 (ER_EVENT_DOES_NOT_EXIST)

Message: Unknown event '%s'

• Error: 1540 SQLSTATE: HY000 (ER_EVENT_CANT_ALTER)

Message: Failed to alter event '%s'

• Error: 1541 SQLSTATE: HY000 (ER_EVENT_DROP_FAILED)

Message: Failed to drop %s

• Error: 1542 SQLSTATE: HY000 (ER_EVENT_INTERVAL_NOT_POSITIVE_OR_TOO_BIG)

Message: INTERVAL is either not positive or too big

• Error: 1543 SQLSTATE: HY000 (ER_EVENT_ENDS_BEFORE_STARTS)

Message: ENDS is either invalid or before STARTS

• Error: 1544 SQLSTATE: HY000 (ER_EVENT_EXEC_TIME_IN_THE_PAST)

Message: Event execution time is in the past. Event has been disabled

• Error: 1545 SQLSTATE: HY000 (ER_EVENT_OPEN_TABLE_FAILED)

Message: Failed to open mysql.event

• Error: 1546 SQLSTATE: HY000 (ER_EVENT_NEITHER_M_EXPR_NOR_M_AT)

Message: No datetime expression provided

• Error: 1547 SQLSTATE: HY000 (ER_OBSOLETE_COL_COUNT_DOESNT_MATCH_CORRUPTED)

Message: Column count of mysql.%s is wrong. Expected %d, found %d. The table is probably
corrupted

• Error: 1548 SQLSTATE: HY000 (ER_OBSOLETE_CANNOT_LOAD_FROM_TABLE)

Message: Cannot load from mysql.%s. The table is probably corrupted

• Error: 1549 SQLSTATE: HY000 (ER_EVENT_CANNOT_DELETE)

Message: Failed to delete the event from mysql.event

• Error: 1550 SQLSTATE: HY000 (ER_EVENT_COMPILE_ERROR)

Message: Error during compilation of event's body

• Error: 1551 SQLSTATE: HY000 (ER_EVENT_SAME_NAME)

Message: Same old and new event name

• Error: 1552 SQLSTATE: HY000 (ER_EVENT_DATA_TOO_LONG)

Message: Data for column '%s' too long

• Error: 1553 SQLSTATE: HY000 (ER_DROP_INDEX_FK)

Server Error Codes and Messages

3297

Message: Cannot drop index '%s': needed in a foreign key constraint

• Error: 1554 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX_WITH_VER)

Message: The syntax '%s' is deprecated and will be removed in MySQL %s. Please use %s instead

• Error: 1555 SQLSTATE: HY000 (ER_CANT_WRITE_LOCK_LOG_TABLE)

Message: You can't write-lock a log table. Only read access is possible

• Error: 1556 SQLSTATE: HY000 (ER_CANT_LOCK_LOG_TABLE)

Message: You can't use locks with log tables.

• Error: 1557 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY_OLD_UNUSED)

Message: Upholding foreign key constraints for table '%s', entry '%s', key %d would lead to a
duplicate entry

• Error: 1558 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE)

Message: Column count of mysql.%s is wrong. Expected %d, found %d. Created with MySQL %d,
now running %d. Please use mysql_upgrade to fix this error.

• Error: 1559 SQLSTATE: HY000 (ER_TEMP_TABLE_PREVENTS_SWITCH_OUT_OF_RBR)

Message: Cannot switch out of the row-based binary log format when the session has open
temporary tables

• Error: 1560 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_FORMAT)

Message: Cannot change the binary logging format inside a stored function or trigger

• Error: 1561 SQLSTATE: HY000 (ER_NDB_CANT_SWITCH_BINLOG_FORMAT)

Message: The NDB cluster engine does not support changing the binlog format on the fly yet

• Error: 1562 SQLSTATE: HY000 (ER_PARTITION_NO_TEMPORARY)

Message: Cannot create temporary table with partitions

• Error: 1563 SQLSTATE: HY000 (ER_PARTITION_CONST_DOMAIN_ERROR)

Message: Partition constant is out of partition function domain

• Error: 1564 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_IS_NOT_ALLOWED)

Message: This partition function is not allowed

• Error: 1565 SQLSTATE: HY000 (ER_DDL_LOG_ERROR)

Message: Error in DDL log

• Error: 1566 SQLSTATE: HY000 (ER_NULL_IN_VALUES_LESS_THAN)

Message: Not allowed to use NULL value in VALUES LESS THAN

• Error: 1567 SQLSTATE: HY000 (ER_WRONG_PARTITION_NAME)

Message: Incorrect partition name

• Error: 1568 SQLSTATE: 25001 (ER_CANT_CHANGE_TX_CHARACTERISTICS)

Message: Transaction characteristics can't be changed while a transaction is in progress

Server Error Codes and Messages

3298

• Error: 1569 SQLSTATE: HY000 (ER_DUP_ENTRY_AUTOINCREMENT_CASE)

Message: ALTER TABLE causes auto_increment resequencing, resulting in duplicate entry '%s' for
key '%s'

• Error: 1570 SQLSTATE: HY000 (ER_EVENT_MODIFY_QUEUE_ERROR)

Message: Internal scheduler error %d

• Error: 1571 SQLSTATE: HY000 (ER_EVENT_SET_VAR_ERROR)

Message: Error during starting/stopping of the scheduler. Error code %u

• Error: 1572 SQLSTATE: HY000 (ER_PARTITION_MERGE_ERROR)

Message: Engine cannot be used in partitioned tables

• Error: 1573 SQLSTATE: HY000 (ER_CANT_ACTIVATE_LOG)

Message: Cannot activate '%s' log

• Error: 1574 SQLSTATE: HY000 (ER_RBR_NOT_AVAILABLE)

Message: The server was not built with row-based replication

• Error: 1575 SQLSTATE: HY000 (ER_BASE64_DECODE_ERROR)

Message: Decoding of base64 string failed

• Error: 1576 SQLSTATE: HY000 (ER_EVENT_RECURSION_FORBIDDEN)

Message: Recursion of EVENT DDL statements is forbidden when body is present

• Error: 1577 SQLSTATE: HY000 (ER_EVENTS_DB_ERROR)

Message: Cannot proceed because system tables used by Event Scheduler were found damaged at
server start

To address this issue, try running mysql_upgrade.

• Error: 1578 SQLSTATE: HY000 (ER_ONLY_INTEGERS_ALLOWED)

Message: Only integers allowed as number here

• Error: 1579 SQLSTATE: HY000 (ER_UNSUPORTED_LOG_ENGINE)

Message: This storage engine cannot be used for log tables"

• Error: 1580 SQLSTATE: HY000 (ER_BAD_LOG_STATEMENT)

Message: You cannot '%s' a log table if logging is enabled

• Error: 1581 SQLSTATE: HY000 (ER_CANT_RENAME_LOG_TABLE)

Message: Cannot rename '%s'. When logging enabled, rename to/from log table must rename two
tables: the log table to an archive table and another table back to '%s'

• Error: 1582 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT)

Message: Incorrect parameter count in the call to native function '%s'

• Error: 1583 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_NATIVE_FCT)

Message: Incorrect parameters in the call to native function '%s'

Server Error Codes and Messages

3299

• Error: 1584 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_STORED_FCT)

Message: Incorrect parameters in the call to stored function %s

• Error: 1585 SQLSTATE: HY000 (ER_NATIVE_FCT_NAME_COLLISION)

Message: This function '%s' has the same name as a native function

• Error: 1586 SQLSTATE: 23000 (ER_DUP_ENTRY_WITH_KEY_NAME)

Message: Duplicate entry '%s' for key '%s'

The format string for this error is also used with ER_DUP_ENTRY.

• Error: 1587 SQLSTATE: HY000 (ER_BINLOG_PURGE_EMFILE)

Message: Too many files opened, please execute the command again

• Error: 1588 SQLSTATE: HY000 (ER_EVENT_CANNOT_CREATE_IN_THE_PAST)

Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The
event was dropped immediately after creation.

• Error: 1589 SQLSTATE: HY000 (ER_EVENT_CANNOT_ALTER_IN_THE_PAST)

Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The
event was not changed. Specify a time in the future.

• Error: 1590 SQLSTATE: HY000 (ER_SLAVE_INCIDENT)

Message: The incident %s occured on the master. Message: %s

• Error: 1591 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT)

Message: Table has no partition for some existing values

• Error: 1592 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_STATEMENT)

Message: Unsafe statement written to the binary log using statement format since
BINLOG_FORMAT = STATEMENT. %s

• Error: 1593 SQLSTATE: HY000 (ER_SLAVE_FATAL_ERROR)

Message: Fatal error: %s

• Error: 1594 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_READ_FAILURE)

Message: Relay log read failure: %s

• Error: 1595 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_WRITE_FAILURE)

Message: Relay log write failure: %s

• Error: 1596 SQLSTATE: HY000 (ER_SLAVE_CREATE_EVENT_FAILURE)

Message: Failed to create %s

• Error: 1597 SQLSTATE: HY000 (ER_SLAVE_MASTER_COM_FAILURE)

Message: Master command %s failed: %s

• Error: 1598 SQLSTATE: HY000 (ER_BINLOG_LOGGING_IMPOSSIBLE)

Message: Binary logging not possible. Message: %s

Server Error Codes and Messages

3300

• Error: 1599 SQLSTATE: HY000 (ER_VIEW_NO_CREATION_CTX)

Message: View `%s`.`%s` has no creation context

• Error: 1600 SQLSTATE: HY000 (ER_VIEW_INVALID_CREATION_CTX)

Message: Creation context of view `%s`.`%s' is invalid

• Error: 1601 SQLSTATE: HY000 (ER_SR_INVALID_CREATION_CTX)

Message: Creation context of stored routine `%s`.`%s` is invalid

• Error: 1602 SQLSTATE: HY000 (ER_TRG_CORRUPTED_FILE)

Message: Corrupted TRG file for table `%s`.`%s`

• Error: 1603 SQLSTATE: HY000 (ER_TRG_NO_CREATION_CTX)

Message: Triggers for table `%s`.`%s` have no creation context

• Error: 1604 SQLSTATE: HY000 (ER_TRG_INVALID_CREATION_CTX)

Message: Trigger creation context of table `%s`.`%s` is invalid

• Error: 1605 SQLSTATE: HY000 (ER_EVENT_INVALID_CREATION_CTX)

Message: Creation context of event `%s`.`%s` is invalid

• Error: 1606 SQLSTATE: HY000 (ER_TRG_CANT_OPEN_TABLE)

Message: Cannot open table for trigger `%s`.`%s`

• Error: 1607 SQLSTATE: HY000 (ER_CANT_CREATE_SROUTINE)

Message: Cannot create stored routine `%s`. Check warnings

• Error: 1608 SQLSTATE: HY000 (ER_NEVER_USED)

Message: Ambiguous slave modes combination. %s

• Error: 1609 SQLSTATE: HY000
(ER_NO_FORMAT_DESCRIPTION_EVENT_BEFORE_BINLOG_STATEMENT)

Message: The BINLOG statement of type `%s` was not preceded by a format description BINLOG
statement.

• Error: 1610 SQLSTATE: HY000 (ER_SLAVE_CORRUPT_EVENT)

Message: Corrupted replication event was detected

• Error: 1611 SQLSTATE: HY000 (ER_LOAD_DATA_INVALID_COLUMN)

Message: Invalid column reference (%s) in LOAD DATA

ER_LOAD_DATA_INVALID_COLUMN was removed after 5.7.7.

• Error: 1611 SQLSTATE: HY000 (ER_LOAD_DATA_INVALID_COLUMN_UNUSED)

Message: Invalid column reference (%s) in LOAD DATA

ER_LOAD_DATA_INVALID_COLUMN_UNUSED was added in 5.7.8.

• Error: 1612 SQLSTATE: HY000 (ER_LOG_PURGE_NO_FILE)

Message: Being purged log %s was not found

Server Error Codes and Messages

3301

• Error: 1613 SQLSTATE: XA106 (ER_XA_RBTIMEOUT)

Message: XA_RBTIMEOUT: Transaction branch was rolled back: took too long

• Error: 1614 SQLSTATE: XA102 (ER_XA_RBDEADLOCK)

Message: XA_RBDEADLOCK: Transaction branch was rolled back: deadlock was detected

• Error: 1615 SQLSTATE: HY000 (ER_NEED_REPREPARE)

Message: Prepared statement needs to be re-prepared

• Error: 1616 SQLSTATE: HY000 (ER_DELAYED_NOT_SUPPORTED)

Message: DELAYED option not supported for table '%s'

• Error: 1617 SQLSTATE: HY000 (WARN_NO_MASTER_INFO)

Message: The master info structure does not exist

• Error: 1618 SQLSTATE: HY000 (WARN_OPTION_IGNORED)

Message: <%s> option ignored

• Error: 1619 SQLSTATE: HY000 (WARN_PLUGIN_DELETE_BUILTIN)

Message: Built-in plugins cannot be deleted

WARN_PLUGIN_DELETE_BUILTIN was removed after 5.7.4.

• Error: 1619 SQLSTATE: HY000 (ER_PLUGIN_DELETE_BUILTIN)

Message: Built-in plugins cannot be deleted

ER_PLUGIN_DELETE_BUILTIN was added in 5.7.5.

• Error: 1620 SQLSTATE: HY000 (WARN_PLUGIN_BUSY)

Message: Plugin is busy and will be uninstalled on shutdown

• Error: 1621 SQLSTATE: HY000 (ER_VARIABLE_IS_READONLY)

Message: %s variable '%s' is read-only. Use SET %s to assign the value

• Error: 1622 SQLSTATE: HY000 (ER_WARN_ENGINE_TRANSACTION_ROLLBACK)

Message: Storage engine %s does not support rollback for this statement. Transaction rolled back
and must be restarted

• Error: 1623 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_FAILURE)

Message: Unexpected master's heartbeat data: %s

• Error: 1624 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE)

Message: The requested value for the heartbeat period is either negative or exceeds the maximum
allowed (%s seconds).

• Error: 1625 SQLSTATE: HY000 (ER_NDB_REPLICATION_SCHEMA_ERROR)

Message: Bad schema for mysql.ndb_replication table. Message: %s

• Error: 1626 SQLSTATE: HY000 (ER_CONFLICT_FN_PARSE_ERROR)

Message: Error in parsing conflict function. Message: %s

Server Error Codes and Messages

3302

• Error: 1627 SQLSTATE: HY000 (ER_EXCEPTIONS_WRITE_ERROR)

Message: Write to exceptions table failed. Message: %s"

• Error: 1628 SQLSTATE: HY000 (ER_TOO_LONG_TABLE_COMMENT)

Message: Comment for table '%s' is too long (max = %lu)

• Error: 1629 SQLSTATE: HY000 (ER_TOO_LONG_FIELD_COMMENT)

Message: Comment for field '%s' is too long (max = %lu)

• Error: 1630 SQLSTATE: 42000 (ER_FUNC_INEXISTENT_NAME_COLLISION)

Message: FUNCTION %s does not exist. Check the 'Function Name Parsing and Resolution' section
in the Reference Manual

• Error: 1631 SQLSTATE: HY000 (ER_DATABASE_NAME)

Message: Database

• Error: 1632 SQLSTATE: HY000 (ER_TABLE_NAME)

Message: Table

• Error: 1633 SQLSTATE: HY000 (ER_PARTITION_NAME)

Message: Partition

• Error: 1634 SQLSTATE: HY000 (ER_SUBPARTITION_NAME)

Message: Subpartition

• Error: 1635 SQLSTATE: HY000 (ER_TEMPORARY_NAME)

Message: Temporary

• Error: 1636 SQLSTATE: HY000 (ER_RENAMED_NAME)

Message: Renamed

• Error: 1637 SQLSTATE: HY000 (ER_TOO_MANY_CONCURRENT_TRXS)

Message: Too many active concurrent transactions

• Error: 1638 SQLSTATE: HY000 (WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED)

Message: Non-ASCII separator arguments are not fully supported

• Error: 1639 SQLSTATE: HY000 (ER_DEBUG_SYNC_TIMEOUT)

Message: debug sync point wait timed out

• Error: 1640 SQLSTATE: HY000 (ER_DEBUG_SYNC_HIT_LIMIT)

Message: debug sync point hit limit reached

• Error: 1641 SQLSTATE: 42000 (ER_DUP_SIGNAL_SET)

Message: Duplicate condition information item '%s'

• Error: 1642 SQLSTATE: 01000 (ER_SIGNAL_WARN)

Message: Unhandled user-defined warning condition

Server Error Codes and Messages

3303

• Error: 1643 SQLSTATE: 02000 (ER_SIGNAL_NOT_FOUND)

Message: Unhandled user-defined not found condition

• Error: 1644 SQLSTATE: HY000 (ER_SIGNAL_EXCEPTION)

Message: Unhandled user-defined exception condition

• Error: 1645 SQLSTATE: 0K000 (ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER)

Message: RESIGNAL when handler not active

• Error: 1646 SQLSTATE: HY000 (ER_SIGNAL_BAD_CONDITION_TYPE)

Message: SIGNAL/RESIGNAL can only use a CONDITION defined with SQLSTATE

• Error: 1647 SQLSTATE: HY000 (WARN_COND_ITEM_TRUNCATED)

Message: Data truncated for condition item '%s'

• Error: 1648 SQLSTATE: HY000 (ER_COND_ITEM_TOO_LONG)

Message: Data too long for condition item '%s'

• Error: 1649 SQLSTATE: HY000 (ER_UNKNOWN_LOCALE)

Message: Unknown locale: '%s'

• Error: 1650 SQLSTATE: HY000 (ER_SLAVE_IGNORE_SERVER_IDS)

Message: The requested server id %d clashes with the slave startup option --replicate-same-server-
id

• Error: 1651 SQLSTATE: HY000 (ER_QUERY_CACHE_DISABLED)

Message: Query cache is disabled; restart the server with query_cache_type=1 to enable it

• Error: 1652 SQLSTATE: HY000 (ER_SAME_NAME_PARTITION_FIELD)

Message: Duplicate partition field name '%s'

• Error: 1653 SQLSTATE: HY000 (ER_PARTITION_COLUMN_LIST_ERROR)

Message: Inconsistency in usage of column lists for partitioning

• Error: 1654 SQLSTATE: HY000 (ER_WRONG_TYPE_COLUMN_VALUE_ERROR)

Message: Partition column values of incorrect type

• Error: 1655 SQLSTATE: HY000 (ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR)

Message: Too many fields in '%s'

• Error: 1656 SQLSTATE: HY000 (ER_MAXVALUE_IN_VALUES_IN)

Message: Cannot use MAXVALUE as value in VALUES IN

• Error: 1657 SQLSTATE: HY000 (ER_TOO_MANY_VALUES_ERROR)

Message: Cannot have more than one value for this type of %s partitioning

• Error: 1658 SQLSTATE: HY000 (ER_ROW_SINGLE_PARTITION_FIELD_ERROR)

Message: Row expressions in VALUES IN only allowed for multi-field column partitioning

Server Error Codes and Messages

3304

• Error: 1659 SQLSTATE: HY000 (ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD)

Message: Field '%s' is of a not allowed type for this type of partitioning

• Error: 1660 SQLSTATE: HY000 (ER_PARTITION_FIELDS_TOO_LONG)

Message: The total length of the partitioning fields is too large

• Error: 1661 SQLSTATE: HY000 (ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since both row-incapable
engines and statement-incapable engines are involved.

• Error: 1662 SQLSTATE: HY000 (ER_BINLOG_ROW_MODE_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT =
ROW and at least one table uses a storage engine limited to statement-based logging.

• Error: 1663 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since statement is unsafe,
storage engine is limited to statement-based logging, and BINLOG_FORMAT = MIXED. %s

• Error: 1664 SQLSTATE: HY000 (ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since statement is in row
format and at least one table uses a storage engine limited to statement-based logging.

• Error: 1665 SQLSTATE: HY000 (ER_BINLOG_STMT_MODE_AND_ROW_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT =
STATEMENT and at least one table uses a storage engine limited to row-based logging.%s

• Error: 1666 SQLSTATE: HY000 (ER_BINLOG_ROW_INJECTION_AND_STMT_MODE)

Message: Cannot execute statement: impossible to write to binary log since statement is in row
format and BINLOG_FORMAT = STATEMENT.

• Error: 1667 SQLSTATE: HY000
(ER_BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since more than one engine is
involved and at least one engine is self-logging.

• Error: 1668 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_LIMIT)

Message: The statement is unsafe because it uses a LIMIT clause. This is unsafe because the set of
rows included cannot be predicted.

• Error: 1669 SQLSTATE: HY000 (ER_UNUSED4)

Message: The statement is unsafe because it uses INSERT DELAYED. This is unsafe because the
times when rows are inserted cannot be predicted.

• Error: 1670 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_TABLE)

Message: The statement is unsafe because it uses the general log, slow query log, or
performance_schema table(s). This is unsafe because system tables may differ on slaves.

• Error: 1671 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AUTOINC_COLUMNS)

Message: Statement is unsafe because it invokes a trigger or a stored function that inserts into an
AUTO_INCREMENT column. Inserted values cannot be logged correctly.

Server Error Codes and Messages

3305

• Error: 1672 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_UDF)

Message: Statement is unsafe because it uses a UDF which may not return the same value on the
slave.

• Error: 1673 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_VARIABLE)

Message: Statement is unsafe because it uses a system variable that may have a different value on
the slave.

• Error: 1674 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_FUNCTION)

Message: Statement is unsafe because it uses a system function that may return a different value on
the slave.

• Error: 1675 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS)

Message: Statement is unsafe because it accesses a non-transactional table after accessing a
transactional table within the same transaction.

• Error: 1676 SQLSTATE: HY000 (ER_MESSAGE_AND_STATEMENT)

Message: %s Statement: %s

• Error: 1677 SQLSTATE: HY000 (ER_SLAVE_CONVERSION_FAILED)

Message: Column %d of table '%s.%s' cannot be converted from type '%s' to type '%s'

• Error: 1678 SQLSTATE: HY000 (ER_SLAVE_CANT_CREATE_CONVERSION)

Message: Can't create conversion table for table '%s.%s'

• Error: 1679 SQLSTATE: HY000
(ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_FORMAT)

Message: Cannot modify @@session.binlog_format inside a transaction

• Error: 1680 SQLSTATE: HY000 (ER_PATH_LENGTH)

Message: The path specified for %s is too long.

• Error: 1681 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX_NO_REPLACEMENT)

Message: '%s' is deprecated and will be removed in a future release.

• Error: 1682 SQLSTATE: HY000 (ER_WRONG_NATIVE_TABLE_STRUCTURE)

Message: Native table '%s'.'%s' has the wrong structure

• Error: 1683 SQLSTATE: HY000 (ER_WRONG_PERFSCHEMA_USAGE)

Message: Invalid performance_schema usage.

• Error: 1684 SQLSTATE: HY000 (ER_WARN_I_S_SKIPPED_TABLE)

Message: Table '%s'.'%s' was skipped since its definition is being modified by concurrent DDL
statement

• Error: 1685 SQLSTATE: HY000
(ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_DIRECT)

Message: Cannot modify @@session.binlog_direct_non_transactional_updates inside a transaction

• Error: 1686 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_DIRECT)

Server Error Codes and Messages

3306

Message: Cannot change the binlog direct flag inside a stored function or trigger

• Error: 1687 SQLSTATE: 42000 (ER_SPATIAL_MUST_HAVE_GEOM_COL)

Message: A SPATIAL index may only contain a geometrical type column

• Error: 1688 SQLSTATE: HY000 (ER_TOO_LONG_INDEX_COMMENT)

Message: Comment for index '%s' is too long (max = %lu)

• Error: 1689 SQLSTATE: HY000 (ER_LOCK_ABORTED)

Message: Wait on a lock was aborted due to a pending exclusive lock

• Error: 1690 SQLSTATE: 22003 (ER_DATA_OUT_OF_RANGE)

Message: %s value is out of range in '%s'

• Error: 1691 SQLSTATE: HY000 (ER_WRONG_SPVAR_TYPE_IN_LIMIT)

Message: A variable of a non-integer based type in LIMIT clause

• Error: 1692 SQLSTATE: HY000
(ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE)

Message: Mixing self-logging and non-self-logging engines in a statement is unsafe.

• Error: 1693 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_MIXED_STATEMENT)

Message: Statement accesses nontransactional table as well as transactional or temporary table,
and writes to any of them.

• Error: 1694 SQLSTATE: HY000 (ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_SQL_LOG_BIN)

Message: Cannot modify @@session.sql_log_bin inside a transaction

• Error: 1695 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_SQL_LOG_BIN)

Message: Cannot change the sql_log_bin inside a stored function or trigger

• Error: 1696 SQLSTATE: HY000 (ER_FAILED_READ_FROM_PAR_FILE)

Message: Failed to read from the .par file

• Error: 1697 SQLSTATE: HY000 (ER_VALUES_IS_NOT_INT_TYPE_ERROR)

Message: VALUES value for partition '%s' must have type INT

• Error: 1698 SQLSTATE: 28000 (ER_ACCESS_DENIED_NO_PASSWORD_ERROR)

Message: Access denied for user '%s'@'%s'

• Error: 1699 SQLSTATE: HY000 (ER_SET_PASSWORD_AUTH_PLUGIN)

Message: SET PASSWORD has no significance for users authenticating via plugins

• Error: 1700 SQLSTATE: HY000 (ER_GRANT_PLUGIN_USER_EXISTS)

Message: GRANT with IDENTIFIED WITH is illegal because the user %-.*s already exists

• Error: 1701 SQLSTATE: 42000 (ER_TRUNCATE_ILLEGAL_FK)

Message: Cannot truncate a table referenced in a foreign key constraint (%s)

Server Error Codes and Messages

3307

• Error: 1702 SQLSTATE: HY000 (ER_PLUGIN_IS_PERMANENT)

Message: Plugin '%s' is force_plus_permanent and can not be unloaded

• Error: 1703 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MIN)

Message: The requested value for the heartbeat period is less than 1 millisecond. The value is reset
to 0, meaning that heartbeating will effectively be disabled.

• Error: 1704 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MAX)

Message: The requested value for the heartbeat period exceeds the value of `slave_net_timeout'
seconds. A sensible value for the period should be less than the timeout.

• Error: 1705 SQLSTATE: HY000 (ER_STMT_CACHE_FULL)

Message: Multi-row statements required more than 'max_binlog_stmt_cache_size' bytes of storage;
increase this mysqld variable and try again

• Error: 1706 SQLSTATE: HY000 (ER_MULTI_UPDATE_KEY_CONFLICT)

Message: Primary key/partition key update is not allowed since the table is updated both as '%s' and
'%s'.

• Error: 1707 SQLSTATE: HY000 (ER_TABLE_NEEDS_REBUILD)

Message: Table rebuild required. Please do "ALTER TABLE `%s` FORCE" or dump/reload to fix it!

• Error: 1708 SQLSTATE: HY000 (WARN_OPTION_BELOW_LIMIT)

Message: The value of '%s' should be no less than the value of '%s'

• Error: 1709 SQLSTATE: HY000 (ER_INDEX_COLUMN_TOO_LONG)

Message: Index column size too large. The maximum column size is %lu bytes.

• Error: 1710 SQLSTATE: HY000 (ER_ERROR_IN_TRIGGER_BODY)

Message: Trigger '%s' has an error in its body: '%s'

• Error: 1711 SQLSTATE: HY000 (ER_ERROR_IN_UNKNOWN_TRIGGER_BODY)

Message: Unknown trigger has an error in its body: '%s'

• Error: 1712 SQLSTATE: HY000 (ER_INDEX_CORRUPT)

Message: Index %s is corrupted

• Error: 1713 SQLSTATE: HY000 (ER_UNDO_RECORD_TOO_BIG)

Message: Undo log record is too big.

• Error: 1714 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT)

Message: INSERT IGNORE... SELECT is unsafe because the order in which rows are retrieved by
the SELECT determines which (if any) rows are ignored. This order cannot be predicted and may
differ on master and the slave.

• Error: 1715 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE)

Message: INSERT... SELECT... ON DUPLICATE KEY UPDATE is unsafe because the order in
which rows are retrieved by the SELECT determines which (if any) rows are updated. This order
cannot be predicted and may differ on master and the slave.

• Error: 1716 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_REPLACE_SELECT)

Server Error Codes and Messages

3308

Message: REPLACE... SELECT is unsafe because the order in which rows are retrieved by the
SELECT determines which (if any) rows are replaced. This order cannot be predicted and may differ
on master and the slave.

• Error: 1717 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT)

Message: CREATE... IGNORE SELECT is unsafe because the order in which rows are retrieved by
the SELECT determines which (if any) rows are ignored. This order cannot be predicted and may
differ on master and the slave.

• Error: 1718 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT)

Message: CREATE... REPLACE SELECT is unsafe because the order in which rows are retrieved
by the SELECT determines which (if any) rows are replaced. This order cannot be predicted and
may differ on master and the slave.

• Error: 1719 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_UPDATE_IGNORE)

Message: UPDATE IGNORE is unsafe because the order in which rows are updated determines
which (if any) rows are ignored. This order cannot be predicted and may differ on master and the
slave.

• Error: 1720 SQLSTATE: HY000 (ER_PLUGIN_NO_UNINSTALL)

Message: Plugin '%s' is marked as not dynamically uninstallable. You have to stop the server to
uninstall it.

• Error: 1721 SQLSTATE: HY000 (ER_PLUGIN_NO_INSTALL)

Message: Plugin '%s' is marked as not dynamically installable. You have to stop the server to install
it.

• Error: 1722 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT)

Message: Statements writing to a table with an auto-increment column after selecting from another
table are unsafe because the order in which rows are retrieved determines what (if any) rows will be
written. This order cannot be predicted and may differ on master and the slave.

• Error: 1723 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC)

Message: CREATE TABLE... SELECT... on a table with an auto-increment column is unsafe
because the order in which rows are retrieved by the SELECT determines which (if any) rows are
inserted. This order cannot be predicted and may differ on master and the slave.

• Error: 1724 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_TWO_KEYS)

Message: INSERT... ON DUPLICATE KEY UPDATE on a table with more than one UNIQUE KEY is
unsafe

• Error: 1725 SQLSTATE: HY000 (ER_TABLE_IN_FK_CHECK)

Message: Table is being used in foreign key check.

• Error: 1726 SQLSTATE: HY000 (ER_UNSUPPORTED_ENGINE)

Message: Storage engine '%s' does not support system tables. [%s.%s]

• Error: 1727 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST)

Message: INSERT into autoincrement field which is not the first part in the composed primary key is
unsafe.

• Error: 1728 SQLSTATE: HY000 (ER_CANNOT_LOAD_FROM_TABLE_V2)

Server Error Codes and Messages

3309

Message: Cannot load from %s.%s. The table is probably corrupted

• Error: 1729 SQLSTATE: HY000 (ER_MASTER_DELAY_VALUE_OUT_OF_RANGE)

Message: The requested value %s for the master delay exceeds the maximum %u

• Error: 1730 SQLSTATE: HY000
(ER_ONLY_FD_AND_RBR_EVENTS_ALLOWED_IN_BINLOG_STATEMENT)

Message: Only Format_description_log_event and row events are allowed in BINLOG statements
(but %s was provided)

• Error: 1731 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_DIFFERENT_OPTION)

Message: Non matching attribute '%s' between partition and table

• Error: 1732 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_PART_TABLE)

Message: Table to exchange with partition is partitioned: '%s'

• Error: 1733 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_TEMP_TABLE)

Message: Table to exchange with partition is temporary: '%s'

• Error: 1734 SQLSTATE: HY000 (ER_PARTITION_INSTEAD_OF_SUBPARTITION)

Message: Subpartitioned table, use subpartition instead of partition

• Error: 1735 SQLSTATE: HY000 (ER_UNKNOWN_PARTITION)

Message: Unknown partition '%s' in table '%s'

• Error: 1736 SQLSTATE: HY000 (ER_TABLES_DIFFERENT_METADATA)

Message: Tables have different definitions

• Error: 1737 SQLSTATE: HY000 (ER_ROW_DOES_NOT_MATCH_PARTITION)

Message: Found a row that does not match the partition

• Error: 1738 SQLSTATE: HY000 (ER_BINLOG_CACHE_SIZE_GREATER_THAN_MAX)

Message: Option binlog_cache_size (%lu) is greater than max_binlog_cache_size (%lu); setting
binlog_cache_size equal to max_binlog_cache_size.

• Error: 1739 SQLSTATE: HY000 (ER_WARN_INDEX_NOT_APPLICABLE)

Message: Cannot use %s access on index '%s' due to type or collation conversion on field '%s'

• Error: 1740 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_FOREIGN_KEY)

Message: Table to exchange with partition has foreign key references: '%s'

• Error: 1741 SQLSTATE: HY000 (ER_NO_SUCH_KEY_VALUE)

Message: Key value '%s' was not found in table '%s.%s'

• Error: 1742 SQLSTATE: HY000 (ER_RPL_INFO_DATA_TOO_LONG)

Message: Data for column '%s' too long

• Error: 1743 SQLSTATE: HY000 (ER_NETWORK_READ_EVENT_CHECKSUM_FAILURE)

Message: Replication event checksum verification failed while reading from network.

Server Error Codes and Messages

3310

• Error: 1744 SQLSTATE: HY000 (ER_BINLOG_READ_EVENT_CHECKSUM_FAILURE)

Message: Replication event checksum verification failed while reading from a log file.

• Error: 1745 SQLSTATE: HY000 (ER_BINLOG_STMT_CACHE_SIZE_GREATER_THAN_MAX)

Message: Option binlog_stmt_cache_size (%lu) is greater than max_binlog_stmt_cache_size (%lu);
setting binlog_stmt_cache_size equal to max_binlog_stmt_cache_size.

• Error: 1746 SQLSTATE: HY000 (ER_CANT_UPDATE_TABLE_IN_CREATE_TABLE_SELECT)

Message: Can't update table '%s' while '%s' is being created.

• Error: 1747 SQLSTATE: HY000 (ER_PARTITION_CLAUSE_ON_NONPARTITIONED)

Message: PARTITION () clause on non partitioned table

• Error: 1748 SQLSTATE: HY000 (ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET)

Message: Found a row not matching the given partition set

• Error: 1749 SQLSTATE: HY000 (ER_NO_SUCH_PARTITION__UNUSED)

Message: partition '%s' doesn't exist

• Error: 1750 SQLSTATE: HY000 (ER_CHANGE_RPL_INFO_REPOSITORY_FAILURE)

Message: Failure while changing the type of replication repository: %s.

• Error: 1751 SQLSTATE: HY000
(ER_WARNING_NOT_COMPLETE_ROLLBACK_WITH_CREATED_TEMP_TABLE)

Message: The creation of some temporary tables could not be rolled back.

• Error: 1752 SQLSTATE: HY000
(ER_WARNING_NOT_COMPLETE_ROLLBACK_WITH_DROPPED_TEMP_TABLE)

Message: Some temporary tables were dropped, but these operations could not be rolled back.

• Error: 1753 SQLSTATE: HY000 (ER_MTS_FEATURE_IS_NOT_SUPPORTED)

Message: %s is not supported in multi-threaded slave mode. %s

• Error: 1754 SQLSTATE: HY000 (ER_MTS_UPDATED_DBS_GREATER_MAX)

Message: The number of modified databases exceeds the maximum %d; the database names will
not be included in the replication event metadata.

• Error: 1755 SQLSTATE: HY000 (ER_MTS_CANT_PARALLEL)

Message: Cannot execute the current event group in the parallel mode. Encountered event %s,
relay-log name %s, position %s which prevents execution of this event group in parallel mode.
Reason: %s.

• Error: 1756 SQLSTATE: HY000 (ER_MTS_INCONSISTENT_DATA)

Message: %s

• Error: 1757 SQLSTATE: HY000 (ER_FULLTEXT_NOT_SUPPORTED_WITH_PARTITIONING)

Message: FULLTEXT index is not supported for partitioned tables.

• Error: 1758 SQLSTATE: 35000 (ER_DA_INVALID_CONDITION_NUMBER)

Message: Invalid condition number

Server Error Codes and Messages

3311

• Error: 1759 SQLSTATE: HY000 (ER_INSECURE_PLAIN_TEXT)

Message: Sending passwords in plain text without SSL/TLS is extremely insecure.

• Error: 1760 SQLSTATE: HY000 (ER_INSECURE_CHANGE_MASTER)

Message: Storing MySQL user name or password information in the master info repository is not
secure and is therefore not recommended. Please consider using the USER and PASSWORD
connection options for START SLAVE; see the 'START SLAVE Syntax' in the MySQL Manual for
more information.

• Error: 1761 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO)

Message: Foreign key constraint for table '%s', record '%s' would lead to a duplicate entry in table
'%s', key '%s'

• Error: 1762 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO)

Message: Foreign key constraint for table '%s', record '%s' would lead to a duplicate entry in a child
table

• Error: 1763 SQLSTATE: HY000 (ER_SQLTHREAD_WITH_SECURE_SLAVE)

Message: Setting authentication options is not possible when only the Slave SQL Thread is being
started.

• Error: 1764 SQLSTATE: HY000 (ER_TABLE_HAS_NO_FT)

Message: The table does not have FULLTEXT index to support this query

• Error: 1765 SQLSTATE: HY000 (ER_VARIABLE_NOT_SETTABLE_IN_SF_OR_TRIGGER)

Message: The system variable %s cannot be set in stored functions or triggers.

• Error: 1766 SQLSTATE: HY000 (ER_VARIABLE_NOT_SETTABLE_IN_TRANSACTION)

Message: The system variable %s cannot be set when there is an ongoing transaction.

• Error: 1767 SQLSTATE: HY000 (ER_GTID_NEXT_IS_NOT_IN_GTID_NEXT_LIST)

Message: The system variable @@SESSION.GTID_NEXT has the value %s, which is not listed in
@@SESSION.GTID_NEXT_LIST.

• Error: 1768 SQLSTATE: HY000
(ER_CANT_CHANGE_GTID_NEXT_IN_TRANSACTION_WHEN_GTID_NEXT_LIST_IS_NULL)

Message: The system variable @@SESSION.GTID_NEXT cannot change inside a transaction.

ER_CANT_CHANGE_GTID_NEXT_IN_TRANSACTION_WHEN_GTID_NEXT_LIST_IS_NULL was
removed after 5.7.5.

• Error: 1768 SQLSTATE: HY000 (ER_CANT_CHANGE_GTID_NEXT_IN_TRANSACTION)

Message: The system variable @@SESSION.GTID_NEXT cannot change inside a transaction.

ER_CANT_CHANGE_GTID_NEXT_IN_TRANSACTION was added in 5.7.6.

• Error: 1769 SQLSTATE: HY000 (ER_SET_STATEMENT_CANNOT_INVOKE_FUNCTION)

Message: The statement 'SET %s' cannot invoke a stored function.

• Error: 1770 SQLSTATE: HY000
(ER_GTID_NEXT_CANT_BE_AUTOMATIC_IF_GTID_NEXT_LIST_IS_NON_NULL)

Server Error Codes and Messages

3312

Message: The system variable @@SESSION.GTID_NEXT cannot be 'AUTOMATIC' when
@@SESSION.GTID_NEXT_LIST is non-NULL.

• Error: 1771 SQLSTATE: HY000 (ER_SKIPPING_LOGGED_TRANSACTION)

Message: Skipping transaction %s because it has already been executed and logged.

• Error: 1772 SQLSTATE: HY000 (ER_MALFORMED_GTID_SET_SPECIFICATION)

Message: Malformed GTID set specification '%s'.

• Error: 1773 SQLSTATE: HY000 (ER_MALFORMED_GTID_SET_ENCODING)

Message: Malformed GTID set encoding.

• Error: 1774 SQLSTATE: HY000 (ER_MALFORMED_GTID_SPECIFICATION)

Message: Malformed GTID specification '%s'.

• Error: 1775 SQLSTATE: HY000 (ER_GNO_EXHAUSTED)

Message: Impossible to generate Global Transaction Identifier: the integer component reached the
maximal value. Restart the server with a new server_uuid.

• Error: 1776 SQLSTATE: HY000 (ER_BAD_SLAVE_AUTO_POSITION)

Message: Parameters MASTER_LOG_FILE, MASTER_LOG_POS, RELAY_LOG_FILE and
RELAY_LOG_POS cannot be set when MASTER_AUTO_POSITION is active.

• Error: 1777 SQLSTATE: HY000 (ER_AUTO_POSITION_REQUIRES_GTID_MODE_ON)

Message: CHANGE MASTER TO MASTER_AUTO_POSITION = 1 can only be executed when
@@GLOBAL.GTID_MODE = ON.

ER_AUTO_POSITION_REQUIRES_GTID_MODE_ON was removed after 5.7.5.

• Error: 1777 SQLSTATE: HY000 (ER_AUTO_POSITION_REQUIRES_GTID_MODE_NOT_OFF)

Message: CHANGE MASTER TO MASTER_AUTO_POSITION = 1 cannot be executed because
@@GLOBAL.GTID_MODE = OFF.

ER_AUTO_POSITION_REQUIRES_GTID_MODE_NOT_OFF was added in 5.7.6.

• Error: 1778 SQLSTATE: HY000
(ER_CANT_DO_IMPLICIT_COMMIT_IN_TRX_WHEN_GTID_NEXT_IS_SET)

Message: Cannot execute statements with implicit commit inside a transaction when
@@SESSION.GTID_NEXT == 'UUID:NUMBER'.

• Error: 1779 SQLSTATE: HY000
(ER_GTID_MODE_2_OR_3_REQUIRES_ENFORCE_GTID_CONSISTENCY_ON)

Message: @@GLOBAL.GTID_MODE = ON or UPGRADE_STEP_2 requires
@@GLOBAL.ENFORCE_GTID_CONSISTENCY = 1.

ER_GTID_MODE_2_OR_3_REQUIRES_ENFORCE_GTID_CONSISTENCY_ON was removed after
5.7.5.

• Error: 1779 SQLSTATE: HY000
(ER_GTID_MODE_ON_REQUIRES_ENFORCE_GTID_CONSISTENCY_ON)

Message: GTID_MODE = ON requires ENFORCE_GTID_CONSISTENCY = ON.

Server Error Codes and Messages

3313

ER_GTID_MODE_ON_REQUIRES_ENFORCE_GTID_CONSISTENCY_ON was added in 5.7.6.

• Error: 1780 SQLSTATE: HY000 (ER_GTID_MODE_REQUIRES_BINLOG)

Message: @@GLOBAL.GTID_MODE = ON or ON_PERMISSIVE or OFF_PERMISSIVE requires --
log-bin and --log-slave-updates.

• Error: 1781 SQLSTATE: HY000
(ER_CANT_SET_GTID_NEXT_TO_GTID_WHEN_GTID_MODE_IS_OFF)

Message: @@SESSION.GTID_NEXT cannot be set to UUID:NUMBER when
@@GLOBAL.GTID_MODE = OFF.

• Error: 1782 SQLSTATE: HY000
(ER_CANT_SET_GTID_NEXT_TO_ANONYMOUS_WHEN_GTID_MODE_IS_ON)

Message: @@SESSION.GTID_NEXT cannot be set to ANONYMOUS when
@@GLOBAL.GTID_MODE = ON.

• Error: 1783 SQLSTATE: HY000
(ER_CANT_SET_GTID_NEXT_LIST_TO_NON_NULL_WHEN_GTID_MODE_IS_OFF)

Message: @@SESSION.GTID_NEXT_LIST cannot be set to a non-NULL value when
@@GLOBAL.GTID_MODE = OFF.

• Error: 1784 SQLSTATE: HY000 (ER_FOUND_GTID_EVENT_WHEN_GTID_MODE_IS_OFF)

Message: Found a Gtid_log_event or Previous_gtids_log_event when @@GLOBAL.GTID_MODE =
OFF.

ER_FOUND_GTID_EVENT_WHEN_GTID_MODE_IS_OFF was removed after 5.7.5.

• Error: 1784 SQLSTATE: HY000 (ER_FOUND_GTID_EVENT_WHEN_GTID_MODE_IS_OFF__UNUSED)

Message: Found a Gtid_log_event when @@GLOBAL.GTID_MODE = OFF.

ER_FOUND_GTID_EVENT_WHEN_GTID_MODE_IS_OFF__UNUSED was added in 5.7.6.

• Error: 1785 SQLSTATE: HY000 (ER_GTID_UNSAFE_NON_TRANSACTIONAL_TABLE)

Message: Statement violates GTID consistency: Updates to non-transactional tables can only be
done in either autocommitted statements or single-statement transactions, and never in the same
statement as updates to transactional tables.

• Error: 1786 SQLSTATE: HY000 (ER_GTID_UNSAFE_CREATE_SELECT)

Message: Statement violates GTID consistency: CREATE TABLE ... SELECT.

• Error: 1787 SQLSTATE: HY000
(ER_GTID_UNSAFE_CREATE_DROP_TEMPORARY_TABLE_IN_TRANSACTION)

Message: Statement violates GTID consistency: CREATE TEMPORARY TABLE and DROP
TEMPORARY TABLE can only be executed outside transactional context. These statements are
also not allowed in a function or trigger because functions and triggers are also considered to be
multi-statement transactions.

• Error: 1788 SQLSTATE: HY000 (ER_GTID_MODE_CAN_ONLY_CHANGE_ONE_STEP_AT_A_TIME)

Message: The value of @@GLOBAL.GTID_MODE can only be changed one step at a time: OFF <-
> OFF_PERMISSIVE <-> ON_PERMISSIVE <-> ON. Also note that this value must be stepped up or
down simultaneously on all servers. See the Manual for instructions.

Server Error Codes and Messages

3314

• Error: 1789 SQLSTATE: HY000 (ER_MASTER_HAS_PURGED_REQUIRED_GTIDS)

Message: The slave is connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1,
but the master has purged binary logs containing GTIDs that the slave requires.

• Error: 1790 SQLSTATE: HY000 (ER_CANT_SET_GTID_NEXT_WHEN_OWNING_GTID)

Message: @@SESSION.GTID_NEXT cannot be changed by a client that owns a GTID. The client
owns %s. Ownership is released on COMMIT or ROLLBACK.

• Error: 1791 SQLSTATE: HY000 (ER_UNKNOWN_EXPLAIN_FORMAT)

Message: Unknown EXPLAIN format name: '%s'

• Error: 1792 SQLSTATE: 25006 (ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION)

Message: Cannot execute statement in a READ ONLY transaction.

• Error: 1793 SQLSTATE: HY000 (ER_TOO_LONG_TABLE_PARTITION_COMMENT)

Message: Comment for table partition '%s' is too long (max = %lu)

• Error: 1794 SQLSTATE: HY000 (ER_SLAVE_CONFIGURATION)

Message: Slave is not configured or failed to initialize properly. You must at least set --server-id to
enable either a master or a slave. Additional error messages can be found in the MySQL error log.

• Error: 1795 SQLSTATE: HY000 (ER_INNODB_FT_LIMIT)

Message: InnoDB presently supports one FULLTEXT index creation at a time

• Error: 1796 SQLSTATE: HY000 (ER_INNODB_NO_FT_TEMP_TABLE)

Message: Cannot create FULLTEXT index on temporary InnoDB table

• Error: 1797 SQLSTATE: HY000 (ER_INNODB_FT_WRONG_DOCID_COLUMN)

Message: Column '%s' is of wrong type for an InnoDB FULLTEXT index

• Error: 1798 SQLSTATE: HY000 (ER_INNODB_FT_WRONG_DOCID_INDEX)

Message: Index '%s' is of wrong type for an InnoDB FULLTEXT index

• Error: 1799 SQLSTATE: HY000 (ER_INNODB_ONLINE_LOG_TOO_BIG)

Message: Creating index '%s' required more than 'innodb_online_alter_log_max_size' bytes of
modification log. Please try again.

• Error: 1800 SQLSTATE: HY000 (ER_UNKNOWN_ALTER_ALGORITHM)

Message: Unknown ALGORITHM '%s'

• Error: 1801 SQLSTATE: HY000 (ER_UNKNOWN_ALTER_LOCK)

Message: Unknown LOCK type '%s'

• Error: 1802 SQLSTATE: HY000 (ER_MTS_CHANGE_MASTER_CANT_RUN_WITH_GAPS)

Message: CHANGE MASTER cannot be executed when the slave was stopped with an error or
killed in MTS mode. Consider using RESET SLAVE or START SLAVE UNTIL.

• Error: 1803 SQLSTATE: HY000 (ER_MTS_RECOVERY_FAILURE)

Message: Cannot recover after SLAVE errored out in parallel execution mode. Additional error
messages can be found in the MySQL error log.

Server Error Codes and Messages

3315

• Error: 1804 SQLSTATE: HY000 (ER_MTS_RESET_WORKERS)

Message: Cannot clean up worker info tables. Additional error messages can be found in the MySQL
error log.

• Error: 1805 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_CORRUPTED_V2)

Message: Column count of %s.%s is wrong. Expected %d, found %d. The table is probably
corrupted

• Error: 1806 SQLSTATE: HY000 (ER_SLAVE_SILENT_RETRY_TRANSACTION)

Message: Slave must silently retry current transaction

• Error: 1807 SQLSTATE: HY000 (ER_DISCARD_FK_CHECKS_RUNNING)

Message: There is a foreign key check running on table '%s'. Cannot discard the table.

• Error: 1808 SQLSTATE: HY000 (ER_TABLE_SCHEMA_MISMATCH)

Message: Schema mismatch (%s)

• Error: 1809 SQLSTATE: HY000 (ER_TABLE_IN_SYSTEM_TABLESPACE)

Message: Table '%s' in system tablespace

• Error: 1810 SQLSTATE: HY000 (ER_IO_READ_ERROR)

Message: IO Read error: (%lu, %s) %s

• Error: 1811 SQLSTATE: HY000 (ER_IO_WRITE_ERROR)

Message: IO Write error: (%lu, %s) %s

• Error: 1812 SQLSTATE: HY000 (ER_TABLESPACE_MISSING)

Message: Tablespace is missing for table %s.

• Error: 1813 SQLSTATE: HY000 (ER_TABLESPACE_EXISTS)

Message: Tablespace '%s' exists.

• Error: 1814 SQLSTATE: HY000 (ER_TABLESPACE_DISCARDED)

Message: Tablespace has been discarded for table '%s'

• Error: 1815 SQLSTATE: HY000 (ER_INTERNAL_ERROR)

Message: Internal error: %s

• Error: 1816 SQLSTATE: HY000 (ER_INNODB_IMPORT_ERROR)

Message: ALTER TABLE %s IMPORT TABLESPACE failed with error %lu : '%s'

• Error: 1817 SQLSTATE: HY000 (ER_INNODB_INDEX_CORRUPT)

Message: Index corrupt: %s

• Error: 1818 SQLSTATE: HY000 (ER_INVALID_YEAR_COLUMN_LENGTH)

Message: Supports only YEAR or YEAR(4) column.

• Error: 1819 SQLSTATE: HY000 (ER_NOT_VALID_PASSWORD)

Message: Your password does not satisfy the current policy requirements

Server Error Codes and Messages

3316

• Error: 1820 SQLSTATE: HY000 (ER_MUST_CHANGE_PASSWORD)

Message: You must reset your password using ALTER USER statement before executing this
statement.

• Error: 1821 SQLSTATE: HY000 (ER_FK_NO_INDEX_CHILD)

Message: Failed to add the foreign key constaint. Missing index for constraint '%s' in the foreign
table '%s'

• Error: 1822 SQLSTATE: HY000 (ER_FK_NO_INDEX_PARENT)

Message: Failed to add the foreign key constaint. Missing index for constraint '%s' in the referenced
table '%s'

• Error: 1823 SQLSTATE: HY000 (ER_FK_FAIL_ADD_SYSTEM)

Message: Failed to add the foreign key constraint '%s' to system tables

• Error: 1824 SQLSTATE: HY000 (ER_FK_CANNOT_OPEN_PARENT)

Message: Failed to open the referenced table '%s'

• Error: 1825 SQLSTATE: HY000 (ER_FK_INCORRECT_OPTION)

Message: Failed to add the foreign key constraint on table '%s'. Incorrect options in FOREIGN KEY
constraint '%s'

• Error: 1826 SQLSTATE: HY000 (ER_FK_DUP_NAME)

Message: Duplicate foreign key constraint name '%s'

• Error: 1827 SQLSTATE: HY000 (ER_PASSWORD_FORMAT)

Message: The password hash doesn't have the expected format. Check if the correct password
algorithm is being used with the PASSWORD() function.

• Error: 1828 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_DROP)

Message: Cannot drop column '%s': needed in a foreign key constraint '%s'

• Error: 1829 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_DROP_CHILD)

Message: Cannot drop column '%s': needed in a foreign key constraint '%s' of table '%s'

• Error: 1830 SQLSTATE: HY000 (ER_FK_COLUMN_NOT_NULL)

Message: Column '%s' cannot be NOT NULL: needed in a foreign key constraint '%s' SET NULL

• Error: 1831 SQLSTATE: HY000 (ER_DUP_INDEX)

Message: Duplicate index '%s' defined on the table '%s.%s'. This is deprecated and will be
disallowed in a future release.

• Error: 1832 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_CHANGE)

Message: Cannot change column '%s': used in a foreign key constraint '%s'

• Error: 1833 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_CHANGE_CHILD)

Message: Cannot change column '%s': used in a foreign key constraint '%s' of table '%s'

• Error: 1834 SQLSTATE: HY000 (ER_FK_CANNOT_DELETE_PARENT)

Server Error Codes and Messages

3317

Message: Cannot delete rows from table which is parent in a foreign key constraint '%s' of table '%s'

ER_FK_CANNOT_DELETE_PARENT was removed after 5.7.3.

• Error: 1834 SQLSTATE: HY000 (ER_UNUSED5)

Message: Cannot delete rows from table which is parent in a foreign key constraint '%s' of table '%s'

ER_UNUSED5 was added in 5.7.4.

• Error: 1835 SQLSTATE: HY000 (ER_MALFORMED_PACKET)

Message: Malformed communication packet.

• Error: 1836 SQLSTATE: HY000 (ER_READ_ONLY_MODE)

Message: Running in read-only mode

• Error: 1837 SQLSTATE: HY000 (ER_GTID_NEXT_TYPE_UNDEFINED_GROUP)

Message: When @@SESSION.GTID_NEXT is set to a GTID, you must explicitly set it to a different
value after a COMMIT or ROLLBACK. Please check GTID_NEXT variable manual page for detailed
explanation. Current @@SESSION.GTID_NEXT is '%s'.

• Error: 1838 SQLSTATE: HY000 (ER_VARIABLE_NOT_SETTABLE_IN_SP)

Message: The system variable %s cannot be set in stored procedures.

• Error: 1839 SQLSTATE: HY000 (ER_CANT_SET_GTID_PURGED_WHEN_GTID_MODE_IS_OFF)

Message: @@GLOBAL.GTID_PURGED can only be set when @@GLOBAL.GTID_MODE = ON.

• Error: 1840 SQLSTATE: HY000
(ER_CANT_SET_GTID_PURGED_WHEN_GTID_EXECUTED_IS_NOT_EMPTY)

Message: @@GLOBAL.GTID_PURGED can only be set when @@GLOBAL.GTID_EXECUTED is
empty.

• Error: 1841 SQLSTATE: HY000
(ER_CANT_SET_GTID_PURGED_WHEN_OWNED_GTIDS_IS_NOT_EMPTY)

Message: @@GLOBAL.GTID_PURGED can only be set when there are no ongoing transactions
(not even in other clients).

• Error: 1842 SQLSTATE: HY000 (ER_GTID_PURGED_WAS_CHANGED)

Message: @@GLOBAL.GTID_PURGED was changed from '%s' to '%s'.

• Error: 1843 SQLSTATE: HY000 (ER_GTID_EXECUTED_WAS_CHANGED)

Message: @@GLOBAL.GTID_EXECUTED was changed from '%s' to '%s'.

• Error: 1844 SQLSTATE: HY000 (ER_BINLOG_STMT_MODE_AND_NO_REPL_TABLES)

Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT =
STATEMENT, and both replicated and non replicated tables are written to.

• Error: 1845 SQLSTATE: 0A000 (ER_ALTER_OPERATION_NOT_SUPPORTED)

Message: %s is not supported for this operation. Try %s.

ER_ALTER_OPERATION_NOT_SUPPORTED was added in 5.7.1.

Server Error Codes and Messages

3318

• Error: 1846 SQLSTATE: 0A000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON)

Message: %s is not supported. Reason: %s. Try %s.

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON was added in 5.7.1.

• Error: 1847 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COPY)

Message: COPY algorithm requires a lock

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COPY was added in 5.7.1.

• Error: 1848 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_PARTITION)

Message: Partition specific operations do not yet support LOCK/ALGORITHM

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_PARTITION was added in 5.7.1.

• Error: 1849 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_RENAME)

Message: Columns participating in a foreign key are renamed

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_RENAME was added in 5.7.1.

• Error: 1850 SQLSTATE: HY000
(ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COLUMN_TYPE)

Message: Cannot change column type INPLACE

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COLUMN_TYPE was added in 5.7.1.

• Error: 1851 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_CHECK)

Message: Adding foreign keys needs foreign_key_checks=OFF

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_CHECK was added in 5.7.1.

• Error: 1852 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_IGNORE)

Message: Creating unique indexes with IGNORE requires COPY algorithm to remove duplicate rows

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_IGNORE was added in 5.7.1, removed after
5.7.3.

• Error: 1852 SQLSTATE: HY000 (ER_UNUSED6)

Message: Creating unique indexes with IGNORE requires COPY algorithm to remove duplicate rows

ER_UNUSED6 was added in 5.7.4.

• Error: 1853 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOPK)

Message: Dropping a primary key is not allowed without also adding a new primary key

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOPK was added in 5.7.1.

• Error: 1854 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_AUTOINC)

Message: Adding an auto-increment column requires a lock

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_AUTOINC was added in 5.7.1.

• Error: 1855 SQLSTATE: HY000
(ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_HIDDEN_FTS)

Server Error Codes and Messages

3319

Message: Cannot replace hidden FTS_DOC_ID with a user-visible one

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_HIDDEN_FTS was added in 5.7.1.

• Error: 1856 SQLSTATE: HY000
(ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_CHANGE_FTS)

Message: Cannot drop or rename FTS_DOC_ID

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_CHANGE_FTS was added in 5.7.1.

• Error: 1857 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FTS)

Message: Fulltext index creation requires a lock

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FTS was added in 5.7.1.

• Error: 1858 SQLSTATE: HY000
(ER_SQL_SLAVE_SKIP_COUNTER_NOT_SETTABLE_IN_GTID_MODE)

Message: sql_slave_skip_counter can not be set when the server is running with
@@GLOBAL.GTID_MODE = ON. Instead, for each transaction that you want to skip, generate an
empty transaction with the same GTID as the transaction

ER_SQL_SLAVE_SKIP_COUNTER_NOT_SETTABLE_IN_GTID_MODE was added in 5.7.1.

• Error: 1859 SQLSTATE: 23000 (ER_DUP_UNKNOWN_IN_INDEX)

Message: Duplicate entry for key '%s'

ER_DUP_UNKNOWN_IN_INDEX was added in 5.7.1.

• Error: 1860 SQLSTATE: HY000 (ER_IDENT_CAUSES_TOO_LONG_PATH)

Message: Long database name and identifier for object resulted in path length exceeding %d
characters. Path: '%s'.

ER_IDENT_CAUSES_TOO_LONG_PATH was added in 5.7.1.

• Error: 1861 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOT_NULL)

Message: cannot silently convert NULL values, as required in this SQL_MODE

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOT_NULL was added in 5.7.1.

• Error: 1862 SQLSTATE: HY000 (ER_MUST_CHANGE_PASSWORD_LOGIN)

Message: Your password has expired. To log in you must change it using a client that supports
expired passwords.

ER_MUST_CHANGE_PASSWORD_LOGIN was added in 5.7.1.

• Error: 1863 SQLSTATE: HY000 (ER_ROW_IN_WRONG_PARTITION)

Message: Found a row in wrong partition %s

ER_ROW_IN_WRONG_PARTITION was added in 5.7.1.

• Error: 1864 SQLSTATE: HY000 (ER_MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX)

Message: Cannot schedule event %s, relay-log name %s, position %s to Worker thread because its
size %lu exceeds %lu of slave_pending_jobs_size_max.

Server Error Codes and Messages

3320

ER_MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX was added in 5.7.2.

• Error: 1865 SQLSTATE: HY000 (ER_INNODB_NO_FT_USES_PARSER)

Message: Cannot CREATE FULLTEXT INDEX WITH PARSER on InnoDB table

ER_INNODB_NO_FT_USES_PARSER was added in 5.7.2.

• Error: 1866 SQLSTATE: HY000 (ER_BINLOG_LOGICAL_CORRUPTION)

Message: The binary log file '%s' is logically corrupted: %s

ER_BINLOG_LOGICAL_CORRUPTION was added in 5.7.2.

• Error: 1867 SQLSTATE: HY000 (ER_WARN_PURGE_LOG_IN_USE)

Message: file %s was not purged because it was being read by %d thread(s), purged only %d out of
%d files.

ER_WARN_PURGE_LOG_IN_USE was added in 5.7.2.

• Error: 1868 SQLSTATE: HY000 (ER_WARN_PURGE_LOG_IS_ACTIVE)

Message: file %s was not purged because it is the active log file.

ER_WARN_PURGE_LOG_IS_ACTIVE was added in 5.7.2.

• Error: 1869 SQLSTATE: HY000 (ER_AUTO_INCREMENT_CONFLICT)

Message: Auto-increment value in UPDATE conflicts with internally generated values

ER_AUTO_INCREMENT_CONFLICT was added in 5.7.2.

• Error: 1870 SQLSTATE: HY000 (WARN_ON_BLOCKHOLE_IN_RBR)

Message: Row events are not logged for %s statements that modify BLACKHOLE tables in row
format. Table(s): '%s'

WARN_ON_BLOCKHOLE_IN_RBR was added in 5.7.2.

• Error: 1871 SQLSTATE: HY000 (ER_SLAVE_MI_INIT_REPOSITORY)

Message: Slave failed to initialize master info structure from the repository

ER_SLAVE_MI_INIT_REPOSITORY was added in 5.7.2.

• Error: 1872 SQLSTATE: HY000 (ER_SLAVE_RLI_INIT_REPOSITORY)

Message: Slave failed to initialize relay log info structure from the repository

ER_SLAVE_RLI_INIT_REPOSITORY was added in 5.7.2.

• Error: 1873 SQLSTATE: 28000 (ER_ACCESS_DENIED_CHANGE_USER_ERROR)

Message: Access denied trying to change to user '%s'@'%s' (using password: %s). Disconnecting.

ER_ACCESS_DENIED_CHANGE_USER_ERROR was added in 5.7.2.

• Error: 1874 SQLSTATE: HY000 (ER_INNODB_READ_ONLY)

Message: InnoDB is in read only mode.

ER_INNODB_READ_ONLY was added in 5.7.2.

Server Error Codes and Messages

3321

• Error: 1875 SQLSTATE: HY000 (ER_STOP_SLAVE_SQL_THREAD_TIMEOUT)

Message: STOP SLAVE command execution is incomplete: Slave SQL thread got the stop signal,
thread is busy, SQL thread will stop once the current task is complete.

ER_STOP_SLAVE_SQL_THREAD_TIMEOUT was added in 5.7.2.

• Error: 1876 SQLSTATE: HY000 (ER_STOP_SLAVE_IO_THREAD_TIMEOUT)

Message: STOP SLAVE command execution is incomplete: Slave IO thread got the stop signal,
thread is busy, IO thread will stop once the current task is complete.

ER_STOP_SLAVE_IO_THREAD_TIMEOUT was added in 5.7.2.

• Error: 1877 SQLSTATE: HY000 (ER_TABLE_CORRUPT)

Message: Operation cannot be performed. The table '%s.%s' is missing, corrupt or contains bad
data.

ER_TABLE_CORRUPT was added in 5.7.2.

• Error: 1878 SQLSTATE: HY000 (ER_TEMP_FILE_WRITE_FAILURE)

Message: Temporary file write failure.

ER_TEMP_FILE_WRITE_FAILURE was added in 5.7.3.

• Error: 1879 SQLSTATE: HY000 (ER_INNODB_FT_AUX_NOT_HEX_ID)

Message: Upgrade index name failed, please use create index(alter table) algorithm copy to rebuild
index.

ER_INNODB_FT_AUX_NOT_HEX_ID was added in 5.7.4.

• Error: 1880 SQLSTATE: HY000 (ER_OLD_TEMPORALS_UPGRADED)

Message: TIME/TIMESTAMP/DATETIME columns of old format have been upgraded to the new
format.

ER_OLD_TEMPORALS_UPGRADED was added in 5.7.4.

• Error: 1881 SQLSTATE: HY000 (ER_INNODB_FORCED_RECOVERY)

Message: Operation not allowed when innodb_forced_recovery > 0.

ER_INNODB_FORCED_RECOVERY was added in 5.7.4.

• Error: 1882 SQLSTATE: HY000 (ER_AES_INVALID_IV)

Message: The initialization vector supplied to %s is too short. Must be at least %d bytes long

ER_AES_INVALID_IV was added in 5.7.4.

• Error: 1883 SQLSTATE: HY000 (ER_PLUGIN_CANNOT_BE_UNINSTALLED)

Message: Plugin '%s' cannot be uninstalled now. %s

ER_PLUGIN_CANNOT_BE_UNINSTALLED was added in 5.7.5.

• Error: 1884 SQLSTATE: HY000
(ER_GTID_UNSAFE_BINLOG_SPLITTABLE_STATEMENT_AND_GTID_GROUP)

Message: Cannot execute statement because it needs to be written to the binary log as multiple
statements, and this is not allowed when @@SESSION.GTID_NEXT == 'UUID:NUMBER'.

Server Error Codes and Messages

3322

ER_GTID_UNSAFE_BINLOG_SPLITTABLE_STATEMENT_AND_GTID_GROUP was added in 5.7.5.

• Error: 1885 SQLSTATE: HY000 (ER_SLAVE_HAS_MORE_GTIDS_THAN_MASTER)

Message: Slave has more GTIDs than the master has, using the master's SERVER_UUID. This
may indicate that the end of the binary log was truncated or that the last binary log file was lost, e.g.,
after a power or disk failure when sync_binlog != 1. The master may or may not have rolled back
transactions that were already replicated to the slave. Suggest to replicate any transactions that
master has rolled back from slave to master, and/or commit empty transactions on master to account
for transactions that have been committed on master but are not included in GTID_EXECUTED.

ER_SLAVE_HAS_MORE_GTIDS_THAN_MASTER was added in 5.7.6.

• Error: 1906 SQLSTATE: HY000 (ER_SLAVE_IO_THREAD_MUST_STOP)

Message: This operation cannot be performed with a running slave io thread; run STOP SLAVE
IO_THREAD first.

ER_SLAVE_IO_THREAD_MUST_STOP was added in 5.7.4, removed after 5.7.5.

• Error: 3000 SQLSTATE: HY000 (ER_FILE_CORRUPT)

Message: File %s is corrupted

• Error: 3001 SQLSTATE: HY000 (ER_ERROR_ON_MASTER)

Message: Query partially completed on the master (error on master: %d) and was aborted.
There is a chance that your master is inconsistent at this point. If you are sure that your master
is ok, run this query manually on the slave and then restart the slave with SET GLOBAL
SQL_SLAVE_SKIP_COUNTER=1; START SLAVE;. Query:'%s'

• Error: 3002 SQLSTATE: HY000 (ER_INCONSISTENT_ERROR)

Message: Query caused different errors on master and slave. Error on master: message
(format)='%s' error code=%d; Error on slave:actual message='%s', error code=%d. Default
database:'%s'. Query:'%s'

• Error: 3003 SQLSTATE: HY000 (ER_STORAGE_ENGINE_NOT_LOADED)

Message: Storage engine for table '%s'.'%s' is not loaded.

• Error: 3004 SQLSTATE: 0Z002 (ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER)

Message: GET STACKED DIAGNOSTICS when handler not active

• Error: 3005 SQLSTATE: HY000 (ER_WARN_LEGACY_SYNTAX_CONVERTED)

Message: %s is no longer supported. The statement was converted to %s.

• Error: 3006 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_FULLTEXT_PLUGIN)

Message: Statement is unsafe because it uses a fulltext parser plugin which may not return the same
value on the slave.

ER_BINLOG_UNSAFE_FULLTEXT_PLUGIN was added in 5.7.1.

• Error: 3007 SQLSTATE: HY000 (ER_CANNOT_DISCARD_TEMPORARY_TABLE)

Message: Cannot DISCARD/IMPORT tablespace associated with temporary table

ER_CANNOT_DISCARD_TEMPORARY_TABLE was added in 5.7.1.

• Error: 3008 SQLSTATE: HY000 (ER_FK_DEPTH_EXCEEDED)

Server Error Codes and Messages

3323

Message: Foreign key cascade delete/update exceeds max depth of %d.

ER_FK_DEPTH_EXCEEDED was added in 5.7.2.

• Error: 3009 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE_V2)

Message: Column count of %s.%s is wrong. Expected %d, found %d. Created with MySQL %d, now
running %d. Please use mysql_upgrade to fix this error.

ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE_V2 was added in 5.7.2.

• Error: 3010 SQLSTATE: HY000 (ER_WARN_TRIGGER_DOESNT_HAVE_CREATED)

Message: Trigger %s.%s.%s does not have CREATED attribute.

ER_WARN_TRIGGER_DOESNT_HAVE_CREATED was added in 5.7.2.

• Error: 3011 SQLSTATE: HY000 (ER_REFERENCED_TRG_DOES_NOT_EXIST)

Message: Referenced trigger '%s' for the given action time and event type does not exist.

ER_REFERENCED_TRG_DOES_NOT_EXIST was added in 5.7.2.

• Error: 3012 SQLSTATE: HY000 (ER_EXPLAIN_NOT_SUPPORTED)

Message: EXPLAIN FOR CONNECTION command is supported only for SELECT/UPDATE/
INSERT/DELETE/REPLACE

ER_EXPLAIN_NOT_SUPPORTED was added in 5.7.2.

• Error: 3013 SQLSTATE: HY000 (ER_INVALID_FIELD_SIZE)

Message: Invalid size for column '%s'.

ER_INVALID_FIELD_SIZE was added in 5.7.2.

• Error: 3014 SQLSTATE: HY000 (ER_MISSING_HA_CREATE_OPTION)

Message: Table storage engine '%s' found required create option missing

ER_MISSING_HA_CREATE_OPTION was added in 5.7.2.

• Error: 3015 SQLSTATE: HY000 (ER_ENGINE_OUT_OF_MEMORY)

Message: Out of memory in storage engine '%s'.

ER_ENGINE_OUT_OF_MEMORY was added in 5.7.3.

• Error: 3016 SQLSTATE: HY000 (ER_PASSWORD_EXPIRE_ANONYMOUS_USER)

Message: The password for anonymous user cannot be expired.

ER_PASSWORD_EXPIRE_ANONYMOUS_USER was added in 5.7.3.

• Error: 3017 SQLSTATE: HY000 (ER_SLAVE_SQL_THREAD_MUST_STOP)

Message: This operation cannot be performed with a running slave sql thread; run STOP SLAVE
SQL_THREAD first

ER_SLAVE_SQL_THREAD_MUST_STOP was added in 5.7.3.

• Error: 3018 SQLSTATE: HY000 (ER_NO_FT_MATERIALIZED_SUBQUERY)

Server Error Codes and Messages

3324

Message: Cannot create FULLTEXT index on materialized subquery

ER_NO_FT_MATERIALIZED_SUBQUERY was added in 5.7.4.

• Error: 3019 SQLSTATE: HY000 (ER_INNODB_UNDO_LOG_FULL)

Message: Undo Log error: %s

ER_INNODB_UNDO_LOG_FULL was added in 5.7.4.

• Error: 3020 SQLSTATE: 2201E (ER_INVALID_ARGUMENT_FOR_LOGARITHM)

Message: Invalid argument for logarithm

ER_INVALID_ARGUMENT_FOR_LOGARITHM was added in 5.7.4.

• Error: 3021 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_IO_THREAD_MUST_STOP)

Message: This operation cannot be performed with a running slave io thread; run STOP SLAVE
IO_THREAD FOR CHANNEL '%s' first.

ER_SLAVE_CHANNEL_IO_THREAD_MUST_STOP was added in 5.7.6.

• Error: 3022 SQLSTATE: HY000 (ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO)

Message: This operation may not be safe when the slave has temporary tables. The tables will be
kept open until the server restarts or until the tables are deleted by any replicated DROP statement.
Suggest to wait until slave_open_temp_tables = 0.

ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO was added in 5.7.4.

• Error: 3023 SQLSTATE: HY000 (ER_WARN_ONLY_MASTER_LOG_FILE_NO_POS)

Message: CHANGE MASTER TO with a MASTER_LOG_FILE clause but no MASTER_LOG_POS
clause may not be safe. The old position value may not be valid for the new binary log file.

ER_WARN_ONLY_MASTER_LOG_FILE_NO_POS was added in 5.7.4.

• Error: 3024 SQLSTATE: HY000 (ER_QUERY_TIMEOUT)

Message: Query execution was interrupted, maximum statement execution time exceeded

ER_QUERY_TIMEOUT was added in 5.7.4.

• Error: 3025 SQLSTATE: HY000 (ER_NON_RO_SELECT_DISABLE_TIMER)

Message: Select is not a read only statement, disabling timer

ER_NON_RO_SELECT_DISABLE_TIMER was added in 5.7.4.

• Error: 3026 SQLSTATE: HY000 (ER_DUP_LIST_ENTRY)

Message: Duplicate entry '%s'.

ER_DUP_LIST_ENTRY was added in 5.7.4.

• Error: 3027 SQLSTATE: HY000 (ER_SQL_MODE_NO_EFFECT)

Message: '%s' mode no longer has any effect. Use STRICT_ALL_TABLES or
STRICT_TRANS_TABLES instead.

ER_SQL_MODE_NO_EFFECT was added in 5.7.4.

Server Error Codes and Messages

3325

• Error: 3028 SQLSTATE: HY000 (ER_AGGREGATE_ORDER_FOR_UNION)

Message: Expression #%u of ORDER BY contains aggregate function and applies to a UNION

ER_AGGREGATE_ORDER_FOR_UNION was added in 5.7.5.

• Error: 3029 SQLSTATE: HY000 (ER_AGGREGATE_ORDER_NON_AGG_QUERY)

Message: Expression #%u of ORDER BY contains aggregate function and applies to the result of a
non-aggregated query

ER_AGGREGATE_ORDER_NON_AGG_QUERY was added in 5.7.5.

• Error: 3030 SQLSTATE: HY000 (ER_SLAVE_WORKER_STOPPED_PREVIOUS_THD_ERROR)

Message: Slave worker has stopped after at least one previous worker encountered an error when
slave-preserve-commit-order was enabled. To preserve commit order, the last transaction executed
by this thread has not been committed. When restarting the slave after fixing any failed threads, you
should fix this worker as well.

ER_SLAVE_WORKER_STOPPED_PREVIOUS_THD_ERROR was added in 5.7.5.

• Error: 3031 SQLSTATE: HY000 (ER_DONT_SUPPORT_SLAVE_PRESERVE_COMMIT_ORDER)

Message: slave_preserve_commit_order is not supported %s.

ER_DONT_SUPPORT_SLAVE_PRESERVE_COMMIT_ORDER was added in 5.7.5.

• Error: 3032 SQLSTATE: HY000 (ER_SERVER_OFFLINE_MODE)

Message: The server is currently in offline mode

ER_SERVER_OFFLINE_MODE was added in 5.7.5.

• Error: 3033 SQLSTATE: HY000 (ER_GIS_DIFFERENT_SRIDS)

Message: Binary geometry function %s given two geometries of different srids: %u and %u, which
should have been identical.

Geometry values passed as arguments to spatial functions must have the same SRID value.

ER_GIS_DIFFERENT_SRIDS was added in 5.7.5.

• Error: 3034 SQLSTATE: HY000 (ER_GIS_UNSUPPORTED_ARGUMENT)

Message: Calling geometry function %s with unsupported types of arguments.

A spatial function was called with a combination of argument types that the function does not
support.

ER_GIS_UNSUPPORTED_ARGUMENT was added in 5.7.5.

• Error: 3035 SQLSTATE: HY000 (ER_GIS_UNKNOWN_ERROR)

Message: Unknown GIS error occured in function %s.

ER_GIS_UNKNOWN_ERROR was added in 5.7.5.

• Error: 3036 SQLSTATE: HY000 (ER_GIS_UNKNOWN_EXCEPTION)

Message: Unknown exception caught in GIS function %s.

ER_GIS_UNKNOWN_EXCEPTION was added in 5.7.5.

Server Error Codes and Messages

3326

• Error: 3037 SQLSTATE: 22023 (ER_GIS_INVALID_DATA)

Message: Invalid GIS data provided to function %s.

A spatial function was called with an argument not recognized as a valid geometry value.

ER_GIS_INVALID_DATA was added in 5.7.5.

• Error: 3038 SQLSTATE: HY000 (ER_BOOST_GEOMETRY_EMPTY_INPUT_EXCEPTION)

Message: The geometry has no data in function %s.

ER_BOOST_GEOMETRY_EMPTY_INPUT_EXCEPTION was added in 5.7.5.

• Error: 3039 SQLSTATE: HY000 (ER_BOOST_GEOMETRY_CENTROID_EXCEPTION)

Message: Unable to calculate centroid because geometry is empty in function %s.

ER_BOOST_GEOMETRY_CENTROID_EXCEPTION was added in 5.7.5.

• Error: 3040 SQLSTATE: HY000 (ER_BOOST_GEOMETRY_OVERLAY_INVALID_INPUT_EXCEPTION)

Message: Geometry overlay calculation error: geometry data is invalid in function %s.

ER_BOOST_GEOMETRY_OVERLAY_INVALID_INPUT_EXCEPTION was added in 5.7.5.

• Error: 3041 SQLSTATE: HY000 (ER_BOOST_GEOMETRY_TURN_INFO_EXCEPTION)

Message: Geometry turn info calculation error: geometry data is invalid in function %s.

ER_BOOST_GEOMETRY_TURN_INFO_EXCEPTION was added in 5.7.5.

• Error: 3042 SQLSTATE: HY000
(ER_BOOST_GEOMETRY_SELF_INTERSECTION_POINT_EXCEPTION)

Message: Analysis procedures of intersection points interrupted unexpectedly in function %s.

ER_BOOST_GEOMETRY_SELF_INTERSECTION_POINT_EXCEPTION was added in 5.7.5.

• Error: 3043 SQLSTATE: HY000 (ER_BOOST_GEOMETRY_UNKNOWN_EXCEPTION)

Message: Unknown exception thrown in function %s.

ER_BOOST_GEOMETRY_UNKNOWN_EXCEPTION was added in 5.7.5.

• Error: 3044 SQLSTATE: HY000 (ER_STD_BAD_ALLOC_ERROR)

Message: Memory allocation error: %s in function %s.

ER_STD_BAD_ALLOC_ERROR was added in 5.7.5.

• Error: 3045 SQLSTATE: HY000 (ER_STD_DOMAIN_ERROR)

Message: Domain error: %s in function %s.

ER_STD_DOMAIN_ERROR was added in 5.7.5.

• Error: 3046 SQLSTATE: HY000 (ER_STD_LENGTH_ERROR)

Message: Length error: %s in function %s.

ER_STD_LENGTH_ERROR was added in 5.7.5.

• Error: 3047 SQLSTATE: HY000 (ER_STD_INVALID_ARGUMENT)

Server Error Codes and Messages

3327

Message: Invalid argument error: %s in function %s.

ER_STD_INVALID_ARGUMENT was added in 5.7.5.

• Error: 3048 SQLSTATE: HY000 (ER_STD_OUT_OF_RANGE_ERROR)

Message: Out of range error: %s in function %s.

ER_STD_OUT_OF_RANGE_ERROR was added in 5.7.5.

• Error: 3049 SQLSTATE: HY000 (ER_STD_OVERFLOW_ERROR)

Message: Overflow error error: %s in function %s.

ER_STD_OVERFLOW_ERROR was added in 5.7.5.

• Error: 3050 SQLSTATE: HY000 (ER_STD_RANGE_ERROR)

Message: Range error: %s in function %s.

ER_STD_RANGE_ERROR was added in 5.7.5.

• Error: 3051 SQLSTATE: HY000 (ER_STD_UNDERFLOW_ERROR)

Message: Underflow error: %s in function %s.

ER_STD_UNDERFLOW_ERROR was added in 5.7.5.

• Error: 3052 SQLSTATE: HY000 (ER_STD_LOGIC_ERROR)

Message: Logic error: %s in function %s.

ER_STD_LOGIC_ERROR was added in 5.7.5.

• Error: 3053 SQLSTATE: HY000 (ER_STD_RUNTIME_ERROR)

Message: Runtime error: %s in function %s.

ER_STD_RUNTIME_ERROR was added in 5.7.5.

• Error: 3054 SQLSTATE: HY000 (ER_STD_UNKNOWN_EXCEPTION)

Message: Unknown exception: %s in function %s.

ER_STD_UNKNOWN_EXCEPTION was added in 5.7.5.

• Error: 3055 SQLSTATE: HY000 (ER_GIS_DATA_WRONG_ENDIANESS)

Message: Geometry byte string must be little endian.

ER_GIS_DATA_WRONG_ENDIANESS was added in 5.7.5.

• Error: 3056 SQLSTATE: HY000 (ER_CHANGE_MASTER_PASSWORD_LENGTH)

Message: The password provided for the replication user exceeds the maximum length of 32
characters

ER_CHANGE_MASTER_PASSWORD_LENGTH was added in 5.7.5.

• Error: 3057 SQLSTATE: 42000 (ER_USER_LOCK_WRONG_NAME)

Message: Incorrect user-level lock name '%s'.

ER_USER_LOCK_WRONG_NAME was added in 5.7.5.

Server Error Codes and Messages

3328

• Error: 3058 SQLSTATE: HY000 (ER_USER_LOCK_DEADLOCK)

Message: Deadlock found when trying to get user-level lock; try rolling back transaction/releasing
locks and restarting lock acquisition.

This error is returned when the metdata locking subsystem detects a deadlock for an attempt to
acquire a named lock with GET_LOCK.

ER_USER_LOCK_DEADLOCK was added in 5.7.5.

• Error: 3059 SQLSTATE: HY000 (ER_REPLACE_INACCESSIBLE_ROWS)

Message: REPLACE cannot be executed as it requires deleting rows that are not in the view

ER_REPLACE_INACCESSIBLE_ROWS was added in 5.7.5.

• Error: 3060 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_GIS)

Message: Do not support online operation on table with GIS index

ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_GIS was added in 5.7.5.

• Error: 3061 SQLSTATE: 42000 (ER_ILLEGAL_USER_VAR)

Message: User variable name '%s' is illegal

ER_ILLEGAL_USER_VAR was added in 5.7.5.

• Error: 3062 SQLSTATE: HY000 (ER_GTID_MODE_OFF)

Message: Cannot %s when GTID_MODE = OFF.

ER_GTID_MODE_OFF was added in 5.7.5.

• Error: 3063 SQLSTATE: HY000 (ER_UNSUPPORTED_BY_REPLICATION_THREAD)

Message: Cannot %s from a replication slave thread.

ER_UNSUPPORTED_BY_REPLICATION_THREAD was added in 5.7.5.

• Error: 3064 SQLSTATE: HY000 (ER_INCORRECT_TYPE)

Message: Incorrect type for argument %s in function %s.

ER_INCORRECT_TYPE was added in 5.7.5.

• Error: 3065 SQLSTATE: HY000 (ER_FIELD_IN_ORDER_NOT_SELECT)

Message: Expression #%u of ORDER BY clause is not in SELECT list, references column '%s' which
is not in SELECT list; this is incompatible with %s

ER_FIELD_IN_ORDER_NOT_SELECT was added in 5.7.5.

• Error: 3066 SQLSTATE: HY000 (ER_AGGREGATE_IN_ORDER_NOT_SELECT)

Message: Expression #%u of ORDER BY clause is not in SELECT list, contains aggregate function;
this is incompatible with %s

ER_AGGREGATE_IN_ORDER_NOT_SELECT was added in 5.7.5.

• Error: 3067 SQLSTATE: HY000 (ER_INVALID_RPL_WILD_TABLE_FILTER_PATTERN)

Message: Supplied filter list contains a value which is not in the required format
'db_pattern.table_pattern'

Server Error Codes and Messages

3329

ER_INVALID_RPL_WILD_TABLE_FILTER_PATTERN was added in 5.7.5.

• Error: 3068 SQLSTATE: 08S01 (ER_NET_OK_PACKET_TOO_LARGE)

Message: OK packet too large

ER_NET_OK_PACKET_TOO_LARGE was added in 5.7.5.

• Error: 3069 SQLSTATE: HY000 (ER_INVALID_JSON_DATA)

Message: Invalid JSON data provided to function %s: %s

ER_INVALID_JSON_DATA was added in 5.7.5.

• Error: 3070 SQLSTATE: HY000 (ER_INVALID_GEOJSON_MISSING_MEMBER)

Message: Invalid GeoJSON data provided to function %s: Missing required member '%s'

ER_INVALID_GEOJSON_MISSING_MEMBER was added in 5.7.5.

• Error: 3071 SQLSTATE: HY000 (ER_INVALID_GEOJSON_WRONG_TYPE)

Message: Invalid GeoJSON data provided to function %s: Member '%s' must be of type '%s'

ER_INVALID_GEOJSON_WRONG_TYPE was added in 5.7.5.

• Error: 3072 SQLSTATE: HY000 (ER_INVALID_GEOJSON_UNSPECIFIED)

Message: Invalid GeoJSON data provided to function %s

ER_INVALID_GEOJSON_UNSPECIFIED was added in 5.7.5.

• Error: 3073 SQLSTATE: HY000 (ER_DIMENSION_UNSUPPORTED)

Message: Unsupported number of coordinate dimensions in function %s: Found %u, expected %u

ER_DIMENSION_UNSUPPORTED was added in 5.7.5.

• Error: 3074 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_DOES_NOT_EXIST)

Message: Slave channel '%s' does not exist.

ER_SLAVE_CHANNEL_DOES_NOT_EXIST was added in 5.7.6.

• Error: 3075 SQLSTATE: HY000 (ER_SLAVE_MULTIPLE_CHANNELS_HOST_PORT)

Message: A slave channel '%s' already exists for the given host and port combination.

ER_SLAVE_MULTIPLE_CHANNELS_HOST_PORT was added in 5.7.6.

• Error: 3076 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_NAME_INVALID_OR_TOO_LONG)

Message: Couldn't create channel: Channel name is either invalid or too long.

ER_SLAVE_CHANNEL_NAME_INVALID_OR_TOO_LONG was added in 5.7.6.

• Error: 3077 SQLSTATE: HY000 (ER_SLAVE_NEW_CHANNEL_WRONG_REPOSITORY)

Message: To have multiple channels, repository cannot be of type FILE; Please check the repository
configuration and convert them to TABLE.

ER_SLAVE_NEW_CHANNEL_WRONG_REPOSITORY was added in 5.7.6.

• Error: 3078 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_DELETE)

Server Error Codes and Messages

3330

Message: Cannot delete slave info objects for channel '%s'.

ER_SLAVE_CHANNEL_DELETE was added in 5.7.6.

• Error: 3079 SQLSTATE: HY000 (ER_SLAVE_MULTIPLE_CHANNELS_CMD)

Message: Multiple channels exist on the slave. Please provide channel name as an argument.

ER_SLAVE_MULTIPLE_CHANNELS_CMD was added in 5.7.6.

• Error: 3080 SQLSTATE: HY000 (ER_SLAVE_MAX_CHANNELS_EXCEEDED)

Message: Maximum number of replication channels allowed exceeded.

ER_SLAVE_MAX_CHANNELS_EXCEEDED was added in 5.7.6.

• Error: 3081 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_MUST_STOP)

Message: This operation cannot be performed with running replication threads; run STOP SLAVE
FOR CHANNEL '%s' first

ER_SLAVE_CHANNEL_MUST_STOP was added in 5.7.6.

• Error: 3082 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_NOT_RUNNING)

Message: This operation requires running replication threads; configure slave and run START
SLAVE FOR CHANNEL '%s'

ER_SLAVE_CHANNEL_NOT_RUNNING was added in 5.7.6.

• Error: 3083 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_WAS_RUNNING)

Message: Replication thread(s) for channel '%s' are already runnning.

ER_SLAVE_CHANNEL_WAS_RUNNING was added in 5.7.6.

• Error: 3084 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_WAS_NOT_RUNNING)

Message: Replication thread(s) for channel '%s' are already stopped.

ER_SLAVE_CHANNEL_WAS_NOT_RUNNING was added in 5.7.6.

• Error: 3085 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_SQL_THREAD_MUST_STOP)

Message: This operation cannot be performed with a running slave sql thread; run STOP SLAVE
SQL_THREAD FOR CHANNEL '%s' first.

ER_SLAVE_CHANNEL_SQL_THREAD_MUST_STOP was added in 5.7.6.

• Error: 3086 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_SQL_SKIP_COUNTER)

Message: When sql_slave_skip_counter > 0, it is not allowed to start more than one SQL thread by
using 'START SLAVE [SQL_THREAD]'. Value of sql_slave_skip_counter can only be used by one
SQL thread at a time. Please use 'START SLAVE [SQL_THREAD] FOR CHANNEL' to start the SQL
thread which will use the value of sql_slave_skip_counter.

ER_SLAVE_CHANNEL_SQL_SKIP_COUNTER was added in 5.7.6.

• Error: 3087 SQLSTATE: HY000 (ER_WRONG_FIELD_WITH_GROUP_V2)

Message: Expression #%u of %s is not in GROUP BY clause and contains nonaggregated column
'%s' which is not functionally dependent on columns in GROUP BY clause; this is incompatible with
sql_mode=only_full_group_by

Server Error Codes and Messages

3331

ER_WRONG_FIELD_WITH_GROUP_V2 was added in 5.7.6.

• Error: 3088 SQLSTATE: HY000 (ER_MIX_OF_GROUP_FUNC_AND_FIELDS_V2)

Message: In aggregated query without GROUP BY, expression #%u of %s contains nonaggregated
column '%s'; this is incompatible with sql_mode=only_full_group_by

ER_MIX_OF_GROUP_FUNC_AND_FIELDS_V2 was added in 5.7.6.

• Error: 3089 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYSVAR_UPDATE)

Message: Updating '%s' is deprecated. It will be made read-only in a future release.

ER_WARN_DEPRECATED_SYSVAR_UPDATE was added in 5.7.6.

• Error: 3090 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SQLMODE)

Message: Changing sql mode '%s' is deprecated. It will be removed in a future release.

ER_WARN_DEPRECATED_SQLMODE was added in 5.7.6.

• Error: 3091 SQLSTATE: HY000 (ER_CANNOT_LOG_PARTIAL_DROP_DATABASE_WITH_GTID)

Message: DROP DATABASE failed; some tables may have been dropped but the database directory
remains. The GTID has not been added to GTID_EXECUTED and the statement was not written
to the binary log. Fix this as follows: (1) remove all files from the database directory %s; (2) SET
GTID_NEXT='%s'; (3) DROP DATABASE `%s`.

ER_CANNOT_LOG_PARTIAL_DROP_DATABASE_WITH_GTID was added in 5.7.6.

• Error: 3092 SQLSTATE: HY000 (ER_GROUP_REPLICATION_CONFIGURATION)

Message: The server is not configured properly to be an active member of the group. Please see
more details on error log.

This error is reserved for future use.

ER_GROUP_REPLICATION_CONFIGURATION was added in 5.7.6.

• Error: 3093 SQLSTATE: HY000 (ER_GROUP_REPLICATION_RUNNING)

Message: The START GROUP_REPLICATION command failed since the group is already running.

This error is reserved for future use.

ER_GROUP_REPLICATION_RUNNING was added in 5.7.6.

• Error: 3094 SQLSTATE: HY000 (ER_GROUP_REPLICATION_APPLIER_INIT_ERROR)

Message: The START GROUP_REPLICATION command failed as the applier module failed to start.

This error is reserved for future use.

ER_GROUP_REPLICATION_APPLIER_INIT_ERROR was added in 5.7.6.

• Error: 3095 SQLSTATE: HY000 (ER_GROUP_REPLICATION_STOP_APPLIER_THREAD_TIMEOUT)

Message: The STOP GROUP_REPLICATION command execution is incomplete: The applier thread
got the stop signal while it was busy. The applier thread will stop once the current task is complete.

This error is reserved for future use.

ER_GROUP_REPLICATION_STOP_APPLIER_THREAD_TIMEOUT was added in 5.7.6.

Server Error Codes and Messages

3332

• Error: 3096 SQLSTATE: HY000
(ER_GROUP_REPLICATION_COMMUNICATION_LAYER_SESSION_ERROR)

Message: The START GROUP_REPLICATION command failed as there was an error when
initializing the group communication layer.

This error is reserved for future use.

ER_GROUP_REPLICATION_COMMUNICATION_LAYER_SESSION_ERROR was added in 5.7.6.

• Error: 3097 SQLSTATE: HY000
(ER_GROUP_REPLICATION_COMMUNICATION_LAYER_JOIN_ERROR)

Message: The START GROUP_REPLICATION command failed as there was an error when joining
the communication group.

This error is reserved for future use.

ER_GROUP_REPLICATION_COMMUNICATION_LAYER_JOIN_ERROR was added in 5.7.6.

• Error: 3098 SQLSTATE: HY000 (ER_BEFORE_DML_VALIDATION_ERROR)

Message: The table does not comply with the requirements by an external plugin.

This error is reserved for future use.

ER_BEFORE_DML_VALIDATION_ERROR was added in 5.7.6.

• Error: 3099 SQLSTATE: HY000 (ER_PREVENTS_VARIABLE_WITHOUT_RBR)

Message: Cannot change the value of variable %s without binary log format as ROW.

This error is reserved for future use.

ER_PREVENTS_VARIABLE_WITHOUT_RBR was added in 5.7.6.

• Error: 3100 SQLSTATE: HY000 (ER_RUN_HOOK_ERROR)

Message: Error on observer while running replication hook '%s'.

This error is reserved for future use.

ER_RUN_HOOK_ERROR was added in 5.7.6.

• Error: 3101 SQLSTATE: HY000 (ER_TRANSACTION_ROLLBACK_DURING_COMMIT)

Message: Plugin instructed the server to rollback the current transaction.

This error is reserved for future use.

ER_TRANSACTION_ROLLBACK_DURING_COMMIT was added in 5.7.6.

• Error: 3102 SQLSTATE: HY000 (ER_GENERATED_COLUMN_FUNCTION_IS_NOT_ALLOWED)

Message: Expression of generated column '%s' contains a disallowed function.

ER_GENERATED_COLUMN_FUNCTION_IS_NOT_ALLOWED was added in 5.7.6.

• Error: 3103 SQLSTATE: HY000 (ER_KEY_BASED_ON_GENERATED_COLUMN)

Message: Key/Index cannot be defined on a virtual generated column.

ER_KEY_BASED_ON_GENERATED_COLUMN was added in 5.7.6, removed after 5.7.7.

Server Error Codes and Messages

3333

• Error: 3103 SQLSTATE: HY000 (ER_UNSUPPORTED_ALTER_INPLACE_ON_VIRTUAL_COLUMN)

Message: INPLACE ADD or DROP of virtual columns cannot be combined with other ALTER TABLE
actions

ER_UNSUPPORTED_ALTER_INPLACE_ON_VIRTUAL_COLUMN was added in 5.7.8.

• Error: 3104 SQLSTATE: HY000 (ER_WRONG_FK_OPTION_FOR_GENERATED_COLUMN)

Message: Cannot define foreign key with %s clause on a generated column.

ER_WRONG_FK_OPTION_FOR_GENERATED_COLUMN was added in 5.7.6.

• Error: 3105 SQLSTATE: HY000 (ER_NON_DEFAULT_VALUE_FOR_GENERATED_COLUMN)

Message: The value specified for generated column '%s' in table '%s' is not allowed.

ER_NON_DEFAULT_VALUE_FOR_GENERATED_COLUMN was added in 5.7.6.

• Error: 3106 SQLSTATE: HY000 (ER_UNSUPPORTED_ACTION_ON_GENERATED_COLUMN)

Message: '%s' is not supported for generated columns.

ER_UNSUPPORTED_ACTION_ON_GENERATED_COLUMN was added in 5.7.6.

• Error: 3107 SQLSTATE: HY000 (ER_GENERATED_COLUMN_NON_PRIOR)

Message: Generated column can refer only to generated columns defined prior to it.

To address this issue, change the table definition to define each generated column later than any
generated columns to which it refers.

ER_GENERATED_COLUMN_NON_PRIOR was added in 5.7.6.

• Error: 3108 SQLSTATE: HY000 (ER_DEPENDENT_BY_GENERATED_COLUMN)

Message: Column '%s' has a generated column dependency.

You cannot drop or rename a generated column if another column refers to it. You must either drop
those columns as well, or redefine them not to refer to the generated column.

ER_DEPENDENT_BY_GENERATED_COLUMN was added in 5.7.6.

• Error: 3109 SQLSTATE: HY000 (ER_GENERATED_COLUMN_REF_AUTO_INC)

Message: Generated column '%s' cannot refer to auto-increment column.

ER_GENERATED_COLUMN_REF_AUTO_INC was added in 5.7.6.

• Error: 3110 SQLSTATE: HY000 (ER_FEATURE_NOT_AVAILABLE)

Message: The '%s' feature is not available; you need to remove '%s' or use MySQL built with '%s'

ER_FEATURE_NOT_AVAILABLE was added in 5.7.6.

• Error: 3111 SQLSTATE: HY000 (ER_CANT_SET_GTID_MODE)

Message: SET @@GLOBAL.GTID_MODE = %s is not allowed because %s.

ER_CANT_SET_GTID_MODE was added in 5.7.6.

• Error: 3112 SQLSTATE: HY000 (ER_CANT_USE_AUTO_POSITION_WITH_GTID_MODE_OFF)

Server Error Codes and Messages

3334

Message: The replication receiver thread%s cannot start in AUTO_POSITION mode: this server
uses @@GLOBAL.GTID_MODE = OFF.

ER_CANT_USE_AUTO_POSITION_WITH_GTID_MODE_OFF was added in 5.7.6.

• Error: 3113 SQLSTATE: HY000 (ER_CANT_REPLICATE_ANONYMOUS_WITH_AUTO_POSITION)

Message: Cannot replicate anonymous transaction when AUTO_POSITION = 1, at file %s, position
%lld.

ER_CANT_REPLICATE_ANONYMOUS_WITH_AUTO_POSITION was added in 5.7.6.

• Error: 3114 SQLSTATE: HY000 (ER_CANT_REPLICATE_ANONYMOUS_WITH_GTID_MODE_ON)

Message: Cannot replicate anonymous transaction when @@GLOBAL.GTID_MODE = ON, at file
%s, position %lld.

ER_CANT_REPLICATE_ANONYMOUS_WITH_GTID_MODE_ON was added in 5.7.6.

• Error: 3115 SQLSTATE: HY000 (ER_CANT_REPLICATE_GTID_WITH_GTID_MODE_OFF)

Message: Cannot replicate GTID-transaction when @@GLOBAL.GTID_MODE = OFF, at file %s,
position %lld.

ER_CANT_REPLICATE_GTID_WITH_GTID_MODE_OFF was added in 5.7.6.

• Error: 3116 SQLSTATE: HY000
(ER_CANT_SET_ENFORCE_GTID_CONSISTENCY_ON_WITH_ONGOING_GTID_VIOLATING_TRANSACTIONS)

Message: Cannot set ENFORCE_GTID_CONSISTENCY = ON because there are ongoing
transactions that violate GTID consistency.

ER_CANT_SET_ENFORCE_GTID_CONSISTENCY_ON_WITH_ONGOING_GTID_VIOLATING_TRANSACTIONS
was added in 5.7.6.

• Error: 3117 SQLSTATE: HY000
(ER_SET_ENFORCE_GTID_CONSISTENCY_WARN_WITH_ONGOING_GTID_VIOLATING_TRANSACTIONS)

Message: There are ongoing transactions that violate GTID consistency.

ER_SET_ENFORCE_GTID_CONSISTENCY_WARN_WITH_ONGOING_GTID_VIOLATING_TRANSACTIONS
was added in 5.7.6.

• Error: 3118 SQLSTATE: HY000 (ER_ACCOUNT_HAS_BEEN_LOCKED)

Message: Access denied for user '%s'@'%s'. Account is locked.

The account was locked with CREATE USER ... ACCOUNT LOCK or ALTER USER ... ACCOUNT
LOCK. An administrator can unlock it with ALTER USER ... ACCOUNT UNLOCK.

ER_ACCOUNT_HAS_BEEN_LOCKED was added in 5.7.6.

• Error: 3119 SQLSTATE: 42000 (ER_WRONG_TABLESPACE_NAME)

Message: Incorrect tablespace name `%s`

ER_WRONG_TABLESPACE_NAME was added in 5.7.6.

• Error: 3120 SQLSTATE: HY000 (ER_TABLESPACE_IS_NOT_EMPTY)

Message: Tablespace `%s` is not empty.

Server Error Codes and Messages

3335

ER_TABLESPACE_IS_NOT_EMPTY was added in 5.7.6.

• Error: 3121 SQLSTATE: HY000 (ER_WRONG_FILE_NAME)

Message: Incorrect File Name '%s'.

ER_WRONG_FILE_NAME was added in 5.7.6.

• Error: 3122 SQLSTATE: HY000 (ER_BOOST_GEOMETRY_INCONSISTENT_TURNS_EXCEPTION)

Message: Inconsistent intersection points.

ER_BOOST_GEOMETRY_INCONSISTENT_TURNS_EXCEPTION was added in 5.7.7.

• Error: 3123 SQLSTATE: HY000 (ER_WARN_OPTIMIZER_HINT_SYNTAX_ERROR)

Message: Optimizer hint syntax error

ER_WARN_OPTIMIZER_HINT_SYNTAX_ERROR was added in 5.7.7.

• Error: 3124 SQLSTATE: HY000 (ER_WARN_BAD_MAX_EXECUTION_TIME)

Message: Unsupported MAX_EXECUTION_TIME

ER_WARN_BAD_MAX_EXECUTION_TIME was added in 5.7.7.

• Error: 3125 SQLSTATE: HY000 (ER_WARN_UNSUPPORTED_MAX_EXECUTION_TIME)

Message: MAX_EXECUTION_TIME hint is supported by top-level standalone SELECT statements
only

The MAX_EXECUTION_TIME() optimizer hint is supported only for SELECT statements.

ER_WARN_UNSUPPORTED_MAX_EXECUTION_TIME was added in 5.7.7.

• Error: 3126 SQLSTATE: HY000 (ER_WARN_CONFLICTING_HINT)

Message: Hint %s is ignored as conflicting/duplicated

ER_WARN_CONFLICTING_HINT was added in 5.7.7.

• Error: 3127 SQLSTATE: HY000 (ER_WARN_UNKNOWN_QB_NAME)

Message: Query block name %s is not found for %s hint

ER_WARN_UNKNOWN_QB_NAME was added in 5.7.7.

• Error: 3128 SQLSTATE: HY000 (ER_UNRESOLVED_HINT_NAME)

Message: Unresolved name %s for %s hint

ER_UNRESOLVED_HINT_NAME was added in 5.7.7.

• Error: 3129 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SQLMODE_UNSET)

Message: Unsetting sql mode '%s' is deprecated. It will be made read-only in a future release.

ER_WARN_DEPRECATED_SQLMODE_UNSET was added in 5.7.7, removed after 5.7.7.

• Error: 3129 SQLSTATE: HY000 (ER_WARN_ON_MODIFYING_GTID_EXECUTED_TABLE)

Message: Please do not modify the %s table. This is a mysql internal system table to store GTIDs for
committed transactions. Modifying it can lead to an inconsistent GTID state.

Server Error Codes and Messages

3336

ER_WARN_ON_MODIFYING_GTID_EXECUTED_TABLE was added in 5.7.8.

• Error: 3130 SQLSTATE: HY000 (ER_PLUGGABLE_PROTOCOL_COMMAND_NOT_SUPPORTED)

Message: Command not supported by pluggable protocols

ER_PLUGGABLE_PROTOCOL_COMMAND_NOT_SUPPORTED was added in 5.7.8.

• Error: 3131 SQLSTATE: 42000 (ER_LOCKING_SERVICE_WRONG_NAME)

Message: Incorrect locking service lock name '%s'.

A locking service name was specified as NULL, the empty string, or a string longer than 64
characters. Namespace and lock names must be non-NULL, nonempty, and no more than 64
characters long.

ER_LOCKING_SERVICE_WRONG_NAME was added in 5.7.8.

• Error: 3132 SQLSTATE: HY000 (ER_LOCKING_SERVICE_DEADLOCK)

Message: Deadlock found when trying to get locking service lock; try releasing locks and restarting
lock acquisition.

ER_LOCKING_SERVICE_DEADLOCK was added in 5.7.8.

• Error: 3133 SQLSTATE: HY000 (ER_LOCKING_SERVICE_TIMEOUT)

Message: Service lock wait timeout exceeded.

ER_LOCKING_SERVICE_TIMEOUT was added in 5.7.8.

• Error: 3134 SQLSTATE: HY000 (ER_GIS_MAX_POINTS_IN_GEOMETRY_OVERFLOWED)

Message: Parameter %s exceeds the maximum number of points in a geometry (%lu) in function %s.

ER_GIS_MAX_POINTS_IN_GEOMETRY_OVERFLOWED was added in 5.7.8.

• Error: 3135 SQLSTATE: HY000 (ER_SQL_MODE_MERGED)

Message: 'NO_ZERO_DATE', 'NO_ZERO_IN_DATE' and 'ERROR_FOR_DIVISION_BY_ZERO' sql
modes should be used with strict mode. They will be merged with strict mode in a future release.

ER_SQL_MODE_MERGED was added in 5.7.8.

• Error: 3136 SQLSTATE: HY000 (ER_VTOKEN_PLUGIN_TOKEN_MISMATCH)

Message: Version token mismatch for %.*s. Correct value %.*s

The client has set its version_tokens_session system variable to the list of tokens it requires
the server to match, but the server token list has at least one matching token name that has a value
different from what the client requires. See Section 5.1.8.4, “Version Tokens”.

ER_VTOKEN_PLUGIN_TOKEN_MISMATCH was added in 5.7.8.

• Error: 3137 SQLSTATE: HY000 (ER_VTOKEN_PLUGIN_TOKEN_NOT_FOUND)

Message: Version token %.*s not found.

The client has set its version_tokens_session system variable to the list of tokens it
requires the server to match, but the server token list is missing at least one of those tokens. See
Section 5.1.8.4, “Version Tokens”.

ER_VTOKEN_PLUGIN_TOKEN_NOT_FOUND was added in 5.7.8.

Server Error Codes and Messages

3337

• Error: 3138 SQLSTATE: HY000 (ER_CANT_SET_VARIABLE_WHEN_OWNING_GTID)

Message: Variable %s cannot be changed by a client that owns a GTID. The client owns %s.
Ownership is released on COMMIT or ROLLBACK.

ER_CANT_SET_VARIABLE_WHEN_OWNING_GTID was added in 5.7.8.

• Error: 3139 SQLSTATE: HY000 (ER_SLAVE_CHANNEL_OPERATION_NOT_ALLOWED)

Message: %s cannot be performed on channel '%s'.

ER_SLAVE_CHANNEL_OPERATION_NOT_ALLOWED was added in 5.7.8.

• Error: 3140 SQLSTATE: 22032 (ER_INVALID_JSON_TEXT)

Message: Invalid JSON text: "%s" at position %u in value (or column) '%s'.

ER_INVALID_JSON_TEXT was added in 5.7.8.

• Error: 3141 SQLSTATE: 22032 (ER_INVALID_JSON_TEXT_IN_PARAM)

Message: Invalid JSON text in argument %u to function %s: "%s" at position %u in '%s'.

ER_INVALID_JSON_TEXT_IN_PARAM was added in 5.7.8.

• Error: 3142 SQLSTATE: HY000 (ER_INVALID_JSON_BINARY_DATA)

Message: The JSON binary value contains invalid data.

ER_INVALID_JSON_BINARY_DATA was added in 5.7.8.

• Error: 3143 SQLSTATE: 42000 (ER_INVALID_JSON_PATH)

Message: Invalid JSON path expression. The error is around character position %u in '%s'.

ER_INVALID_JSON_PATH was added in 5.7.8.

• Error: 3144 SQLSTATE: 22032 (ER_INVALID_JSON_CHARSET)

Message: Cannot create a JSON value from a string with CHARACTER SET '%s'.

ER_INVALID_JSON_CHARSET was added in 5.7.8.

• Error: 3145 SQLSTATE: 22032 (ER_INVALID_JSON_CHARSET_IN_FUNCTION)

Message: Invalid JSON character data provided to function %s: '%s'; utf8 is required.

ER_INVALID_JSON_CHARSET_IN_FUNCTION was added in 5.7.8.

• Error: 3146 SQLSTATE: 22032 (ER_INVALID_TYPE_FOR_JSON)

Message: Invalid data type for JSON data in argument %u to function %s; a JSON string or JSON
type is required.

ER_INVALID_TYPE_FOR_JSON was added in 5.7.8.

• Error: 3147 SQLSTATE: 22032 (ER_INVALID_CAST_TO_JSON)

Message: Cannot CAST value to JSON.

ER_INVALID_CAST_TO_JSON was added in 5.7.8.

• Error: 3148 SQLSTATE: 42000 (ER_INVALID_JSON_PATH_CHARSET)

Server Error Codes and Messages

3338

Message: A path expression must be encoded in the utf8 character set. The path expression '%s' is
encoded in character set '%s'.

ER_INVALID_JSON_PATH_CHARSET was added in 5.7.8.

• Error: 3149 SQLSTATE: 42000 (ER_INVALID_JSON_PATH_WILDCARD)

Message: In this situation, path expressions may not contain the * and ** tokens.

ER_INVALID_JSON_PATH_WILDCARD was added in 5.7.8.

• Error: 3150 SQLSTATE: 22032 (ER_JSON_VALUE_TOO_BIG)

Message: The JSON value is too big to be stored in a JSON column.

ER_JSON_VALUE_TOO_BIG was added in 5.7.8.

• Error: 3151 SQLSTATE: 22032 (ER_JSON_KEY_TOO_BIG)

Message: The JSON object contains a key name that is too long.

ER_JSON_KEY_TOO_BIG was added in 5.7.8.

• Error: 3152 SQLSTATE: 42000 (ER_JSON_USED_AS_KEY)

Message: JSON column '%s' cannot be used in key specification.

ER_JSON_USED_AS_KEY was added in 5.7.8.

• Error: 3153 SQLSTATE: 42000 (ER_JSON_VACUOUS_PATH)

Message: The path expression '$' is not allowed in this context.

ER_JSON_VACUOUS_PATH was added in 5.7.8.

• Error: 3154 SQLSTATE: 42000 (ER_JSON_BAD_ONE_OR_ALL_ARG)

Message: The oneOrAll argument to %s may take these values: 'one' or 'all'.

ER_JSON_BAD_ONE_OR_ALL_ARG was added in 5.7.8.

• Error: 3155 SQLSTATE: 22003 (ER_NUMERIC_JSON_VALUE_OUT_OF_RANGE)

Message: Out of range JSON value for CAST to %s: '%s' from %s at row %ld

ER_NUMERIC_JSON_VALUE_OUT_OF_RANGE was added in 5.7.8.

• Error: 3156 SQLSTATE: 22018 (ER_INVALID_JSON_VALUE_FOR_CAST)

Message: Invalid JSON value for CAST to %s: '%s' from %s at row %ld

ER_INVALID_JSON_VALUE_FOR_CAST was added in 5.7.8.

• Error: 3157 SQLSTATE: 22032 (ER_JSON_DOCUMENT_TOO_DEEP)

Message: The JSON document exceeds the maximum depth.

ER_JSON_DOCUMENT_TOO_DEEP was added in 5.7.8.

• Error: 3158 SQLSTATE: 22032 (ER_JSON_DOCUMENT_NULL_KEY)

Message: JSON documents may not contain NULL member names.

ER_JSON_DOCUMENT_NULL_KEY was added in 5.7.8.

Server Error Codes and Messages

3339

• Error: 3159 SQLSTATE: HY000 (ER_SECURE_TRANSPORT_REQUIRED)

Message: Connections using insecure transport are prohibited while --require_secure_transport=ON.

With the require_secure_transport system variable, clients can connect only using secure
transports. Qualifying connections are those using SSL, a Unix socket file, or shared memory.

ER_SECURE_TRANSPORT_REQUIRED was added in 5.7.8.

• Error: 3160 SQLSTATE: HY000 (ER_NO_SECURE_TRANSPORTS_CONFIGURED)

Message: No secure transports (SSL or Shared Memory) are configured, unable to set --
require_secure_transport=ON.

The require_secure_transport system variable cannot be enabled if the server does not
support at least one secure transport. Configure the server with the required SSL keys/certificates to
enable SSL connections, or enable the shared_memory system variable to enable shared-memory
connections.

ER_NO_SECURE_TRANSPORTS_CONFIGURED was added in 5.7.8.

• Error: 3161 SQLSTATE: HY000 (ER_DISABLED_STORAGE_ENGINE)

Message: Storage engine %s is disabled (Table creation is disallowed).

An attempt was made to create a table or tablespace using a storage engine listed in the value of
the disabled_storage_engines system variable, or to change an existing table or tablespace to
such an engine. Choose a different storage engine.

ER_DISABLED_STORAGE_ENGINE was added in 5.7.8.

• Error: 3162 SQLSTATE: HY000 (ER_USER_DOES_NOT_EXIST)

Message: User %s does not exist.

ER_USER_DOES_NOT_EXIST was added in 5.7.8.

• Error: 3163 SQLSTATE: HY000 (ER_USER_ALREADY_EXISTS)

Message: User %s already exists.

ER_USER_ALREADY_EXISTS was added in 5.7.8.

• Error: 3164 SQLSTATE: HY000 (ER_AUDIT_API_ABORT)

Message: Aborted by Audit API ('%s';%d).

This error indicates that an audit plugin terminated execution of an event. The message typically
indicates the event subclass name and a numeric status value.

ER_AUDIT_API_ABORT was added in 5.7.8.

• Error: 3165 SQLSTATE: 42000 (ER_INVALID_JSON_PATH_ARRAY_CELL)

Message: A path expression is not a path to a cell in an array.

ER_INVALID_JSON_PATH_ARRAY_CELL was added in 5.7.8.

• Error: 3166 SQLSTATE: HY000 (ER_BUFPOOL_RESIZE_INPROGRESS)

Message: Another buffer pool resize is already in progress.

ER_BUFPOOL_RESIZE_INPROGRESS was added in 5.7.9.

Server Error Codes and Messages

3340

• Error: 3167 SQLSTATE: HY000 (ER_FEATURE_DISABLED_SEE_DOC)

Message: The '%s' feature is disabled; see the documentation for '%s'

ER_FEATURE_DISABLED_SEE_DOC was added in 5.7.9.

• Error: 3168 SQLSTATE: HY000 (ER_SERVER_ISNT_AVAILABLE)

Message: Server isn't available

ER_SERVER_ISNT_AVAILABLE was added in 5.7.9.

• Error: 3169 SQLSTATE: HY000 (ER_SESSION_WAS_KILLED)

Message: Session was killed

ER_SESSION_WAS_KILLED was added in 5.7.9.

• Error: 3170 SQLSTATE: HY000 (ER_CAPACITY_EXCEEDED)

Message: Memory capacity of %llu bytes for '%s' exceeded. %s

ER_CAPACITY_EXCEEDED was added in 5.7.9.

• Error: 3171 SQLSTATE: HY000 (ER_CAPACITY_EXCEEDED_IN_RANGE_OPTIMIZER)

Message: Range optimization was not done for this query.

ER_CAPACITY_EXCEEDED_IN_RANGE_OPTIMIZER was added in 5.7.9.

• Error: 3172 SQLSTATE: HY000 (ER_TABLE_NEEDS_UPG_PART)

Message: Partitioning upgrade required. Please dump/reload to fix it or do: ALTER TABLE `%s`.`%s`
UPGRADE PARTITIONING

ER_TABLE_NEEDS_UPG_PART was added in 5.7.9.

• Error: 3173 SQLSTATE: HY000
(ER_CANT_WAIT_FOR_EXECUTED_GTID_SET_WHILE_OWNING_A_GTID)

Message: The client holds ownership of the GTID %s. Therefore,
WAIT_FOR_EXECUTED_GTID_SET cannot wait for this GTID.

ER_CANT_WAIT_FOR_EXECUTED_GTID_SET_WHILE_OWNING_A_GTID was added in 5.7.9.

• Error: 3174 SQLSTATE: HY000 (ER_CANNOT_ADD_FOREIGN_BASE_COL_VIRTUAL)

Message: Cannot add foreign key on the base column of indexed virtual column.

ER_CANNOT_ADD_FOREIGN_BASE_COL_VIRTUAL was added in 5.7.10.

• Error: 3175 SQLSTATE: HY000 (ER_CANNOT_CREATE_VIRTUAL_INDEX_CONSTRAINT)

Message: Cannot create index on virtual column whose base column has foreign constraint.

ER_CANNOT_CREATE_VIRTUAL_INDEX_CONSTRAINT was added in 5.7.10.

• Error: 3176 SQLSTATE: HY000 (ER_ERROR_ON_MODIFYING_GTID_EXECUTED_TABLE)

Message: Please do not modify the %s table with an XA transaction. This is an internal system table
used to store GTIDs for committed transactions. Although modifying it can lead to an inconsistent
GTID state, if neccessary you can modify it with a non-XA transaction.

ER_ERROR_ON_MODIFYING_GTID_EXECUTED_TABLE was added in 5.7.11.

Client Error Codes and Messages

3341

• Error: 3177 SQLSTATE: HY000 (ER_LOCK_REFUSED_BY_ENGINE)

Message: Lock acquisition refused by storage engine.

ER_LOCK_REFUSED_BY_ENGINE was added in 5.7.11.

• Error: 3178 SQLSTATE: HY000 (ER_UNSUPPORTED_ALTER_ONLINE_ON_VIRTUAL_COLUMN)

Message: ADD COLUMN col...VIRTUAL, ADD INDEX(col)

ER_UNSUPPORTED_ALTER_ONLINE_ON_VIRTUAL_COLUMN was added in 5.7.11.

B.4 Client Error Codes and Messages
Client error information comes from the following source files:

• The Error values and the symbols in parentheses correspond to definitions in the include/
errmsg.h MySQL source file.

• The Message values correspond to the error messages that are listed in the libmysql/errmsg.c
file. %d and %s represent numbers and strings, respectively, that are substituted into the messages
when they are displayed.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

• Error: 2000 (CR_UNKNOWN_ERROR)

Message: Unknown MySQL error

• Error: 2001 (CR_SOCKET_CREATE_ERROR)

Message: Can't create UNIX socket (%d)

• Error: 2002 (CR_CONNECTION_ERROR)

Message: Can't connect to local MySQL server through socket '%s' (%d)

• Error: 2003 (CR_CONN_HOST_ERROR)

Message: Can't connect to MySQL server on '%s' (%d)

• Error: 2004 (CR_IPSOCK_ERROR)

Message: Can't create TCP/IP socket (%d)

• Error: 2005 (CR_UNKNOWN_HOST)

Message: Unknown MySQL server host '%s' (%d)

• Error: 2006 (CR_SERVER_GONE_ERROR)

Message: MySQL server has gone away

• Error: 2007 (CR_VERSION_ERROR)

Message: Protocol mismatch; server version = %d, client version = %d

• Error: 2008 (CR_OUT_OF_MEMORY)

Message: MySQL client ran out of memory

• Error: 2009 (CR_WRONG_HOST_INFO)

Client Error Codes and Messages

3342

Message: Wrong host info

• Error: 2010 (CR_LOCALHOST_CONNECTION)

Message: Localhost via UNIX socket

• Error: 2011 (CR_TCP_CONNECTION)

Message: %s via TCP/IP

• Error: 2012 (CR_SERVER_HANDSHAKE_ERR)

Message: Error in server handshake

• Error: 2013 (CR_SERVER_LOST)

Message: Lost connection to MySQL server during query

• Error: 2014 (CR_COMMANDS_OUT_OF_SYNC)

Message: Commands out of sync; you can't run this command now

• Error: 2015 (CR_NAMEDPIPE_CONNECTION)

Message: Named pipe: %s

• Error: 2016 (CR_NAMEDPIPEWAIT_ERROR)

Message: Can't wait for named pipe to host: %s pipe: %s (%lu)

• Error: 2017 (CR_NAMEDPIPEOPEN_ERROR)

Message: Can't open named pipe to host: %s pipe: %s (%lu)

• Error: 2018 (CR_NAMEDPIPESETSTATE_ERROR)

Message: Can't set state of named pipe to host: %s pipe: %s (%lu)

• Error: 2019 (CR_CANT_READ_CHARSET)

Message: Can't initialize character set %s (path: %s)

• Error: 2020 (CR_NET_PACKET_TOO_LARGE)

Message: Got packet bigger than 'max_allowed_packet' bytes

• Error: 2021 (CR_EMBEDDED_CONNECTION)

Message: Embedded server

• Error: 2022 (CR_PROBE_SLAVE_STATUS)

Message: Error on SHOW SLAVE STATUS:

• Error: 2023 (CR_PROBE_SLAVE_HOSTS)

Message: Error on SHOW SLAVE HOSTS:

• Error: 2024 (CR_PROBE_SLAVE_CONNECT)

Message: Error connecting to slave:

• Error: 2025 (CR_PROBE_MASTER_CONNECT)

Client Error Codes and Messages

3343

Message: Error connecting to master:

• Error: 2026 (CR_SSL_CONNECTION_ERROR)

Message: SSL connection error: %s

• Error: 2027 (CR_MALFORMED_PACKET)

Message: Malformed packet

• Error: 2028 (CR_WRONG_LICENSE)

Message: This client library is licensed only for use with MySQL servers having '%s' license

• Error: 2029 (CR_NULL_POINTER)

Message: Invalid use of null pointer

• Error: 2030 (CR_NO_PREPARE_STMT)

Message: Statement not prepared

• Error: 2031 (CR_PARAMS_NOT_BOUND)

Message: No data supplied for parameters in prepared statement

• Error: 2032 (CR_DATA_TRUNCATED)

Message: Data truncated

• Error: 2033 (CR_NO_PARAMETERS_EXISTS)

Message: No parameters exist in the statement

• Error: 2034 (CR_INVALID_PARAMETER_NO)

Message: Invalid parameter number

• Error: 2035 (CR_INVALID_BUFFER_USE)

Message: Can't send long data for non-string/non-binary data types (parameter: %d)

• Error: 2036 (CR_UNSUPPORTED_PARAM_TYPE)

Message: Using unsupported buffer type: %d (parameter: %d)

• Error: 2037 (CR_SHARED_MEMORY_CONNECTION)

Message: Shared memory: %s

• Error: 2038 (CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR)

Message: Can't open shared memory; client could not create request event (%lu)

• Error: 2039 (CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR)

Message: Can't open shared memory; no answer event received from server (%lu)

• Error: 2040 (CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR)

Message: Can't open shared memory; server could not allocate file mapping (%lu)

• Error: 2041 (CR_SHARED_MEMORY_CONNECT_MAP_ERROR)

Client Error Codes and Messages

3344

Message: Can't open shared memory; server could not get pointer to file mapping (%lu)

• Error: 2042 (CR_SHARED_MEMORY_FILE_MAP_ERROR)

Message: Can't open shared memory; client could not allocate file mapping (%lu)

• Error: 2043 (CR_SHARED_MEMORY_MAP_ERROR)

Message: Can't open shared memory; client could not get pointer to file mapping (%lu)

• Error: 2044 (CR_SHARED_MEMORY_EVENT_ERROR)

Message: Can't open shared memory; client could not create %s event (%lu)

• Error: 2045 (CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR)

Message: Can't open shared memory; no answer from server (%lu)

• Error: 2046 (CR_SHARED_MEMORY_CONNECT_SET_ERROR)

Message: Can't open shared memory; cannot send request event to server (%lu)

• Error: 2047 (CR_CONN_UNKNOW_PROTOCOL)

Message: Wrong or unknown protocol

• Error: 2048 (CR_INVALID_CONN_HANDLE)

Message: Invalid connection handle

• Error: 2049 (CR_SECURE_AUTH)

Message: Connection using old (pre-4.1.1) authentication protocol refused (client option
'secure_auth' enabled)

CR_SECURE_AUTH was removed after 5.7.4.

• Error: 2049 (CR_UNUSED_1)

Message: Connection using old (pre-4.1.1) authentication protocol refused (client option
'secure_auth' enabled)

CR_UNUSED_1 was added in 5.7.5.

• Error: 2050 (CR_FETCH_CANCELED)

Message: Row retrieval was canceled by mysql_stmt_close() call

• Error: 2051 (CR_NO_DATA)

Message: Attempt to read column without prior row fetch

• Error: 2052 (CR_NO_STMT_METADATA)

Message: Prepared statement contains no metadata

• Error: 2053 (CR_NO_RESULT_SET)

Message: Attempt to read a row while there is no result set associated with the statement

• Error: 2054 (CR_NOT_IMPLEMENTED)

Message: This feature is not implemented yet

Problems and Common Errors

3345

• Error: 2055 (CR_SERVER_LOST_EXTENDED)

Message: Lost connection to MySQL server at '%s', system error: %d

• Error: 2056 (CR_STMT_CLOSED)

Message: Statement closed indirectly because of a preceding %s() call

• Error: 2057 (CR_NEW_STMT_METADATA)

Message: The number of columns in the result set differs from the number of bound buffers. You
must reset the statement, rebind the result set columns, and execute the statement again

• Error: 2058 (CR_ALREADY_CONNECTED)

Message: This handle is already connected. Use a separate handle for each connection.

• Error: 2059 (CR_AUTH_PLUGIN_CANNOT_LOAD)

Message: Authentication plugin '%s' cannot be loaded: %s

• Error: 2060 (CR_DUPLICATE_CONNECTION_ATTR)

Message: There is an attribute with the same name already

• Error: 2061 (CR_AUTH_PLUGIN_ERR)

Message: Authentication plugin '%s' reported error: %s

CR_AUTH_PLUGIN_ERR was added in 5.7.1.

• Error: 2062 (CR_INSECURE_API_ERR)

Message: Insecure API function call: '%s' Use instead: '%s'

An insecure function call was detected. Modify the application to use the suggested alternative
function instead.

CR_INSECURE_API_ERR was added in 5.7.6.

B.5 Problems and Common Errors
This section lists some common problems and error messages that you may encounter. It describes
how to determine the causes of the problems and what to do to solve them.

B.5.1 How to Determine What Is Causing a Problem

When you run into a problem, the first thing you should do is to find out which program or piece of
equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as
memory, motherboard, CPU, or hard disk) or kernel problem:

• The keyboard does not work. This can normally be checked by pressing the Caps Lock key. If
the Caps Lock light does not change, you have to replace your keyboard. (Before doing this, you
should try to restart your computer and check all cables to the keyboard.)

• The mouse pointer does not move.

• The machine does not answer to a remote machine's pings.

• Other programs that are not related to MySQL do not behave correctly.

Common Errors When Using MySQL Programs

3346

• Your system restarted unexpectedly. (A faulty user-level program should never be able to take
down your system.)

In this case, you should start by checking all your cables and run some diagnostic tool to check your
hardware! You should also check whether there are any patches, updates, or service packs for your
operating system that could likely solve your problem. Check also that all your libraries (such as
glibc) are up to date.

It is always good to use a machine with ECC memory to discover memory problems early.

• If your keyboard is locked up, you may be able to recover by logging in to your machine from another
machine and executing kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your problem.
If you think the problem is in MySQL, you should also examine MySQL's log files. See Section 5.2,
“MySQL Server Logs”.

• If you do not think you have hardware problems, you should try to find out which program is causing
problems. Try using top, ps, Task Manager, or some similar program, to check which program is
taking all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file
descriptors, or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it does not want to die, there
is probably a bug in the operating system.

If after you have examined all other possibilities and you have concluded that the MySQL server or a
MySQL client is causing the problem, it is time to create a bug report for our mailing list or our support
team. In the bug report, try to give a very detailed description of how the system is behaving and what
you think is happening. You should also state why you think that MySQL is causing the problem. Take
into consideration all the situations in this chapter. State any problems exactly how they appear when
you examine your system. Use the “copy and paste” method for any output and error messages from
programs and log files.

Try to describe in detail which program is not working and all symptoms you see. We have in the
past received many bug reports that state only “the system does not work.” This provides us with no
information about what could be the problem.

If a program fails, it is always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a while, it
may simply be evaluating something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -u
root ping or mysqladmin -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql, for
example.) Does the client jam? Do you get any output from the program?

When sending a bug report, you should follow the outline described in Section 1.7, “How to Report
Bugs or Problems”.

B.5.2 Common Errors When Using MySQL Programs

This section lists some errors that users frequently encounter when running MySQL programs.
Although the problems show up when you try to run client programs, the solutions to many of the
problems involves changing the configuration of the MySQL server.

Common Errors When Using MySQL Programs

3347

B.5.2.1 Access denied

An Access denied error can have many causes. Often the problem is related to the MySQL
accounts that the server permits client programs to use when connecting. See Section 6.2, “The
MySQL Access Privilege System”, and Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”.

B.5.2.2 Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix
socket file to connect through a file in the file system (default /tmp/mysql.sock), or by using TCP/IP,
which connects through a port number. A Unix socket file connection is faster than TCP/IP, but can be
used only when connecting to a server on the same computer. A Unix socket file is used if you do not
specify a host name or if you specify the special host name localhost.

If the MySQL server is running on Windows, you can connect using TCP/IP. If the server is started
with the --enable-named-pipe option, you can also connect with named pipes if you run the client
on the host where the server is running. The name of the named pipe is MySQL by default. If you do
not give a host name when connecting to mysqld, a MySQL client first tries to connect to the named
pipe. If that does not work, it connects to the TCP/IP port. You can force the use of named pipes on
Windows by using . as the host name.

The error (2002) Can't connect to ... normally means that there is no MySQL server running
on the system or that you are using an incorrect Unix socket file name or TCP/IP port number when
trying to connect to the server. You should also check that the TCP/IP port you are using has not been
blocked by a firewall or port blocking service.

The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that the
network connection has been refused. You should check that there is a MySQL server running, that it
has network connections enabled, and that the network port you specified is the one configured on the
server.

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa
| grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should
start the server. See Section 2.10.2, “Starting the Server”.

If a mysqld process is running, you can check it by trying the following commands. The port number
or Unix socket file name might be different in your setup. host_ip represents the IP address of the
machine where the server is running.

shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h `hostname` version variables
shell> mysqladmin -h `hostname` --port=3306 version
shell> mysqladmin -h host_ip version
shell> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version

Note the use of backticks rather than forward quotation marks with the hostname command; these
cause the output of hostname (that is, the current host name) to be substituted into the mysqladmin
command. If you have no hostname command or are running on Windows, you can manually type
the host name of your machine (without backticks) following the -h option. You can also try -h
127.0.0.1 to connect with TCP/IP to the local host.

Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with --skip-networking, it will not accept TCP/IP connections
at all. If the server was started with --bind-address=127.0.0.1, it will listen for TCP/IP
connections only locally on the loopback interface and will not accept remote connections.

Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for

Common Errors When Using MySQL Programs

3348

communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration
to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or the
Windows XP personal firewall may need to be configured not to block the MySQL port.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running on the local host. Check your operating system's process list to ensure the
mysqld process is present.

• You're running a MySQL server on Windows with many TCP/IP connections to it. If you're
experiencing that quite often your clients get that error, you can find a workaround here: Connection
to MySQL Server Failing on Windows.

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default). For
example, you might have a cron job that removes old files from the /tmp directory. You can always
run mysqladmin version to check whether the Unix socket file that mysqladmin is trying to use
really exists. The fix in this case is to change the cron job to not remove mysql.sock or to place
the socket file somewhere else. See Section B.5.3.6, “How to Protect or Change the MySQL Unix
Socket File”.

• You have started the mysqld server with the --socket=/path/to/socket option, but forgotten
to tell client programs the new name of the socket file. If you change the socket path name for the
server, you must also notify the MySQL clients. You can do this by providing the same --socket
option when you run client programs. You also need to ensure that clients have permission to access
the mysql.sock file. To find out where the socket file is, you can do:

shell> netstat -ln | grep mysql

See Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”.

• You are using Linux and one server thread has died (dumped core). In this case, you must kill the
other mysqld threads (for example, with kill) before you can restart the MySQL server. See
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

• The server or client program might not have the proper access privileges for the directory that holds
the Unix socket file or the socket file itself. In this case, you must either change the access privileges
for the directory or socket file so that the server and clients can access them, or restart mysqld with
a --socket option that specifies a socket file name in a directory where the server can create it and
where client programs can access it.

If you get the error message Can't connect to MySQL server on some_host, you can try the
following things to find out what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306 and
pressing the Enter key a couple of times. (3306 is the default MySQL port number. Change the value
if your server is listening to a different port.) If there is a MySQL server running and listening to the
port, you should get a response that includes the server's version number. If you get an error such as
telnet: Unable to connect to remote host: Connection refused, then there is no
server running on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables to
connect using the Unix socket file. Verify the TCP/IP port number that the server is configured to
listen to (it is the value of the port variable.)

• If you are running under Linux and Security-Enhanced Linux (SELinux) is enabled, make sure you
have disabled SELinux protection for the mysqld process.

Connection to MySQL Server Failing on Windows

When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're
experiencing that quite often your clients get a Can't connect to MySQL server error, the

Common Errors When Using MySQL Programs

3349

reason might be that Windows does not allow for enough ephemeral (short-lived) ports to serve those
connections.

The purpose of TIME_WAIT is to keep a connection accepting packets even after the connection has
been closed. This is because Internet routing can cause a packet to take a slow route to its destination
and it may arrive after both sides have agreed to close. If the port is in use for a new connection, that
packet from the old connection could break the protocol or compromise personal information from the
original connection. The TIME_WAIT delay prevents this by ensuring that the port cannot be reused
until after some time has been permitted for those delayed packets to arrive.

It is safe to reduce TIME_WAIT greatly on LAN connections because there is little chance of packets
arriving at very long delays, as they could through the Internet with its comparatively large distances
and latencies.

Windows permits ephemeral (short-lived) TCP ports to the user. After any port is closed it will remain
in a TIME_WAIT status for 120 seconds. The port will not be available again until this time expires. The
default range of port numbers depends on the version of Windows, with a more limited number of ports
in older versions:

• Windows through Server 2003: Ports in range 1025–5000

• Windows Vista, Server 2008, and newer: Ports in range 49152–65535

With a small stack of available TCP ports (5000) and a high number of TCP ports being open and
closed over a short period of time along with the TIME_WAIT status you have a good chance for
running out of ports. There are two ways to address this problem:

• Reduce the number of TCP ports consumed quickly by investigating connection pooling or persistent
connections where possible

• Tune some settings in the Windows registry (see below)

Important

The following procedure involves modifying the Windows registry. Before
you modify the registry, make sure to back it up and make sure that you
understand how to restore it if a problem occurs. For information about how to
back up, restore, and edit the registry, view the following article in the Microsoft
Knowledge Base: http://support.microsoft.com/kb/256986/EN-US/.

1. Start Registry Editor (Regedt32.exe).

2. Locate the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

This sets the number of ephemeral ports available to any user. The valid range is between 5000
and 65534 (decimal). The default value is 0x1388 (5000 decimal).

4. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

http://support.microsoft.com/kb/256986/EN-US/

Common Errors When Using MySQL Programs

3350

This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before closing.
The valid range is between 30 and 300 decimal, although you may wish to check with Microsoft for
the latest permitted values. The default value is 0x78 (120 decimal).

5. Quit Registry Editor.

6. Reboot the machine.

Note: Undoing the above should be as simple as deleting the registry entries you've created.

B.5.2.3 Lost connection to MySQL server

There are three likely causes for this error message.

Usually it indicates network connectivity trouble and you should check the condition of your network if
this error occurs frequently. If the error message includes “during query,” this is probably the case you
are experiencing.

Sometimes the “during query” form happens when millions of rows are being sent as part of one or
more queries. If you know that this is happening, you should try increasing net_read_timeout from
its default of 30 seconds to 60 seconds or longer, sufficient for the data transfer to complete.

More rarely, it can happen when the client is attempting the initial connection to the server. In this case,
if your connect_timeout value is set to only a few seconds, you may be able to resolve the problem
by increasing it to ten seconds, perhaps more if you have a very long distance or slow connection.
You can determine whether you are experiencing this more uncommon cause by using SHOW GLOBAL
STATUS LIKE 'Aborted_connects'. It will increase by one for each initial connection attempt that
the server aborts. You may see “reading authorization packet” as part of the error message; if so, that
also suggests that this is the solution that you need.

If the cause is none of those just described, you may be experiencing a problem with BLOB values
that are larger than max_allowed_packet, which can cause this error with some clients. Sometime
you may see an ER_NET_PACKET_TOO_LARGE error, and that confirms that you need to increase
max_allowed_packet.

B.5.2.4 Client does not support authentication protocol

Note

The information in this section applies only before MySQL 5.7.5. Support for
pre-4.1 password hashes is removed in MySQL 5.7.5. This includes removal of
the mysql_old_password authentication plugin and the OLD_PASSWORD()
function. Also, secure_auth cannot be disabled, and old_passwords cannot
be set to 1.

The current implementation of the authentication protocol uses a password hashing algorithm that is
incompatible with that used by older (pre-4.1) clients. Attempts to connect to a 4.1 or newer server with
an older client may fail with the following message:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

To deal with this problem, the preferred solution is to upgrade all client programs to use a 4.1.1 or
newer client library. If that is not possible, use one of the following approaches:

• To connect to the server with a pre-4.1 client program, use an account that still has a pre-4.1-style
password.

Common Errors When Using MySQL Programs

3351

• Reset the password to pre-4.1 style for each user that needs to use a pre-4.1 client program. This
can be done using the SET PASSWORD statement and the OLD_PASSWORD() function. It is also
necessary to first ensure that the authentication plugin for the account is mysql_old_password:

mysql> UPDATE mysql.user SET plugin = 'mysql_old_password'
mysql> WHERE User = 'some_user' AND Host = 'some_host';
mysql> FLUSH PRIVILEGES;
mysql> SET PASSWORD FOR
 -> 'some_user'@'some_host' = OLD_PASSWORD('new_password');

Substitute the password you want to use for “new_password” in the preceding example. MySQL
cannot tell you what the original password was, so you need to pick a new one.

• Tell the server to use the older password hashing algorithm by default:

1. Start mysqld with the old_passwords system variable set to 1.

2. Assign an old-format password to each account that has had its password updated to the longer
4.1 format. You can identify these accounts with the following query:

mysql> SELECT Host, User, Password FROM mysql.user
 -> WHERE LENGTH(Password) > 16;

For each account record displayed by the query, use the Host and User values and assign a
password using one of the methods described previously.

The Client does not support authentication protocol error also can occur if multiple
versions of MySQL are installed but client programs are dynamically linked and link to an older
library. Make sure that clients use the most recent library version with which they are compatible. The
procedure to do this will depend on your system.

Note

The PHP mysql extension does not support the authentication protocol in
MySQL 4.1.1 and higher. This is true regardless of the PHP version being used.
If you wish to use the mysql extension with MySQL 4.1 or newer, you may
need to follow one of the options discussed above for configuring MySQL to
work with old clients. The mysqli extension (stands for "MySQL, Improved";
added in PHP 5) is compatible with the improved password hashing employed
in MySQL 4.1 and higher, and no special configuration of MySQL need be
done to use this MySQL client library. For more information about the mysqli
extension, see http://php.net/mysqli.

For additional background on password hashing and authentication, see Section 6.1.2.4, “Password
Hashing in MySQL”.

B.5.2.5 Password Fails When Entered Interactively

MySQL client programs prompt for a password when invoked with a --password or -p option that has
no following password value:

shell> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the
command line, but not when you enter it interactively at the Enter password: prompt. This occurs
when the library provided by the system to read passwords limits password values to a small number of
characters (typically eight). That is a problem with the system library, not with MySQL. To work around
it, change your MySQL password to a value that is eight or fewer characters long, or put your password
in an option file.

http://php.net/mysqli

Common Errors When Using MySQL Programs

3352

B.5.2.6 Host 'host_name' is blocked

If the following error occurs, it means that mysqld has received many connection requests from the
given host that were interrupted in the middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The value of the max_connect_errors system variable determines how many successive
interrupted connection requests are permitted. (See Section 5.1.4, “Server System Variables”.) After
max_connect_errors failed requests without a successful connection, mysqld assumes that
something is wrong (for example, that someone is trying to break in), and blocks the host from further
connections until you issue a FLUSH HOSTS statement or execute a mysqladmin flush-hosts
command.

By default, mysqld blocks a host after 100 connection errors. You can adjust the value by setting
max_connect_errors at server startup:

shell> mysqld_safe --max_connect_errors=10000 &

The value can also be set at runtime:

mysql> SET GLOBAL max_connect_errors=10000;

If you get the Host 'host_name' is blocked error message for a given host, you should first
verify that there is nothing wrong with TCP/IP connections from that host. If you are having network
problems, it does you no good to increase the value of the max_connect_errors variable.

B.5.2.7 Too many connections

If you get a Too many connections error when you try to connect to the mysqld server, this means
that all available connections are in use by other clients.

The number of connections permitted is controlled by the max_connections system variable. The
default value is 151 to improve performance when MySQL is used with the Apache Web server.
(Previously, the default was 100.) If you need to support more connections, you should set a larger
value for this variable.

mysqld actually permits max_connections+1 clients to connect. The extra connection is reserved
for use by accounts that have the SUPER privilege. By granting the SUPER privilege to administrators
and not to normal users (who should not need it), an administrator can connect to the server and use
SHOW PROCESSLIST to diagnose problems even if the maximum number of unprivileged clients are
connected. See Section 13.7.5.29, “SHOW PROCESSLIST Syntax”.

The maximum number of connections MySQL can support depends on the quality of the thread library
on a given platform, the amount of RAM available, how much RAM is used for each connection, the
workload from each connection, and the desired response time. Linux or Solaris should be able to
support at 500 to 1000 simultaneous connections routinely and as many as 10,000 connections if you
have many gigabytes of RAM available and the workload from each is low or the response time target
undemanding. Windows is limited to (open tables × 2 + open connections) < 2048 due to the Posix
compatibility layer used on that platform.

Increasing open-files-limit may be necessary. Also see Section 2.5, “Installing MySQL on Linux”,
for how to raise the operating system limit on how many handles can be used by MySQL.

B.5.2.8 Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it
means that mysql does not have enough memory to store the entire query result:

Common Errors When Using MySQL Programs

3353

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

To remedy the problem, first check whether your query is correct. Is it reasonable that it should return
so many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with the --
quick option. This causes it to use the mysql_use_result() C API function to retrieve the result
set, which places less of a load on the client (but more on the server).

B.5.2.9 MySQL server has gone away

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server timed out
and closed the connection. In this case, you normally get one of the following error codes (which one
you get is operating system-dependent).

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to the server, but it
didn't get a full answer (or any answer) to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can change
the time limit by setting the wait_timeout variable when you start mysqld. See Section 5.1.4,
“Server System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic
reconnection. This assumes that you have automatic reconnection in the client enabled (which is the
default for the mysql command-line client).

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysqladmin
kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in the
application that should be corrected.

• A client application running on a different host does not have the necessary privileges to connect to
the MySQL server from that host.

• You got a timeout from the TCP/IP connection on the client side. This may happen if you have
been using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or
mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the timeout
may help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client is
disabled (the reconnect flag in the MYSQL structure is equal to 0).

• You are using a Windows client and the server had dropped the connection (probably because
wait_timeout expired) before the command was issued.

The problem on Windows is that in some cases MySQL does not get an error from the OS when
writing to the TCP/IP connection to the server, but instead gets the error when trying to read the
answer from the connection.

The solution to this is to either do a mysql_ping() on the connection if there has been a long time
since the last query (this is what Connector/ODBC does) or set wait_timeout on the mysqld
server so high that it in practice never times out.

Common Errors When Using MySQL Programs

3354

• You can also get these errors if you send a query to the server that is incorrect or too large. If
mysqld receives a packet that is too large or out of order, it assumes that something has gone
wrong with the client and closes the connection. If you need big queries (for example, if you
are working with big BLOB columns), you can increase the query limit by setting the server's
max_allowed_packet variable, which has a default value of 4MB. You may also need to increase
the maximum packet size on the client end. More information on setting the packet size is given in
Section B.5.2.10, “Packet Too Large”.

An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of
errors. Either one of these statements sends a single request to the server irrespective of the number
of rows to be inserted; thus, you can often avoid the error by reducing the number of rows sent per
INSERT or REPLACE.

• You also get a lost connection if you are sending a packet 16MB or larger if your client is older than
4.0.8 and your server is 4.0.8 and above, or the other way around.

• It is also possible to see this error if host name lookups fail (for example, if the DNS server on which
your server or network relies goes down). This is because MySQL is dependent on the host system
for name resolution, but has no way of knowing whether it is working—from MySQL's point of view
the problem is indistinguishable from any other network timeout.

You may also see the MySQL server has gone away error if MySQL is started with the --
skip-networking option.

Another networking issue that can cause this error occurs if the MySQL port (default 3306) is blocked
by your firewall, thus preventing any connections at all to the MySQL server.

• You can also encounter this error with applications that fork child processes, all of which try to use
the same connection to the MySQL server. This can be avoided by using a separate connection for
each child process.

• You have encountered a bug where the server died while executing the query.

You can check whether the MySQL server died and restarted by executing mysqladmin version
and examining the server's uptime. If the client connection was broken because mysqld crashed
and restarted, you should concentrate on finding the reason for the crash. Start by checking whether
issuing the query again kills the server again. See Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”.

You can get more information about the lost connections by starting mysqld with the
log_error_verbosity system variable set to 3. This logs some of the disconnection messages in
the hostname.err file. See Section 5.2.2, “The Error Log”.

If you want to create a bug report regarding this problem, be sure that you include the following
information:

• Indicate whether the MySQL server died. You can find information about this in the server error log.
See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before you
ran the query, can you provide a reproducible test case? See Section 24.5, “Debugging and Porting
MySQL”.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin
variables gives you the value of this variable.)

• Have you tried to run mysqld with the general query log enabled to determine whether the problem
query appears in the log? (See Section 5.2.3, “The General Query Log”.)

See also Section B.5.2.11, “Communication Errors and Aborted Connections”, and Section 1.7, “How
to Report Bugs or Problems”.

Common Errors When Using MySQL Programs

3355

B.5.2.10 Packet Too Large

A communication packet is a single SQL statement sent to the MySQL server, a single row that is sent
to the client, or a binary log event sent from a master replication server to a slave.

The largest possible packet that can be transmitted to or from a MySQL 5.7 server or client is 1GB.

When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet
bytes, it issues an ER_NET_PACKET_TOO_LARGE error and closes the connection. With some
clients, you may also get a Lost connection to MySQL server during query error if the
communication packet is too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to handle
big packets, you must increase this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To set
a larger value, start mysql like this:

shell> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 4MB. You can increase this if the server needs
to handle big queries (for example, if you are working with big BLOB columns). For example, to set the
variable to 16MB, start the server like this:

shell> mysqld --max_allowed_packet=16M

You can also use an option file to set max_allowed_packet. For example, to set the size for the
server to 16MB, add the following lines in an option file:

[mysqld]
max_allowed_packet=16M

It is safe to increase the value of this variable because the extra memory is allocated only when
needed. For example, mysqld allocates more memory only when you issue a long query or when
mysqld must return a large result row. The small default value of the variable is a precaution to catch
incorrect packets between the client and server and also to ensure that you do not run out of memory
by using large packets accidentally.

You can also get strange problems with large packets if you are using large BLOB values but have not
given mysqld access to enough memory to handle the query. If you suspect this is the case, try adding
ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.

B.5.2.11 Communication Errors and Aborted Connections

If connection problems occur such as communication errors or aborted connections, use these sources
of information to diagnose problems:

• The error log. See Section 5.2.2, “The Error Log”.

• The general query log. See Section 5.2.3, “The General Query Log”.

• The Aborted_xxx and Connection_errors_xxx status variables. See Section 5.1.6, “Server
Status Variables”.

• The host cache, which is accessible using the host_cache Performance Schema table. See
Section 8.12.6.2, “DNS Lookup Optimization and the Host Cache”, and Section 21.9.15.1, “The
host_cache Table”.

Common Errors When Using MySQL Programs

3356

If you start the server with the log_error_verbosity system variable set to 3, you might find
messages like this in your error log:

2013-09-24T12:12:37.839018Z 854 [Note] Aborted connection 854 to db:
'users' user: 'josh'

If a client successfully connects but later disconnects improperly or is terminated, the server increments
the Aborted_clients status variable, and logs an Aborted connection message to the error log.
The cause can be any of the following:

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout seconds
without issuing any requests to the server. See Section 5.1.4, “Server System Variables”.

• The client program ended abruptly in the middle of a data transfer.

If a client is unable even to connect, the server increments the Aborted_connects status variable.
Unsuccessful connection attempts can occur for the following reasons:

• A client does not have privileges to connect to a database.

• A client uses an incorrect password.

• A connection packet does not contain the right information.

• It takes more than connect_timeout seconds to get a connect packet. See Section 5.1.4, “Server
System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server!
Messages for these types of problems are logged to the general query log if it is enabled.

Other reasons for problems with aborted clients or aborted connections:

• The max_allowed_packet variable value is too small or queries require more memory than you
have allocated for mysqld. See Section B.5.2.10, “Packet Too Large”.

• Use of Ethernet protocol with Linux, both half and full duplex. Many Linux Ethernet drivers have this
bug. You should test for this bug by transferring a huge file using FTP between the client and server
machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a Linux duplex
syndrome. Switch the duplex mode for both your network card and hub/switch to either full duplex or
to half duplex and test the results to determine the best setting.

• A problem with the thread library that causes interrupts on reads.

• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by
replacing hardware.

See also Section B.5.2.9, “MySQL server has gone away”.

B.5.2.12 The table is full

If a table-full error occurs, it may be that the disk is full or that the table has reached its maximum size.
The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. See Section C.10.3, “Limits on Table Size”.

B.5.2.13 Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a
temporary file for the result set in the temporary directory:

Common Errors When Using MySQL Programs

3357

Can't create/write to file '\\sqla3fe_0.ism'.

The preceding error is a typical message for Windows; the Unix message is similar.

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of
your option file. For example, to specify a directory of C:\temp, use these lines:

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See
Section 4.2.6, “Using Option Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to
the tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is
that the file system is full:

shell> perror 28
OS error code 28: No space left on device

If you get an error of the following type during startup, it indicates that the file system or directory used
for storing data files is write protected. Provided that the write error is to a test file, the error is not
serious and can be safely ignored.

Can't create test file /usr/local/mysql/data/master.lower-test

B.5.2.14 Commands out of sync

If you get Commands out of sync; you can't run this command now in your client code,
you are calling client functions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new query
before you have called mysql_free_result(). It can also happen if you try to execute two queries
that return data without calling mysql_use_result() or mysql_store_result() in between.

B.5.2.15 Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant
tables, it found an account in the user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring user

As a result, the account is simply ignored by the permission system.

The following list indicates possible causes of and fixes for this problem:

• You may be running a new version of mysqld with an old user table. You can check this by
executing mysqlshow mysql user to see whether the Password column is shorter than 16
characters. If so, you can correct this condition by running the scripts/add_long_password
script.

• The account has an old password (eight characters long). Update the account in the user table to
have a new password.

• You have specified a password in the user table without using the PASSWORD() function. Use
mysql to update the account in the user table with a new password, making sure to use the
PASSWORD() function:

mysql> UPDATE user SET Password=PASSWORD('new_password')
 -> WHERE User='some_user' AND Host='some_host';

Common Errors When Using MySQL Programs

3358

B.5.2.16 Table 'tbl_name' doesn't exist

If you get either of the following errors, it usually means that no table exists in the default database with
the given name:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table names
are case sensitive if they are located on a file system that has case-sensitive file names.

• Even for file systems that are not case sensitive, such as on Windows, all references to a given table
within a query must use the same lettercase.

You can check which tables are in the default database with SHOW TABLES. See Section 13.7.5,
“SHOW Syntax”.

B.5.2.17 Can't initialize character set

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name

This error can have any of the following causes:

• The character set is a multibyte character set and you have no support for the character
set in the client. In this case, you need to recompile the client by running CMake with the -
DDEFAULT_CHARSET=charset_name or -DWITH_EXTRA_CHARSETS=charset_name option. See
Section 2.9.4, “MySQL Source-Configuration Options”.

All standard MySQL binaries are compiled with -DWITH_EXTRA_CHARSETS=complex, which
enables support for all multibyte character sets. See Section 2.9.4, “MySQL Source-Configuration
Options”.

• The character set is a simple character set that is not compiled into mysqld, and the character set
definition files are not in the place where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.9.4, “MySQL Source-
Configuration Options”.

• Specify to the client the directory where the character set definition files are located. For many
clients, you can do this with the --character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

B.5.2.18 'File' Not Found and Similar Errors

If you get ERROR '...' not found (errno: 23), Can't open file: ... (errno: 24), or
any other error with errno 23 or errno 24 from MySQL, it means that you haven't allocated enough
file descriptors for the MySQL server. You can use the perror utility to get a description of what the
error number means:

shell> perror 23
OS error code 23: File table overflow
shell> perror 24
OS error code 24: Too many open files
shell> perror 11

Administration-Related Issues

3359

OS error code 11: Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can either
tell mysqld not to open so many files at once or increase the number of file descriptors available to
mysqld.

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing
the value of the table_open_cache system variable (the default value is 64). This may not entirely
prevent running out of file descriptors because in some circumstances the server may attempt to
extend the cache size temporarily, as described in Section 8.4.3.1, “How MySQL Opens and Closes
Tables”. Reducing the value of max_connections also reduces the number of open files (the default
value is 100).

To change the number of file descriptors available to mysqld, you can use the --open-files-
limit option to mysqld_safe or set the open_files_limit system variable. See Section 5.1.4,
“Server System Variables”. The easiest way to set these values is to add an option to your option file.
See Section 4.2.6, “Using Option Files”. If you have an old version of mysqld that does not support
setting the open files limit, you can edit the mysqld_safe script. There is a commented-out line
ulimit -n 256 in the script. You can remove the “#” character to uncomment this line, and change
the number 256 to set the number of file descriptors to be made available to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the
limit imposed by the operating system. There is also a “hard” limit that can be overridden only if you
start mysqld_safe or mysqld as root (just remember that you also need to start the server with the
--user option in this case so that it does not continue to run as root after it starts up). If you need to
increase the operating system limit on the number of file descriptors available to each process, consult
the documentation for your system.

Note

If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect
values when you ask for the current limits. In this case, you should start
mysqld_safe using sh.

B.5.2.19 Table-Corruption Issues

If you have started mysqld with --myisam-recover-options, MySQL automatically checks and
tries to repair MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens,
MySQL writes an entry in the hostname.err file 'Warning: Checking table ...' which is
followed by Warning: Repairing table if the table needs to be repaired. If you get a lot of these
errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be
investigated further.

When the server detects MyISAM table corruption, it writes additional information to the error log, such
as the name and line number of the source file, and the list of threads accessing the table. Example:
Got an error from thread_id=1, mi_dynrec.c:368. This is useful information to include in
bug reports.

See also Section 5.1.3, “Server Command Options”, and Section 24.5.1.7, “Making a Test Case If You
Experience Table Corruption”.

B.5.3 Administration-Related Issues

B.5.3.1 Problems with File Permissions

If you have problems with file permissions, the UMASK or UMASK_DIR environment variable might be
set incorrectly when mysqld starts. For example, MySQL might issue the following error message
when you create a table:

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

Administration-Related Issues

3360

The default UMASK and UMASK_DIR values are 0640 and 0750, respectively (0660 and 0700 prior
to MySQL 5.7.6). MySQL assumes that the value for UMASK or UMASK_DIR is in octal if it starts with
a zero. For example, setting UMASK=0600 is equivalent to UMASK=384 because 0600 octal is 384
decimal.

To change the default UMASK value, start mysqld_safe as follows:

shell> UMASK=384 # = 600 in octal
shell> export UMASK
shell> mysqld_safe &

By default, MySQL creates database directories with an access permission value of 0700. To modify
this behavior, set the UMASK_DIR variable. If you set its value, new directories are created with the
combined UMASK and UMASK_DIR values. For example, to give group access to all new directories,
start mysqld_safe as follows:

shell> UMASK_DIR=504 # = 770 in octal
shell> export UMASK_DIR
shell> mysqld_safe &

For additional details, see Section 2.12, “Environment Variables”.

B.5.3.2 How to Reset the Root Password

If you have never assigned a root password for MySQL, the server does not require a password at
all for connecting as root. However, this is insecure. For instructions on assigning a password, see
Section 2.10.4, “Securing the Initial MySQL Accounts”.

If you know the root password and want to change it, see Section 13.7.1.1, “ALTER USER Syntax”,
and Section 13.7.1.7, “SET PASSWORD Syntax”.

If you assigned a root password previously but have forgotten it, you can assign a new password. The
following sections provide instructions for Windows and Unix and Unix-like systems, as well as generic
instructions that apply to any system.

Resetting the Root Password: Windows Systems

On Windows, use the following procedure to reset the password for the MySQL
'root'@'localhost' account. To change the password for a root account with a different host
name part, modify the instructions to use that host name.

1. Log on to your system as Administrator.

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to
the Services manager: From the Start menu, select Control Panel, then Administrative Tools, then
Services. Find the MySQL service in the list and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to stop.

3. Create a text file containing the password-assignment statement on a single line. Replace the
password with the password that you want to use.

MySQL 5.7.6 and later:

ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass';

MySQL 5.7.5 and earlier:

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

Administration-Related Issues

3361

4. Save the file. This example assumes that you name the file C:\mysql-init.txt.

5. Open a console window to get to the command prompt: From the Start menu, select Run, then
enter cmd as the command to be run.

6. Start the MySQL server with the special --init-file option (notice that the backslash in the
option value is doubled):

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.7\bin"
C:\> mysqld --init-file=C:\\mysql-init.txt

If you installed MySQL to a different location, adjust the cd command accordingly.

The server executes the contents of the file named by the --init-file option at startup,
changing the 'root'@'localhost' account password.

To have server output to appear in the console window rather than in a log file, add the --console
option to the mysqld command.

If you installed MySQL using the MySQL Installation Wizard, you may need to specify a --
defaults-file option. For example:

C:\> mysqld
 --defaults-file="C:\\ProgramData\\MySQL\\MySQL Server 5.7\\my.ini"
 --init-file=C:\\mysql-init.txt

The appropriate --defaults-file setting can be found using the Services Manager: From the
Start menu, select Control Panel, then Administrative Tools, then Services. Find the MySQL service
in the list, right-click it, and choose the Properties option. The Path to executable field
contains the --defaults-file setting.

7. After the server has started successfully, delete C:\mysql-init.txt.

You should now be able to connect to the MySQL server as root using the new password. Stop the
MySQL server and restart it normally. If you run the server as a service, start it from the Windows
Services window. If you start the server manually, use whatever command you normally use.

If the ALTER USER statement fails to reset the password, try repeating the procedure using the
following statements to modify the user table directly:

UPDATE mysql.user SET authentication_string = PASSWORD('MyNewPass'),
password_expired = 'N'
WHERE User = 'root' AND Host = 'localhost';
FLUSH PRIVILEGES;

Resetting the Root Password: Unix and Unix-Like Systems

On Unix, use the following procedure to reset the password for the MySQL 'root'@'localhost'
account. To change the password for a root account with a different host name part, modify the
instructions to use that host name.

The instructions assume that you will start the MySQL server from the Unix login account that you
normally use for running it. For example, if you run the server using the mysql login account, you
should log in as mysql before using the instructions. Alternatively, you can log in as root, but in this
case you must start mysqld with the --user=mysql option. If you start the server as root without
using --user=mysql, the server may create root-owned files in the data directory, such as log files,
and these may cause permission-related problems for future server startups. If that happens, you will
need to either change the ownership of the files to mysql or remove them.

1. Log on to your system as the Unix user that the MySQL server runs as (for example, mysql).

Administration-Related Issues

3362

2. Stop the MySQL server if it is running. Locate the .pid file that contains the server's process ID.
The exact location and name of this file depend on your distribution, host name, and configuration.
Common locations are /var/lib/mysql/, /var/run/mysqld/, and /usr/local/mysql/
data/. Generally, the file name has an extension of .pid and begins with either mysqld or your
system's host name.

Stop the MySQL server by sending a normal kill (not kill -9) to the mysqld process. Use the
actual path name of the .pid file in the following command:

shell> kill `cat /mysql-data-directory/host_name.pid`

Use backticks (not forward quotation marks) with the cat command. These cause the output of
cat to be substituted into the kill command.

3. Create a text file containing the password-assignment statement on a single line. Replace the
password with the password that you want to use.

MySQL 5.7.6 and later:

ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass';

MySQL 5.7.5 and earlier:

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

4. Save the file. This example assumes that you name the file /home/me/mysql-init. The file
contains the password, so do not save it where it can be read by other users. If you are not logged
in as mysql (the user the server runs as), make sure that the file has permissions that permit
mysql to read it.

5. Start the MySQL server with the special --init-file option:

shell> mysqld_safe --init-file=/home/me/mysql-init &

The server executes the contents of the file named by the --init-file option at startup,
changing the 'root'@'localhost' account password.

6. After the server has started successfully, delete /home/me/mysql-init.

You should now be able to connect to the MySQL server as root using the new password. Stop the
server and restart it normally.

If the ALTER USER statement fails to reset the password, try repeating the procedure using the
following statements to modify the user table directly:

UPDATE mysql.user SET authentication_string = PASSWORD('MyNewPass'),
password_expired = 'N'
WHERE User = 'root' AND Host = 'localhost';
FLUSH PRIVILEGES;

Resetting the Root Password: Generic Instructions

The preceding sections provide password-resetting instructions specifically for Windows and Unix and
Unix-like systems. Alternatively, on any platform, you can reset the password using the mysql client
(but this approach is less secure):

1. Stop the MySQL server if necessary, then restart it with the --skip-grant-tables option.
This enables anyone to connect without a password and with all privileges, and disables account-
management statements such as ALTER USER and SET PASSWORD. Because this is insecure, you

Administration-Related Issues

3363

might want to use --skip-grant-tables in conjunction with --skip-networking to prevent
remote clients from connecting.

2. Connect to the MySQL server using the mysql client; no password is necessary because the
server was started with --skip-grant-tables:

shell> mysql

3. In the mysql client, tell the server to reload the grant tables so that account-management
statements work:

mysql> FLUSH PRIVILEGES;

Then change the 'root'@'localhost' account password. Replace the password with the
password that you want to use. To change the password for a root account with a different host
name part, modify the instructions to use that host name.

MySQL 5.7.6 and later:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass';

MySQL 5.7.5 and earlier:

mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

You should now be able to connect to the MySQL server as root using the new password. Stop
the server and restart it normally (without the --skip-grant-tables and --skip-networking
options).

If the ALTER USER statement fails to reset the password, try repeating the procedure using the
following statements to modify the user table directly:

UPDATE mysql.user SET authentication_string = PASSWORD('MyNewPass')
WHERE User = 'root' AND Host = 'localhost';
FLUSH PRIVILEGES;

B.5.3.3 What to Do If MySQL Keeps Crashing

Each MySQL version is tested on many platforms before it is released. This does not mean that there
are no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you
have a problem, it always helps if you try to find out exactly what crashes your system, because you
have a much better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your
problem has to do with your client. You can check how long your mysqld server has been up by
executing mysqladmin version. If mysqld has died and restarted, you may find the reason by
looking in the server's error log. See Section 5.2.2, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died that you can
resolve with the resolve_stack_dump program. See Section 24.5, “Debugging and Porting MySQL”.
Note that the variable values written in the error log may not always be 100% correct.

Many server crashes are caused by corrupted data files or index files. MySQL updates the files on
disk with the write() system call after every SQL statement and before the client is notified about
the result. (This is not true if you are running with --delay-key-write, in which case data files
are written but not index files.) This means that data file contents are safe even if mysqld crashes,
because the operating system ensures that the unflushed data is written to disk. You can force MySQL
to flush everything to disk after every SQL statement by starting mysqld with the --flush option.

Administration-Related Issues

3364

The preceding means that normally you should not get corrupted tables unless one of the following
happens:

• The MySQL server or the server host was killed in the middle of an update.

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld without
locking the table properly.

• You are running many mysqld servers using the same data directory on a system that does not
support good file system locks (normally handled by the lockd lock manager), or you are running
multiple servers with external locking disabled.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This isn't likely, but it is at least possible. In this
case, you can try to change the storage engine to another engine by using ALTER TABLE on a
repaired copy of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that work
for others crash for you. Try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */
*.MYI from the data directory to check all MyISAM tables, and restart mysqld. This ensures that you
are running from a clean state. See Chapter 5, MySQL Server Administration.

• Start mysqld with the general query log enabled (see Section 5.2.3, “The General Query Log”).
Then try to determine from the information written to the log whether some specific query kills the
server. About 95% of all bugs are related to a particular query. Normally, this is one of the last
queries in the log file just before the server restarts. See Section 5.2.3, “The General Query Log”.
If you can repeatedly kill MySQL with a specific query, even when you have checked all tables
just before issuing it, then you have isolated the bug and should submit a bug report for it. See
Section 1.7, “How to Report Bugs or Problems”.

• Try to make a test case that we can use to repeat the problem. See Section 24.5, “Debugging and
Porting MySQL”.

• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• Configuring MySQL for debugging makes it much easier to gather information about possible errors
if something goes wrong. Reconfigure MySQL with the -DWITH_DEBUG=1 option to CMake and then
recompile. See Section 24.5, “Debugging and Porting MySQL”.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock
manager does not work properly; the --skip-external-locking option tells mysqld not to use
external locking. (This means that you cannot run two mysqld servers on the same data directory
and that you must be careful if you use myisamchk. Nevertheless, it may be instructive to try the
option as a test.)

• If mysqld appears to be running but not responding, try mysqladmin -u root processlist.
Sometimes mysqld is not hung even though it seems unresponsive. The problem may be that
all connections are in use, or there may be some internal lock problem. mysqladmin -u root
processlist usually is able to make a connection even in these cases, and can provide useful
information about the current number of connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate
window to produce statistics while running other queries.

• Try the following:

Administration-Related Issues

3365

1. Start mysqld from gdb (or another debugger). See Section 24.5, “Debugging and Porting
MySQL”.

2. Run your test scripts.

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this with
the following commands when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a
specific thread with thread N, where N is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to crash or misbehave.

• Send a normal bug report. See Section 1.7, “How to Report Bugs or Problems”. Be even more
detailed than usual. Because MySQL works for many people, the crash might result from something
that exists only on your computer (for example, an error that is related to your particular system
libraries).

• If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR
columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR with ALTER
TABLE. This forces MySQL to use fixed-size rows. Fixed-size rows take a little extra space, but are
much more tolerant to corruption.

The current dynamic row code has been in use for several years with very few problems, but
dynamic-length rows are by nature more prone to errors, so it may be a good idea to try this strategy
to see whether it helps.

• Consider the possibility of hardware faults when diagnosing problems. Defective hardware can be
the cause of data corruption. Pay particular attention to your memory and disk subsystems when
troubleshooting hardware.

B.5.3.4 How MySQL Handles a Full Disk

This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and
to quota-exceeded errors (such as “write failed” or “user block limit reached”).

This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and
binary log index file, except that references to “row” and “record” should be understood to mean
“event.”

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If there is
enough space, it continues as if nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

To alleviate the problem, take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• Alternatively, to abort the thread, use mysqladmin kill. The thread is aborted the next time it
checks the disk (in one minute).

Administration-Related Issues

3366

• Other threads might be waiting for the table that caused the disk-full condition. If you have several
“locked” threads, killing the one thread that is waiting on the disk-full condition enables the other
threads to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE
or when the indexes are created in a batch after LOAD DATA INFILE or after an ALTER TABLE
statement. All of these statements may create large temporary files that, if left to themselves, would
cause big problems for the rest of the system. If the disk becomes full while MySQL is doing any of
these operations, it removes the big temporary files and mark the table as crashed. The exception is
that for ALTER TABLE, the old table is left unchanged.

B.5.3.5 Where MySQL Stores Temporary Files

As of MySQL 5.7.1, non-compressed InnoDB temporary tables are, by default, stored in a
temporary tablespace named ibtmp1 that is located in the MySQL data directory (datadir). The
innodb_temp_data_file_path option can be used to specify a different file name and location.
Compressed InnoDB temporary tables are stored in their own independent tablespace files (.ibd
files) in the path specified by t he TMPDIR environment variable.

On Unix, MySQL uses the value of the TMPDIR environment variable as the path name of the directory
in which to store temporary files (with the exception of non-compressed InnoDB temporary tables, as
described above). If TMPDIR is not set, MySQL uses the system default, which is usually /tmp, /var/
tmp, or /usr/tmp.

On Windows, MySQL checks in order the values of the TMPDIR, TEMP, and TMP environment variables.
For the first one found to be set, MySQL uses it and does not check those remaining. If none of
TMPDIR, TEMP, or TMP are set, MySQL uses the Windows system default, which is usually C:
\windows\temp\.

If the file system containing your temporary file directory is too small, you can use the --tmpdir option
to mysqld to specify a directory in a file system where you have enough space. On replication slaves,
you can use --slave-load-tmpdir to specify a separate directory for holding temporary files when
replicating LOAD DATA INFILE statements.

The --tmpdir option can be set to a list of several paths that are used in round-robin fashion. Paths
should be separated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows.

Note

To spread the load effectively, these paths should be located on different
physical disks, not different partitions of the same disk.

If the MySQL server is acting as a replication slave, you should be sure to set --slave-load-
tmpdir not to point to a directory that is on a memory-based file system or to a directory that is
cleared when the server host restarts. A replication slave needs some of its temporary files to survive a
machine restart so that it can replicate temporary tables or LOAD DATA INFILE operations. If files in
the slave temporary file directory are lost when the server restarts, replication fails.

MySQL arranges that temporary files are removed if mysqld is terminated. On platforms that support
it (such as Unix), this is done by unlinking the file after opening it. The disadvantage of this is that the
name does not appear in directory listings and you do not see a big temporary file that fills up the file
system in which the temporary file directory is located. (In such cases, lsof +L1 may be helpful in
identifying large files associated with mysqld.)

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The
maximum disk space required is determined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

Administration-Related Issues

3367

The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some SELECT queries, MySQL also creates temporary SQL tables. These are not hidden and have
names of the form SQL_*.

In most cases, ALTER TABLE creates a temporary copy of the original table in the same directory
as the original table. However, if ALTER TABLE uses the in-place technique (online DDL), InnoDB
creates temporary files in the temporary file directory. If this directory is not large enough to hold such
files, you may need to set the tmpdir system variable to a different directory. Alternatively, you can
define a separate temporary file directory for InnoDB online ALTER TABLE operations using the
innodb_tmpdir configuration option. This option was introduced in MySQL 5.7.11 to help avoid
tmpdir overflows that could occur as a result of large temporary files created during online ALTER
TABLE operations. innodb_tmpdir is a SESSION variable and can be configured dynamically using a
SET statement.

For more information about online DDL, Section 14.10, “InnoDB and Online DDL”.

B.5.3.6 How to Protect or Change the MySQL Unix Socket File

The default location for the Unix socket file that the server uses for communication with local clients is
/tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/
lib/mysql for RPMs.)

On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories
used for temporary files. If the socket file is located in such a directory on your system, this might cause
problems.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their
owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by logging in as
root and using the following command:

shell> chmod +t /tmp

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission
character is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this,
you should also let client programs know the new location of the file. You can specify the file location in
several ways:

• Specify the path in a global or local option file. For example, put the following lines in /etc/my.cnf:

[mysqld]
socket=/path/to/socket

[client]
socket=/path/to/socket

See Section 4.2.6, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client
programs.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

• Recompile MySQL from source to use a different default Unix socket file location. Define the path
to the file with the MYSQL_UNIX_ADDR option when you run CMake. See Section 2.9.4, “MySQL
Source-Configuration Options”.

You can test whether the new socket location works by attempting to connect to the server with this
command:

Query-Related Issues

3368

shell> mysqladmin --socket=/path/to/socket version

B.5.3.7 Time Zone Problems

If you have a problem with SELECT NOW() returning values in UTC and not your local time, you have
to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns the wrong
value. This should be done for the environment in which the server runs; for example, in mysqld_safe
or mysql.server. See Section 2.12, “Environment Variables”.

You can set the time zone for the server with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.

The permissible values for --timezone or TZ are system dependent. Consult your operating system
documentation to see what values are acceptable.

B.5.4 Query-Related Issues

B.5.4.1 Case Sensitivity in String Searches

For nonbinary strings (CHAR, VARCHAR, TEXT), string searches use the collation of the comparison
operands. For binary strings (BINARY, VARBINARY, BLOB), comparisons use the numeric values of the
bytes in the operands; this means that for alphabetic characters, comparisons will be case sensitive.

A comparison between a nonbinary string and binary string is treated as a comparison of binary strings.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each
character's “sort value.” Characters with the same sort value are treated as the same character. For
example, if “e” and “é” have the same sort value in a given collation, they compare as equal.

The default character set and collation are latin1 and latin1_swedish_ci, so nonbinary string
comparisons are case insensitive by default. This means that if you search with col_name LIKE 'a
%', you get all column values that start with A or a. To make this search case sensitive, make sure
that one of the operands has a case sensitive or binary collation. For example, if you are comparing a
column and a string that both have the latin1 character set, you can use the COLLATE operator to
cause either operand to have the latin1_general_cs or latin1_bin collation:

col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin

If you want a column always to be treated in case-sensitive fashion, declare it with a case sensitive or
binary collation. See Section 13.1.14, “CREATE TABLE Syntax”.

To cause a case-sensitive comparison of nonbinary strings to be case insensitive, use COLLATE to
name a case-insensitive collation. The strings in the following example normally are case sensitive, but
COLLATE changes the comparison to be case insensitive:

mysql> SET @s1 = 'MySQL' COLLATE latin1_bin,
 -> @s2 = 'mysql' COLLATE latin1_bin;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_swedish_ci = @s2;
+-------------------------------------+
| @s1 COLLATE latin1_swedish_ci = @s2 |
+-------------------------------------+

Query-Related Issues

3369

| 1 |
+-------------------------------------+

A binary string is case sensitive in comparisons. To compare the string as case insensitive, convert it to
a nonbinary string and use COLLATE to name a case-insensitive collation:

mysql> SET @s = BINARY 'MySQL';
mysql> SELECT @s = 'mysql';
+--------------+
| @s = 'mysql' |
+--------------+
| 0 |
+--------------+
mysql> SELECT CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql';
+--+
| CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql' |
+--+
| 1 |
+--+

To determine whether a value will compare as a nonbinary or binary string, use the COLLATION()
function. This example shows that VERSION() returns a string that has a case-insensitive collation, so
comparisons are case insensitive:

mysql> SELECT COLLATION(VERSION());
+----------------------+
| COLLATION(VERSION()) |
+----------------------+
| utf8_general_ci |
+----------------------+

For binary strings, the collation value is binary, so comparisons will be case sensitive. One context in
which you will see binary is for compression and encryption functions, which return binary strings as
a general rule: string:

mysql> SELECT COLLATION(ENCRYPT('x')), COLLATION(SHA1('x'));
+-------------------------+----------------------+
| COLLATION(ENCRYPT('x')) | COLLATION(SHA1('x')) |
+-------------------------+----------------------+
| binary | binary |
+-------------------------+----------------------+

To check the sort value of a string, the WEIGHT_STRING() may be helpful. See Section 12.5, “String
Functions”.

B.5.4.2 Problems Using DATE Columns

The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is
permitted. You should use this format in UPDATE expressions and in the WHERE clause of SELECT
statements. For example:

SELECT * FROM t1 WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in a numeric
context and vice versa. MySQL also permits a “relaxed” string format when updating and in a WHERE
clause that compares a date to a DATE, DATETIME, or TIMESTAMP column. “Relaxed” format
means that any punctuation character may be used as the separator between parts. For example,
'2004-08-15' and '2004#08#15' are equivalent. MySQL can also convert a string containing no
separators (such as '20040815'), provided it makes sense as a date.

When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =,
>=, >, or BETWEEN operators, MySQL normally converts the string to an internal long integer for faster

Query-Related Issues

3370

comparison (and also for a bit more “relaxed” string checking). However, this conversion is subject to
the following exceptions:

• When you compare two columns

• When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression

• When you use any comparison method other than those just listed, such as IN or STRCMP().

For those exceptions, the comparison is done by converting the objects to strings and performing a
string comparison.

To be on the safe side, assume that strings are compared as strings and use the appropriate string
functions if you want to compare a temporal value to a string.

The special “zero” date '0000-00-00' can be stored and retrieved as '0000-00-00'. When a
'0000-00-00' date is used through Connector/ODBC, it is automatically converted to NULL because
ODBC cannot handle that kind of date.

Because MySQL performs the conversions just described, the following statements work (assume that
idate is a DATE column):

INSERT INTO t1 (idate) VALUES (19970505);
INSERT INTO t1 (idate) VALUES ('19970505');
INSERT INTO t1 (idate) VALUES ('97-05-05');
INSERT INTO t1 (idate) VALUES ('1997.05.05');
INSERT INTO t1 (idate) VALUES ('1997 05 05');
INSERT INTO t1 (idate) VALUES ('0000-00-00');

SELECT idate FROM t1 WHERE idate >= '1997-05-05';
SELECT idate FROM t1 WHERE idate >= 19970505;
SELECT MOD(idate,100) FROM t1 WHERE idate >= 19970505;
SELECT idate FROM t1 WHERE idate >= '19970505';

However, the following statement does not work:

SELECT idate FROM t1 WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and performs
a string comparison. It does not convert '20030505' to the date '2003-05-05' and perform a date
comparison.

If you enable the ALLOW_INVALID_DATES SQL mode, MySQL permits you to store dates that are
given only limited checking: MySQL requires only that the day is in the range from 1 to 31 and the
month is in the range from 1 to 12. This makes MySQL very convenient for Web applications where
you obtain year, month, and day in three different fields and you want to store exactly what the user
inserted (without date validation).

MySQL permits you to store dates where the day or month and day are zero. This is convenient if you
want to store a birthdate in a DATE column and you know only part of the date. To disallow zero month
or day parts in dates, enable the NO_ZERO_IN_DATE mode.

MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some
cases more convenient than using NULL values. If a date to be stored in a DATE column cannot be
converted to any reasonable value, MySQL stores '0000-00-00'. To disallow '0000-00-00',
enable the NO_ZERO_DATE mode.

To have MySQL check all dates and accept only legal dates (unless overridden by IGNORE), set the
sql_mode system variable to "NO_ZERO_IN_DATE,NO_ZERO_DATE".

B.5.4.3 Problems with NULL Values

Query-Related Issues

3371

The concept of the NULL value is a common source of confusion for newcomers to SQL, who often
think that NULL is the same thing as an empty string ''. This is not the case. For example, the
following statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the
second inserts an empty string. The meaning of the first can be regarded as “phone number is not
known” and the meaning of the second can be regarded as “the person is known to have no phone,
and thus no phone number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the
IFNULL() function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that
contains NULL always produces a NULL value unless otherwise indicated in the documentation for the
operators and functions involved in the expression. All columns in the following example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

To search for column values that are NULL, you cannot use an expr = NULL test. The following
statement returns no rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to find
the NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

See Section 3.3.4.6, “Working with NULL Values”, for additional information and examples.

You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB,
or MEMORY storage engine. Otherwise, you must declare an indexed column NOT NULL, and you
cannot insert NULL into the column.

When reading data with LOAD DATA INFILE, empty or missing columns are updated with ''. To load
a NULL value into a column, use \N in the data file. The literal word “NULL” may also be used under
some circumstances. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in
descending order.

Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The
exception to this is COUNT(*), which counts rows and not individual column values. For example, the
following statement produces two counts. The first is a count of the number of rows in the table, and
the second is a count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some data types, MySQL handles NULL values specially. If you insert NULL into a TIMESTAMP
column, the current date and time is inserted. If you insert NULL into an integer or floating-point column
that has the AUTO_INCREMENT attribute, the next number in the sequence is inserted.

Query-Related Issues

3372

B.5.4.4 Problems with Column Aliases

An alias can be used in a query select list to give a column a different name. You can use the alias in
GROUP BY, ORDER BY, or HAVING clauses to refer to the column:

SELECT SQRT(a*b) AS root FROM tbl_name
 GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name
 GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL disallows references to column aliases in a WHERE clause. This restriction is imposed
because when the WHERE clause is evaluated, the column value may not yet have been determined.
For example, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name
 WHERE cnt > 0 GROUP BY id;

The WHERE clause determines which rows should be included in the GROUP BY clause, but it refers to
the alias of a column value that is not known until after the rows have been selected, and grouped by
the GROUP BY.

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

SELECT 1 AS `one`, 2 AS 'two';

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference
is treated as a string literal. For example, this statement groups by the values in column id, referenced
using the alias `a`:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY `a`;

But this statement groups by the literal string 'a' and will not work as expected:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY 'a';

B.5.4.5 Rollback Failure for Nontransactional Tables

If you receive the following message when trying to perform a ROLLBACK, it means that one or more of
the tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These nontransactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and nontransactional tables within the transaction, the
most likely cause for this message is that a table you thought was transactional actually is not. This
can happen if you try to create a table using a transactional storage engine that is not supported by
your mysqld server (or that was disabled with a startup option). If mysqld does not support a storage
engine, it instead creates the table as a MyISAM table, which is nontransactional.

You can check the storage engine for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';

Query-Related Issues

3373

SHOW CREATE TABLE tbl_name;

See Section 13.7.5.36, “SHOW TABLE STATUS Syntax”, and Section 13.7.5.10, “SHOW CREATE
TABLE Syntax”.

To check which storage engines your mysqld server supports, use this statement:

SHOW ENGINES;

See Section 13.7.5.16, “SHOW ENGINES Syntax” for full details.

B.5.4.6 Deleting Rows from Related Tables

If the total length of the DELETE statement for related_table is more than 1MB (the default value
of the max_allowed_packet system variable), you should split it into smaller parts and execute
multiple DELETE statements. You probably get the fastest DELETE by specifying only 100 to 1,000
related_column values per statement if the related_column is indexed. If the related_column
isn't indexed, the speed is independent of the number of arguments in the IN clause.

B.5.4.7 Solving Problems with No Matching Rows

If you have a complicated query that uses many tables but that returns no rows, you should use the
following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously wrong. See
Section 13.8.2, “EXPLAIN Syntax”.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it is a
good idea to use LIMIT 10 with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was last
removed from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you cannot use
equality (=) comparisons. This problem is common in most computer languages because not all
floating-point values can be stored with exact precision. In some cases, changing the FLOAT to a
DOUBLE fixes this. See Section B.5.4.8, “Problems with Floating-Point Values”.

6. If you still cannot figure out what is wrong, create a minimal test that can be run with mysql test
< query.sql that shows your problems. You can create a test file by dumping the tables with
mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql. Open the file
in an editor, remove some insert lines (if there are more than needed to demonstrate the problem),
and add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

shell> mysqladmin create test2
shell> mysql test2 < query.sql

Attach the test file to a bug report, which you can file using the instructions in Section 1.7, “How to
Report Bugs or Problems”.

B.5.4.8 Problems with Floating-Point Values

Floating-point numbers sometimes cause confusion because they are approximate and not stored as
exact values. A floating-point value as written in an SQL statement may not be the same as the value
represented internally. Attempts to treat floating-point values as exact in comparisons may lead to

Query-Related Issues

3374

problems. They are also subject to platform or implementation dependencies. The FLOAT and DOUBLE
data types are subject to these issues. For DECIMAL columns, MySQL performs operations with a
precision of 65 decimal digits, which should solve most common inaccuracy problems.

The following example uses DOUBLE to demonstrate how calculations that are done using floating-point
operations are subject to floating-point error.

mysql> CREATE TABLE t1 (i INT, d1 DOUBLE, d2 DOUBLE);
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
 -> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
 -> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
 -> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
 -> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
 -> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
 -> FROM t1 GROUP BY i HAVING a <> b;

+------+-------+------+
| i | a | b |
+------+-------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4
4	15.4	15.4
5	7.2	7.2
6	-51.4	0
+------+-------+------+

The result is correct. Although the first five records look like they should not satisfy the comparison
(the values of a and b do not appear to be different), they may do so because the difference between
the numbers shows up around the tenth decimal or so, depending on factors such as computer
architecture or the compiler version or optimization level. For example, different CPUs may evaluate
floating-point numbers differently.

If columns d1 and d2 had been defined as DECIMAL rather than DOUBLE, the result of the SELECT
query would have contained only one row—the last one shown above.

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance
for differences between the numbers and then do the comparison against the tolerance value. For
example, if we agree that floating-point numbers should be regarded the same if they are same within
a precision of one in ten thousand (0.0001), the comparison should be written to find differences larger
than the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) > 0.0001;
+------+-------+------+
| i | a | b |
+------+-------+------+
| 6 | -51.4 | 0 |
+------+-------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the
tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) <= 0.0001;
+------+------+------+
| i | a | b |
+------+------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4

Optimizer-Related Issues

3375

| 4 | 15.4 | 15.4 |
| 5 | 7.2 | 7.2 |
+------+------+------+
5 rows in set (0.03 sec)

Floating-point values are subject to platform or implementation dependencies. Suppose that you
execute the following statements:

CREATE TABLE t1(c1 FLOAT(53,0), c2 FLOAT(53,0));
INSERT INTO t1 VALUES('1e+52','-1e+52');
SELECT * FROM t1;

On some platforms, the SELECT statement returns inf and -inf. On others, it returns 0 and -0.

An implication of the preceding issues is that if you attempt to create a replication slave by dumping
table contents with mysqldump on the master and reloading the dump file into the slave, tables
containing floating-point columns might differ between the two hosts.

B.5.5 Optimizer-Related Issues

MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases,
MySQL can calculate the best possible query plan, but sometimes MySQL does not have enough
information about the data at hand and has to make “educated” guesses about the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL
are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just
add the keyword EXPLAIN to the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 13.8.2, “EXPLAIN Syntax”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive
compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful. See Section 8.9.4, “Index Hints”.

• Global and table-level STRAIGHT_JOIN. See Section 13.2.9, “SELECT Syntax”.

• You can tune global or thread-specific system variables. For example, start mysqld with the --max-
seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optimizer to
assume that no key scan causes more than 1,000 key seeks. See Section 5.1.4, “Server System
Variables”.

B.5.6 Table Definition-Related Issues

B.5.6.1 Problems with ALTER TABLE

If you get a duplicate-key error when using ALTER TABLE to change the character set or collation of a
character column, the cause is either that the new column collation maps two keys to the same value
or that the table is corrupted. In the latter case, you should run REPAIR TABLE on the table.

Known Issues in MySQL

3376

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an
earlier ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying around:

Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)

In this case, go to the MySQL data directory and delete all files that have names starting with A- or B-.
(You may want to move them elsewhere instead of deleting them.)

ALTER TABLE works in the following way:

• Create a new table named A-xxx with the requested structural changes.

• Copy all rows from the original table to A-xxx.

• Rename the original table to B-xxx.

• Rename A-xxx to your original table name.

• Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If something
goes seriously wrong (although this shouldn't happen), MySQL may leave the old table as B-xxx. A
simple rename of the table files at the system level should get your data back.

If you use ALTER TABLE on a transactional table or if you are using Windows, ALTER TABLE unlocks
the table if you had done a LOCK TABLE on it. This is done because InnoDB and these operating
systems cannot drop a table that is in use.

B.5.6.2 TEMPORARY Table Problems

The following list indicates limitations on the use of TEMPORARY tables:

• A TEMPORARY table can only be of type MEMORY, MyISAM, MERGE, or InnoDB.

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the
following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

This error also occurs if you refer to a temporary table multiple times in a stored function under
different aliases, even if the references occur in different statements within the function.

• The SHOW TABLES statement does not list TEMPORARY tables.

• You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TABLE
instead:

mysql> ALTER TABLE orig_name RENAME new_name;

• There are known issues in using temporary tables with replication. See Section 17.4.1, “Replication
Features and Issues”, for more information.

• Temporary tables created outside stored functions and referred to across multiple calling and callee
functions might result in this error:

ERROR 1137: Can't reopen table: 'temp_table'

B.5.7 Known Issues in MySQL

Known Issues in MySQL

3377

This section lists known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and porting instructions in
Section 2.1, “General Installation Guidance”, and Section 24.5, “Debugging and Porting MySQL”.

The following problems are known:

• Subquery optimization for IN is not as effective as for =.

• Even if you use lower_case_table_names=2 (which enables MySQL to remember the case used
for databases and table names), MySQL does not remember the case used for database names for
the function DATABASE() or within the various logs (on case-insensitive systems).

• Dropping a FOREIGN KEY constraint does not work in replication because the constraint may have
another name on the slave.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.

• DISTINCT with ORDER BY does not work inside GROUP_CONCAT() if you do not use all and only
those columns that are in the DISTINCT list.

• When inserting a big integer value (between 263 and 264−1) into a decimal or string column, it is
inserted as a negative value because the number is evaluated in a signed integer context.

• With statement-based binary logging, the master writes the executed queries to the binary log. This
is a very fast, compact, and efficient logging method that works perfectly in most cases. However,
it is possible for the data on the master and slave to become different if a query is designed in such
a way that the data modification is nondeterministic (generally not a recommended practice, even
outside of replication).

For example:

• CREATE TABLE ... SELECT or INSERT ... SELECT statements that insert zero or NULL
values into an AUTO_INCREMENT column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE
properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in the
inserted data.

If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic
order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which results in a row having different ranks, hence getting a different number in the
AUTO_INCREMENT column), depending on the choices made by the optimizers on the master and
slave.

A query is optimized differently on the master and slave only if:

• The table is stored using a different storage engine on the master than on the slave. (It is possible
to use different storage engines on the master and slave. For example, you can use InnoDB on
the master, but MyISAM on the slave if the slave has less available disk space.)

• MySQL buffer sizes (key_buffer_size, and so on) are different on the master and slave.

• The master and slave run different MySQL versions, and the optimizer code differs between these
versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

Known Issues in MySQL

3378

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned
nondeterministic queries to ensure that the rows are always stored or modified in the same order.
Using row-based or mixed logging format also avoids the problem.

• Log file names are based on the server host name if you do not specify a file name with the startup
option. To retain the same log file names if you change your host name to something else, you
must explicitly use options such as --log-bin=old_host_name-bin. See Section 5.1.3, “Server
Command Options”. Alternatively, rename the old files to reflect your host name change. If these are
binary logs, you must edit the binary log index file and fix the binary log file names there as well. (The
same is true for the relay logs on a slave server.)

• mysqlbinlog does not delete temporary files left after a LOAD DATA INFILE statement. See
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.

• RENAME does not work with TEMPORARY tables or tables used in a MERGE table.

• When using SET CHARACTER SET, you cannot use translated characters in database, table, and
column names.

• You cannot use “_” or “%” with ESCAPE in LIKE ... ESCAPE.

• The server uses only the first max_sort_length bytes when comparing data values. This means
that values cannot reliably be used in GROUP BY, ORDER BY, or DISTINCT if they differ only after
the first max_sort_length bytes. To work around this, increase the variable value. The default
value of max_sort_length is 1024 and can be changed at server startup time or at runtime.

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which
precision you get depends on the function. The general rule is that bit functions are performed with
BIGINT precision, IF() and ELT() with BIGINT or DOUBLE precision, and the rest with DOUBLE
precision. You should try to avoid using unsigned long long values if they resolve to be larger than 63
bits (9223372036854775807) for anything other than bit fields.

• You can have up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET
columns by their string value rather than by the string's relative position in the set.

• In an UPDATE statement, columns are updated from left to right. If you refer to an updated column,
you get the updated value instead of the original value. For example, the following statement
increments KEY by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given
temporary table more than once. For example, the following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join than
when you are not. In a join, hidden columns are counted as part of the result (even if they are not
shown), whereas in normal queries, hidden columns do not participate in the DISTINCT comparison.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
 WHERE userid = 9 ORDER BY id DESC;

and

Known Issues in MySQL

3379

SELECT DISTINCT band_downloads.mp3id
 FROM band_downloads,band_mp3
 WHERE band_downloads.userid = 9
 AND band_mp3.id = band_downloads.mp3id
 ORDER BY band_downloads.id DESC;

In the second case, using MySQL Server 3.23.x, you may get two identical rows in the result set
(because the values in the hidden id column may differ).

Note that this happens only for queries that do not have the ORDER BY columns in the result.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE
does not transform the columns.

• Creation of a table of type MERGE does not check whether the underlying tables are compatible
types.

• If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add
a normal index on the MERGE table, the key order is different for the tables if there was an old,
non-UNIQUE key in the table. This is because ALTER TABLE puts UNIQUE indexes before normal
indexes to be able to detect duplicate keys as early as possible.

3380

3381

Appendix C Restrictions and Limits

Table of Contents
C.1 Restrictions on Stored Programs ... 3381
C.2 Restrictions on Condition Handling .. 3384
C.3 Restrictions on Server-Side Cursors .. 3385
C.4 Restrictions on Subqueries ... 3385
C.5 Restrictions on Views ... 3386
C.6 Restrictions on XA Transactions ... 3388
C.7 Restrictions on Character Sets .. 3388
C.8 Restrictions on Performance Schema .. 3389
C.9 Restrictions on Pluggable Authentication ... 3389
C.10 Limits in MySQL ... 3391

C.10.1 Limits on Joins .. 3391
C.10.2 Limits on Number of Databases and Tables .. 3391
C.10.3 Limits on Table Size .. 3392
C.10.4 Limits on Table Column Count and Row Size .. 3393
C.10.5 Limits Imposed by .frm File Structure .. 3394
C.10.6 Windows Platform Limitations ... 3395

The discussion here describes restrictions that apply to the use of MySQL features such as subqueries
or views.

C.1 Restrictions on Stored Programs
These restrictions apply to the features described in Chapter 19, Stored Programs and Views.

Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures
and stored functions. There are also some restrictions specific to stored functions but not to stored
procedures.

The restrictions for stored functions also apply to triggers. There are also some restrictions specific to
triggers.

The restrictions for stored procedures also apply to the DO clause of Event Scheduler event definitions.
There are also some restrictions specific to events.

SQL Statements Not Permitted in Stored Routines

Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:

• The locking statements LOCK TABLES and UNLOCK TABLES.

• ALTER VIEW.

• LOAD DATA and LOAD TABLE.

• SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored
procedures, but not stored functions or triggers. Thus, stored functions and triggers cannot use
dynamic SQL (where you construct statements as strings and then execute them).

• Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. For a list of statements supported as prepared statements, see Section 13.5, “SQL Syntax
for Prepared Statements”. Exceptions are SIGNAL, RESIGNAL, and GET DIAGNOSTICS, which are
not permissible as prepared statements but are permitted in stored programs.

• Because local variables are in scope only during stored program execution, references to them
are not permitted in prepared statements created within a stored program. Prepared statement

Restrictions for Stored Functions

3382

scope is the current session, not the stored program, so the statement could be executed after the
program ends, at which point the variables would no longer be in scope. For example, SELECT ...
INTO local_var cannot be used as a prepared statement. This restriction also applies to stored
procedure and function parameters. See Section 13.5.1, “PREPARE Syntax”.

• Within all stored programs (stored procedures and functions, triggers, and events), the parser treats
BEGIN [WORK] as the beginning of a BEGIN ... END block. To begin a transaction in this context,
use START TRANSACTION instead.

Restrictions for Stored Functions

The following additional statements or operations are not permitted within stored functions. They are
permitted within stored procedures, except stored procedures that are invoked from within a stored
function or trigger. For example, if you use FLUSH in a stored procedure, that stored procedure cannot
be called from a stored function or trigger.

• Statements that perform explicit or implicit commit or rollback. Support for these statements is not
required by the SQL standard, which states that each DBMS vendor may decide whether to permit
them.

• Statements that return a result set. This includes SELECT statements that do not have an INTO
var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. A function
can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH
statements. See Section 13.2.9.1, “SELECT ... INTO Syntax”, and Section 13.6.6, “Cursors”.

• FLUSH statements.

• Stored functions cannot be used recursively.

• A stored function or trigger cannot modify a table that is already being used (for reading or writing) by
the statement that invoked the function or trigger.

• If you refer to a temporary table multiple times in a stored function under different aliases, a Can't
reopen table: 'tbl_name' error occurs, even if the references occur in different statements
within the function.

• HANDLER ... READ statements that invoke stored functions can cause replication errors and are
disallowed.

Restrictions for Triggers

For triggers, the following additional restrictions apply:

• Triggers are not activated by foreign key actions.

• When using row-based replication, triggers on the slave are not activated by statements originating
on the master. The triggers on the slave are activated when using statement-based replication. For
more information, see Section 17.4.1.35, “Replication and Triggers”.

• The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger
immediately, use the LEAVE statement.

• Triggers are not permitted on tables in the mysql database.

• The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger
uses a table and the table has changed since the trigger was loaded into the cache, the trigger
operates using the outdated metadata.

Name Conflicts within Stored Routines

The same identifier might be used for a routine parameter, a local variable, and a table column. Also,
the same local variable name can be used in nested blocks. For example:

Replication Considerations

3383

CREATE PROCEDURE p (i INT)
BEGIN
 DECLARE i INT DEFAULT 0;
 SELECT i FROM t;
 BEGIN
 DECLARE i INT DEFAULT 1;
 SELECT i FROM t;
 END;
END;

In such cases, the identifier is ambiguous and the following precedence rules apply:

• A local variable takes precedence over a routine parameter or table column.

• A routine parameter takes precedence over a table column.

• A local variable in an inner block takes precedence over a local variable in an outer block.

The behavior that variables take precedence over table columns is nonstandard.

Replication Considerations

Use of stored routines can cause replication problems. This issue is discussed further in Section 19.7,
“Binary Logging of Stored Programs”.

The --replicate-wild-do-table=db_name.tbl_name option applies to tables, views, and
triggers. It does not apply to stored procedures and functions, or events. To filter statements operating
on the latter objects, use one or more of the --replicate-*-db options.

Debugging Considerations

There are no stored routine debugging facilities.

Unsupported Syntax from the SQL:2003 Standard

The MySQL stored routine syntax is based on the SQL:2003 standard. The following items from that
standard are not currently supported:

• UNDO handlers

• FOR loops

Concurrency Considerations

To prevent problems of interaction between sessions, when a client issues a statement, the server
uses a snapshot of routines and triggers available for execution of the statement. That is, the server
calculates a list of procedures, functions, and triggers that may be used during execution of the
statement, loads them, and then proceeds to execute the statement. While the statement executes, it
does not see changes to routines performed by other sessions.

For maximum concurrency, stored functions should minimize their side-effects; in particular, updating
a table within a stored function can reduce concurrent operations on that table. A stored function
acquires table locks before executing, to avoid inconsistency in the binary log due to mismatch of the
order in which statements execute and when they appear in the log. When statement-based binary
logging is used, statements that invoke a function are recorded rather than the statements executed
within the function. Consequently, stored functions that update the same underlying tables do not
execute in parallel. In contrast, stored procedures do not acquire table-level locks. All statements
executed within stored procedures are written to the binary log, even for statement-based binary
logging. See Section 19.7, “Binary Logging of Stored Programs”.

Event Scheduler Restrictions

3384

Event Scheduler Restrictions

The following limitations are specific to the Event Scheduler:

• Event names are handled in case-insensitive fashion. For example, you cannot have two events in
the same database with the names anEvent and AnEvent.

• An event may not be created, altered, or dropped by a stored routine, trigger, or another event. An
event also may not create, alter, or drop stored routines or triggers. (Bug #16409, Bug #18896)

• DDL statements on events are prohibited while a LOCK TABLES statement is in effect.

• Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR_MONTH are resolved in months;
those using any other interval are resolved in seconds. There is no way to cause events scheduled
to occur at the same second to execute in a given order. In addition—due to rounding, the nature
of threaded applications, and the fact that a nonzero length of time is required to create events
and to signal their execution—events may be delayed by as much as 1 or 2 seconds. However,
the time shown in the INFORMATION_SCHEMA.EVENTS table's LAST_EXECUTED column or the
mysql.event table's last_executed column is always accurate to within one second of the
actual event execution time. (See also Bug #16522.)

• Each execution of the statements contained in the body of an event takes place in a new connection;
thus, these statements has no effect in a given user session on the server's statement counts such
as Com_select and Com_insert that are displayed by SHOW STATUS. However, such counts are
updated in the global scope. (Bug #16422)

• Events do not support times later than the end of the Unix Epoch; this is approximately the beginning
of the year 2038. Such dates are specifically not permitted by the Event Scheduler. (Bug #16396)

• References to stored functions, user-defined functions, and tables in the ON SCHEDULE clauses of
CREATE EVENT and ALTER EVENT statements are not supported. These sorts of references are not
permitted. (See Bug #22830 for more information.)

C.2 Restrictions on Condition Handling

SIGNAL, RESIGNAL, and GET DIAGNOSTICS are not permissible as prepared statements. For
example, this statement is invalid:

PREPARE stmt1 FROM 'SIGNAL SQLSTATE "02000"';

SQLSTATE values in class '04' are not treated specially. They are handled the same as other
exceptions.

Standard SQL has a diagnostics area stack, containing a diagnostics area for each nested execution
context. Standard SQL syntax includes GET STACKED DIAGNOSTICS for referring to stacked areas.
MySQL does not support the STACKED keyword because there is a single diagnostics area containing
information from the most recent statement that wrote to it. See also Section 13.6.7.7, “The MySQL
Diagnostics Area”.

In standard SQL, the first condition relates to the SQLSTATE value returned for the previous SQL
statement. In MySQL, this is not guaranteed, so to get the main error, you cannot do this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

Instead, do this:

GET DIAGNOSTICS @cno = NUMBER;

Restrictions on Server-Side Cursors

3385

GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

C.3 Restrictions on Server-Side Cursors

Server-side cursors are implemented in the C API using the mysql_stmt_attr_set() function. The
same implementation is used for cursors in stored routines. A server-side cursor enables a result set
to be generated on the server side, but not transferred to the client except for those rows that the client
requests. For example, if a client executes a query but is only interested in the first row, the remaining
rows are not transferred.

In MySQL, a server-side cursor is materialized into an internal temporary table. Initially, this is a
MEMORY table, but is converted to a MyISAM table when its size exceeds the minimum value of the
max_heap_table_size and tmp_table_size system variables. The same restrictions apply
to internal temporary tables created to hold the result set for a cursor as for other uses of internal
temporary tables. See Section 8.4.4, “Internal Temporary Table Use in MySQL”. One limitation of the
implementation is that for a large result set, retrieving its rows through a cursor might be slow.

Cursors are read only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because
updatable cursors are not supported.

Cursors are nonholdable (not held open after a commit).

Cursors are asensitive.

Cursors are nonscrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must
prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported
in prepared mode. This includes statements such as CHECK TABLE, HANDLER READ, and SHOW
BINLOG EVENTS.

C.4 Restrictions on Subqueries

• In general, you cannot modify a table and select from the same table in a subquery. For example,
this limitation applies to statements of the following forms:

DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);

Exception: The preceding prohibition does not apply if you are using a subquery for the modified
table in the FROM clause. Example:

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) AS _t ...);

Here the result from the subquery in the FROM clause is stored as a temporary table, so the relevant
rows in t have already been selected by the time the update to t takes place.

• Row comparison operations are only partially supported:

• For expr [NOT] IN subquery, expr can be an n-tuple (specified using row constructor
syntax) and the subquery can return rows of n-tuples. The permitted syntax is therefore more
specifically expressed as row_constructor [NOT] IN table_subquery

Restrictions on Views

3386

• For expr op {ALL|ANY|SOME} subquery, expr must be a scalar value and the subquery
must be a column subquery; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(expr_1, ..., expr_n) [NOT] IN table_subquery

But this is not supported:

(expr_1, ..., expr_n) op {ALL|ANY|SOME} subquery

The reason for supporting row comparisons for IN but not for the others is that IN is implemented by
rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used for
ALL, ANY, or SOME.

• Subqueries in the FROM clause cannot be correlated subqueries. They are materialized in whole
(evaluated to produce a result set) during query execution, so they cannot be evaluated per row of
the outer query. The optimizer delays materialization until the result is needed, which may permit
materialization to be avoided. See Optimizing Derived Tables and View References.

• MySQL does not support LIMIT in subqueries for certain subquery operators:

mysql> SELECT * FROM t1
 -> WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1);
ERROR 1235 (42000): This version of MySQL doesn't yet support
 'LIMIT & IN/ALL/ANY/SOME subquery'

• MySQL permits a subquery to refer to a stored function that has data-modifying side effects such as
inserting rows into a table. For example, if f() inserts rows, the following query can modify data:

SELECT ... WHERE x IN (SELECT f() ...);

This behavior is an extension to the SQL standard. In MySQL, it can produce indeterminate results
because f() might be executed a different number of times for different executions of a given query
depending on how the optimizer chooses to handle it.

For statement-based or mixed-format replication, one implication of this indeterminism is that such a
query can produce different results on the master and its slaves.

C.5 Restrictions on Views
View processing is not optimized:

• It is not possible to create an index on a view.

• Indexes can be used for views processed using the merge algorithm. However, a view that is
processed with the temptable algorithm is unable to take advantage of indexes on its underlying
tables (although indexes can be used during generation of the temporary tables).

Before MySQL 5.7.7, subqueries cannot be used in the FROM clause of a view.

There is a general principle that you cannot modify a table and select from the same table in a
subquery. See Section C.4, “Restrictions on Subqueries”.

The same principle also applies if you select from a view that selects from the table, if the view selects
from the table in a subquery and the view is evaluated using the merge algorithm. Example:

CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

Restrictions on Views

3387

UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery
and still modify that table in the outer query. In this case the view will be stored in a temporary table
and thus you are not really selecting from the table in a subquery and modifying it “at the same time.”
(This is another reason you might wish to force MySQL to use the temptable algorithm by specifying
ALGORITHM = TEMPTABLE in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition.
No warning results from the DROP or ALTER operation, even though this invalidates the view. Instead,
an error occurs later, when the view is used. CHECK TABLE can be used to check for views that have
been invalidated by DROP or ALTER operations.

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable,
it should be updatable in practice. This includes views that have UNION in their definition. Not all views
that are theoretically updatable can be updated. The initial view implementation was deliberately
written this way to get usable, updatable views into MySQL as quickly as possible. Many theoretically
updatable views can be updated now, but limitations still exist:

• Updatable views with subqueries anywhere other than in the WHERE clause. Some views that have
subqueries in the SELECT list may be updatable.

• You cannot use UPDATE to update more than one underlying table of a view that is defined as a join.

• You cannot use DELETE to update a view that is defined as a join.

There exists a shortcoming with the current implementation of views. If a user is granted the basic
privileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user will be
unable to call SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW
privilege.

That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to
insufficient privileges. This problem is described in Bug #22062.

The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to
users who are granted CREATE VIEW, since MySQL doesn't grant it implicitly when views are created.

Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view
is not permitted.

SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column. If a
column is created from an expression, the default alias is the expression text, which can be quite long.
Aliases for column names in CREATE VIEW statements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters). As a result, views created
from the output of SHOW CREATE VIEW fail if any column alias exceeds 64 characters. This can cause
problems in the following circumstances for views with too-long aliases:

• View definitions fail to replicate to newer slaves that enforce the column-length restriction.

• Dump files created with mysqldump cannot be loaded into servers that enforce the column-length
restriction.

A workaround for either problem is to modify each problematic view definition to use aliases that
provide shorter column names. Then the view will replicate properly, and can be dumped and reloaded
without causing an error. To modify the definition, drop and create the view again with DROP VIEW and
CREATE VIEW, or replace the definition with CREATE OR REPLACE VIEW.

For problems that occur when reloading view definitions in dump files, another workaround is to edit
the dump file to modify its CREATE VIEW statements. However, this does not change the original view
definitions, which may cause problems for subsequent dump operations.

Restrictions on XA Transactions

3388

C.6 Restrictions on XA Transactions

XA transaction support is limited to the InnoDB storage engine.

For “external XA,” a MySQL server acts as a Resource Manager and client programs act as
Transaction Managers. For “Internal XA”, storage engines within a MySQL server act as RMs, and
the server itself acts as a TM. Internal XA support is limited by the capabilities of individual storage
engines. Internal XA is required for handling XA transactions that involve more than one storage
engine. The implementation of internal XA requires that a storage engine support two-phase commit at
the table handler level, and currently this is true only for InnoDB.

For XA START, the JOIN and RESUME clauses are not supported.

For XA END, the SUSPEND [FOR MIGRATE] clause is not supported.

The requirement that the bqual part of the xid value be different for each XA transaction within
a global transaction is a limitation of the current MySQL XA implementation. It is not part of the XA
specification.

Prior to MySQL 5.7.7, XA transactions were not compatible with replication. This was because an
XA transaction that was in PREPARED state would be rolled back on clean server shutdown or client
disconnect. Similarly, an XA transaction that was in PREPARED state would still exist in PREPARED
state in case the server was shutdown abnormally and then started again, but the contents of the
transaction could not be written to the binary log. In both of these situations the XA transaction could
not be replicated correctly.

In MySQL 5.7.7 and later, there is a change in behavior and an XA transaction is written to the binary
log in two parts. When XA PREPARE is issued, the first part of the transaction up to XA PREPARE is
written using an initial GTID. A XA_prepare_log_event is used to identify such transactions in the
binary log. When XA COMMIT or XA ROLLBACK is issued, a second part of the transaction containing
only the XA COMMIT or XA ROLLBACK statement is written using a second GTID. Note that the initial
part of the transaction, identified by XA_prepare_log_event, is not necessarily followed by its XA
COMMIT or XA ROLLBACK, which can cause interleaved binary logging of any two XA transactions.
The two parts of the XA transaction can even appear in different binary log files. This means that an
XA transaction in PREPARED state is now persistent until an explicit XA COMMIT or XA ROLLBACK
statement is issued, ensuring that XA transactions are compatible with replication.

The following restrictions exist for using XA transactions in MySQL 5.7.7 and later:

• XA is not fully crash-safe with respect to the binary log (on the master). If there is a crash before
XA PREPARE, between XA PREPARE and XA COMMIT (or XA ROLLBACK), or after XA COMMIT (or
XA ROLLBACK), the server and binary log are correctly recovered and taken to a consistent state.
However, if there is a crash in the middle of the execution of one of these statements, the server may
not be able to recover to a correct state, leaving the server state and the binary log in an inconsistent
state.

• XA does not work with relay-log-info-repository=TABLE.

• XA does not work with replication filters or binary log filters. Filters are permitted as long as they do
not render any XA transactions empty. Filters that filter out XA transactions may cause the slave to
stop with an error.

• In case GTIDs are enabled and the slave does not use either log-bin=OFF or does not use log-
slave-updates, XA transactions are not crash-safe with respect to GTIDs on the slave. If the
slave stops unexpectedly while applying an XA PREPARE or XA COMMIT, then after recovery
@@GLOBAL.GTID_EXECUTED may not correctly describe the transactions that have been applied on
the slave.

C.7 Restrictions on Character Sets

Restrictions on Performance Schema

3389

• Identifiers are stored in mysql database tables (user, db, and so forth) using utf8, but identifiers
can contain only characters in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted in identifiers.

• The ucs2, utf16, utf16le, and utf32 character sets have the following restrictions:

• They cannot be used as a client character set, which means that they do not work for SET NAMES
or SET CHARACTER SET. (See Section 10.1.4, “Connection Character Sets and Collations”.)

• It is currently not possible to use LOAD DATA INFILE to load data files that use these character
sets.

• FULLTEXT indexes cannot be created on a column that uses any of these character sets.
However, you can perform IN BOOLEAN MODE searches on the column without an index.

• The use of ENCRYPT() with these character sets is not recommended because the underlying
system call expects a string terminated by a zero byte.

• The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multibyte safe and
may produce unexpected results with multibyte character sets. In addition, these operators compare
characters by their byte values and accented characters may not compare as equal even if a given
collation treats them as equal.

C.8 Restrictions on Performance Schema

The Performance Schema avoids using mutexes to collect or produce data, so there are no guarantees
of consistency and results can sometimes be incorrect. Event values in performance_schema tables
are nondeterministic and nonrepeatable.

If you save event information in another table, you should not assume that the original events will
still be available later. For example, if you select events from a performance_schema table into a
temporary table, intending to join that table with the original table later, there might be no matches.

mysqldump and BACKUP DATABASE ignore tables in the performance_schema database.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

Tables in the performance_schema database cannot be indexed.

Results for queries that refer to tables in the performance_schema database are not saved in the
query cache.

Tables in the performance_schema database are not replicated.

The Performance Schema is not available in libmysqld, the embedded server.

The types of timers might vary per platform. The performance_timers table shows which event
timers are available. If the values in this table for a given timer name are NULL, that timer is not
supported on your platform.

Instruments that apply to storage engines might not be implemented for all storage engines.
Instrumentation of each third-party engine is the responsibility of the engine maintainer.

C.9 Restrictions on Pluggable Authentication

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Section 6.3.8, “Pluggable Authentication”. The second part
describes how third-party connector developers can determine the extent to which a connector can

General Pluggable Authentication Restrictions

3390

take advantage of pluggable authentication capabilities and what steps to take to become more
compliant.

The term “native authentication” used here refers to authentication against passwords stored in the
Password column of the mysql.user table. This is the same authentication method provided by older
MySQL servers, before pluggable authentication was implemented. It remains the default method,
although now it is implemented using plugins. “Windows native authentication” refers to authentication
using the credentials of a user who has already logged in to Windows, as implemented by the Windows
Native Authentication plugin (“Windows plugin” for short).

General Pluggable Authentication Restrictions

• Connector/C, Connector/C++: Clients that use these connectors can connect to the server only
through accounts that use native authentication.

Exception: A connector supports pluggable authentication if it was built to link to libmysqlclient
dynamically (rather than statically) and it loads the current version of libmysqlclient if that
version is installed, or if the connector is recompiled from source to link against the current
libmysqlclient.

• Connector/J: Clients that use this connector can connect to the server only through accounts that
use native authentication.

• Connector/Net: Before Connector/Net 6.4.4, clients that use this connector can connect to the
server only through accounts that use native authentication. As of 6.4.4, clients can also connect to
the server through accounts that use the Windows plugin.

• Connector/ODBC: Before Connector/ODBC 3.51.29 and 5.1.9, clients that use this connector
can connect to the server only through accounts that use native authentication. As of 3.51.29 and
5.1.9, clients that use binary releases of this connector for Windows can also connect to the server
through accounts that use the PAM or Windows plugins. (These capabilities result from linking the
Connector/ODBC binaries against the MySQL 5.5.16 libmysqlclient rather than the MySQL 5.1
libmysqlclient used previously. The newer libmysqlclient includes the client-side support
needed for the server-side PAM and Windows authentication plugins.)

• Connector/PHP: Clients that use this connector can connect to the server only through accounts
that use native authentication, when compiled using the MySQL native driver for PHP (mysqlnd).

• MySQL Proxy: Before MySQL Proxy 0.8.2, clients can connect to the server only through accounts
that use native authentication. As of 0.8.2, clients can also connect to the server through accounts
that use the PAM plugin. As of 0.8.3, clients can also connect to the server through accounts that
use the Windows plugin.

• MySQL Enterprise Backup: MySQL Enterprise Backup before version 3.6.1 supports connections
to the server only through accounts that use native authentication. As of 3.6.1, MySQL Enterprise
Backup can connect to the server through accounts that use nonnative authentication.

• Windows native authentication: Connecting through an account that uses the Windows plugin
requires Windows Domain setup. Without it, NTLM authentication is used and then only local
connections are possible; that is, the client and server must run on the same computer.

• Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a user
name different from that of the connecting user). For example, the native authentication plugins do
not support proxy users, whereas the PAM and Windows plugins do.

• Replication: Replication slaves can employ not only master accounts using native authentication,
but can also connect through master accounts that use nonnative authentication if the required
client-side plugin is available. If the plugin is built into libmysqlclient, it is available by default.
Otherwise, the plugin must be installed on the slave side in the directory named by the slave
plugin_dir system variable.

Pluggable Authentication and Third-Party Connectors

3391

• FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a
connector to take advantage of pluggable authentication capabilities and what steps to take to become
more compliant:

• An existing connector to which no changes have been made uses native authentication and
clients that use the connector can connect to the server only through accounts that use native
authentication. However, you should test the connector against a recent version of the server to
verify that such connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
to libmysqlclient dynamically (rather than statically) and it loads the current version of
libmysqlclient if that version is installed.

• To take advantage of pluggable authentication capabilities, a connector that is libmysqlclient-
based should be relinked against the current version of libmysqlclient. This enables the
connector to support connections though accounts that require client-side plugins now built into
libmysqlclient (such as the cleartext plugin needed for PAM authentication and the Windows
plugin needed for Windows native authentication). Linking with a current libmysqlclient also
enables the connector to access client-side plugins installed in the default MySQL plugin directory
(typically the directory named by the default value of the local server's plugin_dir system
variable).

If a connector links to libmysqlclient dynamically, it must be ensured that the newer version of
libmysqlclient is installed on the client host and that the connector loads it at runtime.

• Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/Net uses this approach to provide support for Windows native
authentication.

• If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities
for this include a command-line option or environment variable from which the connector can obtain
the directory name. Standard MySQL client programs such as mysql and mysqladmin implement a
--plugin-dir option. See also Section 23.8.14, “C API Client Plugin Functions”.

• Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

C.10 Limits in MySQL

This section lists current limits in MySQL 5.7.

C.10.1 Limits on Joins

The maximum number of tables that can be referenced in a single join is 61. This includes a join
handled by merging derived tables (subqueries) and views in the FROM clause into the outer query
block (see Optimizing Derived Tables and View References). It also applies to the number of tables
that can be referenced in the definition of a view.

C.10.2 Limits on Number of Databases and Tables

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

Limits on Table Size

3392

MySQL has no limit on the number of tables. The underlying file system may have a limit on the
number of files that represent tables. Individual storage engines may impose engine-specific
constraints. InnoDB permits up to 4 billion tables.

C.10.3 Limits on Table Size

The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. The following table lists some examples of
operating system file-size limits. This is only a rough guide and is not intended to be definitive. For the
most up-to-date information, be sure to check the documentation specific to your operating system.

Operating System File-size Limit

Win32 w/ FAT/FAT32 2GB/4GB

Win32 w/ NTFS 2TB (possibly larger)

Linux 2.2-Intel 32-bit 2GB (LFS: 4GB)

Linux 2.4+ (using ext3 file system) 4TB

Solaris 9/10 16TB

OS X w/ HFS+ 2TB

Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production
use with MySQL. Use NTFS instead.

On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the Large File Support (LFS)
patch for the ext2 file system. Most current Linux distributions are based on kernel 2.4 or higher and
include all the required LFS patches. On Linux 2.4, patches also exist for ReiserFS to get support for
big files (up to 2TB). With JFS and XFS, petabyte and larger files are possible on Linux.

For a detailed overview about LFS in Linux, have a look at Andreas Jaeger's Large File Support in
Linux page at http://www.suse.de/~aj/linux_lfs.html.

If you do encounter a full-table error, there are several reasons why it might have occurred:

• The disk might be full.

• The InnoDB storage engine maintains InnoDB tables within a tablespace that can be created from
several files. This enables a table to exceed the maximum individual file size. The tablespace can
include raw disk partitions, which permits extremely large tables. The maximum tablespace size is
64TB.

If you are using InnoDB tables and run out of room in the InnoDB tablespace. In this case, the
solution is to extend the InnoDB tablespace. See Section 14.4.2, “Changing the Number or Size of
InnoDB Redo Log Files”.

• You are using MyISAM tables on an operating system that supports files only up to 2GB in size and
you have hit this limit for the data file or index file.

• You are using a MyISAM table and the space required for the table exceeds what is permitted by the
internal pointer size. MyISAM permits data and index files to grow up to 256TB by default, but this
limit can be changed up to the maximum permissible size of 65,536TB (2567 − 1 bytes).

If you need a MyISAM table that is larger than the default limit and your operating system supports
large files, the CREATE TABLE statement supports AVG_ROW_LENGTH and MAX_ROWS options. See
Section 13.1.14, “CREATE TABLE Syntax”. The server uses these options to determine how large a
table to permit.

If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to
increase a table's maximum permissible size. See Section 13.1.6, “ALTER TABLE Syntax”.

http://www.suse.de/~aj/linux_lfs.html

Limits on Table Column Count and Row Size

3393

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case,
MySQL can't optimize the space required based only on the number of rows.

To change the default size limit for MyISAM tables, set the myisam_data_pointer_size, which
sets the number of bytes used for internal row pointers. The value is used to set the pointer size for
new tables if you do not specify the MAX_ROWS option. The value of myisam_data_pointer_size
can be from 2 to 7. A value of 4 permits tables up to 4GB; a value of 6 permits tables up to 256TB.

You can check the maximum data and index sizes by using this statement:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file. See Section 13.7.5, “SHOW
Syntax”, or Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

Other ways to work around file-size limits for MyISAM tables are as follows:

• If your large table is read only, you can use myisampack to compress it. myisampack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack
also can merge multiple tables into a single table. See Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”.

• MySQL includes a MERGE library that enables you to handle a collection of MyISAM tables that
have identical structure as a single MERGE table. See Section 15.7, “The MERGE Storage Engine”.

• You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the
max_heap_table_size system variable. See Section 5.1.4, “Server System Variables”.

C.10.4 Limits on Table Column Count and Row Size

There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given
table. The exact limit depends on several interacting factors.

• Every table (regardless of storage engine) has a maximum row size of 65,535 bytes. Storage
engines may place additional constraints on this limit, reducing the effective maximum row size.

The maximum row size constrains the number (and possibly size) of columns because the total
length of all columns cannot exceed this size. For example, utf8 characters require up to three
bytes per character, so for a CHAR(255) CHARACTER SET utf8 column, the server must allocate
255 × 3 = 765 bytes per value. Consequently, a table cannot contain more than 65,535 / 765 = 85
such columns.

Storage for variable-length columns includes length bytes, which are assessed against the row size.
For example, a VARCHAR(255) CHARACTER SET utf8 column takes two bytes to store the length
of the value, so each value can take up to 767 bytes.

BLOB and TEXT columns count from one to four plus eight bytes each toward the row-size limit
because their contents are stored separately from the rest of the row.

Declaring columns NULL can reduce the maximum number of columns permitted. For MyISAM
tables, NULL columns require additional space in the row to record whether their values are NULL.
Each NULL column takes one bit extra, rounded up to the nearest byte. The maximum row length in
bytes can be calculated as follows:

row length = 1
 + (sum of column lengths)

Limits Imposed by .frm File Structure

3394

 + (number of NULL columns + delete_flag + 7)/8
 + (number of variable-length columns)

delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a flag
that indicates whether the row has been deleted. delete_flag is 0 for dynamic tables because
the flag is stored in the dynamic row header. For information about MyISAM table formats, see
Section 15.2.3, “MyISAM Table Storage Formats”.

For InnoDB tables, storage size is the same for NULL and NOT NULL columns, so the preceding
calculations do not apply.

The following statement to create table t1 succeeds because the columns require 32,765 + 2 bytes
and 32,766 + 2 bytes, which falls within the maximum row size of 65,535 bytes:

mysql> CREATE TABLE t1
 -> (c1 VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL)
 -> ENGINE = MyISAM CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The following statement to create table t2 fails because the columns are NULL and MyISAM requires
additional space that causes the row size to exceed 65,535 bytes:

mysql> CREATE TABLE t2
 -> (c1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL)
 -> ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

The following statement to create table t3 fails because, although the column length is within the
maximum length of 65,535 bytes, two additional bytes are required to record the length, which
causes the row size to exceed 65,535 bytes:

mysql> CREATE TABLE t3
 -> (c1 VARCHAR(65535) NOT NULL)
 -> ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

Reducing the column length to 65,533 or less permits the statement to succeed.

• Individual storage engines might impose additional restrictions that limit table column count.
Examples:

• InnoDB permits up to 1000 columns.

• InnoDB restricts row size to slightly less than half of a database page for 4KB, 8KB, 16KB, and
32KB page sizes. For a page size of 64KB, InnoDB restricts row size to about 16000 bytes. Row
size restrictions differ for variable-length columns (VARBINARY, VARCHAR, BLOB, and TEXT). For
more information, see Section 14.5.7, “Limits on InnoDB Tables”.

• Different InnoDB storage formats (COMPRESSED, REDUNDANT) use different amounts of page
header and trailer data, which affects the amount of storage available for rows.

C.10.5 Limits Imposed by .frm File Structure

Each table has an .frm file that contains the table definition. The server uses the following expression
to check some of the table information stored in the file against an upper limit of 64KB:

if (info_length+(ulong) create_fields.elements*FCOMP+288+

Windows Platform Limitations

3395

 n_length+int_length+com_length > 65535L || int_count > 255)

The portion of the information stored in the .frm file that is checked against the expression cannot
grow beyond the 64KB limit, so if the table definition reaches this size, no more columns can be added.

The relevant factors in the expression are:

• info_length is space needed for “screens.” This is related to MySQL's Unireg heritage.

• create_fields.elements is the number of columns.

• FCOMP is 17.

• n_length is the total length of all column names, including one byte per name as a separator.

• int_length is related to the list of values for ENUM and SET columns. In this context, “int” does not
mean “integer.” It means “interval,” a term that refers collectively to ENUM and SET columns.

• int_count is the number of unique ENUM and SET definitions.

• com_length is the total length of column comments.

The expression just described has several implications for permitted table definitions:

• Using long column names can reduce the maximum number of columns, as can the inclusion of
ENUM or SET columns, or use of column comments.

• A table can have no more than 255 unique ENUM and SET definitions. Columns with identical element
lists are considered the same against this limt. For example, if a table contains these two columns,
they count as one (not two) toward this limit because the definitions are identical:

e1 ENUM('a','b','c')
e2 ENUM('a','b','c')

• The sum of the length of element names in the unique ENUM and SET definitions counts toward the
64KB limit, so although the theoretical limit on number of elements in a given ENUM column is 65,535,
the practical limit is less than 3000.

C.10.6 Windows Platform Limitations

The following limitations apply to use of MySQL on the Windows platform:

• Process memory

On Windows 32-bit platforms, it is not possible by default to use more than 2GB of RAM within a
single process, including MySQL. This is because the physical address limit on Windows 32-bit
is 4GB and the default setting within Windows is to split the virtual address space between kernel
(2GB) and user/applications (2GB).

Some versions of Windows have a boot time setting to enable larger applications by reducing the
kernel application. Alternatively, to use more than 2GB, use a 64-bit version of Windows.

• File system aliases

When using MyISAM tables, you cannot use aliases within Windows link to the data files on another
volume and then link back to the main MySQL datadir location.

This facility is often used to move the data and index files to a RAID or other fast solution, while
retaining the main .frm files in the default data directory configured with the datadir option.

• Limited number of ports

Windows Platform Limitations

3396

Windows systems have about 4,000 ports available for client connections, and after a connection on
a port closes, it takes two to four minutes before the port can be reused. In situations where clients
connect to and disconnect from the server at a high rate, it is possible for all available ports to be
used up before closed ports become available again. If this happens, the MySQL server appears to
be unresponsive even though it is running. Ports may be used by other applications running on the
machine as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see http://support.microsoft.com/default.aspx?scid=kb;en-
us;196271.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY option for CREATE TABLE is supported on Windows only for InnoDB tables,
as described in Section 14.4.5, “Creating a File-Per-Table Tablespace Outside the Data Directory”.
For MyISAM and other storage engines, the DATA DIRECTORY and INDEX DIRECTORY options for
CREATE TABLE are ignored on Windows and any other platforms with a nonfunctional realpath()
call.

• DROP DATABASE

You cannot drop a database that is in use by another session.

• Case-insensitive names

File names are not case sensitive on Windows, so MySQL database and table names are also not
case sensitive on Windows. The only restriction is that database and table names must be specified
using the same case throughout a given statement. See Section 9.2.2, “Identifier Case Sensitivity”.

• Directory and file names

On Windows, MySQL Server supports only directory and file names that are compatible with the
current ANSI code pages. For example, the following Japanese directory name will not work in the
Western locale (code page 1252):

datadir="C:/私たちのプロジェクトのデータ"

The same limitation applies to directory and file names referred to in SQL statements, such as the
data file path name in LOAD DATA INFILE.

• The “\” path name separator character

Path name components in Windows are separated by the “\” character, which is also the escape
character in MySQL. If you are using LOAD DATA INFILE or SELECT ... INTO OUTFILE, use
Unix-style file names with “/” characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the “\” character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character
^Z / CHAR(24), Windows thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:

http://support.microsoft.com/default.aspx?scid=kb;en-us;196271
http://support.microsoft.com/default.aspx?scid=kb;en-us;196271

Windows Platform Limitations

3397

C:\> mysqlbinlog binary_log_file | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character,
you can use the following workaround:

C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read in any SQL file that may contain binary data.

3398

3399

MySQL Glossary
These terms are commonly used in information about the MySQL database server. This glossary originated as a
reference for terminology about the InnoDB storage engine, and the majority of definitions are InnoDB-related.

A
.ARM file

 Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in
backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup, mysqlbackup command.

.ARZ file
 Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup, mysqlbackup command.

ACID
 An acronym standing for atomicity, consistency, isolation, and durability. These properties are all desirable
in a database system, and are all closely tied to the notion of a transaction. The transactional features of
InnoDB adhere to the ACID principles.

Transactions are atomic units of work that can be committed or rolled back. When a transaction makes
multiple changes to the database, either all the changes succeed when the transaction is committed, or all the
changes are undone when the transaction is rolled back.

The database remains in a consistent state at all times -- after each commit or rollback, and while transactions
are in progress. If related data is being updated across multiple tables, queries see either all old values or all
new values, not a mix of old and new values.

Transactions are protected (isolated) from each other while they are in progress; they cannot interfere with
each other or see each other's uncommitted data. This isolation is achieved through the locking mechanism.
Experienced users can adjust the isolation level, trading off less protection in favor of increased performance
and concurrency, when they can be sure that the transactions really do not interfere with each other.

The results of transactions are durable: once a commit operation succeeds, the changes made by that
transaction are safe from power failures, system crashes, race conditions, or other potential dangers that
many non-database applications are vulnerable to. Durability typically involves writing to disk storage, with a
certain amount of redundancy to protect against power failures or software crashes during write operations.
(In InnoDB, the doublewrite buffer assists with durability.)
See Also atomic, commit, concurrency, doublewrite buffer, isolation level, locking, rollback, transaction.

adaptive flushing
 An algorithm for InnoDB tables that smooths out the I/O overhead introduced by checkpoints. Instead of
flushing all modified pages from the buffer pool to the data files at once, MySQL periodically flushes small
sets of modified pages. The adaptive flushing algorithm extends this process by estimating the optimal rate to
perform these periodic flushes, based on the rate of flushing and how fast redo information is generated. First
introduced in MySQL 5.1, in the InnoDB Plugin.
See Also buffer pool, checkpoint, data files, flush, InnoDB, page, redo log.

adaptive hash index
 An optimization for InnoDB tables that can speed up lookups using = and IN operators, by constructing
a hash index in memory. MySQL monitors index searches for InnoDB tables, and if queries could
benefit from a hash index, it builds one automatically for index pages that are frequently accessed.
In a sense, the adaptive hash index configures MySQL at runtime to take advantage of ample main
memory, coming closer to the architecture of main-memory databases. This feature is controlled by the
innodb_adaptive_hash_index configuration option. Because this feature benefits some workloads
and not others, and the memory used for the hash index is reserved in the buffer pool, typically you should
benchmark with this feature both enabled and disabled.

3400

The hash index is always built based on an existing InnoDB secondary index, which is organized as a B-tree
structure. MySQL can build a hash index on a prefix of any length of the key defined for the B-tree, depending
on the pattern of searches against the index. A hash index can be partial; the whole B-tree index does not
need to be cached in the buffer pool.

In MySQL 5.6 and higher, another way to take advantage of fast single-value lookups with InnoDB tables is
to use the memcached interface to InnoDB. See Section 14.17, “InnoDB Integration with memcached” for
details.
See Also B-tree, buffer pool, hash index, memcached, page, secondary index.

AHI
 Acronym for adaptive hash index.
See Also adaptive hash index.

AIO
 Acronym for asynchronous I/O. You might see this acronym in InnoDB messages or keywords.
See Also asynchronous I/O.

Antelope
 The code name for the original InnoDB file format. It supports the REDUNDANT and COMPACT row
formats, but not the newer DYNAMIC and COMPRESSED row formats available in the Barracuda file format.
See Also Barracuda, compact row format, compressed row format, dynamic row format, file format,
innodb_file_format, redundant row format.

application programming interface (API)
 A set of functions or procedures. An API provides a stable set of names and types for functions, procedures,
parameters, and return values.

apply
 When a backup produced by the MySQL Enterprise Backup product does not include the most recent
changes that occurred while the backup was underway, the process of updating the backup files to include
those changes is known as the apply step. It is specified by the apply-log option of the mysqlbackup
command.

Before the changes are applied, we refer to the files as a raw backup. After the changes are applied, we refer
to the files as a prepared backup. The changes are recorded in the ibbackup_logfile file; once the apply
step is finished, this file is no longer necessary.
See Also hot backup, ibbackup_logfile, MySQL Enterprise Backup, prepared backup, raw backup.

asynchronous I/O
 A type of I/O operation that allows other processing to proceed before the I/O is completed. Also known as
non-blocking I/O and abbreviated as AIO. InnoDB uses this type of I/O for certain operations that can run in
parallel without affecting the reliability of the database, such as reading pages into the buffer pool that have
not actually been requested, but might be needed soon.

Historically, InnoDB has used asynchronous I/O on Windows systems only. Starting with the InnoDB Plugin
1.1 and MySQL 5.5, InnoDB uses asynchronous I/O on Linux systems. This change introduces a dependency
on libaio. Asynchronous I/O on Linux systems is configured using the innodb_use_native_aio option,
which is enabled by default. On other Unix-like systems, InnoDB uses synchronous I/O only.
See Also buffer pool, non-blocking I/O.

atomic
 In the SQL context, transactions are units of work that either succeed entirely (when committed) or have
no effect at all (when rolled back). The indivisible ("atomic") property of transactions is the "A" in the acronym
ACID.
See Also ACID, commit, rollback, transaction.

atomic instruction
 Special instructions provided by the CPU, to ensure that critical low-level operations cannot be interrupted.

3401

auto-increment
 A property of a table column (specified by the AUTO_INCREMENT keyword) that automatically adds an
ascending sequence of values in the column. InnoDB supports auto-increment only for primary key columns.

It saves work for the developer, not to have to produce new unique values when inserting new rows. It
provides useful information for the query optimizer, because the column is known to be not null and with
unique values. The values from such a column can be used as lookup keys in various contexts, and because
they are auto-generated there is no reason to ever change them; for this reason, primary key columns are
often specified as auto-incrementing.

Auto-increment columns can be problematic with statement-based replication, because replaying the
statements on a slave might not produce the same set of column values as on the master, due to timing
issues. When you have an auto-incrementing primary key, you can use statement-based replication only
with the setting innodb_autoinc_lock_mode=1. If you have innodb_autoinc_lock_mode=2, which
allows higher concurrency for insert operations, use row-based replication rather than statement-based
replication. The setting innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and
should not be used except for compatibility purposes.
See Also auto-increment locking, innodb_autoinc_lock_mode, primary key, row-based replication, statement-
based replication.

auto-increment locking
 The convenience of an auto-increment primary key involves some tradeoff with concurrency. In the simplest
case, if one transaction is inserting values into the table, any other transactions must wait to do their own
inserts into that table, so that rows inserted by the first transaction receive consecutive primary key values.
InnoDB includes optimizations, and the innodb_autoinc_lock_mode option, so that you can choose how
to trade off between predictable sequences of auto-increment values and maximum concurrency for insert
operations.
See Also auto-increment, concurrency, innodb_autoinc_lock_mode.

autocommit
 A setting that causes a commit operation after each SQL statement. This mode is not recommended for
working with InnoDB tables with transactions that span several statements. It can help performance for
read-only transactions on InnoDB tables, where it minimizes overhead from locking and generation of
undo data, especially in MySQL 5.6.4 and up. It is also appropriate for working with MyISAM tables, where
transactions are not applicable.
See Also commit, locking, read-only transaction, SQL, transaction, undo.

availability
 The ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the
operating system, or the hardware and maintenance activity that may otherwise cause downtime. Often paired
with scalability as critical aspects of a large-scale deployment.
See Also scalability.

B
B-tree

 A tree data structure that is popular for use in database indexes. The structure is kept sorted at all times,
enabling fast lookup for exact matches (equals operator) and ranges (for example, greater than, less than,
and BETWEEN operators). This type of index is available for most storage engines, such as InnoDB and
MyISAM.

Because B-tree nodes can have many children, a B-tree is not the same as a binary tree, which is limited to 2
children per node.

Contrast with hash index, which is only available in the MEMORY storage engine. The MEMORY storage
engine can also use B-tree indexes, and you should choose B-tree indexes for MEMORY tables if some
queries use range operators.

The use of the term B-tree is intended as a reference to the general class of index design. B-tree structures
used by MySQL storage engines may be regarded as variants due to sophistications not present in a classic

3402

B-tree design. For related information, refer to the InnoDB Page Structure Fil Header section of the MySQL
Internals Manual.
See Also hash index.

backticks
 Identifiers within MySQL SQL statements must be quoted using the backtick character (`) if they contain
special characters or reserved words. For example, to refer to a table named FOO#BAR or a column named
SELECT, you would specify the identifiers as `FOO#BAR` and `SELECT`. Since the backticks provide an
extra level of safety, they are used extensively in program-generated SQL statements, where the identifier
names might not be known in advance.

Many other database systems use double quotation marks (") around such special names. For portability, you
can enable ANSI_QUOTES mode in MySQL and use double quotation marks instead of backticks to qualify
identifier names.
See Also SQL.

backup
 The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can
also refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore
operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the mysqldump command. These techniques have different characteristics in
terms of size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal
database operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup,
warm backup.

Barracuda
 The code name for an InnoDB file format that supports the COMPRESSED row format that enables InnoDB
table compression, and the DYNAMIC row format that improves the storage layout for long variable-length
columns.

The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespaces that use the
Barracuda file format.
See Also Antelope, compact row format, compressed row format, dynamic row format, file format, file-per-
table, general tablespace, innodb_file_format, MySQL Enterprise Backup, row format, system tablespace.

beta
 An early stage in the life of a software product, when it is available only for evaluation, typically without a
definite release number or a number less than 1. InnoDB does not use the beta designation, preferring an
early adopter phase that can extend over several point releases, leading to a GA release.
See Also early adopter, GA.

binary log
 A file containing a record of all statements that attempt to change table data. These statements can be
replayed to bring slave servers up to date in a replication scenario, or to bring a database up to date after
restoring table data from a backup. The binary logging feature can be turned on and off, although Oracle
recommends always enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay those statements during replication or recovery,
by using the mysqlbinlog command. For full information about the binary log, see Section 5.2.4, “The
Binary Log”. For MySQL configuration options related to the binary log, see Section 17.1.6.4, “Binary Logging
Options and Variables”.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the
file are important details. To record this information for the master server when taking a backup in a replication
context, you can specify the --slave-info option.

https://dev.mysql.com/doc/internals/en/innodb-fil-header.html
https://dev.mysql.com/doc/internals/en/index.html
https://dev.mysql.com/doc/internals/en/index.html

3403

Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the
binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.

binlog
 An informal name for the binary log file. For example, you might see this abbreviation used in e-mail
messages or forum discussions.
See Also binary log.

blind query expansion
 A special mode of full-text search enabled by the WITH QUERY EXPANSION clause. It performs the search
twice, where the search phrase for the second search is the original search phrase concatenated with the
few most highly relevant documents from the first search. This technique is mainly applicable for short search
phrases, perhaps only a single word. It can uncover relevant matches where the precise search term does not
occur in the document.
See Also full-text search.

bottleneck
 A portion of a system that is constrained in size or capacity, that has the effect of limiting overall throughput.
For example, a memory area might be smaller than necessary; access to a single required resource might
prevent multiple CPU cores from running simultaneously; or waiting for disk I/O to complete might prevent the
CPU from running at full capacity. Removing bottlenecks tends to improve concurrency. For example, the
ability to have multiple InnoDB buffer pool instances reduces contention when multiple sessions read from
and write to the buffer pool simultaneously.
See Also buffer pool, concurrency.

bounce
 A shutdown operation immediately followed by a restart. Ideally with a relatively short warmup period so
that performance and throughput quickly return to a high level.
See Also shutdown.

buddy allocator
 A mechanism for managing different-sized pages in the InnoDB buffer pool.
See Also buffer pool, page, page size.

buffer
 A memory or disk area used for temporary storage. Data is buffered in memory so that it can be written
to disk efficiently, with a few large I/O operations rather than many small ones. Data is buffered on disk for
greater reliability, so that it can be recovered even when a crash or other failure occurs at the worst possible
time. The main types of buffers used by InnoDB are the buffer pool, the doublewrite buffer, and the change
buffer.
See Also buffer pool, change buffer, crash, doublewrite buffer.

buffer pool
 The memory area that holds cached InnoDB data for both tables and indexes. For efficiency of high-volume
read operations, the buffer pool is divided into pages that can potentially hold multiple rows. For efficiency of
cache management, the buffer pool is implemented as a linked list of pages; data that is rarely used is aged
out of the cache, using a variation of the LRU algorithm. On systems with large memory, you can improve
concurrency by dividing the buffer pool into multiple buffer pool instances.

Several InnoDB status variables, information_schema tables, and performance_schema tables help
to monitor the internal workings of the buffer pool. Starting in MySQL 5.6, you can also dump and restore
the contents of the buffer pool, either automatically during shutdown and restart, or manually at any time,
through a set of InnoDB configuration variables such as innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup.
See Also buffer pool instance, LRU, page, warm up.

buffer pool instance
 Any of the multiple regions into which the buffer pool can be divided, controlled by the
innodb_buffer_pool_instances configuration option. The total memory size specified by the

3404

innodb_buffer_pool_size is divided among all the instances. Typically, multiple buffer pool instances are
appropriate for systems devoting multiple gigabytes to the InnoDB buffer pool, with each instance 1 gigabyte
or larger. On systems loading or looking up large amounts of data in the buffer pool from many concurrent
sessions, having multiple instances reduces the contention for exclusive access to the data structures that
manage the buffer pool.
See Also buffer pool.

built-in
 The built-in InnoDB storage engine within MySQL is the original form of distribution for the storage engine.
Contrast with the InnoDB Plugin. Starting with MySQL 5.5, the InnoDB Plugin is merged back into the
MySQL code base as the built-in InnoDB storage engine (known as InnoDB 1.1).

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin
but not the built-in InnoDB, or vice versa.
See Also InnoDB, plugin.

business rules
 The relationships and sequences of actions that form the basis of business software, used to run a
commercial company. Sometimes these rules are dictated by law, other times by company policy. Careful
planning ensures that the relationships encoded and enforced by the database, and the actions performed
through application logic, accurately reflect the real policies of the company and can handle real-life situations.

For example, an employee leaving a company might trigger a sequence of actions from the human resources
department. The human resources database might also need the flexibility to represent data about a person
who has been hired, but not yet started work. Closing an account at an online service might result in data
being removed from a database, or the data might be moved or flagged so that it could be recovered if the
account is re-opened. A company might establish policies regarding salary maximums, minimums, and
adjustments, in addition to basic sanity checks such as the salary not being a negative number. A retail
database might not allow a purchase with the same serial number to be returned more than once, or might not
allow credit card purchases above a certain value, while a database used to detect fraud might allow these
kinds of things.
See Also relational.

C
.cfg file

 A metadata file used with the InnoDB transportable tablespace feature. It is produced by the command
FLUSH TABLES ... FOR EXPORT, puts one or more tables in a consistent state that can be copied to
another server. The .cfg file is copied along with the corresponding .ibd file, and used to adjust the internal
values of the .ibd file, such as the space ID, during the ALTER TABLE ... IMPORT TABLESPACE step.
See Also .ibd file, space ID, transportable tablespace.

cache
 The general term for any memory area that stores copies of data for frequent or high-speed retrieval. In
InnoDB, the primary kind of cache structure is the buffer pool.
See Also buffer, buffer pool.

cardinality
 The number of different values in a table column. When queries refer to columns that have an associated
index, the cardinality of each column influences which access method is most efficient. For example, for a
column with a unique constraint, the number of different values is equal to the number of rows in the table. If
a table has a million rows but only 10 different values for a particular column, each value occurs (on average)
100,000 times. A query such as SELECT c1 FROM t1 WHERE c1 = 50; thus might return 1 row or a huge
number of rows, and the database server might process the query differently depending on the cardinality of
c1.

If the values in a column have a very uneven distribution, the cardinality might not be a good way to determine
the best query plan. For example, SELECT c1 FROM t1 WHERE c1 = x; might return 1 row when x=50

3405

and a million rows when x=30. In such a case, you might need to use index hints to pass along advice about
which lookup method is more efficient for a particular query.

Cardinality can also apply to the number of distinct values present in multiple columns, as in a composite
index.
See Also column, composite index, index, index hint, persistent statistics, random dive, selectivity, unique
constraint.

change buffer
 A special data structure that records changes to pages in secondary indexes. These values could result
from SQL INSERT, UPDATE, or DELETE statements (DML). The set of features involving the change buffer
is known collectively as change buffering, consisting of insert buffering, delete buffering, and purge
buffering.

Changes are only recorded in the change buffer when the relevant page from the secondary index is not in
the buffer pool. When the relevant index page is brought into the buffer pool while associated changes are
still in the change buffer, the changes for that page are applied in the buffer pool (merged) using the data
from the change buffer. Periodically, the purge operation that runs during times when the system is mostly
idle, or during a slow shutdown, writes the new index pages to disk. The purge operation can write the disk
blocks for a series of index values more efficiently than if each value were written to disk immediately.

Physically, the change buffer is part of the system tablespace, so that the index changes remain buffered
across database restarts. The changes are only applied (merged) when the pages are brought into the buffer
pool due to some other read operation.

The kinds and amount of data stored in the change buffer are governed by the innodb_change_buffering
and innodb_change_buffer_max_size configuration options. To see information about the current data
in the change buffer, issue the SHOW ENGINE INNODB STATUS command.

Formerly known as the insert buffer.
See Also buffer pool, change buffering, delete buffering, DML, insert buffer, insert buffering, merge, page,
purge, purge buffering, secondary index, system tablespace.

change buffering
 The general term for the features involving the change buffer, consisting of insert buffering, delete
buffering, and purge buffering. Index changes resulting from SQL statements, which could normally
involve random I/O operations, are held back and performed periodically by a background thread.
This sequence of operations can write the disk blocks for a series of index values more efficiently than
if each value were written to disk immediately. Controlled by the innodb_change_buffering and
innodb_change_buffer_max_size configuration options.
See Also change buffer, delete buffering, insert buffering, purge buffering.

checkpoint
 As changes are made to data pages that are cached in the buffer pool, those changes are written to the
data files sometime later, a process known as flushing. The checkpoint is a record of the latest changes
(represented by an LSN value) that have been successfully written to the data files.
See Also buffer pool, data files, flush, fuzzy checkpointing, LSN.

checksum
 In InnoDB, a validation mechanism to detect corruption when a page in a tablespace is read from disk
into the InnoDB buffer pool. This feature is turned on and off by the innodb_checksums configuration
option. In MySQL 5.6, you can enable a faster checksum algorithm by also specifying the configuration option
innodb_checksum_algorithm=crc32.

The innochecksum command helps to diagnose corruption problems by testing the checksum values for a
specified tablespace file while the MySQL server is shut down.

MySQL also uses checksums for replication purposes. For details, see the configuration options
binlog_checksum, master_verify_checksum, and slave_sql_verify_checksum.
See Also buffer pool, page, tablespace.

3406

child table
 In a foreign key relationship, a child table is one whose rows refer (or point) to rows in another table with an
identical value for a specific column. This is the table that contains the FOREIGN KEY ... REFERENCES
clause and optionally ON UPDATE and ON DELETE clauses. The corresponding row in the parent table
must exist before the row can be created in the child table. The values in the child table can prevent delete or
update operations on the parent table, or can cause automatic deletion or updates in the child table, based on
the ON CASCADE option used when creating the foreign key.
See Also foreign key, parent table.

clean page
 A page in the InnoDB buffer pool where all changes made in memory have also been written (flushed) to
the data files. The opposite of a dirty page.
See Also buffer pool, data files, dirty page, flush, page.

clean shutdown
 A shutdown that completes without errors and applies all changes to InnoDB tables before finishing, as
opposed to a crash or a fast shutdown. Synonym for slow shutdown.
See Also crash, fast shutdown, shutdown, slow shutdown.

client
 A type of program that sends requests to a server, and interprets or processes the results. The client
software might run only some of the time (such as a mail or chat program), and might run interactively (such
as the mysql command processor).
See Also mysql, server.

clustered index
 The InnoDB term for a primary key index. InnoDB table storage is organized based on the values of the
primary key columns, to speed up queries and sorts involving the primary key columns. For best performance,
choose the primary key columns carefully based on the most performance-critical queries. Because modifying
the columns of the clustered index is an expensive operation, choose primary columns that are rarely or never
updated.

In the Oracle Database product, this type of table is known as an index-organized table.
See Also index, primary key, secondary index.

cold backup
 A backup taken while the database is shut down. For busy applications and web sites, this might not be
practical, and you might prefer a warm backup or a hot backup.
See Also backup, hot backup, warm backup.

column
 A data item within a row, whose storage and semantics are defined by a data type. Each table and index is
largely defined by the set of columns it contains.

Each column has a cardinality value. A column can be the primary key for its table, or part of the primary
key. A column can be subject to a unique constraint, a NOT NULL constraint, or both. Values in different
columns, even across different tables, can be linked by a foreign key relationship.

In discussions of MySQL internal operations, sometimes field is used as a synonym.
See Also cardinality, foreign key, index, primary key, row, SQL, table, unique constraint.

column index
 An index on a single column.
See Also composite index, index.

column prefix
 When an index is created with a length specification, such as CREATE INDEX idx ON t1 (c1(N)), only
the first N characters of the column value are stored in the index. Keeping the index prefix small makes the
index compact, and the memory and disk I/O savings help performance. (Although making the index prefix too

3407

small can hinder query optimization by making rows with different values appear to the query optimizer to be
duplicates.)

For columns containing binary values or long text strings, where sorting is not a major consideration and
storing the entire value in the index would waste space, the index automatically uses the first N (typically 768)
characters of the value to do lookups and sorts.
See Also index.

commit
 A SQL statement that ends a transaction, making permanent any changes made by the transaction. It is the
opposite of rollback, which undoes any changes made in the transaction.

InnoDB uses an optimistic mechanism for commits, so that changes can be written to the data files before
the commit actually occurs. This technique makes the commit itself faster, with the tradeoff that more work is
required in case of a rollback.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement.
See Also autocommit, optimistic, rollback, SQL, transaction.

compact row format
 The default InnoDB row format for InnoDB tables from MySQL 5.0.3 to MySQL 5.7.8. As of MySQL 5.7.9,
the default row format is defined by the innodb_default_row_format configuration option, which has a
default setting of DYNAMIC. The COMPACT row format provides a more compact representation for nulls
and variable-length columns than the prior default (REDUNDANT row format).

For additional information about InnoDB COMPACT row format, see Section 14.8.4, “COMPACT and
REDUNDANT Row Formats”.
See Also Antelope, dynamic row format, file format, redundant row format, row format.

composite index
 An index that includes multiple columns.
See Also index, index prefix.

compressed backup
 The compression feature of the MySQL Enterprise Backup product makes a compressed copy of each
tablespace, changing the extension from .ibd to .ibz. Compressing the backup data allows you to
keep more backups on hand, and reduces the time to transfer backups to a different server. The data is
uncompressed during the restore operation. When a compressed backup operation processes a table that is
already compressed, it skips the compression step for that table, because compressing again would result in
little or no space savings.

A set of files produced by the MySQL Enterprise Backup product, where each tablespace is compressed.
The compressed files are renamed with a .ibz file extension.

Applying compression right at the start of the backup process helps to avoid storage overhead during the
compression process, and to avoid network overhead when transferring the backup files to another server.
The process of applying the binary log takes longer, and requires uncompressing the backup files.
See Also apply, binary log, compression, hot backup, MySQL Enterprise Backup, tablespace.

compressed row format
 A row format that enables data and index compression for InnoDB tables. It was introduced in the InnoDB
Plugin, available as part of the Barracuda file format. Large fields are stored away from the page that holds
the rest of the row data, as in dynamic row format. Both index pages and the large fields are compressed,
yielding memory and disk savings. Depending on the structure of the data, the decrease in memory and disk
usage might or might not outweigh the performance overhead of uncompressing the data as it is used. See
Section 14.6, “InnoDB Table and Page Compression” for usage details.

For additional information about InnoDB COMPRESSED row format, see Section 14.8.3, “DYNAMIC and
COMPRESSED Row Formats”.
See Also Barracuda, compression, dynamic row format, row format.

3408

compressed table
 A table for which the data is stored in compressed form. For InnoDB, it is a table created with
ROW_FORMAT=COMPRESSED. See Section 14.6, “InnoDB Table and Page Compression” for more information.
See Also compressed row format, compression.

compression
 A feature with wide-ranging benefits from using less disk space, performing less I/O, and using less memory
for caching.

InnoDB supports both table-level and page-level compression. InnoDB page compression was introduced in
MySQL 5.7.8 and is also referred to as transparent page compression. For more information about InnoDB
compression, see Section 14.6, “InnoDB Table and Page Compression”.

Another type of compression is the compressed backup feature of the MySQL Enterprise Backup product.
See Also Barracuda, buffer pool, compressed row format, DML, general tablespace, hot backup, index,
INFORMATION_SCHEMA, innodb_file_per_table, plugin, table, undo buffer.

compression failure
 Not actually an error, rather an expensive operation that can occur when using compression in combination
with DML operations. It occurs when: updates to a compressed page overflow the area on the page
reserved for recording modifications; the page is compressed again, with all changes applied to the table
data; the re-compressed data does not fit on the original page, requiring MySQL to split the data into
two new pages and compress each one separately. To check the frequency of this condition, query the
table INFORMATION_SCHEMA.INNODB_CMP and check how much the value of the COMPRESS_OPS
column exceeds the value of the COMPRESS_OPS_OK column. Ideally, compression failures do not
occur often; when they do, you can adjust the configuration options innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max.
See Also compression, DML, page.

concatenated index
See composite index.

concurrency
 The ability of multiple operations (in database terminology, transactions) to run simultaneously, without
interfering with each other. Concurrency is also involved with performance, because ideally the protection
for multiple simultaneous transactions works with a minimum of performance overhead, using efficient
mechanisms for locking.
See Also ACID, locking, transaction.

configuration file
 The file that holds the option values used by MySQL at startup. Traditionally, on Linux and UNIX this file is
named my.cnf, and on Windows it is named my.ini. You can set a number of options related to InnoDB
under the [mysqld] section of the file.

Typically, this file is searched for in the locations /etc/my.cnf /etc/mysql/my.cnf /usr/local/
mysql/etc/my.cnf and ~/.my.cnf. See Section 4.2.6, “Using Option Files” for details about the search
path for this file.

When you use the MySQL Enterprise Backup product, you typically use two configuration files: one that
specifies where the data comes from and how it is structured (which could be the original configuration file
for your real server), and a stripped-down one containing only a small set of options that specify where the
backup data goes and how it is structured. The configuration files used with the MySQL Enterprise Backup
product must contain certain options that are typically left out of regular configuration files, so you might need
to add some options to your existing configuration file for use with MySQL Enterprise Backup.
See Also my.cnf, option file.

consistent read
 A read operation that uses snapshot information to present query results based on a point in time, regardless
of changes performed by other transactions running at the same time. If queried data has been changed by
another transaction, the original data is reconstructed based on the contents of the undo log. This technique

3409

avoids some of the locking issues that can reduce concurrency by forcing transactions to wait for other
transactions to finish.

With the repeatable read isolation level, the snapshot is based on the time when the first read operation is
performed. With the read committed isolation level, the snapshot is reset to the time of each consistent read
operation.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. Because a consistent read does not set any locks on the tables
it accesses, other sessions are free to modify those tables while a consistent read is being performed on the
table.

For technical details about the applicable isolation levels, see Section 14.2.2.2, “Consistent Nonlocking
Reads”.
See Also ACID, concurrency, isolation level, locking, MVCC, READ COMMITTED, READ UNCOMMITTED,
REPEATABLE READ, SERIALIZABLE, transaction, undo log.

constraint
 An automatic test that can block database changes to prevent data from becoming inconsistent. (In computer
science terms, a kind of assertion related to an invariant condition.) Constraints are a crucial component of
the ACID philosophy, to maintain data consistency. Constraints supported by MySQL include FOREIGN KEY
constraints and unique constraints.
See Also ACID, foreign key, relational, unique constraint.

counter
 A value that is incremented by a particular kind of InnoDB operation. Useful for measuring how busy a
server is, troubleshooting the sources of performance issues, and testing whether changes (for example,
to configuration settings or indexes used by queries) have the desired low-level effects. Different kinds of
counters are available through performance_schema tables and information_schema tables, particularly
information_schema.innodb_metrics.
See Also INFORMATION_SCHEMA, metrics counter, Performance Schema.

covering index
 An index that includes all the columns retrieved by a query. Instead of using the index values as pointers to
find the full table rows, the query returns values from the index structure, saving disk I/O. InnoDB can apply
this optimization technique to more indexes than MyISAM can, because InnoDB secondary indexes also
include the primary key columns. InnoDB cannot apply this technique for queries against tables modified by a
transaction, until that transaction ends.

Any column index or composite index could act as a covering index, given the right query. Design your
indexes and queries to take advantage of this optimization technique wherever possible.
See Also column index, composite index, index, secondary index.

CPU-bound
 A type of workload where the primary bottleneck is CPU operations in memory. Typically involves read-
intensive operations where the results can all be cached in the buffer pool.
See Also bottleneck, buffer pool, CPU-bound, workload.

crash
 MySQL uses the term "crash" to refer generally to any unexpected shutdown operation where the server
cannot do its normal cleanup. For example, a crash could happen due to a hardware fault on the database
server machine or storage device; a power failure; a potential data mismatch that causes the MySQL server to
halt; a fast shutdown initiated by the DBA; or many other reasons. The robust, automatic crash recovery for
InnoDB tables ensures that data is made consistent when the server is restarted, without any extra work for
the DBA.
See Also crash recovery, fast shutdown, InnoDB, redo log, shutdown.

crash recovery
 The cleanup activities that occur when MySQL is started again after a crash. For InnoDB tables, changes
from incomplete transactions are replayed using data from the redo log. Changes that were committed

3410

before the crash, but not yet written into the data files, are reconstructed from the doublewrite buffer. When
the database is shut down normally, this type of activity is performed during shutdown by the purge operation.

During normal operation, committed data can be stored in the change buffer for a period of time before being
written to the data files. There is always a tradeoff between keeping the data files up-to-date, which introduces
performance overhead during normal operation, and buffering the data, which can make shutdown and crash
recovery take longer.
See Also change buffer, commit, crash, data files, doublewrite buffer, InnoDB, purge, redo log.

CRUD
 Acronym for "create, read, update, delete", a common sequence of operations in database applications.
Often denotes a class of applications with relatively simple database usage (basic DDL, DML and query
statements in SQL) that can be implemented quickly in any language.
See Also DDL, DML, query, SQL.

cursor
 An internal data structure that is used to represent the result set of a query, or other operation that performs
a search using an SQL WHERE clause. It works like an iterator in other high-level languages, producing each
value from the result set as requested.

Although usually SQL handles the processing of cursors for you, you might delve into the inner workings when
dealing with performance-critical code.
See Also query.

D

data definition language
See DDL.

data dictionary
 Metadata that keeps track of InnoDB-related objects such as tables, indexes, and table columns. This
metadata is physically located in the InnoDB system tablespace. For historical reasons, it overlaps to some
degree with information stored in the .frm files.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups
include the contents of the data dictionary.
See Also column, .frm file, hot backup, index, MySQL Enterprise Backup, system tablespace, table.

data directory
 The directory under which each MySQL instance keeps the data files for InnoDB and the directories
representing individual databases. Controlled by the datadir configuration option.
See Also data files, instance.

data files
 The files that physically contain the InnoDB table and index data.

The system tablespace, which holds the data dictionary and is capable of holding data for multiple InnoDB
tables, is represented by one or more .ibdata data files.

File-per-table tablespaces, which hold data for a single InnoDB table, are represented by a .ibd data file.

General tablespaces (introduced in MySQL 5.7.6), which can hold data for multiple InnoDB tables, are also
represented by a .ibd data file.
See Also data dictionary, file-per-table, general tablespace, .ibd file, ibdata file, index, system tablespace,
table, tablespace.

data manipulation language
See DML.

3411

data warehouse
 A database system or application that primarily runs large queries. The read-only or read-mostly data might
be organized in denormalized form for query efficiency. Can benefit from the optimizations for read-only
transactions in MySQL 5.6 and higher. Contrast with OLTP.
See Also denormalized, OLTP, query, read-only transaction.

database
 Within the MySQL data directory, each database is represented by a separate directory. The InnoDB
system tablespace, which can hold table data from multiple databases within a MySQL instance, is kept
in data files that reside outside of individual database directories. When file-per-table mode is enabled, the
.ibd files representing individual InnoDB tables are stored inside the database directories unless created
elsewhere using the DATA DIRECTORY clause. General tablespaces, introduced in MySQL 5.7.6, also hold
table data in .ibd files. Unlike file-per-table .ibd files, general tablespace .ibd files can hold table data from
multiple databases within a MySQL instance, and can be assigned to directories relative to or independent of
the MySQL data directory.

For long-time MySQL users, a database is a familiar notion. Users coming from an Oracle Database
background will find that the MySQL meaning of a database is closer to what Oracle Database calls a
schema.
See Also data files, file-per-table, .ibd file, instance, schema, system tablespace.

DCL
 Data control language, a set of SQL statements for managing privileges. In MySQL, consists of the GRANT
and REVOKE statements. Contrast with DDL and DML.
See Also DDL, DML, SQL.

DDL
 Data definition language, a set of SQL statements for manipulating the database itself rather than individual
table rows. Includes all forms of the CREATE, ALTER, and DROP statements. Also includes the TRUNCATE
statement, because it works differently than a DELETE FROM table_name statement, even though the
ultimate effect is similar.

DDL statements automatically commit the current transaction; they cannot be rolled back.

InnoDB's online DDL feature enhances performance for CREATE INDEX, DROP INDEX, and many types
of ALTER TABLE operations. See Section 14.10, “InnoDB and Online DDL” for more information. Also, the
InnoDB's file-per-table setting can affect the behaviour of DROP TABLE and TRUNCATE TABLE operations.

Contrast with DML and DCL.
See Also commit, DCL, DML, file-per-table, rollback, SQL, transaction.

deadlock
 A situation where different transactions are unable to proceed, because each holds a lock that the other
needs. Because both transactions are waiting for a resource to become available, neither will ever release the
locks it holds.

A deadlock can occur when the transactions lock rows in multiple tables (through statements such as UPDATE
or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when such statements
lock ranges of index records and gaps, with each transaction acquiring some locks but not others due to a
timing issue.

To reduce the possibility of deadlocks, use transactions rather than LOCK TABLE statements; keep
transactions that insert or update data small enough that they do not stay open for long periods of time; when
different transactions update multiple tables or large ranges of rows, use the same order of operations (such
as SELECT ... FOR UPDATE) in each transaction; create indexes on the columns used in SELECT ...
FOR UPDATE and UPDATE ... WHERE statements. The possibility of deadlocks is not affected by the
isolation level, because the isolation level changes the behavior of read operations, while deadlocks occur
because of write operations.

If a deadlock does occur, InnoDB detects the condition and rolls back one of the transactions (the victim).
Thus, even if your application logic is perfectly correct, you must still handle the case where a transaction

3412

must be retried. To see the last deadlock in an InnoDB user transaction, use the command SHOW ENGINE
INNODB STATUS. If frequent deadlocks highlight a problem with transaction structure or application error
handling, run with the innodb_print_all_deadlocks setting enabled to print information about all
deadlocks to the mysqld error log.

For background information on how deadlocks are automatically detected and handled, see Section 14.2.2.9,
“Deadlock Detection and Rollback”. For tips on avoiding and recovering from deadlock conditions, see
Section 14.2.2.10, “How to Cope with Deadlocks”.
See Also concurrency, gap, isolation level, lock, locking, rollback, transaction, victim.

deadlock detection
 A mechanism that automatically detects when a deadlock occurs, and automatically rolls back one of the
transactions involved (the victim).
See Also deadlock, rollback, transaction, victim.

delete
 When InnoDB processes a DELETE statement, the rows are immediately marked for deletion and no longer
are returned by queries. The storage is reclaimed sometime later, during the periodic garbage collection
known as the purge operation, performed by a separate thread. For removing large quantities of data, related
operations with their own performance characteristics are truncate and drop.
See Also drop, purge, truncate.

delete buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the
change buffer rather than writing the changes immediately, so that the physical writes can be performed to
minimize random I/O. (Because delete operations are a two-step process, this operation buffers the write that
normally marks an index record for deletion.) It is one of the types of change buffering; the others are insert
buffering and purge buffering.
See Also change buffer, change buffering, insert buffer, insert buffering, purge buffering.

denormalized
 A data storage strategy that duplicates data across different tables, rather than linking the tables with foreign
keys and join queries. Typically used in data warehouse applications, where the data is not updated
after loading. In such applications, query performance is more important than making it simple to maintain
consistent data during updates. Contrast with normalized.
See Also data warehouse, normalized.

descending index
 A type of index available with some database systems, where index storage is optimized to process ORDER
BY column DESC clauses. Currently, although MySQL allows the DESC keyword in the CREATE TABLE
statement, it does not use any special storage layout for the resulting index.
See Also index.

dirty page
 A page in the InnoDB buffer pool that has been updated in memory, where the changes are not yet written
(flushed) to the data files. The opposite of a clean page.
See Also buffer pool, clean page, data files, flush, page.

dirty read
 An operation that retrieves unreliable data, data that was updated by another transaction but not yet
committed. It is only possible with the isolation level known as read uncommitted.

This kind of operation does not adhere to the ACID principle of database design. It is considered very risky,
because the data could be rolled back, or updated further before being committed; then, the transaction
doing the dirty read would be using data that was never confirmed as accurate.

Its polar opposite is consistent read, where InnoDB goes to great lengths to ensure that a transaction does
not read information updated by another transaction, even if the other transaction commits in the meantime.
See Also ACID, commit, consistent read, isolation level, READ COMMITTED, READ UNCOMMITTED,
rollback.

3413

disk-based
 A kind of database that primarily organizes data on disk storage (hard drives or equivalent). Data is brought
back and forth between disk and memory to be operated upon. It is the opposite of an in-memory database.
Although InnoDB is disk-based, it also contains features such as the buffer pool, multiple buffer pool
instances, and the adaptive hash index that allow certain kinds of workloads to work primarily from memory.
See Also adaptive hash index, buffer pool, in-memory database.

disk-bound
 A type of workload where the primary bottleneck is disk I/O. (Also known as I/O-bound.) Typically involves
frequent writes to disk, or random reads of more data than can fit into the buffer pool.
See Also bottleneck, buffer pool, CPU-bound, workload.

DML
 Data manipulation language, a set of SQL statements for performing insert, update, and delete operations.
The SELECT statement is sometimes considered as a DML statement, because the SELECT ... FOR
UPDATE form is subject to the same considerations for locking as INSERT, UPDATE, and DELETE.

DML statements for an InnoDB table operate in the context of a transaction, so their effects can be
committed or rolled back as a single unit.

Contrast with DDL and DCL.
See Also commit, DCL, DDL, locking, rollback, SQL, transaction.

document id
 In the InnoDB full-text search feature, a special column in the table containing the FULLTEXT index,
to uniquely identify the document associated with each ilist value. Its name is FTS_DOC_ID (uppercase
required). The column itself must be of BIGINT UNSIGNED NOT NULL type, with a unique index named
FTS_DOC_ID_INDEX. Preferably, you define this column when creating the table. If InnoDB must add the
column to the table while creating a FULLTEXT index, the indexing operation is considerably more expensive.
See Also full-text search, FULLTEXT index, ilist.

doublewrite buffer
 InnoDB uses a novel file flush technique called doublewrite. Before writing pages to the data files, InnoDB
first writes them to a contiguous area called the doublewrite buffer. Only after the write and the flush to the
doublewrite buffer have completed, does InnoDB write the pages to their proper positions in the data file. If
there is an operating system, storage subsystem, or mysqld process crash in the middle of a page write,
InnoDB can later find a good copy of the page from the doublewrite buffer during crash recovery.

Although data is always written twice, the doublewrite buffer does not require twice as much I/O overhead
or twice as many I/O operations. Data is written to the buffer itself as a large sequential chunk, with a single
fsync() call to the operating system.

To turn off the doublewrite buffer, specify the option innodb_doublewrite=0.
See Also crash recovery, data files, page, purge.

drop
 A kind of DDL operation that removes a schema object, through a statement such as DROP TABLE
or DROP INDEX. It maps internally to an ALTER TABLE statement. From an InnoDB perspective, the
performance considerations of such operations involve the time that the data dictionary is locked to ensure
that interrelated objects are all updated, and the time to update memory structures such as the buffer pool.
For a table, the drop operation has somewhat different characteristics than a truncate operation (TRUNCATE
TABLE statement).
See Also buffer pool, data dictionary, DDL, table, truncate.

dynamic row format
 A row format introduced in the InnoDB Plugin, available as part of the Barracuda file format. Because long
variable-length column values are stored outside of the page that holds the row data, it is very efficient for
rows that include large objects. Since the large fields are typically not accessed to evaluate query conditions,
they are not brought into the buffer pool as often, resulting in fewer I/O operations and better utilization of
cache memory.

3414

As of MySQL 5.7.9, the default row format is defined by innodb_default_row_format, which has a
default value of DYNAMIC.

For additional information about InnoDB DYNAMIC row format, see Section 14.8.3, “DYNAMIC and
COMPRESSED Row Formats”.
See Also Barracuda, buffer pool, file format, row format.

E
early adopter

 A stage similar to beta, when a software product is typically evaluated for performance, functionality, and
compatibility in a non-mission-critical setting. InnoDB uses the early adopter designation rather than beta,
through a succession of point releases leading up to a GA release.
See Also beta, GA.

error log
 A type of log showing information about MySQL startup and critical runtime errors and crash information. For
details, see Section 5.2.2, “The Error Log”.
See Also crash, log.

eviction
 The process of removing an item from a cache or other temporary storage area, such as the InnoDB buffer
pool. Often, but not always, uses the LRU algorithm to determine which item to remove. When a dirty page
is evicted, its contents are flushed to disk, and any dirty neighbor pages might be flushed also.
See Also buffer pool, dirty page, flush, LRU.

exclusive lock
 A kind of lock that prevents any other transaction from locking the same row. Depending on the transaction
isolation level, this kind of lock might block other transactions from writing to the same row, or might also
block other transactions from reading the same row. The default InnoDB isolation level, REPEATABLE
READ, enables higher concurrency by allowing transactions to read rows that have exclusive locks, a
technique known as consistent read.
See Also concurrency, consistent read, isolation level, lock, REPEATABLE READ, shared lock, transaction.

extent
 A group of pages within a tablespace. With the default page size of 16KB, an extent contains 64
pages. In MySQL 5.6, the page size for an InnoDB instance can be 4KB, 8KB, or 16KB, controlled by the
innodb_page_size configuration option. For 4KB, 8KB, and 16KB pages sizes, the extent size is always
1MB (or 1048576 bytes).

Support for 32KB and 64KB InnoDB page sizes was added in MySQL 5.7.6. For a 32KB page size, the extent
size is 2MB. For a 64KB page size, the extent size is 4MB.

InnoDB features such as segments, read-ahead requests and the doublewrite buffer use I/O operations
that read, write, allocate, or free data one extent at a time.
See Also doublewrite buffer, neighbor page, page, page size, read-ahead, segment, tablespace.

F
.frm file

 A file containing the metadata, such as the table definition, of a MySQL table.

For backups, you must always keep the full set of .frm files along with the backup data to be able to restore
tables that are altered or dropped after the backup.

Although each InnoDB table has a .frm file, InnoDB maintains its own table metadata in the system
tablespace; the .frm files are not needed for InnoDB to operate on InnoDB tables.

These files are backed up by the MySQL Enterprise Backup product. These files must not be modified by
an ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB

3415

tables perform a FLUSH TABLES WITH READ LOCK operation to freeze such activity while backing up the
.frm files. Restoring a backup can result in .frm files being created, changed, or removed to match the state
of the database at the time of the backup.
See Also MySQL Enterprise Backup.

Fast Index Creation
 A capability first introduced in the InnoDB Plugin, now part of the MySQL server in 5.5 and higher, that
speeds up creation of InnoDB secondary indexes by avoiding the need to completely rewrite the associated
table. The speedup applies to dropping secondary indexes also.

Because index maintenance can add performance overhead to many data transfer operations, consider doing
operations such as ALTER TABLE ... ENGINE=INNODB or INSERT INTO ... SELECT * FROM ...
without any secondary indexes in place, and creating the indexes afterward.

In MySQL 5.6, this feature becomes more general: you can read and write to tables while an index is being
created, and many more kinds of ALTER TABLE operations can be performed without copying the table,
without blocking DML operations, or both. Thus in MySQL 5.6 and higher, we typically refer to this set of
features as online DDL rather than Fast Index Creation.

For related information, see InnoDB Fast Index Creation and Section 14.10, “InnoDB and Online DDL”.
See Also DML, index, online DDL, secondary index.

fast shutdown
 The default shutdown procedure for InnoDB, based on the configuration setting
innodb_fast_shutdown=1. To save time, certain flush operations are skipped. This type of shutdown
is safe during normal usage, because the flush operations are performed during the next startup, using the
same mechanism as in crash recovery. In cases where the database is being shut down for an upgrade or
downgrade, do a slow shutdown instead to ensure that all relevant changes are applied to the data files
during the shutdown.
See Also crash recovery, data files, flush, shutdown, slow shutdown.

file format
 The format used by InnoDB for each table, typically with the file-per-table setting enabled so that each table
is stored in a separate .ibd file. Supported file formats available in InnoDB are known as Antelope and
Barracuda. Each file format supports one or more row formats. The row formats available for Barracuda
tables, COMPRESSED and DYNAMIC, enable important new storage features for InnoDB tables.
See Also Antelope, Barracuda, file-per-table, .ibd file, ibdata file, row format.

file-per-table
 A general name for the setting controlled by the innodb_file_per_table option, which is an important
configuration option that affects aspects of InnoDB file storage, availability of features, and I/O characteristics.
In MySQL 5.6.7 and higher, it is enabled by default. Prior to MySQL 5.6.7, it is disabled by default.

With the innodb_file_per_table option enabled, you can create a table in its own .ibd file rather than
in the shared ibdata files of the system tablespace. When table data is stored in an individual .ibd file, you
have more flexibility to choose nondefault file formats and row formats, which are required for features such
as data compression. The TRUNCATE TABLE operation is also much faster, and the reclaimed space can be
used by the operating system rather than remaining reserved for InnoDB.

The MySQL Enterprise Backup product is more flexible for tables that are in their own files. For example,
tables can be excluded from a backup, but only if they are in separate files. Thus, this setting is suitable for
tables that are backed up less frequently or on a different schedule.
See Also compressed row format, compression, file format, .ibd file, ibdata file, innodb_file_per_table, row
format, system tablespace.

fill factor
 In an InnoDB index, the proportion of a page that is taken up by index data before the page is split. The
unused space when index data is first divided between pages allows for rows to be updated with longer
string values without requiring expensive index maintenance operations. If the fill factor is too low, the index
consumes more space than needed, causing extra I/O overhead when reading the index. If the fill factor

http://dev.mysql.com/doc/refman/5.5/en/innodb-create-index.html

3416

is too high, any update that increases the length of column values can cause extra I/O overhead for index
maintenance. See Section 14.2.7.4, “Physical Structure of an InnoDB Index” for more information.
See Also index, page.

fixed row format
 This row format is used by the MyISAM storage engine, not by InnoDB. If you create an InnoDB table with
the option ROW_FORMAT=FIXED in MySQL 5.7.6 or earlier, InnoDB uses the compact row format instead,
although the FIXED value might still show up in output such as SHOW TABLE STATUS reports. As of MySQL
5.7.7, InnoDB returns an error if ROW_FORMAT=FIXED is specified.
See Also compact row format, row format.

flush
 To write changes to the database files, that had been buffered in a memory area or a temporary disk storage
area. The InnoDB storage structures that are periodically flushed include the redo log, the undo log, and the
buffer pool.

Flushing can happen because a memory area becomes full and the system needs to free some space,
because a commit operation means the changes from a transaction can be finalized, or because a slow
shutdown operation means that all outstanding work should be finalized. When it is not critical to flush all
the buffered data at once, InnoDB can use a technique called fuzzy checkpointing to flush small batches of
pages to spread out the I/O overhead.
See Also buffer pool, commit, fuzzy checkpointing, neighbor page, redo log, slow shutdown, undo log.

flush list
 An internal InnoDB data structure that tracks dirty pages in the buffer pool: that is, pages that have been
changed and need to be written back out to disk. This data structure is updated frequently by InnoDB's
internal mini-transactions, and so is protected by its own mutex to allow concurrent access to the buffer
pool.
See Also buffer pool, dirty page, LRU, mini-transaction, mutex, page, page cleaner.

foreign key
 A type of pointer relationship, between rows in separate InnoDB tables. The foreign key relationship is
defined on one column in both the parent table and the child table.

In addition to enabling fast lookup of related information, foreign keys help to enforce referential integrity,
by preventing any of these pointers from becoming invalid as data is inserted, updated, and deleted. This
enforcement mechanism is a type of constraint. A row that points to another table cannot be inserted if
the associated foreign key value does not exist in the other table. If a row is deleted or its foreign key value
changed, and rows in another table point to that foreign key value, the foreign key can be set up to prevent
the deletion, cause the corresponding column values in the other table to become null, or automatically delete
the corresponding rows in the other table.

One of the stages in designing a normalized database is to identify data that is duplicated, separate that data
into a new table, and set up a foreign key relationship so that the multiple tables can be queried like a single
table, using a join operation.
See Also child table, FOREIGN KEY constraint, join, normalized, NULL, parent table, referential integrity,
relational.

FOREIGN KEY constraint
 The type of constraint that maintains database consistency through a foreign key relationship. Like other
kinds of constraints, it can prevent data from being inserted or updated if data would become inconsistent; in
this case, the inconsistency being prevented is between data in multiple tables. Alternatively, when a DML
operation is performed, FOREIGN KEY constraints can cause data in child rows to be deleted, changed to
different values, or set to null, based on the ON CASCADE option specified when creating the foreign key.
See Also child table, constraint, DML, foreign key, NULL.

FTS
 In most contexts, an acronym for full-text search. Sometimes in performance discussions, an acronym for
full table scan.

3417

See Also full table scan, full-text search.

full backup
 A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup.
See Also backup, database, instance, partial backup, table.

full table scan
 An operation that requires reading the entire contents of a table, rather than just selected portions using an
index. Typically performed either with small lookup tables, or in data warehousing situations with large tables
where all available data is aggregated and analyzed. How frequently these operations occur, and the sizes of
the tables relative to available memory, have implications for the algorithms used in query optimization and
managing the buffer pool.

The purpose of indexes is to allow lookups for specific values or ranges of values within a large table, thus
avoiding full table scans when practical.
See Also buffer pool, index, LRU.

full-text search
 The MySQL feature for finding words, phrases, Boolean combinations of words, and so on within table data,
in a faster, more convenient, and more flexible way than using the SQL LIKE operator or writing your own
application-level search algorithm. It uses the SQL function MATCH() [1446] and FULLTEXT indexes.
See Also FULLTEXT index.

FULLTEXT index
 The special kind of index that holds the search index in the MySQL full-text search mechanism.
Represents the words from values of a column, omitting any that are specified as stopwords. Originally, only
available for MyISAM tables. Starting in MySQL 5.6.4, it is also available for InnoDB tables.
See Also full-text search, index, InnoDB, search index, stopword.

fuzzy checkpointing
 A technique that flushes small batches of dirty pages from the buffer pool, rather than flushing all dirty
pages at once which would disrupt database processing.
See Also buffer pool, dirty page, flush.

G
GA

 "Generally available", the stage when a software product leaves beta and is available for sale, official
support, and production use.
See Also beta, early adopter.

gap
 A place in an InnoDB index data structure where new values could be inserted. When you lock a set of rows
with a statement such as SELECT ... FOR UPDATE, InnoDB can create locks that apply to the gaps as
well as the actual values in the index. For example, if you select all values greater than 10 for update, a gap
lock prevents another transaction from inserting a new value that is greater than 10. The supremum record
and infimum record represent the gaps containing all values greater than or less than all the current index
values.
See Also concurrency, gap lock, index, infimum record, isolation level, supremum record.

gap lock
 A lock on a gap between index records, or a lock on the gap before the first or after the last index record.
For example, SELECT c1 FOR UPDATE FROM t WHERE c1 BETWEEN 10 and 20; prevents other
transactions from inserting a value of 15 into the column t.c1, whether or not there was already any such
value in the column, because the gaps between all existing values in the range are locked. Contrast with
record lock and next-key lock.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some transaction
isolation levels and not others.

3418

See Also gap, infimum record, lock, next-key lock, record lock, supremum record.

general log
See general query log.

general query log
 A type of log used for diagnosis and troubleshooting of SQL statements processed by the MySQL server.
Can be stored in a file or in a database table. You must enable this feature through the general_log
configuration option to use it. You can disable it for a specific connection through the sql_log_off
configuration option.

Records a broader range of queries than the slow query log. Unlike the binary log, which is used for
replication, the general query log contains SELECT statements and does not maintain strict ordering. For more
information, see Section 5.2.3, “The General Query Log”.
See Also binary log, general query log, log.

general tablespace
 A shared InnoDB tablespace created using CREATE TABLESPACE syntax. General tablespaces can be
created outside of the MySQL data directory, are capable of holding multiple tables, and support tables of all
row formats. General tablespaces were introduced in MySQL 5.7.6.

Tables are added to a general tablespace using CREATE TABLE tbl_name ... TABLESPACE [=]
tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name syntax.

For more information, see Section 14.4.9, “InnoDB General Tablespaces”.
See Also file-per-table, system tablespace, table, tablespace.

global_transaction
 A type of transaction involved in XA operations. It consists of several actions that are transactional in
themselves, but that all must either complete successfully as a group, or all be rolled back as a group. In
essence, this extends ACID properties "up a level" so that multiple ACID transactions can be executed
in concert as components of a global operation that also has ACID properties. For this type of distributed
transaction, you must use the SERIALIZABLE isolation level to achieve ACID properties.
See Also ACID, SERIALIZABLE, transaction, XA.

group commit
 An InnoDB optimization that performs some low-level I/O operations (log write) once for a set of commit
operations, rather than flushing and syncing separately for each commit.

When the binary log is enabled, you typically also set the configuration option sync_binlog=0, because
group commit for the binary log is only supported if it is set to 0.
See Also commit, plugin, XA.

H
hash index

 A type of index intended for queries that use equality operators, rather than range operators such as greater-
than or BETWEEN. It is available for MEMORY tables. Although hash indexes are the default for MEMORY
tables for historic reasons, that storage engine also supports B-tree indexes, which are often a better choice
for general-purpose queries.

MySQL includes a variant of this index type, the adaptive hash index, that is constructed automatically for
InnoDB tables if needed based on runtime conditions.
See Also adaptive hash index, B-tree, index, InnoDB.

HDD
 Acronym for "hard disk drive". Refers to storage media using spinning platters, usually when comparing and
contrasting with SSD. Its performance characteristics can influence the throughput of a disk-based workload.
See Also disk-based, SSD.

3419

heartbeat
 A periodic message that is sent to indicate that a system is functioning properly. In a replication context, if
the master stops sending such messages, one of the slaves can take its place. Similar techniques can be
used between the servers in a cluster environment, to confirm that all of them are operating properly.
See Also replication.

high-water mark
 A value representing an upper limit, either a hard limit that should not be exceeded at runtime, or a record of
the maximum value that was actually reached. Contrast with low-water mark.
See Also low-water mark.

history list
 A list of transactions with delete-marked records scheduled to be processed by the InnoDB purge
operation. Recorded in the undo log. The length of the history list is reported by the command SHOW
ENGINE INNODB STATUS. If the history list grows longer than the value of the innodb_max_purge_lag
configuration option, each DML operation is delayed slightly to allow the purge operation to finish flushing the
deleted records.

Also known as purge lag.
See Also flush, purge, purge lag, rollback segment, transaction, undo log.

hole punching
 Releasing empty blocks from a page. The InnoDB transparent page compression feature relies on hole
punching support. For more information, see Section 14.6.2, “InnoDB Page Compression”.
See Also sparse file, transparent page compression.

hot
 A condition where a row, table, or internal data structure is accessed so frequently, requiring some form of
locking or mutual exclusion, that it results in a performance or scalability issue.

Although "hot" typically indicates an undesirable condition, a hot backup is the preferred type of backup.
See Also hot backup.

hot backup
 A backup taken while the database and is running and applications are reading and writing to it. The backup
involves more than simply copying data files: it must include any data that was inserted or updated while the
backup was in process; it must exclude any data that was deleted while the backup was in process; and it
must ignore any changes that were not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is known as MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the data files produces a raw backup.
The apply step incorporates any changes to the database that happened while the backup was running.
Applying the changes produces a prepared backup; these files are ready to be restored whenever necessary.
See Also apply, MySQL Enterprise Backup, prepared backup, raw backup.

I
.ibd file

 The data file for file-per-table tablespaces and general tablespaces. File-per-table tablespace .idb files
contain a single table and associated index data. General tablespace .idb files may contain table and index
data for multiple tables. General tablespaces were introduced in MySQL 5.7.6.

The .ibd file extension does not apply to the system tablespace, which consists of one or more ibdata
files.

If a file-per-table tablespace or general tablespace is created with the DATA DIRECTORY = clause, the .ibd
file is located at specified path, outside the normal data directory, and is pointed to by a .isl file.

3420

When a .ibd file is included in a compressed backup by the MySQL Enterprise Backup product, the
compressed equivalent is a .ibz file.
See Also database, file-per-table, general tablespace, ibdata file, .ibz file, index, innodb_file_per_table, .isl file,
MySQL Enterprise Backup, system tablespace, table, tablespace.

.ibz file
 When the MySQL Enterprise Backup product performs a compressed backup, it transforms each
tablespace file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. A compressed backup operation skips the compression step for a
tablespace that is already in compressed row format, as compressing a second time would slow down the
backup but produce little or no space savings.
See Also compressed backup, compressed row format, file-per-table, .ibd file, MySQL Enterprise Backup,
tablespace.

.isl file
 A file that specifies the location of a .ibd file for an InnoDB table created with the DATA DIRECTORY =
clause in MySQL 5.6 and higher, or with the CREATE TABLESPACE ... ADD DATAFILE clause in MySQL
5.7.8 and higher. It functions like a symbolic link, without the platform restrictions of the actual symbolic
link mechanism. You can store InnoDB tablespaces outside the database directory, for example, on an
especially large or fast storage device depending on the usage of the table. For details, see Section 14.4.5,
“Creating a File-Per-Table Tablespace Outside the Data Directory”, and Section 14.4.9, “InnoDB General
Tablespaces”.
See Also database, .ibd file, table, tablespace.

I/O-bound
See disk-bound.

ib-file set
 The set of files managed by InnoDB within a MySQL database: the system tablespace, any file-per-table
tablespaces, and the (typically 2) redo log files. Used sometimes in detailed discussions of InnoDB file
structures and formats, to avoid ambiguity between the meanings of database between different DBMS
products, and the non-InnoDB files that may be part of a MySQL database.
See Also database, file-per-table, redo log, system tablespace.

ibbackup_logfile
 A supplemental backup file created by the MySQL Enterprise Backup product during a hot backup
operation. It contains information about any data changes that occurred while the backup was running. The
initial backup files, including ibbackup_logfile, are known as a raw backup, because the changes that
occurred during the backup operation are not yet incorporated. After you perform the apply step to the raw
backup files, the resulting files do include those final data changes, and are known as a prepared backup. At
this stage, the ibbackup_logfile file is no longer necessary.
See Also apply, hot backup, MySQL Enterprise Backup, prepared backup, raw backup.

ibdata file
 A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system
tablespace. These files contain metadata about InnoDB tables, (the data dictionary), and the storage areas
for one or more undo logs, the change buffer, and the doublewrite buffer. They also can contain some
or all of the table data also (depending on whether the file-per-table mode is in effect when each table is
created). When the innodb_file_per_table option is enabled, data and indexes for newly created tables are
stored in separate .ibd files rather than in the system tablespace.

The growth of the ibdata files is influenced by the innodb_autoextend_increment configuration option.
See Also change buffer, data dictionary, doublewrite buffer, file-per-table, .ibd file, innodb_file_per_table,
system tablespace, undo log.

ibtmp file
 The InnoDB temporary tablespace data file for non-compressed InnoDB temporary tables and related
objects. The configuration file option, innodb_temp_data_file_path, allows users to define a relative

3421

path for the temporary data file. If innodb_temp_data_file_path is not specified, the default behavior is
to create a single auto-extending 12MB data file named ibtmp1 in the data directory, alongside ibdata1.
See Also temporary tablespace.

ib_logfile
 A set of files, typically named ib_logfile0 and ib_logfile1, that form the redo log. Also sometimes
referred to as the log group. These files record statements that attempt to change data in InnoDB tables.
These statements are replayed automatically to correct data written by incomplete transactions, on startup
following a crash.

This data cannot be used for manual recovery; for that type of operation, use the binary log.
See Also binary log, log group, redo log.

ilist
 Within an InnoDB FULLTEXT index, the data structure consisting of a document ID and positional
information for a token (that is, a particular word).
See Also FULLTEXT index.

implicit row lock
 A row lock that InnoDB acquires to ensure consistency, without you specifically requesting it.
See Also row lock.

in-memory database
 A type of database system that maintains data in memory, to avoid overhead due to disk I/O and translation
between disk blocks and memory areas. Some in-memory databases sacrifice durability (the "D" in the ACID
design philosophy) and are vulnerable to hardware, power, and other types of failures, making them more
suitable for read-only operations. Other in-memory databases do use durability mechanisms such as logging
changes to disk or using non-volatile memory.

MySQL features that are address the same kinds of memory-intensive processing include the InnoDB buffer
pool, adaptive hash index, and read-only transaction optimization, the MEMORY storage engine, the
MyISAM key cache, and the MySQL query cache.
See Also ACID, adaptive hash index, buffer pool, disk-based, read-only transaction.

incremental backup
 A type of hot backup, performed by the MySQL Enterprise Backup product, that only saves data changed
since some point in time. Having a full backup and a succession of incremental backups lets you reconstruct
backup data over a long period, without the storage overhead of keeping several full backups on hand. You
can restore the full backup and then apply each of the incremental backups in succession, or you can keep
the full backup up-to-date by applying each incremental backup to it, then perform a single restore operation.

The granularity of changed data is at the page level. A page might actually cover more than one row. Each
changed page is included in the backup.
See Also hot backup, MySQL Enterprise Backup, page.

index
 A data structure that provides a fast lookup capability for rows of a table, typically by forming a tree structure
(B-tree) representing all the values of a particular column or set of columns.

InnoDB tables always have a clustered index representing the primary key. They can also have one or
more secondary indexes defined on one or more columns. Depending on their structure, secondary indexes
can be classified as partial, column, or composite indexes.

Indexes are a crucial aspect of query performance. Database architects design tables, queries, and indexes
to allow fast lookups for data needed by applications. The ideal database design uses a covering index
where practical; the query results are computed entirely from the index, without reading the actual table
data. Each foreign key constraint also requires an index, to efficiently check whether values exist in both the
parent and child tables.

Although a B-tree index is the most common, a different kind of data structure is used for hash indexes, as in
the MEMORY storage engine and the InnoDB adaptive hash index.

3422

See Also adaptive hash index, B-tree, child table, clustered index, column index, composite index, covering
index, foreign key, hash index, parent table, partial index, primary key, query, row, secondary index, table.

index cache
 A memory area that holds the token data for InnoDB full-text search. It buffers the data to minimize disk I/
O when data is inserted or updated in columns that are part of a FULLTEXT index. The token data is written
to disk when the index cache becomes full. Each InnoDB FULLTEXT index has its own separate index cache,
whose size is controlled by the configuration option innodb_ft_cache_size.
See Also full-text search, FULLTEXT index.

index condition pushdown
 Index condition pushdown (ICP) is an optimization that pushes part of a WHERE condition down to the storage
engine if parts of the condition can be evaluated using fields from the index. ICP can reduce the number of
times the storage engine must access the base table and the number of times the MySQL server must access
the storage engine. For more information, see Section 8.2.1.6, “Index Condition Pushdown Optimization”.

index hint
 Extended SQL syntax for overriding the indexes recommended by the optimizer. For example, the FORCE
INDEX, USE INDEX, and IGNORE INDEX clauses. Typically used when indexed columns have unevenly
distributed values, resulting in inaccurate cardinality estimates.
See Also cardinality, index.

index prefix
 In an index that applies to multiple columns (known as a composite index), the initial or leading columns of
the index. A query that references the first 1, 2, 3, and so on columns of a composite index can use the index,
even if the query does not reference all the columns in the index.
See Also composite index, index.

index statistics
See statistics.

infimum record
 A pseudo-record in an index, representing the gap below the smallest value in that index. If a transaction
has a statement such as SELECT ... FOR UPDATE ... WHERE col < 10;, and the smallest value in
the column is 5, it is a lock on the infimum record that prevents other transactions from inserting even smaller
values such as 0, -10, and so on.
See Also gap, index, pseudo-record, supremum record.

INFORMATION_SCHEMA
 The name of the database that provides a query interface to the MySQL data dictionary. (This name is
defined by the ANSI SQL standard.) To examine information (metadata) about the database, you can query
tables such as INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.COLUMNS, rather than using
SHOW commands that produce unstructured output.

The information schema contains some tables that are specific to InnoDB, such as INNODB_LOCKS and
INNODB_TRX. You use these tables not to see how the database is structured, but to get real-time information
about the workings of InnoDB tables to help with performance monitoring, tuning, and troubleshooting. In
particular, these tables provide information about MySQL features related to compression, and transactions
and their associated locks.
See Also compression, data dictionary, database, InnoDB, lock, transaction.

InnoDB
 A MySQL component that combines high performance with transactional capability for reliability, robustness,
and concurrent access. It embodies the ACID design philosophy. Represented as a storage engine; it
handles tables created or altered with the ENGINE=INNODB clause. See Chapter 14, The InnoDB Storage
Engine for architectural details and administration procedures, and Section 8.5, “Optimizing for InnoDB
Tables” for performance advice.

In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables and the ENGINE=INNODB
clause is not required. In MySQL 5.1 only, many of the advanced InnoDB features require enabling the

3423

component known as the InnoDB Plugin. See Section 14.1.1, “InnoDB as the Default MySQL Storage Engine”
for the considerations involved in transitioning to recent releases where InnoDB tables are the default.

InnoDB tables are ideally suited for hot backups. See Section 25.2, “MySQL Enterprise Backup Overview”
for information about the MySQL Enterprise Backup product for backing up MySQL servers without
interrupting normal processing.
See Also ACID, hot backup, storage engine, transaction.

innodb_autoinc_lock_mode
 The innodb_autoinc_lock_mode option controls the algorithm used for auto-increment locking.
When you have an auto-incrementing primary key, you can use statement-based replication only
with the setting innodb_autoinc_lock_mode=1. This setting is known as consecutive lock mode,
because multi-row inserts within a transaction receive consecutive auto-increment values. If you have
innodb_autoinc_lock_mode=2, which allows higher concurrency for insert operations, use row-based
replication rather than statement-based replication. This setting is known as interleaved lock mode, because
multiple multi-row insert statements running at the same time can receive autoincrement values that are
interleaved. The setting innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and
should not be used except for compatibility purposes.
See Also auto-increment locking, mixed-mode insert, primary key.

innodb_file_format
 The innodb_file_format option defines the file format to use for new InnoDB file-per-table tablespaces.
Currently, you can specify the Antelope and Barracuda file formats.
See Also Antelope, Barracuda, file format, file-per-table, general tablespace, innodb_file_per_table, system
tablespace, tablespace.

innodb_file_per_table
 An important configuration option that affects many aspects of InnoDB file storage, availability of features,
and I/O characteristics. In MySQL 5.6.7 and higher, it is enabled by default. Prior to MySQL 5.6.7, it is
disabled by default. The innodb_file_per_table option turns on file-per-table mode. With this mode
enabled, a newly created InnoDB table and associated indexes can be stored in a file-per-table .ibd file,
outside the system tablespace.

This option affects the performance and storage considerations for a number of SQL statements, such as
DROP TABLE and TRUNCATE TABLE.

Enabling the innodb_file_per_table option allows you to take advantage of other features, such as table
compression, and backups of named tables in MySQL Enterprise Backup.

innodb_file_per_table was once static, but can now be set using the SET GLOBAL command.

For reference information, see innodb_file_per_table. For usage information, see Section 14.4.4,
“InnoDB File-Per-Table Tablespaces”.
See Also compression, file-per-table, .ibd file, MySQL Enterprise Backup, system tablespace.

innodb_lock_wait_timeout
 The innodb_lock_wait_timeout option sets the balance between waiting for shared resources to
become available, or giving up and handling the error, retrying, or doing alternative processing in your
application. Rolls back any InnoDB transaction that waits more than a specified time to acquire a lock.
Especially useful if deadlocks are caused by updates to multiple tables controlled by different storage
engines; such deadlocks are not detected automatically.
See Also deadlock, deadlock detection, lock, wait.

innodb_strict_mode
 The innodb_strict_mode option controls whether InnoDB operates in strict mode, where conditions that
are normally treated as warnings, cause errors instead (and the underlying statements fail).

This mode is the default setting in MySQL 5.5.5 and higher.
See Also strict mode.

3424

insert
 One of the primary DML operations in SQL. The performance of inserts is a key factor in data warehouse
systems that load millions of rows into tables, and OLTP systems where many concurrent connections might
insert rows into the same table, in arbitrary order. If insert performance is important to you, you should learn
about InnoDB features such as the insert buffer used in change buffering, and auto-increment columns.
See Also auto-increment, change buffering, data warehouse, DML, InnoDB, insert buffer, OLTP, SQL.

insert buffer
 The former name of the change buffer. In MySQL 5.5, support was added for buffering changes to
secondary index pages for DELETE and UPDATE operations. Previously, only changes resulting from INSERT
operations were buffered. The preferred term is now change buffer.
See Also change buffer, change buffering.

insert buffering
 The technique of storing changes to secondary index pages, resulting from INSERT operations, in the
change buffer rather than writing the changes immediately, so that the physical writes can be performed to
minimize random I/O. It is one of the types of change buffering; the others are delete buffering and purge
buffering.

Insert buffering is not used if the secondary index is unique, because the uniqueness of new values cannot
be verified before the new entries are written out. Other kinds of change buffering do work for unique indexes.
See Also change buffer, change buffering, delete buffering, insert buffer, purge buffering, unique index.

instance
 A single mysqld daemon managing a data directory representing one or more databases with a set of
tables. It is common in development, testing, and some replication scenarios to have multiple instances on
the same server machine, each managing its own data directory and listening on its own port or socket. With
one instance running a disk-bound workload, the server might still have extra CPU and memory capacity to
run additional instances.
See Also data directory, database, disk-bound, mysqld, replication, server.

instrumentation
 Modifications at the source code level to collect performance data for tuning and debugging. In MySQL,
data collected by instrumentation is exposed through a SQL interface using the INFORMATION_SCHEMA and
PERFORMANCE_SCHEMA databases.
See Also INFORMATION_SCHEMA, Performance Schema.

intention exclusive lock
See intention lock.

intention lock
 A kind of lock that applies to the table level, used to indicate what kind of lock the transaction intends
to acquire on rows in the table. Different transactions can acquire different kinds of intention locks on the
same table, but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other
transactions from acquiring any S or X locks on the table. Conversely, the first transaction to acquire an
intention shared (IS) lock on a table prevents other transactions from acquiring any X locks on the table. The
two-phase process allows the lock requests to be resolved in order, without blocking locks and corresponding
operations that are compatible. For more details on this locking mechanism, see Section 14.2.2.1, “InnoDB
Lock Modes”.
See Also lock, lock mode, locking.

intention shared lock
See intention lock.

inverted index
 A data structure optimized for document retrieval systems, used in the implementation of InnoDB full-text
search. The InnoDB FULLTEXT index, implemented as an inverted index, records the position of each word
within a document, rather than the location of a table row. A single column value (a document stored as a text
string) is represented by many entries in the inverted index.

3425

See Also full-text search, FULLTEXT index, ilist.

IOPS
 Acronym for I/O operations per second. A common measurement for busy systems, particularly OLTP
applications. If this value is near the maximum that the storage devices can handle, the application can
become disk-bound, limiting scalability.
See Also disk-bound, OLTP, scalability.

isolation level
 One of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is
the setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of
results when multiple transactions are making changes and performing queries at the same time.

From highest amount of consistency and protection to the least, the isolation levels supported by InnoDB are:
SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.

With InnoDB tables, many users can keep the default isolation level (REPEATABLE READ) for all operations.
Expert users might choose the read committed level as they push the boundaries of scalability with OLTP
processing, or during data warehousing operations where minor inconsistencies do not affect the aggregate
results of large amounts of data. The levels on the edges (SERIALIZABLE and READ UNCOMMITTED)
change the processing behavior to such an extent that they are rarely used.
See Also ACID, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

J
join

 A query that retrieves data from more than one table, by referencing columns in the tables that hold identical
values. Ideally, these columns are part of an InnoDB foreign key relationship, which ensures referential
integrity and that the join columns are indexed. Often used to save space and improve query performance
by replacing repeated strings with numeric IDs, in a normalized data design.
See Also foreign key, index, normalized, query, referential integrity.

K
KEY_BLOCK_SIZE

 An option to specify the size of data pages within an InnoDB table that uses compressed row format. The
default is 8 kilobytes. Lower values risk hitting internal limits that depend on the combination of row size and
compression percentage.
See Also compressed row format.

L
latch

 A lightweight structure used by InnoDB to implement a lock for its own internal memory structures, typically
held for a brief time measured in milliseconds or microseconds. A general term that includes both mutexes
(for exclusive access) and rw-locks (for shared access). Certain latches are the focus of InnoDB performance
tuning, such as the data dictionary mutex. Statistics about latch use and contention are available through the
Performance Schema interface.
See Also data dictionary, lock, locking, mutex, Performance Schema, rw-lock.

list
 The InnoDB buffer pool is represented as a list of memory pages. The list is reordered as new pages are
accessed and enter the buffer pool, as pages within the buffer pool are accessed again and are considered
newer, and as pages that are not accessed for a long time are evicted from the buffer pool. The buffer pool is
actually divided into sublists, and the replacement policy is a variation of the familiar LRU technique.
See Also buffer pool, eviction, LRU, sublist.

3426

lock
 The high-level notion of an object that controls access to a resource, such as a table, row, or internal data
structure, as part of a locking strategy. For intensive performance tuning, you might delve into the actual
structures that implement locks, such as mutexes and latches.
See Also latch, lock mode, locking, mutex.

lock escalation
 An operation used in some database systems that converts many row locks into a single table lock, saving
memory space but reducing concurrent access to the table. InnoDB uses a space-efficient representation for
row locks, so that lock escalation is not needed.
See Also locking, row lock, table lock.

lock mode
 A shared (S) lock allows a transaction to read a row. Multiple transactions can acquire an S lock on that same
row at the same time.

An exclusive (X) lock allows a transaction to update or delete a row. No other transaction can acquire any kind
of lock on that same row at the same time.

Intention locks apply to the table level, and are used to indicate what kind of lock the transaction intends to
acquire on rows in the table. Different transactions can acquire different kinds of intention locks on the same
table, but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions
from acquiring any S or X locks on the table. Conversely, the first transaction to acquire an intention shared
(IS) lock on a table prevents other transactions from acquiring any X locks on the table. The two-phase
process allows the lock requests to be resolved in order, without blocking locks and corresponding operations
that are compatible.
See Also intention lock, lock, locking.

locking
 The system of protecting a transaction from seeing or changing data that is being queried or changed by
other transactions. The locking strategy must balance reliability and consistency of database operations (the
principles of the ACID philosophy) against the performance needed for good concurrency. Fine-tuning the
locking strategy often involves choosing an isolation level and ensuring all your database operations are safe
and reliable for that isolation level.
See Also ACID, concurrency, isolation level, latch, lock, mutex, transaction.

locking read
 A SELECT statement that also performs a locking operation on an InnoDB table. Either SELECT ... FOR
UPDATE or SELECT ... LOCK IN SHARE MODE. It has the potential to produce a deadlock, depending on
the isolation level of the transaction. The opposite of a non-locking read. Not allowed for global tables in a
read-only transaction.
See Also deadlock, isolation level, locking, non-locking read, read-only transaction.

log
 In the InnoDB context, “log”log or “log files” typically refers to the redo log represented by the ib_logfile*
files. Another log area which may be physically part of the system tablespace is the undo log.

Other kinds of logs that are important in MySQL are the error log (for diagnosing startup and runtime
problems), binary log (for working with replication and performing point-in-time restores), the general query
log (for diagnosing application problems), and the slow query log (for diagnosing performance problems).
See Also binary log, error log, general query log, ib_logfile, redo log, slow query log, system tablespace, undo
log.

log buffer
 The memory area that holds data to be written to the log files that make up the redo log. It is controlled by
the innodb_log_buffer_size configuration option.
See Also log file, redo log.

log file
 One of the ib_logfileN files that make up the redo log. Data is written to these files from the log buffer
memory area.

3427

See Also ib_logfile, log buffer, redo log.

log group
 The set of files that make up the redo log, typically named ib_logfile0 and ib_logfile1. (For that
reason, sometimes referred to collectively as ib_logfile.)
See Also ib_logfile, redo log.

logical
 A type of operation that involves high-level, abstract aspects such as tables, queries, indexes, and other
SQL concepts. Typically, logical aspects are important to make database administration and application
development convenient and usable. Contrast with physical.
See Also logical backup, physical.

logical backup
 A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysqldump command produces a logical backup, because its output contains statements such as CREATE
TABLE and INSERT that can re-create the data. Contrast with physical backup. A logical backup offers
flexibility (for example, you could edit table definitions or insert statements before restoring), but can take
substantially longer to restore than a physical backup.
See Also backup, mysqldump, physical backup, restore.

loose_
 In MySQL 5.1, a prefix added to InnoDB configuration options when installing the InnoDB Plugin after server
startup, so any new configuration options not recognized by the current level of MySQL do not cause a startup
failure. MySQL processes configuration options that start with this prefix, but gives a warning rather than a
failure if the part after the prefix is not a recognized option.
See Also plugin.

low-water mark
 A value representing a lower limit, typically a threshold value at which some corrective action begins or
becomes more aggressive. Contrast with high-water mark.
See Also high-water mark.

LRU
 An acronym for "least recently used", a common method for managing storage areas. The items that
have not been used recently are evicted when space is needed to cache newer items. InnoDB uses the
LRU mechanism by default to manage the pages within the buffer pool, but makes exceptions in cases
where a page might be read only a single time, such as during a full table scan. This variation of the
LRU algorithm is called the midpoint insertion strategy. The ways in which the buffer pool management
differs from the traditional LRU algorithm is fine-tuned by the options innodb_old_blocks_pct,
innodb_old_blocks_time, and the new MySQL 5.6 options innodb_lru_scan_depth and
innodb_flush_neighbors.
See Also buffer pool, eviction, full table scan, midpoint insertion strategy, page.

LSN
 Acronym for "log sequence number". This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction
boundaries; it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash
recovery and for managing the buffer pool.

Prior to MySQL 5.6.3, the LSN was a 4-byte unsigned integer. The LSN became an 8-byte unsigned integer in
MySQL 5.6.3 when the redo log file size limit increased from 4GB to 512GB, as additional bytes were required
to store extra size information. Applications built on MySQL 5.6.3 or later that use LSN values should use 64-
bit rather than 32-bit variables to store and compare LSN values.

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which
to take an incremental backup. The relevant LSN is displayed by the output of the mysqlbackup command.
Once you have the LSN corresponding to the time of a full backup, you can specify that value to take a
subsequent incremental backup, whose output contains another LSN for the next incremental backup.
See Also crash recovery, incremental backup, MySQL Enterprise Backup, redo log, transaction.

3428

M
.MRG file

 A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup
product.
See Also MySQL Enterprise Backup, mysqlbackup command.

.MYD file
 A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file, MySQL Enterprise Backup, mysqlbackup command.

.MYI file
 A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file, MySQL Enterprise Backup, mysqlbackup command.

master server
 Frequently shortened to "master". A database server machine in a replication scenario that processes the
initial insert, update, and delete requests for data. These changes are propagated to, and repeated on, other
servers known as slave servers.
See Also replication, slave server.

master thread
 An InnoDB thread that performs various tasks in the background. Most of these tasks are I/O related, such
as writing changes from the change buffer to the appropriate secondary indexes.

To improve concurrency, sometimes actions are moved from the master thread to separate background
threads. For example, in MySQL 5.6 and higher, dirty pages are flushed from the buffer pool by the page
cleaner thread rather than the master thread.
See Also buffer pool, dirty page, flush, insert buffer, page cleaner, thread.

MDL
 Acronym for "metadata lock".
See Also metadata lock.

memcached
 A popular component of many MySQL and NoSQL software stacks, allowing fast reads and writes for single
values and caching the results entirely in memory. Traditionally, applications required extra logic to write the
same data to a MySQL database for permanent storage, or to read data from a MySQL database when it
was not cached yet in memory. Now, applications can use the simple memcached protocol, supported by
client libraries for many languages, to communicate directly with MySQL servers using InnoDB or MySQL
Cluster tables. These NoSQL interfaces to MySQL tables allow applications to achieve higher read and write
performance than by issuing SQL commands directly, and can simplify application logic and deployment
configurations for systems that already incorporated memcached for in-memory caching.

The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see Section 14.17, “InnoDB
Integration with memcached” for details. The memcached interface to MySQL Cluster tables is available in
MySQL Cluster 7.2; see http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html for details.
See Also InnoDB, NoSQL.

merge
 To apply changes to data cached in memory, such as when a page is brought into the buffer pool, and any
applicable changes recorded in the change buffer are incorporated into the page in the buffer pool. The
updated data is eventually written to the tablespace by the flush mechanism.
See Also buffer pool, change buffer, flush, tablespace.

metadata lock
 A type of lock that prevents DDL operations on a table that is being used at the same time by another
transaction. For details, see Section 8.11.4, “Metadata Locking”.

http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html

3429

Enhancements to online operations, particularly in MySQL 5.6 and higher, are focused on reducing the
amount of metadata locking. The objective is for DDL operations that do not change the table structure
(such as CREATE INDEX and DROP INDEX for InnoDB tables) to proceed while the table is being queried,
updated, and so on by other transactions.
See Also DDL, lock, online, transaction.

metrics counter
 A feature implemented by the innodb_metrics table in the information_schema, in MySQL 5.6 and
higher. You can query counts and totals for low-level InnoDB operations, and use the results for performance
tuning in combination with data from the performance_schema.
See Also counter, INFORMATION_SCHEMA, Performance Schema.

midpoint insertion strategy
 The technique of initially bringing pages into the InnoDB buffer pool not at the "newest" end of the list,
but instead somewhere in the middle. The exact location of this point can vary, based on the setting of the
innodb_old_blocks_pct option. The intent is that blocks that are only read once, such as during a full
table scan, can be aged out of the buffer pool sooner than with a strict LRU algorithm.
See Also buffer pool, full table scan, LRU, page.

mini-transaction
 An internal phase of InnoDB processing, when making changes at the physical level to internal data
structures during DML operations. A mini-transaction (mtr) has no notion of rollback; multiple mini-
transactions can occur within a single transaction. Mini-transactions write information to the redo log that is
used during crash recovery. A mini-transaction can also happen outside the context of a regular transaction,
for example during purge processing by background threads.
See Also commit, crash recovery, DML, physical, purge, redo log, rollback, transaction.

mixed-mode insert
 An INSERT statement where auto-increment values are specified for some but not all of the new rows.
For example, a multi-value INSERT could specify a value for the auto-increment column in some cases and
NULL in other cases. InnoDB generates auto-increment values for the rows where the column value was
specified as NULL. Another example is an INSERT ... ON DUPLICATE KEY UPDATE statement, where
auto-increment values might be generated but not used, for any duplicate rows that are processed as UPDATE
rather than INSERT statements.

Can cause consistency issues between master and slave servers in a replication configuration. Can require
adjusting the value of the innodb_autoinc_lock_mode configuration option.
See Also auto-increment, innodb_autoinc_lock_mode, master server, replication, slave server.

mtr
See mini-transaction.

multi-core
 A type of processor that can take advantage of multi-threaded programs, such as the MySQL server.

multiversion concurrency control
See MVCC.

mutex
 Informal abbreviation for "mutex variable". (Mutex itself is short for "mutual exclusion".) The low-level object
that InnoDB uses to represent and enforce exclusive-access locks to internal in-memory data structures.
Once the lock is acquired, any other process, thread, and so on is prevented from acquiring the same lock.
Contrast with rw-locks, which InnoDB uses to represent and enforce shared-access locks to internal in-
memory data structures. Mutexes and rw-locks are known collectively as latches.
See Also latch, lock, Performance Schema, Pthreads, rw-lock.

MVCC
 Acronym for "multiversion concurrency control". This technique lets InnoDB transactions with certain
isolation levels to perform consistent read operations; that is, to query rows that are being updated by other

3430

transactions, and see the values from before those updates occurred. This is a powerful technique to increase
concurrency, by allowing queries to proceed without waiting due to locks held by the other transactions.

This technique is not universal in the database world. Some other database products, and some other MySQL
storage engines, do not support it.
See Also ACID, concurrency, consistent read, isolation level, lock, transaction.

my.cnf
 The name, on UNIX or Linux systems, of the MySQL option file.
See Also my.ini, option file.

my.ini
 The name, on Windows systems, of the MySQL option file.
See Also my.cnf, option file.

mysql
 The mysql program is the command-line interpreter for the MySQL database. It processes SQL statements,
and also MySQL-specific commands such as SHOW TABLES, by passing requests to the mysqld daemon.
See Also mysqld, SQL.

MySQL Enterprise Backup
 A licensed product that performs hot backups of MySQL databases. It offers the most efficiency and
flexibility when backing up InnoDB tables, but can also back up MyISAM and other kinds of tables.
See Also hot backup, InnoDB.

mysqlbackup command
 A command-line tool of the MySQL Enterprise Backup product. It performs a hot backup operation
for InnoDB tables, and a warm backup for MyISAM and other kinds of tables. See Section 25.2, “MySQL
Enterprise Backup Overview” for more information about this command.
See Also hot backup, MySQL Enterprise Backup, warm backup.

mysqld
 The mysqld program is the database engine for the MySQL database. It runs as a UNIX daemon or
Windows service, constantly waiting for requests and performing maintenance work in the background.
See Also mysql.

mysqldump
 A command that performs a logical backup of some combination of databases, tables, and table data. The
results are SQL statements that reproduce the original schema objects, data, or both. For substantial amounts
of data, a physical backup solution such as MySQL Enterprise Backup is faster, particularly for the restore
operation.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.

N
natural key

 An indexed column, typically a primary key, where the values have some real-world significance. Usually
advised against because:

• If the value should ever change, there is potentially a lot of index maintenance to re-sort the clustered
index and update the copies of the primary key value that are repeated in each secondary index.

• Even seemingly stable values can change in unpredictable ways that are difficult to represent correctly
in the database. For example, one country can change into two or several, making the original country
code obsolete. Or, rules about unique values might have exceptions. For example, even if taxpayer IDs
are intended to be unique to a single person, a database might have to handle records that violate that
rule, such as in cases of identity theft. Taxpayer IDs and other sensitive ID numbers also make poor
primary keys, because they may need to be secured, encrypted, and otherwise treated differently than other
columns.

3431

Thus, it is typically better to use arbitrary numeric values to form a synthetic key, for example using an auto-
increment column.
See Also auto-increment, primary key, secondary index, synthetic key.

neighbor page
 Any page in the same extent as a particular page. When a page is selected to be flushed, any neighbor
pages that are dirty are typically flushed as well, as an I/O optimization for traditional hard disks. In MySQL
5.6 and up, this behavior can be controlled by the configuration variable innodb_flush_neighbors; you
might turn that setting off for SSD drives, which do not have the same overhead for writing smaller batches of
data at random locations.
See Also dirty page, extent, flush, page.

next-key lock
 A combination of a record lock on the index record and a gap lock on the gap before the index record.
See Also gap lock, locking, record lock.

non-blocking I/O
 An industry term that means the same as asynchronous I/O.
See Also asynchronous I/O.

non-locking read
 A query that does not use the SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE
clauses. The only kind of query allowed for global tables in a read-only transaction. The opposite of a
locking read.
See Also locking read, query, read-only transaction.

non-repeatable read
 The situation when a query retrieves data, and a later query within the same transaction retrieves what
should be the same data, but the queries return different results (changed by another transaction committing
in the meantime).

This kind of operation goes against the ACID principle of database design. Within a transaction, data should
be consistent, with predictable and stable relationships.

Among different isolation levels, non-repeatable reads are prevented by the serializable read and
repeatable read levels, and allowed by the consistent read, and read uncommitted levels.
See Also ACID, consistent read, isolation level, READ UNCOMMITTED, REPEATABLE READ,
SERIALIZABLE, transaction.

normalized
 A database design strategy where data is split into multiple tables, and duplicate values condensed into
single rows represented by an ID, to avoid storing, querying, and updating redundant or lengthy values. It is
typically used in OLTP applications.

For example, an address might be given a unique ID, so that a census database could represent the
relationship lives at this address by associating that ID with each member of a family, rather than storing
multiple copies of a complex value such as 123 Main Street, Anytown, USA.

For another example, although a simple address book application might store each phone number in the
same table as a person's name and address, a phone company database might give each phone number a
special ID, and store the numbers and IDs in a separate table. This normalized representation could simplify
large-scale updates when area codes split apart.

Normalization is not always recommended. Data that is primarily queried, and only updated by deleting
entirely and reloading, is often kept in fewer, larger tables with redundant copies of duplicate values. This data
representation is referred to as denormalized, and is frequently found in data warehousing applications.
See Also denormalized, foreign key, OLTP, relational.

NoSQL
 A broad term for a set of data access technologies that do not use the SQL language as their primary
mechanism for reading and writing data. Some NoSQL technologies act as key-value stores, only accepting

3432

single-value reads and writes; some relax the restrictions of the ACID methodology; still others do not require
a pre-planned schema. MySQL users can combine NoSQL-style processing for speed and simplicity with
SQL operations for flexibility and convenience, by using the memcached API to directly access some kinds
of MySQL tables. The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see
Section 14.17, “InnoDB Integration with memcached” for details. The memcached interface to MySQL Cluster
tables is available in MySQL Cluster 7.2; see http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html for
details.
See Also ACID, InnoDB, memcached, schema, SQL.

NOT NULL constraint
 A type of constraint that specifies that a column cannot contain any NULL values. It helps to preserve
referential integrity, as the database server can identify data with erroneous missing values. It also helps
in the arithmetic involved in query optimization, allowing the optimizer to predict the number of entries in an
index on that column.
See Also column, constraint, NULL, primary key, referential integrity.

NULL
 A special value in SQL, indicating the absence of data. Any arithmetic operation or equality test involving a
NULL value, in turn produces a NULL result. (Thus it is similar to the IEEE floating-point concept of NaN, "not
a number".) Any aggregate calculation such as AVG() ignores rows with NULL values, when determining how
many rows to divide by. The only test that works with NULL values uses the SQL idioms IS NULL or IS NOT
NULL.

NULL values play a part in index operations, because for performance a database must minimize the
overhead of keeping track of missing data values. Typically, NULL values are not stored in an index, because
a query that tests an indexed column using a standard comparison operator could never match a row with a
NULL value for that column. For the same reason, unique indexes do not prevent NULL values; those values
simply are not represented in the index. Declaring a NOT NULL constraint on a column provides reassurance
that there are no rows left out of the index, allowing for better query optimization (accurate counting of rows
and estimation of whether to use the index).

Because the primary key must be able to uniquely identify every row in the table, a single-column primary
key cannot contain any NULL values, and a multi-column primary key cannot contain any rows with NULL
values in all columns.

Although the Oracle database allows a NULL value to be concatenated with a string, InnoDB treats the result
of such an operation as NULL.
See Also index, primary key, SQL.

O
.OPT file

 A file containing database configuration information. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.

off-page column
 A column containing variable-length data (such as BLOB and VARCHAR) that is too long to fit on a B-tree
page. The data is stored in overflow pages. The DYNAMIC row format in the InnoDB Barracuda file format is
more efficient for such storage than the older COMPACT row format.
See Also B-tree, Barracuda, overflow page.

OLTP
 Acronym for "Online Transaction Processing". A database system, or a database application, that runs a
workload with many transactions, with frequent writes as well as reads, typically affecting small amounts of
data at a time. For example, an airline reservation system or an application that processes bank deposits. The
data might be organized in normalized form for a balance between DML (insert/update/delete) efficiency and
query efficiency. Contrast with data warehouse.

http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html

3433

With its row-level locking and transactional capability, InnoDB is the ideal storage engine for MySQL tables
used in OLTP applications.
See Also data warehouse, DML, InnoDB, query, row lock, transaction.

online
 A type of operation that involves no downtime, blocking, or restricted operation for the database. Typically
applied to DDL. Operations that shorten the periods of restricted operation, such as fast index creation, have
evolved into a wider set of online DDL operations in MySQL 5.6.

In the context of backups, a hot backup is an online operation and a warm backup is partially an online
operation.
See Also DDL, Fast Index Creation, hot backup, online DDL, warm backup.

online DDL
 A feature that improves the performance, concurrency, and availability of InnoDB tables during DDL
(primarily ALTER TABLE) operations. See Section 14.10, “InnoDB and Online DDL” for details.

The details vary according to the type of operation. In some cases, the table can be modified concurrently
while the ALTER TABLE is in progress. The operation might be able to be performed without doing
a table copy, or using a specially optimized type of table copy. Space usage is controlled by the
innodb_online_alter_log_max_size configuration option.

This feature is an enhancement of the Fast Index Creation feature in MySQL 5.5 and the InnoDB Plugin for
MySQL 5.1.
See Also DDL, Fast Index Creation, online.

optimistic
 A methodology that guides low-level implementation decisions for a relational database system. The
requirements of performance and concurrency in a relational database mean that operations must be started
or dispatched quickly. The requirements of consistency and referential integrity mean that any operation
could fail: a transaction might be rolled back, a DML operation could violate a constraint, a request for a lock
could cause a deadlock, a network error could cause a timeout. An optimistic strategy is one that assumes
most requests or attempts will succeed, so that relatively little work is done to prepare for the failure case.
When this assumption is true, the database does little unnecessary work; when requests do fail, extra work
must be done to clean up and undo changes.

InnoDB uses optimistic strategies for operations such as locking and commits. For example, data changed
by a transaction can be written to the data files before the commit occurs, making the commit itself very fast,
but requiring more work to undo the changes if the transaction is rolled back.

The opposite of an optimistic strategy is a pessimistic one, where a system is optimized to deal with
operations that are unreliable and frequently unsuccessful. This methodology is rare in a database system,
because so much care goes into choosing reliable hardware, networks, and algorithms.
See Also commit, concurrency, DML, locking, pessimistic.

optimizer
 The MySQL component that determines the best indexes and join order to use for a query, based on
characteristics and data distribution of the relevant tables.
See Also index, join, query, table.

option
 A configuration parameter for MySQL, either stored in the option file or passed on the command line.

For the options that apply to InnoDB tables, each option name starts with the prefix innodb_.
See Also InnoDB, option file.

option file
 The file that holds the configuration options for the MySQL instance. Traditionally, on Linux and UNIX this
file is named my.cnf, and on Windows it is named my.ini.
See Also configuration file, my.cnf, option.

3434

overflow page
 Separately allocated disk pages that hold variable-length columns (such as BLOB and VARCHAR) that are too
long to fit on a B-tree page. The associated columns are known as off-page columns.
See Also B-tree, off-page column, page.

P
.PAR file

 A file containing partition definitions. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.

With the introduction of native partitioning support for InnoDB tables in MySQL 5.7.6, .PAR files are no longer
created for partitioned InnoDB tables.
See Also MySQL Enterprise Backup, mysqlbackup command.

page
 A unit representing how much data InnoDB transfers at any one time between disk (the data files) and
memory (the buffer pool). A page can contain one or more rows, depending on how much data is in each
row. If a row does not fit entirely into a single page, InnoDB sets up additional pointer-style data structures so
that the information about the row can be stored in one page.

One way to fit more data in each page is to use compressed row format. For tables that use BLOBs or large
text fields, compact row format allows those large columns to be stored separately from the rest of the row,
reducing I/O overhead and memory usage for queries that do not reference those columns.

When InnoDB reads or writes sets of pages as a batch to increase I/O throughput, it reads or writes an extent
at a time.

All the InnoDB disk data structures within a MySQL instance share the same page size.
See Also buffer pool, compact row format, compressed row format, data files, extent, page size, row.

page cleaner
 An InnoDB background thread that flushes dirty pages from the buffer pool. Prior to MySQL 5.6, this
activity was performed by the master thread
See Also buffer pool, dirty page, flush, master thread, thread.

page size
 For releases up to and including MySQL 5.5, the size of each InnoDB page is fixed at 16 kilobytes. This
value represents a balance: large enough to hold the data for most rows, yet small enough to minimize the
performance overhead of transferring unneeded data to memory. Other values are not tested or supported.

Starting in MySQL 5.6, the page size for an InnoDB instance can be either 4KB, 8KB, or 16KB, controlled by
the innodb_page_size configuration option. As of MySQL 5.7.6, InnoDB also provides support for 32KB
and 64KB page sizes. For 32KB and 64KB page sizes, ROW_FORMAT=COMPRESSED is not supported and the
maximum record size is 16KB.

You set the size when creating the MySQL instance, and it remains constant afterwards. The same page size
applies to all InnoDB tablespaces, both the system tablespace and any separate tablespaces created in
file-per-table mode.

Smaller page sizes can help performance with storage devices that use small block sizes, particularly for SSD
devices in disk-bound workloads, such as for OLTP applications. As individual rows are updated, less data is
copied into memory, written to disk, reorganized, locked, and so on.
See Also disk-bound, file-per-table, instance, OLTP, page, SSD, system tablespace, tablespace.

parent table
 The table in a foreign key relationship that holds the initial column values pointed to from the child table.
The consequences of deleting, or updating rows in the parent table depend on the ON UPDATE and ON
DELETE clauses in the foreign key definition. Rows with corresponding values in the child table could be

3435

automatically deleted or updated in turn, or those columns could be set to NULL, or the operation could be
prevented.
See Also child table, foreign key.

partial backup
 A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup.
See Also backup, full backup, table.

partial index
 An index that represents only part of a column value, typically the first N characters (the prefix) of a long
VARCHAR value.
See Also index, index prefix.

Performance Schema
 The performance_schema schema, in MySQL 5.5 and up, presents a set of tables that you can query to
get detailed information about the performance characteristics of many internal parts of the MySQL server.
See Also latch, mutex, rw-lock.

persistent statistics
 A feature in MySQL 5.6 that stores index statistics for InnoDB tables on disk, providing better plan stability
for queries. For more information, see Section 14.3.11.1, “Configuring Persistent Optimizer Statistics
Parameters”.
See Also index, optimizer, plan stability, query, table.

pessimistic
 A methodology that sacrifices performance or concurrency in favor of safety. It is appropriate if a high
proportion of requests or attempts might fail, or if the consequences of a failed request are severe. InnoDB
uses what is known as a pessimistic locking strategy, to minimize the chance of deadlocks. At the
application level, you might avoid deadlocks by using a pessimistic strategy of acquiring all locks needed by a
transaction at the very beginning.

Many built-in database mechanisms use the opposite optimistic methodology.
See Also deadlock, locking, optimistic.

phantom
 A row that appears in the result set of a query, but not in the result set of an earlier query. For example, if a
query is run twice within a transaction, and in the meantime, another transaction commits after inserting a
new row or updating a row so that it matches the WHERE clause of the query.

This occurrence is known as a phantom read. It is harder to guard against than a non-repeatable read,
because locking all the rows from the first query result set does not prevent the changes that cause the
phantom to appear.

Among different isolation levels, phantom reads are prevented by the serializable read level, and allowed
by the repeatable read, consistent read, and read uncommitted levels.
See Also consistent read, isolation level, non-repeatable read, READ UNCOMMITTED, REPEATABLE
READ, SERIALIZABLE, transaction.

physical
 A type of operation that involves hardware-related aspects such as disk blocks, memory pages, files, bits,
disk reads, and so on. Typically, physical aspects are important during expert-level performance tuning and
problem diagnosis. Contrast with logical.
See Also logical, physical backup.

physical backup
 A backup that copies the actual data files. For example, the mysqlbackup command of the MySQL
Enterprise Backup product produces a physical backup, because its output contains data files that can be
used directly by the mysqld server, resulting in a faster restore operation. Contrast with logical backup.

3436

See Also backup, logical backup, MySQL Enterprise Backup, restore.

PITR
 Acronym for point-in-time recovery.
See Also point-in-time recovery.

plan stability
 A property of a query execution plan, where the optimizer makes the same choices each time for a given
query, so that performance is consistent and predictable.
See Also query, query execution plan.

plugin
 In MySQL 5.1 and earlier, a separately installable form of the InnoDB storage engine that includes features
and performance enhancements not included in the built-in InnoDB for those releases.

For MySQL 5.5 and higher, the MySQL distribution includes the very latest InnoDB features and performance
enhancements, known as InnoDB 1.1, and there is no longer a separate InnoDB Plugin.

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin
but not the built-in InnoDB, or vice versa.
See Also built-in, InnoDB.

point-in-time recovery
 The process of restoring a backup to recreate the state of the database at a specific date and time.
Commonly abbreviated PITR. Because it is unlikely that the specified time corresponds exactly to the time
of a backup, this technique usually requires a combination of a physical backup and a logical backup. For
example, with the MySQL Enterprise Backup product, you restore the last backup that you took before the
specified point in time, then replay changes from the binary log between the time of the backup and the PITR
time.
See Also backup, logical backup, MySQL Enterprise Backup, physical backup, PITR.

prefix
See index prefix.

prepared backup
 A set of backup files, produced by the MySQL Enterprise Backup product, after all the stages of applying
binary logs and incremental backups are finished. The resulting files are ready to be restored. Prior to the
apply steps, the files are known as a raw backup.
See Also binary log, hot backup, incremental backup, MySQL Enterprise Backup, raw backup, restore.

primary key
 A set of columns -- and by implication, the index based on this set of columns -- that can uniquely identify
every row in a table. As such, it must be a unique index that does not contain any NULL values.

InnoDB requires that every table has such an index (also called the clustered index or cluster index), and
organizes the table storage based on the column values of the primary key.

When choosing primary key values, consider using arbitrary values (a synthetic key) rather than relying on
values derived from some other source (a natural key).
See Also clustered index, index, natural key, synthetic key.

process
 An instance of an executing program. The operating system switches between multiple running processes,
allowing for a certain degree of concurrency. On most operating systems, processes can contain multiple
threads of execution that share resources. Context-switching between threads is faster than the equivalent
switching between processes.
See Also concurrency, thread.

pseudo-record
 An artificial record in an index, used for locking key values or ranges that do not currently exist.

3437

See Also infimum record, locking, supremum record.

Pthreads
 The POSIX threads standard, which defines an API for threading and locking operations on UNIX and Linux
systems. On UNIX and Linux systems, InnoDB uses this implementation for mutexes.
See Also mutex.

purge
 A type of garbage collection performed by a separate thread, running on a periodic schedule. The purge
includes these actions: removing obsolete values from indexes; physically removing rows that were marked
for deletion by previous DELETE statements.
See Also crash recovery, delete, doublewrite buffer.

purge buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the
change buffer rather than writing the changes immediately, so that the physical writes can be performed to
minimize random I/O. (Because delete operations are a two-step process, this operation buffers the write that
normally purges an index record that was previously marked for deletion.) It is one of the types of change
buffering; the others are insert buffering and delete buffering.
See Also change buffer, change buffering, delete buffering, insert buffer, insert buffering.

purge lag
 Another name for the InnoDB history list. Related to the innodb_max_purge_lag configuration option.
See Also history list, purge.

purge thread
 A thread within the InnoDB process that is dedicated to performing the periodic purge operation. In MySQL
5.6 and higher, multiple purge threads are enabled by the innodb_purge_threads configuration option.
See Also purge, thread.

Q

query
 In SQL, an operation that reads information from one or more tables. Depending on the organization of data
and the parameters of the query, the lookup might be optimized by consulting an index. If multiple tables are
involved, the query is known as a join.

For historical reasons, sometimes discussions of internal processing for statements use "query" in a broader
sense, including other types of MySQL statements such as DDL and DML statements.
See Also DDL, DML, index, join, SQL, table.

query execution plan
 The set of decisions made by the optimizer about how to perform a query most efficiently, including which
index or indexes to use, and the order in which to join tables. Plan stability involves the same choices being
made consistently for a given query.
See Also index, join, plan stability, query.

query log
See general query log.

quiesce
 To reduce the amount of database activity, often in preparation for an operation such as an ALTER TABLE,
a backup, or a shutdown. Might or might not involve doing as much flushing as possible, so that InnoDB
does not continue doing background I/O.

In MySQL 5.6 and higher, the syntax FLUSH TABLES ... FOR EXPORT writes some data to disk for
InnoDB tables that make it simpler to back up those tables by copying the data files.
See Also backup, flush, InnoDB, shutdown.

3438

R
R-tree

 A tree data structure used for spatial indexing multi-dimensional information such as geographical
coordinates, rectangles or polygons.
See Also B-tree.

RAID
 Acronym for "Redundant Array of Inexpensive Drives". Spreading I/O operations across multiple drives
enables greater concurrency at the hardware level, and improves the efficiency of low-level write operations
that otherwise would be performed in sequence.
See Also concurrency.

random dive
 A technique for quickly estimating the number of different values in a column (the column's cardinality).
InnoDB samples pages at random from the index and uses that data to estimate the number of different
values. This operation occurs when each table is first opened.
See Also cardinality.

raw backup
 The initial set of backup files produced by the MySQL Enterprise Backup product, before the changes
reflected in the binary log and any incremental backups are applied. At this stage, the files are not ready to
restore. After these changes are applied, the files are known as a prepared backup.
See Also binary log, hot backup, ibbackup_logfile, incremental backup, MySQL Enterprise Backup, prepared
backup, restore.

READ COMMITTED
 An isolation level that uses a locking strategy that relaxes some of the protection between transactions,
in the interest of performance. Transactions cannot see uncommitted data from other transactions, but they
can see data that is committed by another transaction after the current transaction started. Thus, a transaction
never sees any bad data, but the data that it does see may depend to some extent on the timing of other
transactions.

When a transaction with this isolation level performs UPDATE ... WHERE or DELETE ... WHERE
operations, other transactions might have to wait. The transaction can perform SELECT ... FOR UPDATE,
and LOCK IN SHARE MODE operations without making other transactions wait.
See Also ACID, isolation level, locking, REPEATABLE READ, SERIALIZABLE, transaction.

READ UNCOMMITTED
 The isolation level that provides the least amount of protection between transactions. Queries employ
a locking strategy that allows them to proceed in situations where they would normally wait for another
transaction. However, this extra performance comes at the cost of less reliable results, including data that has
been changed by other transactions and not committed yet (known as dirty read). Use this isolation level only
with great caution, and be aware that the results might not be consistent or reproducible, depending on what
other transactions are doing at the same time. Typically, transactions with this isolation level do only queries,
not insert, update, or delete operations.
See Also ACID, dirty read, isolation level, locking, transaction.

read view
 An internal snapshot used by the MVCC mechanism of InnoDB. Certain transactions, depending on their
isolation level, see the data values as they were at the time the transaction (or in some cases, the statement)
started. Isolation levels that use a read view are REPEATABLE READ, READ COMMITTED, and READ
UNCOMMITTED.
See Also isolation level, MVCC, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ,
transaction.

read-ahead
 A type of I/O request that prefetches a group of pages (an entire extent) into the buffer pool
asynchronously, in anticipation that these pages will be needed soon. The linear read-ahead technique

3439

prefetches all the pages of one extent based on access patterns for pages in the preceding extent, and is
part of all MySQL versions starting with the InnoDB Plugin for MySQL 5.1. The random read-ahead technique
prefetches all the pages for an extent once a certain number of pages from the same extent are in the buffer
pool. Random read-ahead is not part of MySQL 5.5, but is re-introduced in MySQL 5.6 under the control of the
innodb_random_read_ahead configuration option.
See Also buffer pool, extent, page.

read-only transaction
 A type of transaction that can be optimized for InnoDB tables by eliminating some of the bookkeeping
involved with creating a read view for each transaction. Can only perform non-locking read queries. It can
be started explicitly with the syntax START TRANSACTION READ ONLY, or automatically under certain
conditions. See Section 8.5.3, “Optimizing InnoDB Read-Only Transactions” for details.
See Also non-locking read, read view, transaction.

record lock
 A lock on an index record. For example, SELECT c1 FOR UPDATE FROM t WHERE c1 = 10; prevents
any other transaction from inserting, updating, or deleting rows where the value of t.c1 is 10. Contrast with
gap lock and next-key lock.
See Also gap lock, lock, next-key lock.

redo
 The data, in units of records, recorded in the redo log when DML statements make changes to InnoDB
tables. It is used during crash recovery to correct data written by incomplete transactions. The ever-
increasing LSN value represents the cumulative amount of redo data that has passed through the redo log.
See Also crash recovery, DML, LSN, redo log, transaction.

redo log
 A disk-based data structure used during crash recovery, to correct data written by incomplete transactions.
During normal operation, it encodes requests to change InnoDB table data, which result from SQL statements
or low-level API calls through NoSQL interfaces. Modifications that did not finish updating the data files
before an unexpected shutdown are replayed automatically.

The redo log is physically represented as a set of files, typically named ib_logfile0 and ib_logfile1.
The data in the redo log is encoded in terms of records affected; this data is collectively referred to as redo.
The passage of data through the redo logs is represented by the ever-increasing LSN value. The original 4GB
limit on maximum size for the redo log is raised to 512GB in MySQL 5.6.3.

The disk layout of the redo log is influenced by the configuration options innodb_log_file_size,
innodb_log_group_home_dir, and (rarely) innodb_log_files_in_group. The performance of redo
log operations is also affected by the log buffer, which is controlled by the innodb_log_buffer_size
configuration option.
See Also crash recovery, data files, ib_logfile, log buffer, LSN, redo, shutdown, transaction.

redundant row format
 The oldest InnoDB row format. Prior to MySQL 5.0.3, it was the only row format available in InnoDB. From
MySQL 5.0.3 to MySQL 5.7.8, the default row format is COMPACT. As of MySQL 5.7.9, the default row
format is defined by the innodb_default_row_format configuration option, which has a default setting of
DYNAMIC. You can still specify the REDUNDANT row format for compatibility with older InnoDB tables.

For additional information about InnoDB REDUNDANT row format, see Section 14.8.4, “COMPACT and
REDUNDANT Row Formats”.
See Also Antelope, compact row format, file format, row format.

referential integrity
 The technique of maintaining data always in a consistent format, part of the ACID philosophy. In particular,
data in different tables is kept consistent through the use of foreign key constraints, which can prevent
changes from happening or automatically propagate those changes to all related tables. Related mechanisms
include the unique constraint, which prevents duplicate values from being inserted by mistake, and the NOT
NULL constraint, which prevents blank values from being inserted by mistake.

3440

See Also ACID, FOREIGN KEY constraint, NOT NULL constraint, unique constraint.

relational
 An important aspect of modern database systems. The database server encodes and enforces relationships
such as one-to-one, one-to-many, many-to-one, and uniqueness. For example, a person might have zero,
one, or many phone numbers in an address database; a single phone number might be associated with
several family members. In a financial database, a person might be required to have exactly one taxpayer ID,
and any taxpayer ID could only be associated with one person.

The database server can use these relationships to prevent bad data from being inserted, and to find efficient
ways to look up information. For example, if a value is declared to be unique, the server can stop searching as
soon as the first match is found, and it can reject attempts to insert a second copy of the same value.

At the database level, these relationships are expressed through SQL features such as columns within a
table, unique and NOT NULL constraints, foreign keys, and different kinds of join operations. Complex
relationships typically involve data split between more than one table. Often, the data is normalized, so that
duplicate values in one-to-many relationships are stored only once.

In a mathematical context, the relations within a database are derived from set theory. For example, the OR
and AND operators of a WHERE clause represent the notions of union and intersection.
See Also ACID, constraint, foreign key, normalized.

relevance
 In the full-text search feature, a number signifying the similarity between the search string and the data in
the FULLTEXT index. For example, when you search for a single word, that word is typically more relevant
for a row where if it occurs several times in the text than a row where it appears only once.
See Also full-text search, FULLTEXT index.

REPEATABLE READ
 The default isolation level for InnoDB. It prevents any rows that are queried from being changed by other
transactions, thus blocking non-repeatable reads but not phantom reads. It uses a moderately strict locking
strategy so that all queries within a transaction see data from the same snapshot, that is, the data as it was at
the time the transaction started.

When a transaction with this isolation level performs UPDATE ... WHERE, DELETE ... WHERE,
SELECT ... FOR UPDATE, and LOCK IN SHARE MODE operations, other transactions might have to wait.
See Also ACID, consistent read, isolation level, locking, phantom, SERIALIZABLE, transaction.

replication
 The practice of sending changes from a master database, to one or more slave databases, so that all
databases have the same data. This technique has a wide range of uses, such as load-balancing for better
scalability, disaster recovery, and testing software upgrades and configuration changes. The changes can be
sent between the database by methods called row-based replication and statement-based replication.
See Also row-based replication, statement-based replication.

restore
 The process of putting a set of backup files from the MySQL Enterprise Backup product in place for use by
MySQL. This operation can be performed to fix a corrupted database, to return to some earlier point in time,
or (in a replication context) to set up a new slave database. In the MySQL Enterprise Backup product, this
operation is performed by the copy-back option of the mysqlbackup command.
See Also hot backup, MySQL Enterprise Backup, mysqlbackup command, prepared backup, replication.

rollback
 A SQL statement that ends a transaction, undoing any changes made by the transaction. It is the opposite
of commit, which makes permanent any changes made in the transaction.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement. You must change this setting before you can use the rollback technique.
See Also ACID, commit, transaction.

3441

rollback segment
 The storage area containing the undo log, part of the system tablespace.
See Also system tablespace, undo log.

row
 The logical data structure defined by a set of columns. A set of rows makes up a table. Within InnoDB data
files, each page can contain one or more rows.

Although InnoDB uses the term row format for consistency with MySQL syntax, the row format is a property
of each table and applies to all rows in that table.
See Also column, data files, page, row format, table.

row format
 The disk storage format for rows of an InnoDB table. As InnoDB gains new capabilities such as
compression, new row formats are introduced to support the resulting improvements in storage efficiency and
performance.

The row format of an InnoDB table is specified by the ROW_FORMAT option or by the
innodb_default_row_format configuration option (introduced in MySQL 5.7.9). Row formats include
REDUNDANT, COMPACT, COMPRESSED, and DYNAMIC. To view the row format of an InnoDB table, you can
issue the SHOW TABLE STATUS statement, or query INFORMATION_SCHEMA.INNODB_SYS_TABLES
(available in MySQL 5.6 or higher).
See Also compact row format, compressed row format, dynamic row format, file-per-table, fixed row format,
general tablespace, redundant row format, row, system tablespace, table.

row lock
 A lock that prevents a row from being accessed in an incompatible way by another transaction. Other rows
in the same table can be freely written to by other transactions. This is the type of locking done by DML
operations on InnoDB tables.

Contrast with table locks used by MyISAM, or during DDL operations on InnoDB tables that cannot be done
with online DDL; those locks block concurrent access to the table.
See Also DDL, DML, InnoDB, lock, locking, online DDL, table lock, transaction.

row-based replication
 A form of replication where events are propagated from the master server specifying how to change
individual rows on the slave server. It is safe to use for all settings of the innodb_autoinc_lock_mode
option.
See Also auto-increment locking, innodb_autoinc_lock_mode, master server, replication, slave server,
statement-based replication.

row-level locking
 The locking mechanism used for InnoDB tables, relying on row locks rather than table locks. Multiple
transactions can modify the same table concurrently. Only if two transactions try to modify the same row
does one of the transactions wait for the other to complete (and release its row locks).
See Also InnoDB, locking, row lock, table lock, transaction.

rw-lock
 The low-level object that InnoDB uses to represent and enforce shared-access locks to internal in-memory
data structures following certain rules. Contrast with mutexes, which InnoDB uses to represent and enforce
exclusive access to internal in-memory data structures. Mutexes and rw-locks are known collectively as
latches.

rw-lock types include s-locks (shared locks), x-locks (exclusive locks), and sx-locks (shared-
exclusive locks).

• An s-lock provides read access to a common resource.

• An x-lock provides write access to a common resource while not permitting inconsistent reads by other
threads.

3442

• An sx-lock provides write access to a common resource while permitting inconsistent reads by other
threads. sx-locks were introduced in MySQL 5.7 to optimize concurrency and improve scalability for read-
write workloads.

The following matrix summarizes rw-lock type compatibility.

 S SX X

S Compatible Compatible Conflict

SX Compatible Conflict Conflict

X Conflict Conflict Conflict

See Also latch, lock, mutex, Performance Schema.

S
savepoint

 Savepoints help to implement nested transactions. They can be used to provide scope to operations on
tables that are part of a larger transaction. For example, scheduling a trip in a reservation system might
involve booking several different flights; if a desired flight is unavailable, you might roll back the changes
involved in booking that one leg, without rolling back the earlier flights that were successfully booked.
See Also rollback, transaction.

scalability
 The ability to add more work and issue more simultaneous requests to a system, without a sudden drop in
performance due to exceeding the limits of system capacity. Software architecture, hardware configuration,
application coding, and type of workload all play a part in scalability. When the system reaches its maximum
capacity, popular techniques for increasing scalability are scale up (increasing the capacity of existing
hardware or software) and scale out (adding new servers and more instances of MySQL). Often paired with
availability as critical aspects of a large-scale deployment.
See Also availability, scale out, scale up.

scale out
 A technique for increasing scalability by adding new servers and more instances of MySQL. For example,
setting up replication, MySQL Cluster, connection pooling, or other features that spread work across a group
of servers. Contrast with scale up.
See Also scalability, scale up.

scale up
 A technique for increasing scalability by increasing the capacity of existing hardware or software.
For example, increasing the memory on a server and adjusting memory-related parameters such as
innodb_buffer_pool_size and innodb_buffer_pool_instances. Contrast with scale out.
See Also scalability, scale out.

schema
 Conceptually, a schema is a set of interrelated database objects, such as tables, table columns, data types
of the columns, indexes, foreign keys, and so on. These objects are connected through SQL syntax, because
the columns make up the tables, the foreign keys refer to tables and columns, and so on. Ideally, they are
also connected logically, working together as part of a unified application or flexible framework. For example,
the information_schema and performance_schema databases use "schema" in their names to emphasize
the close relationships between the tables and columns they contain.

In MySQL, physically, a schema is synonymous with a database. You can substitute the keyword SCHEMA
instead of DATABASE in MySQL SQL syntax, for example using CREATE SCHEMA instead of CREATE
DATABASE.

Some other database products draw a distinction. For example, in the Oracle Database product, a schema
represents only a part of a database: the tables and other objects owned by a single user.

3443

See Also database, ib-file set, INFORMATION_SCHEMA, Performance Schema.

search index
 In MySQL, full-text search queries use a special kind of index, the FULLTEXT index. In MySQL 5.6.4 and
up, InnoDB and MyISAM tables both support FULLTEXT indexes; formerly, these indexes were only available
for MyISAM tables.
See Also full-text search, FULLTEXT index.

secondary index
 A type of InnoDB index that represents a subset of table columns. An InnoDB table can have zero, one, or
many secondary indexes. (Contrast with the clustered index, which is required for each InnoDB table, and
stores the data for all the table columns.)

A secondary index can be used to satisfy queries that only require values from the indexed columns. For more
complex queries, it can be used to identify the relevant rows in the table, which are then retrieved through
lookups using the clustered index.

Creating and dropping secondary indexes has traditionally involved significant overhead from copying all the
data in the InnoDB table. The fast index creation feature of the InnoDB Plugin makes both CREATE INDEX
and DROP INDEX statements much faster for InnoDB secondary indexes.
See Also clustered index, Fast Index Creation, index.

segment
 A division within an InnoDB tablespace. If a tablespace is analogous to a directory, the segments are
analogous to files within that directory. A segment can grow. New segments can be created.

For example, within a file-per-table tablespace, the table data is in one segment and each associated index
is in its own segment. The system tablespace contains many different segments, because it can hold many
tables and their associated indexes. The system tablespace also includes one or more rollback segments
used for undo logs.

Segments grow and shrink as data is inserted and deleted. When a segment needs more room, it is extended
by one extent (1 megabyte) at a time. Similarly, a segment releases one extent's worth of space when all the
data in that extent is no longer needed.
See Also extent, file-per-table, rollback segment, system tablespace, tablespace, undo log.

selectivity
 A property of data distribution, the number of distinct values in a column (its cardinality) divided by the
number of records in the table. High selectivity means that the column values are relatively unique, and can
retrieved efficiently through an index. If you (or the query optimizer) can predict that a test in a WHERE clause
only matches a small number (or proportion) of rows in a table, the overall query tends to be efficient if it
evaluates that test first, using an index.
See Also cardinality, query.

semi-consistent read
 A type of read operation used for UPDATE statements, that is a combination of read committed and
consistent read. When an UPDATE statement examines a row that is already locked, InnoDB returns the
latest committed version to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE. If the row matches (must be updated), MySQL reads the row again, and this
time InnoDB either locks it or waits for a lock on it. This type of read operation can only happen when the
transaction has the read committed isolation level, or when the innodb_locks_unsafe_for_binlog
option is enabled. innodb_locks_unsafe_for_binlog was removed in MySQL 5.8.
See Also consistent read, isolation level, READ COMMITTED.

SERIALIZABLE
 The isolation level that uses the most conservative locking strategy, to prevent any other transactions from
inserting or changing data that was read by this transaction, until it is finished. This way, the same query can
be run over and over within a transaction, and be certain to retrieve the same set of results each time. Any
attempt to change data that was committed by another transaction since the start of the current transaction,
cause the current transaction to wait.

3444

This is the default isolation level specified by the SQL standard. In practice, this degree of strictness is rarely
needed, so the default isolation level for InnoDB is the next most strict, repeatable read.
See Also ACID, consistent read, isolation level, locking, REPEATABLE READ, transaction.

server
 A type of program that runs continuously, waiting to receive and act upon requests from another program
(the client). Because often an entire computer is dedicated to running one or more server programs (such as
a database server, a web server, an application server, or some combination of these), the term server can
also refer to the computer that runs the server software.
See Also client, mysqld.

shared lock
 A kind of lock that allows other transactions to read the locked object, and to also acquire other shared
locks on it, but not to write to it. The opposite of exclusive lock.
See Also exclusive lock, lock, transaction.

shared tablespace
 Another way of referring to the system tablespace.
See Also system tablespace.

sharp checkpoint
 The process of flushing to disk all dirty buffer pool pages whose redo entries are contained in certain portion
of the redo log. Occurs before InnoDB reuses a portion of a log file; the log files are used in a circular fashion.
Typically occurs with write-intensive workloads.
See Also dirty page, flush, redo log, workload.

shutdown
 The process of stopping the MySQL server. By default, this process does cleanup operations for InnoDB
tables, so it can slow to shut down, but fast to start up later. If you skip the cleanup operations, it is fast to
shut down but must do the cleanup during the next restart.

The shutdown mode is controlled by the innodb_fast_shutdown option.
See Also fast shutdown, InnoDB, slow shutdown, startup.

slave server
 Frequently shortened to "slave". A database server machine in a replication scenario that receives changes
from another server (the master) and applies those same changes. Thus it maintains the same contents as
the master, although it might lag somewhat behind.

In MySQL, slave servers are commonly used in disaster recovery, to take the place of a master servers that
fails. They are also commonly used for testing software upgrades and new settings, to ensure that database
configuration changes do not cause problems with performance or reliability.

Slave servers typically have high workloads, because they process all the DML (write) operations relayed
from the master, as well as user queries. To ensure that slave servers can apply changes from the master
fast enough, they frequently have fast I/O devices and sufficient CPU and memory to run multiple database
instances on the same slave server. For example, the master server might use hard drive storage while the
slave servers use SSDs.
See Also DML, replication, server, SSD.

slow query log
 A type of log used for performance tuning of SQL statements processed by the MySQL server. The log
information is stored in a file. You must enable this feature to use it. You control which categories of "slow"
SQL statements are logged. For more information, see Section 5.2.5, “The Slow Query Log”.
See Also general query log, log.

slow shutdown
 A type of shutdown that does additional InnoDB flushing operations before completing. Also known as a
clean shutdown. Specified by the configuration parameter innodb_fast_shutdown=0 or the command

3445

SET GLOBAL innodb_fast_shutdown=0;. Although the shutdown itself can take longer, that time will be
saved on the subsequent startup.
See Also clean shutdown, fast shutdown, shutdown.

snapshot
 A representation of data at a particular time, which remains the same even as changes are committed by
other transactions. Used by certain isolation levels to allow consistent reads.
See Also commit, consistent read, isolation level, transaction.

sort buffer
 The buffer used for sorting data during creation of an InnoDB index. Sort buffer size is configured using the
innodb_sort_buffer_size configuration option.

space ID
 An identifier used to uniquely identify an InnoDB tablespace within a MySQL instance. The space ID for the
system tablespace is always zero; this same ID applies to all tables within the system tablespace or within a
general tablespace. Each file-per-table tablespace and general tablespace has its own space ID.

Prior to MySQL 5.6, this hardcoded value presented difficulties in moving InnoDB tablespace files between
MySQL instances. Starting in MySQL 5.6, you can copy tablespace files between instances by using the
transportable tablespace feature involving the statements FLUSH TABLES ... FOR EXPORT, ALTER
TABLE ... DISCARD TABLESPACE, and ALTER TABLE ... IMPORT TABLESPACE. The information
needed to adjust the space ID is conveyed in the .cfg file which you copy along with the tablespace. See
Section 14.4.6, “Copying File-Per-Table Tablespaces to Another Server” for details.
See Also .cfg file, file-per-table, general tablespace, .ibd file, system tablespace, tablespace, transportable
tablespace.

sparse file
 A type of file that uses file system space more efficiently by writing metadata representing empty blocks to
disk instead of writing the actual empty space. The InnoDB transparent page compression feature relies on
sparse file support. For more information, see Section 14.6.2, “InnoDB Page Compression”.
See Also hole punching, transparent page compression.

spin
 A type of wait operation that continuously tests whether a resource becomes available. This technique is
used for resources that are typically held only for brief periods, where it is more efficient to wait in a "busy
loop" than to put the thread to sleep and perform a context switch. If the resource does not become available
within a short time, the spin loop ceases and another wait technique is used.
See Also latch, lock, mutex, wait.

SQL
 The Structured Query Language that is standard for performing database operations. Often divided into
the categories DDL, DML, and queries. MySQL includes some additional statement categories such as
replication. See Chapter 9, Language Structure for the building blocks of SQL syntax, Chapter 11, Data
Types for the data types to use for MySQL table columns, Chapter 13, SQL Statement Syntax for details
about SQL statements and their associated categories, and Chapter 12, Functions and Operators for standard
and MySQL-specific functions to use in queries.
See Also DDL, DML, query, replication.

SSD
 Acronym for "solid-state drive". A type of storage device with different performance characteristics than a
traditional hard disk drive (HDD): smaller storage capacity, faster for random reads, no moving parts, and with
a number of considerations affecting write performance. Its performance characteristics can influence the
throughput of a disk-bound workload.
See Also disk-bound, SSD.

startup
 The process of starting the MySQL server. Typically done by one of the programs listed in Section 4.3,
“MySQL Server and Server-Startup Programs”. The opposite of shutdown.

3446

See Also shutdown.

statement-based replication
 A form of replication where SQL statements are sent from the master server and replayed on the slave
server. It requires some care with the setting for the innodb_autoinc_lock_mode option, to avoid potential
timing problems with auto-increment locking.
See Also auto-increment locking, innodb_autoinc_lock_mode, master server, replication, row-based
replication, slave server.

statistics
 Estimated values relating to each InnoDB table and index, used to construct an efficient query execution
plan. The main values are the cardinality (number of distinct values) and the total number of table rows
or index entries. The statistics for the table represent the data in its primary key index. The statistics for a
secondary index represent the rows covered by that index.

The values are estimated rather than counted precisely because at any moment, different transactions can
be inserting and deleting rows from the same table. To keep the values from being recalculated frequently,
you can enable persistent statistics, where the values are stored in InnoDB system tables, and refreshed
only when you issue an ANALYZE TABLE statement.

You can control how NULL values are treated when calculating statistics through the
innodb_stats_method configuration option.

Other types of statistics are available for database objects and database activity through the
INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables.
See Also cardinality, index, INFORMATION_SCHEMA, NULL, Performance Schema, persistent statistics,
primary key, query execution plan, secondary index, table, transaction.

stemming
 The ability to search for different variations of a word based on a common root word, such as singular and
plural, or past, present, and future verb tense. This feature is currently supported in MyISAM full-text search
feature but not in FULLTEXT indexes for InnoDB tables.
See Also full-text search, FULLTEXT index.

stopword
 In a FULLTEXT index, a word that is considered common or trivial enough that it is omitted from the search
index and ignored in search queries. Different configuration settings control stopword processing for InnoDB
and MyISAM tables. See Section 12.9.4, “Full-Text Stopwords” for details.
See Also FULLTEXT index, search index.

storage engine
 A component of the MySQL database that performs the low-level work of storing, updating, and querying
data. In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables, superceding MyISAM.
Different storage engines are designed with different tradeoffs between factors such as memory usage versus
disk usage, read speed versus write speed, and speed versus robustness. Each storage engine manages
specific tables, so we refer to InnoDB tables, MyISAM tables, and so on.

The MySQL Enterprise Backup product is optimized for backing up InnoDB tables. It can also back up tables
handled by MyISAM and other storage engines.
See Also InnoDB, MySQL Enterprise Backup, table type.

strict mode
 The general name for the setting controlled by the innodb_strict_mode option. Turning on this setting
causes certain conditions that are normally treated as warnings, to be considered errors. For example, certain
invalid combinations of options related to file format and row format, that normally produce a warning and
continue with default values, now cause the CREATE TABLE operation to fail.

MySQL also has something called strict mode.
See Also file format, innodb_strict_mode, row format.

3447

sublist
 Within the list structure that represents the buffer pool, pages that are relatively old and relatively new are
represented by different portions of the list. A set of parameters control the size of these portions and the
dividing point between the new and old pages.
See Also buffer pool, eviction, list, LRU.

supremum record
 A pseudo-record in an index, representing the gap above the largest value in that index. If a transaction
has a statement such as SELECT ... FOR UPDATE ... WHERE col > 10;, and the largest value in the
column is 20, it is a lock on the supremum record that prevents other transactions from inserting even larger
values such as 50, 100, and so on.
See Also gap, infimum record, pseudo-record.

surrogate key
 Synonym name for synthetic key.
See Also synthetic key.

synthetic key
 An indexed column, typically a primary key, where the values are assigned arbitrarily. Often done using
an auto-increment column. By treating the value as completely arbitrary, you can avoid overly restrictive
rules and faulty application assumptions. For example, a numeric sequence representing employee numbers
might have a gap if an employee was approved for hiring but never actually joined. Or employee number 100
might have a later hiring date than employee number 500, if they left the company and later rejoined. Numeric
values also produce shorter values of predictable length. For example, storing numeric codes meaning
"Road", "Boulevard", "Expressway", and so on is more space-efficient than repeating those strings over and
over.

Also known as a surrogate key. Contrast with natural key.
See Also auto-increment, natural key, primary key, surrogate key.

system tablespace
 One or more data files (ibdata files) containing the metadata for InnoDB-related objects (the data
dictionary), and the storage areas for one or more undo logs, the change buffer, and the doublewrite
buffer. It may also contain table and index data for InnoDB tables if tables were created in the system
tablespace instead of a file-per-table or general tablespaces. The data and metadata in the system tablespace
apply to all the databases in a MySQL instance.

Prior to MySQL 5.6.7, the default was to keep all InnoDB tables and indexes inside the system tablespace,
often causing this file to become very large. Because the system tablespace never shrinks, storage problems
could arise if large amounts of temporary data were loaded and then deleted. In MySQL 5.7, the default
is file-per-table mode, where each table and its associated indexes are stored in a separate .ibd file.
This new default makes it easier to use InnoDB features that rely on the Barracuda file format, such as
table compression, off-page storage for long variable-length column values, and large index key prefixes
(innodb_large_prefix).

The innodb_undo_tablespaces option allows you to configure separate tablespace files for undo logs.
These files are still considered part of the system tablespace.

Keeping all table data in the system tablespace or in separate .ibd files has implications for storage
management in general. The MySQL Enterprise Backup product might back up a small set of large files, or
many smaller files. On systems with thousands of tables, the file system operations to process thousands of
.ibd files can cause bottlenecks.

InnoDB introduced general tablespaces in MySQL 5.7.6, which are also represented by .ibd files. General
tablespaces are shared tablespaces created using CREATE TABLESPACE syntax. They can be created
outside of the MySQL data directory, are capable of holding multiple tables, and support tables of all row
formats.
See Also Barracuda, change buffer, compression, data dictionary, database, doublewrite buffer, dynamic
row format, file-per-table, .ibd file, ibdata file, innodb_file_per_table, instance, MySQL Enterprise Backup,
tablespace, undo log.

3448

T
.TRG file

 A file containing trigger parameters. Files with this extension are always included in backups produced by
the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRN file.

.TRN file
 A file containing trigger namespace information. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRG file.

table
 Each MySQL table is associated with a particular storage engine. InnoDB tables have particular physical
and logical characteristics that affect performance, scalability, backup, administration, and application
development.

In terms of file storage, an InnoDB table belongs to one of the following tablespace types:

• The shared InnoDB system tablespace, which is comprised of one or more .ibdata files.

• A file-per-table tablespace, comprised of an individual .ibd file.

• A shared general tablespace, comprised of an individual .ibd file. General tablespaces were introduced in
MySQL 5.7.6.

.ibd data files contain both table and index data.

InnoDB tables created in file-per-table tablespaces can use the Barracuda file format. Barracuda tables can
use the DYNAMIC row format or the COMPRESSED row format. These row formats enable InnoDB features
such as compression, off-page columns, and large index key prefixes (see innodb_large_prefix).
General tablespaces support all row formats regardless of the innodb_file_format setting.

Up to MySQL 5.7.5, InnoDB tables inside the system tablespace had to use the Antelope file format for
backward compatibility with MySQL 5.1 and earlier. The Antelope file format supports the COMPACT row
format and the REDUNDANT row format. The system tablespace supports tables that use the DYNAMIC row
format as of MySQL 5.7.6.

The rows of an InnoDB table are organized into an index structure known as the clustered index, with
entries sorted based on the primary key columns of the table. Data access is optimized for queries that
filter and sort on the primary key columns, and each index contains a copy of the associated primary key
columns for each entry. Modifying values for any of the primary key columns is an expensive operation. Thus
an important aspect of InnoDB table design is choosing a primary key with columns that are used in the most
important queries, and keeping the primary key short, with rarely changing values.
See Also Antelope, backup, Barracuda, clustered index, compact row format, compressed row format,
compression, dynamic row format, Fast Index Creation, file-per-table, .ibd file, index, off-page column, primary
key, redundant row format, row, system tablespace, tablespace.

table lock
 A lock that prevents any other transaction from accessing a table. InnoDB makes considerable effort to
make such locks unnecessary, by using techniques such as online DDL, row locks and consistent reads
for processing DML statements and queries. You can create such a lock through SQL using the LOCK
TABLE statement; one of the steps in migrating from other database systems or MySQL storage engines is to
remove such statements wherever practical.
See Also consistent read, DML, lock, locking, online DDL, query, row lock, table, transaction.

table scan
See full table scan.

table statistics
See statistics.

3449

table type
 Obsolete synonym for storage engine. We refer to InnoDB tables, MyISAM tables, and so on.
See Also InnoDB, storage engine.

tablespace
 A data file that can hold data for one or more InnoDB tables and associated indexes.

The system tablespace contains the tables that make up the data dictionary, and prior to MySQL 5.6 holds
all the other InnoDB tables by default.

The innodb_file_per_table option, which is enabled by default in MySQL 5.6 and higher, allows
tables to be created in file-per-table tablespaces, with a separate data file for each table. Enabling the
innodb_file_per_table option makes available other MySQL features such as table compression and
transportable tablespaces. See Section 14.4.4, “InnoDB File-Per-Table Tablespaces” for details.

InnoDB introduced general tablespaces in MySQL 5.7.6. General tablespaces are shared tablespaces created
using CREATE TABLESPACE syntax. They can be created outside of the MySQL data directory, are capable
of holding multiple tables, and support tables of all row formats.

MySQL Cluster also groups its tables into tablespaces. See MySQL Cluster Disk Data Objects for details.
See Also Antelope, Barracuda, compressed row format, data dictionary, data files, file-per-table, general
tablespace, index, innodb_file_per_table, system tablespace, table.

tablespace dictionary
 A representation of the data dictionary metadata for a table, within the InnoDB tablespace. This metadata
can be checked against the .frm file for consistency when the table is opened, to diagnose errors resulting
from out-of-date .frm files. This information is present for InnoDB tables that reside in the system
tablespace, a file-per-table tablespace, or a general tablespace.
See Also data dictionary, file-per-table, .frm file, general tablespace, .ibd file, system tablespace, tablespace.

temporary table
 A table whose data does not need to be truly permanent. For example, temporary tables might be used as
storage areas for intermediate results in complicated calculations or transformations; this intermediate data
would not need to be recovered after a crash. Database products can take various shortcuts to improve the
performance of operations on temporary tables, by being less scrupulous about writing data to disk and other
measures to protect the data across restarts.

Sometimes, the data itself is removed automatically at a set time, such as when the transaction ends or when
the session ends. With some database products, the table itself is removed automatically too.
See Also table.

temporary tablespace
 The tablespace for non-compressed InnoDB temporary tables and related objects, introduced in MySQL
5.7.1. The configuration file option, innodb_temp_data_file_path, allows users to define a relative
path for the temporary tablespace data file. If innodb_temp_data_file_path is not specified, the default
behavior is to create a single auto-extending 12MB data file named ibtmp1 in the data directory, alongside
ibdata system tablespace files. The temporary tablespace is recreated on each server start and receives
a dynamically generated space ID, which helps avoid conflicts with existing space IDs. The temporary
tablespace cannot reside on a raw device. Startup is refused if the temporary tablespace cannot be created.

The temporary tablespace is removed on normal shutdown or on an aborted initialization. The temporary
tablespace is not removed when a crash occurs. In this case, the database administrator may remove
the temporary tablespace manually or restart the server with the same configuration, which removes and
recreates the temporary tablespace.
See Also ibtmp file.

text collection
 The set of columns included in a FULLTEXT index.
See Also FULLTEXT index.

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-disk-data-objects.html

3450

thread
 A unit of processing that is typically more lightweight than a process, allowing for greater concurrency.
See Also concurrency, master thread, process, Pthreads.

torn page
 An error condition that can occur due to a combination of I/O device configuration and hardware failure. If
data is written out in chunks smaller than the InnoDB page size (by default, 16KB), a hardware failure while
writing could result in only part of a page being stored to disk. The InnoDB doublewrite buffer guards against
this possibility.
See Also doublewrite buffer.

TPS
 Acronym for "transactions per second", a unit of measurement sometimes used in benchmarks. Its value
depends on the workload represented by a particular benchmark test, combined with factors that you control
such as the hardware capacity and database configuration.
See Also transaction, workload.

transaction
 Transactions are atomic units of work that can be committed or rolled back. When a transaction makes
multiple changes to the database, either all the changes succeed when the transaction is committed, or all the
changes are undone when the transaction is rolled back.

Database transactions, as implemented by InnoDB, have properties that are collectively known by the
acronym ACID, for atomicity, consistency, isolation, and durability.
See Also ACID, commit, isolation level, lock, rollback.

transaction ID
 An internal field associated with each row. This field is physically changed by INSERT, UPDATE, and
DELETE operations to record which transaction has locked the row.
See Also implicit row lock.

transparent page compression
 A feature added in MySQL 5.7.8 that permits page-level compression for InnoDB tables that reside in file-
per-table tablespaces. Page compression is enabled by specifying the COMPRESSION attribute with CREATE
TABLE or ALTER TABLE. For more information, see Section 14.6.2, “InnoDB Page Compression”.
See Also file-per-table, hole punching, sparse file.

transportable tablespace
 A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not
been possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL
5.6 and higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to
another server; running ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ... IMPORT
TABLESPACE on the other server brings the copied data file into the other instance. A separate .cfg file,
copied along with the .ibd file, is used to update the table metadata (for example the space ID) as the
tablespace is imported. See Section 14.4.6, “Copying File-Per-Table Tablespaces to Another Server” for
usage information.
See Also .ibd file, space ID, system tablespace, tablespace.

troubleshooting
 Resources for troubleshooting InnoDB reliability and performance issues include: the Information Schema
tables.

truncate
 A DDL operation that removes the entire contents of a table, while leaving the table and related indexes
intact. Contrast with drop. Although conceptually it has the same result as a DELETE statement with no
WHERE clause, it operates differently behind the scenes: InnoDB creates a new empty table, drops the old
table, then renames the new table to take the place of the old one. Because this is a DDL operation, it cannot
be rolled back.

If the table being truncated contains foreign keys that reference another table, the truncation operation uses a
slower method of operation, deleting one row at a time so that corresponding rows in the referenced table can

3451

be deleted as needed by any ON DELETE CASCADE clause. (MySQL 5.5 and higher do not allow this slower
form of truncate, and return an error instead if foreign keys are involved. In this case, use a DELETE statement
instead.
See Also DDL, drop, foreign key, rollback.

tuple
 A technical term designating an ordered set of elements. It is an abstract notion, used in formal discussions
of database theory. In the database field, tuples are usually represented by the columns of a table row. They
could also be represented by the result sets of queries, for example, queries that retrieved only some columns
of a table, or columns from joined tables.
See Also cursor.

two-phase commit
 An operation that is part of a distributed transaction, under the XA specification. (Sometimes abbreviated as
2PC.) When multiple databases participate in the transaction, either all databases commit the changes, or all
databases roll back the changes.
See Also commit, rollback, transaction, XA.

U

undo
 Data that is maintained throughout the life of a transaction, recording all changes so that they can be
undone in case of a rollback operation. It is stored in the undo log either within the system tablespace or in
separate undo tablespaces.
See Also rollback, rollback segment, system tablespace, transaction, undo log, undo tablespace.

undo buffer
See undo log.

undo log
 A storage area that holds copies of data modified by active transactions. If another transaction needs to see
the original data (as part of a consistent read operation), the unmodified data is retrieved from this storage
area.

By default, this area is physically part of the system tablespace. In MySQL 5.6 and higher, you can use the
innodb_undo_tablespaces and innodb_undo_directory configuration options to split it into one or
more separate tablespace files, the undo tablespaces, optionally stored on another storage device such as
an SSD.

The undo log is split into separate portions, the insert undo buffer and the update undo buffer.
See Also consistent read, rollback segment, SSD, system tablespace, transaction, undo tablespace.

undo tablespace
 One of a set of files containing the undo log, when the undo log is separated from the system tablespace
using the innodb_undo_tablespaces and innodb_undo_directory configuration options. Only applies
to MySQL 5.6 and higher.
See Also system tablespace, undo log.

unique constraint
 A kind of constraint that asserts that a column cannot contain any duplicate values. In terms of relational
algebra, it is used to specify 1-to-1 relationships. For efficiency in checking whether a value can be inserted
(that is, the value does not already exist in the column), a unique constraint is supported by an underlying
unique index.
See Also constraint, relational, unique index.

unique index
 An index on a column or set of columns that have a unique constraint. Because the index is known not
to contain any duplicate values, certain kinds of lookups and count operations are more efficient than in the

3452

normal kind of index. Most of the lookups against this type of index are simply to determine if a certain value
exists or not. The number of values in the index is the same as the number of rows in the table, or at least the
number of rows with non-null values for the associated columns.

Change buffering optimization does not apply to unique indexes. As a workaround, you can temporarily set
unique_checks=0 while doing a bulk data load into an InnoDB table.
See Also cardinality, change buffering, unique constraint, unique key.

unique key
 The set of columns (one or more) comprising a unique index. When you can define a WHERE condition that
matches exactly one row, and the query can use an associated unique index, the lookup and error handling
can be performed very efficiently.
See Also cardinality, unique constraint, unique index.

V

victim
 The transaction that is automatically chosen to be rolled back when a deadlock is detected. InnoDB rolls
back the transaction that has updated the fewest rows.
See Also deadlock, deadlock detection, innodb_lock_wait_timeout.

W

wait
 When an operation, such as acquiring a lock, mutex, or latch, cannot be completed immediately, InnoDB
pauses and tries again. The mechanism for pausing is elaborate enough that this operation has its own name,
the wait. Individual threads are paused using a combination of internal InnoDB scheduling, operating system
wait() calls, and short-duration spin loops.

On systems with heavy load and many transactions, you might use the output from the SHOW INNODB
STATUS command to determine whether threads are spending too much time waiting, and if so, how you can
improve concurrency.
See Also concurrency, latch, lock, mutex, spin.

warm backup
 A backup taken while the database is running, but that restricts some database operations during the backup
process. For example, tables might become read-only. For busy applications and web sites, you might prefer
a hot backup.
See Also backup, cold backup, hot backup.

warm up
 To run a system under a typical workload for some time after startup, so that the buffer pool and other
memory regions are filled as they would be under normal conditions.

This process happens naturally over time when a MySQL server is restarted or subjected to a new workload.
Starting in MySQL 5.6, you can speed up the warmup process by setting the configuration variables
innodb_buffer_pool_dump_at_shutdown=ON and innodb_buffer_pool_load_at_startup=ON, to
bring the contents of the buffer pool back into memory after a restart. Typically, you run a workload for some
time to warm up the buffer pool before running performance tests, to ensure consistent results across multiple
runs; otherwise, performance might be artificially low during the first run.
See Also buffer pool, workload.

Windows
 The built-in InnoDB storage engine and the InnoDB Plugin are supported on all the same Microsoft Windows
versions as the MySQL server. The MySQL Enterprise Backup product has more comprehensive support for
Windows systems than the InnoDB Hot Backup product that it supersedes.
See Also InnoDB, MySQL Enterprise Backup, plugin.

3453

workload
 The combination and volume of SQL and other database operations, performed by a database application
during typical or peak usage. You can subject the database to a particular workload during performance
testing to identify bottlenecks, or during capacity planning.
See Also bottleneck, CPU-bound, disk-bound, SQL.

write combining
 An optimization technique that reduces write operations when dirty pages are flushed from the InnoDB
buffer pool. If a row in a page is updated multiple times, or multiple rows on the same page are updated, all
of those changes are stored to the data files in a single write operation rather than one write for each change.
See Also buffer pool, dirty page, flush.

X
XA

 A standard interface for coordinating distributed transactions, allowing multiple databases to participate in a
transaction while maintaining ACID compliance. For full details, see Section 13.3.7, “XA Transactions”.

XA Distributed Transaction support is turned on by default. If you are not using this feature, you can disable
the innodb_support_xa configuration option, avoiding the performance overhead of an extra fsync for each
transaction.
See Also commit, transaction, two-phase commit.

Y
young

 A characteristic of a page in the InnoDB buffer pool meaning it has been accessed recently, and so is
moved within the buffer pool data structure, so that it will not be flushed soon by the LRU algorithm. This term
is used in some information schema column names of tables related to the buffer pool.
See Also buffer pool, flush, INFORMATION_SCHEMA, LRU, page.

3454

3455

Appendix D Licenses for Third-Party Components

Table of Contents
D.1 Artistic License (Perl) 1.0 .. 3457
D.2 Boost Library License ... 3459
D.3 Corosync License ... 3459
D.4 dtoa.c License .. 3460
D.5 Editline Library (libedit) License ... 3460
D.6 Expect.pm License ... 3463
D.7 Facebook Fast Checksum Patch License .. 3470
D.8 Facebook Patches License ... 3471
D.9 FindGTest.cmake License ... 3471
D.10 Fred Fish's Dbug Library License .. 3472
D.11 getarg License ... 3473
D.12 GNU General Public License Version 2.0, June 1991 ... 3473
D.13 GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library
Exception Version 3.1, 31 March 2009 .. 3478
D.14 GNU Lesser General Public License Version 2.1, February 1999 3489
D.15 GNU Readline License ... 3497
D.16 GNU Standard C++ Library (libstdc++) License .. 3497
D.17 Google C++ Mocking Framework (Google Mock) License ... 3498
D.18 Google Controlling Master Thread I/O Rate Patch License .. 3499
D.19 Google Perftools (TCMalloc utility) License .. 3499
D.20 Google Protocol Buffers License ... 3500
D.21 Google SMP Patch License .. 3500
D.22 ICU4C Unicode Libraries License .. 3501
D.23 Janson License .. 3506
D.24 lib_sql.cc License ... 3506
D.25 Libaio License .. 3507
D.26 libevent License ... 3507
D.27 Linux-PAM License ... 3509
D.28 LZ4 License ... 3509
D.29 md5 (Message-Digest Algorithm 5) License ... 3510
D.30 MeCab Dictionary License .. 3510
D.31 MeCab License .. 3511
D.32 memcached License ... 3512
D.33 Memcached.pm License ... 3512
D.34 mkpasswd.pl License .. 3513
D.35 nt_servc (Windows NT Service class library) License .. 3516
D.36 OpenPAM License .. 3516
D.37 OpenSSL v1.0 License ... 3517
D.38 Percona Multiple I/O Threads Patch License .. 3518
D.39 Pion License .. 3519
D.40 RapidJSON v0.1 .. 3519
D.41 Red HAT RPM Spec File License ... 3520
D.42 RegEX-Spencer Library License .. 3520
D.43 Richard A. O'Keefe String Library License ... 3520
D.44 sajson License ... 3521
D.45 SHA-1 in C License .. 3521
D.46 Unicode Data Files ... 3521
D.47 zlib License .. 3522

The following is a list of the libraries we have included with the MySQL Server source and components
used to test MySQL. We are thankful to all individuals that have created these. Some of the

MySQL 5.7

3456

components require that their licensing terms be included in the documentation of products that include
them. Cross references to these licensing terms are given with the applicable items in the list.

• GroupLens Research Project

The MySQL Quality Assurance team would like to acknowledge the use of the MovieLens Data Sets
(10 million ratings and 100,000 tags for 10681 movies by 71567 users) to help test MySQL products
and to thank the GroupLens Research Project at the University of Minnesota for making the data
sets available.

MySQL 5.7

• Section D.1, “Artistic License (Perl) 1.0”

• Section D.2, “Boost Library License”

• Section D.3, “Corosync License”

• Section D.4, “dtoa.c License”

• Section D.5, “Editline Library (libedit) License”

• Section D.6, “Expect.pm License”

• Section D.7, “Facebook Fast Checksum Patch License”

• Section D.8, “Facebook Patches License”

• Section D.9, “FindGTest.cmake License”

• Section D.10, “Fred Fish's Dbug Library License”

• Section D.11, “getarg License”

• Section D.12, “GNU General Public License Version 2.0, June 1991”

• Section D.13, “GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library
Exception Version 3.1, 31 March 2009”

• Section D.14, “GNU Lesser General Public License Version 2.1, February 1999”

• Section D.15, “GNU Readline License”

• Section D.16, “GNU Standard C++ Library (libstdc++) License”

• Section D.17, “Google C++ Mocking Framework (Google Mock) License”

• Section D.18, “Google Controlling Master Thread I/O Rate Patch License”

• Section D.19, “Google Perftools (TCMalloc utility) License”

• Section D.20, “Google Protocol Buffers License”

• Section D.21, “Google SMP Patch License”

• Section D.22, “ICU4C Unicode Libraries License”

• Section D.23, “Janson License”

• Section D.24, “lib_sql.cc License”

• Section D.25, “Libaio License”

• Section D.26, “libevent License”

• Section D.27, “Linux-PAM License”

Artistic License (Perl) 1.0

3457

• Section D.28, “LZ4 License”

• Section D.29, “md5 (Message-Digest Algorithm 5) License”

• Section D.30, “MeCab Dictionary License”

• Section D.31, “MeCab License”

• Section D.32, “memcached License”

• Section D.33, “Memcached.pm License”

• Section D.34, “mkpasswd.pl License”

• Section D.35, “nt_servc (Windows NT Service class library) License”

• Section D.36, “OpenPAM License”

• Section D.37, “OpenSSL v1.0 License”

• Section D.38, “Percona Multiple I/O Threads Patch License”

• Section D.39, “Pion License”

• Section D.40, “RapidJSON v0.1”

• Section D.41, “Red HAT RPM Spec File License”

• Section D.42, “RegEX-Spencer Library License”

• Section D.43, “Richard A. O'Keefe String Library License”

• Section D.44, “sajson License”

• Section D.45, “SHA-1 in C License”

• Section D.46, “Unicode Data Files”

• Section D.47, “zlib License”

D.1 Artistic License (Perl) 1.0

The "Artistic License"

Preamble

The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to make
reasonable modifications.

Definitions:

 "Package" refers to the collection of files distributed by the
 Copyright Holder, and derivatives of that collection of files
 created through textual modification.

 "Standard Version" refers to such a Package if it has not been
 modified, or has been modified in accordance with the wishes
 of the Copyright Holder as specified below.

 "Copyright Holder" is whoever is named in the copyright or
 copyrights for the package.

 "You" is you, if you're thinking about copying or distributing
 this Package.

Artistic License (Perl) 1.0

3458

 "Reasonable copying fee" is whatever you can justify on the
 basis of media cost, duplication charges, time of people involved,
 and so on. (You will not be required to justify it to the
 Copyright Holder, but only to the computing community at large
 as a market that must bear the fee.)

 "Freely Available" means that no fee is charged for the item
 itself, though there may be fees involved in handling the item.
 It also means that recipients of the item may redistribute it
 under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that you
duplicate all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A Package
modified in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following:

 a) place your modifications in the Public Domain or otherwise make them
 Freely Available, such as by posting said modifications to Usenet or
 an equivalent medium, or placing the modifications on a major archive
 site such as uunet.uu.net, or by allowing the Copyright Holder to include
 your modifications in the Standard Version of the Package.

 b) use the modified Package only within your corporation or organization.

 c) rename any non-standard executables so the names do not conflict
 with standard executables, which must also be provided, and provide
 a separate manual page for each non-standard executable that clearly
 documents how it differs from the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:

 a) distribute a Standard Version of the executables and library files,
 together with instructions (in the manual page or equivalent) on where
 to get the Standard Version.

 b) accompany the distribution with the machine-readable source of
 the Package with your modifications.

 c) give non-standard executables non-standard names, and clearly
 document the differences in manual pages (or equivalent), together
 with instructions on where to get the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this
Package. You may charge any fee you choose for support of this
Package. You may not charge a fee for this Package itself. However,
you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software
distribution provided that you do not advertise this Package as a
product of your own. You may embed this Package's interpreter within
an executable of yours (by linking); this shall be construed as a mere
form of aggregation, provided that the complete Standard Version of the
interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whoever generated
them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing a

Boost Library License

3459

binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you do
not represent such an executable image as a Standard Version of this
Package.

7. C subroutines (or comparably compiled subroutines in other
languages) supplied by you and linked into this Package in order to
emulate subroutines and variables of the language defined by this
Package shall not be considered part of this Package, but are the
equivalent of input as in Paragraph 6, provided these subroutines do
not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written
permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

 The End

D.2 Boost Library License

The following software may be included in this product:

Boost C++ Libraries

Use of any of this software is governed by the terms of the license below:

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit
third-parties to whom the Software is furnished to do so, all
subject to the following:

The copyright notices in the Software and this entire statement,
including the above license grant, this restriction and the
following disclaimer, must be included in all copies of the
Software, in whole or in part, and all derivative works of the
Software, unless such copies or derivative works are solely in the
form of machine-executable object code generated by a source
language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER
LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

D.3 Corosync License

The following software may be included in this product:

dtoa.c License

3460

Corosync

Copyright (c) 2002-2004 MontaVista Software, Inc.
Copyright (c) 2005-2010 RedHat, Inc.

All rights reserved.

This software licensed under BSD license, the text of which follows:

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this
 list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
- Neither the name of the MontaVista Software, Inc. nor the names of its
 contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

D.4 dtoa.c License
The following software may be included in this product:

dtoa.c

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this entire
notice is included in all copies of any software which is or includes
a copy or modification of this software and in all copies of the
supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT
MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
PURPOSE.

D.5 Editline Library (libedit) License
The following software may be included in this product:

Editline Library (libedit)

Some files are:

Copyright (c) 1992, 1993
The Regents of the University of California. All rights reserved.

This code is derived from software contributed to
Berkeley by Christos Zoulas of Cornell University.

Editline Library (libedit) License

3461

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the
 above copyright notice, this list of conditions
 and the following disclaimer.
2. Redistributions in binary form must reproduce the
 above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or
 other materials provided with the distribution.
3. Neither the name of the University nor the names of
 its contributors may be used to endorse or promote
 products derived from this software without specific
 prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Some files are:

Copyright (c) 2001 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD Foundation

by Anthony Mallet.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the
 above copyright notice, this list of conditions
 and the following disclaimer.
2. Redistributions in binary form must reproduce the
 above copyright notice, this list of conditions and the
 following disclaimer in the documentation and/or
 other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC.
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Some files are:

Editline Library (libedit) License

3462

Copyright (c) 1997 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD Foundation

by Jaromir Dolecek.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the
 above copyright notice, this list of conditions
 and the following disclaimer.
2. Redistributions in binary form must reproduce
 the above copyright notice, this list of conditions
 and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC.
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Some files are:

Copyright (c) 1998 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this
software for any purpose with or without fee is hereby
granted, provided that the above copyright notice and
this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND TODD C. MILLER
DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL TODD C. MILLER BE LIABLE
FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Some files are:

Copyright (c) 1998 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD
Foundation by Christos Zoulas.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above

Expect.pm License

3463

 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Some files are:

Copyright (c) 2009 The NetBSD Foundation, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the
 distribution.
3. All advertising materials mentioning features or use of this
 software must display the following acknowledgement:
 This product includes software developed by the NetBSD
 Foundation, Inc. and its contributors.
4. Neither the name of The NetBSD Foundation nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

D.6 Expect.pm License
The following software may be included in this product:

Expect.pm Perl module

Expect.pm is licensed under the Perl license, which is essentially a dual
license.

Oracle may use, redistribute and/or modify this code under the terms of
either:

 a) the GNU General Public License as published by the Free Software
Foundation; either version 1, or (at your option) any later version, or

 b) the "Artistic License" which comes with the Expect/pr code.

Expect.pm License

3464

Oracle elects to use the GPLv2 for version of MySQL that are licensed under
the GPL.

Oracle elects to use the Artistic license for all other (commercial) versions
of MySQL.

A copy of the GPLv2 and the Artistic License (Perl) 1.0 must be included with
any distribution:

The GNU General Public License (GPL-2.0)
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public License applies to
most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The "Program", below, refers to any such
program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work containing

Expect.pm License

3465

the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included
without limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the Program's source code
as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

 c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else,
saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not
normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

Expect.pm License

3466

 b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of
the rights granted herein. You are not responsible for enforcing compliance
by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both
it and this License would be to refrain entirely from distribution of the
Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of

Expect.pm License

3467

software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee
cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any later
version", you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License,
you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

 One line to give the program's name and a brief idea of what it does.
 Copyright (C) <year> <name of author>

Expect.pm License

3468

 This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

 This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

 You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author Gnomovision
comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free
software, and you are welcome to redistribute it under certain conditions;
type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

 signature of Ty Coon, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

__

The "Artistic License"

Preamble

The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to make
reasonable modifications.

Definitions:

 "Package" refers to the collection of files distributed by the
 Copyright Holder, and derivatives of that collection of files
 created through textual modification.

 "Standard Version" refers to such a Package if it has not been
 modified, or has been modified in accordance with the wishes
 of the Copyright Holder as specified below.

 "Copyright Holder" is whoever is named in the copyright or
 copyrights for the package.

Expect.pm License

3469

 "You" is you, if you're thinking about copying or distributing
 this Package.

 "Reasonable copying fee" is whatever you can justify on the
 basis of media cost, duplication charges, time of people involved,
 and so on. (You will not be required to justify it to the
 Copyright Holder, but only to the computing community at large
 as a market that must bear the fee.)

 "Freely Available" means that no fee is charged for the item
 itself, though there may be fees involved in handling the item.
 It also means that recipients of the item may redistribute it
 under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that you
duplicate all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A Package
modified in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following:

 a) place your modifications in the Public Domain or otherwise make them
 Freely Available, such as by posting said modifications to Usenet or
 an equivalent medium, or placing the modifications on a major archive
 site such as uunet.uu.net, or by allowing the Copyright Holder to include
 your modifications in the Standard Version of the Package.

 b) use the modified Package only within your corporation or organization.

 c) rename any non-standard executables so the names do not conflict
 with standard executables, which must also be provided, and provide
 a separate manual page for each non-standard executable that clearly
 documents how it differs from the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:

 a) distribute a Standard Version of the executables and library files,
 together with instructions (in the manual page or equivalent) on where
 to get the Standard Version.

 b) accompany the distribution with the machine-readable source of
 the Package with your modifications.

 c) give non-standard executables non-standard names, and clearly
 document the differences in manual pages (or equivalent), together
 with instructions on where to get the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this
Package. You may charge any fee you choose for support of this
Package. You may not charge a fee for this Package itself. However,
you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software
distribution provided that you do not advertise this Package as a
product of your own. You may embed this Package's interpreter within
an executable of yours (by linking); this shall be construed as a mere
form of aggregation, provided that the complete Standard Version of the
interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whoever generated

Facebook Fast Checksum Patch License

3470

them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing a
binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you do
not represent such an executable image as a Standard Version of this
Package.

7. C subroutines (or comparably compiled subroutines in other
languages) supplied by you and linked into this Package in order to
emulate subroutines and variables of the language defined by this
Package shall not be considered part of this Package, but are the
equivalent of input as in Paragraph 6, provided these subroutines do
not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written
permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

 The End

D.7 Facebook Fast Checksum Patch License

The following software may be included in this product:

Facebook Fast Checksum Patch

Copyright (C) 2009-2010 Facebook, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY FACEBOOK, INC. “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL FACEBOOK, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Also included:

crc32.c -- compute the CRC-32 of a buf stream
Copyright (C) 1995-2005 Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Facebook Patches License

3471

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu

D.8 Facebook Patches License
The following software may be included in this product:

Copyright (c) 2012, Facebook, Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

D.9 FindGTest.cmake License
The following software may be included in this product:

FindGTest.cmake helper script (part of CMake)

Copyright 2009 Kitware, Inc.
Copyright 2009 Philip Lowman
Copyright 2009 Daniel Blezek

Distributed under the OSI-approved BSD License (the "License");
see accompanying file Copyright.txt for details.

This software is distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the License for more information.
==
(To distributed this file outside of CMake, substitute the full
 License text for the above reference.)

Thanks to Daniel Blezek for the GTEST_ADD_TESTS code

Text of Copyright.txt mentioned above:

CMake - Cross Platform Makefile Generator
Copyright 2000-2009 Kitware, Inc., Insight Software Consortium
All rights reserved.

Redistribution and use in source and binary forms, with or without

Fred Fish's Dbug Library License

3472

modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

* Neither the names of Kitware, Inc., the Insight Software Consortium,
 nor the names of their contributors may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

D.10 Fred Fish's Dbug Library License

The following software may be included in this product:

Fred Fish's Dbug Library

 N O T I C E

 Copyright Abandoned, 1987, Fred Fish

 This previously copyrighted work has been placed into the public

 domain by the author and may be freely used for any purpose,

 private or commercial.

 Because of the number of inquiries I was receiving about the use

 of this product in commercially developed works I have decided to

 simply make it public domain to further its unrestricted use. I

 specifically would be most happy to see this material become a

 part of the standard Unix distributions by AT&T and the Berkeley

 Computer Science Research Group, and a standard part of the GNU

 system from the Free Software Foundation.

 I would appreciate it, as a courtesy, if this notice is left in

 all copies and derivative works. Thank you.

getarg License

3473

 The author makes no warranty of any kind with respect to this

 product and explicitly disclaims any implied warranties of mer-

 chantability or fitness for any particular purpose.

The dbug_analyze.c file is subject to the following notice:

 Copyright June 1987, Binayak Banerjee
 All rights reserved.

 This program may be freely distributed under the same terms and
 conditions as Fred Fish's Dbug package.

D.11 getarg License
The following software may be included in this product:

getarg Function (getarg.h, getarg.c files)

Copyright (c) 1997 – 2000 Kungliga Tekniska Högskolan
(Royal Institute of Technology, Stockholm, Sweden).
All rights reserved.

Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above
 copyright notice, this list of conditions and the
 following disclaimer.
2. Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials
 provided with the distribution.
3. Neither the name of the Institute nor the names of its
 contributors may be used to endorse or promote products
 derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

D.12 GNU General Public License Version 2.0, June 1991

The following applies to all products licensed under the GNU General
Public License, Version 2.0: You may not use the identified files
except in compliance with the GNU General Public License, Version
2.0 (the "License.") You may obtain a copy of the License at
http://www.gnu.org/licenses/gpl-2.0.txt. A copy of the license is
also reproduced below. Unless required by applicable law or agreed
to in writing, software distributed under the License is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language
governing permissions and limitations under the License.

GNU GENERAL PUBLIC LICENSE

GNU General Public License Version 2.0, June 1991

3474

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not
allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original,
so that any problems introduced by others will not reflect on the
original authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

GNU General Public License Version 2.0, June 1991

3475

covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software
 interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your

GNU General Public License Version 2.0, June 1991

3476

 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as
a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any

GNU General Public License Version 2.0, June 1991

3477

patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever
published by the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3478

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it
 does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version
 2 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
 type 'show w'. This is free software, and you are welcome
 to redistribute it under certain conditions; type 'show c'
 for details.

The hypothetical commands 'show w' and 'show c' should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than 'show w' and
'show c'; they could even be mouse-clicks or menu items--whatever
suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 program 'Gnomovision' (which makes passes at compilers) written
 by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License.

D.13 GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3479

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are
designed to take away your freedom to share and change the works.
By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program--to make
sure it remains free software for all its users. We, the Free
Software Foundation, use the GNU General Public License for most
of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and
charge for them if you wish), that you receive source code or can
get it if you want it, that you can change the software or use
pieces of it in new free programs, and that you know you can do
these things.

 To protect your rights, we need to prevent others from denying
you these rights or asking you to surrender the rights. Therefore,
you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the
freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these
terms so they know their rights.

 Developers that use the GNU GPL protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this
License giving you legal permission to copy, distribute and/or
modify it.

 For the developers' and authors' protection, the GPL clearly
explains that there is no warranty for this free software. For
both users' and authors' sake, the GPL requires that modified
versions be marked as changed, so that their problems will not be
attributed erroneously to authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with
the aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially
in other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.

 Finally, every program is threatened constantly by software
patents. States should not allow patents to restrict development
and use of software on general-purpose computers, but in those that
do, we wish to avoid the special danger that patents applied to a
free program could make it effectively proprietary. To prevent
this, the GPL assures that patents cannot be used to render the
program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3480

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the
work in a fashion requiring copyright permission, other than the
making of an exact copy. The resulting work is called a "modified
version" of the earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it
on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available
to the public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may convey
the work under this License, and how to view a copy of this License.
If the interface presents a list of user commands or options, such
as a menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case
of interfaces specified for a particular programming language, one
that is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form
of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts
to control those activities. However, it does not include the
work's System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing
those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is
specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3481

work.

 The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running
a covered work is covered by this License only if the output, given
its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright
law.

 You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in
force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for
which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf,
under your direction and control, on terms that prohibit them from
making any copies of your copyrighted material outside their
relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section
10 makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit operation
or modification of the work as a means of enforcing, against the
work's users, your or third parties' legal rights to forbid
circumvention of technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive
terms added in accord with section 7 apply to the code; keep intact
all notices of the absence of any warranty; and give all recipients
a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications
to produce it from the Program, in the form of source code under
the terms of section 4, provided that you also meet all of these
conditions:

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3482

 a) The work must carry prominent notices stating that you
 modified it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under
 section 7. This requirement modifies the requirement in
 section 4 to "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has
 interactive interfaces that do not display Appropriate Legal
 Notices, your work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called
an "aggregate" if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation's
users beyond what the individual works permit. Inclusion of a
covered work in an aggregate does not cause this License to apply
to the other parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of
these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that
 product model, to give anyone who possesses the object code
 either (1) a copy of the Corresponding Source for all the
 software in the product that is covered by this License, on a
 durable physical medium customarily used for software
 interchange, for a price no more than your reasonable cost
 of physically performing this conveying of source, or (2)
 access to copy the Corresponding Source from a network server
 at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in
 accord with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to
 the Corresponding Source in the same way through the same place
 at no further charge. You need not require recipients to copy
 the Corresponding Source along with the object code. If the
 place to copy the object code is a network server, the
 Corresponding Source may be on a different server (operated
 by you or a third party) that supports equivalent copying
 facilities, provided you maintain clear directions next to the
 object code saying where to find the Corresponding Source.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3483

 Regardless of what server hosts the Corresponding Source, you
 remain obligated to ensure that it is available for as long
 as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission,
 provided you inform other peers where the object code and
 Corresponding Source of the work are being offered to the
 general public at no charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means
any tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product
is a consumer product, doubtful cases shall be resolved in favor
of coverage. For a particular product received by a particular
user, "normally used" refers to a typical or common use of that
class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product
regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that
User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning
of the modified object code is in no case prevented or interfered
with solely because modification has been made.

 If you convey an object code work under this section in, or with,
or specifically for use in, a User Product, and the conveying occurs
as part of a transaction in which the right of possession and use
of the User Product is transferred to the recipient in perpetuity
or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be
accompanied by the Installation Information. But this requirement
does not apply if neither you nor any third party retains the ability
to install modified object code on the User Product (for example,
the work has been installed in ROM).

 The requirement to provide Installation Information does not include
a requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified
or installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of
this License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program
shall be treated as though they were included in this License, to
the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be
used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional
permissions.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3484

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material
you add to a covered work, you may (if authorized by the copyright
holders of that material) supplement the terms of this License with
terms:

 a) Disclaiming warranty or limiting liability differently from
 the terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices
 or author attributions in that material or in the Appropriate
 Legal Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material,
 or requiring that modified versions of such material be marked
 in reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors
 or authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions
 of it) with contractual assumptions of liability to the
 recipient, for any liability that these contractual assumptions
 directly impose on those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as
you received it, or any part of it, contains a notice stating that
it is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed
by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in
the form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate
or modify it is void, and will automatically terminate your rights
under this License (including any patent licenses granted under the
third paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3485

violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.

 Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from you
under this License. If your rights have been terminated and not
permanently reinstated, you do not qualify to receive new licenses
for the same material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you
may not impose a license fee, royalty, or other charge for exercise
of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit)
alleging that any patent claim is infringed by making, using,
selling, offering for sale, or importing the Program or any portion
of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired
or hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as
a consequence of further modification of the contributor version.
For purposes of this definition, "control" includes the right to
grant patent sublicenses in a manner consistent with the requirements
of this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify
and propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3486

covenant not to sue for patent infringement). To "grant" such a
patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible
means, then you must either (1) cause the Corresponding Source to
be so available, or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or (3) arrange, in
a manner consistent with the requirements of this License, to extend
the patent license to downstream recipients. "Knowingly relying"
means you have actual knowledge that, but for the patent license,
your conveying the covered work in a country, or your recipient's
use of the covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to believe
are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of,
a covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the
patent license you grant is automatically extended to all recipients
of the covered work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is conditioned
on the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if
you are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to
the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you
cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations,
then as a consequence you may not convey it at all. For example,
if you agree to terms that obligate you to collect a royalty for
further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a
single combined work, and to convey the resulting work. The terms
of this License will continue to apply to the part which is the
covered work, but the special requirements of the GNU Affero General
Public License, section 13, concerning interaction through a network
will apply to the combination as such.

 14. Revised Versions of this License.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3487

 The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of
the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow
a later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make
it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is
found.

GNU General Public License Version 3.0, 29 June 2007 and
GCC Runtime Library Exception Version 3.1, 31 March 2009

3488

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation, either version 3
 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see
 <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the
appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you
would use an "about box".

 You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program,
if necessary. For more information on this, and how to apply and
follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License. But
first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
==

==
GCC RUNTIME LIBRARY EXCEPTION

Version 3.1, 31 March 2009

Copyright © 2009 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

This GCC Runtime Library Exception ("Exception") is an additional
permission under section 7 of the GNU General Public License, version
3 ("GPLv3"). It applies to a given file (the "Runtime Library")
that bears a notice placed by the copyright holder of the file
stating that the file is governed by GPLv3 along with this Exception.

When you use GCC to compile a program, GCC may combine portions of
certain GCC header files and runtime libraries with the compiled
program. The purpose of this Exception is to allow compilation of
non-GPL (including proprietary) programs to use, in this way, the
header files and runtime libraries covered by this Exception.

0. Definitions.

A file is an "Independent Module" if it either requires the Runtime
Library for execution after a Compilation Process, or makes use of
an interface provided by the Runtime Library, but is not otherwise

GNU Lesser General Public License Version 2.1, February 1999

3489

based on the Runtime Library.

"GCC" means a version of the GNU Compiler Collection, with or without
modifications, governed by version 3 (or a specified later version)
of the GNU General Public License (GPL) with the option of using
any subsequent versions published by the FSF.

"GPL-compatible Software" is software whose conditions of propagation,
modification and use would permit combination with GCC in accord
with the license of GCC.

"Target Code" refers to output from any compiler for a real or
virtual target processor architecture, in executable form or suitable
for input to an assembler, loader, linker and/or execution phase.
Notwithstanding that, Target Code does not include data in any
format that is used as a compiler intermediate representation, or
used for producing a compiler intermediate representation.

The "Compilation Process" transforms code entirely represented in
non-intermediate languages designed for human-written code, and/or
in Java Virtual Machine byte code, into Target Code. Thus, for
example, use of source code generators and preprocessors need not
be considered part of the Compilation Process, since the Compilation
Process can be understood as starting with the output of the
generators or preprocessors.

A Compilation Process is "Eligible" if it is done using GCC, alone
or with other GPL-compatible software, or if it is done without
using any work based on GCC. For example, using non-GPL-compatible
Software to optimize any GCC intermediate representations would not
qualify as an Eligible Compilation Process.

1. Grant of Additional Permission.

You have permission to propagate a work of Target Code formed by
combining the Runtime Library with Independent Modules, even if
such propagation would otherwise violate the terms of GPLv3, provided
that all Target Code was generated by Eligible Compilation Processes.
You may then convey such a combination under terms of your choice,
consistent with the licensing of the Independent Modules.

2. No Weakening of GCC Copyleft.

The availability of this Exception does not imply any general
presumption that third-party software is unaffected by the copyleft
requirements of the license of GCC.
==

D.14 GNU Lesser General Public License Version 2.1, February
1999

The following applies to all products licensed under the
GNU Lesser General Public License, Version 2.1: You may
not use the identified files except in compliance with
the GNU Lesser General Public License, Version 2.1 (the
"License"). You may obtain a copy of the License at
http://www.gnu.org/licenses/lgpl-2.1.html. A copy of the
license is also reproduced below. Unless required by
applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing
permissions and limitations under the License.

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

GNU Lesser General Public License Version 2.1, February 1999

3490

 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

 To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

 Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

 When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General

GNU Lesser General Public License Version 2.1, February 1999

3491

Public License permits more lax criteria for linking other code with
the library.

 We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

 For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it
becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that
a free library does the same job as widely used non-free libraries.
In this case, there is little to gain by limiting the free library
to free software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

 Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

 The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

 GNU LESSER GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control
compilation and installation of the library.

 Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

GNU Lesser General Public License Version 2.1, February 1999

3492

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

 2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices
 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no
 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
 table of data to be supplied by an application program that uses
 the facility, other than as an argument passed when the facility
 is invoked, then you must make a good faith effort to ensure that,
 in the event an application does not supply such function or
 table, the facility still operates, and performs whatever part of
 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has
 a purpose that is entirely well-defined independent of the
 application. Therefore, Subsection 2d requires that any
 application-supplied function or table used by this function must
 be optional: if the application does not supply it, the square
 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

 Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all

GNU Lesser General Public License Version 2.1, February 1999

3493

subsequent copies and derivative works made from that copy.

 This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

 4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

 a) Accompany the work with the complete corresponding
 machine-readable source code for the Library including whatever
 changes were used in the work (which must be distributed under
 Sections 1 and 2 above); and, if the work is an executable linked
 with the Library, with the complete machine-readable "work that
 uses the Library", as object code and/or source code, so that the
 user can modify the Library and then relink to produce a modified
 executable containing the modified Library. (It is understood

GNU Lesser General Public License Version 2.1, February 1999

3494

 that the user who changes the contents of definitions files in the
 Library will not necessarily be able to recompile the application
 to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the
 Library. A suitable mechanism is one that (1) uses at run time a
 copy of the library already present on the user's computer system,
 rather than copying library functions into the executable, and (2)
 will operate properly with a modified version of the library, if
 the user installs one, as long as the modified version is
 interface-compatible with the version that the work was made with.

 c) Accompany the work with a written offer, valid for at
 least three years, to give the same user the materials
 specified in Subsection 6a, above, for a charge no more
 than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy
 from a designated place, offer equivalent access to copy the above
 specified materials from the same place.

 e) Verify that the user has already received a copy of these
 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

 It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

 7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library
 facilities. This must be distributed under the terms of the
 Sections above.

 b) Give prominent notice with the combined library of the fact
 that part of it is a work based on the Library, and explaining
 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

GNU Lesser General Public License Version 2.1, February 1999

3495

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply, and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

 NO WARRANTY

GNU Lesser General Public License Version 2.1, February 1999

3496

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms
of the ordinary General Public License).

 To apply these terms, attach the following notices to the library.
It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full
notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James
 Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice

That's all there is to it!

GNU Readline License

3497

D.15 GNU Readline License
The following software may be included in this product:

GNU Readline Library

GNU Readline Library
With respect to MySQL Server/Cluster software licensed
under GNU General Public License, you are receiving a
copy of the GNU Readline Library in source code. The
terms of any Oracle license that might accompany the
Oracle programs do NOT apply to the GNU Readline Library;
it is licensed under the following license, separately
from the Oracle programs you receive. Oracle elects to
use GNU General Public License version 2 (GPL) for any
software where a choice of GPL license versions are
made available with the language indicating that GPLv2
or any later version may be used, or where a choice of
which version of the GPL is applied is unspecified.

This component is licensed under Section D.12, “GNU General Public License Version 2.0, June 1991”

D.16 GNU Standard C++ Library (libstdc++) License
The following software may be included in this product: GNU Standard C++ Library (libstdc++)

This component is licensed under Section D.13, “GNU General Public License Version 3.0, 29 June
2007 and GCC Runtime Library Exception Version 3.1, 31 March 2009”.

Additional notices:

==
 Copyright (c) 1994
 Hewlett-Packard Company

 Permission to use, copy, modify, distribute and sell this software
 and its documentation for any purpose is hereby granted without fee,
 provided that the above copyright notice appear in all copies and
 that both that copyright notice and this permission notice appear
 in supporting documentation. Hewlett-Packard Company makes no
 representations about the suitability of this software for any
 purpose. It is provided "as is" without express or implied
 warranty.
==

==
 Copyright (c) 1996,1997
 Silicon Graphics Computer Systems, Inc.

 Permission to use, copy, modify, distribute and sell this software
 and its documentation for any purpose is hereby granted without fee,
 provided that the above copyright notice appear in all copies and
 that both that copyright notice and this permission notice appear
 in supporting documentation. Silicon Graphics makes no
 representations about the suitability of this software for any
 purpose. It is provided "as is" without express or implied
 warranty.
==

==
 shared_count.hpp
@ Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.

 shared_ptr.hpp
 Copyright (C) 1998, 1999 Greg Colvin and Beman Dawes.
 Copyright (C) 2001, 2002, 2003 Peter Dimov

 weak_ptr.hpp

Google C++ Mocking Framework (Google Mock) License

3498

 Copyright (C) 2001, 2002, 2003 Peter Dimov

 enable_shared_from_this.hpp
 Copyright (C) 2002 Peter Dimov

Distributed under the Boost Software License, Version 1.0.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit
third-parties to whom the Software is furnished to do so, all subject
to the following:

The copyright notices in the Software and this entire statement,
including the above license grant, this restriction and the following
disclaimer, must be included in all copies of the Software, in whole
or in part, and all derivative works of the Software, unless such
copies or derivative works are solely in the form of machine-executable
object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER
LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
==

==
Copyright (C) 2004 Ami Tavory and Vladimir Dreizin, IBM-HRL.

Permission to use, copy, modify, sell, and distribute this software
is hereby granted without fee, provided that the above copyright
notice appears in all copies, and that both that copyright notice
and this permission notice appear in supporting documentation. None
of the above authors, nor IBM Haifa Research Laboratories, make any
representation about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.
==

D.17 Google C++ Mocking Framework (Google Mock) License

This Oracle Product includes or references Gmock (including gtest), which is licensed to Oracle under
the following terms:

Copyright 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimerin the documentation
and/or other materials provided with the distribution.
* Neither the name of Google Inc. nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

Google Controlling Master Thread I/O Rate Patch License

3499

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

D.18 Google Controlling Master Thread I/O Rate Patch License
The following software may be included in this product:

Google Controlling master thread I/O rate patch

Copyright (c) 2009, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the Google Inc. nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

D.19 Google Perftools (TCMalloc utility) License
The following software may be included in this product:

Google Perftools (TCMalloc utility)

Copyright (c) 1998-2006, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

 * Redistributions of source code must retain the above
 copyright notice, this list of conditions and the following
 disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.
 * Neither the name of Google Inc. nor the names of its
 contributors may be used to endorse or promote products
 derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

Google Protocol Buffers License

3500

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

D.20 Google Protocol Buffers License

Copyright 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the
following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
 * Neither the name of Google Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

D.21 Google SMP Patch License
The following software may be included in this product:

Google SMP Patch

Google SMP patch

Copyright (c) 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the Google Inc. nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

ICU4C Unicode Libraries License

3501

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

D.22 ICU4C Unicode Libraries License

This Oracle Product includes or references ICU4C, which is licensed to Oracle under the following
terms:

Copyright (c) 1995-2013 International Business Machines Corporation and
others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
provided that the above copyright notice(s) and this permission notice appear
in all copies of the Software and that both the above copyright notice(s) and
this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE
LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not
be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization of the
copyright holder.

All trademarks and registered trademarks mentioned herein are the property of
their respective owners.

The following Third-Party Software Licenses are also included as part of
UCU4C:

1. Unicode Data Files and Software
EXHIBIT 1
UNICODE, INC. LICENSE AGREEMENT - DATA FILES AND SOFTWARE

Unicode Data Files include all data files under the directories
http://www.unicode.org/Public/, http://www.unicode.org/reports/, and
http://www.unicode.org/cldr/data/. Unicode Data Files do not include PDF
online code charts under the directory http://www.unicode.org/Public/.
Software includes any source code published in the Unicode Standard or under
the directories http://www.unicode.org/Public/,
http://www.unicode.org/reports/, and http://www.unicode.org/cldr/data/.

NOTICE TO USER: Carefully read the following legal agreement. BY DOWNLOADING,
INSTALLING, COPYING OR OTHERWISE USING UNICODE INC.'S DATA FILES ("DATA
FILES"), AND/OR SOFTWARE ("SOFTWARE"), YOU UNEQUIVOCALLY ACCEPT, AND AGREE TO
BE BOUND BY, ALL OF THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT
AGREE, DO NOT DOWNLOAD, INSTALL, COPY, DISTRIBUTE OR USE THE DATA FILES OR
SOFTWARE.

 COPYRIGHT AND PERMISSION NOTICE

 Copyright ?? 1991-2013 Unicode, Inc. All rights reserved. Distributed

ICU4C Unicode Libraries License

3502

under the Terms of Use in http://www.unicode.org/copyright.html.

 Permission is hereby granted, free of charge, to any person obtaining a
copy of the Unicode data files and any associated documentation (the "Data
Files") or Unicode software and any associated documentation (the "Software")
to deal in the Data Files or Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Data Files or Software, and to permit persons to
whom the Data Files or Software are furnished to do so, provided that (a) the
above copyright notice(s) and this permission notice appear with all copies
of the Data Files or Software, (b) both the above copyright notice(s) and
this permission notice appear in associated documentation, and (c) there is
clear notice in each modified Data File or in the Software as well as in the
documentation associated with the Data File(s) or Software that the data or
software has been modified.

 THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THE DATA FILES OR SOFTWARE.

 Except as contained in this notice, the name of a copyright holder shall
not be used in advertising or otherwise to promote the sale, use or other
dealings in these Data Files or Software without prior written authorization
of the copyright holder.

 Unicode and the Unicode logo are trademarks of Unicode, Inc. in the
United States and other countries. All third party trademarks referenced
herein are the property of their respective owners.

2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt)

 # The Google Chrome software developed by Google is licensed under the
BSD license. Other software included in this distribution is provided under
other licenses, as set forth below.
 #
 # The BSD License
 # http://opensource.org/licenses/bsd-license.php
 # Copyright (C) 2006-2008, Google Inc.
 #
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
 # Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
 # Neither the name of Google Inc. nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
 #
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
 #

ICU4C Unicode Libraries License

3503

 #
 # The word list in cjdict.txt are generated by combining three word lists
listed
 # below with further processing for compound word breaking. The frequency is
generated
 # with an iterative training against Google web corpora.
 #
 # * Libtabe (Chinese)
 # - https://sourceforge.net/project/?group_id=1519
- Its license terms and conditions are shown below.
 #
 # * IPADIC (Japanese)
 # - http://chasen.aist-nara.ac.jp/chasen/distribution.html
 # - Its license terms and conditions are shown below.
 #
 # ---------COPYING.libtabe ---- BEGIN--------------------
 #
 # /*
 # * Copyrighy (c) 1999 TaBE Project.
 # * Copyright (c) 1999 Pai-Hsiang Hsiao.
 # * All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions
 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.
 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the TaBE Project nor the names of its
 # * contributors may be used to endorse or promote products derived
 # * from this software without specific prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # /*
 # * Copyright (c) 1999 Computer Systems and Communication Lab,
 # * Institute of Information Science, Academia Sinica.
 # * All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions
 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.
 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the Computer Systems and Communication Lab
 # * nor the names of its contributors may be used to endorse or
 # * promote products derived from this software without specific
 # * prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

ICU4C Unicode Libraries License

3504

 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # Copyright 1996 Chih-Hao Tsai @ Beckman Institute, University of Illinois
 # c-tsai4@uiuc.edu http://casper.beckman.uiuc.edu/~c-tsai4
 #
 # ---------------COPYING.libtabe-----END------------------------------------
 #
 #

---------------COPYING.ipadic-----BEGIN------------------------------------
 #
 # Copyright 2000, 2001, 2002, 2003 Nara Institute of Science
 # and Technology. All Rights Reserved.
 #
 # Use, reproduction, and distribution of this software is permitted.
 # Any copy of this software, whether in its original form or modified,
 # must include both the above copyright notice and the following
 # paragraphs.
 #
 # Nara Institute of Science and Technology (NAIST),
 # the copyright holders, disclaims all warranties with regard to this
 # software, including all implied warranties of merchantability and
 # fitness, in no event shall NAIST be liable for
 # any special, indirect or consequential damages or any damages
 # whatsoever resulting from loss of use, data or profits, whether in an
 # action of contract, negligence or other tortuous action, arising out
 # of or in connection with the use or performance of this software.
 #
 # A large portion of the dictionary entries
 # originate from ICOT Free Software. The following conditions for ICOT
 # Free Software applies to the current dictionary as well.
 #
 # Each User may also freely distribute the Program, whether in its
 # original form or modified, to any third party or parties, PROVIDED
 # that the provisions of Section 3 ("NO WARRANTY") will ALWAYS appear
 # on, or be attached to, the Program, which is distributed substantially
 # in the same form as set out herein and that such intended
 # distribution, if actually made, will neither violate or otherwise
 # contravene any of the laws and regulations of the countries having
 # jurisdiction over the User or the intended distribution itself.
 #
 # NO WARRANTY
 #
 # The program was produced on an experimental basis in the course of the
 # research and development conducted during the project and is provided
 # to users as so produced on an experimental basis. Accordingly, the
 # program is provided without any warranty whatsoever, whether express,
 # implied, statutory or otherwise. The term "warranty" used herein
 # includes, but is not limited to, any warranty of the quality,
 # performance, merchantability and fitness for a particular purpose of
 # the program and the nonexistence of any infringement or violation of
 # any right of any third party.
 #
 # Each user of the program will agree and understand, and be deemed to
 # have agreed and understood, that there is no warranty whatsoever for
 # the program and, accordingly, the entire risk arising from or
 # otherwise connected with the program is assumed by the user.
 #
 # Therefore, neither ICOT, the copyright holder, or any other
 # organization that participated in or was otherwise related to the
 # development of the program and their respective officials, directors,
 # officers and other employees shall be held liable for any and all

ICU4C Unicode Libraries License

3505

 # damages, including, without limitation, general, special, incidental
 # and consequential damages, arising out of or otherwise in connection
 # with the use or inability to use the program or any product, material
 # or result produced or otherwise obtained by using the program,
 # regardless of whether they have been advised of, or otherwise had
 # knowledge of, the possibility of such damages at any time during the
 # project or thereafter. Each user will be deemed to have agreed to the
 # foregoing by his or her commencement of use of the program. The term
 # "use" as used herein includes, but is not limited to, the use,
 # modification, copying and distribution of the program and the
 # production of secondary products from the program.
 #
 # In the case where the program, whether in its original form or
 # modified, was distributed or delivered to or received by a user from
 # any person, organization or entity other than ICOT, unless it makes or
 # grants independently of ICOT any specific warranty to the user in
 # writing, such person, organization or entity, will also be exempted
 # from and not be held liable to the user for any such damages as noted
 # above as far as the program is concerned.
 #
 # ---------------COPYING.ipadic-----END------------------------------------

3. Lao Word Break Dictionary Data (laodict.txt)

 # Copyright (c) 2013 International Business Machines Corporation
 # and others. All Rights Reserved.
 #
 # Project: http://code.google.com/p/lao-dictionary/
 # Dictionary: http://lao-dictionary.googlecode.com/git/Lao-Dictionary.txt
 # License:
http://lao-dictionary.googlecode.com/git/Lao-Dictionary-LICENSE.txt
 # (copied below)
 #
 # This file is derived from the above dictionary, with slight modifications.

--

 # Copyright (C) 2013 Brian Eugene Wilson, Robert Martin Campbell.
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
modification,
 # are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice,
this
 # list of conditions and the following disclaimer. Redistributions in
binary
 # form must reproduce the above copyright notice, this list of conditions
and
 # the following disclaimer in the documentation and/or other materials
 # provided with the distribution.
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND
 # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED
 # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR
 # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
 # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON
 # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS
 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--

Janson License

3506

4. Time Zone Database

ICU uses the public domain data and code derived from Time Zone Database for
its time zone support. The ownership of the TZ database is explained in BCP
175: Procedure for Maintaining the Time Zone Database section 7.

7. Database Ownership

 The TZ database itself is not an IETF Contribution or an IETF
 document. Rather it is a pre-existing and regularly updated work
 that is in the public domain, and is intended to remain in the public
 domain. Therefore, BCPs 78 [RFC5378] and 79 [RFC3979] do not apply
 to the TZ Database or contributions that individuals make to it.
 Should any claims be made and substantiated against the TZ Database,
 the organization that is providing the IANA Considerations defined in
 this RFC, under the memorandum of understanding with the IETF,
 currently ICANN, may act in accordance with all competent court
 orders. No ownership claims will be made by ICANN or the IETF Trust
 on the database or the code. Any person making a contribution to the
 database or code waives all rights to future claims in that
 contribution or in the TZ Database.

D.23 Janson License
The following software may be included in this product:

Janson 2.6

Include the following verbatim in the documentation:

Licence Text:

Copyright (c) (c) 2009-2013 Petri Lehtinen <petri@digip.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

D.24 lib_sql.cc License
The following software may be included in this product:

lib_sql.cc

Copyright (c) 2000
SWsoft company

This material is provided "as is", with absolutely no warranty
expressed or implied. Any use is at your own risk.

Permission to use or copy this software for any purpose is hereby
granted without fee, provided the above notices are retained on

Libaio License

3507

all copies. Permission to modify the code and to distribute modified
code is granted, provided the above notices are retained, and a
notice that the code was modified is included with the above copyright
notice.

This code was modified by the MySQL team.

D.25 Libaio License
The following software may be included in this product:

libaio

This component is licensed under Section D.14, “GNU Lesser General Public License Version 2.1,
February 1999”.

D.26 libevent License
The following software may be included in this product:

libevent

Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

==
Parts developed by Adam Langley
==

==
log.c
Based on err.c, which was adapted from OpenBSD libc *err*warncode.

Copyright (c) 2005 Nick Mathewson
Copyright (c) 2000 Dug Song
Copyright (c) 1993 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the

libevent License

3508

 distribution.
3. Neither the name of the University nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
==

==
min_heap.h

Copyright (c) 2006 Maxim Yegorushkin
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

==
win32.c

Copyright 2000-2002 Niels Provos
Copyright 2003 Michael A. Davis
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS

Linux-PAM License

3509

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

D.27 Linux-PAM License
The following software may be included in this product:

Linux-PAM (pam-devel, Pluggable authentication modules for Linux)

Copyright Theodore Ts'o, 1996. All rights reserved.

(For the avoidance of doubt, Oracle uses and distributes this
component under the terms below and elects not to do so under
the GPL even though the GPL is referenced as an option below.)

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright
 notice, and the entire permission notice in its entirety,
 including the disclaimer of warranties.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

ALTERNATIVELY, this product may be distributed under the terms
of the GNU Public License, in which case the provisions of the
GPL are required INSTEAD OF the above restrictions. (This clause
is necessary due to a potential bad interaction between the GPL
and the restrictions contained in a BSD-style copyright.)

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

D.28 LZ4 License
The following software may be included in this product:

LZ4 Library
Copyright (c) 2011-2014, Yann Collet
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

md5 (Message-Digest Algorithm 5) License

3510

* Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

D.29 md5 (Message-Digest Algorithm 5) License
The following software may be included in this product:

md5 (Message-Digest Algorithm 5)

 This code implements the MD5 message-digest algorithm.
 The algorithm is due to Ron Rivest. This code was
 written by Colin Plumb in 1993, no copyright is claimed.
 This code is in the public domain; do with it what you wish.

 Equivalent code is available from RSA Data Security, Inc.
 This code has been tested against that, and is equivalent,
 except that you don't need to include two pages of legalese
 with every copy.

 The code has been modified by Mikael Ronstroem to handle
 calculating a hash value of a key that is always a multiple
 of 4 bytes long. Word 0 of the calculated 4-word hash value
 is returned as the hash value.

D.30 MeCab Dictionary License
The following software may be included in this product:

Copyright 2000, 2001, 2002, 2003 Nara Institute of Science and Technology.
All Rights Reserved.

Use, reproduction, and distribution of this software is permitted. Any copy
of this software, whether in its original form or modified, must include both
the above copyright notice and the following paragraphs.

Nara Institute of Science and Technology (NAIST), the copyright holders,
disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness, in no event shall NAIST be liable
for any special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortuous action, arising out of or in
connection with the use or performance of this software.

A large portion of the dictionary entries originate from ICOT Free Software.
The following conditions for ICOT Free Software applies to the current
dictionary as well.

Each User may also freely distribute the Program, whether in its original
form or modified, to any third party or parties, PROVIDED that the provisions
of Section 3 ("NO WARRANTY") will ALWAYS appear on, or be attached to, the
Program, which is distributed substantially in the same form as set out
herein and that such intended distribution, if actually made, will neither

MeCab License

3511

violate or otherwise contravene any of the laws and regulations of the
countries having jurisdiction over the User or the intended distribution
itself.

NO WARRANTY

The program was produced on an experimental basis in the course of the
research and development conducted during the project and is provided to
users as so produced on an experimental basis. Accordingly, the program is
provided without any warranty whatsoever, whether express, implied, statutory
or otherwise. The term "warranty" used herein
includes, but is not limited to, any warranty of the quality, performance,
merchantability and fitness for a particular purpose of the program and the
nonexistence of any infringement or violation of any right of any third
party.

Each user of the program will agree and understand, and be deemed to have
agreed and understood, that there is no warranty whatsoever for the program
and, accordingly, the entire risk arising from or otherwise connected with
the program is assumed by the user.

Therefore, neither ICOT, the copyright holder, or any other organization that
participated in or was otherwise related to the development of the program
and their respective officials, directors, officers and other employees shall
be held liable for any and all damages, including, without limitation,
general, special, incidental and consequential damages, arising out of or
otherwise in connection with the use or inability to use the program or any
product, material or result produced or otherwise obtained by using the
program, regardless of whether they have been advised of, or otherwise had
knowledge of, the possibility of such damages at any time during the project
or thereafter. Each user will be deemed to have agreed to the foregoing by
his or her commencement of use of the program. The term "use" as used herein
includes, but is not limited to, the use, modification, copying and
distribution of the program and the production of secondary products from the
program.

In the case where the program, whether in its original form or modified, was
distributed or delivered to or received by a user from any person,
organization or entity other than ICOT, unless it makes or grants
independently of ICOT any specific warranty to the user in writing, such
person, organization or entity, will also be exempted from and not be held
liable to the user for any such damages as noted above as far as the program
is concerned.

D.31 MeCab License

The following software may be included in this product:

Copyright (c) 2001-2008, Taku Kudo
Copyright (c) 2004-2008, Nippon Telegraph and Telephone Corporation
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above
 copyright notice, this list of conditions and the
 following disclaimer.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the
 following disclaimer in the documentation and/or other
 materials provided with the distribution.

 * Neither the name of the Nippon Telegraph and Telegraph Corporation
 nor the names of its contributors may be used to endorse or
 promote products derived from this software without specific
 prior written permission.

memcached License

3512

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

D.32 memcached License
The following software may be included in this product:

memcached

Copyright (c) 2003, Danga Interactive, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

 * Neither the name of the Danga Interactive nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

D.33 Memcached.pm License
The following software may be included in this product:

Memcached.pm

Memcached.pm is licensed under the Perl license.

Oracle may use, redistribute and/or modify this code under the terms of
either:

 a) the GNU General Public License as published by the Free Software
Foundation; either version 1, or (at your option) any later version, or

 b) the "Artistic License" which comes with the Expect/pr code.

Oracle elects to use the GPLv2 for version of MySQL that are licensed under
the GPL.

mkpasswd.pl License

3513

Oracle elects to use the Artistic license for all other (commercial) versions
of MySQL.

A copy of the GPLv2 and the Artistic License (Perl) 1.0 must be included with
any distribution.

This component is licensed under Section D.12, “GNU General Public License Version 2.0, June 1991”

This component is licensed under Section D.1, “Artistic License (Perl) 1.0”

D.34 mkpasswd.pl License
The following software may be included in this product:

mkpasswd.pl Perl module

Copyright (C) 2003-2004 by Chris Grau

This library is free software; you can redistribute it and/or modify it under
the same terms as Perl itself, either Perl version 5.8.1 or, at your option,
any later version of Perl 5 you may have available.

The Perl 5.8.1 license (from http://www.cpan.org/src/5.0/perl-5.8.1.tar.gz - main readme file):

 Perl Kit, Version 5

 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998
 1999, 2000, 2001, by Larry Wall and others

 All rights reserved.

 This program is free software; you can redistribute it and/or modify
 it under the terms of either:

a) the GNU General Public License as published by the Free
Software Foundation; either version 1, or (at your option) any
later version, or

b) the "Artistic License" which comes with this Kit.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See either
 the GNU General Public License or the Artistic License for more details.

 You should have received a copy of the Artistic License with this
 Kit, in the file named "Artistic". If not, I'll be glad to provide one.

 You should also have received a copy of the GNU General Public License
 along with this program in the file named "Copying". If not, write to the

 Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 02111-1307, USA or visit their web page on the internet at
 http://www.gnu.org/copyleft/gpl.html.

 For those of you that choose to use the GNU General Public License,
 my interpretation of the GNU General Public License is that no Perl
 script falls under the terms of the GPL unless you explicitly put
 said script under the terms of the GPL yourself. Furthermore, any
 object code linked with perl does not automatically fall under the
 terms of the GPL, provided such object code only adds definitions
 of subroutines and variables, and does not otherwise impair the
 resulting interpreter from executing any standard Perl script. I
 consider linking in C subroutines in this manner to be the moral
 equivalent of defining subroutines in the Perl language itself. You
 may sell such an object file as proprietary provided that you provide
 or offer to provide the Perl source, as specified by the GNU General
 Public License. (This is merely an alternate way of specifying input

mkpasswd.pl License

3514

 to the program.) You may also sell a binary produced by the dumping of
 a running Perl script that belongs to you, provided that you provide or
 offer to provide the Perl source as specified by the GPL. (The
 fact that a Perl interpreter and your code are in the same binary file
 is, in this case, a form of mere aggregation.) This is my interpretation
 of the GPL. If you still have concerns or difficulties understanding
 my intent, feel free to contact me. Of course, the Artistic License
 spells all this out for your protection, so you may prefer to use that.

--

Perl is a language that combines some of the features of C, sed, awk
and shell. See the manual page for more hype. There are also many Perl
books available, covering a wide variety of topics, from various publishers.
See pod/perlbook.pod for more information.

Please read all the directions below before you proceed any further, and
then follow them carefully.

After you have unpacked your kit, you should have all the files listed
in MANIFEST.

Installation

1) Detailed instructions are in the file "INSTALL", which you should
read if you are either installing on a system resembling Unix
or porting perl to another platform. For non-Unix platforms, see the
corresponding README.

2) Read the manual entries before running perl.

3) IMPORTANT! Help save the world! Communicate any problems and suggested
patches to perlbug@perl.org so we can keep the world in sync.
If you have a problem, there's someone else out there who either has had
or will have the same problem. It's usually helpful if you send the
output of the "myconfig" script in the main perl directory.

If you've succeeded in compiling perl, the perlbug script in the "utils"
subdirectory can be used to help mail in a bug report.

If possible, send in patches such that the patch program will apply them.
Context diffs are the best, then normal diffs. Don't send ed scripts--
I've probably changed my copy since the version you have.

The latest versions of perl are always available on the various CPAN
(Comprehensive Perl Archive Network) sites around the world.
See <URL:http://www.cpan.org/src/>.

Just a personal note: I want you to know that I create nice things like this
because it pleases the Author of my story. If this bothers you, then your
notion of Authorship needs some revision. But you can use perl anyway. :-)

The author.
===

The "Artistic License"

Preamble

The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to make
reasonable modifications.

Definitions:

"Package" refers to the collection of files distributed by the
Copyright Holder, and derivatives of that collection of files
created through textual modification.

mkpasswd.pl License

3515

"Standard Version" refers to such a Package if it has not been
modified, or has been modified in accordance with the wishes
of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or
copyrights for the package.

"You" is you, if you're thinking about copying or distributing
this Package.

"Reasonable copying fee" is whatever you can justify on the
basis of media cost, duplication charges, time of people involved,
and so on. (You will not be required to justify it to the
Copyright Holder, but only to the computing community at large
as a market that must bear the fee.)

"Freely Available" means that no fee is charged for the item
itself, though there may be fees involved in handling the item.
It also means that recipients of the item may redistribute it
under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that you
duplicate all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A Package
modified in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following:

 a) place your modifications in the Public Domain or otherwise make them
 Freely Available, such as by posting said modifications to Usenet or
 an equivalent medium, or placing the modifications on a major archive
 site such as uunet.uu.net, or by allowing the Copyright Holder to include
 your modifications in the Standard Version of the Package.

 b) use the modified Package only within your corporation or organization.

 c) rename any non-standard executables so the names do not conflict
 with standard executables, which must also be provided, and provide
 a separate manual page for each non-standard executable that clearly
 documents how it differs from the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:

 a) distribute a Standard Version of the executables and library files,
 together with instructions (in the manual page or equivalent) on where
 to get the Standard Version.

 b) accompany the distribution with the machine-readable source of
 the Package with your modifications.

 c) give non-standard executables non-standard names, and clearly
 document the differences in manual pages (or equivalent), together
 with instructions on where to get the Standard Version.

 d) make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this
Package. You may charge any fee you choose for support of this
Package. You may not charge a fee for this Package itself. However,
you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software
distribution provided that you do not advertise this Package as a

nt_servc (Windows NT Service class library) License

3516

product of your own. You may embed this Package's interpreter within
an executable of yours (by linking); this shall be construed as a mere
form of aggregation, provided that the complete Standard Version of the
interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whoever generated
them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing a
binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you do
not represent such an executable image as a Standard Version of this
Package.

7. C subroutines (or comparably compiled subroutines in other
languages) supplied by you and linked into this Package in order to
emulate subroutines and variables of the language defined by this
Package shall not be considered part of this Package, but are the
equivalent of input as in Paragraph 6, provided these subroutines do
not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written
permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The End

D.35 nt_servc (Windows NT Service class library) License
The following software may be included in this product:

nt_servc (Windows NT Service class library)

Windows NT Service class library
Copyright Abandoned 1998 Irena Pancirov - Irnet Snc
This file is public domain and comes with NO WARRANTY of any kind

D.36 OpenPAM License
The following software may be included in this product:

OpenPAM

Copyright (c) 2002-2003 Networks Associates Technology, Inc.
Copyright (c) 2004-2007 Dag-Erling Smørgrav
All rights reserved.

This software was developed for the FreeBSD Project by
ThinkSec AS and Network Associates Laboratories, the
Security Research Division of Network Associates, Inc.
under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"),
as part of the DARPA CHATS research program.

Redistribution and use in source and binary forms,

OpenSSL v1.0 License

3517

with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above
 copyright notice, this list of conditions and the
 following disclaimer.
2. Redistributions in binary form must reproduce the
 above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or
 other materials provided with the distribution.
3. The name of the author may not be used to endorse or
 promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

D.37 OpenSSL v1.0 License

The following software may be included in this product:

OpenSSL v1.0

LICENSE ISSUES
==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit. See
below for the actual license texts. Actually both licenses are BSD-style Open
Source licenses. In case of any license issues related to OpenSSL please
contact openssl-core@openssl.org.

OpenSSL License

/ ==
Copyright (c) 1998-2008 The OpenSSL Project.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must
display the following acknowledgment: "This product includes software
developed by the OpenSSL Project for use in the OpenSSL Toolkit. (Link1 /)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may
"OpenSSL" appear in their names without prior written permission of the
OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following
acknowledgment: "This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit (Link2 /)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

Percona Multiple I/O Threads Patch License

3518

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

Original SSLeay License

/ Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.
This package is an SSL implementation written by Eric Young
(eay@cryptsoft.com). The implementation was written so as to conform with
Netscapes SSL. This library is free for commercial and non-commercial use
as long as the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA, lhash,
DES, etc., code; not just the SSL code. The SSL documentation included with
this distribution is covered by the same copyright terms except that the
holder is Tim Hudson (tjh@cryptsoft.com). Copyright remains Eric Young's,
and as such any Copyright notices in the code are not to be removed. If this
package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual)
provided with the package. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the
following conditions are met: 1. Redistributions of source code must retain
the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. 3. All advertising
materials mentioning features or use of this software must display the
following acknowledgement: "This product includes cryptographic software
written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be
left out if the routines from the library being used are not cryptographic
related :-). 4. If you include any Windows specific code (or a derivative
thereof) from the apps directory (application code) you must include an
acknowledgement: "This product includes software written by Tim Hudson
(tjh@cryptsoft.com)" THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The
license and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution license [including the GNU Public
License.]

D.38 Percona Multiple I/O Threads Patch License

The following software may be included in this product:

Percona Multiple I/O threads patch

Copyright (c) 2008, 2009 Percona Inc
All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

Pion License

3519

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of Percona Inc. nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission of Percona Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

D.39 Pion License

This Oracle Product includes or references Pion which is licensed to Oracle under the following terms:

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

D.40 RapidJSON v0.1

The following software may be included in this product:

RapidJSON v0.1

Copyright (C) 2011 Milo Yip

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

Red HAT RPM Spec File License

3520

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

D.41 Red HAT RPM Spec File License
The following software may be included in this product:

Red Hat RPM Spec File

You are receiving a copy of the Red Hat spec file. The terms of the Oracle
license do NOT apply to the Red Hat spec file; it is licensed under the
following license, separately from the Oracle programs you receive.

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[for rest of text, see following link]

This component is licensed under Section D.12, “GNU General Public License Version 2.0, June 1991”

D.42 RegEX-Spencer Library License
The following software may be included in this product: Henry Spencer's Regular-Expression Library
(RegEX-Spencer)

Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on
any computer system, and to alter it and redistribute it, subject
to the following restrictions:

1. The author is not responsible for the consequences of use of this
 software, no matter how awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by
 explicit claim or by omission. Since few users ever read sources,
 credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be
 misrepresented as being the original software. Since few users
 ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

D.43 Richard A. O'Keefe String Library License
The following software may be included in this product:

Richard A. O'Keefe String Library

The Richard O’Keefe String Library is subject to the following notice:

These files are in the public domain. This includes getopt.c, which

sajson License

3521

is the work of Henry Spencer, University of Toronto Zoology, who
says of it "None of this software is derived from Bell software. I
had no access to the source for Bell's versions at the time I wrote
it. This software is hereby explicitly placed in the public domain.
It may be used for any purpose on any machine by anyone." I would
greatly prefer it if *my* material received no military use.

The t_ctype.h file is subject to the following notice:

Copyright (C) 1998, 1999 by Pruet Boonma, all rights reserved.
Copyright (C) 1998 by Theppitak Karoonboonyanan, all rights reserved.

 Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the above
copyright notice appear in all copies.

 Smaphan Raruenrom and Pruet Boonma makes no representations about
the suitability of this software for any purpose. It is provided
"as is" without express or implied warranty.

D.44 sajson License

The following software may be included in this product:

sajson

Copyright (c) 2012 Chad Austin

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

D.45 SHA-1 in C License

The following software may be included in this product:

SHA-1 in C

SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain

D.46 Unicode Data Files

The following software may be included in this product:

Unicode Data Files

COPYRIGHT AND PERMISSION NOTICE

zlib License

3522

Copyright © 1991-2014 Unicode, Inc. All rights reserved. Distributed under
the Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy
of the Unicode data files and any associated documentation (the "Data Files")
or Unicode software and any associated documentation (the "Software") to deal
in the Data Files or Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Data Files or Software, and to permit persons to
whom the Data Files or Software are furnished to do so, provided that (a) the
above copyright notice(s) and this permission notice appear with all copies
of the Data Files or Software, (b) both the above copyright notice(s) and
this permission notice appear in associated documentation, and (c) there is
clear notice in each modified Data File or in the Software as well as in the
documentation associated with the Data File(s) or Software that the data or
software has been modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE
DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not
be used in advertising or otherwise to promote the sale, use or other
dealings in these Data Files or Software without prior written authorization
of the copyright holder.

D.47 zlib License

The following software may be included in this product:

zlib

Oracle gratefully acknowledges the contributions of Jean-loup Gailly and Mark Adler in creating the zlib
general purpose compression library which is used in this product.

zlib.h -- interface of the 'zlib' general purpose compression library
Copyright (C) 1995-2004 Jean-loup Gailly and Mark Adler

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.3, July 18th, 2005
Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.5, April 19th, 2010
Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software. Permission is granted to anyone to use this software
for any purpose,including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would
 be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not
 be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu

3523

General Index

Symbols
! (logical NOT), 1384
!= (not equal), 1379
", 1192
#mysql50 identifier prefix, 1193, 1197
%, 1415
% (modulo), 1420
% (wildcard character), 1186
& (bitwise AND), 1487
&& (logical AND), 1384
() (parentheses), 1377
(Control+Z) \Z, 1186, 1707
* (multiplication), 1414
+ (addition), 1414
- (subtraction), 1414
- (unary minus), 1414
--master-info-repository option, 2525
--password option, 848
--relay-log-info-repository option, 2525
->, 1546
-p option, 848
.my.cnf file, 278, 281, 282, 827, 848, 885
.mylogin.cnf file, 281, 454
.mysql_history file, 347, 849
.mysql_secret file, 150, 306, 312, 313
.pid (process ID) file, 1009
/ (division), 1415
/etc/passwd, 861, 1728
3306 port, 182, 553
:= (assignment operator), 1385
:= (assignment), 1208
< (less than), 1379
<< (left shift), 265, 1487
<= (less than or equal), 1379
<=> (equal to), 1379
<> (not equal), 1379
= (assignment operator), 1386
= (assignment), 1208
= (equal), 1378
> (greater than), 1380
>= (greater than or equal), 1379
>> (right shift), 1488
\" (double quote), 1186, 1555
\' (single quote), 1186
\. (mysql client command), 260, 351
\0 (ASCII NUL), 1186, 1707
\b (backspace), 1186, 1555, 1707
\f (formfeed), 1555
\n (linefeed), 1186, 1555, 1707
\n (newline), 1186, 1555, 1707
\N (NULL), 1707
\r (carriage return), 1186, 1555, 1707
\t (tab), 1186, 1555, 1707
\u (Unicode character), 1555
\Z (Control+Z) ASCII 26, 1186, 1707

\\ (escape), 1186, 1555
^ (bitwise XOR), 1487
_ (wildcard character), 1186
_rowid, 1643
`, 1192
| (bitwise OR), 1487
|| (logical OR), 1384
~ (invert bits), 1488

A
abort-slave-event-count option

mysqld, 2467
aborted clients, 3355
aborted connection, 3355
ABS(), 1416
access control, 879
access denied errors, 3347
access privileges, 866
account locking, 875, 929

ALTER USER, 1832, 1839
Locked_connects status variable, 742

account names, 877
accounts

adding privileges, 891
anonymous user, 202
default, 202
root, 202

accounts table
performance_schema, 2843

account_locked column
user table, 875

ACID, 1931, 1936, 3399
ACLs, 866
ACOS(), 1416
activating plugins, 768
ActiveState Perl, 233
adaptive flushing, 3399
adaptive hash index, 1961, 3399
add-drop-database option

mysqldump, 379
mysqlpump, 401

add-drop-table option
mysqldump, 379
mysqlpump, 401

add-drop-trigger option
mysqldump, 379

add-drop-user option
mysqlpump, 401

add-locks option
mysqldump, 388
mysqlpump, 401

ADDDATE(), 1426
adding

character sets, 1268
native functions, 3211
new account privileges, 891
new functions, 3200
new user privileges, 891

3524

user-defined functions, 3201
addition (+), 1414
ADDTIME(), 1427
admin-auth-plugin option

mysql_install_db, 309
admin-host option

mysql_install_db, 309
admin-require-ssl option

mysql_install_db, 309
admin-user option

mysql_install_db, 309
administration

server, 354
administrative programs, 272
AES_DECRYPT(), 1490
AES_ENCRYPT(), 1490
After create

thread state, 1174
age

calculating, 249
AHI, 3400
AIO, 3400
alias names

case sensitivity, 1194
aliases

for expressions, 1587
for tables, 1723
in GROUP BY clauses, 1587
names, 1191
on expressions, 1722

ALL, 1726, 1741
ALL join type

optimizer, 1106
all-databases option

mysqlcheck, 365
mysqldump, 385
mysqlpump, 401

all-in-1 option
mysqlcheck, 366

all-tablespaces option
mysqldump, 379

allow-keywords option
mysqldump, 379

allow-mismatches option
innochecksum, 427

allow-suspicious-udfs option
mysqld, 531

ALLOW_INVALID_DATES SQL mode, 753
ALTER COLUMN, 1610
ALTER DATABASE, 1600
ALTER EVENT, 1601

and replication, 2565
ALTER FUNCTION, 1603
ALTER PROCEDURE, 1603
ALTER SCHEMA, 1600
ALTER SERVER, 1603
ALTER TABLE, 1604, 1611, 3375

and replication log tables, 2525

ROW_FORMAT, 2067
ALTER USER, 1826
ALTER VIEW, 1622
altering

database, 1600
schema, 1600

altering table
thread state, 1175

altering user accounts, 1826
ANALYSE()

PROCEDURE, 1083
analyze option

myisamchk, 439
mysqlcheck, 366

ANALYZE TABLE, 1855
and partitioning, 2634

Analyzing
thread state, 1174

AND
bitwise, 1487
logical, 1384

anonymous user, 202, 203, 879, 882
ANSI mode

running, 36
ansi option

mysqld, 531
ANSI SQL mode, 753, 759
ANSI_QUOTES SQL mode, 754
answering questions

etiquette, 29
Antelope, 3400
Antelope file format, 2061, 2070, 2141
ANY, 1740
ANY_VALUE(), 1569
Apache, 268
APIs, 2999

list of, 50
Perl, 3131

application programming interface (API), 3400
apply, 3400
apply-slave-statements option

mysqldump, 381
approximate-value literals, 1188, 1591
ARCHIVE storage engine, 2291, 2309
Area(), 1525
argument processing, 3206
arithmetic expressions, 1414
arithmetic functions, 1487
arithmetic operators, 1487
.ARM file, 3399
array

JSON, 1343
.ARZ file, 3399
AS, 1723, 1729
AsBinary(), 1518
ASCII(), 1390
ASIN(), 1416
assignment operator

3525

:=, 1385
=, 1386

assignment operators, 1385
AsText(), 1518
ASYMMETRIC_DECRYPT(), 1565
ASYMMETRIC_DERIVE(), 1566
ASYMMETRIC_ENCRYPT(), 1566
ASYMMETRIC_SIGN(), 1567
ASYMMETRIC_VERIFY(), 1567
asynchronous I/O, 3400
ATAN(), 1417
ATAN2(), 1417
atomic, 3400
atomic instruction, 3400
attackers

security against, 860
attribute demotion

replication, 2562
attribute promotion

replication, 2561
audit log plugin, 951
audit plugins, 3139
audit-log option

mysqld, 966
audit_log plugin

startup failure, 962
audit_log_buffer_size system variable, 967
audit_log_connection_policy system variable, 967
audit_log_current_session system variable, 968
Audit_log_current_size status variable, 972
Audit_log_events status variable, 973
Audit_log_events_filtered status variable, 973
Audit_log_events_lost status variable, 973
Audit_log_events_written status variable, 973
Audit_log_event_max_drop_size status variable, 973
audit_log_exclude_accounts system variable, 968
audit_log_file system variable, 969
audit_log_flush system variable, 969
audit_log_format system variable, 969
audit_log_include_accounts system variable, 970
audit_log_policy system variable, 970
audit_log_rotate_on_size system variable, 971
audit_log_statement_policy system variable, 971
audit_log_strategy system variable, 972
Audit_log_total_size status variable, 973
Audit_log_write_waits status variable, 973
authentication

for the InnoDB memcached interface, 2260
authentication plugin

authentication_pam, 911
authentication_windows, 918
authentication_windows_client, 918
auth_socket, 924
auth_test_plugin, 925
mysql_clear_password, 923
mysql_native_password, 903
mysql_no_login, 922
mysql_old_password, 903

sha256_password, 908
test_plugin_server, 925

authentication plugins, 3140
authentication_pam authentication plugin, 911
AUTHENTICATION_PAM_LOG environment variable,
917
authentication_windows authentication plugin, 918
authentication_windows_client authentication plugin,
918
auth_socket authentication plugin, 924
auth_test_plugin authentication plugin, 925
auto-generate-sql option

mysqlslap, 419
auto-generate-sql-add-autoincrement option

mysqlslap, 420
auto-generate-sql-execute-number option

mysqlslap, 420
auto-generate-sql-guid-primary option

mysqlslap, 420
auto-generate-sql-load-type option

mysqlslap, 420
auto-generate-sql-secondary-indexes option

mysqlslap, 420
auto-generate-sql-unique-query-number option

mysqlslap, 420
auto-generate-sql-unique-write-number option

mysqlslap, 420
auto-generate-sql-write-number option

mysqlslap, 420
auto-increment, 3401
auto-increment locking, 3401
auto-rehash option

mysql, 333
auto-repair option

mysqlcheck, 366
auto-vertical-output option

mysql, 333
auto.cnf file, 2427

and SHOW SLAVE HOSTS, 1897
autocommit, 3401
autocommit system variable, 583
automatic_sp_privileges system variable, 584
autowrapped JSON values, 1346
auto_generate_certs system variable, 584
AUTO_INCREMENT, 266, 1302

and NULL values, 3371
and replication, 2557

auto_increment_increment system variable, 2445
auto_increment_offset system variable, 2448
availability, 3401
AVG(), 1579
AVG(DISTINCT), 1579
avoid_temporal_upgrade system variable, 585

B
B-tree, 3401
B-tree indexes, 1077, 1958
background threads

3526

master, 1972, 1987
read, 1986
write, 1986

backslash
escape character, 1185

backspace (\b), 1186, 1555, 1707
backticks, 3402
backup, 3402
backup option

myisamchk, 438
myisampack, 449

backups, 987, 3224
databases and tables, 370, 397
InnoDB, 2247
with mysqldump, 996

back_log system variable, 585
Barracuda, 3402
Barracuda file format, 2045, 2061, 2069, 2141
base64-output option

mysqlbinlog, 463
basedir option

mysql.server, 299
mysqld, 531
mysqld_safe, 293
mysql_install_db, 309
mysql_plugin, 316
mysql_upgrade, 326

basedir system variable, 586
batch mode, 259
batch option

mysql, 333
batch SQL files, 329
Batched Key Access

optimization, 1041, 1042
BEGIN, 1752, 1790

labels, 1791
XA transactions, 1766

BENCHMARK(), 1498
benchmarks, 1171
beta, 3402
BETWEEN ... AND, 1381
big-tables option

mysqld, 531
big5, 3241
BIGINT data type, 1295
big_tables system variable, 586
BIN(), 1390
BINARY, 1473
BINARY data type, 1301, 1320
binary distributions

installing, 67
binary log, 806, 3402

event groups, 1780
binary-mode option

mysql, 333
bind-address option

mysql, 333
mysqladmin, 359

mysqlbinlog, 464
mysqlcheck, 366
mysqld, 532
mysqldump, 376
mysqlimport, 393
mysqlpump, 401
mysqlshow, 413
mysql_upgrade, 326

bind_address system variable, 586
BINLOG, 1913
binlog, 3403
Binlog Dump

thread command, 1172
BINLOG statement

mysqlbinlog output, 475
binlog-checksum option

mysqld, 2488
binlog-do-db option

mysqld, 2486
binlog-format option

mysqld, 532
binlog-ignore-db option

mysqld, 2487
binlog-row-event-max-size option

mysqlbinlog, 464
mysqld, 2484

binlog-rows-query-log-events option
mysqld, 2489

binlogging_impossible_mode system variable, 2494
binlog_cache_size system variable, 2489
binlog_checksum system variable, 2490
binlog_direct_non_transactional_updates system
variable, 2490
binlog_error_action system variable, 2491
binlog_format

BLACKHOLE, 2557
binlog_format system variable, 2492
binlog_group_commit_sync_delay, 2493
binlog_group_commit_sync_no_delay_count, 2493
binlog_gtid_simple_recovery, 2504
binlog_max_flush_queue_time system variable, 2494
binlog_order_commits system variable, 2495
binlog_rows_query_log_events system variable, 2496
binlog_row_image system variable, 2495
binlog_stmt_cache_size system variable, 2497
BIT data type, 1294
bit functions, 1487

example, 265
bit operators, 1487
BIT_AND(), 1579
BIT_COUNT, 265
BIT_COUNT(), 1488
BIT_LENGTH(), 1390
BIT_OR, 265
BIT_OR(), 1579
BIT_XOR(), 1579
BLACKHOLE

binlog_format, 2557

3527

replication, 2557
BLACKHOLE storage engine, 2291, 2310
blind query expansion, 1455, 3403
BLOB columns

default values, 1321
indexing, 1073, 1643
inserting binary data, 1187
size, 1356

BLOB data type, 1301, 1321
Block Nested-Loop

optimization, 1041, 1042
Block Nested-Loop join algorithm, 1030
block-search option

myisamchk, 439
block_encryption_mode system variable, 586
BOOL data type, 1294
BOOLEAN data type, 1294
boolean options, 280
Boolean search, 1450
bootstrap option

mysqld, 533
bottleneck, 3403
bounce, 3403
brackets

square, 1294
buddy allocator, 2197, 3403
buffer, 3403
buffer pool, 1129, 1973, 1979, 3403

and compressed tables, 2053
buffer pool instance, 3403
buffer sizes, 1129, 1979

client, 2999
mysqld server, 1150

Buffer(), 1528
bugs

known, 3376
reporting, 2, 31

bugs database, 31
bugs.mysql.com, 31
builddir option

mysql_install_db, 309
building

client programs, 3011
BUILD_CONFIG option

CMake, 175
built-in, 3404
bulk loading

for InnoDB tables, 1090
for MyISAM tables, 1096

bulk_insert_buffer_size system variable, 587
business rules, 3404

C
C API, 2999

data types, 3009
example programs, 3011
functions, 3022
linking problems, 3013

C prepared statement API
functions, 3089, 3090
type codes, 3088

C++, 3003
C:\my.cnf file, 827
cache, 3404
CACHE INDEX, 1913

and partitioning, 2650
caches

clearing, 1915
cache_policies table, 2276
calculating

aggregate value for a set of rows, 1578
cardinality, 1886
dates, 249

calendar, 1445
CALL, 1687
calling sequences for aggregate functions

UDF, 3205
calling sequences for simple functions

UDF, 3203
can't create/write to file, 3356
cardinality, 1064, 3404
carriage return (\r), 1186, 1555, 1707
CASE, 1386, 1794
case sensitivity

in access checking, 876
in identifiers, 1194
in names, 1194
in searches, 3368
in string comparisons, 1404
of database names, 37
of replication filtering options, 2532
of table names, 37

CAST, 1474
cast functions, 1473
cast operators, 1473
casts, 1373, 1378, 1473
CC environment variable, 188, 231
CEIL(), 1417
CEILING(), 1417
Centroid(), 1525
.cfg file, 3404
cflags option

mysql_config, 483
change buffer, 3405
change buffering, 1959, 3405

disabling, 1984
CHANGE MASTER TO, 1771
CHANGE REPLICATION FILTER, 1777
Change user

thread command, 1172
changes to privileges, 883
changing

column, 1610
field, 1610
socket location, 299, 3367
table, 1604, 1611, 3375

3528

Changing master
thread state, 1183

channel
commands, 2523
replication, 2522

CHAR data type, 1300, 1318
CHAR VARYING data type, 1300
CHAR(), 1390
CHARACTER data type, 1300
character set repertoire, 1247
character sets, 1215

adding, 1268
and replication, 2558
repertoire, 1239
restrictions, 3388

CHARACTER VARYING data type, 1300
character-set-client-handshake option

mysqld, 534
character-set-filesystem option

mysqld, 534
character-set-server option

mysqld, 534
character-sets-dir option

myisamchk, 438
myisampack, 449
mysql, 333
mysqladmin, 359
mysqlbinlog, 464
mysqlcheck, 366
mysqld, 533
mysqldump, 381
mysqlimport, 393
mysqlpump, 402
mysqlshow, 413
mysql_upgrade, 326

characters
multibyte, 1271

CHARACTER_LENGTH(), 1391
CHARACTER_SETS

INFORMATION_SCHEMA table, 2696
character_sets_dir system variable, 590
character_set_client system variable, 588
character_set_connection system variable, 588
character_set_database system variable, 588
character_set_filesystem system variable, 589
character_set_results system variable, 589
character_set_server system variable, 589
character_set_system system variable, 590
charset command

mysql, 342
charset option

comp_err, 304
CHARSET(), 1498
CHAR_LENGTH(), 1391
check option

myisamchk, 437
mysqlcheck, 366

check options

myisamchk, 437
CHECK TABLE, 1856

and partitioning, 2634
check-only-changed option

myisamchk, 437
mysqlcheck, 366

check-upgrade option
mysqlcheck, 366

checking
tables for errors, 1006

Checking master version
thread state, 1181

checking permissions
thread state, 1174

checking privileges on cached query
thread state, 1180

checking query cache for query
thread state, 1180

Checking table
thread state, 1174

checkpoint, 3405
checksum, 3405
checksum errors, 159
CHECKSUM TABLE, 1860

and replication, 2558
check_proxy_users system variable, 590
child table, 3406
Chinese, Japanese, Korean character sets

frequently asked questions, 3241
choosing

a MySQL version, 55
data types, 1357

chroot option
mysqld, 534

CJK (Chinese, Japanese, Korean)
Access, PHP, etc., 3241
availability of specific characters, 3241
big5, 3241
character sets available, 3241
characters displayed as question marks, 3241
CJKV, 3241
collations, 3241, 3241
conversion problems with Japanese character sets,
3241
data truncation, 3241
Database and table names, 3241
documentation in Chinese, 3241
documentation in Japanese, 3241
documentation in Korean, 3241
FAQ, 3241
gb2312, gbk, 3241
Japanese character sets, 3241
Korean character set, 3241
LIKE and FULLTEXT, 3241
MySQL 4.0 behavior, 3241
ORDER BY treatment, 3241, 3241
problems with Access, PHP, etc., 3241
problems with Big5 character sets (Chinese), 3241

3529

problems with data truncation, 3241
problems with euckr character set (Korean), 3241
problems with GB character sets (Chinese), 3241
problems with LIKE and FULLTEXT, 3241
problems with Yen sign (Japanese), 3241
rejected characters, 3241
sort order problems, 3241, 3241
sorting problems, 3241, 3241
testing availability of characters, 3241
Unicode collations, 3241
Vietnamese, 3241
Yen sign, 3241

clean page, 3406
clean shutdown, 798, 822, 2570, 3406
cleaning up

thread state, 1174
clear command

mysql, 343
Clearing

thread state, 1183
clearing

caches, 1915
client, 3406
client connection threads, 1162
client programs, 271

building, 3011
client tools, 2999
clients

debugging, 3219
threaded, 3015

cloning tables, 1663
CLOSE, 1799
Close stmt

thread command, 1172
closing

tables, 1084
closing tables

thread state, 1174
clustered index, 3406

InnoDB, 1953
CMake

BUILD_CONFIG option, 175
CMAKE_BUILD_TYPE option, 175
CMAKE_CXX_FLAGS option, 186
CMAKE_C_FLAGS option, 186
CMAKE_INSTALL_PREFIX option, 175
COMPILATION_COMMENT option, 179
CPACK_MONOLITHIC_INSTALL option, 175
DEFAULT_CHARSET option, 179
DEFAULT_COLLATION option, 179
DISABLE_PSI_COND option, 179
DISABLE_PSI_FILE option, 179
DISABLE_PSI_IDLE option, 179
DISABLE_PSI_MEMORY option, 179
DISABLE_PSI_METADATA option, 180
DISABLE_PSI_MUTEX option, 180
DISABLE_PSI_RWLOCK option, 180
DISABLE_PSI_SOCKET option, 180

DISABLE_PSI_SP option, 180
DISABLE_PSI_STAGE option, 180
DISABLE_PSI_STATEMENT option, 180
DISABLE_PSI_STATEMENT_DIGEST option, 180
DISABLE_PSI_TABLE option, 180
DOWNLOAD_BOOST option, 180
DOWNLOAD_BOOST_TIMEOUT option, 180
ENABLED_LOCAL_INFILE option, 181
ENABLED_PROFILING option, 181
ENABLE_DEBUG_SYNC option, 180
ENABLE_DOWNLOADS option, 181
ENABLE_DTRACE option, 181
ENABLE_GCOV option, 181
ENABLE_GPROF option, 181
FORCE_UNSUPPORTED_COMPILER option, 181
IGNORE_AIO_CHECK option, 181
INNODB_PAGE_ATOMIC_REF_COUNT option,
181
INSTALL_BINDIR option, 175
INSTALL_DOCDIR option, 175
INSTALL_DOCREADMEDIR option, 176
INSTALL_INCLUDEDIR option, 176
INSTALL_INFODIR option, 176
INSTALL_LAYOUT option, 176
INSTALL_LIBDIR option, 176
INSTALL_MANDIR option, 176
INSTALL_MYSQLSHAREDIR option, 176
INSTALL_MYSQLTESTDIR option, 176
INSTALL_PKGCONFIGDIR option, 176
INSTALL_PLUGINDIR option, 177
INSTALL_SBINDIR option, 177
INSTALL_SCRIPTDIR option, 177
INSTALL_SECURE_FILE_PRIVDIR option, 177
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR
option, 177
INSTALL_SHAREDIR option, 177
INSTALL_SQLBENCHDIR option, 177
INSTALL_SUPPORTFILESDIR option, 177
MAX_INDEXES option, 182
MUTEX_TYPE option, 182
MYSQL_DATADIR option, 177
MYSQL_MAINTAINER_MODE option, 182
MYSQL_PROJECT_NAME option, 182
MYSQL_TCP_PORT option, 182
MYSQL_UNIX_ADDR option, 182
ODBC_INCLUDES option, 177
ODBC_LIB_DIR option, 177
OPTIMIZER_TRACE option, 182
options, 170
running after prior invocation, 167, 187
SUNPRO_CXX_LIBRARY option, 187
SYSCONFDIR option, 177
SYSTEMD_PID_DIR option, 177
SYSTEMD_SERVICE_NAME option, 178
TMPDIR option, 178
VERSION file, 189
WIN_DEBUG_NO_INLINE option, 182
WITHOUT_SERVER option, 186

3530

WITH_ASAN option, 182
WITH_AUTHENTICATION_PAM option, 183
WITH_BOOST option, 183
WITH_CLIENT_PROTOCOL_TRACING option, 183
WITH_DEBUG option, 183
WITH_DEFAULT_COMPILER_OPTIONS option,
186
WITH_DEFAULT_FEATURE_SET option, 184
WITH_EDITLINE option, 184
WITH_EMBEDDED_SERVER option, 184
WITH_EMBEDDED_SHARED_LIBRARY option,
184
WITH_EXTRA_CHARSETS option, 184
WITH_INNODB_EXTRA_DEBUG option, 184
WITH_INNODB_MEMCACHED option, 184
WITH_LIBEVENT option, 184
WITH_LIBWRAP option, 184
WITH_MECAB option, 185
WITH_MSAN option, 184
WITH_MSCRT_DEBUG option, 185
WITH_SSL option, 185
WITH_SYSTEMD option, 185
WITH_TEST_TRACE_PLUGIN option, 185
WITH_UBSAN option, 186
WITH_UNIXODBC option, 186
WITH_VALGRIND option, 186
WITH_ZLIB option, 186

CMakeCache.txt file, 187
CMAKE_BUILD_TYPE option

CMake, 175
CMAKE_CXX_FLAGS option

CMake, 186
CMAKE_C_FLAGS option

CMake, 186
CMAKE_INSTALL_PREFIX option

CMake, 175
COALESCE(), 1381
COERCIBILITY(), 1498
cold backup, 3406
collating

strings, 1271
collation

adding, 1271
INFORMATION_SCHEMA, 1237
modifying, 1272
names, 1230

COLLATION(), 1499
collation-server option

mysqld, 535
COLLATIONS

INFORMATION_SCHEMA table, 2696
COLLATION_CHARACTER_SET_APPLICABILITY

INFORMATION_SCHEMA table, 2697
collation_connection system variable, 590
collation_database system variable, 591
collation_server system variable, 591
column, 3406

changing, 1610

types, 1293
column alias

problems, 3372
quoting, 1192, 3372

column comments, 1642
column index, 3406
column names

case sensitivity, 1194
column prefix, 3406
column-names option

mysql, 334
column-type-info option

mysql, 334
columns

displaying, 411
indexes, 1073
names, 1191
other types, 1357
selecting, 247
storage requirements, 1354

COLUMNS
INFORMATION_SCHEMA table, 2697

columns option
mysqlimport, 393

columns partitioning, 2600
columns per table

maximum, 3393
columns_priv table

system table, 871
COLUMN_PRIVILEGES

INFORMATION_SCHEMA table, 2698
comma-separated values data, reading, 1706, 1729
command options

mysql, 330
mysqladmin, 357
mysqld, 530

command syntax, 4
command-line history

mysql, 347
command-line tool, 98, 329
commands

for binary distribution, 68
commands out of sync, 3357
comment syntax, 1212
comments

adding, 1212
starting, 40

comments option
mysql, 334
mysqldump, 380

COMMIT, 1752
XA transactions, 1766

commit, 3407
commit option

mysqlslap, 420
committing alter table to storage engine

thread state, 1175
compact option

3531

mysqldump, 383
compact row format, 2070, 3407
comparison operators, 1377
compatibility

with mSQL, 1407
with ODBC, 685, 1194, 1297, 1373, 1380, 1641,
1731
with Oracle, 37, 1581, 1610, 1923
with PostgreSQL, 38
with standard SQL, 35

compatible option
mysqldump, 383

COMPILATION_COMMENT option
CMake, 179

compiling
optimizing, 1150
user-defined functions, 3208

compiling clients
on Unix, 3011
on Windows, 3013

compiling MySQL server
problems, 187

complete-insert option
mysqldump, 383
mysqlpump, 402

completion_type system variable, 591
composite index, 3407
composite partitioning, 2612
compound statements, 1790
compress option

mysql, 334
mysqladmin, 359
mysqlcheck, 366
mysqldump, 376
mysqlimport, 393
mysqlpump, 402
mysqlshow, 413
mysqlslap, 420
mysql_upgrade, 326

COMPRESS(), 1491
compress-output option

mysqlpump, 402
compressed backup, 3407
compressed row format, 2069, 3407
compressed table, 3408
compressed tables, 448, 2301
compression, 2044, 2058, 3408

algorithms, 2051
application and schema design, 2049
BLOBs, VARCHAR and TEXT, 2053
buffer pool considerations, 2053
compressed page size, 2050
configuration characteristics, 2050
data and indexes, 2052
data characteristics, 2047
enabling for a table, 2045
implementation, 2051
information schema, 2196

KEY_BLOCK_SIZE, 2050
log file format, 2054
modification log, 2052
monitoring, 2050
overflow pages, 2053
overview, 2044
tuning, 2047
workload characteristics, 2049

compression failure, 3408
comp_err, 270, 304

charset option, 304
debug option, 304
debug-info option, 304
header_file option, 304
help option, 304
in_file option, 304
name_file option, 304
out_dir option, 304
out_file option, 304
statefile option, 304
version option, 304

CONCAT(), 1391
concatenation

string, 1185, 1391
CONCAT_WS(), 1392
concurrency, 1931, 3408

of commits, 2134
of threads, 2189
tickets, 2136

concurrency option
mysqlslap, 420

concurrent inserts, 1145, 1147
concurrent_insert system variable, 592
Conditions, 1800
conditions, 1883, 1910
cond_instances table

performance_schema, 2812
config-file option

my_print_defaults, 485
configuration file, 3408
configuration files, 885
configure option

MySQLInstallerConsole, 99
config_options table, 2276
Connect

thread command, 1172
connect command

mysql, 343
Connect Out

thread command, 1172
connect-expired-password option

mysql, 334
connecting

remotely with SSH, 950
to the server, 237, 274
verification, 879

Connecting to master
thread state, 1181

3532

connection
aborted, 3355

connection-server-id option
mysqlbinlog, 464

CONNECTION_ID(), 1499
Connector/C, 2999, 3003
Connector/C++, 2999, 3003
Connector/J, 2999, 3003
Connector/Net, 2999, 3003
Connector/ODBC, 2999, 3002
Connector/Python, 2999, 3003
Connectors, 2999
connect_timeout system variable, 593
connect_timeout variable, 341, 362
consistent read, 3408
consistent reads, 1940
console option

mysqld, 535
const table

optimizer, 1104, 1727
constant table, 1015
constraint, 3409
constraints, 41

foreign keys, 1665
CONSTRAINTS

INFORMATION_SCHEMA table, 2719
containers table, 2276
Contains(), 1533
contributing companies

list of, 51
contributors

list of, 44
control flow functions, 1386
CONV(), 1417
conventions

syntax, 2
typographical, 2

CONVERT, 1474
CONVERT TO, 1613
converting HEAP to MyISAM

thread state, 1175
CONVERT_TZ(), 1427
ConvexHull(), 1528
copy to tmp table

thread state, 1175
copying databases, 230
copying tables, 1663
Copying to group table

thread state, 1175
Copying to tmp table

thread state, 1175
Copying to tmp table on disk

thread state, 1175
core-file option

mysqld, 535
core-file-size option

mysqld_safe, 293
core_file system variable, 593

correct-checksum option
myisamchk, 438

correlated subqueries, 1743
corruption, 2284
COS(), 1418
cost model

optimizer, 1127
COT(), 1418
count option

innochecksum, 426
myisam_ftdump, 431
mysqladmin, 359
mysqlshow, 413

COUNT(), 1579
COUNT(DISTINCT), 1580
counter, 3409
counting

table rows, 255
covering index, 3409
CPACK_MONOLITHIC_INSTALL option

CMake, 175
CPU-bound, 3409
crash, 3213, 3409

recovery, 1005
repeated, 3363
replication, 2570

crash recovery, 3409
crash-safe replication, 2453, 2468, 2526
CRC32(), 1418
CREATE ... IF NOT EXISTS

and replication, 2558
CREATE DATABASE, 1622
Create DB

thread command, 1172
CREATE EVENT, 1623

and replication, 2565
CREATE FUNCTION, 1631, 1864
CREATE INDEX, 1628, 2074
create option

mysqlslap, 420
CREATE PROCEDURE, 1631
CREATE SCHEMA, 1622
CREATE SERVER, 1636
CREATE TABLE, 1637

DIRECTORY options
and replication, 2564

KEY_BLOCK_SIZE, 2050
options for table compression, 2045
ROW_FORMAT, 2067

CREATE TABLE ... SELECT
and replication, 2558

CREATE TABLESPACE, 1671
CREATE TRIGGER, 1673
CREATE USER, 1833
CREATE VIEW, 1676
create-options option

mysqldump, 383
create-schema option

3533

mysqlslap, 420
CREATE_ASYMMETRIC_PRIV_KEY(), 1567
CREATE_ASYMMETRIC_PUB_KEY(), 1568
CREATE_DH_PARAMETERS(), 1568
CREATE_DIGEST(), 1568
create_synonym_db() procedure

sys schema, 2968
creating

bug reports, 31
database, 1622
databases, 241
default startup options, 281
function, 1864
schema, 1622
tables, 243

Creating index
thread state, 1175

Creating sort index
thread state, 1175

creating table
thread state, 1175

Creating tmp table
thread state, 1175

creating user accounts, 1833
CROSS JOIN, 1729
cross-bootstrap option

mysql_install_db, 309
Crosses(), 1531
CRUD, 3410
CR_SERVER_GONE_ERROR, 3353
CR_SERVER_LOST_ERROR, 3353
CSV data, reading, 1706, 1729
csv option

mysqlslap, 421
CSV storage engine, 2291, 2307
CURDATE(), 1427
CURRENT_DATE, 1427
CURRENT_TIME, 1427
CURRENT_TIMESTAMP, 1427
CURRENT_USER(), 1499
cursor, 3410
Cursors, 1798
CURTIME(), 1427
CXX environment variable, 188, 231
cxxflags option

mysql_config, 483

D
Daemon

thread command, 1172
daemon plugins, 3139
daemonize option

mysqld, 535
daemon_memcached_enable_binlog system variable,
2116
daemon_memcached_engine_lib_name system
variable, 2116

daemon_memcached_engine_lib_path system
variable, 2116
daemon_memcached_option system variable, 2117
daemon_memcached_r_batch_size system variable,
2117
daemon_memcached_w_batch_size system variable,
2118
data

importing, 351, 391
loading into tables, 244
retrieving, 245
size, 1080

data dictionary, 2004, 3410
data directory, 3410

mysql_upgrade_info file, 324
DATA DIRECTORY

and replication, 2564
data files, 3410
Data truncation with CJK characters, 3241
data type

BIGINT, 1295
BINARY, 1301, 1320
BIT, 1294
BLOB, 1301, 1321
BOOL, 1294, 1357
BOOLEAN, 1294, 1357
CHAR, 1300, 1318
CHAR VARYING, 1300
CHARACTER, 1300
CHARACTER VARYING, 1300
DATE, 1297, 1307
DATETIME, 1297, 1307
DEC, 1296
DECIMAL, 1296, 1591
DOUBLE, 1296
DOUBLE PRECISION, 1297
ENUM, 1302, 1322
FIXED, 1296
FLOAT, 1296, 1296, 1297
GEOMETRY, 1329
GEOMETRYCOLLECTION, 1329
INT, 1295
INTEGER, 1295
LINESTRING, 1329
LONG, 1321
LONGBLOB, 1302
LONGTEXT, 1302
MEDIUMBLOB, 1301
MEDIUMINT, 1295
MEDIUMTEXT, 1301
MULTILINESTRING, 1329
MULTIPOINT, 1329
MULTIPOLYGON, 1329
NATIONAL CHAR, 1300
NATIONAL VARCHAR, 1300
NCHAR, 1300
NUMERIC, 1296
NVARCHAR, 1300

3534

POINT, 1329
POLYGON, 1329
REAL, 1297
SET, 1302, 1325
SMALLINT, 1295
TEXT, 1301, 1321
TIME, 1298, 1309
TIMESTAMP, 1298, 1307
TINYBLOB, 1301
TINYINT, 1294
TINYTEXT, 1301
VARBINARY, 1301, 1320
VARCHAR, 1300, 1318
VARCHARACTER, 1300
YEAR, 1298, 1309

data types, 1293
C API, 3009
overview, 1294

data warehouse, 3411
data-file-length option

myisamchk, 438
database, 3411

altering, 1600
creating, 1622
deleting, 1680

Database information
obtaining, 1870

database metadata, 2694
database names

case sensitivity, 37, 1194
database option

mysql, 334
mysqlbinlog, 464

DATABASE(), 1500
databases

backups, 987
copying, 230
creating, 241, 1622
defined, 4
displaying, 411
dumping, 370, 397
information about, 258
names, 1191
replicating, 2395
selecting, 242, 1926
symbolic links, 1157
using, 241

databases option
mysqlcheck, 366
mysqldump, 385
mysqlpump, 402

datadir option
mysql.server, 299
mysqld, 536
mysqld_safe, 293
mysql_install_db, 310
mysql_plugin, 316
mysql_ssl_rsa_setup, 321

mysql_upgrade, 326
datadir system variable, 593
DATE, 3369
date and time functions, 1424
Date and Time types, 1306
date calculations, 249
DATE columns

problems, 3369
DATE data type, 1297, 1307
date literals, 1188
date types, 1355
date values

problems, 1308
DATE(), 1428
DATEDIFF(), 1428
dates

used with partitioning, 2592
used with partitioning (examples), 2595, 2608, 2612,
2639

DATETIME data type, 1297, 1307
datetime_format system variable, 594
DATE_ADD(), 1428
date_format system variable, 594
DATE_FORMAT(), 1430
DATE_SUB(), 1428, 1432
DAY(), 1432, 1497
DAYNAME(), 1432
DAYOFMONTH(), 1432
DAYOFWEEK(), 1432
DAYOFYEAR(), 1432
db table

sorting, 882
system table, 202, 871

DB2 SQL mode, 759
DBI interface, 3131
DBI->quote, 1187
DBI->trace, 3216
DBI/DBD interface, 3131
DBI_TRACE environment variable, 231, 3216
DBI_USER environment variable, 231
DBUG package, 3220
DCL, 1842, 1852, 3411
DDL, 1600, 3411
DDL log, 818
deadlock, 1144, 1759, 1938, 1946, 1949, 2175, 2575,
2913, 3411
deadlock detection, 3412
DEALLOCATE PREPARE, 1786, 1790
deb file

MySQL APT Repository, 146
MySQL SLES Repository, 146

Debug
thread command, 1173

debug option
comp_err, 304
myisamchk, 434
myisampack, 449
mysql, 334

3535

mysqladmin, 359
mysqlbinlog, 466
mysqlcheck, 366
mysqld, 536
mysqldump, 380
mysqldumpslow, 482
mysqlimport, 393
mysqlpump, 402
mysqlshow, 414
mysqlslap, 421
mysql_config_editor, 457
mysql_upgrade, 326
my_print_defaults, 485

debug system variable, 594
debug-check option

mysql, 334
mysqladmin, 359
mysqlbinlog, 466
mysqlcheck, 366
mysqldump, 380
mysqlimport, 393
mysqlpump, 402
mysqlshow, 414
mysqlslap, 421
mysql_upgrade, 326

debug-info option
comp_err, 304
mysql, 334
mysqladmin, 359
mysqlbinlog, 466
mysqlcheck, 367
mysqldump, 380
mysqlimport, 393
mysqlpump, 402
mysqlshow, 414
mysqlslap, 421
mysql_upgrade, 327

debug-sync-timeout option
mysqld, 536

debugging
client, 3219
server, 3213

debugging support, 170
debug_sync system variable, 595
DEC data type, 1296
decimal arithmetic, 1591
DECIMAL data type, 1296, 1591
decimal point, 1293
DECLARE, 1792
DECODE(), 1492
decode_bits myisamchk variable, 435
DEFAULT

constraint, 42
default

privileges, 202
default accounts, 202
default host name, 274
default installation location, 67

default options, 281
DEFAULT value clause, 1353, 1642
default values, 1353, 1642, 1696

BLOB and TEXT columns, 1321
explicit, 1353
implicit, 1353
suppression, 42

DEFAULT(), 1570
default-auth option

mysql, 334
mysqladmin, 359
mysqlbinlog, 466
mysqlcheck, 367
mysqldump, 376
mysqlimport, 393
mysqlpump, 402
mysqlshow, 414
mysqlslap, 421
mysql_upgrade, 327

default-authentication-plugin option
mysqld, 537

default-character-set option
mysql, 334
mysqladmin, 359
mysqlcheck, 367
mysqldump, 381
mysqlimport, 393
mysqlpump, 402
mysqlshow, 414
mysql_upgrade, 327

default-parallelism option
mysqlpump, 403

default-storage-engine option
mysqld, 537

default-time-zone option
mysqld, 537

defaults
embedded, 3005

defaults option, 310
defaults-extra-file option, 285, 310

myisamchk, 434
mysql, 335
mysqladmin, 359
mysqlbinlog, 466
mysqlcheck, 367
mysqld, 537
mysqldump, 378
mysqld_multi, 301
mysqld_safe, 294
mysqlimport, 393
mysqlpump, 403
mysqlshow, 414
mysqlslap, 421
mysql_secure_installation, 318
mysql_upgrade, 327
my_print_defaults, 485

defaults-file option, 286, 310
myisamchk, 435

3536

mysql, 335
mysqladmin, 360
mysqlbinlog, 466
mysqlcheck, 367
mysqld, 537
mysqldump, 378
mysqld_multi, 300
mysqld_safe, 294
mysqlimport, 394
mysqlpump, 403
mysqlshow, 414
mysqlslap, 421
mysql_secure_installation, 318
mysql_upgrade, 327
my_print_defaults, 485

defaults-group-suffix option, 286
myisamchk, 435
mysql, 335
mysqladmin, 360
mysqlbinlog, 466
mysqlcheck, 367
mysqld, 538
mysqldump, 378
mysqlimport, 394
mysqlpump, 403
mysqlshow, 414
mysqlslap, 421
mysql_secure_installation, 318
mysql_upgrade, 327
my_print_defaults, 485

default_authentication_plugin system variable, 595
DEFAULT_CHARSET option

CMake, 179
DEFAULT_COLLATION option

CMake, 179
default_password_lifetime system variable, 596
default_storage_engine system variable, 597
default_tmp_storage_engine system variable, 597
default_week_format system variable, 598
defer-table-indexes option

mysqlpump, 403
DEGREES(), 1418
delay-key-write option

mysqld, 538, 2298
DELAYED, 1700
Delayed insert

thread command, 1173
delayed replication, 2555
delayed_insert_limit system variable, 599
delayed_insert_timeout system variable, 599
delayed_queue_size system variable, 599
delay_key_write system variable, 598
DELETE, 1689
delete, 3412
delete buffering, 3412
delete option

mysqlimport, 394
delete-master-logs option

mysqldump, 381
deleting

database, 1680
foreign key, 1612, 1668
function, 1865
index, 1610, 1681
primary key, 1610
rows, 3373
schema, 1680
table, 1682
user, 892, 1842
users, 892, 1842

deleting from main table
thread state, 1175

deleting from reference tables
thread state, 1175

deletion
mysql.sock, 3367

delimiter command
mysql, 343

delimiter option
mysql, 335
mysqlslap, 421

demo_test table, 2258
denormalized, 3412
deprecated features in MySQL 5.7, 9
derived tables, 1744

optimization, 1055
updatable views, 2680

des-key-file option
mysqld, 538

DESC, 1922
descending index, 3412
DESCRIBE, 258, 1922
description option

myisamchk, 439
design

issues, 3377
DES_DECRYPT(), 1492
DES_ENCRYPT(), 1492
detach option

mysqlslap, 421
development source tree, 169
diagnostics() procedure

sys schema, 2969
digits, 1293
Dimension(), 1519
directory structure

default, 67
dirty page, 1972, 2118, 3412
dirty read, 3412
disable named command

mysql, 335
--disable option prefix, 280
disable-keys option

mysqldump, 387
disable-log-bin option

mysqlbinlog, 466

3537

disabled_storage_engines system variable, 600
DISABLE_PSI_COND option

CMake, 179
DISABLE_PSI_FILE option

CMake, 179
DISABLE_PSI_IDLE option

CMake, 179
DISABLE_PSI_MEMORY option

CMake, 179
DISABLE_PSI_METADATA option

CMake, 180
DISABLE_PSI_MUTEX option

CMake, 180
DISABLE_PSI_RWLOCK option

CMake, 180
DISABLE_PSI_SOCKET option

CMake, 180
DISABLE_PSI_SP option

CMake, 180
DISABLE_PSI_STAGE option

CMake, 180
DISABLE_PSI_STATEMENT option

CMake, 180
DISABLE_PSI_STATEMENT_DIGEST option

CMake, 180
DISABLE_PSI_TABLE option

CMake, 180
DISCARD TABLESPACE, 1612, 2028
discard_or_import_tablespace

thread state, 1176
disconnect-slave-event-count option

mysqld, 2467
disconnecting

from the server, 237
disconnect_on_expired_password system variable, 601
Disjoint(), 1534
disk full, 3365
disk performance, 1155
disk-based, 3413
disk-bound, 3413
disks

splitting data across, 1158
display size, 1293
display triggers, 1908
display width, 1293
displaying

database information, 411
information

Cardinality, 1886
Collation, 1886
SHOW, 1870, 1873, 1886, 1888, 1907

table status, 1905
Distance(), 1531
DISTINCT, 248, 1050, 1726

AVG(), 1579
COUNT(), 1580
MAX(), 1581
MIN(), 1581

SUM(), 1582
DISTINCTROW, 1726
DIV, 1415
division (/), 1415
div_precision_increment system variable, 601
DML, 1687, 3413

DELETE statement, 1689
INSERT statement, 1695
UPDATE statement, 1749

DNS, 1163
DO, 1693
DocBook XML

documentation source format, 2
document id, 3413
Documentation

in Chinese, 3241
in Japanese, 3241
in Korean, 3241

Documenters
list of, 48

DOUBLE data type, 1296
DOUBLE PRECISION data type, 1297
double quote (\"), 1186, 1555
doublewrite buffer, 739, 2071, 2139, 3413
downgrading, 207, 221
downloading, 57
DOWNLOAD_BOOST option

CMake, 180
DOWNLOAD_BOOST_TIMEOUT option

CMake, 180
drop, 3413
DROP ... IF EXISTS

and replication, 2559
DROP DATABASE, 1680
Drop DB

thread command, 1173
DROP EVENT, 1681
DROP FOREIGN KEY, 1612, 1668
DROP FUNCTION, 1682, 1865
DROP INDEX, 1610, 1681, 2074
DROP PREPARE, 1790
DROP PRIMARY KEY, 1610
DROP PROCEDURE, 1682
DROP SCHEMA, 1680
DROP SERVER, 1682
DROP TABLE, 1682
DROP TABLESPACE, 1683
DROP TRIGGER, 1684
DROP USER, 1842
DROP VIEW, 1684
dropping

user, 892, 1842
DTrace, 827

and memcached, 2348
DUAL, 1722
dump option

myisam_ftdump, 431
dump-date option

3538

mysqldump, 380
dump-slave option

mysqldump, 381
DUMPFILE, 1729
dumping

databases and tables, 370, 397
DYLD_LIBRARY_PATH environment variable, 3016
dynamic row format, 2069, 3413
dynamic table characteristics, 2300

E
early adopter, 3414
edit command

mysql, 343
ego command

mysql, 343
Eiffel Wrapper, 3132
ELT(), 1392
email lists, 27
embedded MySQL server library, 3003
embedded option

mysql_config, 484
--enable option prefix, 280
enable-cleartext-plugin option

mysql, 335
mysqladmin, 360
mysqlcheck, 367
mysqldump, 376
mysqlimport, 394
mysqlshow, 414
mysqlslap, 421

enable-named-pipe option
mysqld, 538

ENABLED_LOCAL_INFILE option
CMake, 181

ENABLED_PROFILING option
CMake, 181

ENABLE_DEBUG_SYNC option
CMake, 180

ENABLE_DOWNLOADS option
CMake, 181

ENABLE_DTRACE option
CMake, 181

ENABLE_GCOV option
CMake, 181

ENABLE_GPROF option
CMake, 181

ENCODE(), 1493
ENCRYPT(), 1493
encrypted connections, 929
encryption, 860, 929
encryption functions, 1488
end

thread state, 1176
END, 1790
end-page option

innochecksum, 426
EndPoint(), 1522

end_markers_in_json system variable, 602
enforce-gtid-consistency option, 2501
enforce_gtid_consistency system variable, 2505
engine option

mysqlslap, 421
ENGINES

INFORMATION_SCHEMA table, 2699
engine_cost

system table, 1127
engine_cost table

system table, 871
entering

queries, 238
enterprise components

MySQL Enterprise Audit, 951, 3225
MySQL Enterprise Backup, 3224
MySQL Enterprise Encryption, 3225
MySQL Enterprise Firewall, 975, 3225
MySQL Enterprise Monitor, 3223
MySQL Enterprise Security, 911, 918, 3224
MySQL Thread Pool, 1164, 3226

ENUM
size, 1357

ENUM data type, 1302, 1322
Envelope(), 1519
environment variable

AUTHENTICATION_PAM_LOG, 917
CC, 188, 231
CXX, 188, 231
DBI_TRACE, 231, 3216
DBI_USER, 231
DYLD_LIBRARY_PATH, 3016
HOME, 231, 347
LD_LIBRARY_PATH, 234, 3016
LD_RUN_PATH, 231, 234
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN, 231
LIBMYSQL_PLUGINS, 231, 3119
LIBMYSQL_PLUGIN_DIR, 231, 3119
MYSQL_DEBUG, 231, 273, 3219
MYSQL_GROUP_SUFFIX, 231
MYSQL_HISTFILE, 231, 347
MYSQL_HISTIGNORE, 231, 347
MYSQL_HOME, 231
MYSQL_HOST, 231, 278
MYSQL_PS1, 231
MYSQL_PWD, 231, 273, 278
MYSQL_TCP_PORT, 231, 273, 826, 827
MYSQL_TEST_LOGIN_FILE, 231, 286, 454
MYSQL_TEST_TRACE_CRASH, 231, 3188
MYSQL_TEST_TRACE_DEBUG, 231, 3188
MYSQL_UNIX_PORT, 197, 231, 273, 826, 827
PATH, 116, 122, 200, 231, 274
PKG_CONFIG_PATH, 231, 3014
TMPDIR, 197, 231, 273, 3366
TZ, 231, 3368
UMASK, 231, 3359
UMASK_DIR, 231, 3360
USER, 231, 278

3539

environment variables, 273, 291, 885
list of, 231

equal (=), 1378
Equals(), 1534
eq_ref join type

optimizer, 1104
Errcode, 486
errno, 486
Error

thread command, 1173
error log, 3414
error messages

can't find file, 3359
displaying, 486
languages, 1267, 1267

errors
access denied, 3347
and replication, 2572
checking tables for, 1006
common, 3345
directory checksum, 159
handling for UDFs, 3208
in subqueries, 1746
known, 3377
linking, 3013
list of, 3346
lost connection, 3350
reporting, 31, 31
sources of information, 3259

error_count system variable, 603
ERROR_FOR_DIVISION_BY_ZERO SQL mode, 754
ER_UPDATE_TABLE_USED

with derived tables, 1056
escape (\\), 1186, 1555
escape sequences

option files, 283
strings, 1185

establishing secure connections, 936
estimating

query performance, 1115
event

restrictions, 3381
event groups, 1780
event scheduler, 2661

thread states, 1183
Event Scheduler, 2670

altering events, 1601
and MySQL privileges, 2675
and mysqladmin debug, 2674
and replication, 2564, 2565
and SHOW PROCESSLIST, 2671
concepts, 2670
creating events, 1623
dropping events, 1681
enabling and disabling, 2671
event metadata, 2673
obtaining status information, 2674
SQL statements, 2673

starting and stopping, 2671
time representation, 2674

event table
system table, 871

event-scheduler option
mysqld, 538

events, 2661, 2670
altering, 1601
creating, 1623
dropping, 1681
metadata, 2673
status variables, 2677

EVENTS
INFORMATION_SCHEMA table, 2676, 2699

events option
mysqldump, 386
mysqlpump, 403

events_stages_current table
performance_schema, 2824

events_stages_history table
performance_schema, 2825

events_stages_history_long table
performance_schema, 2825

events_stages_summary_by_account_by_event_name
table

performance_schema, 2874
events_stages_summary_by_host_by_event_name
table

performance_schema, 2874
events_stages_summary_by_thread_by_event_name
table

performance_schema, 2865
events_stages_summary_by_user_by_event_name
table

performance_schema, 2874
events_stages_summary_global_by_event_name table

performance_schema, 2865
events_statements_current table

performance_schema, 2829
events_statements_history table

performance_schema, 2833
events_statements_history_long table

performance_schema, 2833
events_statements_summary_by_account_by_event_name
table

performance_schema, 2874
events_statements_summary_by_digest table

performance_schema, 2866
events_statements_summary_by_host_by_event_name
table

performance_schema, 2874
events_statements_summary_by_program table

performance_schema, 2866
events_statements_summary_by_thread_by_event_name
table

performance_schema, 2866
events_statements_summary_by_user_by_event_name
table

3540

performance_schema, 2874
events_statements_summary_global_by_event_name
table

performance_schema, 2866
events_transactions_current table

performance_schema, 2839
events_transactions_history table

performance_schema, 2841
events_transactions_history_long table

performance_schema, 2842
events_transactions_summary_by_account_by_event
table

performance_schema, 2868
events_transactions_summary_by_host_by_event_name
table

performance_schema, 2868
events_transactions_summary_by_thread_by_event_name
table

performance_schema, 2868
events_transactions_summary_by_user_by_event_name
table

performance_schema, 2868
events_transactions_summary_global_by_event_name
table

performance_schema, 2868
events_waits_current table

performance_schema, 2818
events_waits_history table

performance_schema, 2820
events_waits_history_long table

performance_schema, 2821
events_waits_summary_by_account_by_event_name
table

performance_schema, 2874
events_waits_summary_by_host_by_event_name table

performance_schema, 2874
events_waits_summary_by_instance table

performance_schema, 2864
events_waits_summary_by_thread_by_event_name
table

performance_schema, 2864
events_waits_summary_by_user_by_event_name
table

performance_schema, 2874
events_waits_summary_global_by_event_name table

performance_schema, 2864
event_scheduler system variable, 603
eviction, 3414
exact-value literals, 1188, 1591
example option

mysqld_multi, 301
example programs

C API, 3011
EXAMPLE storage engine, 2291, 2323
examples

compressed tables, 450
myisamchk output, 440
queries, 261

exclude-databases option
mysqlpump, 404

exclude-events option
mysqlpump, 404

exclude-gtids option
mysqlbinlog, 466

exclude-routines option
mysqlpump, 404

exclude-tables option
mysqlpump, 404

exclude-triggers option
mysqlpump, 404

exclude-users option
mysqlpump, 404

exclusive lock, 3414
Execute

thread command, 1173
EXECUTE, 1786, 1790
execute option

mysql, 335
executed-gtids-compression-period option (mysqld),
2502
executed_gtids_compression_period system variable,
2506

mysql.gtid_executed table, 2410
execute_prepared_stmt() procedure

sys schema, 2971
executing

thread state, 1176
executing SQL statements from text files, 259, 351
Execution of init_command

thread state, 1176
EXISTS

with subqueries, 1742
exit command

mysql, 343
exit-info option

mysqld, 539
EXP(), 1418
expire_logs_days system variable, 603
expiring passwords, 898
EXPLAIN, 1099, 1922
EXPLAIN PARTITIONS, 2636, 2636
EXPLAIN used with partitioned tables, 2636
explicit default values, 1353
explicit_defaults_for_timestamp system variable, 604
EXPORT_SET(), 1392
expression aliases, 1587, 1722
expression syntax, 1211
expressions

extended, 252
extend-check option

myisamchk, 437, 438
extended option

mysqlcheck, 367
extended-insert option

mysqldump, 387
mysqlpump, 404

3541

extensions
to standard SQL, 35

extent, 3414
ExteriorRing(), 1525
external locking, 539, 682, 1005, 1149, 1179
external-locking option

mysqld, 539
external_user system variable, 605
extra-file option

my_print_defaults, 485
extra-sql-file option

mysql_install_db, 310
EXTRACT(), 1432
extracting

dates, 249
ExtractValue(), 1478
extract_schema_from_file_name() function

sys schema, 2987
extract_table_from_file_name() function

sys schema, 2987

F
FALSE, 1188, 1191

testing for, 1380, 1380
false literal

JSON, 1343
FAQs

C API, 3120
Connectors and APIs, 3253
MySQL Cluster, 3240
replication, 3253

Fast Index Creation, 2074, 3415
fast option

myisamchk, 437
mysqlcheck, 367

fast shutdown, 3415
features of MySQL, 5
FEDERATED storage engine, 2291, 2317
Fetch

thread command, 1173
FETCH, 1799
field

changing, 1610
Field List

thread command, 1173
FIELD(), 1392
fields-enclosed-by option

mysqldump, 383, 394
fields-escaped-by option

mysqldump, 383, 394
fields-optionally-enclosed-by option

mysqldump, 383, 394
fields-terminated-by option

mysqldump, 383, 394
FILE, 1394
file format, 2061, 3415

Antelope, 2053
Barracuda, 2045

identifying, 2066
modifying, 2066

file-per-table, 3415
files

binary log, 806
DDL log, 818
error messages, 1267
general query log, 804
log, 819
metadata log, 818
my.cnf, 2556
not found message, 3359
permissions, 3359
repairing, 438
script, 259
size limits, 3392
slow query log, 817
text, 351, 391
tmp, 196

FILES
INFORMATION_SCHEMA table, 2703

filesort optimization, 1045, 1128
file_instances table

performance_schema, 2813
file_summary_by_event_name table

performance_schema, 2870
file_summary_by_instance table

performance_schema, 2870
fill factor, 1958, 3415
FIND_IN_SET(), 1392
Finished reading one binlog; switching to next binlog

thread state, 1181
Firewall_access_denied status variable, 986
Firewall_access_granted status variable, 986
Firewall_access_suspicious status variable, 986
Firewall_cached_entries status variable, 986
fix-db-names option

mysqlcheck, 367
fix-table-names option

mysqlcheck, 367
FIXED data type, 1296
fixed row format, 3416
fixed-point arithmetic, 1591
FLOAT data type, 1296, 1296, 1297
floating-point number, 1297
floating-point values

and replication, 2566
floats, 1188
FLOOR(), 1418
FLUSH, 1915

and replication, 2566
flush, 3416
flush list, 3416
flush option

mysqld, 539
flush system variable, 605
flush tables, 357
flush-logs option

3542

mysqldump, 388
flush-privileges option

mysqldump, 388
Flushing tables

thread state, 1176
flush_time system variable, 605
FOR UPDATE, 1726
FORCE INDEX, 1124, 3375
FORCE KEY, 1124
force option

myisamchk, 437, 438
myisampack, 449
mysql, 335
mysqladmin, 360
mysqlcheck, 368
mysqldump, 380
mysqlimport, 394
mysql_install_db, 310
mysql_upgrade, 327

force-if-open option
mysqlbinlog, 466

force-read option
mysqlbinlog, 466

FORCE_UNSUPPORTED_COMPILER option
CMake, 181

foreign key, 3416
constraint, 41, 42
deleting, 1612, 1668

FOREIGN KEY constraint, 3416
foreign key constraints, 1665

InnoDB, 2040
restrictions, 2040

FOREIGN KEY constraints
and online DDL, 2108

foreign keys, 39, 263, 1611
foreign_key_checks system variable, 606
FORMAT(), 1393
format_bytes() function

sys schema, 2988
format_path() function

sys schema, 2988
format_statement() function

sys schema, 2988
format_time() function

sys schema, 2989
formfeed (\f), 1555
Forums, 30
FOUND_ROWS(), 1500
fractional seconds

and replication, 2566
fractional seconds precision, 1294, 1297
FreeBSD troubleshooting, 188
freeing items

thread state, 1176
.frm file, 3414
FROM, 1723
FROM_BASE64(), 1393
FROM_DAYS(), 1433

FROM_UNIXTIME(), 1433
FTS, 3416
ft_boolean_syntax system variable, 606
ft_max_word_len myisamchk variable, 435
ft_max_word_len system variable, 607
ft_min_word_len myisamchk variable, 435
ft_min_word_len system variable, 607
ft_query_expansion_limit system variable, 607
ft_stopword_file myisamchk variable, 435
ft_stopword_file system variable, 608
full backup, 3417
full disk, 3365
full table scan, 3417
full table scans

avoiding, 1064
full-text parser plugins, 3137
full-text search, 1446, 3417
FULLTEXT, 1446
fulltext

stopword list, 1458
FULLTEXT index, 3417

InnoDB, 1954
FULLTEXT initialization

thread state, 1176
fulltext join type

optimizer, 1104
func table

system table, 871
function

creating, 1864
deleting, 1865

function names
parsing, 1198
resolving ambiguity, 1198

functional dependence, 758, 1585, 1588
functions, 1360

and replication, 2567
arithmetic, 1487
bit, 1487
C API, 3022
C prepared statement API, 3089, 3090
cast, 1473
control flow, 1386
date and time, 1424
encryption, 1488
for SELECT and WHERE clauses, 1360
GROUP BY, 1578
grouping, 1377
GTIDs, 1560
information, 1497
mathematical, 1416
miscellaneous, 1569
native

adding, 3211
new, 3200
stored, 2663
string, 1388
string comparison, 1403

3543

user-defined, 1864, 1865, 3200
adding, 3201

fuzzy checkpointing, 3417

G
GA, 3417
gap, 3417
gap lock, 3417

InnoDB, 1938, 1943, 1945, 2158
gb2312, gbk, 3241
gdb

using, 3215
gdb option

mysqld, 539
general information, 1
General Public License, 5
general query log, 804, 3418
general tablespace, 3418
general-log option

mysqld, 540
general_log system variable, 608
general_log table

system table, 872
general_log_file system variable, 608
generated columns

ALTER TABLE, 1614
CREATE TABLE, 1645
CREATE TRIGGER, 1675
CREATE VIEW, 1679
INFORMATION_SCHEMA.COLUMNS table, 2698
INSERT, 1698
REPLACE, 1719
secondary indexes, 1647
SHOW COLUMNS, 1874
UPDATE, 1751
views, 2680

geographic feature, 1328
GeomCollFromText(), 1512
GeomCollFromWKB(), 1515
geometry, 1328
GEOMETRY data type, 1329
GEOMETRYCOLLECTION data type, 1329
GeometryCollection(), 1517
GeometryCollectionFromText(), 1512
GeometryCollectionFromWKB(), 1515
GeometryFromText(), 1512
GeometryFromWKB(), 1515
GeometryN(), 1527
GeometryType(), 1519
GeomFromText(), 1512
GeomFromWKB(), 1515
geospatial feature, 1328
GET DIAGNOSTICS, 1803
getting MySQL, 57
GET_FORMAT(), 1433
GET_LOCK(), 1571
GIS, 1327
Git tree, 169

GLength(), 1522
global privileges, 1842, 1852
globalization, 1215
GLOBAL_STATUS

INFORMATION_SCHEMA table, 2705
global_transaction, 3418
GLOBAL_VARIABLES

INFORMATION_SCHEMA table, 2706
go command

mysql, 343
Google Test, 181
GRANT, 1842
GRANT statement, 890
grant tables

columns_priv table, 871
db table, 202, 871
host table, 871
procs_priv table, 871
proxies_priv, 927
proxies_priv table, 202, 871
re-creating, 197
sorting, 881, 882
structure, 871
tables_priv table, 871
user table, 202, 871

granting
privileges, 1842

GRANTS, 1885
greater than (>), 1380
greater than or equal (>=), 1379
GREATEST(), 1381
GROUP BY

aliases in, 1587
extensions to standard SQL, 1585, 1724

GROUP BY functions, 1578
GROUP BY optimizing, 1048
group commit, 1952, 3418
grouping

expressions, 1377
GROUP_CONCAT(), 1580
group_concat_max_len system variable, 609
GTID functions, 1560
GTID sets

representation, 2408
gtid-executed-compression-period option (mysqld),
2503
gtid-mode option (mysqld), 2503
GTIDs, 2406

and failover, 2412
and scaleout, 2413
concepts, 2407
logging, 2409
replication with, 2411
restrictions, 2415

gtid_executed system variable, 2506
gtid_executed table

system table, 872, 2409
gtid_executed_compression_period, 2507

3544

gtid_mode system variable, 2507
gtid_next system variable, 2508
gtid_owned system variable, 2509
gtid_purged system variable, 2509
GTID_SUBSET(), 1560
GTID_SUBTRACT(), 1561

H
HANDLER, 1693
Handlers, 1801
handling

errors, 3208
hash index, 3418
hash indexes, 1077
hash partitioning, 2607
hash partitions

managing, 2626
splitting and merging, 2626

have_compress system variable, 609
have_crypt system variable, 609
have_dynamic_loading system variable, 609
have_geometry system variable, 609
have_openssl system variable, 609
have_profiling system variable, 610
have_query_cache system variable, 610
have_rtree_keys system variable, 610
have_ssl system variable, 610
have_statement_timeout system variable, 610
have_symlink system variable, 610
HAVING, 1724
HDD, 3418
header_file option

comp_err, 304
HEAP storage engine, 2291, 2303
heartbeat, 3419
help command

mysql, 342
help option

comp_err, 304
innochecksum, 425
myisamchk, 434
myisampack, 449
myisam_ftdump, 431
mysql, 333
mysqladmin, 359
mysqlbinlog, 463
mysqlcheck, 365
mysqld, 531
mysqldump, 380
mysqldumpslow, 481
mysqld_multi, 301
mysqld_safe, 293
mysqlimport, 393
MySQLInstallerConsole, 99
mysqlpump, 401
mysqlshow, 413
mysqlslap, 419
mysql_config_editor, 457

mysql_install_db, 309
mysql_plugin, 316
mysql_secure_installation, 318
mysql_ssl_rsa_setup, 321
mysql_upgrade, 326
my_print_defaults, 485
perror, 487
resolveip, 488
resolve_stack_dump, 486

HELP option
myisamchk, 434

HELP statement, 1924
help tables

system table, 872
HEX(), 1393, 1419
hex-blob option

mysqldump, 383
mysqlpump, 404

hexadecimal literals, 1190
hexdump option

mysqlbinlog, 467
high-water mark, 3419
HIGH_NOT_PRECEDENCE SQL mode, 754
HIGH_PRIORITY, 1726
hints, 36

index, 1124, 1723
optimizer, 1119

histignore option
mysql, 335

history list, 3419
history of MySQL, 8
hole punching, 3419
HOME environment variable, 231, 347
host name

default, 274
host name caching, 1163
host name resolution, 1163
host names, 274

in account names, 877
in default accounts, 202

host option, 276
mysql, 335
mysqladmin, 360
mysqlbinlog, 467
mysqlcheck, 368
mysqldump, 376
mysqlimport, 394
mysqlpump, 404
mysqlshow, 414
mysqlslap, 422
mysql_secure_installation, 318
mysql_upgrade, 327

host table
sorting, 882
system table, 871

hostname system variable, 611
hosts table

performance_schema, 2843

3545

host_cache table
performance_schema, 2881

host_summary view
sys schema, 2929

host_summary_by_file_io view
sys schema, 2930

host_summary_by_file_io_type view
sys schema, 2930

host_summary_by_stages view
sys schema, 2931

host_summary_by_statement_latency view
sys schema, 2931

host_summary_by_statement_type view
sys schema, 2932

hot, 3419
hot backup, 3419
HOUR(), 1434
html option

mysql, 335

I
i-am-a-dummy option

mysql, 338
ib-file set, 2063, 3420
ibbackup_logfile, 3420
.ibd file, 3419
ibdata file, 3420
ibtmp file, 3420
.ibz file, 3420
ib_logfile, 3421
icc

MySQL builds, 67
ID

unique, 3121
idempotent option

mysqlbinlog, 467
identifiers, 1191

case sensitivity, 1194
quoting, 1192

identity system variable, 611
IF, 1795
IF(), 1387
IFNULL(), 1387
IGNORE

with partitioned tables, 763, 1699
IGNORE INDEX, 1124
IGNORE KEY, 1124
ignore option

mysqlimport, 394
ignore-builtin-innodb option

mysqld, 2115
ignore-db-dir option

mysqld, 540
ignore-error option

mysqldump, 386
ignore-lines option

mysqlimport, 394
ignore-spaces option

mysql, 335
ignore-table option

mysqldump, 386
IGNORE_AIO_CHECK option

CMake, 181
ignore_builtin_innodb system variable, 2118
ignore_db_dirs system variable, 611
IGNORE_SPACE SQL mode, 754
ilist, 3421
implicit default values, 1353
implicit row lock, 3421
IMPORT TABLESPACE, 1612, 2028
importing

data, 351, 391
IN, 1382, 1740
in-memory database, 3421
include option

mysql_config, 483
include-databases option

mysqlpump, 404
include-events option

mysqlpump, 405
include-gtids option

mysqlbinlog, 467
include-master-host-port option

mysqldump, 382
include-routines option

mysqlpump, 405
include-tables option

mysqlpump, 405
include-triggers option

mysqlpump, 405
include-users option

mysqlpump, 405
increasing with replication

speed, 2395
incremental backup, 3421
incremental recovery, 1002
index, 3421

deleting, 1610, 1681
rebuilding, 228

index cache, 3422
index condition pushdown, 3422
INDEX DIRECTORY

and replication, 2564
index dives (for statistics estimation), 1995
index hint, 3422
index hints, 1124, 1723
index join type

optimizer, 1105
index prefix, 3422
index-record lock

InnoDB, 1938, 1943, 1945, 2158
indexes, 1628

and BLOB columns, 1073, 1643
and IS NULL, 1078
and LIKE, 1077
and NULL values, 1643

3546

and TEXT columns, 1073, 1643
assigning to key cache, 1913
block size, 615
columns, 1073
creating and dropping, 2105
leftmost prefix of, 1072, 1075
multi-column, 1074
multiple-part, 1628
names, 1191
primary (clustered) and secondary, 2105
use of, 1072

index_merge join type
optimizer, 1105

index_subquery join type
optimizer, 1105

INET6_ATON(), 1573
INET6_NTOA(), 1573
INET_ATON(), 1572
INET_NTOA(), 1572
infimum record, 3422
info option

innochecksum, 425
information functions, 1497
information option

myisamchk, 437
INFORMATION SCHEMA

InnoDB tables, 2196
INFORMATION_SCHEMA, 2694, 3422

collation and searching, 1237
INNODB_CMP table, 2197
INNODB_CMPMEM table, 2197
INNODB_CMPMEM_RESET table, 2197
INNODB_CMP_RESET table, 2197
INNODB_LOCKS table, 2198
INNODB_LOCK_WAITS table, 2198
INNODB_METRICS table, 2751
INNODB_TRX table, 2198

INFORMATION_SCHEMA plugins, 3139
init

thread state, 1176
Init DB

thread command, 1173
init-command option

mysql, 336
init-file option

mysqld, 541
initialize option

mysqld, 540
initialize-insecure option

mysqld, 541
Initialized

thread state, 1183
init_connect system variable, 611
init_file system variable, 612
init_slave system variable, 2469
INNER JOIN, 1729
innochecksum, 272, 424

allow-mismatches option, 427

count option, 426
end-page option, 426
help option, 425
info option, 425
log option, 428
no-check option, 427
page option, 426
page-type-dump option, 428
page-type-summary option, 428
read from standard in option, 428
start-page option, 426
strict-check option, 426
verbose option, 425
version option, 425
write option, 427

InnoDB, 1931, 3422
adaptive hash index, 1961
auto-increment columns, 2034
autocommit mode, 1949, 2029
backups, 2247
change buffering, 1959
checkpoints, 2072
clustered index, 1953
configuration parameters, 2109
configuring data files and memory allocation, 1966
considerations as default storage engine, 1932
consistent reads, 1940
crash recovery, 2249
data files, 2001
deadlock detection, 1949
disk I/O, 2071
file space management, 2071
file-per-table setting, 2004
foreign key constraints, 2040
FULLTEXT index, 1954
gap lock, 1938, 1943, 1945, 2158
index-record lock, 1938, 1943, 1945, 2158
indexes, 1953
limits and restrictions, 2041
lock modes, 1938
locking, 1937
locking reads, 1942
log files, 2002
migrating tables, 2027
Monitors, 2072, 2234, 2248, 2283, 2286
multi-versioning, 1950
next-key lock, 1938, 1943, 1945, 2158
NFS, 1967, 2041
online DDL, 2074
page size, 1958, 2042
raw partitions, 2002
record-level locks, 1938, 1943, 1945, 2158
replication, 2250
row structure, 1962
secondary index, 1953
semi-consistent read, 2158
Solaris 10 x86_64 issues, 159
storage requirements, 1354

3547

system variables, 2109
tables, 1953, 2025

converting from other storage engines, 2030
temporary table undo logs, 1953
transaction model, 1937
troubleshooting, 2283

data dictionary problems, 2285
deadlocks, 1949
defragmenting tables, 2073
I/O problems, 2283
InnoDB error codes, 2288
online DDL, 2108
performance problems, 1087
recovery problems, 2284
SQL errors, 2288

InnoDB buffer pool, 1129, 1979
innodb option

mysqld, 2115
InnoDB parameters, new

innodb_adaptive_flushing, 1972
innodb_change_buffering, 1984
innodb_file_format_check, 2064
innodb_io_capacity, 1987
innodb_large_prefix, 2156
innodb_read_ahead_threshold, 1971
innodb_read_io_threads, 1986
innodb_spin_wait_delay, 1987
innodb_stats_transient_sample_pages, 1995
innodb_use_sys_malloc, 1983
innodb_write_io_threads, 1986

InnoDB parameters, with new defaults
innodb_max_dirty_pages_pct, 1972

InnoDB predicate locks, 1946
InnoDB storage engine, 1931, 2291
innodb-status-file option

mysqld, 2116
innodb_adaptive_flushing, 1972
innodb_adaptive_flushing system variable, 2118
innodb_adaptive_flushing_lwm system variable, 2119
innodb_adaptive_hash_index

and innodb_thread_concurrency, 1985
innodb_adaptive_hash_index system variable, 2119
innodb_adaptive_hash_index_parts variable, 2119
innodb_adaptive_max_sleep_delay system variable,
2120
innodb_additional_mem_pool_size system variable,
2120

and innodb_use_sys_malloc, 1983
innodb_api_bk_commit_interval system variable, 2121
innodb_api_disable_rowlock system variable, 2121
innodb_api_enable_binlog system variable, 2122
innodb_api_enable_mdl system variable, 2122
innodb_api_trx_level system variable, 2122
innodb_autoextend_increment system variable, 2123
innodb_autoinc_lock_mode, 3423
innodb_autoinc_lock_mode system variable, 2123
innodb_background_drop_list_empty system variable,
2123

INNODB_BUFFER_PAGE table, 2745
INNODB_BUFFER_PAGE_LRU table, 2747
innodb_buffer_pool_chunk_size system variable, 2124
innodb_buffer_pool_dump_at_shutdown system
variable, 2125
innodb_buffer_pool_dump_now system variable, 2125
innodb_buffer_pool_dump_pct system variable, 2125
innodb_buffer_pool_filename system variable, 2126
innodb_buffer_pool_instances system variable, 2126
innodb_buffer_pool_load_abort system variable, 2127
innodb_buffer_pool_load_at_startup system variable,
2128
innodb_buffer_pool_load_now system variable, 2128
innodb_buffer_pool_size system variable, 2128
INNODB_BUFFER_POOL_STATS table, 2749
innodb_buffer_stats_by_schema view

sys schema, 2933
innodb_buffer_stats_by_table view

sys schema, 2934
innodb_change_buffering, 1984
innodb_change_buffering system variable, 2130
innodb_change_buffering_debug, 2131
innodb_change_buffer_max_size system variable,
2130
innodb_checksums system variable, 2133
innodb_checksum_algorithm system variable, 2131
INNODB_CMP table, 2724
INNODB_CMPMEM table, 2727
INNODB_CMPMEM_RESET table, 2727
INNODB_CMP_PER_INDEX table, 2725
innodb_cmp_per_index_enabled system variable, 2134
INNODB_CMP_PER_INDEX_RESET table, 2725
INNODB_CMP_RESET table, 2724
innodb_commit_concurrency system variable, 2134
innodb_compression_failure_threshold_pct system
variable, 2135
innodb_compression_level system variable, 2135
innodb_compression_pad_pct_max system variable,
2135
innodb_compress_debug, 2134
innodb_concurrency_tickets, 1985
innodb_concurrency_tickets system variable, 2136
innodb_create_intrinsic system variable, 2137
innodb_data_file_path system variable, 2137
innodb_data_home_dir system variable, 2138
innodb_default_row_format, 2067
innodb_default_row_format system variable, 2138
innodb_disable_resize_buffer_pool_debug, 2139
innodb_disable_sort_file_cache system variable, 2139
innodb_doublewrite system variable, 2139
innodb_fast_shutdown system variable, 2140
innodb_file_format, 2061, 3423

Antelope, 2053
Barracuda, 2045
identifying, 2066

innodb_file_format system variable, 2141
innodb_file_format_check, 2064
innodb_file_format_check system variable, 2141

3548

innodb_file_format_max system variable, 2142
innodb_file_per_table, 2045, 3423
innodb_file_per_table system variable, 2142
innodb_fill_factor system variable, 2143
innodb_fil_make_page_dirty_debug, 2140
innodb_flushing_avg_loops system variable, 2148
innodb_flush_log_at_timeout system variable, 2144
innodb_flush_log_at_trx_commit system variable, 2144
innodb_flush_method system variable, 2145
innodb_flush_neighbors system variable, 2147
innodb_flush_sync system variable, 2147
innodb_force_load_corrupted system variable, 2148
innodb_force_recovery system variable, 2148
innodb_ft_aux_table system variable, 2149
INNODB_FT_BEING_DELETED table, 2758
innodb_ft_cache_size system variable, 2149
INNODB_FT_CONFIG table, 2752
INNODB_FT_DEFAULT_STOPWORD table, 2753
INNODB_FT_DELETED table, 2757
innodb_ft_enable_diag_print system variable, 2150
innodb_ft_enable_stopword system variable, 2150
INNODB_FT_INDEX_CACHE table, 2756
INNODB_FT_INDEX_TABLE table, 2754
innodb_ft_max_token_size system variable, 2151
innodb_ft_min_token_size system variable, 2151
innodb_ft_num_word_optimize system variable, 2152
innodb_ft_result_cache_limit system variable, 2152
innodb_ft_server_stopword_table system variable,
2153
innodb_ft_sort_pll_degree system variable, 2153
innodb_ft_total_cache_size system variable, 2154
innodb_ft_user_stopword_table system variable, 2154
innodb_index_stats table

system table, 872, 1989
innodb_io_capacity, 1987
innodb_io_capacity system variable, 2154
innodb_io_capacity_max system variable, 2156
innodb_large_prefix system variable, 2156
innodb_limit_optimistic_insert_debug, 2157
INNODB_LOCKS table, 2730
innodb_locks_unsafe_for_binlog system variable, 2158
INNODB_LOCK_WAITS table, 2731
innodb_lock_waits view

sys schema, 2934
innodb_lock_wait_timeout, 3423
innodb_lock_wait_timeout system variable, 2157
innodb_log_buffer_size system variable, 2160
innodb_log_checksums system variable, 2162
innodb_log_checksum_algorithm system variable, 2161
innodb_log_compressed_pages system variable, 2163
innodb_log_files_in_group system variable, 2163
innodb_log_file_size system variable, 2163
innodb_log_group_home_dir system variable, 2164
innodb_log_write_ahead_size system variable, 2164
innodb_lru_scan_depth system variable, 2165
innodb_max_dirty_pages_pct, 1972
innodb_max_dirty_pages_pct system variable, 2165

innodb_max_dirty_pages_pct_lwm system variable,
2166
innodb_max_purge_lag system variable, 2166
innodb_max_purge_lag_delay system variable, 2167
innodb_max_undo_log_size system variable, 2168
innodb_memcache database, 2257, 2276
innodb_memcached_config.sql script, 2258
innodb_merge_threshold_set_all_debug, 2168
INNODB_METRICS table, 2751
innodb_monitor_disable system variable, 2168
innodb_monitor_enable system variable, 2169
innodb_monitor_reset system variable, 2169
innodb_monitor_reset_all system variable, 2169
innodb_numa_interleave variable, 2170
innodb_old_blocks_pct, 1973
innodb_old_blocks_pct system variable, 2170
innodb_old_blocks_time, 1973
innodb_old_blocks_time system variable, 2170
innodb_online_alter_log_max_size system variable,
2171
innodb_open_files system variable, 2172
innodb_optimize_fulltext_only system variable, 2172
innodb_optimize_point_storage system variable, 2172
INNODB_PAGE_ATOMIC_REF_COUNT option

CMake, 181
innodb_page_cleaners system variable, 2173
innodb_page_size system variable, 2174
innodb_print_all_deadlocks system variable, 2175

innodb_print_all_deadlocks, 2175
innodb_purge_batch_size system variable, 2175
innodb_purge_rseg_truncate_frequency system
variable, 2176
innodb_purge_threads system variable, 2176
innodb_random_read_ahead system variable, 2177
innodb_read_ahead_threshold, 1971
innodb_read_ahead_threshold system variable, 2177
innodb_read_io_threads, 1986
innodb_read_io_threads system variable, 2178
innodb_read_only system variable, 2178
innodb_replication_delay system variable, 2179
innodb_rollback_on_timeout system variable, 2179
innodb_rollback_segments system variable, 2179
innodb_saved_page_number_debug, 2180
innodb_sort_buffer_size system variable, 2180
innodb_spin_wait_delay, 1987
innodb_spin_wait_delay system variable, 2181
innodb_stats_auto_recalc system variable, 2181
innodb_stats_method system variable, 2182
innodb_stats_on_metadata system variable, 2182
innodb_stats_persistent system variable

innodb_stats_persistent, 2183
innodb_stats_persistent_sample_pages system
variable, 2183
innodb_stats_sample_pages system variable, 2184
innodb_stats_transient_sample_pages, 1995
innodb_stats_transient_sample_pages system variable,
2184
innodb_status_output system variable, 2185

3549

innodb_status_output_locks system variable, 2185
innodb_stat_persistent system variable, 2183
innodb_strict_mode, 3423
innodb_strict_mode system variable, 2185
innodb_support_xa system variable, 2186
innodb_sync_array_size system variable, 2187
innodb_sync_debug, 2187
innodb_sync_spin_loops system variable, 2187
INNODB_SYS_COLUMNS table, 2735
INNODB_SYS_DATAFILES table, 2739
INNODB_SYS_FIELDS table, 2737
INNODB_SYS_FOREIGN table, 2737
INNODB_SYS_FOREIGN_COLS table, 2738
INNODB_SYS_INDEXES table, 2734
INNODB_SYS_TABLES table, 2732
INNODB_SYS_TABLESPACES table, 2740
INNODB_SYS_TABLESTATS table, 2738
INNODB_SYS_VIRTUAL table, 2744
innodb_table_locks system variable, 2188
innodb_table_stats table

system table, 872, 1989
innodb_temp_data_file_path system variable, 2188
INNODB_TEMP_TABLE_INFO table, 2759
innodb_thread_concurrency, 1985
innodb_thread_concurrency system variable, 2189
innodb_thread_sleep_delay, 1985
innodb_thread_sleep_delay system variable, 2191
innodb_tmpdir system variable, 2189
INNODB_TRX table, 2728
innodb_trx_purge_view_update_only_debug, 2191
innodb_trx_rseg_n_slots_debug, 2191
innodb_undo_directory system variable, 2192
innodb_undo_logs system variable, 2193
innodb_undo_log_truncate system variable, 2193
innodb_undo_tablespaces system variable, 2194
innodb_use_native_aio system variable, 2194
innodb_use_sys_malloc

and innodb_thread_concurrency, 1985
innodb_use_sys_malloc system variable, 1983, 2195
innodb_version system variable, 2195
innodb_write_io_threads, 1986
innodb_write_io_threads system variable, 2195
insecure option

mysql_install_db, 310
INSERT, 1065, 1695
insert, 3424
INSERT ... SELECT, 1699
insert buffer, 3424
insert buffering, 3424

disabling, 1984
INSERT DELAYED, 1700, 1700
INSERT(), 1393
insert-ignore option

mysqldump, 387
mysqlpump, 405

insertable views
insertable, 2680

inserting

speed of, 1065
inserts

concurrent, 1145, 1147
insert_id system variable, 612
install option

mysqld, 541
MySQLInstallerConsole, 99

INSTALL PLUGIN, 1866
install-manual option

mysqld, 542
Installation, 98
installation layouts, 67
installation overview, 163
installing

binary distribution, 67
Linux RPM packages, 146
OS X DMG packages, 125
overview, 54
Perl, 232
Perl on Windows, 233
Solaris PKG packages, 159
source distribution, 163
user-defined functions, 3208

installing plugins, 768, 1866
INSTALL_BINDIR option

CMake, 175
INSTALL_DOCDIR option

CMake, 175
INSTALL_DOCREADMEDIR option

CMake, 176
INSTALL_INCLUDEDIR option

CMake, 176
INSTALL_INFODIR option

CMake, 176
INSTALL_LAYOUT option

CMake, 176
INSTALL_LIBDIR option

CMake, 176
INSTALL_MANDIR option

CMake, 176
INSTALL_MYSQLSHAREDIR option

CMake, 176
INSTALL_MYSQLTESTDIR option

CMake, 176
INSTALL_PKGCONFIGDIR option

CMake, 176
INSTALL_PLUGINDIR option

CMake, 177
INSTALL_SBINDIR option

CMake, 177
INSTALL_SCRIPTDIR option

CMake, 177
INSTALL_SECURE_FILE_PRIVDIR option

CMake, 177
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR
option

CMake, 177
INSTALL_SHAREDIR option

3550

CMake, 177
INSTALL_SQLBENCHDIR option

CMake, 177
INSTALL_SUPPORTFILESDIR option

CMake, 177
instance, 3424
INSTR(), 1394
instrumentation, 3424
INT data type, 1295
integer arithmetic, 1591
INTEGER data type, 1295
integers, 1188
intention lock, 3424
interactive_timeout system variable, 612
InteriorRingN(), 1525
internal locking, 1144
internal memory allocator

disabling, 1983
internals, 3133
internal_tmp_disk_storage_engine system variable,
613
internationalization, 1215
Internet Relay Chat, 30
Intersects(), 1534
INTERVAL(), 1383
INTO

SELECT, 1727
introducer

string literal, 1186, 1222
invalid data

constraint, 42
invalidating query cache entries

thread state, 1180
inverted index, 3424
in_file option

comp_err, 304
IOPS, 3425
io_by_thread_by_latency view

sys schema, 2936
io_global_by_file_by_bytes view

sys schema, 2937
io_global_by_file_by_latency view

sys schema, 2937
io_global_by_wait_by_bytes view

sys schema, 2938
io_global_by_wait_by_latency view

sys schema, 2939
IP addresses

in account names, 877
in default accounts, 202

IPv6 addresses
in account names, 877
in default accounts, 202

IPv6 connections, 557
IRC, 30
IS boolean_value, 1380
IS NOT boolean_value, 1380
IS NOT DISTINCT FROM operator, 1379

IS NOT NULL, 1381
IS NULL, 1028, 1380

and indexes, 1078
IsClosed(), 1522
IsEmpty(), 1519
.isl file, 3420
ISNULL(), 1382
ISOLATION LEVEL, 1762
isolation level, 1937, 3425
IsSimple(), 1520
IS_FREE_LOCK(), 1574
IS_IPV4(), 1574
IS_IPV4_COMPAT(), 1574
IS_IPV4_MAPPED(), 1575
IS_IPV6(), 1575
IS_USED_LOCK(), 1575
ITERATE, 1796
iterations option

mysqlslap, 422

J
Japanese character sets

conversion, 3241
Japanese, Korean, Chinese character sets

frequently asked questions, 3241
Java, 3003
JDBC, 2999
join, 3425

nested-loop algorithm, 1034
JOIN, 1729
join algorithm

Block Nested-Loop, 1030
Nested-Loop, 1030

join option
myisampack, 449

join type
ALL, 1106
const, 1104
eq_ref, 1104
fulltext, 1104
index, 1105
index_merge, 1105
index_subquery, 1105
range, 1105
ref, 1104
ref_or_null, 1104
system, 1104
unique_subquery, 1105

join_buffer_size system variable, 613
JSON

array, 1343
autowrapped values, 1346
false literal, 1343
normalized values, 1346
null literal, 1343
null, true, and false literals, 1345
object, 1343
scalar, 1343

3551

sensible values, 1346
string, 1343
temporal values, 1343
true literal, 1343
valid values, 1343

JSON data type, 1342
JSON functions, 1542, 1542
JSON_APPEND(), 1551
JSON_ARRAY(), 1543
JSON_ARRAY_APPEND(), 1551
JSON_ARRAY_INSERT(), 1552
JSON_CONTAINS(), 1544
JSON_CONTAINS_PATH(), 1545
JSON_DEPTH(), 1556
JSON_EXTRACT(), 1545
JSON_INSERT(), 1552
JSON_KEYS(), 1548
JSON_LENGTH(), 1557
JSON_MERGE(), 1553
JSON_OBJECT(), 1543
JSON_QUOTE(), 1543
JSON_REMOVE(), 1554
JSON_REPLACE(), 1554
JSON_SEARCH(), 1548
JSON_SET(), 1554
JSON_TYPE(), 1557
JSON_UNQUOTE(), 1555
JSON_VALID(), 1559

K
keep-my-cnf option

mysql_install_db, 311
keep_files_on_create system variable, 614
Key cache

MyISAM, 1132
key cache

assigning indexes to, 1913
key partitioning, 2610
key partitions

managing, 2626
splitting and merging, 2626

key space
MyISAM, 2299

key-value store, 1078
keys, 1073

foreign, 39, 263
multi-column, 1074
searching on two, 265

keys option
mysqlshow, 414

keys-used option
myisamchk, 438

keywords, 1201
KEY_BLOCK_SIZE, 2045, 2050, 3425
key_buffer_size myisamchk variable, 435
key_buffer_size system variable, 615
key_cache_age_threshold system variable, 616
key_cache_block_size system variable, 616

key_cache_division_limit system variable, 617
KEY_COLUMN_USAGE

INFORMATION_SCHEMA table, 2706
Kill

thread command, 1173
KILL, 1920
Killed

thread state, 1176
Killing slave

thread state, 1183, 1183
known errors, 3377
Korean, 3241

L
labels

stored program block, 1791
language option

mysqld, 542
language support

error messages, 1267
large page support, 1160
large-pages option

mysqld, 542
large_files_support system variable, 617
large_pages system variable, 617
large_page_size system variable, 618
last row

unique ID, 3121
LAST_DAY(), 1434
last_insert_id system variable, 618
LAST_INSERT_ID(), 1501, 1698

and replication, 2557
and stored routines, 2665
and triggers, 2665

latch, 3425
latest_file_io view

sys schema, 2940
layout of installation, 67
lc-messages option

mysqld, 543
mysql_install_db, 311

lc-messages-dir option
mysqld, 543
mysql_install_db, 311

LCASE(), 1394
lc_messages system variable, 618
lc_messages_dir system variable, 618
lc_time_names system variable, 618
ldata option

mysql_install_db, 311
LDML syntax, 1279
LD_LIBRARY_PATH environment variable, 234, 3016
LD_RUN_PATH environment variable, 231, 234
LEAST(), 1383
LEAVE, 1796
ledir option

mysqld_safe, 294
LEFT JOIN, 1029, 1729

3552

LEFT OUTER JOIN, 1729
LEFT(), 1394
leftmost prefix of indexes, 1072, 1075
legal names, 1191
length option

myisam_ftdump, 431
LENGTH(), 1394
less than (<), 1379
less than or equal (<=), 1379
libaio, 68, 151, 181
libmysqlclient library, 2999
libmysqld, 3003

options, 3005
libmysqld library, 2999
libmysqld-libs option

mysql_config, 484
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN
environment variable, 231
LIBMYSQL_PLUGINS environment variable, 231, 3119
LIBMYSQL_PLUGIN_DIR environment variable, 231,
3119
library

libmysqlclient, 2999
libmysqld, 2999

libs option
mysql_config, 484

libs_r option
mysql_config, 484

license system variable, 619
LIKE, 1404

and indexes, 1077
and wildcards, 1077

LIMIT, 1062, 1500, 1725
and replication, 2569

limitations
MySQL Limitations, 3391
replication, 2556

limits
file-size, 3392
InnoDB, 2041
MySQL Limits, limits in MySQL, 3391

line-numbers option
mysql, 336

linear hash partitioning, 2609
linear key partitioning, 2611
linefeed (\n), 1186, 1555, 1707
LineFromText(), 1512
LineFromWKB(), 1515
lines-terminated-by option

mysqldump, 383, 394
LINESTRING data type, 1329
LineString(), 1517
LineStringFromText(), 1512
LineStringFromWKB(), 1515
linking, 3011

errors, 3013
problems, 3013

links

symbolic, 1156
list, 3425
list option

MySQLInstallerConsole, 100
list partitioning, 2598, 2600
list partitions

adding and dropping, 2620
managing, 2620

list_add() function
sys schema, 2989

list_drop() function
sys schema, 2990

literals, 1185
LN(), 1419
LOAD DATA

and replication, 2569
LOAD DATA INFILE, 1702, 3371
load emulation, 416
LOAD INDEX INTO CACHE

and partitioning, 2650
LOAD XML, 1711
loading

tables, 244
LOAD_FILE(), 1394
local option

mysqlimport, 394
local-infile option

mysql, 336
local-load option

mysqlbinlog, 467
local-service option

mysqld, 543
localhost, 275
localization, 1215
LOCALTIME, 1434
LOCALTIMESTAMP, 1434
local_infile system variable, 619
LOCATE(), 1395
lock, 3426
lock escalation, 3426
LOCK IN SHARE MODE, 1726
lock mode, 3426
Lock Monitor

InnoDB, 2234
LOCK TABLES, 1756
lock-all-tables option

mysqldump, 388
lock-tables option

mysqldump, 388
mysqlimport, 395

Locked_connects status variable, 742
locked_in_memory system variable, 620
locking, 1150, 3426

external, 539, 682, 1005, 1149, 1179
information schema, 2198
internal, 1144
row-level, 1144
table-level, 1144

3553

locking methods, 1144
locking read, 3426
locking service

installing, 3197
mysql_acquire_locking_service_locks() C function,
3196
mysql_release_locking_service_locks() C function,
3197
service_get_read_locks() UDF, 3200
service_get_write_locks() UDF, 3200
service_release_locks() UDF, 3200
uninstalling, 3197

lock_wait_timeout system variable, 619
log, 3426
log buffer, 3426
log file, 3426
log files

maintaining, 819
log group, 3427
log option

innochecksum, 428
mysqld_multi, 301

LOG(), 1419
log-bin option

mysqld, 2484
log-bin-index option

mysqld, 2485
log-bin-trust-function-creators option

mysqld, 2485
log-bin-use-v1-row-events option

mysqld, 2485
log-error option

mysqld, 543
mysqldump, 380
mysqld_safe, 294

log-error-file option
mysqlpump, 405

log-isam option
mysqld, 544

log-output option
mysqld, 544

log-queries-not-using-indexes option
mysqld, 544

log-raw option
mysqld, 545

log-short-format option
mysqld, 545

log-slave-updates option
mysqld, 2449

log-slow-admin-statements option
mysqld, 545

log-slow-slave-statements option
mysqld, 2449

log-tc option
mysqld, 545

log-tc-size option
mysqld, 546

log-warnings option

mysqld, 546, 2449
LOG10(), 1420
LOG2(), 1419
logging

passwords, 849
logging slow query

thread state, 1176
logical, 3427
logical backup, 3427
logical operators, 1383
login

thread state, 1176
login-file option

mysql_install_db, 311
login-path option, 286, 485

mysql, 336
mysqladmin, 360
mysqlbinlog, 467
mysqlcheck, 368
mysqldump, 376
mysqlimport, 395
mysqlpump, 405
mysqlshow, 414
mysqlslap, 422
mysql_install_db, 311
mysql_upgrade, 327

logs
flushing, 800
server, 799

log_backward_compatible_user_definitions system
variable, 620
log_bin system variable, 2497
log_bin_basename system variable, 2497
log_bin_index system variable, 2498
log_bin_trust_function_creators system variable, 620
log_bin_use_v1_row_events system variable, 2498
log_builtin_as_identified_by_password system variable,
621
log_error system variable, 621
log_error_verbosity system variable, 621
log_output system variable, 622
log_queries_not_using_indexes system variable, 622
log_slave_updates system variable, 2498
log_slow_admin_statements system variable

mysqld, 625
log_slow_slave_statements system variable

mysqld, 2469
log_syslog system variable, 623
log_syslog_facility system variable, 623
log_syslog_include_pid system variable, 624
log_syslog_tag system variable, 624
log_throttle_queries_not_using_indexes system
variable, 625
log_timestamps system variable, 624
log_warnings system variable, 625
Long Data

thread command, 1173
LONG data type, 1321

3554

LONGBLOB data type, 1302
LONGTEXT data type, 1302
long_query_time system variable, 627
LOOP, 1796

labels, 1791
Loose Index Scan

GROUP BY optimizing, 1048
--loose option prefix, 280
loose_, 3427
lost connection errors, 3350
lost+found directory, 540
low-priority option

mysqlimport, 395
low-priority-updates option

mysqld, 547
low-water mark, 3427
LOWER(), 1395
lower_case_file_system system variable, 628
lower_case_table_names system variable, 628
low_priority_updates system variable, 627
LPAD(), 1395
LRU, 3427
LRU page replacement, 1973
LSN, 3427
LTRIM(), 1395
lz4_decompress, 273, 486

M
mailing lists, 27

archive location, 27
guidelines, 29

main features of MySQL, 5
maintaining

log files, 819
tables, 1009

maintenance
tables, 362

MAKEDATE(), 1434
MAKETIME(), 1435
MAKE_SET(), 1396
Making temporary file (append) before replaying LOAD
DATA INFILE

thread state, 1182
Making temporary file (create) before replaying LOAD
DATA INFILE

thread state, 1182
manage keys

thread state, 1177
manual

available formats, 2
online location, 2
syntax conventions, 2
typographical conventions, 2

Master has sent all binlog to slave; waiting for more
updates

thread state, 1181
master server, 3428
master thread, 3428

master-data option
mysqldump, 382

master-info-file option
mysqld, 2451

master-info-repository option
mysqld, 2468

master-retry-count option
mysqld, 2451

master-verify-checksum option
mysqld, 2488

master_info_repository system variable, 2469
MASTER_POS_WAIT(), 1575, 1779
master_verify_checksum system variable, 2499
MATCH ... AGAINST(), 1446
matching

patterns, 252
math, 1591
mathematical functions, 1416
MAX(), 1581
MAX(DISTINCT), 1581
max-allowed-packet option

mysqlpump, 405
mysql_upgrade, 327

max-binlog-dump-events option
mysqld, 2489

max-record-length option
myisamchk, 438

max-relay-log-size option
mysqld, 2451

MAXDB SQL mode, 759
--maximum option prefix, 280
maximums

maximum columns per table, 3393
maximum number of databases, 3391
maximum number of tables, 3391
maximum row size, 3393
maximum tables per join, 3391
table size, 3392

max_allowed_packet
and replication, 2570

max_allowed_packet system variable, 629
max_allowed_packet variable, 341
max_binlog_cache_size system variable, 2499
max_binlog_size system variable, 2499
max_binlog_stmt_cache_size system variable, 2500
max_connections system variable, 630
MAX_CONNECTIONS_PER_HOUR, 892
max_connect_errors system variable, 629
max_delayed_threads system variable, 630
max_digest_length system variable, 631
max_error_count system variable, 631
max_execution_time system variable, 632
Max_execution_time_exceeded status variable, 742
Max_execution_time_set status variable, 742
Max_execution_time_set_failed status variable, 742
max_heap_table_size system variable, 632
MAX_INDEXES option

CMake, 182

3555

max_insert_delayed_threads system variable, 633
max_join_size system variable, 633
max_join_size variable, 341
max_length_for_sort_data system variable, 634
max_points_in_geometry system variable, 634
max_prepared_stmt_count system variable, 634
MAX_QUERIES_PER_HOUR, 892
max_relay_log_size system variable, 635
max_seeks_for_key system variable, 635
max_sort_length system variable, 636
max_sp_recursion_depth system variable, 636
MAX_STATEMENT_TIME, 1726
max_statement_time system variable, 637
Max_statement_time_exceeded status variable, 742
Max_statement_time_set status variable, 742
Max_statement_time_set_failed status variable, 742
max_tmp_tables system variable, 637
MAX_UPDATES_PER_HOUR, 892
MAX_USER_CONNECTIONS, 892
max_user_connections system variable, 637
max_write_lock_count system variable, 638
MBR, 1533, 1534
MBRContains(), 1534
MBRCoveredBy(), 1535
MBRCovers(), 1535
MBRDisjoint(), 1535
MBREqual(), 1535
MBREquals(), 1535
MBRIntersects(), 1535
MBROverlaps(), 1536
MBRTouches(), 1536
MBRWithin(), 1536
MD5(), 1494
MDL, 3428
mecab_rc_file system variable, 638
medium-check option

myisamchk, 437
mysqlcheck, 368

MEDIUMBLOB data type, 1301
MEDIUMINT data type, 1295
MEDIUMTEXT data type, 1301
memcached, 2252, 3428
MEMCACHED_SASL_PWDB environment variable,
2260
memcapable command, 2253
memlock option

mysqld, 548
memory allocation library, 158, 294
memory allocator

innodb_use_sys_malloc, 1983
MEMORY storage engine, 2291, 2303

and replication, 2570
memory usage

myisamchk, 446
memory use, 1159

Performance Schema, 2774
memory_by_host_by_current_bytes view

sys schema, 2940

memory_by_thread_by_current_bytes view
sys schema, 2941

memory_by_user_by_current_bytes view
sys schema, 2942

memory_global_by_current_bytes view
sys schema, 2942

memory_global_total view
sys schema, 2943

memory_summary_by_account_by_event_name table
performance_schema, 2877

memory_summary_by_host_by_event_name table
performance_schema, 2877

memory_summary_by_thread_by_event_name table
performance_schema, 2877

memory_summary_by_user_by_event_name table
performance_schema, 2877

memory_summary_global_by_event_name table
performance_schema, 2877

merge, 3428
MERGE storage engine, 2291, 2312
MERGE tables

defined, 2312
metadata

database, 2694
InnoDB, 2724
stored routines, 2665
triggers, 2669
views, 2683

metadata lock, 3428
metadata locking

transactions, 1148
metadata log, 818
metadata_locks table

performance_schema, 2857
metadata_locks_cache_size system variable, 639
metadata_locks_hash_instances system variable, 639
methods

locking, 1144
metrics counter, 3429
metrics view

sys schema, 2943
MICROSECOND(), 1435
MID(), 1396
midpoint insertion, 1973
midpoint insertion strategy, 3429
MIN(), 1581
MIN(DISTINCT), 1581
min-examined-row-limit option

mysqld, 547
mini-transaction, 3429
minimum bounding rectangle, 1533, 1534
minus

unary (-), 1414
MINUTE(), 1435
min_examined_row_limit system variable, 640
mirror sites, 57
miscellaneous functions, 1568
mixed statements (Replication), 2576

3556

mixed-mode insert, 3429
MLineFromText(), 1513
MLineFromWKB(), 1515
MOD (modulo), 1420
MOD(), 1420
modes

batch, 259
modify option

MySQLInstallerConsole, 100
modulo (%), 1420
modulo (MOD), 1420
monitor

terminal, 237
monitoring, 3223

multi-source replication, 2418
threads, 1171

Monitors
InnoDB, 2072, 2234, 2248, 2283, 2286

MONTH(), 1435
MONTHNAME(), 1435
MPointFromText(), 1513
MPointFromWKB(), 1515
MPolyFromText(), 1513
MPolyFromWKB(), 1516
.MRG file, 3428
mSQL compatibility, 1407
MSSQL SQL mode, 759
multi mysqld, 300
multi-column indexes, 1074
multi-core, 3429
Multi-Range Read

optimization, 1039
multi-source replication, 2416

adding binary log master, 2417
adding GTID master, 2417
configuring, 2416
error messages, 2420
monitoring, 2418
overview, 2416
performance schema, 2419
resetting slave, 2418
starting slave, 2417
stopping slave, 2418
tutorials, 2416

multibyte character sets, 3358
multibyte characters, 1271
MULTILINESTRING data type, 1329
MultiLineString(), 1517
MultiLineStringFromText(), 1513
MultiLineStringFromWKB(), 1515
multiple buffer pools, 1974
multiple servers, 820
multiple-part index, 1628
multiplication (*), 1414
MULTIPOINT data type, 1329
MultiPoint(), 1518
MultiPointFromText(), 1513
MultiPointFromWKB(), 1515

MULTIPOLYGON data type, 1329
MultiPolygon(), 1518
MultiPolygonFromText(), 1513
MultiPolygonFromWKB(), 1516
mutex, 3429
mutex_instances table

performance_schema, 2813
MUTEX_TYPE option

CMake, 182
MVCC, 3429
MVCC (multi-version concurrency control), 1950
My

derivation, 8
my-print-defaults option

mysql_plugin, 316
my.cnf, 3430
my.cnf file, 2556
my.ini, 3430
.MYD file, 3428
.MYI file, 3428
MyISAM

compressed tables, 448, 2301
converting tables to InnoDB, 2030

MyISAM key cache, 1132
MyISAM storage engine, 2291, 2295
myisam-block-size option

mysqld, 548
myisam-recover-options option

mysqld, 549, 2298
myisamchk, 272, 431

analyze option, 439
backup option, 438
block-search option, 439
character-sets-dir option, 438
check option, 437
check-only-changed option, 437
correct-checksum option, 438
data-file-length option, 438
debug option, 434
defaults-extra-file option, 434
defaults-file option, 435
defaults-group-suffix option, 435
description option, 439
example output, 440
extend-check option, 437, 438
fast option, 437
force option, 437, 438
help option, 434
HELP option, 434
information option, 437
keys-used option, 438
max-record-length option, 438
medium-check option, 437
no-defaults option, 435
no-symlinks option, 438
options, 434
parallel-recover option, 438
print-defaults option, 435

3557

quick option, 439
read-only option, 437
recover option, 439
safe-recover option, 439
set-auto-increment[option, 440
set-collation option, 439
silent option, 435
sort-index option, 440
sort-records option, 440
sort-recover option, 439
tmpdir option, 439
unpack option, 439
update-state option, 438
verbose option, 435
version option, 435
wait option, 435

myisamlog, 272, 447
myisampack, 272, 448, 1671, 2301

backup option, 449
character-sets-dir option, 449
debug option, 449
force option, 449
help option, 449
join option, 449
silent option, 449
test option, 449
tmpdir option, 449
verbose option, 449
version option, 449
wait option, 449

myisam_block_size myisamchk variable, 435
myisam_data_pointer_size system variable, 640
myisam_ftdump, 272, 430

count option, 431
dump option, 431
help option, 431
length option, 431
stats option, 431
verbose option, 431

myisam_max_sort_file_size system variable, 641
myisam_mmap_size system variable, 641
myisam_recover_options system variable, 642
myisam_repair_threads system variable, 642
myisam_sort_buffer_size myisamchk variable, 435
myisam_sort_buffer_size system variable, 642
myisam_stats_method system variable, 643
myisam_use_mmap system variable, 644
MySQL

defined, 4
introduction, 4
pronunciation, 5
upgrading, 322

mysql, 271, 329, 3430
auto-rehash option, 333
auto-vertical-output option, 333
batch option, 333
binary-mode option, 333
bind-address option, 333

character-sets-dir option, 333
charset command, 342
clear command, 343
column-names option, 334
column-type-info option, 334
comments option, 334
compress option, 334
connect command, 343
connect-expired-password option, 334
database option, 334
debug option, 334
debug-check option, 334
debug-info option, 334
default-auth option, 334
default-character-set option, 334
defaults-extra-file option, 335
defaults-file option, 335
defaults-group-suffix option, 335
delimiter command, 343
delimiter option, 335
disable named commands, 335
edit command, 343
ego command, 343
enable-cleartext-plugin option, 335
execute option, 335
exit command, 343
force option, 335
go command, 343
help command, 342
help option, 333
histignore option, 335
host option, 335
html option, 335
i-am-a-dummy option, 338
ignore-spaces option, 335
init-command option, 336
line-numbers option, 336
local-infile option, 336
login-path option, 336
named-commands option, 336
no-auto-rehash option, 336
no-beep option, 336
no-defaults option, 336
nopager command, 343
notee command, 343
nowarning command, 344
one-database option, 336
pager command, 344
pager option, 337
password option, 337
pipe option, 337
plugin-dir option, 337
port option, 337
print command, 344
print-defaults option, 337
prompt command, 344
prompt option, 337
protocol option, 337

3558

quick option, 338
quit command, 344
raw option, 338
reconnect option, 338
rehash command, 344
resetconnection command, 344
safe-updates option, 338
secure-auth option, 338
server-public-key-path option, 339
shared-memory-base-name option, 339
show-warnings option, 339
sigint-ignore option, 339
silent option, 339
skip-column-names option, 339
skip-line-numbers option, 339
socket option, 339
source command, 345
SSL options, 339, 470
status command, 345
syslog option, 340
system command, 345
table option, 340
tee command, 345
tee option, 340
tls-version option, 277, 340
unbuffered option, 340
use command, 345
user option, 340
verbose option, 340
version option, 340
vertical option, 340
wait option, 341
warnings command, 345
xml option, 341

MySQL APT Repository, 146, 220
MySQL binary distribution, 55
MYSQL C type, 3017
MySQL Cluster

FAQ, 3240
mysql command options, 330
mysql commands

list of, 342
mysql database

gtid_executed table, 2409
MySQL Dolphin name, 8
MySQL Enterprise Audit, 951, 3225
MySQL Enterprise Backup, 3224, 3430
MySQL Enterprise Encryption, 3225
MySQL Enterprise Firewall, 975, 3225

installing, 976
using, 978

MySQL Enterprise Monitor, 3223
MySQL Enterprise Security, 911, 918, 3224
MySQL Enterprise Thread Pool, 3226
MySQL history, 8
mysql history file, 347
MySQL Installer, 74
MySQL mailing lists, 27

MySQL name, 8
MySQL Notifier, 101
mysql prompt command, 346
MySQL server

mysqld, 292, 491
MySQL SLES Repository, 146
mysql source (command for reading from text files),
260, 351
MySQL source distribution, 55
MySQL storage engines, 2291
MySQL system tables

and replication, 2572
MySQL Thread Pool, 1164
MySQL version, 57
MySQL Yum Repository, 139, 143, 218
mysql \. (command for reading from text files), 260, 351
mysql.event table, 2677
mysql.gtid_executed table, 2409

and RESET MASTER, 1770, 2409
compression, 2409
thread/sql/compress_gtid_table, 2410

mysql.server, 270, 297
basedir option, 299
datadir option, 299
pid-file option, 299
service-startup-timeout option, 300

mysql.slave_master_info table, 2525
mysql.slave_relay_log_info table, 2525
mysql.sock

protection, 3367
MYSQL323 SQL mode, 759
MYSQL40 SQL mode, 760
mysqladmin, 271, 354, 1623, 1681, 1904, 1909, 1915,
1920

bind-address option, 359
character-sets-dir option, 359
compress option, 359
count option, 359
debug option, 359
debug-check option, 359
debug-info option, 359
default-auth option, 359
default-character-set option, 359
defaults-extra-file option, 359
defaults-file option, 360
defaults-group-suffix option, 360
enable-cleartext-plugin option, 360
force option, 360
help option, 359
host option, 360
login-path option, 360
no-beep option, 360
no-defaults option, 360
password option, 360
pipe option, 361
plugin-dir option, 361
port option, 361
print-defaults option, 361

3559

protocol option, 361
relative option, 361
secure-auth option, 361
shared-memory-base-name option, 361
show-warnings option, 361
silent option, 361
sleep option, 362
socket option, 362
SSL options, 362
tls-version option, 362
user option, 362
verbose option, 362
version option, 362
vertical option, 362
wait option, 362

mysqladmin command options, 357
mysqladmin option

mysqld_multi, 301
mysqlbackup command, 3430
mysqlbinlog, 272, 460

base64-output option, 463
bind-address option, 464
binlog-row-event-max-size option, 464
character-sets-dir option, 464
connection-server-id option, 464
database option, 464
debug option, 466
debug-check option, 466
debug-info option, 466
default-auth option, 466
defaults-extra-file option, 466
defaults-file option, 466
defaults-group-suffix option, 466
disable-log-bin option, 466
exclude-gtids option, 466
force-if-open option, 466
force-read option, 466
help option, 463
hexdump option, 467
host option, 467
idempotent option, 467
include-gtids option, 467
local-load option, 467
login-path option, 467
no-defaults option, 467
offset option, 467
password option, 467
plugin-dir option, 468
port option, 468
print-defaults option, 468
protocol option, 468
raw option, 468
read-from-remote-master option, 468
read-from-remote-server option, 468
result-file option, 468
rewrite-db option, 469
secure-auth option, 469
server-id option, 469

set-charset option, 469
shared-memory-base-name option, 470
short-form option, 470
skip-gtids option, 470
socket option, 470
start-datetime option, 470
start-position option, 470
stop-datetime option, 470
stop-never option, 471
stop-never-slave-server-id option, 471
stop-position option, 471
tls-version option, 471
to-last-log option, 471
user option, 471
verbose option, 471
verify-binlog-checksum option, 471
version option, 471

mysqlcheck, 271, 362
all-databases option, 365
all-in-1 option, 366
analyze option, 366
auto-repair option, 366
bind-address option, 366
character-sets-dir option, 366
check option, 366
check-only-changed option, 366
check-upgrade option, 366
compress option, 366
databases option, 366
debug option, 366
debug-check option, 366
debug-info option, 367
default-auth option, 367
default-character-set option, 367
defaults-extra-file option, 367
defaults-file option, 367
defaults-group-suffix option, 367
enable-cleartext-plugin option, 367
extended option, 367
fast option, 367
fix-db-names option, 367
fix-table-names option, 367
force option, 368
help option, 365
host option, 368
login-path option, 368
medium-check option, 368
no-defaults option, 368
optimize option, 368
password option, 368
pipe option, 368
plugin-dir option, 368
port option, 369
print-defaults option, 369
protocol option, 369
quick option, 369
repair option, 369
secure-auth option, 369

3560

shared-memory-base-name option, 369
silent option, 369
skip-database option, 369
socket option, 369
SSL options, 370
tables option, 370
tls-version option, 370
use-frm option, 370
user option, 370
verbose option, 370
version option, 370
write-binlog option, 370

mysqld, 270, 3430
abort-slave-event-count option, 2467
allow-suspicious-udfs option, 531
ansi option, 531
audit-log option, 966
basedir option, 531
big-tables option, 531
bind-address option, 532
binlog-checksum option, 2488
binlog-do-db option, 2486
binlog-format option, 532
binlog-ignore-db option, 2487
binlog-row-event-max-size option, 2484
binlog-rows-query-log-events option, 2489
bootstrap option, 533
character-set-client-handshake option, 534
character-set-filesystem option, 534
character-set-server option, 534
character-sets-dir option, 533
chroot option, 534
collation-server option, 535
command options, 530
console option, 535
core-file option, 535
daemonize option, 535
datadir option, 536
debug option, 536
debug-sync-timeout option, 536
default-authentication-plugin option, 537
default-storage-engine option, 537
default-time-zone option, 537
defaults-extra-file option, 537
defaults-file option, 537
defaults-group-suffix option, 538
delay-key-write option, 538, 2298
des-key-file option, 538
disconnect-slave-event-count option, 2467
enable-named-pipe option, 538
event-scheduler option, 538
exit codes, 799
exit-info option, 539
external-locking option, 539
flush option, 539
gdb option, 539
general-log option, 540
help option, 531

ignore-builtin-innodb option, 2115
ignore-db-dir option, 540
init-file option, 541
initialize option, 540
initialize-insecure option, 541
innodb option, 2115
innodb-status-file option, 2116
install option, 541
install-manual option, 542
language option, 542
large-pages option, 542
lc-messages option, 543
lc-messages-dir option, 543
local-service option, 543
log-bin option, 2484
log-bin-index option, 2485
log-bin-trust-function-creators option, 2485
log-bin-use-v1-row-events option, 2485
log-error option, 543
log-isam option, 544
log-output option, 544
log-queries-not-using-indexes option, 544
log-raw option, 545
log-short-format option, 545
log-slave-updates option, 2449
log-slow-admin-statements option, 545
log-slow-slave-statements option, 2449
log-tc option, 545
log-tc-size option, 546
log-warnings option, 546, 2449
log_slow_admin_statements system variable, 625
log_slow_slave_statements system variable, 2469
low-priority-updates option, 547
master-info-file option, 2451
master-info-repository option, 2468
master-retry-count option, 2451
master-verify-checksum option, 2488
max-binlog-dump-events option, 2489
max-relay-log-size option, 2451
memlock option, 548
min-examined-row-limit option, 547
myisam-block-size option, 548
myisam-recover-options option, 549, 2298
MySQL server, 292, 491
no-defaults option, 549
old-alter-table option, 550
old-style-user-limits option, 550
open-files-limit option, 550
partition option, 551
performance-schema-consumer-events-stages-
current option, 2892
performance-schema-consumer-events-stages-
history option, 2893
performance-schema-consumer-events-stages-
history-long option, 2893
performance-schema-consumer-events-statements-
current option, 2893

3561

performance-schema-consumer-events-statements-
history option, 2893
performance-schema-consumer-events-statements-
history-long option, 2893
performance-schema-consumer-events-
transactions-current option, 2893
performance-schema-consumer-events-
transactions-history option, 2893
performance-schema-consumer-events-
transactions-history-long option, 2893
performance-schema-consumer-events-waits-
current option, 2893
performance-schema-consumer-events-waits-history
option, 2893
performance-schema-consumer-events-waits-
history-long option, 2893
performance-schema-consumer-global-
instrumentation option, 2893
performance-schema-consumer-statements-digest
option, 2893
performance-schema-consumer-thread-
instrumentation option, 2893
performance-schema-consumer-xxx option, 2892
performance-schema-instrument option, 2892
pid-file option, 551
plugin option prefix, 551
plugin-load option, 551
plugin-load-add option, 552
port option, 553
port-open-timeout option, 553
print-defaults option, 553
relay-log option, 2452
relay-log-index option, 2452
relay-log-info-file option, 2453
relay-log-info-repository option, 2468
relay-log-purge option, 2453
relay-log-recovery option, 2453
relay-log-space-limit option, 2454
remove option, 553
replicate-do-db option, 2454
replicate-do-table option, 2457
replicate-ignore-db option, 2456
replicate-ignore-table option, 2457
replicate-rewrite-db option, 2457
replicate-same-server-id option, 2458
replicate-wild-do-table option, 2458
replicate-wild-ignore-table option, 2459
report-host option, 2459
report-password option, 2460
report-port option, 2460
report-user option, 2460
safe-user-create option, 553
secure-auth option, 554
secure-file-priv option, 554
server-id option, 2426
server_uuid variable, 2426
shared-memory option, 555
shared-memory-base-name option, 555

show-slave-auth-info option, 2461
skip-concurrent-insert option, 555
skip-event-scheduler option, 556
skip-grant-tables option, 556
skip-host-cache option, 556
skip-innodb option, 556, 2116
skip-name-resolve option, 556
skip-networking option, 557
skip-partition option, 557
skip-show-database option, 558
skip-slave-start option, 2463
skip-stack-trace option, 558
skip-symbolic-links option, 558
slave-checkpoint-group option, 2461
slave-checkpoint-period option, 2461
slave-load-tmpdir option, 2463
slave-max-allowed-packet, 2464
slave-net-timeout option, 2464
slave-parallel-type, 2464
slave-parallel-workers option, 2462
slave-pending-jobs-size-max option, 2462
slave-rows-search-algorithms, 2465
slave-skip-errors option, 2466
slave-sql-verify-checksum option, 2467
slave_compressed_protocol option, 2463
slow-query-log option, 558
slow-start-timeout option, 558
socket option, 559
sporadic-binlog-dump-fail option, 2489
sql-mode option, 559
SSL options, 557
standalone option, 557
starting, 863
super-large-pages option, 557
symbolic-links option, 558
sysdate-is-now option, 562
tc-heuristic-recover option, 562
temp-pool option, 562
tmpdir option, 563
transaction-isolation option, 562
transaction-read-only option, 563
user option, 563
validate-password option, 857
verbose option, 564
version option, 564

mysqld option
malloc-lib, 294
mysqld_multi, 301
mysqld_safe, 295
mysql_plugin, 316

mysqld options, 1151
enforce-gtid-consistency, 2501
executed-gtids-compression-period, 2502
gtid-executed-compression-period, 2503
gtid-mode, 2503

mysqld server
buffer sizes, 1150

mysqld-file option

3562

mysql_install_db, 311
mysqld-safe-log-timestamps option

mysqld_safe, 294
mysqld-version option

mysqld_safe, 295
mysqldump, 230, 271, 370, 3430

add-drop-database option, 379
add-drop-table option, 379
add-drop-trigger option, 379
add-locks option, 388
all-databases option, 385
all-tablespaces option, 379
allow-keywords option, 379
apply-slave-statements option, 381
bind-address option, 376
character-sets-dir option, 381
comments option, 380
compact option, 383
compatible option, 383
complete-insert option, 383
compress option, 376
create-options option, 383
databases option, 385
debug option, 380
debug-check option, 380
debug-info option, 380
default-auth option, 376
default-character-set option, 381
defaults-extra-file option, 378
defaults-file option, 378
defaults-group-suffix option, 378
delete-master-logs option, 381
disable-keys option, 387
dump-date option, 380
dump-slave option, 381
enable-cleartext-plugin option, 376
events option, 386
extended-insert option, 387
fields-enclosed-by option, 383, 394
fields-escaped-by option, 383, 394
fields-optionally-enclosed-by option, 383, 394
fields-terminated-by option, 383, 394
flush-logs option, 388
flush-privileges option, 388
force option, 380
help option, 380
hex-blob option, 383
host option, 376
ignore-error option, 386
ignore-table option, 386
include-master-host-port option, 382
insert-ignore option, 387
lines-terminated-by option, 383, 394
lock-all-tables option, 388
lock-tables option, 388
log-error option, 380
login-path option, 376
master-data option, 382

no-autocommit option, 388
no-create-db option, 379
no-create-info option, 379
no-data option, 386
no-defaults option, 378
no-set-names option, 381
no-tablespaces option, 379
opt option, 387
order-by-primary option, 389
password option, 377
pipe option, 377
plugin-dir option, 377
port option, 377
print-defaults option, 379
problems, 391, 3387
protocol option, 377
quick option, 387
quote-names option, 384
replace option, 379
result-file option, 384
routines option, 386
secure-auth option, 377
set-charset option, 381
set-gtid-purged option, 382
shared-memory-base-name option, 389
single-transaction option, 389
skip-comments option, 380
skip-opt option, 388
socket option, 377
SSL options, 377
tab option, 384
tables option, 386
tls-version option, 378
triggers option, 386
tz-utc option, 384
user option, 378
using for backups, 996
verbose option, 380
version option, 380
views, 391, 3387
where option, 387
workarounds, 391, 3387
xml option, 384

mysqldumpslow, 272, 481
debug option, 482
help option, 481
verbose option, 482

mysqld_multi, 270, 300
defaults-extra-file option, 301
defaults-file option, 300
example option, 301
help option, 301
log option, 301
mysqladmin option, 301
mysqld option, 301
no-defaults option, 300
no-log option, 301
password option, 301

3563

silent option, 301
tcp-ip option, 301
user option, 302
verbose option, 302
version option, 302

mysqld_safe, 270, 292
basedir option, 293
core-file-size option, 293
datadir option, 293
defaults-extra-file option, 294
defaults-file option, 294
help option, 293
ledir option, 294
log-error option, 294
malloc-lib option, 294
mysqld option, 295
mysqld-safe-log-timestamps option, 294
mysqld-version option, 295
nice option, 295
no-defaults option, 295
open-files-limit option, 295
pid-file option, 295
plugin-dir option, 296
port option, 296
skip-kill-mysqld option, 296
skip-syslog option, 296
socket option, 296
syslog option, 296
syslog-tag option, 296
timezone option, 296
user option, 296

mysqlimport, 230, 271, 391, 1702
bind-address option, 393
character-sets-dir option, 393
columns option, 393
compress option, 393
debug option, 393
debug-check option, 393
debug-info option, 393
default-auth option, 393
default-character-set option, 393
defaults-extra-file option, 393
defaults-file option, 394
defaults-group-suffix option, 394
delete option, 394
enable-cleartext-plugin option, 394
force option, 394
help option, 393
host option, 394
ignore option, 394
ignore-lines option, 394
local option, 394
lock-tables option, 395
login-path option, 395
low-priority option, 395
no-defaults option, 395
password option, 395
pipe option, 395

plugin-dir option, 395
port option, 395
print-defaults option, 395
protocol option, 395
replace option, 395
secure-auth option, 396
shared-memory-base-name option, 396
silent option, 396
socket option, 396
SSL options, 396
tls-version option, 396
use-threads option, 396
user option, 396
verbose option, 397
version option, 397

MySQLInstallerConsole, 98
configure option, 99
help option, 99
install option, 99
list option, 100
modify option, 100
remove option, 100
status option, 100
update option, 101
upgrade option, 101

mysqlpump, 272, 397
add-drop-database option, 401
add-drop-table option, 401
add-drop-user option, 401
add-locks option, 401
all-databases option, 401
bind-address option, 401
character-sets-dir option, 402
complete-insert option, 402
compress option, 402
compress-output option, 402
databases option, 402
debug option, 402
debug-check option, 402
debug-info option, 402
default-auth option, 402
default-character-set option, 402
default-parallelism option, 403
defaults-extra-file option, 403
defaults-file option, 403
defaults-group-suffix option, 403
defer-table-indexes option, 403
events option, 403
exclude-databases option, 404
exclude-events option, 404
exclude-routines option, 404
exclude-tables option, 404
exclude-triggers option, 404
exclude-users option, 404
extended-insert option, 404
help option, 401
hex-blob option, 404
host option, 404

3564

include-databases option, 404
include-events option, 405
include-routines option, 405
include-tables option, 405
include-triggers option, 405
include-users option, 405
insert-ignore option, 405
log-error-file option, 405
login-path option, 405
max-allowed-packet option, 405
net-buffer-length option, 405
no-create-db option, 405
no-create-info option, 406
no-defaults option, 406
object selection, 409
parallel-schemas option, 406
parallelism, 410
password option, 406
plugin-dir option, 406
port option, 406
print-defaults option, 406
protocol option, 406
replace option, 406
restrictions, 411
result-file option, 406
routines option, 407
secure-auth option, 407
set-charset option, 407
single-transaction option, 407
skip-definer option, 408
skip-dump-rows option, 408
socket option, 408
SSL options, 408
tls-version option, 408
triggers option, 408
tz-utc option, 408
user option, 408
users option, 408
version option, 409
watch-progress option, 409

mysqlshow, 272, 411
bind-address option, 413
character-sets-dir option, 413
compress option, 413
count option, 413
debug option, 414
debug-check option, 414
debug-info option, 414
default-auth option, 414
default-character-set option, 414
defaults-extra-file option, 414
defaults-file option, 414
defaults-group-suffix option, 414
enable-cleartext-plugin option, 414
help option, 413
host option, 414
keys option, 414
login-path option, 414

no-defaults option, 414
password option, 415
pipe option, 415
plugin-dir option, 415
port option, 415
print-defaults option, 415
protocol option, 415
secure-auth option, 415
shared-memory-base-name option, 416
show-table-type option, 416
socket option, 416
SSL options, 416
status option, 416
tls-version option, 416
user option, 416
verbose option, 416
version option, 416

mysqlslap, 272, 416
auto-generate-sql option, 419
auto-generate-sql-add-autoincrement option, 420
auto-generate-sql-execute-number option, 420
auto-generate-sql-guid-primary option, 420
auto-generate-sql-load-type option, 420
auto-generate-sql-secondary-indexes option, 420
auto-generate-sql-unique-query-number option, 420
auto-generate-sql-unique-write-number option, 420
auto-generate-sql-write-number option, 420
commit option, 420
compress option, 420
concurrency option, 420
create option, 420
create-schema option, 420
csv option, 421
debug option, 421
debug-check option, 421
debug-info option, 421
default-auth option, 421
defaults-extra-file option, 421
defaults-file option, 421
defaults-group-suffix option, 421
delimiter option, 421
detach option, 421
enable-cleartext-plugin option, 421
engine option, 421
help option, 419
host option, 422
iterations option, 422
login-path option, 422
no-defaults option, 422
no-drop option, 422
number-char-cols option, 422
number-int-cols option, 422
number-of-queries option, 422
only-print option, 422
password option, 422
pipe option, 423
plugin-dir option, 423
port option, 423

3565

post-query option, 423
post-system option, 423
pre-query option, 423
pre-system option, 423
print-defaults option, 423
protocol option, 423
query option, 423
secure-auth option, 423
shared-memory-base-name option, 424
silent option, 424
socket option, 424
sql-mode option, 424
SSL options, 424
tls-version option, 424
user option, 424
verbose option, 424
version option, 424

mysqltest
MySQL Test Suite, 3134

mysql_acquire_locking_service_locks() C function
locking service, 3196

mysql_affected_rows(), 3026
mysql_autocommit(), 3027
MYSQL_BIND C type, 3085
mysql_change_user(), 3027
mysql_character_set_name(), 3029
mysql_clear_password authentication plugin, 923
mysql_client_find_plugin(), 3117
mysql_client_register_plugin(), 3118
mysql_close(), 3029
mysql_commit(), 3029
mysql_config, 483

cflags option, 483
cxxflags option, 483
embedded option, 484
include option, 483
libmysqld-libs option, 484
libs option, 484
libs_r option, 484
plugindir option, 484
port option, 484
socket option, 484
variable option, 484
version option, 484

mysql_config_editor, 272, 454
debug option, 457
help option, 457
verbose option, 457
version option, 457

mysql_config_server, 483
mysql_connect(), 3030
mysql_create_db(), 3030
MYSQL_DATADIR option

CMake, 177
mysql_data_seek(), 3031
MYSQL_DEBUG environment variable, 231, 273, 3219
mysql_debug(), 3031
mysql_drop_db(), 3031

mysql_dump_debug_info(), 3032
mysql_eof(), 3033
mysql_errno(), 3034
mysql_error(), 3034
mysql_escape_string(), 3035
mysql_fetch_field(), 3035
mysql_fetch_fields(), 3036
mysql_fetch_field_direct(), 3035
mysql_fetch_lengths(), 3036
mysql_fetch_row(), 3037
MYSQL_FIELD C type, 3017
mysql_field_count(), 3038, 3053
MYSQL_FIELD_OFFSET C type, 3017
mysql_field_seek(), 3039
mysql_field_tell(), 3039
mysql_firewall_max_query_size system variable, 985
mysql_firewall_mode system variable, 985
mysql_firewall_trace system variable, 986
mysql_free_result(), 3040
mysql_get_character_set_info(), 3040
mysql_get_client_info(), 3040
mysql_get_client_version(), 3041
mysql_get_host_info(), 3041
mysql_get_option(), 3041
mysql_get_proto_info(), 3042
mysql_get_server_info(), 3042
mysql_get_server_version(), 3043
mysql_get_ssl_cipher(), 3043
MYSQL_GROUP_SUFFIX environment variable, 231
mysql_hex_string(), 3043
MYSQL_HISTFILE environment variable, 231, 347
MYSQL_HISTIGNORE environment variable, 231, 347
MYSQL_HOME environment variable, 231
MYSQL_HOST environment variable, 231, 278
mysql_info(), 1614, 1698, 1711, 1751, 3044
mysql_init(), 3045
mysql_insert_id(), 1698, 3045
mysql_install_db, 194, 196, 270, 304

admin-auth-plugin option, 309
admin-host option, 309
admin-require-ssl option, 309
admin-user option, 309
basedir option, 309
builddir option, 309
cross-bootstrap option, 309
datadir option, 310
extra-sql-file option, 310
force option, 310
help option, 309
insecure option, 310
keep-my-cnf option, 311
lc-messages option, 311
lc-messages-dir option, 311
ldata option, 311
login-file option, 311
login-path option, 311
mysqld-file option, 311
random-password-file option, 312

3566

random-passwords option, 312
rpm option, 313
skip-name-resolve option, 313
skip-random-passwords option, 313
skip-sys-schema option, 314
srcdir option, 314
user option, 314
verbose option, 314
version option, 314
windows option, 314

mysql_kill(), 3047
mysql_library_end(), 3047
mysql_library_init(), 3048
mysql_list_dbs(), 3049
mysql_list_fields(), 3050
mysql_list_processes(), 3051
mysql_list_tables(), 3051
mysql_load_plugin(), 3119
mysql_load_plugin_v(), 3120
MYSQL_MAINTAINER_MODE option

CMake, 182
mysql_more_results(), 3052
mysql_native_password authentication plugin, 903
mysql_native_password_proxy_users system variable,
644
mysql_next_result(), 3052
mysql_no_login authentication plugin, 922
mysql_num_fields(), 3053
mysql_num_rows(), 3054
mysql_old_password authentication plugin, 903
mysql_options(), 3055
mysql_options4(), 3060
mysql_ping(), 3061
mysql_plugin, 271, 314

basedir option, 316
datadir option, 316
help option, 316
my-print-defaults option, 316
mysqld option, 316
no-defaults option, 316
plugin-dir option, 316
plugin-ini option, 316
print-defaults option, 316
verbose option, 316
version option, 316

mysql_plugin_options(), 3120
MYSQL_PROJECT_NAME option

CMake, 182
MYSQL_PS1 environment variable, 231
MYSQL_PWD environment variable, 231, 273, 278
mysql_query(), 3062, 3120
mysql_real_connect(), 3063
mysql_real_escape_string(), 1187, 1397, 3066
mysql_real_escape_string_quote(), 3068
mysql_real_query(), 3069
mysql_refresh(), 3070
mysql_release_locking_service_locks() C function

locking service, 3197

mysql_reload(), 3071
MYSQL_RES C type, 3017
mysql_reset_connection(), 3071
mysql_rollback(), 3072
MYSQL_ROW C type, 3017
mysql_row_seek(), 3072
mysql_row_tell(), 3073
mysql_secure_installation, 271, 316

defaults-extra-file option, 318
defaults-file option, 318
defaults-group-suffix option, 318
help option, 318
host option, 318
no-defaults option, 318
password option, 318
port option, 319
print-defaults option, 319
protocol option, 319
socket option, 319
SSL options, 319
tls-version option, 319
use-default option, 319
user option, 319

mysql_select_db(), 3073
MYSQL_SERVER_AUTH_INFO plugin structure, 3179
mysql_server_end(), 3117
mysql_server_init(), 3117
mysql_session_track_get_first(), 3074
mysql_session_track_get_next(), 3075
mysql_set_character_set(), 3076
mysql_set_local_infile_default(), 3076, 3076
mysql_set_server_option(), 3078
mysql_shutdown(), 3079
mysql_sqlstate(), 3079
mysql_ssl_rsa_setup, 271, 319

datadir option, 321
help option, 321
suffix option, 321
uid option, 321
verbose option, 322
version option, 322

mysql_ssl_set(), 3080
mysql_stat(), 3080
MYSQL_STMT C type, 3085
mysql_stmt_affected_rows(), 3093
mysql_stmt_attr_get(), 3093
mysql_stmt_attr_set(), 3093
mysql_stmt_bind_param(), 3095
mysql_stmt_bind_result(), 3095
mysql_stmt_close(), 3096
mysql_stmt_data_seek(), 3097
mysql_stmt_errno(), 3097
mysql_stmt_error(), 3097
mysql_stmt_execute(), 3098
mysql_stmt_fetch(), 3101
mysql_stmt_fetch_column(), 3106
mysql_stmt_field_count(), 3106
mysql_stmt_free_result(), 3106

3567

mysql_stmt_init(), 3107
mysql_stmt_insert_id(), 3107
mysql_stmt_next_result(), 3107
mysql_stmt_num_rows(), 3108
mysql_stmt_param_count(), 3109
mysql_stmt_param_metadata(), 3109
mysql_stmt_prepare(), 3109
mysql_stmt_reset(), 3110
mysql_stmt_result_metadata, 3111
mysql_stmt_row_seek(), 3111
mysql_stmt_row_tell(), 3112
mysql_stmt_send_long_data(), 3112
mysql_stmt_sqlstate(), 3114
mysql_stmt_store_result(), 3114
mysql_store_result(), 3081, 3120
MYSQL_TCP_PORT environment variable, 231, 273,
826, 827
MYSQL_TCP_PORT option

CMake, 182
MYSQL_TEST_LOGIN_FILE environment variable,
231, 286, 454
MYSQL_TEST_TRACE_CRASH environment variable,
231, 3188
MYSQL_TEST_TRACE_DEBUG environment variable,
231, 3188
mysql_thread_end(), 3116
mysql_thread_id(), 3082
mysql_thread_init(), 3116
mysql_thread_safe(), 3116
MYSQL_TIME C type, 3087
mysql_tzinfo_to_sql, 271, 322
MYSQL_UNIX_ADDR option

CMake, 182
MYSQL_UNIX_PORT environment variable, 197, 231,
273, 826, 827
mysql_upgrade, 271, 322, 885

basedir option, 326
bind-address option, 326
character-sets-dir option, 326
compress option, 326
datadir option, 326
debug option, 326
debug-check option, 326
debug-info option, 327
default-auth option, 327
default-character-set option, 327
defaults-extra-file option, 327
defaults-file option, 327
defaults-group-suffix option, 327
force option, 327
help option, 326
host option, 327
login-path option, 327
max-allowed-packet option, 327
mysql_upgrade_info file, 324
net-buffer-length option, 327
no-defaults option, 327
password option, 328

pipe option, 328
plugin-dir option, 328
port option, 328
print-defaults option, 328
protocol option, 328
shared-memory-base-name option, 328
skip-sys-schema option, 328
socket option, 328
SSL options, 328
tls-version option, 329
tmpdir option, 329
upgrade-system-tables option, 329
user option, 329
verbose option, 329
version-check option, 329
write-binlog option, 329

mysql_upgrade_info file
mysql_upgrade, 324

mysql_use_result(), 3082
mysql_warning_count(), 3084
my_bool C type, 3017
my_bool values

printing, 3017
my_init(), 3115
my_print_defaults, 273, 485

config-file option, 485
debug option, 485
defaults-extra-file option, 485
defaults-file option, 485
defaults-group-suffix option, 485
extra-file option, 485
help option, 485
no-defaults option, 485
show option, 485
verbose option, 485
version option, 485

my_ulonglong C type, 3017
my_ulonglong values

printing, 3017

N
named pipes, 114, 120
named-commands option

mysql, 336
named_pipe system variable, 644
names, 1191

case sensitivity, 1194
variables, 1208

NAME_CONST(), 1576, 2689
name_file option

comp_err, 304
naming

releases of MySQL, 56
NATIONAL CHAR data type, 1300
NATIONAL VARCHAR data type, 1300
native functions

adding, 3211
natural key, 3430

3568

NATURAL LEFT JOIN, 1729
NATURAL LEFT OUTER JOIN, 1729
NATURAL RIGHT JOIN, 1729
NATURAL RIGHT OUTER JOIN, 1729
NCHAR data type, 1300
ndb option

perror, 487
NDB storage engine

FAQ, 3240
ndb_binlog_index table

system table, 872
negative values, 1188
neighbor page, 3431
nested queries, 1738
Nested-Loop join algorithm, 1030
nested-loop join algorithm, 1034
net etiquette, 29
net-buffer-length option

mysqlpump, 405
mysql_upgrade, 327

netmask notation
in account names, 878

net_buffer_length system variable, 645
net_buffer_length variable, 341
net_read_timeout system variable, 645
net_retry_count system variable, 645
net_write_timeout system variable, 646
new features in MySQL 5.7, 9
new system variable, 646
newline (\n), 1186, 1555, 1707
next-key lock, 3431

InnoDB, 1938, 1943, 1945, 2158
NFS

InnoDB, 1967, 2041
ngram_token_size system variable, 646
nice option

mysqld_safe, 295
no matching rows, 3373
no-auto-rehash option

mysql, 336
no-autocommit option

mysqldump, 388
no-beep option

mysql, 336
mysqladmin, 360

no-check option
innochecksum, 427

no-create-db option
mysqldump, 379
mysqlpump, 405

no-create-info option
mysqldump, 379
mysqlpump, 406

no-data option
mysqldump, 386

no-defaults option, 286, 312
myisamchk, 435
mysql, 336

mysqladmin, 360
mysqlbinlog, 467
mysqlcheck, 368
mysqld, 549
mysqldump, 378
mysqld_multi, 300
mysqld_safe, 295
mysqlimport, 395
mysqlpump, 406
mysqlshow, 414
mysqlslap, 422
mysql_plugin, 316
mysql_secure_installation, 318
mysql_upgrade, 327
my_print_defaults, 485

no-drop option
mysqlslap, 422

no-log option
mysqld_multi, 301

no-set-names option
mysqldump, 381

no-symlinks option
myisamchk, 438

no-tablespaces option
mysqldump, 379

non-blocking I/O, 3431
non-locking read, 3431
non-repeatable read, 3431
nondelimited strings, 1189
Nontransactional tables, 3372
nopager command

mysql, 343
normalized, 3431
normalized JSON values, 1346
NoSQL, 3431
NOT

logical, 1384
NOT BETWEEN, 1381
not equal (!=), 1379
not equal (<>), 1379
NOT EXISTS

with subqueries, 1742
NOT IN, 1382
NOT LIKE, 1406
NOT NULL

constraint, 42
NOT NULL constraint, 3432
NOT REGEXP, 1407
notee command

mysql, 343
Notifier, 101
NOW(), 1435
nowarning command

mysql, 344
NO_AUTO_CREATE_USER SQL mode, 755
NO_AUTO_VALUE_ON_ZERO SQL mode, 755
NO_BACKSLASH_ESCAPES SQL mode, 755
NO_DIR_IN_CREATE SQL mode, 755

3569

NO_ENGINE_SUBSTITUTION SQL mode, 755
NO_FIELD_OPTIONS SQL mode, 756
NO_KEY_OPTIONS SQL mode, 756
NO_TABLE_OPTIONS SQL mode, 756
NO_UNSIGNED_SUBTRACTION SQL mode, 756
NO_ZERO_DATE SQL mode, 757
NO_ZERO_IN_DATE SQL mode, 757
NUL, 1186, 1707
NULL, 251, 3371, 3432

ORDER BY, 1045, 1724
testing for null, 1379, 1380, 1381, 1381, 1387
thread state, 1176

null literal
JSON, 1343

NULL value, 251, 1191
NULL values

and AUTO_INCREMENT columns, 3371
and indexes, 1643
and TIMESTAMP columns, 3371
vs. empty values, 3370

NULLIF(), 1388
number-char-cols option

mysqlslap, 422
number-int-cols option

mysqlslap, 422
number-of-queries option

mysqlslap, 422
numbers, 1188
NUMERIC data type, 1296
numeric precision, 1293
numeric scale, 1293
numeric types, 1354
numeric-dump-file option

resolve_stack_dump, 486
NumGeometries(), 1527
NumInteriorRings(), 1525
NumPoints(), 1522
NVARCHAR data type, 1300

O
object

JSON, 1343
objects_summary_global_by_type table

performance_schema, 2870
obtaining information about partitions, 2636
OCT(), 1396
OCTET_LENGTH(), 1396
ODBC compatibility, 685, 1194, 1297, 1373, 1380,
1641, 1731
ODBC_INCLUDES= option

CMake, 177
ODBC_LIB_DIR option

CMake, 177
off-page column, 3432
offline_mode system variable, 647
offset option

mysqlbinlog, 467
OGC (see Open Geospatial Consortium)

OLAP, 1582
old system variable, 647
old-alter-table option

mysqld, 550
old-style-user-limits option

mysqld, 550
old_alter_table system variable, 648
OLD_PASSWORD(), 1494
old_passwords system variable, 648
OLTP, 3432
ON DUPLICATE KEY UPDATE, 1695
one-database option

mysql, 336
online, 3433
online DDL, 2074, 3433

concurrency, 2081
crash recovery, 2107
examples, 2084
limitations, 2108

online location of manual, 2
only-print option

mysqlslap, 422
ONLY_FULL_GROUP_BY

SQL mode, 1585
ONLY_FULL_GROUP_BY SQL mode, 758
OPEN, 1799
Open Geospatial Consortium, 1327
Open Source

defined, 5
open tables, 357, 1084
open-files-limit option

mysqld, 550
mysqld_safe, 295

OpenGIS, 1327
opening

tables, 1084
Opening master dump table

thread state, 1183
Opening table

thread state, 1177
Opening tables

thread state, 1177
opens, 357
OpenSSL, 929, 935

compared to yaSSL, 931
detecting, 931

open_files_limit system variable, 649
open_files_limit variable, 472
operating systems

file-size limits, 3392
supported, 55

operations
arithmetic, 1414

operators, 1360
arithmetic, 1487
assignment, 1208, 1385
bit, 1487
cast, 1413, 1473

3570

logical, 1383
precedence, 1376

.OPT file, 3432
opt option

mysqldump, 387
optimistic, 3433
optimization, 1012

Batched Key Access, 1041, 1042
benchmarking, 1170
BLOB types, 1083
Block Nested-Loop, 1041, 1042
character and string types, 1082
data size, 1080
DELETE statements, 1066
disk I/O, 1155
DML statements, 1065
foreign keys, 1073
full table scans, 1064
indexes, 1071
InnoDB tables, 1087
INSERT statements, 1065
many tables, 1084
MEMORY tables, 1098
memory usage, 1159
Multi-Range Read, 1039
MyISAM tables, 1094
network usage, 1162
numeric types, 1082
PERFORMANCE_SCHEMA, 1171
primary keys, 1073
REPAIR TABLE statements, 1097
SELECT statements, 1014
SQL statements, 1014
subquery, 1051, 1057
subquery materialization, 1054
tips, 1071
UPDATE statements, 1065
WHERE clauses, 1015

optimizations, 1021
LIMIT clause, 1062

optimize option
mysqlcheck, 368

OPTIMIZE TABLE, 1860
and partitioning, 2634

optimizer, 3433
and replication, 2572
controlling, 1115
cost model, 1127
query plan evaluation, 1115
switchable optimizations, 1116

optimizer hints, 1119
optimizer statistics

for InnoDB tables, 1989
Optimizer Statistics, 1995
optimizer_prune_level system variable, 650
optimizer_search_depth system variable, 650
optimizer_switch system variable, 650, 1116
OPTIMIZER_TRACE

INFORMATION_SCHEMA table, 2707
OPTIMIZER_TRACE option

CMake, 182
optimizer_trace system variable, 653
optimizer_trace_features system variable, 653
optimizer_trace_limit system variable, 653
optimizer_trace_max_mem_size system variable, 654
optimizer_trace_offset system variable, 654
optimizing

DISTINCT, 1050
filesort, 1045, 1128
GROUP BY, 1048
LEFT JOIN, 1029
ORDER BY, 1043
tables, 1009
thread state, 1177

option, 3433
option file, 3433
option files, 281, 885

escape sequences, 283
option prefix

--disable, 280
--enable, 280
--loose, 280
--maximum, 280
--skip, 280

options
boolean, 280
CMake, 170
command-line

mysql, 330
mysqladmin, 357

embedded server, 3005
libmysqld, 3005
myisamchk, 434
provided by MySQL, 237
replication, 2556

OR, 265, 1021
bitwise, 1487
logical, 1384

OR Index Merge optimization, 1021
Oracle compatibility, 37, 1581, 1610, 1923
ORACLE SQL mode, 760
ORD(), 1396
ORDER BY, 248, 1611, 1723

NULL, 1045, 1724
ORDER BY optimization, 1043
order-by-primary option

mysqldump, 389
OS X

installation, 125
Out of resources error

and partitioned tables, 2650
out-of-range handling, 1305
OUTFILE, 1728
out_dir option

comp_err, 304
out_file option

3571

comp_err, 304
overflow handling, 1305
overflow page, 3434
Overlaps(), 1534
overview, 1

P
packages

list of, 50
PAD_CHAR_TO_FULL_LENGTH SQL mode, 758
page, 3434
page cleaner, 3434
page compression, 2058
page option

innochecksum, 426
page size, 3434

InnoDB, 1958, 2042
page-type-dump option

innochecksum, 428
page-type-summary option

innochecksum, 428
pager command

mysql, 344
pager option

mysql, 337
PAM

pluggable authentication, 911
.PAR file, 3434
parallel-recover option

myisamchk, 438
parallel-schemas option

mysqlpump, 406
parameters

server, 1150
PARAMETERS

INFORMATION_SCHEMA table, 2707
parent table, 3434
parentheses (and), 1377
partial backup, 3435
partial index, 3435
partial updates

and replication, 2572
PARTITION, 2587
PARTITION BY LIST COLUMNS, 2600
PARTITION BY RANGE COLUMNS, 2600
partition management, 2619
partition option

mysqld, 551
partition pruning, 2638
partitioning, 2587

advantages, 2591
and dates, 2592
and foreign keys, 2650
and FULLTEXT indexes, 2650
and key cache, 2650
and query cache, 2650
and replication, 2569, 2575
and SQL mode, 2575, 2647

and subqueries, 2651
and temporary tables, 2651, 2653
by hash, 2607
by key, 2610
by linear hash, 2609
by linear key, 2611
by list, 2597
by range, 2593
COLUMNS, 2600
concepts, 2589
data type of partitioning key, 2651
enabling, 2587
functions allowed in partitioning expressions, 2657
keys, 2590
limitations, 2647
operators not permitted in partitioning expressions,
2647
operators supported in partitioning expressions,
2647
optimization, 2636, 2638
partitioning expression, 2590
resources, 2588
storage engines (limitations), 2656
subpartitioning, 2651
support, 2587
types, 2591

Partitioning
maximum number of partitions, 2650

partitioning information statements, 2636
partitioning keys and primary keys, 2653
partitioning keys and unique keys, 2653
partitions

adding and dropping, 2619
analyzing, 2634
checking, 2634
managing, 2619
modifying, 2619
optimizing, 2634
repairing, 2634
splitting and merging, 2619
truncating, 2619

PARTITIONS
INFORMATION_SCHEMA table, 2708

password
root user, 202

password encryption
reversibility of, 1495

password option, 276
mysql, 337
mysqladmin, 360
mysqlbinlog, 467
mysqlcheck, 368
mysqldump, 377
mysqld_multi, 301
mysqlimport, 395
mysqlpump, 406
mysqlshow, 415
mysqlslap, 422

3572

mysql_secure_installation, 318
mysql_upgrade, 328

password policy, 857
password validation, 855
PASSWORD(), 880, 894, 1494, 3357
passwords

administrator guidelines, 849
expiration, 898
for the InnoDB memcached interface, 2260
for users, 889
forgotten, 3360
hashing, 850
logging, 849
lost, 3360
resetting, 3360
security, 847, 866
setting, 894, 1849, 1853
user guidelines, 847

PATH environment variable, 116, 122, 200, 231, 274
path name separators

Windows, 284
pattern matching, 252, 1407
performance, 1012

benchmarks, 1171
disk I/O, 1155
estimating, 1115

Performance Schema, 2227, 2763, 3435
event filtering, 2779
memory use, 2774

performance-schema-consumer-events-stages-current
option

mysqld, 2892
performance-schema-consumer-events-stages-history
option

mysqld, 2893
performance-schema-consumer-events-stages-history-
long option

mysqld, 2893
performance-schema-consumer-events-statements-
current option

mysqld, 2893
performance-schema-consumer-events-statements-
history option

mysqld, 2893
performance-schema-consumer-events-statements-
history-long option

mysqld, 2893
performance-schema-consumer-events-transactions-
current option

mysqld, 2893
performance-schema-consumer-events-transactions-
history option

mysqld, 2893
performance-schema-consumer-events-transactions-
history-long option

mysqld, 2893
performance-schema-consumer-events-waits-current
option

mysqld, 2893
performance-schema-consumer-events-waits-history
option

mysqld, 2893
performance-schema-consumer-events-waits-history-
long option

mysqld, 2893
performance-schema-consumer-global-instrumentation
option

mysqld, 2893
performance-schema-consumer-statements-digest
option

mysqld, 2893
performance-schema-consumer-thread-instrumentation
option

mysqld, 2893
performance-schema-consumer-xxx option

mysqld, 2892
performance-schema-instrument option

mysqld, 2892
performance_schema

accounts table, 2843
cond_instances table, 2812
events_stages_current table, 2824
events_stages_history table, 2825
events_stages_history_long table, 2825
events_stages_summary_by_account_by_event_name
table, 2874
events_stages_summary_by_host_by_event_name
table, 2874
events_stages_summary_by_thread_by_event_name
table, 2865
events_stages_summary_by_user_by_event_name
table, 2874
events_stages_summary_global_by_event_name
table, 2865
events_statements_current table, 2829
events_statements_history table, 2833
events_statements_history_long table, 2833
events_statements_summary_by_account_by_event_name
table, 2874
events_statements_summary_by_digest table, 2866
events_statements_summary_by_host_by_event_name
table, 2874
events_statements_summary_by_program table,
2866
events_statements_summary_by_thread_by_event_name
table, 2866
events_statements_summary_by_user_by_event_name
table, 2874
events_statements_summary_global_by_event_name
table, 2866
events_transactions_current table, 2839
events_transactions_history table, 2841
events_transactions_history_long table, 2842
events_transactions_summary_by_account_by_event
table, 2868

3573

events_transactions_summary_by_host_by_event_name
table, 2868
events_transactions_summary_by_thread_by_event_name
table, 2868
events_transactions_summary_by_user_by_event_name
table, 2868
events_transactions_summary_global_by_event_name
table, 2868
events_waits_current table, 2818
events_waits_history table, 2820
events_waits_history_long table, 2821
events_waits_summary_by_account_by_event_name
table, 2874
events_waits_summary_by_host_by_event_name
table, 2874
events_waits_summary_by_instance table, 2864
events_waits_summary_by_thread_by_event_name
table, 2864
events_waits_summary_by_user_by_event_name
table, 2874
events_waits_summary_global_by_event_name
table, 2864
file_instances table, 2813
file_summary_by_event_name table, 2870
file_summary_by_instance table, 2870
hosts table, 2843
host_cache table, 2881
memory_summary_by_account_by_event_name
table, 2877
memory_summary_by_host_by_event_name table,
2877
memory_summary_by_thread_by_event_name
table, 2877
memory_summary_by_user_by_event_name table,
2877
memory_summary_global_by_event_name table,
2877
metadata_locks table, 2857
mutex_instances table, 2813
objects_summary_global_by_type table, 2870
performance_timers table, 2884
prepared_statements_instances table, 2866
replication_applier_configuration, 2852
replication_applier_status, 2852
replication_applier_status_by_coordinator, 2853
replication_applier_status_by_worker, 2854
replication_connection_configuration, 2849
replication_connection_status, 2851
rwlock_instances table, 2814
session_account_connect_attrs table, 2845
session_connect_attrs table, 2845
setup_actors table, 2807
setup_consumers table, 2808
setup_instruments table, 2809
setup_objects table, 2810
setup_timers table, 2811
socket_instances table, 2815
socket_summary_by_event_name table, 2876

socket_summary_by_instance table, 2876
table_handles table, 2858
table_io_waits_summary_by_index_usage table,
2872
table_io_waits_summary_by_table table, 2871
table_lock_waits_summary_by_table table, 2873
thread table, 2884
users table, 2844
user_variables_by_thread table, 2846

performance_schema database, 2763
restrictions, 3389
TRUNCATE TABLE, 2804, 3389

PERFORMANCE_SCHEMA storage engine, 2763
performance_schema system variable, 2894
performance_schema_accounts_size system variable,
2895
performance_schema_digests_size system variable,
2895
performance_schema_events_stages_history_long_size
system variable, 2896
performance_schema_events_stages_history_size
system variable, 2896
performance_schema_events_statements_history_long_size
system variable, 2896
performance_schema_events_statements_history_size
system variable, 2896
performance_schema_events_transactions_history_long_size
system variable, 2897
performance_schema_events_transactions_history_size
system variable, 2897
performance_schema_events_waits_history_long_size
system variable, 2897
performance_schema_events_waits_history_size
system variable, 2898
performance_schema_hosts_size system variable,
2898
Performance_schema_index_stat_lost status variable,
2910
performance_schema_max_cond_classes system
variable, 2898
performance_schema_max_cond_instances system
variable, 2899
performance_schema_max_digest_length system
variable, 2899
performance_schema_max_file_classes system
variable, 2899
performance_schema_max_file_handles system
variable, 2900
performance_schema_max_file_instances system
variable, 2900
performance_schema_max_index_stat system
variable, 2900
performance_schema_max_memory_classes system
variable, 2901
performance_schema_max_metadata_locks system
variable, 2901
performance_schema_max_mutex_classes system
variable, 2901

3574

performance_schema_max_mutex_instances system
variable, 2902
performance_schema_max_prepared_statements_instances
system variable, 2902
performance_schema_max_program_instances system
variable, 2903
performance_schema_max_rwlock_classes system
variable, 2902
performance_schema_max_rwlock_instances system
variable, 2903
performance_schema_max_socket_classes system
variable, 2903
performance_schema_max_socket_instances system
variable, 2904
performance_schema_max_sql_text_length system
variable, 2904
performance_schema_max_stage_classes system
variable, 2904
performance_schema_max_statement_classes system
variable, 2905
performance_schema_max_statement_stack system
variable, 2905
performance_schema_max_table_handles system
variable, 2905
performance_schema_max_table_instances system
variable, 2906
performance_schema_max_table_lock_stat system
variable, 2906
performance_schema_max_thread_classes system
variable, 2906
performance_schema_max_thread_instances system
variable, 2907
Performance_schema_prepared_statements_lost
status variable, 2910
performance_schema_session_connect_attrs_size
system variable, 2907
performance_schema_setup_actors_size system
variable, 2908
performance_schema_setup_objects_size system
variable, 2908
Performance_schema_table_lock_stat_lost status
variable, 2911
performance_schema_users_size system variable,
2908
performance_timers table

performance_schema, 2884
PERIOD_ADD(), 1436
PERIOD_DIFF(), 1436
Perl

installing, 232
installing on Windows, 233

Perl API, 3131
Perl DBI/DBD

installation problems, 234
permission checks

effect on speed, 1066
perror, 273, 486

help option, 487

ndb option, 487
silent option, 487
verbose option, 487
version option, 487

persistent statistics, 3435
pessimistic, 3435
phantom, 3435
phantom rows, 1945
physical, 3435
physical backup, 3435
PI(), 1420
pid-file option

mysql.server, 299
mysqld, 551
mysqld_safe, 295

pid_file system variable, 654
Ping

thread command, 1173
pipe option, 276

mysql, 337, 368
mysqladmin, 361
mysqldump, 377
mysqlimport, 395
mysqlshow, 415
mysqlslap, 423
mysql_upgrade, 328

PIPES_AS_CONCAT SQL mode, 758
PITR, 3436
PKG_CONFIG_PATH environment variable, 231, 3014
plan stability, 3436
pluggable authentication

PAM, 911
restrictions, 3389
Windows, 918

plugin, 3436
audit log, 951

plugin API, 768, 3134
plugin option prefix

mysqld, 551
plugin services, 3193
plugin table

system table, 872
plugin-dir option

mysql, 337
mysqladmin, 361
mysqlbinlog, 468
mysqlcheck, 368
mysqldump, 377
mysqld_safe, 296
mysqlimport, 395
mysqlpump, 406
mysqlshow, 415
mysqlslap, 423
mysql_plugin, 316
mysql_upgrade, 328

plugin-ini option
mysql_plugin, 316

plugin-load option

3575

mysqld, 551
plugin-load-add option

mysqld, 552
plugindir option

mysql_config, 484
plugins

activating, 768
adding, 3134
audit, 3139
authentication, 3140
daemon, 3139
full-text parser, 3137
INFORMATION_SCHEMA, 3139
installing, 768, 1866
protocol trace, 3140
protocol trace plugin, 3188
query rewrite, 3140
semisynchronous replication, 3139
server, 768
storage engine, 3137
test protocol trace plugin, 3188
uninstalling, 768, 1867

PLUGINS
INFORMATION_SCHEMA table, 2711

plugin_dir system variable, 654
POINT data type, 1329
Point(), 1518
point-in-time recovery, 1002, 3436
PointFromText(), 1513
PointFromWKB(), 1516
PointN(), 1523
PolyFromText(), 1513
PolyFromWKB(), 1516
POLYGON data type, 1329
Polygon(), 1518
PolygonFromText(), 1513
PolygonFromWKB(), 1516
port option, 276

mysql, 337
mysqladmin, 361
mysqlbinlog, 468
mysqlcheck, 369
mysqld, 553
mysqldump, 377
mysqld_safe, 296
mysqlimport, 395
mysqlpump, 406
mysqlshow, 415
mysqlslap, 423
mysql_config, 484
mysql_secure_installation, 319
mysql_upgrade, 328

port system variable, 655
port-open-timeout option

mysqld, 553
portability, 1013

types, 1357
porting

to other systems, 3212
ports, 182, 198, 231, 274, 468, 825, 846, 884, 950,
2460, 2815, 3347
POSITION(), 1396
post-filtering

Performance Schema, 2779
post-query option

mysqlslap, 423
post-system option

mysqlslap, 423
PostgreSQL compatibility, 38
POSTGRESQL SQL mode, 760
postinstall

multiple servers, 820
postinstallation

setup and testing, 189
POW(), 1420
POWER(), 1420
pre-filtering

Performance Schema, 2779
pre-query option

mysqlslap, 423
pre-system option

mysqlslap, 423
precedence

operator, 1376
precision

arithmetic, 1591
fractional seconds, 1294, 1297
numeric, 1293

precision math, 1591
preload_buffer_size system variable, 655
Prepare

thread command, 1173
PREPARE, 1786, 1789

XA transactions, 1766
prepared backup, 3436
prepared statements, 1786, 1789, 1790, 1790, 3084

repreparation, 1143
prepared_statements_instances table

performance_schema, 2866
preparing

thread state, 1177
preparing for alter table

thread state, 1178
primary key, 3436

constraint, 41
deleting, 1610

PRIMARY KEY, 1610, 1642
primary keys

and partitioning keys, 2653
print command

mysql, 344
print-defaults option, 286

myisamchk, 435
mysql, 337
mysqladmin, 361
mysqlbinlog, 468

3576

mysqlcheck, 369
mysqld, 553
mysqldump, 379
mysqlimport, 395
mysqlpump, 406
mysqlshow, 415
mysqlslap, 423
mysql_plugin, 316
mysql_secure_installation, 319
mysql_upgrade, 328

privilege
changes, 883

privilege checks
effect on speed, 1066

privilege information
location, 871

privilege system, 866
privileges

access, 866
adding, 891
and replication, 2572
default, 202
deleting, 892, 1842
display, 1885
dropping, 892, 1842
granting, 1842
revoking, 1852

problems
access denied errors, 3347
common errors, 3345
compiling MySQL server, 187
DATE columns, 3369
date values, 1308
installing on Solaris, 159
installing Perl, 234
linking, 3013
lost connection errors, 3350
reporting, 2, 31
starting the server, 198
table locking, 1146
time zone, 3368

proc table
system table, 872

PROCEDURE, 1726
PROCEDURE ANALYSE(), 1083
procedures

stored, 2663
process, 3436
processes

display, 1891
processing

arguments, 3206
Processlist

thread command, 1173
PROCESSLIST, 1891

INFORMATION_SCHEMA table, 2712
possible inconsistency with
INFORMATION_SCHEMA tables, 2203

processlist view
sys schema, 2944

procs_priv table
system table, 871

PROFILING
INFORMATION_SCHEMA table, 2713

profiling system variable, 655
profiling_history_size system variable, 655
program variables

setting, 286
program-development utilities, 273
programs

administrative, 272
client, 271, 3011
stored, 1790, 2661
utility, 272

prompt command
mysql, 344

prompt option
mysql, 337

prompts
meanings, 240

pronunciation
MySQL, 5

protocol option, 276
mysql, 337
mysqladmin, 361
mysqlbinlog, 468
mysqlcheck, 369
mysqldump, 377
mysqlimport, 395
mysqlpump, 406
mysqlshow, 415
mysqlslap, 423
mysql_secure_installation, 319
mysql_upgrade, 328

protocol trace plugins, 3140
protocol_version system variable, 656
proxies_priv

grant table, 927
proxies_priv table

system table, 202, 871
proximity search, 1450
proxy_user system variable, 656
pseudo-record, 3436
pseudo_slave_mode system variable, 656
pseudo_thread_id system variable, 656
ps_check_lost_instrumentation view

sys schema, 2946
ps_is_account_enabled() function

sys schema, 2990
ps_is_consumer_enabled() function

sys schema, 2991
ps_is_instrument_default_enabled() function

sys schema, 2991
ps_is_instrument_default_timed() function

sys schema, 2991
ps_is_thread_instrumented() function

3577

sys schema, 2992
ps_setup_disable_background_threads() procedure

sys schema, 2971
ps_setup_disable_consumer() procedure

sys schema, 2971
ps_setup_disable_instrument() procedure

sys schema, 2972
ps_setup_disable_thread() procedure

sys schema, 2972
ps_setup_enable_background_threads() procedure

sys schema, 2973
ps_setup_enable_consumer() procedure

sys schema, 2973
ps_setup_enable_instrument() procedure

sys schema, 2973
ps_setup_enable_thread() procedure

sys schema, 2974
ps_setup_reload_saved() procedure

sys schema, 2974
ps_setup_reset_to_default() procedure

sys schema, 2975
ps_setup_save() procedure

sys schema, 2975
ps_setup_show_disabled() procedure

sys schema, 2976
ps_setup_show_disabled_consumers() procedure

sys schema, 2976
ps_setup_show_disabled_instruments() procedure

sys schema, 2977
ps_setup_show_enabled() procedure

sys schema, 2977
ps_setup_show_enabled_consumers() procedure

sys schema, 2978
ps_setup_show_enabled_instruments() procedure

sys schema, 2978
ps_statement_avg_latency_histogram() procedure

sys schema, 2978
ps_thread_account() function

sys schema, 2992
ps_thread_id() function

sys schema, 2993
ps_thread_stack() function

sys schema, 2993
ps_thread_trx_info() function

sys schema, 2994
ps_trace_statement_digest() procedure

sys schema, 2979
ps_trace_thread() procedure

sys schema, 2981
ps_truncate_all_tables() procedure

sys schema, 2982
Pthreads, 3437
purge, 3437
PURGE BINARY LOGS, 1769
purge buffering, 3437
purge lag, 3437
PURGE MASTER LOGS, 1769
purge scheduling, 1988

purge thread, 3437
Purging old relay logs

thread state, 1177
Python, 3003

third-party driver, 3131

Q
QUARTER(), 1436
queries

entering, 238
estimating performance, 1115
examples, 261
speed of, 1014

Query
thread command, 1173

query, 3437
Query Cache, 1137
query cache

and partitioned tables, 2650
thread states, 1180

query end
thread state, 1177

query execution plan, 3437
query expansion, 1455
query option

mysqlslap, 423
query rewrite plugins, 3140

Rewriter, 773
query_alloc_block_size system variable, 656
query_cache_limit system variable, 657
query_cache_min_res_unit system variable, 658
query_cache_size system variable, 658
query_cache_type system variable, 659
query_cache_wlock_invalidate system variable, 659
query_prealloc_size system variable, 660
questions, 357

answering, 29
Queueing master event to the relay log

thread state, 1182
quick option

myisamchk, 439
mysql, 338
mysqlcheck, 369
mysqldump, 387

quiesce, 3437
Quit

thread command, 1173
quit command

mysql, 344
quotation marks

in strings, 1187
QUOTE(), 1187, 1396, 3067, 3068
quote-names option

mysqldump, 384
quoting, 1187

column alias, 1192, 3372
quoting binary data, 1187
quoting of identifiers, 1192

3578

R
R-tree, 3438
RADIANS(), 1421
RAID, 3438
RAND(), 1421
random dive, 3438
random-password-file option

mysql_install_db, 312
random-passwords option

mysql_install_db, 312
RANDOM_BYTES(), 1496
rand_seed1 system variable, 660
rand_seed2 system variable, 661
range join type

optimizer, 1105
range partitioning, 2593, 2600
range partitions

adding and dropping, 2620
managing, 2620

range_alloc_block_size system variable, 661
range_optimizer_max_mem_size system variable, 662
raw backup, 3438
raw option

mysql, 338
mysqlbinlog, 468

raw partitions, 2002
rbr_exec_mode system variable, 662
re-creating

grant tables, 197
READ COMMITTED, 3438

transaction isolation level, 1764
read from standard in

innochecksum, 428
READ UNCOMMITTED, 3438

transaction isolation level, 1764
read view, 3438
read-ahead, 3438

linear, 1971
random, 1971

read-from-remote-master option
mysqlbinlog, 468

read-from-remote-server option
mysqlbinlog, 468

read-only option
myisamchk, 437

read-only transaction, 3439
Reading event from the relay log

thread state, 1182
Reading from net

thread state, 1177
Reading master dump table data

thread state, 1183
read_buffer_size myisamchk variable, 435
read_buffer_size system variable, 662
read_only system variable, 663
read_rnd_buffer_size system variable, 664
REAL data type, 1297

REAL_AS_FLOAT SQL mode, 759
Rebuilding the index on master dump table

thread state, 1183
Receiving from client

thread state, 1177
reconfiguring, 187
reconnect option

mysql, 338
Reconnecting after a failed binlog dump request

thread state, 1181
Reconnecting after a failed master event read

thread state, 1182
reconnection

automatic, 2885, 3122
record lock, 3439
record-level locks

InnoDB, 1938, 1943, 1945, 2158
RECOVER

XA transactions, 1766
recover option

myisamchk, 439
recovery

from crash, 1005
incremental, 1002
point in time, 1002

redo, 3439
redo log, 2002, 3439
reducing

data size, 1080
redundant row format, 2070, 3439
ref join type

optimizer, 1104
references, 1611
referential integrity, 1931, 1932, 3439
REFERENTIAL_CONSTRAINTS

INFORMATION_SCHEMA table, 2714
Refresh

thread command, 1173
ref_or_null, 1028
ref_or_null join type

optimizer, 1104
REGEXP, 1407
REGEXP operator, 1407
Register Slave

thread command, 1173
Registering slave on master

thread state, 1181
regular expression syntax, 1407
rehash command

mysql, 344
relational, 3440
relational databases

defined, 5
relative option

mysqladmin, 361
relay logs (replication), 2525
relay-log option

mysqld, 2452

3579

relay-log-index option
mysqld, 2452

relay-log-info-file option
mysqld, 2453

relay-log-info-repository option
mysqld, 2468

relay-log-purge option
mysqld, 2453

relay-log-recovery option
mysqld, 2453

relay-log-space-limit option
mysqld, 2454

relay_log system variable, 2470
relay_log_basename system variable, 2470
relay_log_index system variable, 2470
relay_log_info_file system variable, 2471
relay_log_info_repository system variable, 2471
relay_log_purge system variable, 664
relay_log_recovery system variable, 2471
relay_log_space_limit system variable, 665
release numbers, 55
RELEASE SAVEPOINT, 1756
releases

naming scheme, 56
RELEASE_ALL_LOCKS(), 1576
RELEASE_LOCK(), 1576
relevance, 3440
remove option

mysqld, 553
MySQLInstallerConsole, 100

removed features in MySQL 5.7, 9
Removing duplicates

thread state, 1177
removing tmp table

thread state, 1177
rename

thread state, 1177
rename result table

thread state, 1177
RENAME TABLE, 1685
RENAME USER, 1851
renaming user accounts, 1851
Reopen tables

thread state, 1177
repair

tables, 362
Repair by sorting

thread state, 1177
Repair done

thread state, 1178
repair option

mysqlcheck, 369
repair options

myisamchk, 438
REPAIR TABLE, 1862

and partitioning, 2634
and replication, 1864, 2570

Repair with keycache

thread state, 1178
repairing

tables, 1006
REPEAT, 1797

labels, 1791
REPEAT(), 1397
REPEATABLE READ, 3440

transaction isolation level, 1764
repertoire

character set, 1239, 1247
replace, 273
REPLACE, 1718
replace option

mysqldump, 379
mysqlimport, 395
mysqlpump, 406

replace utility, 487
REPLACE(), 1397
replicate-do-db option

mysqld, 2454
replicate-do-table option

mysqld, 2457
replicate-ignore-db option

mysqld, 2456
replicate-ignore-table option

mysqld, 2457
replicate-rewrite-db option

mysqld, 2457
replicate-same-server-id option

mysqld, 2458
replicate-wild-do-table option

mysqld, 2458
replicate-wild-ignore-table option

mysqld, 2459
replication, 2395, 3440

and AUTO_INCREMENT, 2557
and character sets, 2558
and CHECKSUM TABLE statement, 2558
and CREATE ... IF NOT EXISTS, 2558
and CREATE TABLE ... SELECT, 2558
and DATA DIRECTORY, 2564
and DROP ... IF EXISTS, 2559
and errors on slave, 2572
and floating-point values, 2566
and FLUSH, 2566
and fractional seconds, 2566
and functions, 2567
and INDEX DIRECTORY, 2564
and invoked features, 2564
and LAST_INSERT_ID(), 2557
and LIMIT, 2569
and LOAD DATA, 2569
and max_allowed_packet, 2570
and MEMORY tables, 2570
and mysql (system) database, 2572
and partial updates, 2572
and partitioned tables, 2569
and partitioning, 2575

3580

and privileges, 2572
and query optimizer, 2572
and REPAIR TABLE statement, 1864, 2570
and reserved words, 2572
and scheduled events, 2564, 2565
and SQL mode, 2575
and stored routines, 2564
and temporary tables, 2571
and time zones, 2575
and TIMESTAMP, 2557
and transactions, 2575, 2576
and triggers, 2564, 2579
and TRUNCATE TABLE, 2580
and user name length, 2580
and variables, 2580
and views, 2582
attribute demotion, 2562
attribute promotion, 2562
BLACKHOLE, 2557
crashes, 2570
delayed, 2555
relay logs, 2525
row-based vs statement-based, 2514
safe and unsafe statements, 2519
semisynchronous, 2550
shutdown and restart, 2570, 2571
statements incompatible with STATEMENT format,
2515
status logs, 2525
timeouts, 2575
with differing tables on master and slave, 2560
with ZFS, 2334

replication channel
commands, 2523
compatibility, 2523
naming conventions, 2525
startup options, 2524

replication channels, 2522
replication filtering options

and case sensitivity, 2532
replication formats

compared, 2514
replication implementation, 2513
replication limitations, 2556
replication log tables, 2525
replication master

thread states, 1180
replication masters

statements, 1768
replication mode, 2420

concepts, 2420
disabling online, 2424
enabling online, 2422
verifying anonymous transactions, 2425

replication options, 2556
replication server

statements, 1785
replication slave

thread states, 1181, 1182, 1183
replication slaves

statements, 1771
replication_applier_configuration

performance_schema, 2852
replication_applier_status

performance_schema, 2852
replication_applier_status_by_coordinator

performance_schema, 2853
replication_applier_status_by_worker

performance_schema, 2854
replication_connection_configuration

performance_schema, 2849
replication_connection_status

performance_schema, 2851
report-host option

mysqld, 2459
report-password option

mysqld, 2460
report-port option

mysqld, 2460
report-user option

mysqld, 2460
reporting

bugs, 2, 31
errors, 31
problems, 2

report_host system variable, 665
report_password system variable, 665
report_port system variable, 666
report_user system variable, 666
Requesting binlog dump

thread state, 1181
REQUIRE option

ALTER USER, 1829
CREATE USER, 1836
GRANT, 1850

require_secure_transport system variable, 666
reserved words, 1201

and replication, 2572
RESET MASTER, 1770

and mysql.gtid_executed table, 1770, 2409
RESET SLAVE, 1779
RESET SLAVE ALL, 1779
Reset stmt

thread command, 1174
resetconnection command

mysql, 344
RESIGNAL, 1809
resolveip, 273, 488

help option, 488
silent option, 488
version option, 488

resolve_stack_dump, 273, 486
help option, 486
numeric-dump-file option, 486
symbols-file option, 486
version option, 486

3581

resource limits
user accounts, 637, 892, 1831, 1838, 1851

restarting
the server, 201

restore, 3440
restrictions

character sets, 3389
events, 3381
InnoDB, 2041
performance_schema database, 3389
pluggable authentication, 3389
server-side cursors, 3385
signal, 3384
stored routines, 3381
subqueries, 3385
triggers, 3381
views, 3386
XA transactions, 3388

result-file option
mysqlbinlog, 468
mysqldump, 384
mysqlpump, 406

retrieving
data from tables, 245

RETURN, 1797
return (\r), 1186, 1555, 1707
return values

UDFs, 3208
REVERSE(), 1397
REVOKE, 1852
revoking

privileges, 1852
rewrite-db option

mysqlbinlog, 469
Rewriter query rewrite plugin, 773

installing, 773
rewriter_enabled system variable, 780
Rewriter_number_loaded_rules status variable, 780
Rewriter_number_reloads status variable, 781
Rewriter_number_rewritten_queries status variable,
781
Rewriter_reload_error status variable, 781
rewriter_verbose system variable, 780
RIGHT JOIN, 1729
RIGHT OUTER JOIN, 1729
RIGHT(), 1397
RLIKE, 1407
ROLLBACK, 1752

XA transactions, 1766
rollback, 3440
rollback segment, 2015, 2016, 3441
ROLLBACK TO SAVEPOINT, 1756
Rolling back

thread state, 1178
ROLLUP, 1582
root password, 202
root user, 846

password resetting, 3360

ROUND(), 1422
rounding, 1591
rounding errors, 1296
ROUTINES

INFORMATION_SCHEMA table, 2715
routines option

mysqldump, 386
mysqlpump, 407

ROW, 1742
row, 3441
row format, 3441
row lock, 3441
row size

maximum, 3393
row subqueries, 1741
row-based replication, 3441

advantages, 2516
disadvantages, 2517

row-level locking, 1144, 3441
rows

counting, 255
deleting, 3373
matching problems, 3373
selecting, 246
sorting, 248

ROW_COUNT(), 1505
ROW_FORMAT

COMPACT, 2070
COMPRESSED, 2045, 2069
DYNAMIC, 2069
REDUNDANT, 2070

RPAD(), 1397
Rpl_semi_sync_master_clients status variable, 745
rpl_semi_sync_master_enabled system variable, 667
Rpl_semi_sync_master_net_avg_wait_time status
variable, 745
Rpl_semi_sync_master_net_waits status variable, 745
Rpl_semi_sync_master_net_wait_time status variable,
745
Rpl_semi_sync_master_no_times status variable, 745
Rpl_semi_sync_master_no_tx status variable, 745
Rpl_semi_sync_master_status status variable, 745
Rpl_semi_sync_master_timefunc_failures status
variable, 745
rpl_semi_sync_master_timeout system variable, 667
rpl_semi_sync_master_trace_level system variable,
667
Rpl_semi_sync_master_tx_avg_wait_time status
variable, 745
Rpl_semi_sync_master_tx_waits status variable, 746
Rpl_semi_sync_master_tx_wait_time status variable,
746
rpl_semi_sync_master_wait_for_slave_count system
variable, 668
rpl_semi_sync_master_wait_no_slave system variable,
668
rpl_semi_sync_master_wait_point system variable, 669

3582

Rpl_semi_sync_master_wait_pos_backtraverse status
variable, 746
Rpl_semi_sync_master_wait_sessions status variable,
746
Rpl_semi_sync_master_yes_tx status variable, 746
rpl_semi_sync_slave_enabled system variable, 670
Rpl_semi_sync_slave_status status variable, 746
rpl_semi_sync_slave_trace_level system variable, 670
rpl_stop_slave_timeout system variable, 2472
RPM file, 139, 143, 146
rpm option

mysql_install_db, 313
RPM Package Manager, 146
RTRIM(), 1397
Ruby API, 3132
running

ANSI mode, 36
batch mode, 259
multiple servers, 820
queries, 238

running CMake after prior invocation, 167, 187
rw-lock, 3441
rwlock_instances table

performance_schema, 2814

S
safe statement (replication)

defined, 2519
safe-recover option

myisamchk, 439
safe-updates option, 353

mysql, 338
safe-user-create option

mysqld, 553
Sakila, 8
sandbox mode, 898
SASL, 2260
SAVEPOINT, 1756
savepoint, 3442
Saving state

thread state, 1178
scalability, 3442
scalar

JSON, 1343
scale

arithmetic, 1591
numeric, 1293

scale out, 3442
scale up, 3442
schema, 3442

altering, 1600
creating, 1622
deleting, 1680

SCHEMA(), 1506
SCHEMATA

INFORMATION_SCHEMA table, 2716
schema_auto_increment_columns view

sys schema, 2946

schema_index_statistics view
sys schema, 2947

schema_object_overview view
sys schema, 2948

SCHEMA_PRIVILEGES
INFORMATION_SCHEMA table, 2716

schema_redundant_indexes view
sys schema, 2948

schema_tables_with_full_table_scans view
sys schema, 2954

schema_table_lock_waits view
sys schema, 2950

schema_table_statistics view
sys schema, 2951

schema_table_statistics_with_buffer view
sys schema, 2952

schema_unused_indexes view
sys schema, 2954

script files, 259
scripts, 292, 300

SQL, 329
search index, 3443
searching

and case sensitivity, 3368
full-text, 1446
MySQL Web pages, 31
two keys, 265

Searching rows for update
thread state, 1178

SECOND(), 1436
secondary index, 3443

InnoDB, 1953
secure connections, 929
secure-auth option

mysql, 338
mysqladmin, 361
mysqlbinlog, 469
mysqlcheck, 369
mysqld, 554
mysqldump, 377
mysqlimport, 396
mysqlpump, 407
mysqlshow, 415
mysqlslap, 423

secure-file-priv option
mysqld, 554

secure_auth system variable, 670
secure_file_priv system variable, 671
security

against attackers, 860
for the InnoDB memcached interface, 2260

security system, 866
SEC_TO_TIME(), 1436
segment, 3443
SELECT

INTO, 1727
LIMIT, 1721
optimizing, 1099, 1922

3583

Query Cache, 1137
SELECT INTO TABLE, 39
SELECT speed, 1014
selecting

databases, 242
selectivity, 3443
select_limit variable, 341
semi-consistent read, 3443

InnoDB, 2158
semi-joins, 1051
semisynchronous replication, 2550

administrative interface, 2552
configuration, 2553
installation, 2553
monitoring, 2555

semisynchronous replication plugins, 3139
Sending binlog event to slave

thread state, 1181
sending cached result to client

thread state, 1180
Sending to client

thread state, 1178
sensible JSON values, 1346
SEQUENCE, 266
sequence emulation, 1505
sequences, 266
SERIAL, 1294, 1295
SERIAL DEFAULT VALUE, 1354
SERIALIZABLE, 3443

transaction isolation level, 1764
server, 3444

connecting, 237, 274
debugging, 3212
disconnecting, 237
logs, 799
restart, 201
shutdown, 201
signal handling, 797
starting, 190
starting and stopping, 206
starting problems, 198

server administration, 354
server plugins, 768
server variables, 1909 (see system variables)
server-id option

mysqlbinlog, 469
mysqld, 2426

server-public-key-path option
mysql, 339

server-side cursor
restrictions, 3385

servers
multiple, 820

servers table
system table, 872

server_cost
system table, 1127

server_cost table

system table, 871
server_id system variable, 672
server_uuid system variable

mysqld, 2426
service-startup-timeout option

mysql.server, 300
services

for plugins, 3193
service_get_read_locks() UDF

locking service, 3200
service_get_write_locks() UDF

locking service, 3200
service_release_locks() UDF

locking service, 3200
session state information, 673, 673, 674, 3074, 3075
session track gtids, 673
session variables

and replication, 2580
session view

sys schema, 2955
session_account_connect_attrs table

performance_schema, 2845
session_connect_attrs table

performance_schema, 2845
session_ssl_status view

sys schema, 2955
SESSION_STATUS

INFORMATION_SCHEMA table, 2705
session_track_gtids, 673
session_track_schema system variable, 673
session_track_state_change system variable, 673
session_track_system_variables system variable, 674
SESSION_USER(), 1506
SESSION_VARIABLES

INFORMATION_SCHEMA table, 2706
SET, 1867

CHARACTER SET, 1225, 1869
NAMES, 1225, 1228, 1870
size, 1357

SET data type, 1302, 1325
SET GLOBAL sql_slave_skip_counter, 1780
Set option

thread command, 1174
SET PASSWORD, 1853
SET PASSWORD statement, 894
SET sql_log_bin, 1770
SET statement

assignment operator, 1386
SET TRANSACTION, 1762
set-auto-increment[option

myisamchk, 440
set-charset option

mysqlbinlog, 469
mysqldump, 381
mysqlpump, 407

set-collation option
myisamchk, 439

set-gtid-purged option

3584

mysqldump, 382
setting

passwords, 894
setting passwords, 1853
setting program variables, 286
setup

postinstallation, 189
thread state, 1178

setup_actors table
performance_schema, 2807

setup_consumers table
performance_schema, 2808

setup_instruments table
performance_schema, 2809

setup_objects table
performance_schema, 2810

setup_timers table
performance_schema, 2811

SHA(), 1496
SHA1(), 1496
SHA2(), 1496
sha256_password authentication plugin, 908
sha256_password_auto_generate_rsa_keys system
variable, 675
sha256_password_private_key_path system variable,
675
sha256_password_proxy_users system variable, 676
sha256_password_public_key_path system variable,
676
shared lock, 3444
shared tablespace, 3444
shared-memory option

mysqld, 555
shared-memory-base-name option, 277

mysql, 339
mysqladmin, 361
mysqlbinlog, 470
mysqlcheck, 369
mysqld, 555
mysqldump, 389
mysqlimport, 396
mysqlshow, 416
mysqlslap, 424
mysql_upgrade, 328

shared_memory system variable, 676
shared_memory_base_name system variable, 677
sharp checkpoint, 3444
shell syntax, 4
short-form option

mysqlbinlog, 470
SHOW BINARY LOGS, 1870, 1871
SHOW BINLOG EVENTS, 1870, 1871
SHOW CHARACTER SET, 1870, 1872
SHOW COLLATION, 1870, 1872
SHOW COLUMNS, 1870, 1873
SHOW CREATE DATABASE, 1870, 1874
SHOW CREATE EVENT, 1870
SHOW CREATE FUNCTION, 1870, 1875

SHOW CREATE PROCEDURE, 1870, 1875
SHOW CREATE SCHEMA, 1870, 1874
SHOW CREATE TABLE, 1870, 1876
SHOW CREATE TRIGGER, 1870, 1876
SHOW CREATE USER, 1877
SHOW CREATE VIEW, 1870, 1877
SHOW DATABASES, 1870, 1878
SHOW ENGINE, 1870, 1879
SHOW ENGINE INNODB STATUS, 1879

and innodb_use_sys_malloc, 1983
SHOW ENGINES, 1870, 1881
SHOW ERRORS, 1870, 1883
SHOW EVENTS, 1870, 1883
SHOW extensions, 2760
SHOW FIELDS, 1870, 1874
SHOW FUNCTION CODE, 1870, 1885
SHOW FUNCTION STATUS, 1870, 1885
SHOW GRANTS, 1870, 1885
SHOW INDEX, 1870, 1886
SHOW KEYS, 1870, 1886
SHOW MASTER LOGS, 1870, 1871
SHOW MASTER STATUS, 1870, 1887
SHOW OPEN TABLES, 1870, 1888
show option

my_print_defaults, 485
SHOW PLUGINS, 1870, 1888
SHOW PRIVILEGES, 1870, 1889
SHOW PROCEDURE CODE, 1870, 1890
SHOW PROCEDURE STATUS, 1870, 1890
SHOW PROCESSLIST, 1870, 1891
SHOW PROFILE, 1870, 1893
SHOW PROFILES, 1870, 1893, 1895
SHOW RELAYLOG EVENTS, 1896
SHOW SCHEDULER STATUS, 2674
SHOW SCHEMAS, 1878
SHOW SLAVE HOSTS, 1870, 1896
SHOW SLAVE STATUS, 1870, 1897
SHOW STATUS, 1870
SHOW STORAGE ENGINES, 1881
SHOW TABLE STATUS, 1870
SHOW TABLES, 1870, 1907
SHOW TRIGGERS, 1870, 1908
SHOW VARIABLES, 1870
SHOW WARNINGS, 1870, 1910
SHOW with WHERE, 2694, 2760
show-slave-auth-info option

mysqld, 2461
show-table-type option

mysqlshow, 416
show-warnings option

mysql, 339
mysqladmin, 361

showing
database information, 411

show_compatibility_56 system variable, 677
show_old_temporals system variable, 681
shutdown, 3444

server, 798

3585

Shutdown
thread command, 1174

SHUTDOWN, 1922, 1922
shutdown_timeout variable, 362
shutting down

the server, 201
sigint-ignore option

mysql, 339
SIGN(), 1423
SIGNAL, 1814
signal

restrictions, 3384
signals

server response, 797
silent column changes, 1670
silent option

myisamchk, 435
myisampack, 449
mysql, 339
mysqladmin, 361
mysqlcheck, 369
mysqld_multi, 301
mysqlimport, 396
mysqlslap, 424
perror, 487
resolveip, 488

simplified_binlog_gtid_recovery, 2510
SIN(), 1423
single quote (\'), 1186
single-transaction option

mysqldump, 389
mysqlpump, 407

size of tables, 3392
sizes

display, 1293
--skip option prefix, 280
skip-column-names option

mysql, 339
skip-comments option

mysqldump, 380
skip-concurrent-insert option

mysqld, 555
skip-database option

mysqlcheck, 369
skip-definer option

mysqlpump, 408
skip-dump-rows option

mysqlpump, 408
skip-event-scheduler option

mysqld, 556
skip-grant-tables option

mysqld, 556
skip-gtids option

mysqlbinlog, 470
skip-host-cache option

mysqld, 556
skip-innodb option

mysqld, 556, 2116

skip-kill-mysqld option
mysqld_safe, 296

skip-line-numbers option
mysql, 339

skip-name-resolve option
mysqld, 556
mysql_install_db, 313

skip-networking option
mysqld, 557

skip-opt option
mysqldump, 388

skip-partition option
mysqld, 557

skip-random-passwords option
mysql_install_db, 313

skip-show-database option
mysqld, 558

skip-slave-start option
mysqld, 2463

skip-ssl option, 939
skip-stack-trace option

mysqld, 558
skip-symbolic-links option

mysqld, 558
skip-sys-schema option

mysql_install_db, 314
mysql_upgrade, 328

skip-syslog option
mysqld_safe, 296

skip_external_locking system variable, 682
skip_name_resolve system variable, 682
skip_networking system variable, 682
skip_show_database system variable, 683
Slave has read all relay log; waiting for more updates

thread state, 1182
slave server, 3444
slave-checkpoint-group option

mysqld, 2461
slave-checkpoint-period option

mysqld, 2461
slave-load-tmpdir option

mysqld, 2463
slave-max-allowed-packet (mysqld), 2464
slave-net-timeout option

mysqld, 2464
slave-parallel-type (mysqld), 2464
slave-parallel-workers option

mysqld, 2462
slave-pending-jobs-size-max option

mysqld, 2462
slave-rows-search-algorithms (mysqld), 2465
slave-skip-errors option

mysqld, 2466
slave-sql-verify-checksum option

mysqld, 2467
slave_checkpoint_group system variable, 2472
slave_checkpoint_period system variable, 2473
slave_compressed_protocol option

3586

mysqld, 2463
slave_compressed_protocol system variable, 2473
slave_exec_mode system variable, 2474
slave_load_tmpdir system variable, 2474
slave_master_info table

system table, 872
slave_max_allowed_packet system variable, 2474
slave_net_timeout system variable, 2475
slave_parallel_type system variable, 2475
slave_parallel_workers system variable, 2476
slave_pending_jobs_size_max system variable, 2476
slave_preserve_commit_order, 2477
slave_relay_log_info table

system table, 872
slave_rows_search_algorithms system variable, 2478
slave_skip_errors system variable, 2479
slave_sql_verify_checksum system variable, 2479
slave_transaction_retries system variable, 2480
slave_type_conversions system variable, 2480
slave_worker_info table

system table, 872
Sleep

thread command, 1174
sleep option

mysqladmin, 362
SLEEP(), 1576
slow queries, 357
slow query log, 817, 3444
slow shutdown, 3444
slow-query-log option

mysqld, 558
slow-start-timeout option

mysqld, 558
slow_launch_time system variable, 683
slow_log table

system table, 872
slow_query_log system variable, 683
slow_query_log_file system variable, 683
SMALLINT data type, 1295
snapshot, 3445
socket option, 277

mysql, 339
mysqladmin, 362
mysqlbinlog, 470
mysqlcheck, 369
mysqld, 559
mysqldump, 377
mysqld_safe, 296
mysqlimport, 396
mysqlpump, 408
mysqlshow, 416
mysqlslap, 424
mysql_config, 484
mysql_secure_installation, 319
mysql_upgrade, 328

socket system variable, 684
socket_instances table

performance_schema, 2815

socket_summary_by_event_name table
performance_schema, 2876

socket_summary_by_instance table
performance_schema, 2876

Solaris
installation, 159

Solaris installation problems, 159
Solaris troubleshooting, 188
Solaris x86_64 issues, 1092
SOME, 1740
sort buffer, 3445
sort-index option

myisamchk, 440
sort-records option

myisamchk, 440
sort-recover option

myisamchk, 439
sorting

data, 248
grant tables, 881, 882
table rows, 248

Sorting for group
thread state, 1178

Sorting for order
thread state, 1178

Sorting index
thread state, 1178

Sorting result
thread state, 1178

sort_buffer_size myisamchk variable, 435
sort_buffer_size system variable, 684
sort_key_blocks myisamchk variable, 435
SOUNDEX(), 1398
SOUNDS LIKE, 1398
source (mysql client command), 260, 351
source command

mysql, 345
source distribution

installing, 163
space ID, 3445
SPACE(), 1398
sparse file, 3445
Spatial Extensions in MySQL, 1327
spatial functions, 1507
SPATIAL index

InnoDB predicate locks, 1946
speed

increasing with replication, 2395
inserting, 1065
of queries, 1014, 1014

spin, 3445
sporadic-binlog-dump-fail option

mysqld, 2489
SQL, 3445

defined, 5
SQL mode, 751

ALLOW_INVALID_DATES, 753
and partitioning, 2575, 2647

3587

and replication, 2575
ANSI, 753, 759
ANSI_QUOTES, 754
DB2, 759
ERROR_FOR_DIVISION_BY_ZERO, 754
HIGH_NOT_PRECEDENCE, 754
IGNORE_SPACE, 754
MAXDB, 759
MSSQL, 759
MYSQL323, 759
MYSQL40, 760
NO_AUTO_CREATE_USER, 755
NO_AUTO_VALUE_ON_ZERO, 755
NO_BACKSLASH_ESCAPES, 755
NO_DIR_IN_CREATE, 755
NO_ENGINE_SUBSTITUTION, 755
NO_FIELD_OPTIONS, 756
NO_KEY_OPTIONS, 756
NO_TABLE_OPTIONS, 756
NO_UNSIGNED_SUBTRACTION, 756
NO_ZERO_DATE, 757
NO_ZERO_IN_DATE, 757
ONLY_FULL_GROUP_BY, 758, 1585
ORACLE, 760
PAD_CHAR_TO_FULL_LENGTH, 758
PIPES_AS_CONCAT, 758
POSTGRESQL, 760
REAL_AS_FLOAT, 759
strict, 753
STRICT_ALL_TABLES, 759
STRICT_TRANS_TABLES, 753, 759
TRADITIONAL, 753, 760

SQL scripts, 329
SQL statements

replication masters, 1768
replication server, 1785
replication slaves, 1771

SQL-92
extensions to, 35

sql-mode option
mysqld, 559
mysqlslap, 424

sql_auto_is_null system variable, 685
SQL_BIG_RESULT, 1727
sql_big_selects system variable, 685
SQL_BUFFER_RESULT, 1727
sql_buffer_result system variable, 686
SQL_CACHE, 1139, 1727
SQL_CALC_FOUND_ROWS, 1062, 1727
sql_log_bin system variable, 686
sql_log_off system variable, 686
sql_mode system variable, 687
sql_notes system variable, 689
SQL_NO_CACHE, 1139, 1727
sql_quote_show_create system variable, 690
sql_safe_updates system variable, 690
sql_select_limit system variable, 690
sql_slave_skip_counter, 1780

sql_slave_skip_counter system variable, 2481
SQL_SMALL_RESULT, 1727
sql_warnings system variable, 690
SQRT(), 1423
square brackets, 1294
srcdir option

mysql_install_db, 314
SRID values

handling by spatial functions, 1511
SRID(), 1520
SSD, 2044, 3445
SSH, 860, 950
SSL, 929

command options, 938
configuring, 935
establishing connections, 936
OpenSSL compared to yaSSL, 931
X509 Basics, 929

ssl option, 939
SSL options, 277

mysql, 339, 470
mysqladmin, 362
mysqlcheck, 370
mysqld, 557
mysqldump, 377
mysqlimport, 396
mysqlpump, 408
mysqlshow, 416
mysqlslap, 424
mysql_secure_installation, 319
mysql_upgrade, 328

SSL related options
ALTER USER, 1829
CREATE USER, 1836
GRANT, 1850

ssl-ca option, 940
ssl-capath option, 940
ssl-cert option, 941
ssl-cipher option, 941
ssl-crl option, 941
ssl-crlpath option, 941
ssl-key option, 942
ssl-verify-server-cert option, 942
ssl_ca system variable, 690
ssl_capath system variable, 690
ssl_cert system variable, 691
ssl_cipher system variable, 691
ssl_crl system variable, 691
ssl_crlpath system variable, 691
ssl_key system variable, 692
standalone option

mysqld, 557
Standard Monitor

InnoDB, 2234
Standard SQL

differences from, 39, 1851
extensions to, 35, 36

standards compatibility, 35

3588

START
XA transactions, 1766

START GROUP_REPLICATION, 1785
START SLAVE, 1781
START TRANSACTION, 1752
start-datetime option

mysqlbinlog, 470
start-page option

innochecksum, 426
start-position option

mysqlbinlog, 470
starting

comments, 40
mysqld, 863
the server, 190
the server automatically, 206

Starting many servers, 820
StartPoint(), 1525
startup, 3445
startup options

default, 281
replication channel, 2524

startup parameters, 1150
mysql, 330
mysqladmin, 357
tuning, 1150

statefile option
comp_err, 304

statement-based replication, 3446
advantages, 2515
disadvantages, 2515
unsafe statements, 2515

statements
compound, 1790
GRANT, 891
replication masters, 1768
replication server, 1785
replication slaves, 1771

statements_with_errors_or_warnings view
sys schema, 2957

statements_with_full_table_scans view
sys schema, 2958

statements_with_runtimes_in_95th_percentile view
sys schema, 2959

statements_with_sorting view
sys schema, 2960

statements_with_temp_tables view
sys schema, 2961

statement_analysis view
sys schema, 2955

statement_performance_analyzer() procedure
sys schema, 2982

Statistics
thread command, 1174

statistics, 3446
thread state, 1178

STATISTICS
INFORMATION_SCHEMA table, 2717

stats option
myisam_ftdump, 431

stats_method myisamchk variable, 435
status

tables, 1905
status command

mysql, 345
results, 357

status logs (replication), 2525
status option

MySQLInstallerConsole, 100
mysqlshow, 416

status variable
Audit_log_current_size, 972
Audit_log_events, 973
Audit_log_events_filtered, 973
Audit_log_events_lost, 973
Audit_log_events_written, 973
Audit_log_event_max_drop_size, 973
Audit_log_total_size, 973
Audit_log_write_waits, 973
Firewall_access_denied, 986
Firewall_access_granted, 986
Firewall_access_suspicious, 986
Firewall_cached_entries, 986
Locked_connects, 742
Max_execution_time_exceeded, 742
Max_execution_time_set, 742
Max_execution_time_set_failed, 742
Max_statement_time_exceeded, 742
Max_statement_time_set, 742
Max_statement_time_set_failed, 742
Performance_schema_index_stat_lost, 2910
Performance_schema_prepared_statements_lost,
2910
Performance_schema_table_lock_stat_lost, 2911
Rewriter_number_loaded_rules, 780
Rewriter_number_reloads, 781
Rewriter_number_rewritten_queries, 781
Rewriter_reload_error, 781
Rpl_semi_sync_master_clients, 745
Rpl_semi_sync_master_net_avg_wait_time, 745
Rpl_semi_sync_master_net_waits, 745
Rpl_semi_sync_master_net_wait_time, 745
Rpl_semi_sync_master_no_times, 745
Rpl_semi_sync_master_no_tx, 745
Rpl_semi_sync_master_status, 745
Rpl_semi_sync_master_timefunc_failures, 745
Rpl_semi_sync_master_tx_avg_wait_time, 745
Rpl_semi_sync_master_tx_waits, 746
Rpl_semi_sync_master_tx_wait_time, 746
Rpl_semi_sync_master_wait_pos_backtraverse, 746
Rpl_semi_sync_master_wait_sessions, 746
Rpl_semi_sync_master_yes_tx, 746
Rpl_semi_sync_slave_status, 746
validate_password_dictionary_file_last_parsed, 860
validate_password_dictionary_file_words_count, 860

status variables, 721, 1904

3589

STD(), 1581
STDDEV(), 1581
STDDEV_POP(), 1581
STDDEV_SAMP(), 1582
stemming, 3446
STOP GROUP_REPLICATION, 1785
STOP SLAVE, 1784
stop-datetime option

mysqlbinlog, 470
stop-never option

mysqlbinlog, 471
stop-never-slave-server-id option

mysqlbinlog, 471
stop-position option

mysqlbinlog, 471
stopping

the server, 206
stopword, 3446
stopword list

user-defined, 1458
stopwords, 1456
storage engine, 3446

ARCHIVE, 2309
InnoDB, 1931
PERFORMANCE_SCHEMA, 2763

storage engine plugins, 3137
storage engines

choosing, 2291
InnoDB as default, 1932

storage requirements
data type, 1354

storage space
minimizing, 1080

storage_engine system variable, 692
stored functions, 2663
stored procedures, 2663
stored programs, 1790, 2661

reparsing, 1143
stored routines

and replication, 2564
LAST_INSERT_ID(), 2665
metadata, 2665
restrictions, 3381

storing result in query cache
thread state, 1180

STRAIGHT_JOIN, 1029, 1030, 1099, 1112, 1727,
1729, 1924
STRCMP(), 1406
strict mode, 3446
strict SQL mode, 753
strict-check option

innochecksum, 426
STRICT_ALL_TABLES SQL mode, 759
STRICT_TRANS_TABLES SQL mode, 753, 759
string

JSON, 1343
string collating, 1271
string comparison functions, 1403

string comparisons
case sensitivity, 1404

string concatenation, 1185, 1391
string functions, 1388
string literal introducer, 1186, 1222
string replacement

replace utility, 487
string types, 1318, 1356
strings

defined, 1185
escape sequences, 1185
nondelimited, 1189

striping
defined, 1156

STR_TO_DATE(), 1437
ST_Area(), 1525
ST_AsBinary(), 1518
ST_AsGeoJSON(), 1538
ST_AsText(), 1518
ST_Buffer(), 1528
ST_Buffer_Strategy(), 1529
ST_Centroid(), 1526
ST_Contains(), 1532
ST_ConvexHull(), 1529
ST_Crosses(), 1532
ST_Difference(), 1530
ST_Dimension(), 1520
ST_Disjoint(), 1532
ST_Distance(), 1532
ST_Distance_Sphere(), 1539
ST_EndPoint(), 1523
ST_Envelope(), 1520
ST_Equals(), 1532
ST_ExteriorRing(), 1526
ST_GeoHash(), 1536
ST_GeomCollFromText(), 1513
ST_GeomCollFromWKB(), 1516
ST_GeometryCollectionFromText(), 1513
ST_GeometryCollectionFromWKB(), 1516
ST_GeometryFromText(), 1514
ST_GeometryFromWKB(), 1516
ST_GeometryN(), 1527
ST_GeometryType(), 1521
ST_GeomFromGeoJSON(), 1538
ST_GeomFromText(), 1514
ST_GeomFromWKB(), 1516
ST_InteriorRingN(), 1526
ST_Intersection(), 1530
ST_Intersects(), 1533
ST_IsClosed(), 1523
ST_IsEmpty(), 1521
ST_IsSimple(), 1521
ST_IsValid(), 1540
ST_LatFromGeoHash(), 1537
ST_Length(), 1524
ST_LineFromText(), 1514
ST_LineFromWKB(), 1516
ST_LineStringFromText(), 1514

3590

ST_LineStringFromWKB(), 1516
ST_LongFromGeoHash(), 1537
ST_MakeEnvelope(), 1540
ST_MLineFromText(), 1514
ST_MLineFromWKB(), 1516
ST_MPointFromText(), 1514
ST_MPointFromWKB(), 1516
ST_MPolyFromText(), 1514
ST_MPolyFromWKB(), 1517
ST_MultiLineStringFromText(), 1514
ST_MultiLineStringFromWKB(), 1516
ST_MultiPointFromText(), 1514
ST_MultiPointFromWKB(), 1516
ST_MultiPolygonFromText(), 1514
ST_MultiPolygonFromWKB(), 1517
ST_NumGeometries(), 1527
ST_NumInteriorRing(), 1527
ST_NumInteriorRings(), 1527
ST_NumPoints(), 1524
ST_Overlaps(), 1533
ST_PointFromGeoHash(), 1537
ST_PointFromText(), 1514
ST_PointFromWKB(), 1517
ST_PointN(), 1524
ST_PolyFromText(), 1514
ST_PolyFromWKB(), 1517
ST_PolygonFromText(), 1514
ST_PolygonFromWKB(), 1517
ST_Simplify(), 1541
ST_SRID(), 1521
ST_StartPoint(), 1524
ST_SymDifference(), 1530
ST_Touches(), 1533
ST_Union(), 1531
ST_Validate(), 1541
ST_Within(), 1533
ST_X(), 1521
ST_Y(), 1522
SUBDATE(), 1438
sublist, 3447
SUBPARTITION BY KEY

known issues, 2651
subpartitioning, 2612
subpartitions, 2612

known issues, 2651
subqueries, 1738

correlated, 1743
errors, 1746
optimization, 1057
restrictions, 3385
rewriting as joins, 1749
with ALL, 1741
with ANY, IN, SOME, 1740
with EXISTS, 1742
with NOT EXISTS, 1742
with ROW, 1742

subquery (see subqueries)
subquery materialization, 1054, 1054

subquery optimization, 1051
subselects, 1738
SUBSTR(), 1398
SUBSTRING(), 1398
SUBSTRING_INDEX(), 1399
SUBTIME(), 1438
subtraction (-), 1414
suffix option

mysql_ssl_rsa_setup, 321
SUM(), 1582
SUM(DISTINCT), 1582
SUNPRO_CXX_LIBRARY option

CMake, 187
super-large-pages option

mysqld, 557
superuser, 202
super_read_only system variable, 693
support

for operating systems, 55
suppression

default values, 42
supremum record, 3447
surrogate key, 3447
symbolic links, 1156, 1158
symbolic-links option

mysqld, 558
symbols-file option

resolve_stack_dump, 486
sync_binlog system variable, 2500
sync_frm system variable, 693
sync_master_info system variable, 2481
sync_relay_log system variable, 2482
sync_relay_log_info system variable, 2483
syntax

regular expression, 1407
syntax conventions, 2
synthetic key, 3447
sys schema, 2764

create_synonym_db() procedure, 2968
diagnostics() procedure, 2969
execute_prepared_stmt() procedure, 2971
extract_schema_from_file_name() function, 2987
extract_table_from_file_name() function, 2987
format_bytes() function, 2988
format_path() function, 2988
format_statement() function, 2988
format_time() function, 2989
host_summary view, 2929
host_summary_by_file_io view, 2930
host_summary_by_file_io_type view, 2930
host_summary_by_stages view, 2931
host_summary_by_statement_latency view, 2931
host_summary_by_statement_type view, 2932
innodb_buffer_stats_by_schema view, 2933
innodb_buffer_stats_by_table view, 2934
innodb_lock_waits view, 2934
io_by_thread_by_latency view, 2936
io_global_by_file_by_bytes view, 2937

3591

io_global_by_file_by_latency view, 2937
io_global_by_wait_by_bytes view, 2938
io_global_by_wait_by_latency view, 2939
latest_file_io view, 2940
list_add() function, 2989
list_drop() function, 2990
memory_by_host_by_current_bytes view, 2940
memory_by_thread_by_current_bytes view, 2941
memory_by_user_by_current_bytes view, 2942
memory_global_by_current_bytes view, 2942
memory_global_total view, 2943
metrics view, 2943
object ownership, 2919
processlist view, 2944
ps_check_lost_instrumentation view, 2946
ps_is_account_enabled() function, 2990
ps_is_consumer_enabled() function, 2991
ps_is_instrument_default_enabled() function, 2991
ps_is_instrument_default_timed() function, 2992
ps_is_thread_instrumented() function, 2992
ps_setup_disable_background_threads() procedure,
2971
ps_setup_disable_consumer() procedure, 2971
ps_setup_disable_instrument() procedure, 2972
ps_setup_disable_thread() procedure, 2972
ps_setup_enable_background_threads() procedure,
2973
ps_setup_enable_consumer() procedure, 2973
ps_setup_enable_instrument() procedure, 2973
ps_setup_enable_thread() procedure, 2974
ps_setup_reload_saved() procedure, 2974
ps_setup_reset_to_default() procedure, 2975
ps_setup_save() procedure, 2975
ps_setup_show_disabled() procedure, 2976
ps_setup_show_disabled_consumers() procedure,
2976
ps_setup_show_disabled_instruments() procedure,
2977
ps_setup_show_enabled() procedure, 2977
ps_setup_show_enabled_consumers() procedure,
2978
ps_setup_show_enabled_instruments() procedure,
2978
ps_statement_avg_latency_histogram() procedure,
2978
ps_thread_account() function, 2992
ps_thread_id() function, 2993
ps_thread_stack() function, 2993
ps_thread_trx_info() function, 2994
ps_trace_statement_digest() procedure, 2979
ps_trace_thread() procedure, 2981
ps_truncate_all_tables() procedure, 2982
schema_auto_increment_columns view, 2946
schema_index_statistics view, 2947
schema_object_overview view, 2948
schema_redundant_indexes view, 2948
schema_tables_with_full_table_scans view, 2954
schema_table_lock_waits view, 2950

schema_table_statistics view, 2951
schema_table_statistics_with_buffer view, 2952
schema_unused_indexes view, 2954
session view, 2955
session_ssl_status view, 2955
statements_with_errors_or_warnings view, 2957
statements_with_full_table_scans view, 2958
statements_with_runtimes_in_95th_percentile view,
2959
statements_with_sorting view, 2960
statements_with_temp_tables view, 2961
statement_analysis view, 2955
statement_performance_analyzer() procedure, 2982
sys_config table, 2926
sys_get_config() function, 2995
table_exists() procedure, 2985
user_summary view, 2962
user_summary_by_file_io view, 2962
user_summary_by_file_io_type view, 2963
user_summary_by_stages view, 2963
user_summary_by_statement_latency view, 2964
user_summary_by_statement_type view, 2964
version view, 2965
version_major() function, 2996
version_minor() function, 2997
version_patch() function, 2997
waits_by_host_by_latency view, 2967
waits_by_user_by_latency view, 2967
waits_global_by_latency view, 2968
wait_classes_global_by_avg_latency view, 2966
wait_classes_global_by_latency view, 2966
x$ views, 2929
x$host_summary view, 2929
x$host_summary_by_file_io view, 2930
x$host_summary_by_file_io_type view, 2930
x$host_summary_by_stages view, 2931
x$host_summary_by_statement_latency view, 2931
x$host_summary_by_statement_type view, 2932
x$innodb_buffer_stats_by_schema view, 2933
x$innodb_buffer_stats_by_table view, 2934
x$innodb_lock_waits view, 2934
x$io_by_thread_by_latency view, 2936
x$io_global_by_file_by_bytes view, 2937
x$io_global_by_file_by_latency view, 2937
x$io_global_by_wait_by_bytes view, 2938
x$io_global_by_wait_by_latency view, 2939
x$latest_file_io view, 2940
x$memory_by_host_by_current_bytes view, 2940
x$memory_by_thread_by_current_bytes view, 2941
x$memory_by_user_by_current_bytes view, 2942
x$memory_global_by_current_bytes view, 2942
x$memory_global_total view, 2943
x$processlist view, 2944
x$schema_flattened_keys view, 2948
x$schema_index_statistics view, 2947
x$schema_tables_with_full_table_scans view, 2954
x$schema_table_lock_waits view, 2950
x$schema_table_statistics view, 2951

3592

x$schema_table_statistics_with_buffer view, 2952
x$session view, 2955
x$statements_with_errors_or_warnings view, 2957
x$statements_with_full_table_scans view, 2958
x$statements_with_runtimes_in_95th_percentile
view, 2959
x$statements_with_sorting view, 2960
x$statements_with_temp_tables view, 2961
x$statement_analysis view, 2955
x$user_summary view, 2962
x$user_summary_by_file_io view, 2962
x$user_summary_by_file_io_type view, 2963
x$user_summary_by_stages view, 2963
x$user_summary_by_statement_latency view, 2964
x$user_summary_by_statement_type view, 2964
x$waits_by_host_by_latency view, 2967
x$waits_by_user_by_latency view, 2967
x$waits_global_by_latency view, 2968
x$wait_classes_global_by_avg_latency view, 2966
x$wait_classes_global_by_latency view, 2966

SYSCONFDIR option
CMake, 177

SYSDATE(), 1438
sysdate-is-now option

mysqld, 562
syslog option

mysql, 340
mysqld_safe, 296

syslog-tag option
mysqld_safe, 296

system
privilege, 866
security, 846

system command
mysql, 345

System lock
thread state, 1179

system optimization, 1150
system table

optimizer, 1104, 1727
system tables

columns_priv table, 871
db table, 202, 871
engine_cost, 1127
engine_cost table, 871
event table, 871
func table, 871
general_log table, 872
gtid_executed table, 872, 2409
help tables, 872
host table, 871
innodb_index_stats table, 872, 1989
innodb_table_stats table, 872, 1989
ndb_binlog_index table, 872
plugin table, 872
proc table, 872
procs_priv table, 871
proxies_priv table, 202, 871

servers table, 872
server_cost, 1127
server_cost table, 871
slave_master_info table, 872
slave_relay_log_info table, 872
slave_worker_info table, 872
slow_log table, 872
tables_priv table, 871
time zone tables, 872
user table, 202, 871

system tablespace, 3447
system variable

audit_log_buffer_size, 967
audit_log_connection_policy, 967
audit_log_current_session, 968
audit_log_exclude_accounts, 968
audit_log_file, 969
audit_log_flush, 969
audit_log_format, 969
audit_log_include_accounts, 970
audit_log_policy, 970
audit_log_rotate_on_size, 971
audit_log_statement_policy, 971
audit_log_strategy, 972
autocommit, 583
automatic_sp_privileges, 584
auto_generate_certs, 584
auto_increment_increment, 2445
auto_increment_offset, 2448
avoid_temporal_upgrade, 585
back_log, 585
basedir, 586
big_tables, 586
bind_address, 586
binlogging_impossible_mode, 2494
binlog_cache_size, 2489
binlog_checksum, 2490
binlog_direct_non_transactional_updates, 2490
binlog_error_action, 2491
binlog_format, 2492
binlog_group_commit_sync_delay, 2493
binlog_group_commit_sync_no_delay_count, 2493
binlog_gtid_simple_recovery, 2504
binlog_max_flush_queue_time, 2494
binlog_order_commits, 2495
binlog_rows_query_log_events, 2496
binlog_row_image, 2495
binlog_stmt_cache_size, 2497
block_encryption_mode, 586
bulk_insert_buffer_size, 587
character_sets_dir, 590
character_set_client, 588
character_set_connection, 588
character_set_database, 588
character_set_filesystem, 589
character_set_results, 589
character_set_server, 589
character_set_system, 590

3593

check_proxy_users, 590
collation_connection, 590
collation_database, 591
collation_server, 591
completion_type, 591
concurrent_insert, 592
connect_timeout, 593
core_file, 593
datadir, 593
datetime_format, 594
date_format, 594
debug, 594
debug_sync, 595
default_authentication_plugin, 595
default_password_lifetime, 596
default_storage_engine, 597
default_tmp_storage_engine, 597
default_week_format, 598
delayed_insert_limit, 599
delayed_insert_timeout, 599
delayed_queue_size, 599
delay_key_write, 598
disabled_storage_engines, 600
disconnect_on_expired_password, 601
div_precision_increment, 601
end_markers_in_json, 602
error_count, 603
event_scheduler, 603
executed_gtids_compression_period, 2506
expire_logs_days, 603
explicit_defaults_for_timestamp, 604
external_user, 605
flush, 605
flush_time, 605
foreign_key_checks, 606
ft_boolean_syntax, 606
ft_max_word_len, 607
ft_min_word_len, 607
ft_query_expansion_limit, 607
ft_stopword_file, 608
general_log, 608
general_log_file, 608
group_concat_max_len, 609
gtid_executed, 2506
gtid_executed_compression_period, 2507
gtid_purged, 2509
have_compress, 609
have_crypt, 609
have_dynamic_loading, 609
have_geometry, 609
have_openssl, 609
have_profiling, 610
have_query_cache, 610
have_rtree_keys, 610
have_ssl, 610
have_statement_timeout, 610
have_symlink, 610
hostname, 611

identity, 611
ignore_builtin_innodb, 2118
ignore_db_dirs, 611
init_connect, 611
init_file, 612
init_slave, 2469
innodb_adaptive_flushing, 2118
innodb_adaptive_hash_index, 2119
innodb_adaptive_hash_index_parts, 2119
innodb_additional_mem_pool_size, 2120
innodb_autoextend_increment, 2123
innodb_autoinc_lock_mode, 2123
innodb_background_drop_list_empty, 2123
innodb_buffer_pool_chunk_size, 2124
innodb_buffer_pool_instances, 2126
innodb_buffer_pool_size, 2128
innodb_change_buffering, 2130
innodb_change_buffering_debug, 2131
innodb_checksums, 2133
innodb_commit_concurrency, 2134
innodb_compress_debug, 2134
innodb_concurrency_tickets, 2136
innodb_create_intrinsic, 2137
innodb_data_file_path, 2137
innodb_data_home_dir, 2138
innodb_default_row_format, 2138
innodb_disable_resize_buffer_pool_debug, 2139
innodb_disable_sort_file_cache, 2139
innodb_doublewrite, 2139
innodb_fast_shutdown, 2140
innodb_file_format, 2141
innodb_file_format_check, 2141
innodb_file_format_max, 2142
innodb_file_per_table, 2142
innodb_fill_factor, 2143
innodb_fil_make_page_dirty_debug, 2140
innodb_flush_log_at_timeout, 2144
innodb_flush_log_at_trx_commit, 2144
innodb_flush_method, 2145
innodb_flush_sync, 2147
innodb_force_recovery, 2148
innodb_io_capacity, 2154
innodb_limit_optimistic_insert_debug, 2157
innodb_locks_unsafe_for_binlog, 2158
innodb_lock_wait_timeout, 2157
innodb_log_buffer_size, 2160
innodb_log_checksums, 2162
innodb_log_files_in_group, 2163
innodb_log_file_size, 2163
innodb_log_group_home_dir, 2164
innodb_log_write_ahead_size, 2164
innodb_max_dirty_pages_pct, 2165
innodb_max_purge_lag, 2166
innodb_max_purge_lag_delay, 2167
innodb_max_undo_log_size, 2168
innodb_merge_threshold_set_all_debug, 2168
innodb_numa_interleave, 2170
innodb_old_blocks_pct, 2170

3594

innodb_old_blocks_time, 2170
innodb_open_files, 2172
innodb_optimize_point_storage, 2172
innodb_purge_batch_size, 2175
innodb_purge_rseg_truncate_frequency, 2176
innodb_purge_threads, 2176
innodb_read_ahead_threshold, 2177
innodb_read_io_threads, 2178
innodb_replication_delay, 2179
innodb_rollback_on_timeout, 2179
innodb_saved_page_number_debug, 2180
innodb_spin_wait_delay, 2181
innodb_stats_method, 2182
innodb_stats_on_metadata, 2182
innodb_stats_sample_pages, 2184
innodb_status_output, 2185
innodb_status_output_locks, 2185
innodb_strict_mode, 2185
innodb_support_xa, 2186
innodb_sync_debug, 2187
innodb_sync_spin_loops, 2187
innodb_table_locks, 2188
innodb_temp_data_file_path, 2188
innodb_thread_concurrency, 2189
innodb_thread_sleep_delay, 2191
innodb_tmpdir, 2189
innodb_trx_purge_view_update_only_debug, 2191
innodb_trx_rseg_n_slots_debug, 2191
innodb_undo_log_truncate, 2193
innodb_use_native_aio, 2194
innodb_use_sys_malloc, 2195
innodb_version, 2195
innodb_write_io_threads, 2195
insert_id, 612
interactive_timeout, 612
internal_tmp_disk_storage_engine, 613
join_buffer_size, 613
keep_files_on_create, 614
key_buffer_size, 615
key_cache_age_threshold, 616
key_cache_block_size, 616
key_cache_division_limit, 617
large_files_support, 617
large_pages, 617
large_page_size, 618
last_insert_id, 618
lc_messages, 618
lc_messages_dir, 618
lc_time_names, 618
license, 619
local_infile, 619
locked_in_memory, 620
lock_wait_timeout, 619
log_backward_compatible_user_definitions, 620
log_bin, 2497
log_bin_basename, 2497
log_bin_index, 2498
log_bin_trust_function_creators, 620

log_bin_use_v1_row_events, 2498
log_builtin_as_identified_by_password, 621
log_error, 621
log_error_verbosity, 621
log_output, 622
log_queries_not_using_indexes, 622
log_slave_updates, 2498
log_syslog, 623
log_syslog_facility, 623
log_syslog_include_pid, 624
log_syslog_tag, 624
log_throttle_queries_not_using_indexes, 625
log_timestamps, 624
log_warnings, 625
long_query_time, 627
lower_case_file_system, 628
lower_case_table_names, 628
low_priority_updates, 627
master_info_repository, 2469
master_verify_checksum, 2499
max_allowed_packet, 629
max_binlog_cache_size, 2499
max_binlog_size, 2499
max_binlog_stmt_cache_size, 2500
max_connections, 630
max_connect_errors, 629
max_delayed_threads, 630
max_digest_length, 631
max_error_count, 631
max_execution_time, 632
max_heap_table_size, 632
max_insert_delayed_threads, 633
max_join_size, 633
max_length_for_sort_data, 634
max_points_in_geometry, 634
max_prepared_stmt_count, 634
max_relay_log_size, 635
max_seeks_for_key, 635
max_sort_length, 636
max_sp_recursion_depth, 636
max_statement_time, 637
max_tmp_tables, 637
max_user_connections, 637
max_write_lock_count, 638
mecab_rc_file, 638
metadata_locks_cache_size, 639
metadata_locks_hash_instances, 639
min_examined_row_limit, 640
myisam_data_pointer_size, 640
myisam_max_sort_file_size, 641
myisam_mmap_size, 641
myisam_recover_options, 642
myisam_repair_threads, 642
myisam_sort_buffer_size, 642
myisam_stats_method, 643
myisam_use_mmap, 644
mysql_firewall_max_query_size, 985
mysql_firewall_mode, 985

3595

mysql_firewall_trace, 986
mysql_native_password_proxy_users, 644
named_pipe, 644
net_buffer_length, 645
net_read_timeout, 645
net_retry_count, 645
net_write_timeout, 646
new, 646
ngram_token_size, 646
offline_mode, 647
old, 647
old_alter_table, 648
old_passwords, 648
open_files_limit, 649
optimizer_prune_level, 650
optimizer_search_depth, 650
optimizer_switch, 650
optimizer_trace, 653
optimizer_trace_features, 653
optimizer_trace_limit, 653
optimizer_trace_max_mem_size, 654
optimizer_trace_offset, 654
performance_schema, 2894
performance_schema_accounts_size, 2895
performance_schema_digests_size, 2895
performance_schema_events_stages_history_long_size,
2896
performance_schema_events_stages_history_size,
2896
performance_schema_events_statements_history_long_size,
2896
performance_schema_events_statements_history_size,
2896
performance_schema_events_transactions_history_long_size,
2897
performance_schema_events_transactions_history_size,
2897
performance_schema_events_waits_history_long_size,
2897
performance_schema_events_waits_history_size,
2898
performance_schema_hosts_size, 2898
performance_schema_max_cond_classes, 2898
performance_schema_max_cond_instances, 2899
performance_schema_max_digest_length, 2899
performance_schema_max_file_classes, 2899
performance_schema_max_file_handles, 2900
performance_schema_max_file_instances, 2900
performance_schema_max_index_stat, 2900
performance_schema_max_memory_classes, 2901
performance_schema_max_metadata_locks, 2901
performance_schema_max_mutex_classes, 2901
performance_schema_max_mutex_instances, 2902
performance_schema_max_prepared_statements_instances,
2902
performance_schema_max_program_instances,
2903
performance_schema_max_rwlock_classes, 2902

performance_schema_max_rwlock_instances, 2903
performance_schema_max_socket_classes, 2903
performance_schema_max_socket_instances, 2904
performance_schema_max_sql_text_length, 2904
performance_schema_max_stage_classes, 2904
performance_schema_max_statement_classes,
2905
performance_schema_max_statement_stack, 2905
performance_schema_max_table_handles, 2905
performance_schema_max_table_instances, 2906
performance_schema_max_table_lock_stat, 2906
performance_schema_max_thread_classes, 2906
performance_schema_max_thread_instances, 2907
performance_schema_session_connect_attrs_size,
2907
performance_schema_setup_actors_size, 2908
performance_schema_setup_objects_size, 2908
performance_schema_users_size, 2908
pid_file, 654
plugin_dir, 654
port, 655
preload_buffer_size, 655
profiling, 655
profiling_history_size, 655
protocol_version, 656
proxy_user, 656
pseudo_slave_mode, 656
pseudo_thread_id, 656
query_alloc_block_size, 656
query_cache_limit, 657
query_cache_min_res_unit, 658
query_cache_size, 658
query_cache_type, 659
query_cache_wlock_invalidate, 659
query_prealloc_size, 660
rand_seed1, 660
rand_seed2, 661
range_alloc_block_size, 661
range_optimizer_max_mem_size, 662
rbr_exec_mode, 662
read_buffer_size, 662
read_only, 663
read_rnd_buffer_size, 664
relay_log, 2470
relay_log_basename, 2470
relay_log_index, 2470
relay_log_info_file, 2471
relay_log_info_repository, 2471
relay_log_purge, 664
relay_log_recovery, 2471
relay_log_space_limit, 665
report_host, 665
report_password, 665
report_port, 666
report_user, 666
require_secure_transport, 666
rewriter_enabled, 780
rewriter_verbose, 780

3596

rpl_semi_sync_master_enabled, 667
rpl_semi_sync_master_timeout, 667
rpl_semi_sync_master_trace_level, 667
rpl_semi_sync_master_wait_for_slave_count, 668
rpl_semi_sync_master_wait_no_slave, 668
rpl_semi_sync_master_wait_point, 669
rpl_semi_sync_slave_enabled, 670
rpl_semi_sync_slave_trace_level, 670
rpl_stop_slave_timeout, 2472
secure_auth, 670
secure_file_priv, 671
server_id, 672
session_track_gtids, 673
session_track_schema, 673
session_track_state_change, 673
session_track_system_variables, 674
sha256_password_auto_generate_rsa_keys, 675
sha256_password_private_key_path, 675
sha256_password_proxy_users, 676
sha256_password_public_key_path, 676
shared_memory, 676
shared_memory_base_name, 677
show_compatibility_56, 677
show_old_temporals, 681
simplified_binlog_gtid_recovery, 2510
skip_external_locking, 682
skip_name_resolve, 682
skip_networking, 682
skip_show_database, 683
slave_checkpoint_group, 2472
slave_checkpoint_period, 2473
slave_compressed_protocol, 2473
slave_exec_mode, 2474
slave_load_tmpdir, 2474
slave_max_allowed_packet, 2474
slave_net_timeout, 2475
slave_parallel_type, 2475
slave_parallel_workers, 2476
slave_pending_jobs_size_max, 2476
slave_preserve_commit_order, 2477
slave_rows_search_algorithms, 2478
slave_skip_errors, 2479
slave_sql_verify_checksum, 2479
slave_transaction_retries, 2480
slave_type_conversions, 2480
slow_launch_time, 683
slow_query_log, 683
slow_query_log_file, 683
socket, 684
sort_buffer_size, 684
sql_auto_is_null, 685
sql_big_selects, 685
sql_buffer_result, 686
sql_log_bin, 686
sql_log_off, 686
sql_mode, 687
sql_notes, 689
sql_quote_show_create, 690

sql_safe_updates, 690
sql_select_limit, 690
sql_slave_skip_counter, 2481
sql_warnings, 690
ssl_ca, 690
ssl_capath, 690
ssl_cert, 691
ssl_cipher, 691
ssl_crl, 691
ssl_crlpath, 691
ssl_key, 692
storage_engine, 692
super_read_only, 693
sync_binlog, 2500
sync_frm, 693
sync_master_info, 2481
sync_relay_log, 2482
sync_relay_log_info, 2483
system_time_zone, 694
sysvar_stored_program_cache, 692
table_definition_cache, 694
table_open_cache, 695
table_open_cache_instances, 695
thread_cache_size, 696
thread_concurrency, 696
thread_handling, 697
thread_stack, 697
timed_mutexes, 698
timestamp, 699
time_format, 698
time_zone, 698
tls_version, 699
tmpdir, 700
tmp_table_size, 699
transaction_alloc_block_size, 700
transaction_prealloc_size, 701
transaction_write_set_extraction, 702
tx_isolation, 702
tx_read_only, 703
unique_checks, 703
updatable_views_with_limit, 703
validate_password_dictionary_file, 857
validate_password_length, 858
validate_password_mixed_case_count, 859
validate_password_number_count, 859
validate_password_policy, 859
validate_password_special_char_count, 860
validate_user_plugins, 704
version, 704
version_comment, 704
version_compile_machine, 705
version_compile_os, 705
version_tokens_session, 791
version_tokens_session_number, 792
wait_timeout, 705
warning_count, 706

system variables, 564, 706, 1909
and replication, 2580

3597

enforce_gtid_consistency, 2505
gtid_mode, 2507
gtid_next, 2508
gtid_owned, 2509

systemd
CMake SYSTEMD_PID_DIR option, 177
CMake SYSTEMD_SERVICE_NAME option, 178
CMake WITH_SYSTEMD option, 185
managing mysqld, 156
mysqld daemonize option, 535
mysqld exit codes, 799

SYSTEMD_PID_DIR option
CMake, 177

SYSTEMD_SERVICE_NAME option
CMake, 178

system_time_zone system variable, 694
SYSTEM_USER(), 1506
sysvar_stored_program_cache system variable, 692
sys_config table

sys schema, 2926
sys_get_config() function

sys schema, 2995

T
tab (\t), 1186, 1555, 1707
tab option

mysqldump, 384
table, 3448

changing, 1604, 1611, 3375
deleting, 1682
rebuilding, 228
repair, 228
row size, 1354

table aliases, 1723
table cache, 1084
table description

myisamchk, 440
Table Dump

thread command, 1174
table is full, 586, 3356
table lock, 3448
Table Monitor

InnoDB, 2234, 2286
table names

case sensitivity, 37, 1194
table option

mysql, 340
table scan, 1973
table type, 3449

choosing, 2291
table-level locking, 1144
tables

BLACKHOLE, 2310
checking, 437
cloning, 1663
closing, 1084
compressed, 448
compressed format, 2301

const, 1104
constant, 1015
copying, 1663
counting rows, 255
creating, 243
CSV, 2307
defragment, 2300
defragmenting, 1010, 1860
deleting rows, 3373
displaying, 411
displaying status, 1905
dumping, 370, 397
dynamic, 2300
error checking, 1006
EXAMPLE, 2323
FEDERATED, 2317
flush, 357
fragmentation, 1860
HEAP, 2303
improving performance, 1080
information, 440
information about, 258
InnoDB, 1931
loading data, 244
maintenance, 362
maintenance schedule, 1009
maximum size, 3392
MEMORY, 2303
MERGE, 2312
merging, 2312
multiple, 257
MyISAM, 2295
names, 1191
open, 1084
opening, 1084
optimizing, 1009
partitioning, 2312
repair, 362
repairing, 1006
retrieving data, 245
selecting columns, 247
selecting rows, 246
sorting rows, 248
symbolic links, 1157
system, 1104
too many, 1085
unique ID for last row, 3121

TABLES
INFORMATION_SCHEMA table, 2717

tables option
mysqlcheck, 370
mysqldump, 386

TABLESPACE
INFORMATION_SCHEMA table, 2719

tablespace, 3449
tablespace dictionary, 3449
Tablespace Monitor

InnoDB, 2072, 2234, 2248

3598

tables_priv table
system table, 871

table_definition_cache system variable, 694
table_exists() procedure

sys schema, 2985
table_handles table

performance_schema, 2859
table_io_waits_summary_by_index_usage table

performance_schema, 2872
table_io_waits_summary_by_table table

performance_schema, 2871
table_lock_waits_summary_by_table table

performance_schema, 2873
table_open_cache, 1084
table_open_cache system variable, 695
table_open_cache_instances system variable, 695
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 2720
TAN(), 1423
tar

problems on Solaris, 159, 159
tc-heuristic-recover option

mysqld, 562
Tcl API, 3132
tcmalloc

memory allocation library, 294
tcp-ip option

mysqld_multi, 301
TCP/IP, 114, 120, 182, 231, 274, 296, 319, 337, 468,
484, 553, 820, 860, 884, 1162, 2460, 2815, 3347
tee command

mysql, 345
tee option

mysql, 340
temp-pool option

mysqld, 562
temporal values

JSON, 1343
temporary file

write access, 196
temporary files, 3366
temporary table, 2137, 3449
temporary tables

and replication, 2571
internal, 1085
problems, 3376

temporary tablespace, 3449
terminal monitor

defined, 237
test option

myisampack, 449
test protocol trace plugin, 3188
testing

connection to the server, 879
installation, 190
postinstallation, 189

testing mysqld
mysqltest, 3134

test_plugin_server authentication plugin, 925
TEXT

size, 1356
text collection, 3449
TEXT columns

default values, 1321
indexing, 1073, 1643

TEXT data type, 1301, 1321
text files

importing, 351, 391, 1702
thread, 3450
thread cache, 1162
thread command

Binlog Dump, 1172
Change user, 1172
Close stmt, 1172
Connect, 1172
Connect Out, 1172
Create DB, 1172
Daemon, 1172
Debug, 1173
Delayed insert, 1173
Drop DB, 1173
Error, 1173
Execute, 1173
Fetch, 1173
Field List, 1173
Init DB, 1173
Kill, 1173
Long Data, 1173
Ping, 1173
Prepare, 1173
Processlist, 1173
Query, 1173
Quit, 1173
Refresh, 1173
Register Slave, 1173
Reset stmt, 1174
Set option, 1174
Shutdown, 1174
Sleep, 1174
Statistics, 1174
Table Dump, 1174
Time, 1174

thread commands, 1172
thread state

After create, 1174
altering table, 1175
Analyzing, 1174
Changing master, 1183
Checking master version, 1181
checking permissions, 1174
checking privileges on cached query, 1180
checking query cache for query, 1180
Checking table, 1174
cleaning up, 1174
Clearing, 1183
closing tables, 1174

3599

committing alter table to storage engine, 1175
Connecting to master, 1181
converting HEAP to MyISAM, 1175
copy to tmp table, 1175
Copying to group table, 1175
Copying to tmp table, 1175
Copying to tmp table on disk, 1175
Creating index, 1175
Creating sort index, 1175
creating table, 1175
Creating tmp table, 1175
deleting from main table, 1175
deleting from reference tables, 1175
discard_or_import_tablespace, 1176
end, 1176
executing, 1176
Execution of init_command, 1176
Finished reading one binlog; switching to next binlog,
1181
Flushing tables, 1176
freeing items, 1176
FULLTEXT initialization, 1176
init, 1176
Initialized, 1183
invalidating query cache entries, 1180
Killed, 1176
Killing slave, 1183, 1183
logging slow query, 1176
login, 1176
Making temporary file (append) before replaying
LOAD DATA INFILE, 1182
Making temporary file (create) before replaying
LOAD DATA INFILE, 1182
manage keys, 1177
Master has sent all binlog to slave; waiting for more
updates, 1181
NULL, 1176
Opening master dump table, 1183
Opening table, 1177
Opening tables, 1177
optimizing, 1177
preparing, 1177
preparing for alter table, 1178
Purging old relay logs, 1177
query end, 1177
Queueing master event to the relay log, 1182
Reading event from the relay log, 1182
Reading from net, 1177
Reading master dump table data, 1183
Rebuilding the index on master dump table, 1183
Receiving from client, 1177
Reconnecting after a failed binlog dump request,
1181
Reconnecting after a failed master event read, 1182
Registering slave on master, 1181
Removing duplicates, 1177
removing tmp table, 1177
rename, 1177

rename result table, 1177
Reopen tables, 1177
Repair by sorting, 1177
Repair done, 1178
Repair with keycache, 1178
Requesting binlog dump, 1181
Rolling back, 1178
Saving state, 1178
Searching rows for update, 1178
Sending binlog event to slave, 1181
sending cached result to client, 1180
Sending to client, 1178
setup, 1178
Slave has read all relay log; waiting for more
updates, 1182
Sorting for group, 1178
Sorting for order, 1178
Sorting index, 1178
Sorting result, 1178
statistics, 1178
storing result in query cache, 1180
System lock, 1179
update, 1179
Updating, 1179
updating main table, 1179
updating reference tables, 1179
User lock, 1179
User sleep, 1179
Waiting for an event from Coordinator, 1183
Waiting for commit lock, 1179
Waiting for global read lock, 1179, 1179
Waiting for its turn to commit, 1182
Waiting for master to send event, 1181
Waiting for master update, 1181
Waiting for next activation, 1183
Waiting for query cache lock, 1180
Waiting for scheduler to stop, 1183
Waiting for schema metadata lock, 1179
Waiting for slave mutex on exit, 1182, 1182
Waiting for stored function metadata lock, 1179
Waiting for stored procedure metadata lock, 1179
Waiting for table, 1179
Waiting for table level lock, 1179
Waiting for table metadata lock, 1179
Waiting for tables, 1179
Waiting for the next event in relay log, 1182
Waiting for the slave SQL thread to free enough
relay log space, 1182
Waiting for trigger metadata lock, 1179
Waiting on cond, 1180
Waiting on empty queue, 1184
Waiting to finalize termination, 1181
Waiting to reconnect after a failed binlog dump
request, 1181
Waiting to reconnect after a failed master event
read, 1182
Waiting until MASTER_DELAY seconds after master
executed event, 1183

3600

Writing to net, 1180
thread states, 1171

event scheduler, 1183
general, 1174
query cache, 1180
replication master, 1180
replication slave, 1181, 1182, 1183

thread table
performance_schema, 2884

thread/sql/compress_gtid_table, 2410
threaded clients, 3015
threads, 357, 1891, 3133

display, 1891
monitoring, 1171, 1891, 2712, 2884

thread_cache_size system variable, 696
thread_concurrency system variable, 696
thread_handling system variable, 697
thread_stack system variable, 697
Time

thread command, 1174
TIME data type, 1298, 1309
time literals, 1188
time representation

Event Scheduler, 2674
time types, 1355
time zone problems, 3368
time zone tables, 322

system table, 872
time zones

and replication, 2575
leap seconds, 1288
support, 1285
upgrading, 1287

TIME(), 1439
TIMEDIFF(), 1439
timed_mutexes system variable, 698
timeout, 593, 1571

connect_timeout variable, 341, 362
shutdown_timeout variable, 362

timeouts (replication), 2575
TIMESTAMP

and NULL values, 3371
and replication, 2557
initialization and updating, 1313

TIMESTAMP data type, 1298, 1307
timestamp system variable, 699
TIMESTAMP(), 1439
TIMESTAMPADD(), 1439
TIMESTAMPDIFF(), 1440
timezone option

mysqld_safe, 296
time_format system variable, 698
TIME_FORMAT(), 1440
TIME_TO_SEC(), 1440
time_zone system variable, 698
TINYBLOB data type, 1301
TINYINT data type, 1294
TINYTEXT data type, 1301

tips
optimization, 1071

TLS, 929
tls-version option

mysql, 277, 340
mysqladmin, 362
mysqlbinlog, 471
mysqlcheck, 370
mysqldump, 378
mysqlimport, 396
mysqlpump, 408
mysqlshow, 416
mysqlslap, 424
mysql_secure_installation, 319
mysql_upgrade, 329

tls_version system variable, 699
TMPDIR environment variable, 197, 231, 273, 3366
TMPDIR option

CMake, 178
tmpdir option

myisamchk, 439
myisampack, 449
mysqld, 563
mysql_upgrade, 329

tmpdir system variable, 700
tmp_table_size system variable, 699
to-last-log option

mysqlbinlog, 471
tools

command-line, 98, 329
list of, 50
mysqld_multi, 300
mysqld_safe, 292

torn page, 2071, 3450
Touches(), 1533
TO_BASE64(), 1399
TO_DAYS(), 1440
TO_SECONDS(), 1441
TPS, 3450
trace DBI method, 3216
TRADITIONAL SQL mode, 753, 760
transaction, 3450
transaction access mode, 1762
transaction ID, 3450
transaction isolation level, 1762

READ COMMITTED, 1764
READ UNCOMMITTED, 1764
REPEATABLE READ, 1764
SERIALIZABLE, 1764

transaction-isolation option
mysqld, 562

transaction-read-only option
mysqld, 563

transaction-safe tables, 1931
transactions, 1937

and replication, 2575, 2576
isolation levels, 1937
metadata locking, 1148

3601

support, 1931
transaction_alloc_block_size system variable, 700
transaction_prealloc_size system variable, 701
transaction_write_set_extraction, 702
Translators

list of, 48
transparent page compression, 3450
transportable tablespace, 2007, 3450
.TRG file, 3448
trigger

restrictions, 3381
triggers, 1673, 1684, 1908, 2661, 2665

and replication, 2564, 2579
LAST_INSERT_ID(), 2665
metadata, 2669

TRIGGERS
INFORMATION_SCHEMA table, 2720

triggers option
mysqldump, 386
mysqlpump, 408

TRIM(), 1400
.TRN file, 3448
troubleshooting, 3259, 3450

ALTER TABLE problems, 3375
C API, 3120
compiling MySQL server, 187
connection problems, 884
InnoDB deadlocks, 1949
InnoDB errors, 2288
InnoDB recovery problems, 2284
InnoDB table fragmentation, 2073
replication, 2584
startup problems, 198
with MySQL Enterprise Monitor, 3223
with MySQL Performance Schema, 2913

TRUE, 1188, 1191
testing for, 1380, 1380

true literal
JSON, 1343

truncate, 3450
TRUNCATE TABLE, 1686

and replication, 2580
performance_schema database, 2804, 3389

TRUNCATE(), 1423
tuning, 1012

InnoDB compressed tables, 2047
tuple, 3451
tutorial, 237
two-phase commit, 736, 736, 2186, 3451
tx_isolation system variable, 702
tx_read_only system variable, 703
type codes

C prepared statement API, 3088
type conversions, 1373, 1378
types

columns, 1293, 1357
data, 1293
date, 1355

Date and Time, 1306
numeric, 1354
of tables, 2291
portability, 1357
string, 1356
strings, 1318
time, 1355

typographical conventions, 2
TZ environment variable, 231, 3368
tz-utc option

mysqldump, 384
mysqlpump, 408

U
UCASE(), 1400
UCS-2, 1215
ucs2 character set, 1245
UDFs, 1864, 1865

compiling, 3208
defined, 3200
return values, 3208

uid option
mysql_ssl_rsa_setup, 321

ulimit, 3359
UMASK environment variable, 231, 3359
UMASK_DIR environment variable, 231, 3360
unary minus (-), 1414
unbuffered option

mysql, 340
UNCOMPRESS(), 1497
UNCOMPRESSED_LENGTH(), 1497
undo, 3451
undo log, 2004, 2015, 2016, 3451
undo logs

InnoDB temporary tables, 1953
undo tablespace, 2015, 2016, 3451
UNHEX(), 1400
Unicode, 1215
Unicode character (\U), 1555
Unicode Collation Algorithm, 1255
UNINSTALL PLUGIN, 1867
uninstalling plugins, 768, 1867
UNION, 265, 1736
UNIQUE, 1610
unique constraint, 3451
unique ID, 3121
unique index, 3451
unique key, 3452

constraint, 41
unique keys

and partitioning keys, 2653
unique_checks system variable, 703
unique_subquery join type

optimizer, 1105
Unix

compiling clients on, 3011
UNIX_TIMESTAMP(), 1442
UNKNOWN

3602

testing for, 1380, 1380
unloading

tables, 245
UNLOCK TABLES, 1756
unnamed views, 1744
unpack option

myisamchk, 439
unsafe statement (replication)

defined, 2519
unsafe statements (replication), 2519
UNSIGNED, 1294, 1302
UNTIL, 1797
updatable views, 2680
updatable_views_with_limit system variable, 703
UPDATE, 39, 1749
update

thread state, 1179
update option

MySQLInstallerConsole, 101
update-state option

myisamchk, 438
UpdateXML(), 1480
Updating

thread state, 1179
updating main table

thread state, 1179
updating reference tables

thread state, 1179
upgrade option

MySQLInstallerConsole, 101
upgrade-system-tables option

mysql_upgrade, 329
upgrading, 207, 207

different architecture, 230
with directly-downloaded RPM Packages, 220
with MySQL APT Repository, 220
with MySQL Yum Repository, 218

upgrading MySQL, 322
UPPER(), 1400
uptime, 357
URLs for downloading MySQL, 57
USE, 1926
use command

mysql, 345
USE INDEX, 1124
USE KEY, 1124
use-default option

mysql_secure_installation, 319
use-frm option

mysqlcheck, 370
use-threads option

mysqlimport, 396
user accounts

altering, 1826
creating, 1833
renaming, 1851
resource limits, 637, 892, 1831, 1838, 1851

USER environment variable, 231, 278

User lock
thread state, 1179

user name length
and replication, 2580

user names
and passwords, 889
in account names, 877
in default accounts, 202

user option, 277
mysql, 340
mysqladmin, 362
mysqlbinlog, 471
mysqlcheck, 370
mysqld, 563
mysqldump, 378
mysqld_multi, 302
mysqld_safe, 296
mysqlimport, 396
mysqlpump, 408
mysqlshow, 416
mysqlslap, 424
mysql_install_db, 314
mysql_secure_installation, 319
mysql_upgrade, 329

user privileges
adding, 891
deleting, 892, 1842
dropping, 892, 1842

User sleep
thread state, 1179

user table
account_locked column, 875
sorting, 881
system table, 202, 871

user variables, 1208
and replication, 2580

USER(), 1506
User-defined functions, 1864, 1865
user-defined functions

adding, 3200, 3201
users

deleting, 892, 1842
root, 202

users option
mysqlpump, 408

users table
performance_schema, 2844

USER_PRIVILEGES
INFORMATION_SCHEMA table, 2722

user_summary view
sys schema, 2962

user_summary_by_file_io view
sys schema, 2962

user_summary_by_file_io_type view
sys schema, 2963

user_summary_by_stages view
sys schema, 2963

user_summary_by_statement_latency view

3603

sys schema, 2964
user_summary_by_statement_type view

sys schema, 2964
user_variables_by_thread table

performance_schema, 2846
using multiple disks to start data, 1158
UTC_DATE(), 1443
UTC_TIME(), 1443
UTC_TIMESTAMP(), 1443
UTF-8, 1215
utf16 character set, 1245
utf16le character set, 1246
utf16_bin collation, 1258
utf32 character set, 1246
utf8 character set, 1247
utf8mb3 character set, 1247
utf8mb4 character set, 1248
utilities

program-development, 273
utility programs, 272
UUID(), 1576
UUID_SHORT(), 1577

V
valid JSON values, 1343
valid numbers

examples, 1188
validate-password option

mysqld, 857
validate_password plugin, 855

configuring, 857
installing, 856
system variables, 857

validate_password_dictionary_file system variable, 857
validate_password_dictionary_file_last_parsed status
variable, 860
validate_password_dictionary_file_words_count status
variable, 860
validate_password_length system variable, 858
validate_password_mixed_case_count system
variable, 859
validate_password_number_count system variable,
859
validate_password_policy system variable, 859
validate_password_special_char_count system
variable, 860
validate_user_plugins system variable, 704
VALUES(), 1578
VARBINARY data type, 1301, 1320
VARCHAR

size, 1356
VARCHAR data type, 1300, 1318
VARCHARACTER data type, 1300
variable option

mysql_config, 484
variables

and replication, 2580
environment, 273

mysqld, 1151
server, 1909
status, 721, 1904
system, 564, 706, 1909
user, 1207

VARIANCE(), 1582
VAR_POP(), 1582
VAR_SAMP(), 1582
verbose option

innochecksum, 425
myisamchk, 435
myisampack, 449
myisam_ftdump, 431
mysql, 340
mysqladmin, 362
mysqlbinlog, 471
mysqlcheck, 370
mysqld, 564
mysqldump, 380
mysqldumpslow, 482
mysqld_multi, 302
mysqlimport, 397
mysqlshow, 416
mysqlslap, 424
mysql_config_editor, 457
mysql_install_db, 314
mysql_plugin, 316
mysql_ssl_rsa_setup, 322
mysql_upgrade, 329
my_print_defaults, 485
perror, 487

verify-binlog-checksum option
mysqlbinlog, 471

version
choosing, 55
latest, 57

VERSION file
CMake, 189

version option
comp_err, 304
innochecksum, 425
myisamchk, 435
myisampack, 449
mysql, 340
mysqladmin, 362
mysqlbinlog, 471
mysqlcheck, 370
mysqld, 564
mysqldump, 380
mysqld_multi, 302
mysqlimport, 397
mysqlpump, 409
mysqlshow, 416
mysqlslap, 424
mysql_config, 484
mysql_config_editor, 457
mysql_install_db, 314
mysql_plugin, 316

3604

mysql_ssl_rsa_setup, 322
my_print_defaults, 485
perror, 487
resolveip, 488
resolve_stack_dump, 486

version system variable, 704
Version Tokens, 781
Version Tokens plugin

components, 781
installing, 781
reference, 788
uninstalling, 781
using, 782

version view
sys schema, 2965

VERSION(), 1506
version-check option

mysql_upgrade, 329
version_comment system variable, 704
version_compile_machine system variable, 705
version_compile_os system variable, 705
version_major() function

sys schema, 2996
version_minor() function

sys schema, 2997
version_patch() function

sys schema, 2997
version_tokens_session system variable, 791
version_tokens_session_number system variable, 792
vertical option

mysql, 340
mysqladmin, 362

victim, 3452
Vietnamese, 3241
view

restrictions, 3386
views, 1676, 2661, 2677

algorithms, 2678
and replication, 2582
metadata, 2683
optimization, 1055
updatable, 1676, 2680

VIEWS
INFORMATION_SCHEMA table, 2722

Views
limitations, 3387
privileges, 3387
problems, 3387

W
wait, 3452
wait option

myisamchk, 435
myisampack, 449
mysql, 341
mysqladmin, 362

Waiting for an event from Coordinator
thread state, 1183

Waiting for commit lock
thread state, 1179

Waiting for event metadata lock
thread state, 1179

Waiting for event read lock
thread state, 1179

Waiting for global read lock
thread state, 1179

Waiting for its turn to commit
thread state, 1182

Waiting for master to send event
thread state, 1181

Waiting for master update
thread state, 1181

Waiting for next activation
thread state, 1183

Waiting for query cache lock
thread state, 1180

Waiting for scheduler to stop
thread state, 1183

Waiting for schema metadata lock
thread state, 1179

Waiting for slave mutex on exit
thread state, 1182, 1182

Waiting for stored function metadata lock
thread state, 1179

Waiting for stored procedure metadata lock
thread state, 1179

Waiting for table
thread state, 1179

Waiting for table level lock
thread state, 1179

Waiting for table metadata lock
thread state, 1179

Waiting for tables
thread state, 1179

Waiting for the next event in relay log
thread state, 1182

Waiting for the slave SQL thread to free enough relay
log space

thread state, 1182
Waiting for trigger metadata lock

thread state, 1179
Waiting on cond

thread state, 1180
Waiting on empty queue

thread state, 1184
Waiting to finalize termination

thread state, 1181
Waiting to reconnect after a failed binlog dump request

thread state, 1181
Waiting to reconnect after a failed master event read

thread state, 1182
Waiting until MASTER_DELAY seconds after master
executed event

thread state, 1183
waits_by_host_by_latency view

sys schema, 2967

3605

waits_by_user_by_latency view
sys schema, 2967

waits_global_by_latency view
sys schema, 2968

wait_classes_global_by_avg_latency view
sys schema, 2965

wait_classes_global_by_latency view
sys schema, 2966

WAIT_FOR_EXECUTED_GTID_SET(), 1562
wait_timeout system variable, 705
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), 1561
warm backup, 3452
warm up, 3452
warnings command

mysql, 345
warning_count system variable, 706
watch-progress option

mysqlpump, 409
WEEK(), 1443
WEEKDAY(), 1444
WEEKOFYEAR(), 1445
WEIGHT_STRING(), 1401
Well-Known Binary format, 1337
Well-Known Text format, 1335
WHERE, 1015

with SHOW, 2694, 2760
where option

mysqldump, 387
WHILE, 1797

labels, 1791
widths

display, 1293
Wildcard character (%), 1186
Wildcard character (_), 1186
wildcards

and LIKE, 1077
in account names, 878
in mysql.columns_priv table, 882
in mysql.db table, 882
in mysql.procs_priv table, 882
in mysql.tables_priv table, 882

Windows, 3452
compiling clients on, 3013
MySQL limitations, 3394, 3395
path name separators, 284
pluggable authentication, 918
upgrading, 124

windows option
mysql_install_db, 314

WIN_DEBUG_NO_INLINE option
CMake, 182

Within(), 1534
WITHOUT_SERVER option

CMake, 186
WITH_ASAN option

CMake, 182
WITH_AUTHENTICATION_PAM option

CMake, 183

WITH_BOOST option
CMake, 183

WITH_CLIENT_PROTOCOL_TRACING option
CMake, 183

WITH_DEBUG option
CMake, 183

WITH_DEFAULT_COMPILER_OPTIONS option
CMake, 186

WITH_DEFAULT_FEATURE_SET option
CMake, 184

WITH_EDITLINE option
CMake, 184

WITH_EMBEDDED_SERVER option
CMake, 184

WITH_EMBEDDED_SHARED_LIBRARY option
CMake, 184

WITH_EXTRA_CHARSETS option
CMake, 184

WITH_INNODB_EXTRA_DEBUG option
CMake, 184

WITH_INNODB_MEMCACHED option
CMake, 184

WITH_LIBEVENT option
CMake, 184

WITH_LIBWRAP option
CMake, 184

WITH_MECAB option
CMake, 185

WITH_MSAN option
CMake, 184

WITH_MSCRT_DEBUG option
CMake, 185

WITH_SSL option
CMake, 185

WITH_SYSTEMD option
CMake, 185

WITH_TEST_TRACE_PLUGIN option
CMake, 185

WITH_UBSAN option
CMake, 186

WITH_UNIXODBC option
CMake, 186

WITH_VALGRIND option
CMake, 186

WITH_ZLIB option
CMake, 186

WKB format, 1337
WKT format, 1335
workload, 3453
wrappers

Eiffel, 3132
write access

tmp, 196
write combining, 3453
write option

innochecksum, 427
write-binlog option

mysqlcheck, 370

3606

mysql_upgrade, 329
write_buffer_size myisamchk variable, 435
Writing to net

thread state, 1180

X
x$ views

sys schema, 2929
x$host_summary view

sys schema, 2929
x$host_summary_by_file_io view

sys schema, 2930
x$host_summary_by_file_io_type view

sys schema, 2930
x$host_summary_by_stages view

sys schema, 2931
x$host_summary_by_statement_latency view

sys schema, 2931
x$host_summary_by_statement_type view

sys schema, 2932
x$innodb_buffer_stats_by_schema view

sys schema, 2933
x$innodb_buffer_stats_by_table view

sys schema, 2934
x$innodb_lock_waits view

sys schema, 2934
x$io_by_thread_by_latency view

sys schema, 2936
x$io_global_by_file_by_bytes view

sys schema, 2937
x$io_global_by_file_by_latency view

sys schema, 2937
x$io_global_by_wait_by_bytes view

sys schema, 2938
x$io_global_by_wait_by_latency view

sys schema, 2939
x$latest_file_io view

sys schema, 2940
x$memory_by_host_by_current_bytes view

sys schema, 2940
x$memory_by_thread_by_current_bytes view

sys schema, 2941
x$memory_by_user_by_current_bytes view

sys schema, 2942
x$memory_global_by_current_bytes view

sys schema, 2942
x$memory_global_total view

sys schema, 2943
x$processlist view

sys schema, 2944
x$schema_flattened_keys view

sys schema, 2948
x$schema_index_statistics view

sys schema, 2947
x$schema_tables_with_full_table_scans view

sys schema, 2954
x$schema_table_lock_waits view

sys schema, 2950

x$schema_table_statistics view
sys schema, 2951

x$schema_table_statistics_with_buffer view
sys schema, 2952

x$session view
sys schema, 2955

x$statements_with_errors_or_warnings view
sys schema, 2957

x$statements_with_full_table_scans view
sys schema, 2958

x$statements_with_runtimes_in_95th_percentile view
sys schema, 2959

x$statements_with_sorting view
sys schema, 2960

x$statements_with_temp_tables view
sys schema, 2961

x$statement_analysis view
sys schema, 2955

x$user_summary view
sys schema, 2962

x$user_summary_by_file_io view
sys schema, 2962

x$user_summary_by_file_io_type view
sys schema, 2963

x$user_summary_by_stages view
sys schema, 2963

x$user_summary_by_statement_latency view
sys schema, 2964

x$user_summary_by_statement_type view
sys schema, 2964

x$waits_by_host_by_latency view
sys schema, 2967

x$waits_by_user_by_latency view
sys schema, 2967

x$waits_global_by_latency view
sys schema, 2968

x$wait_classes_global_by_avg_latency view
sys schema, 2966

x$wait_classes_global_by_latency view
sys schema, 2966

X(), 1522
X509/Certificate, 930
XA, 3453
XA BEGIN, 1766
XA COMMIT, 1766
XA PREPARE, 1766
XA RECOVER, 1766
XA ROLLBACK, 1766
XA START, 1766
XA transactions, 1765

restrictions, 3388
transaction identifiers, 1766

xid
XA transaction identifier, 1766

xml option
mysql, 341
mysqldump, 384

XOR

3607

bitwise, 1487
logical, 1385

Y
Y(), 1522
yaSSL, 929, 935

compared to OpenSSL, 931
YEAR data type, 1298, 1309
YEAR(), 1445
YEARWEEK(), 1445
Yen sign (Japanese), 3241
young, 3453
Your password does not satisfy the current policy
requirements

password error, 856

Z
ZEROFILL, 1294, 1302, 3125
ZFS, 2334
zlib_decompress, 273, 488

3608

3609

C Function Index

my_init()
Section 23.8.6, “C API Function Overview”
Section 23.8.12.1, “my_init()”
Section 23.8.12.3, “mysql_thread_init()”

mysql_affected_rows()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 13.2.1, “CALL Syntax”
Section 12.14, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.7.49, “mysql_num_rows()”
Section 23.8.11.1, “mysql_stmt_affected_rows()”
Section 23.8.7.77, “mysql_use_result()”
Section 13.2.8, “REPLACE Syntax”
Section 23.8.15.2, “What Results You Can Get from a
Query”

mysql_autocommit()
Section 23.8.6, “C API Function Overview”

mysql_change_user()
Section 23.8.6, “C API Function Overview”
Section 4.5.1.2, “mysql Commands”
Section 23.8.7.3, “mysql_change_user()”
Section 23.8.7.60, “mysql_reset_connection()”

mysql_character_set_name()
Section 23.8.6, “C API Function Overview”

mysql_client_find_plugin()
Section 23.8.6, “C API Function Overview”

mysql_client_register_plugin()
Section 23.8.6, “C API Function Overview”

mysql_close()
Section 23.8.6, “C API Function Overview”
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 23.8.7.5, “mysql_close()”
Section 23.8.7.6, “mysql_commit()”
Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.37, “mysql_init()”
Section 23.8.7.61, “mysql_rollback()”

mysql_commit()
Section 23.8.6, “C API Function Overview”

mysql_connect()
Section 23.8.6, “C API Function Overview”

Section 23.8.12.1, “my_init()”
Section 23.8.7.5, “mysql_close()”
Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.50, “mysql_options()”
Section 23.8.12.3, “mysql_thread_init()”
Section 23.8.4.3, “Writing C API Threaded Client
Programs”

mysql_create_db()
Section 23.8.6, “C API Function Overview”

mysql_data_seek()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.9, “mysql_data_seek()”
Section 23.8.7.62, “mysql_row_seek()”
Section 23.8.7.77, “mysql_use_result()”

mysql_debug()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.10, “mysql_debug()”

mysql_drop_db()
Section 23.8.6, “C API Function Overview”

mysql_dump_debug_info()
Section 23.8.6, “C API Function Overview”

mysql_eof()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.13, “mysql_eof()”

mysql_errno()
Section 23.8.7, “C API Function Descriptions”
Section 23.8.6, “C API Function Overview”
Section 23.8.14.1, “mysql_client_find_plugin()”
Section 23.8.14.2, “mysql_client_register_plugin()”
Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.14, “mysql_errno()”
Section 23.8.7.22, “mysql_field_count()”
Section 23.8.14.3, “mysql_load_plugin()”
Section 23.8.7.48, “mysql_num_fields()”
Section 23.8.7.72, “mysql_sqlstate()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Signal Condition Information Items
Section 6.3.15.3, “The Audit Log File”
Section B.2, “Types of Error Values”
Section 23.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query() Returns
Success”

mysql_error()
Section 23.8.7, “C API Function Descriptions”
Section 23.8.6, “C API Function Overview”
Section 23.8.14.1, “mysql_client_find_plugin()”

3610

Section 23.8.14.2, “mysql_client_register_plugin()”
Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.15, “mysql_error()”
Section 23.8.14.3, “mysql_load_plugin()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Signal Condition Information Items
Section B.2, “Types of Error Values”
Section 23.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query() Returns
Success”

mysql_escape_string()
Section 23.8.6, “C API Function Overview”
Section 6.1.7, “Client Programming Security
Guidelines”
Section 23.8.7.16, “mysql_escape_string()”

mysql_fetch_field()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.23, “mysql_field_seek()”
Section 23.8.7.24, “mysql_field_tell()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_fetch_field_direct()
Section 23.8.6, “C API Function Overview”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_fetch_fields()
Section 23.8.6, “C API Function Overview”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_fetch_lengths()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.20, “mysql_fetch_lengths()”
Section 23.8.7.21, “mysql_fetch_row()”

mysql_fetch_row()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 15.8.1, “FEDERATED Storage Engine
Overview”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.14, “mysql_errno()”
Section 23.8.7.20, “mysql_fetch_lengths()”
Section 23.8.7.21, “mysql_fetch_row()”
Section 23.8.7.63, “mysql_row_tell()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Section 23.8.15.2, “What Results You Can Get from a
Query”

mysql_field_count()
Section 23.8.6, “C API Function Overview”

Section 23.8.7.22, “mysql_field_count()”
Section 23.8.7.48, “mysql_num_fields()”
Section 23.8.7.53, “mysql_query()”
Section 23.8.7.57, “mysql_real_query()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query() Returns
Success”

mysql_field_seek()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.24, “mysql_field_tell()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_field_tell()
Section 23.8.6, “C API Function Overview”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_free_result()
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section B.5.2.14, “Commands out of sync”
Section 23.8.7.25, “mysql_free_result()”
Section 23.8.7.42, “mysql_list_dbs()”
Section 23.8.7.43, “mysql_list_fields()”
Section 23.8.7.44, “mysql_list_processes()”
Section 23.8.7.45, “mysql_list_tables()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”

mysql_get_character_set_info()
Section 23.8.6, “C API Function Overview”
Section 10.4.2, “Choosing a Collation ID”

mysql_get_client_info()
Section 23.8.6, “C API Function Overview”
Section 23.8.4.5, “C API Server and Client Library
Versions”
Section 23.8.7.7, “mysql_connect()”

mysql_get_client_version()
Section 23.8.6, “C API Function Overview”
Section 23.8.4.5, “C API Server and Client Library
Versions”

mysql_get_host_info()
Section 23.8.6, “C API Function Overview”

mysql_get_option()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.50, “mysql_options()”

3611

mysql_get_proto_info()
Section 23.8.6, “C API Function Overview”

mysql_get_server_info()
Section 23.8.6, “C API Function Overview”
Section 23.8.4.5, “C API Server and Client Library
Versions”

mysql_get_server_version()
Section 23.8.6, “C API Function Overview”
Section 23.8.4.5, “C API Server and Client Library
Versions”

mysql_get_ssl_cipher()
Section 23.8.6, “C API Function Overview”
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 23.8.7.34, “mysql_get_ssl_cipher()”

mysql_hex_string()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.35, “mysql_hex_string()”

mysql_info()
Section 13.1.6, “ALTER TABLE Syntax”
Section 23.8.6, “C API Function Overview”
Section 13.2.5, “INSERT Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 23.8.7.36, “mysql_info()”
Section 23.8.7.50, “mysql_options()”
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 13.2.11, “UPDATE Syntax”
Section 23.8.15.2, “What Results You Can Get from a
Query”

mysql_init()
Section 23.8.6, “C API Function Overview”
Section 23.8.12.1, “my_init()”
Section 23.8.7.5, “mysql_close()”
Section 23.8.7.34, “mysql_get_ssl_cipher()”
Section 23.8.7.37, “mysql_init()”
Section 23.8.7.41, “mysql_library_init()”
Section 23.8.7.50, “mysql_options()”
Section 23.8.7.54, “mysql_real_connect()”
Section 23.8.7.73, “mysql_ssl_set()”
Section 23.8.12.3, “mysql_thread_init()”
Section 23.8.4.3, “Writing C API Threaded Client
Programs”

mysql_insert_id()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 13.1.14, “CREATE TABLE Syntax”
Section 23.8.15.3, “How to Get the Unique ID for the
Last Inserted Row”

Section 12.14, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 23.8.7.38, “mysql_insert_id()”
Section 5.1.4, “Server System Variables”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 23.8.15.2, “What Results You Can Get from a
Query”

mysql_kill()
Section 23.8.6, “C API Function Overview”
Section 23.8.16, “Controlling Automatic Reconnection
Behavior”
Section 23.8.7.39, “mysql_kill()”
Section 23.8.7.76, “mysql_thread_id()”

mysql_library_end()
Section 23.8.13, “C API Embedded Server Function
Descriptions”
Section 23.8.6, “C API Function Overview”
Section 23.7, “libmysqld, the Embedded MySQL Server
Library”
Section 23.8.7.40, “mysql_library_end()”
Section 23.8.7.41, “mysql_library_init()”
Section 23.8.13.2, “mysql_server_end()”

mysql_library_init()
Section 23.8.13, “C API Embedded Server Function
Descriptions”
Section 23.8.6, “C API Function Overview”
Section 23.7, “libmysqld, the Embedded MySQL Server
Library”
Section 23.8.12.1, “my_init()”
Section 23.8.7.37, “mysql_init()”
Section 23.8.7.41, “mysql_library_init()”
Section 23.8.14.3, “mysql_load_plugin()”
Section 23.8.13.1, “mysql_server_init()”
Section 23.8.12.3, “mysql_thread_init()”
Section 23.7.3, “Options with the Embedded Server”
Section 23.8.4.3, “Writing C API Threaded Client
Programs”

mysql_list_dbs()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.25, “mysql_free_result()”
Section 23.8.7.42, “mysql_list_dbs()”

mysql_list_fields()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.7.43, “mysql_list_fields()”

mysql_list_processes()
Section 23.8.6, “C API Function Overview”

mysql_list_tables()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.45, “mysql_list_tables()”

3612

mysql_load_plugin()
Section 23.8.6, “C API Function Overview”
Client Plugin Descriptors
Section 23.8.14.3, “mysql_load_plugin()”
Section 23.8.14.4, “mysql_load_plugin_v()”

mysql_load_plugin_v()
Section 23.8.6, “C API Function Overview”
Section 23.8.14.3, “mysql_load_plugin()”

mysql_more_results()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 23.8.7.46, “mysql_more_results()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.11.17, “mysql_stmt_next_result()”

mysql_next_result()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 13.2.1, “CALL Syntax”
Section 23.8.7.46, “mysql_more_results()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.7.54, “mysql_real_connect()”
Section 23.8.7.70, “mysql_set_server_option()”
Section 23.8.7.75, “mysql_store_result()”

mysql_num_fields()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.18, “mysql_fetch_field_direct()”
Section 23.8.7.21, “mysql_fetch_row()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_num_rows()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.9, “mysql_data_seek()”
Section 23.8.7.49, “mysql_num_rows()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Section 23.8.15.2, “What Results You Can Get from a
Query”

mysql_options()
Section 23.8.14, “C API Client Plugin Functions”
Section 23.8.6, “C API Function Overview”
Section 23.8.9, “C API Prepared Statement Data
Structures”
Client Plugin Descriptors
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 10.1.4, “Connection Character Sets and
Collations”

Section 23.8.16, “Controlling Automatic Reconnection
Behavior”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.30, “mysql_get_option()”
Section 23.8.7.50, “mysql_options()”
Section 23.8.7.51, “mysql_options4()”
Section 23.8.7.52, “mysql_ping()”
Section 23.8.7.54, “mysql_real_connect()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 21.9.9, “Performance Schema Connection
Attribute Tables”
Section 24.2.2, “Plugin API Components”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 6.3.9.8, “The Cleartext Client-Side
Authentication Plugin”
Section 21.9.9.1, “The session_account_connect_attrs
Table”
Section 21.9.9.2, “The session_connect_attrs Table”
Section 6.3.1, “User Names and Passwords”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”
Using the Authentication Plugins
Using Your Own Protocol Trace Plugins

mysql_options4()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.50, “mysql_options()”
Section 23.8.7.51, “mysql_options4()”
Section 21.9.9, “Performance Schema Connection
Attribute Tables”
Section 21.9.9.1, “The session_account_connect_attrs
Table”
Section 21.9.9.2, “The session_connect_attrs Table”

mysql_ping()
Section 23.8.6, “C API Function Overview”
Section 23.8.16, “Controlling Automatic Reconnection
Behavior”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.52, “mysql_ping()”
Section 23.8.7.76, “mysql_thread_id()”

mysql_plugin_options()
Section 23.8.6, “C API Function Overview”

mysql_query()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 13.2.1, “CALL Syntax”
Section 23.8.15.3, “How to Get the Unique ID for the
Last Inserted Row”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.8, “mysql_create_db()”

3613

Section 23.8.7.11, “mysql_drop_db()”
Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.39, “mysql_kill()”
Section 23.8.7.43, “mysql_list_fields()”
Section 23.8.7.44, “mysql_list_processes()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.7.53, “mysql_query()”
Section 23.8.7.54, “mysql_real_connect()”
Section 23.8.7.57, “mysql_real_query()”
Section 23.8.7.58, “mysql_refresh()”
Section 23.8.7.59, “mysql_reload()”
Section 23.8.7.69, “mysql_set_local_infile_handler()”
Section 23.8.7.70, “mysql_set_server_option()”
Section 23.8.7.71, “mysql_shutdown()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Section 23.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query() Returns
Success”
Section 23.8.4.3, “Writing C API Threaded Client
Programs”

mysql_real_connect()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 13.2.1, “CALL Syntax”
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Chapter 12, Functions and Operators
Section 12.14, “Information Functions”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.3, “mysql_change_user()”
Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.37, “mysql_init()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.7.50, “mysql_options()”
Section 23.8.7.54, “mysql_real_connect()”
Section 23.8.7.70, “mysql_set_server_option()”
Section 23.8.7.72, “mysql_sqlstate()”
Section 23.8.7.73, “mysql_ssl_set()”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 5.1.4, “Server System Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 19.2.1, “Stored Routine Syntax”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”

mysql_real_escape_string()
Section 23.8.6, “C API Function Overview”
Section 6.1.7, “Client Programming Security
Guidelines”
Section 23.8.7.55, “mysql_real_escape_string()”

Section 23.8.7.67, “mysql_set_character_set()”
Section 11.5.3.3, “Populating Spatial Columns”
Section 9.1.1, “String Literals”

mysql_real_escape_string_quote()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.16, “mysql_escape_string()”
Section 23.8.7.55, “mysql_real_escape_string()”
Section 23.8.7.56, “mysql_real_escape_string_quote()”

mysql_real_query()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 13.2.1, “CALL Syntax”
Section 15.8.1, “FEDERATED Storage Engine
Overview”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.7.53, “mysql_query()”
Section 23.8.7.54, “mysql_real_connect()”
Section 23.8.7.57, “mysql_real_query()”
Section 23.8.7.70, “mysql_set_server_option()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”

mysql_refresh()
Section 23.8.6, “C API Function Overview”

mysql_reload()
Section 23.8.6, “C API Function Overview”

mysql_reset_connection()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.3, “mysql_change_user()”
Section 23.8.7.60, “mysql_reset_connection()”

mysql_rollback()
Section 23.8.6, “C API Function Overview”

mysql_row_seek()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.62, “mysql_row_seek()”
Section 23.8.7.63, “mysql_row_tell()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”

mysql_row_tell()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.62, “mysql_row_seek()”
Section 23.8.7.63, “mysql_row_tell()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”

mysql_select_db()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.64, “mysql_select_db()”

3614

mysql_server_end()
Section 23.8.6, “C API Function Overview”
Section 23.8.13.2, “mysql_server_end()”

mysql_server_init()
Section 23.8.6, “C API Function Overview”
Section 23.8.12.1, “my_init()”
Section 23.8.13.1, “mysql_server_init()”
Section 23.8.12.3, “mysql_thread_init()”

mysql_session_track_get_first()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.65, “mysql_session_track_get_first()”
Section 23.8.7.66, “mysql_session_track_get_next()”

mysql_session_track_get_next()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.65, “mysql_session_track_get_first()”
Section 23.8.7.66, “mysql_session_track_get_next()”

mysql_set_character_set()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.26, “mysql_get_character_set_info()”
Section 23.8.7.55, “mysql_real_escape_string()”
Section 23.8.7.56, “mysql_real_escape_string_quote()”

mysql_set_local_infile_default()
Section 23.8.6, “C API Function Overview”

mysql_set_local_infile_handler()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.68, “mysql_set_local_infile_default()”
Section 23.8.7.69, “mysql_set_local_infile_handler()”

mysql_set_server_option()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 23.8.7.70, “mysql_set_server_option()”

mysql_shutdown()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.71, “mysql_shutdown()”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.6.7, “SHUTDOWN Syntax”

mysql_sqlstate()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.14, “mysql_errno()”
Section 23.8.7.72, “mysql_sqlstate()”
Signal Condition Information Items
Section B.2, “Types of Error Values”

mysql_ssl_set()
Section 23.8.6, “C API Function Overview”

Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 23.8.7.54, “mysql_real_connect()”
Section 23.8.7.73, “mysql_ssl_set()”
Section 6.3.12, “Using Secure Connections”

mysql_stat()
Section 23.8.6, “C API Function Overview”

mysql_stmt_affected_rows()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.1, “mysql_stmt_affected_rows()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.17, “mysql_stmt_next_result()”
Section 23.8.11.18, “mysql_stmt_num_rows()”

mysql_stmt_attr_get()
Section 23.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_attr_set()
Section 23.8.5, “C API Data Structures”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.9.2, “C API Prepared Statement Type
Conversions”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.28, “mysql_stmt_store_result()”
Section C.3, “Restrictions on Server-Side Cursors”

mysql_stmt_bind_param()
Section 23.8.9, “C API Prepared Statement Data
Structures”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.19, “C API Prepared Statement Handling
of Date and Time Values”
Section 23.8.11.4, “mysql_stmt_bind_param()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.21, “mysql_stmt_prepare()”
Section 23.8.11.26, “mysql_stmt_send_long_data()”

mysql_stmt_bind_result()
Section 23.8.9, “C API Prepared Statement Data
Structures”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.19, “C API Prepared Statement Handling
of Date and Time Values”
Section 23.8.11.5, “mysql_stmt_bind_result()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.12, “mysql_stmt_fetch_column()”
Section 23.8.11.17, “mysql_stmt_next_result()”

3615

Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_close()
Section 23.8.9, “C API Prepared Statement Data
Structures”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.6, “mysql_stmt_close()”
Section 23.8.11.15, “mysql_stmt_init()”
Section 21.9.6.4, “The prepared_statements_instances
Table”

mysql_stmt_data_seek()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.7, “mysql_stmt_data_seek()”
Section 23.8.11.24, “mysql_stmt_row_seek()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_errno()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.8, “mysql_stmt_errno()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section B.2, “Types of Error Values”

mysql_stmt_error()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.9, “mysql_stmt_error()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.21, “mysql_stmt_prepare()”
Section B.2, “Types of Error Values”

mysql_stmt_execute()
Section 23.8.9, “C API Prepared Statement Data
Structures”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.19, “C API Prepared Statement Handling
of Date and Time Values”
Section 23.8.9.2, “C API Prepared Statement Type
Conversions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 23.8.11.1, “mysql_stmt_affected_rows()”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.17, “mysql_stmt_next_result()”
Section 23.8.11.26, “mysql_stmt_send_long_data()”
Section 23.8.11.28, “mysql_stmt_store_result()”
Section 21.9.6.4, “The prepared_statements_instances
Table”

mysql_stmt_fetch()
Section 23.8.9, “C API Prepared Statement Data
Structures”

Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.9.2, “C API Prepared Statement Type
Conversions”
Section 23.8.11.5, “mysql_stmt_bind_result()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.11.25, “mysql_stmt_row_tell()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_fetch_column()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.11, “mysql_stmt_fetch()”

mysql_stmt_field_count()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.13, “mysql_stmt_field_count()”

mysql_stmt_free_result()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.14, “mysql_stmt_free_result()”
Section 23.8.11.17, “mysql_stmt_next_result()”

mysql_stmt_init()
Section 23.8.9, “C API Prepared Statement Data
Structures”
Section 23.8.11, “C API Prepared Statement Function
Descriptions”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.8, “C API Prepared Statements”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.21, “mysql_stmt_prepare()”

mysql_stmt_insert_id()
Section 23.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_next_result()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.20, “C API Support for Prepared CALL
Statements”
Section 13.2.1, “CALL Syntax”
Section 23.8.11.17, “mysql_stmt_next_result()”

mysql_stmt_num_rows()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.7, “mysql_stmt_data_seek()”
Section 23.8.11.18, “mysql_stmt_num_rows()”

3616

mysql_stmt_param_count()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.10, “mysql_stmt_execute()”

mysql_stmt_param_metadata()
Section 23.8.10, “C API Prepared Statement Function
Overview”

mysql_stmt_prepare()
Section 23.8.9, “C API Prepared Statement Data
Structures”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.19, “C API Prepared Statement Handling
of Date and Time Values”
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 8.10.3.1, “How the Query Cache Operates”
Section 23.8.11.4, “mysql_stmt_bind_param()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.13, “mysql_stmt_field_count()”
Section 23.8.11.21, “mysql_stmt_prepare()”
Section 23.8.11.22, “mysql_stmt_reset()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 21.9.6.4, “The prepared_statements_instances
Table”

mysql_stmt_reset()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.26, “mysql_stmt_send_long_data()”

mysql_stmt_result_metadata()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.9.2, “C API Prepared Statement Type
Conversions”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_row_seek()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.24, “mysql_stmt_row_seek()”
Section 23.8.11.25, “mysql_stmt_row_tell()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_row_tell()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.24, “mysql_stmt_row_seek()”
Section 23.8.11.25, “mysql_stmt_row_tell()”

Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_send_long_data()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.22, “mysql_stmt_reset()”
Section 23.8.11.26, “mysql_stmt_send_long_data()”
Section 5.1.4, “Server System Variables”

mysql_stmt_sqlstate()
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.27, “mysql_stmt_sqlstate()”
Section B.2, “Types of Error Values”

mysql_stmt_store_result()
Section 23.8.5, “C API Data Structures”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.7, “mysql_stmt_data_seek()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 23.8.11.24, “mysql_stmt_row_seek()”
Section 23.8.11.25, “mysql_stmt_row_tell()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_store_result()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section B.5.2.14, “Commands out of sync”
Section 15.8.1, “FEDERATED Storage Engine
Overview”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.9, “mysql_data_seek()”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.21, “mysql_fetch_row()”
Section 23.8.7.22, “mysql_field_count()”
Section 23.8.7.25, “mysql_free_result()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.7.48, “mysql_num_fields()”
Section 23.8.7.49, “mysql_num_rows()”
Section 23.8.7.62, “mysql_row_seek()”
Section 23.8.7.63, “mysql_row_tell()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Section 23.8.15.2, “What Results You Can Get from a
Query”
Section 23.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query() Returns
Success”

3617

Section 23.8.4.3, “Writing C API Threaded Client
Programs”

mysql_thread_end()
Section 23.8.6, “C API Function Overview”
Section 23.7, “libmysqld, the Embedded MySQL Server
Library”
Section 23.8.12.2, “mysql_thread_end()”
Section 23.8.4.3, “Writing C API Threaded Client
Programs”

mysql_thread_id()
Section 23.8.6, “C API Function Overview”
Section 23.8.16, “Controlling Automatic Reconnection
Behavior”
Section 23.8.7.52, “mysql_ping()”
Section 23.8.7.76, “mysql_thread_id()”

mysql_thread_init()
Section 23.8.6, “C API Function Overview”
Section 23.7, “libmysqld, the Embedded MySQL Server
Library”
Section 23.8.12.1, “my_init()”
Section 23.8.12.2, “mysql_thread_end()”
Section 23.8.12.3, “mysql_thread_init()”
Section 23.8.4.3, “Writing C API Threaded Client
Programs”

mysql_thread_safe()
Section 23.8.6, “C API Function Overview”

mysql_use_result()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section B.5.2.14, “Commands out of sync”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 23.8.7.9, “mysql_data_seek()”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.21, “mysql_fetch_row()”
Section 23.8.7.25, “mysql_free_result()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.7.48, “mysql_num_fields()”
Section 23.8.7.49, “mysql_num_rows()”
Section 23.8.7.62, “mysql_row_seek()”
Section 23.8.7.63, “mysql_row_tell()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Section B.5.2.8, “Out of memory”
Section 23.8.15.2, “What Results You Can Get from a
Query”
Section 23.8.4.3, “Writing C API Threaded Client
Programs”

mysql_warning_count()
Section 23.8.6, “C API Function Overview”

Section 23.8.7.47, “mysql_next_result()”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section B.2, “Types of Error Values”

3618

3619

Command Index
A | B | C | D | E | F | G | H | I | K | L | M | N | O | P | R | S
| T | U | V | W | Y | Z

A

[index top [3619]]

Access
Section 13.2.2, “DELETE Syntax”

addgroup
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

addr2line
Section 24.5.1.5, “Using a Stack Trace”

adduser
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

apt-get
Section 16.3.1, “Installing memcached”
Section 2.5.7, “Installing MySQL on Linux from the
Native Software Repositories”
Section 2.5.6, “Installing MySQL on Linux Using Debian
Packages from Oracle”
Section 16.3.3.3, “Using libmemcached with C and C
++”

B

[index top [3619]]

bash
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 2.4.1, “General Notes on Installing MySQL on
OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

binary-configure.sh
Section 1.4, “What Is New in MySQL 5.7”

bison
Section 1.9.1, “Contributors to MySQL”
Section 2.9.5, “Dealing with Problems Compiling
MySQL”
Section 2.9, “Installing MySQL from Source”

C

[index top [3619]]

c++filt
Section 24.5.1.5, “Using a Stack Trace”

cat
Section 4.5.1.1, “mysql Options”

cd
Resetting the Root Password: Windows Systems

chkconfig
Section 2.5.7, “Installing MySQL on Linux from the
Native Software Repositories”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

clang
Section 23.8.4.1, “Building C API Client Programs”

CMake
Section 10.3, “Adding a Character Set”
Section 23.8.4.2, “Building C API Client Programs
Using pkg-config”
Section 6.3.12.3, “Building MySQL with SSL Support”
Section B.5.2.17, “Can't initialize character set”
Section 24.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 2.9.5, “Dealing with Problems Compiling
MySQL”
Section 2.12, “Environment Variables”
Section B.5.3.6, “How to Protect or Change the MySQL
Unix Socket File”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 2.9, “Installing MySQL from Source”
Section 2.9.3, “Installing MySQL Using a Development
Source Tree”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 24.3, “MySQL Services for Plugins”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 21.2.1, “Performance Schema Build
Configuration”
Section 23.7.2, “Restrictions When Using the
Embedded MySQL Server”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 10.1.3.1, “Server Character Set and Collation”

3620

Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 15.9, “The EXAMPLE Storage Engine”
Section 15.8, “The FEDERATED Storage Engine”
Section 1.3.2, “The Main Features of MySQL”
Section 5.4, “Tracing mysqld Using DTrace”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 4.2.6, “Using Option Files”
Using the Test Protocol Trace Plugin
Using Your Own Protocol Trace Plugins
Section 1.4, “What Is New in MySQL 5.7”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”

cmake
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”
Section 14.17.4.1, “Password-Protecting the
memcached Interface through SASL”
Section 24.4.2.5, “UDF Compiling and Installing”

cmd
Resetting the Root Password: Windows Systems

cmd.exe
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”

command.com
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”

comp_err
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.1, “Overview of MySQL Programs”

configure
Section 1.7, “How to Report Bugs or Problems”
Section 16.3.1, “Installing memcached”
Section 1.2, “Typographical and Syntax Conventions”
Section 16.3.3.3, “Using libmemcached with C and C
++”
Section 16.3.3.6, “Using MySQL and memcached with
PHP”

copy
Creating a Data Snapshot Using Raw Data Files

coreadm
Section 2.7, “Installing MySQL on Solaris and
OpenSolaris”
Section 5.1.3, “Server Command Options”

cp
Section 17.1.2.6, “Adding Slaves to a Replication
Environment”
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files

cron
Section B.5.2.2, “Can't connect to [local] MySQL
server”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 15.2.1, “MyISAM Startup Options”
Section 5.2.7, “Server Log Maintenance”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 3.5, “Using mysql in Batch Mode”

csh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

D

[index top [3619]]

date
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

dd
Section 16.1.1, “Setting Up MySQL on an EC2 AMI”

delete
Section 14.17.7, “Internals of the InnoDB memcached
Plugin”

df
Section B.5.1, “How to Determine What Is Causing a
Problem”

Directory Utility
Section 2.4.1, “General Notes on Installing MySQL on
OS X”

dnf
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of
MySQL Using the MySQL Yum Repository”
Section 2.11.1.4, “Upgrading MySQL with Directly-
Downloaded RPM Packages”
Section 2.11.1.2, “Upgrading MySQL with the MySQL
Yum Repository”

3621

dnf config-manager
Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of
MySQL Using the MySQL Yum Repository”

dnf upgrade
Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of
MySQL Using the MySQL Yum Repository”

dnf upgrade mysql-server
Section 2.5.2, “Replacing a Third-Party Distribution of
MySQL Using the MySQL Yum Repository”

dpkg
Section 2.5.6, “Installing MySQL on Linux Using Debian
Packages from Oracle”

dump
Creating a Data Snapshot Using Raw Data Files

E

[index top [3619]]

emerge
Section 16.3.1, “Installing memcached”
Section 2.5.7, “Installing MySQL on Linux from the
Native Software Repositories”

F

[index top [3619]]

flush
Section 14.17.7, “Internals of the InnoDB memcached
Plugin”

G

[index top [3619]]

gcc
Section 23.8.4.1, “Building C API Client Programs”
Section 23.7.1, “Compiling Programs with libmysqld”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 2.13.3, “Problems Using the Perl DBI/DBD
Interface”
Section 1.9.4, “Tools that were used to create MySQL”
Section 24.4.2.5, “UDF Compiling and Installing”

gdb
Section 24.5.1.1, “Compiling MySQL for Debugging”

Section 24.5.1.4, “Debugging mysqld under gdb”
Section 1.9.4, “Tools that were used to create MySQL”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”

get
Section 14.17.7, “Internals of the InnoDB memcached
Plugin”

git branch
Section 2.9.3, “Installing MySQL Using a Development
Source Tree”

git checkout
Section 2.9.3, “Installing MySQL Using a Development
Source Tree”

gmake
Section 2.9, “Installing MySQL from Source”
Section 2.8, “Installing MySQL on FreeBSD”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”

GnuPG
Section 2.1.3.2, “Signature Checking Using GnuPG”

gnutar
Section 2.9, “Installing MySQL from Source”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

gogoc
Section 5.1.9.5, “Obtaining an IPv6 Address from a
Broker”

gpg
Section 2.1.3.2, “Signature Checking Using GnuPG”

grep
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 3.3.4.7, “Pattern Matching”

groupadd
Section 2.7, “Installing MySQL on Solaris and
OpenSolaris”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

gtar
Section 2.9, “Installing MySQL from Source”
Section 2.7, “Installing MySQL on Solaris and
OpenSolaris”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

3622

gunzip
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”

gzip
Section 1.7, “How to Report Bugs or Problems”
Section 2.4, “Installing MySQL on OS X”

H

[index top [3619]]

hdparm
Section 14.11, “InnoDB Startup Options and System
Variables”

help contents
Section 4.5.1.4, “mysql Server-Side Help”

hostname
Section B.5.2.2, “Can't connect to [local] MySQL
server”

I

[index top [3619]]

icc
Section 2.1.5, “Compiler-Specific Build Characteristics”

ifconfig
Section 5.1.9.1, “Verifying System Support for IPv6”

innochecksum
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
MySQL Glossary
Section 4.1, “Overview of MySQL Programs”
Section 1.4, “What Is New in MySQL 5.7”

InnoDB
Section 13.1.6, “ALTER TABLE Syntax”

install.rb
Section 16.3.3.7, “Using MySQL and memcached with
Ruby”

K

[index top [3619]]

kill
Section B.5.2.2, “Can't connect to [local] MySQL
server”

ksh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”

L

[index top [3619]]

ldconfig
Section 24.4.2.5, “UDF Compiling and Installing”

ldd libmysqlclient.so
Section 23.8.4.1, “Building C API Client Programs”

less
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

libmemcached
libmemcached Command-Line Utilities

ln
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

logger
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

lsof +L1
Section B.5.3.5, “Where MySQL Stores Temporary
Files”

lz4
Section 4.5.6, “mysqlpump — A Database Backup
Program”

lz4_decompress
Section 4.8.1, “lz4_decompress — Decompress
mysqlpump LZ4-Compressed Output”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.5, “zlib_decompress — Decompress
mysqlpump ZLIB-Compressed Output”

M

[index top [3619]]

m4
Section 2.9, “Installing MySQL from Source”

make
Section 24.2.4.3, “Compiling and Installing Plugin
Libraries”

3623

Section 2.9.5, “Dealing with Problems Compiling
MySQL”
Section 16.3.1, “Installing memcached”
Section 2.9, “Installing MySQL from Source”
Section 2.8, “Installing MySQL on FreeBSD”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.13.3, “Problems Using the Perl DBI/DBD
Interface”

make install
Section 24.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 16.3.1, “Installing memcached”

make package
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.9.4, “MySQL Source-Configuration Options”

make test
Section 2.9.3, “Installing MySQL Using a Development
Source Tree”
Section 2.13.1, “Installing Perl on Unix”
Section 24.1.2, “The MySQL Test Suite”

make VERBOSE=1
Section 2.9.5, “Dealing with Problems Compiling
MySQL”

md5
Section 2.1.3.1, “Verifying the MD5 Checksum”

md5.exe
Section 2.1.3.1, “Verifying the MD5 Checksum”

md5sum
Section 2.1.3.1, “Verifying the MD5 Checksum”

memcache
Section 16.3.2.4, “memcached Hashing/Distribution
Types”
Section 16.3.3.5, “Using MySQL and memcached with
Python”

memcached
Section 14.17.5.2, “Adapting an Existing memcached
Application for the Integrated memcached Daemon”
Section 14.17.5.1, “Adapting an Existing MySQL
Schema for a memcached Application”
Section 14.17.5.5, “Adapting DML Statements to
memcached Operations”
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 16.3.3.1, “Basic memcached Operations”
Section 14.17.1, “Benefits of the InnoDB / memcached
Combination”

Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”
Section 16.3.2.3, “Data Expiry”
Section 16.1.3, “Deploying a MySQL Database Using
EC2”
Section 16.3.3, “Developing a memcached Application”
Section 16.3.4, “Getting memcached Statistics”
Section 14.17.3, “Getting Started with InnoDB
Memcached Plugin”
Section 14.17, “InnoDB Integration with memcached”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.17.3.2, “Installing and Configuring the
InnoDB memcached Plugin”
Section 16.3.1, “Installing memcached”
Section 14.17.7, “Internals of the InnoDB memcached
Plugin”
libmemcached Command-Line Utilities
libmemcached Set Functions
Section 16.3.2.1, “memcached Deployment”
Section 16.3.4.5, “memcached Detail Statistics”
Section 16.3.5, “memcached FAQ”
Section 16.3.4.1, “memcached General Statistics”
Section 16.3.2.4, “memcached Hashing/Distribution
Types”
Section 16.3.4.3, “memcached Item Statistics”
Section 16.3.2.8, “memcached Logs”
Section 16.3.4.4, “memcached Size Statistics”
Section 16.3.4.2, “memcached Slabs Statistics”
Section 16.3.2.7, “memcached Thread Support”
Section 16.3.2.6, “Memory Allocation within
memcached”
MySQL Glossary
Section 14.17.4.1, “Password-Protecting the
memcached Interface through SASL”
Section 14.17.5.6, “Performing DML and DDL
Statements on the Underlying InnoDB Table”
Section 14.17.3.1, “Prerequisites for the InnoDB
memcached Plugin”
Section 14.17.4, “Security Considerations for the
InnoDB memcached Plugin”
Section 16.1.1, “Setting Up MySQL on an EC2 AMI”
Section 14.17.8, “Troubleshooting the InnoDB
memcached Plugin”
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”
Section 16.3.3.3, “Using libmemcached with C and C
++”
Section 16.3.2, “Using memcached”
Section 16.3.2.5, “Using memcached and DTrace”
Section 16.3.3.2, “Using memcached as a MySQL
Caching Layer”
Section 16.3.4.6, “Using memcached-tool”
Section 16.3.3.8, “Using MySQL and memcached with
Java”
Section 16.3.3.4, “Using MySQL and memcached with
Perl”

3624

Section 16.3.3.6, “Using MySQL and memcached with
PHP”
Section 16.3.3.5, “Using MySQL and memcached with
Python”
Section 16.3.3.7, “Using MySQL and memcached with
Ruby”
Section 16.3, “Using MySQL with memcached”
Section 16.3.2.2, “Using Namespaces”
Section 14.17.6, “Using the InnoDB memcached Plugin
with Replication”
Section 16.3.3.9, “Using the memcached TCP Text
Protocol”
Section 14.17.3.3, “Verifying the InnoDB and
memcached Setup”
Section 14.17.5, “Writing Applications for the InnoDB
memcached Interface”

memcached-1.2.5 directory:
Section 16.3.1, “Installing memcached”

memcached-tool
Section 16.3.4, “Getting memcached Statistics”
Section 16.3.4.6, “Using memcached-tool”

memcapable
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”

memcat
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
libmemcached Command-Line Utilities
Section 14.17.3.3, “Verifying the InnoDB and
memcached Setup”

memcp
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
libmemcached Command-Line Utilities

memflush
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
libmemcached Command-Line Utilities

memrm
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
libmemcached Command-Line Utilities

memslap
libmemcached Command-Line Utilities
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”

mkdir
Section 13.1.8, “CREATE DATABASE Syntax”

mklink
Section 8.12.4.3, “Using Symbolic Links for Databases
on Windows”
Section 1.4, “What Is New in MySQL 5.7”

more
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

msql2mysql
Section 1.4, “What Is New in MySQL 5.7”

mv
Section 5.2.7, “Server Log Maintenance”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”

my_print_defaults
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.7, “MySQL Program Development Utilities”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.1, “Overview of MySQL Programs”

myisam_ftdump
Section 12.9, “Full-Text Search Functions”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.1, “Overview of MySQL Programs”

myisamchk
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 10.5, “Character Set Configuration”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 15.2.3.3, “Compressed Table Characteristics”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 24.5.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Syntax”
Section 15.2.3.2, “Dynamic Table Characteristics”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.11.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 7.6.2, “How to Check MyISAM Tables for
Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section C.10.3, “Limits on Table Size”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 18.3.4, “Maintenance of Partitions”
Section 24.5.1.7, “Making a Test Case If You
Experience Table Corruption”

3625

Section 15.2.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.1, “Overview of MySQL Programs”
Section 15.2.4.2, “Problems from Tables Not Being
Closed Properly”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 13.7.5.22, “SHOW INDEX Syntax”
Section 13.7.5.36, “SHOW TABLE STATUS Syntax”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
Section 15.2.3.1, “Static (Fixed-Length) Table
Characteristics”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”
Section 1.3.2, “The Main Features of MySQL”
Section 15.2, “The MyISAM Storage Engine”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 24.5.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”

myisamchk *.MYI
Section 7.6.3, “How to Repair MyISAM Tables”

myisamchk tbl_name
Section 7.6.2, “How to Check MyISAM Tables for
Errors”

myisamlog
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.1, “Overview of MySQL Programs”

myisampack
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 15.2.3.3, “Compressed Table Characteristics”
Section 13.1.14, “CREATE TABLE Syntax”
Section 8.11.5, “External Locking”
Section C.10.3, “Limits on Table Size”
Section 15.7.1, “MERGE Table Advantages and
Disadvantages”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 8.4.1, “Optimizing Data Size”
Section 4.1, “Overview of MySQL Programs”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 13.1.14.4, “Silent Column Specification
Changes”
Section 15.7, “The MERGE Storage Engine”
Section 15.2, “The MyISAM Storage Engine”

mysql
Section 1.8.2.4, “'--' as the Start of a Comment”
Section 6.3.2, “Adding User Accounts”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 7.1, “Backup and Recovery Types”
Section 13.6.1, “BEGIN ... END Compound-Statement
Syntax”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 9.6, “Comment Syntax”
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 3.1, “Connecting to and Disconnecting from the
Server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 5.1.9.4, “Connecting Using IPv6 Nonlocal Host
Addresses”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host
Address”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 1.9.1, “Contributors to MySQL”
Section 23.8.16, “Controlling Automatic Reconnection
Behavior”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 2.11.5, “Copying MySQL Databases to Another
Machine”

3626

Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 3.3.1, “Creating and Selecting a Database”
Section 2.3.5.7, “Customizing the PATH for MySQL
Tools”
Section 24.5.2, “Debugging a MySQL Client”
Section 19.1, “Defining Stored Programs”
Disabling mysql Auto-Reconnect
Section 2.11.2, “Downgrading MySQL”
Section 14.14.2, “Enabling InnoDB Monitors”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 3.2, “Entering Queries”
Section 2.12, “Environment Variables”
Section 19.4.2, “Event Scheduler Configuration”
Section 7.3, “Example Backup and Recovery Strategy”
Section 23.8.3, “Example C API Client Programs”
Section 3.6, “Examples of Common Queries”
Section 14.10.5, “Examples of Online DDL”
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 4.5.1.5, “Executing SQL Statements from a
Text File”
Chapter 12, Functions and Operators
Section 2.4.1, “General Notes on Installing MySQL on
OS X”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.8.3, “HELP Syntax”
Section 14.2.2.10, “How to Cope with Deadlocks”
Section B.5.1, “How to Determine What Is Causing a
Problem”
Section 1.7, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section B.5.2.15, “Ignoring user”
Section 12.14, “Information Functions”
Section 14.15, “InnoDB Backup and Recovery”
Input-Line Editing
Section 4.2.1, “Invoking MySQL Programs”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 7.4.5.1, “Making a Copy of a Database”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 8.13.1, “Measuring the Speed of Expressions
and Functions”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 10.6, “MySQL Server Time Zone Support”
Section 4.5.1.4, “mysql Server-Side Help”
Section 4.5.1.6, “mysql Tips”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 23.8.7.14, “mysql_errno()”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 23.8.7.72, “mysql_sqlstate()”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the
Time Zone Tables”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 8.2.1.19, “Optimizing LIMIT Queries”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section B.5.2.8, “Out of memory”
Section 4.1, “Overview of MySQL Programs”
Section B.5.2.10, “Packet Too Large”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.3.8, “Pluggable Authentication”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”
Section 4.2.5, “Program Option Modifiers”
Section 18.2.3.1, “RANGE COLUMNS partitioning”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 17.4.1.29, “Replication of Server-Side Help
Tables”
Resetting the Root Password: Generic Instructions
Section C.9, “Restrictions on Pluggable Authentication”
Section 13.7.1.6, “REVOKE Syntax”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.3, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 5.1.4, “Server System Variables”
Section 5.1.10, “Server-Side Help”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 4.2.3, “Specifying Program Options”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”
Section 9.1.1, “String Literals”
Section 2.10.3, “Testing the Server”
Section 11.4.3, “The BLOB and TEXT Types”

3627

Section 6.3.9.8, “The Cleartext Client-Side
Authentication Plugin”
Section 22.4.4.2, “The diagnostics() Procedure”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 6.3.9.9, “The Socket Peer-Credential
Authentication Plugin”
Section 19.3.1, “Trigger Syntax and Examples”
Section 14.18.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Chapter 3, Tutorial
Section 1.2, “Typographical and Syntax Conventions”
Unicode Support on Windows
Unix Password Authentication with Proxy Users and
Group Mapping
Unix Password Authentication without Proxy Users
Section 2.11.1.4, “Upgrading MySQL with Directly-
Downloaded RPM Packages”
Section 7.3.2, “Using Backups for Recovery”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 6.3.17.3, “Using MySQL Enterprise Firewall”
Section 3.5, “Using mysql in Batch Mode”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”
Section 7.4, “Using mysqldump for Backups”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”
Section 4.2.8, “Using Options to Set Program
Variables”
Section 24.5.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Using the --safe-updates Option
Using the Test Protocol Trace Plugin
Using Your Own Protocol Trace Plugins
Section 1.4, “What Is New in MySQL 5.7”
Section 2.3.7, “Windows Postinstallation Procedures”
Section 12.11, “XML Functions”

mysql < dump_file
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”

mysql ...
Section 24.5.1.1, “Compiling MySQL for Debugging”

mysql-server
Section 2.8, “Installing MySQL on FreeBSD”

mysql-test-run.pl
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 24.1.2, “The MySQL Test Suite”
Section 4.2.6, “Using Option Files”

mysql-test-run.pl test_name
Section 24.1.2, “The MySQL Test Suite”

mysql.exe
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Unicode Support on Windows

mysql.server
Section 2.5, “Installing MySQL on Linux”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 2.10.5, “Starting and Stopping MySQL
Automatically”
Section B.5.3.7, “Time Zone Problems”

mysql.server stop
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

mysql_config
Section 23.8.4.1, “Building C API Client Programs”
Section 23.8.4.2, “Building C API Client Programs
Using pkg-config”
Section 23.7.1, “Compiling Programs with libmysqld”
Section 2.9.5, “Dealing with Problems Compiling
MySQL”
Section 23.8.1, “MySQL C API Implementations”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”
Section 4.1, “Overview of MySQL Programs”
Section 24.2.2, “Plugin API Components”

mysql_config_editor
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 2.12, “Environment Variables”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

3628

Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 4.2.6, “Using Option Files”

mysql_convert_table_format
Section 1.4, “What Is New in MySQL 5.7”

mysql_find_rows
Section 1.4, “What Is New in MySQL 5.7”

mysql_fix_extensions
Section 1.4, “What Is New in MySQL 5.7”

mysql_install_db
Section 2.11.2, “Downgrading MySQL”
Section 2.10.1, “Initializing the Data Directory”
Section 2.10.1.2, “Initializing the Data Directory
Manually Using mysql_install_db”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 2.5.7, “Installing MySQL on Linux from the
Native Software Repositories”
Section 2.7.2, “Installing MySQL on OpenSolaris Using
IPS”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”
Section 14.5.7, “Limits on InnoDB Tables”
Section 2.9.4, “MySQL Source-Configuration Options”
Chapter 22, MySQL sys Schema
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.1.3, “Problems Running mysql_install_db”
Section 5.1.3, “Server Command Options”
Section 5.1.2, “Server Configuration Defaults”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.1.10, “Server-Side Help”

mysql_plugin
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.1, “Overview of MySQL Programs”
Section 1.4, “What Is New in MySQL 5.7”

mysql_secure_installation
Section 2.10.1.2, “Initializing the Data Directory
Manually Using mysql_install_db”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 2.5.7, “Installing MySQL on Linux from the
Native Software Repositories”
Section 2.5.6, “Installing MySQL on Linux Using Debian
Packages from Oracle”
Section 2.7.2, “Installing MySQL on OpenSolaris Using
IPS”
Section 2.7.1, “Installing MySQL on Solaris Using a
Solaris PKG”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.4, “Securing the Initial MySQL Accounts”

mysql_server_config
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

mysql_setpermission
Section 1.9.1, “Contributors to MySQL”
Section 1.4, “What Is New in MySQL 5.7”

mysql_ssl_rsa_setup
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.13.3, “Creating RSA Keys Using openssl”
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 6.3.13.2, “Creating SSL Certificates and Keys
Using openssl”
Section 2.10.1, “Initializing the Data Directory”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 4.1, “Overview of MySQL Programs”
Section 6.3.12, “Using Secure Connections”
Section 1.4, “What Is New in MySQL 5.7”

mysql_stmt_execute()
Section 5.1.6, “Server Status Variables”

mysql_stmt_prepare()
Section 5.1.6, “Server Status Variables”

3629

mysql_tzinfo_to_sql
Section 10.6, “MySQL Server Time Zone Support”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the
Time Zone Tables”
Section 4.1, “Overview of MySQL Programs”

mysql_upgrade
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.1.6, “ALTER TABLE Syntax”
Section 2.11.2.1, “Changes Affecting Downgrades from
MySQL 5.7”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 2.11.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”
Section 2.11.2, “Downgrading MySQL”
Section 2.10.1, “Initializing the Data Directory”
Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password
Plugin”
Chapter 22, MySQL sys Schema
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.1, “Overview of MySQL Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 21.2.1, “Performance Schema Build
Configuration”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 2.5.2, “Replacing a Third-Party Distribution of
MySQL Using the MySQL Yum Repository”
Section 17.4.1.29, “Replication of Server-Side Help
Tables”
Section 17.1.3.4, “Restrictions on Replication with
GTIDs”
Section 5.1.3, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 2.11.1, “Upgrading MySQL”
Section 2.3.8, “Upgrading MySQL on Windows”
Section 2.11.1.4, “Upgrading MySQL with Directly-
Downloaded RPM Packages”
Section 2.11.1.2, “Upgrading MySQL with the MySQL
Yum Repository”
Section 6.3.11, “User Account Locking”
Section 1.4, “What Is New in MySQL 5.7”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”

mysql_waitpid
Section 1.4, “What Is New in MySQL 5.7”

mysql_zap
Section 1.4, “What Is New in MySQL 5.7”

mysqlaccess
Section 1.9.1, “Contributors to MySQL”
Section 1.4, “What Is New in MySQL 5.7”

mysqladmin
Section 6.3.5, “Assigning Account Passwords”
Section 17.3.1.1, “Backing Up a Slave Using
mysqldump”
Section B.5.2.2, “Can't connect to [local] MySQL
server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 1.9.1, “Contributors to MySQL”
Section 13.1.8, “CREATE DATABASE Syntax”
Section 2.3.5.7, “Customizing the PATH for MySQL
Tools”
Section 24.5.1, “Debugging a MySQL Server”
Section 13.1.18, “DROP DATABASE Syntax”
Section 23.8.3, “Example C API Client Programs”
Section 13.7.6.3, “FLUSH Syntax”
Section 2.4.1, “General Notes on Installing MySQL on
OS X”
Section B.5.1, “How to Determine What Is Causing a
Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 5.2, “MySQL Server Logs”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 21.9.9, “Performance Schema Connection
Attribute Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.9, “Restrictions on Pluggable Authentication”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”
Section 2.3.5.6, “Starting MySQL from the Windows
Command Line”
Section 2.10.3, “Testing the Server”

3630

Section 6.3.9.8, “The Cleartext Client-Side
Authentication Plugin”
Section 1.3.2, “The Main Features of MySQL”
Section 5.1.12, “The Server Shutdown Process”
Section 8.12.2, “Tuning Server Parameters”
Section 2.3.8, “Upgrading MySQL on Windows”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”

mysqladmin debug
Section 24.5.1, “Debugging a MySQL Server”
Section 19.4.5, “Event Scheduler Status”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

mysqladmin extended-status
Section 13.7.5.35, “SHOW STATUS Syntax”

mysqladmin flush-hosts
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”

mysqladmin flush-logs
Section 7.3.3, “Backup Strategy Summary”
Section 7.3.1, “Establishing a Backup Policy”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 5.2.7, “Server Log Maintenance”
Section 5.2.4, “The Binary Log”
Section 5.2.2, “The Error Log”
Section 17.2.4.1, “The Slave Relay Log”

mysqladmin flush-privileges
Section 2.11.5, “Copying MySQL Databases to Another
Machine”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 6.2.2, “Privilege System Grant Tables”
Section 5.1.3, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 6.2.6, “When Privilege Changes Take Effect”

mysqladmin flush-tables
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.11.5, “External Locking”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

Section 7.6.1, “Using myisamchk for Crash Recovery”

mysqladmin flush-xxx
Section 6.3.2, “Adding User Accounts”

mysqladmin kill
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 13.7.6.4, “KILL Syntax”
Section 12.19, “Miscellaneous Functions”
Section B.5.2.9, “MySQL server has gone away”
Section 6.2.1, “Privileges Provided by MySQL”

mysqladmin password
Section 6.3.5, “Assigning Account Passwords”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”

mysqladmin processlist
Section 6.3.2, “Adding User Accounts”
Section 8.14, “Examining Thread Information”
Section 13.7.6.4, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 24.1.1, “MySQL Threads”
Section 23.8.7.44, “mysql_list_processes()”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.29, “SHOW PROCESSLIST Syntax”

mysqladmin processlist status
Section 24.5.1, “Debugging a MySQL Server”

mysqladmin refresh
Section 6.3.2, “Adding User Accounts”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 5.2.7, “Server Log Maintenance”

mysqladmin reload
Section 6.3.2, “Adding User Accounts”
Section 1.7, “How to Report Bugs or Problems”
Section 6.2.2, “Privilege System Grant Tables”
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.2.6, “When Privilege Changes Take Effect”

mysqladmin reload version
Section 1.7, “How to Report Bugs or Problems”

mysqladmin shutdown
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 24.5.1.2, “Creating Trace Files”
Section 13.7.1.4, “GRANT Syntax”

3631

Section 7.6.3, “How to Repair MyISAM Tables”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.4.2, “Installing MySQL on OS X Using Native
Packages”
Section 24.5.1.7, “Making a Test Case If You
Experience Table Corruption”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 13.7.6.7, “SHUTDOWN Syntax”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”
Section 5.1.12, “The Server Shutdown Process”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”

mysqladmin status
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 23.8.7.74, “mysql_stat()”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

mysqladmin variables
Section B.5.2.9, “MySQL server has gone away”
Section 13.7.5.39, “SHOW VARIABLES Syntax”

mysqladmin variables extended-
status processlist
Section 1.7, “How to Report Bugs or Problems”

mysqladmin ver
Section 24.5.1.1, “Compiling MySQL for Debugging”

mysqladmin version
Section B.5.2.2, “Can't connect to [local] MySQL
server”
Section 1.7, “How to Report Bugs or Problems”
Section B.5.2.9, “MySQL server has gone away”
Section 2.10.3, “Testing the Server”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”

mysqlanalyze
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

mysqlbackup
Section 7.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files
Section 14.15, “InnoDB Backup and Recovery”
Section 4.5.4, “mysqldump — A Database Backup
Program”

mysqlbinlog
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 13.7.6.1, “BINLOG Syntax”
Section 5.4.1.2, “Command Probes”
Section 17.1.3.1, “GTID Concepts”
Section 17.4.5, “How to Report Replication Bugs or
Problems”
Section 14.15, “InnoDB Backup and Recovery”
Section B.5.7, “Known Issues in MySQL”
Section 12.19, “Miscellaneous Functions”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 21.9.9, “Performance Schema Connection
Attribute Tables”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”
Section 7.5.2, “Point-in-Time Recovery Using Event
Positions”
Section 7.5.1, “Point-in-Time Recovery Using Event
Times”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.32, “SHOW RELAYLOG EVENTS
Syntax”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 13.4.2.6, “START SLAVE Syntax”
Section 5.2.4, “The Binary Log”
Section 5.2.3, “The General Query Log”
Section 17.2.4.1, “The Slave Relay Log”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”
Section 7.3.2, “Using Backups for Recovery”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”
Section 1.4, “What Is New in MySQL 5.7”

mysqlbinlog binary-log-file | mysql
Section 24.5.1.7, “Making a Test Case If You
Experience Table Corruption”

mysqlbinlog|mysql
Section B.5.7, “Known Issues in MySQL”

mysqlbug
Section 1.4, “What Is New in MySQL 5.7”

mysqlcheck
Section 13.1.1, “ALTER DATABASE Syntax”

3632

Section 2.11.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 18.3.4, “Maintenance of Partitions”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.1, “Overview of MySQL Programs”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”
Section 1.3.2, “The Main Features of MySQL”
Section 15.2, “The MyISAM Storage Engine”
Section 1.4, “What Is New in MySQL 5.7”

mysqld
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section 24.4.2, “Adding a New User-Defined Function”
Section 24.4, “Adding New Functions to MySQL”
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 5.2.4.1, “Binary Logging Formats”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 6.3.12.3, “Building MySQL with SSL Support”
Section B.5.2.2, “Can't connect to [local] MySQL
server”
Section B.5.2.13, “Can't create/write to file”
Section B.5.2.17, “Can't initialize character set”
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 2.11.2.1, “Changes Affecting Downgrades from
MySQL 5.7”
Section B.5.2.4, “Client does not support authentication
protocol”
Section 9.6, “Comment Syntax”
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 24.5.1.1, “Compiling MySQL for Debugging”
Configuring Multi-Source Replication
Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”
Section 24.5.1.2, “Creating Trace Files”
Section 24.5.1, “Debugging a MySQL Server”
Section 24.5, “Debugging and Porting MySQL”
Section 24.5.1.4, “Debugging mysqld under gdb”

Section 2.11.2, “Downgrading MySQL”
Section 14.7.1, “Enabling File Formats”
Section 14.14.2, “Enabling InnoDB Monitors”
Section 2.12, “Environment Variables”
Section 8.11.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.18.2, “Forcing InnoDB Recovery”
Section 8.14.2, “General Thread States”
Section 16.2.3, “Handling MySQL Recovery with ZFS”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 8.2.1.20, “How to Avoid Full Table Scans”
Section B.5.1, “How to Determine What Is Causing a
Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 9.2.2, “Identifier Case Sensitivity”
Section B.5.2.15, “Ignoring user”
Section 12.14, “Information Functions”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 14.15, “InnoDB Backup and Recovery”
Section 14.9.1, “InnoDB Disk I/O”
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”
Section 14.3.1, “InnoDB Initialization and Startup
Configuration”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.18, “InnoDB Troubleshooting”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 14.17.3.2, “Installing and Configuring the
InnoDB memcached Plugin”
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 2.4.2, “Installing MySQL on OS X Using Native
Packages”
Section 2.7, “Installing MySQL on Solaris and
OpenSolaris”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 24.5.1.7, “Making a Test Case If You
Experience Table Corruption”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 12.19, “Miscellaneous Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 14.5.2, “Moving or Copying InnoDB Tables to
Another Machine”
Section 15.2.1, “MyISAM Startup Options”

3633

Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section A.1, “MySQL 5.7 FAQ: General”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
MySQL Glossary
Section 2.3.1, “MySQL Installation Layout on Microsoft
Windows”
Chapter 5, MySQL Server Administration
Section 4.3, “MySQL Server and Server-Startup
Programs”
Section B.5.2.9, “MySQL server has gone away”
Section 5.2, “MySQL Server Logs”
Section 10.6, “MySQL Server Time Zone Support”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 1.8, “MySQL Standards Compliance”
Chapter 22, MySQL sys Schema
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 23.8.7.1, “mysql_affected_rows()”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 23.8.7.50, “mysql_options()”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.1, “mysqld — The MySQL Server”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section B.5.5, “Optimizer-Related Issues”
Section 23.7.3, “Options with the Embedded Server”
Section 4.1, “Overview of MySQL Programs”
Section 14.10.1, “Overview of Online DDL”
Section B.5.2.10, “Packet Too Large”
Section 21.2.2, “Performance Schema Startup
Configuration”
Section 15.2.4.2, “Problems from Tables Not Being
Closed Properly”
Section 2.10.1.3, “Problems Running mysql_install_db”
Section B.5.3.1, “Problems with File Permissions”
Section 4.2.5, “Program Option Modifiers”
Section 8.10.3.3, “Query Cache Configuration”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 17.1.6.1, “Replication and Binary Logging
Option and Variable Reference”

Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 17.1.6.2, “Replication Master Options and
Variables”
Section 17.2.4, “Replication Relay and Status Logs”
Section 13.4.2.4, “RESET SLAVE Syntax”
Resetting the Root Password: Unix and Unix-Like
Systems
Resetting the Root Password: Windows Systems
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section B.5.4.5, “Rollback Failure for Nontransactional
Tables”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 6.1.4, “Security-Related mysqld Options and
Variables”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 2.3.5.3, “Selecting a MySQL Server Type”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”
Server Plugin Status and System Variables
Section 5.1.11, “Server Response to Signals”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 10.2, “Setting the Error Message Language”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 23.8.2, “Simultaneous MySQL Server and
Connector/C Installations”
Section 13.4.2.6, “START SLAVE Syntax”
Section 2.10.5, “Starting and Stopping MySQL
Automatically”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 5.3.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”
Section 2.3.5.6, “Starting MySQL from the Windows
Command Line”
Section 17.2.3.3, “Startup Options and Replication
Channels”
Section 10.6.1, “Staying Current with Time Zone
Changes”
Section 1.9.5, “Supporters of MySQL”
Section 17.3.6, “Switching Masters During Failover”
Section 8.11.2, “Table Locking Issues”
Section B.5.2.19, “Table-Corruption Issues”
Section 2.3.5.9, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”

3634

Section 5.2.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 24.5.3, “The DBUG Package”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”
Section 15.2, “The MyISAM Storage Engine”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1, “The MySQL Server”
Section 24.1.2, “The MySQL Test Suite”
Section 5.2.5, “The Slow Query Log”
Section B.5.3.7, “Time Zone Problems”
Section B.5.2.7, “Too many connections”
Section 5.4, “Tracing mysqld Using DTrace”
Section 2.3.6, “Troubleshooting a Microsoft Windows
MySQL Server Installation”
Section 14.18.1, “Troubleshooting InnoDB I/O
Problems”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”
Section 8.12.2, “Tuning Server Parameters”
Section 1.2, “Typographical and Syntax Conventions”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Section 2.11.1, “Upgrading MySQL”
Section 2.3.8, “Upgrading MySQL on Windows”
Section 2.11.1.4, “Upgrading MySQL with Directly-
Downloaded RPM Packages”
Section 24.5.1.5, “Using a Stack Trace”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.6, “Using Option Files”
Section 24.5.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section 14.17.6, “Using the InnoDB memcached Plugin
with Replication”
Section 24.5.1.3, “Using WER with PDB to create a
Windows crashdump”
Section 1.4, “What Is New in MySQL 5.7”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”
Section 6.2.6, “When Privilege Changes Take Effect”
Section B.5.3.5, “Where MySQL Stores Temporary
Files”
Section 2.1.1, “Which MySQL Version and Distribution
to Install”
Section 24.2.4, “Writing Plugins”

mysqld mysqld.trace
Section 24.5.1.2, “Creating Trace Files”

mysqld-debug
Section 24.5.1.2, “Creating Trace Files”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 2.3.5.3, “Selecting a MySQL Server Type”

mysqld_multi
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”

mysqld_safe
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section 2.11.2.1, “Changes Affecting Downgrades from
MySQL 5.7”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 8.12.5.2, “Enabling Large Page Support”
Section B.5.3.6, “How to Protect or Change the MySQL
Unix Socket File”
Section 2.10.1.2, “Initializing the Data Directory
Manually Using mysql_install_db”
Section 14.18, “InnoDB Troubleshooting”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 10.6, “MySQL Server Time Zone Support”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 4.1, “Overview of MySQL Programs”
Section B.5.2.10, “Packet Too Large”
Section B.5.3.1, “Problems with File Permissions”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.2, “Server Configuration Defaults”
Section 5.1.4, “Server System Variables”
Section 2.10.5, “Starting and Stopping MySQL
Automatically”
Section 2.10.2, “Starting the Server”
Section 2.10.3, “Testing the Server”
Section 5.2.2, “The Error Log”
Section B.5.3.7, “Time Zone Problems”

3635

Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”
Section 8.12.2, “Tuning Server Parameters”
Section 4.2.6, “Using Option Files”
Section 1.4, “What Is New in MySQL 5.7”

mysqldump
Section 17.3.1.3, “Backing Up a Master or Slave by
Making It Read Only”
Section 17.3.1.1, “Backing Up a Slave Using
mysqldump”
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 7.3.3, “Backup Strategy Summary”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 17.1.2.4, “Choosing a Method for Data
Snapshots”
Section 4.2.2, “Connecting to the MySQL Server”
Section 1.9.1, “Contributors to MySQL”
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 2.11.5, “Copying MySQL Databases to Another
Machine”
Section 13.1.14, “CREATE TABLE Syntax”
Creating a Data Snapshot Using mysqldump
Section 14.5.1, “Creating InnoDB Tables”
Section 2.3.5.7, “Customizing the PATH for MySQL
Tools”
Section 7.2, “Database Backup Methods”
Section 14.9.4, “Defragmenting a Table”
Section 2.11.2, “Downgrading MySQL”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”
Section 16.1.2, “EC2 Instance Limitations”
Section 14.4.4.1, “Enabling and Disabling File-Per-
Table Tablespaces”
Section 7.3.1, “Establishing a Backup Policy”
Section 7.3, “Example Backup and Recovery Strategy”
Section 1.7, “How to Report Bugs or Problems”
Section 9.2.2, “Identifier Case Sensitivity”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 14.15, “InnoDB Backup and Recovery”
Section 2.6, “Installing MySQL Using Unbreakable
Linux Network (ULN)”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 7.4.5.1, “Making a Copy of a Database”
Section 9.2.3, “Mapping of Identifiers to File Names”

Section 14.5.2, “Moving or Copying InnoDB Tables to
Another Machine”
Section 4.5.1.1, “mysql Options”
Section 5.2, “MySQL Server Logs”
Section 7.4.5, “mysqldump Tips”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.1.2.3, “Obtaining the Replication Master
Binary Log Coordinates”
Section 4.1, “Overview of MySQL Programs”
Section 21.9.9, “Performance Schema Connection
Attribute Tables”
Section B.5.4.8, “Problems with Floating-Point Values”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 17.3.4, “Replicating Different Databases to
Different Slaves”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 14.4.1, “Resizing the InnoDB System
Tablespace”
Section C.8, “Restrictions on Performance Schema”
Section 17.1.3.4, “Restrictions on Replication with
GTIDs”
Section C.5, “Restrictions on Views”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.2.7, “Server Log Maintenance”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Setting Up Replication with Existing Data
Section B.5.4.7, “Solving Problems with No Matching
Rows”
Section 4.2.3, “Specifying Program Options”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”
Section 11.4.3, “The BLOB and TEXT Types”
Section 8.10.1, “The InnoDB Buffer Pool”
Section 1.3.2, “The Main Features of MySQL”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 10.1.11, “Upgrading from Previous to Current
Unicode Support”
Section 2.11.1, “Upgrading MySQL”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”
Section 7.4, “Using mysqldump for Backups”
Section 17.3.1, “Using Replication for Backups”
Section 17.3.2, “Using Replication with Different Master
and Slave Storage Engines”

3636

Section 14.17.6, “Using the InnoDB memcached Plugin
with Replication”
Section 22.2, “Using the sys Schema”
Section 1.4, “What Is New in MySQL 5.7”
Section 12.11, “XML Functions”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”

mysqldump mysql
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”

mysqldumpslow
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.2.5, “The Slow Query Log”

mysqlfailover
Section 17.3.6, “Switching Masters During Failover”

mysqlhotcopy
Section 1.9.1, “Contributors to MySQL”
Section 1.4, “What Is New in MySQL 5.7”

mysqlimport
Section 7.1, “Backup and Recovery Types”
Section 2.11.5, “Copying MySQL Databases to Another
Machine”
Section 7.2, “Database Backup Methods”
Section 2.11.2, “Downgrading MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.1, “Overview of MySQL Programs”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

MySQLInstallerConsole
Section 2.3.3.2, “MySQL Installer Console”

mysqloptimize
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

mysqlpump
Section 4.8.1, “lz4_decompress — Decompress
mysqlpump LZ4-Compressed Output”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.1, “Overview of MySQL Programs”
Section 22.2, “Using the sys Schema”
Section 4.8.5, “zlib_decompress — Decompress
mysqlpump ZLIB-Compressed Output”

mysqlrepair
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

mysqlshow
Section 4.2.2, “Connecting to the MySQL Server”
Section 23.8.3, “Example C API Client Programs”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.1, “Overview of MySQL Programs”
Section 13.7.5.14, “SHOW DATABASES Syntax”
Section 13.7.5.22, “SHOW INDEX Syntax”
Section 13.7.5.36, “SHOW TABLE STATUS Syntax”
Section 2.3.5.9, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 2.3.7, “Windows Postinstallation Procedures”

mysqlshow db_name
Section 13.7.5.37, “SHOW TABLES Syntax”

mysqlshow db_name tbl_name
Section 13.7.5.5, “SHOW COLUMNS Syntax”

mysqlshow mysql user
Section B.5.2.15, “Ignoring user”

mysqlslap
Section 14.13.2, “Monitoring InnoDB Mutex Waits
Using Performance Schema”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 6.3.9.8, “The Cleartext Client-Side
Authentication Plugin”
Section 8.13.2, “Using Your Own Benchmarks”

mysqltest
Section 24.1.2, “The MySQL Test Suite”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”

N

[index top [3619]]

ndb_restore
Section 7.1, “Backup and Recovery Types”

NET
Section 2.3.5.8, “Starting MySQL as a Windows
Service”

NET START
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”

3637

NET START MySQL
Section 2.3.5.8, “Starting MySQL as a Windows
Service”
Section 2.3.6, “Troubleshooting a Microsoft Windows
MySQL Server Installation”
Section 2.3.8, “Upgrading MySQL on Windows”

NET STOP
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”

NET STOP MySQL
Section 2.3.5.8, “Starting MySQL as a Windows
Service”

nm
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 24.5.1.5, “Using a Stack Trace”

O

[index top [3619]]

openssl
Section 6.3.13.3, “Creating RSA Keys Using openssl”
Section 6.3.13, “Creating SSL and RSA Certificates
and Keys”
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 6.3.13.2, “Creating SSL Certificates and Keys
Using openssl”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”

openssl md5 package_name
Section 2.1.3.1, “Verifying the MD5 Checksum”

otool
Section 23.8.4.1, “Building C API Client Programs”

P

[index top [3619]]

perf
Section 21.9.15.3, “The threads Table”

perror
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section B.5.2.13, “Can't create/write to file”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.2, “perror — Explain Error Codes”

Section B.1, “Sources of Error Information”

pfexec
Section 2.7.2, “Installing MySQL on OpenSolaris Using
IPS”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

PGP
Section 2.1.3.2, “Signature Checking Using GnuPG”

ping6
Section 5.1.9.5, “Obtaining an IPv6 Address from a
Broker”

pkg
Section 2.7.2, “Installing MySQL on OpenSolaris Using
IPS”

pkg-config
Section 23.8.4.1, “Building C API Client Programs”
Section 23.8.4.2, “Building C API Client Programs
Using pkg-config”
Section 2.12, “Environment Variables”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

pkgadd
Section 2.7.1, “Installing MySQL on Solaris Using a
Solaris PKG”

pkgrm
Section 2.7.1, “Installing MySQL on Solaris Using a
Solaris PKG”

ppm
Section 2.13, “Perl Installation Notes”

ps
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 8.12.5.1, “How MySQL Uses Memory”
Section B.5.1, “How to Determine What Is Causing a
Problem”
Section 21.9.15.3, “The threads Table”
Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”

ps auxw
Section 4.2.2, “Connecting to the MySQL Server”

ps xa | grep mysqld
Section B.5.2.2, “Can't connect to [local] MySQL
server”

3638

R

[index top [3619]]

rename
Section 5.2.7, “Server Log Maintenance”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”

replace
Section 1.8.2.4, “'--' as the Start of a Comment”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.3, “replace — A String-Replacement
Utility”
Section 17.3.3, “Using Replication for Scale-Out”

resolve_stack_dump
Section 4.1, “Overview of MySQL Programs”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 24.5.1.5, “Using a Stack Trace”

resolveip
Section 4.1, “Overview of MySQL Programs”
Section 4.8.4, “resolveip — Resolve Host name to
IP Address or Vice Versa”

restart
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”

rm
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”

rpm
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.1.3.4, “Signature Checking Using RPM”
Section 2.11.1.4, “Upgrading MySQL with Directly-
Downloaded RPM Packages”

rpmbuild
Section 2.9, “Installing MySQL from Source”
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”

rsync
Section 17.1.2.6, “Adding Slaves to a Replication
Environment”
Section 7.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files

S

[index top [3619]]

scp
Section 7.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files

sed
Section 3.3.4.7, “Pattern Matching”

service
Section 2.5.7, “Installing MySQL on Linux from the
Native Software Repositories”
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 2.5.10, “Managing MySQL Server with
systemd”

Service Control Manager
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”

Services
Section 2.3.5.8, “Starting MySQL as a Windows
Service”

set
Section 14.17.7, “Internals of the InnoDB memcached
Plugin”

setenv
Section 4.2.10, “Setting Environment Variables”

setrlimit
Section 16.3.2, “Using memcached”

sh
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

sleep
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

ssh
Section 16.2.1, “Using ZFS for File System Replication”

start
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”

3639

Start>Run>cmd.exe
Section 6.3.13.2, “Creating SSL Certificates and Keys
Using openssl”

status
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”

stop
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”

strings
Section 6.1.1, “Security Guidelines”

sudo
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

System Preferences...
Section 2.4.4, “Installing and Using the MySQL
Preference Pane”

systemctl
Section 2.5.10, “Managing MySQL Server with
systemd”

T

[index top [3619]]

tar
Section 17.1.2.6, “Adding Slaves to a Replication
Environment”
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files
Section 3.3, “Creating and Using a Database”
Section 1.7, “How to Report Bugs or Problems”
Section 2.9, “Installing MySQL from Source”
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 2.4, “Installing MySQL on OS X”
Section 2.7, “Installing MySQL on Solaris and
OpenSolaris”
Section 2.7.1, “Installing MySQL on Solaris Using a
Solaris PKG”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.13.1, “Installing Perl on Unix”

Section 23.8.2, “Simultaneous MySQL Server and
Connector/C Installations”
Section 2.1.1, “Which MySQL Version and Distribution
to Install”

tcpdump
Section 6.1.1, “Security Guidelines”

tcsh
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section 2.4.1, “General Notes on Installing MySQL on
OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

tee
Section 4.5.1.2, “mysql Commands”

Telnet
Section 16.3.4, “Getting memcached Statistics”

telnet
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 16.3.4, “Getting memcached Statistics”
Section 6.1.1, “Security Guidelines”
Section 14.17.3.3, “Verifying the InnoDB and
memcached Setup”

Terminal
Section 2.4, “Installing MySQL on OS X”

Text in this style
Section 1.2, “Typographical and Syntax Conventions”

top
Section B.5.1, “How to Determine What Is Causing a
Problem”

U

[index top [3619]]

ulimit
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section 8.12.5.2, “Enabling Large Page Support”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section B.5.2.10, “Packet Too Large”
Section 5.1.3, “Server Command Options”
Section 16.3.2, “Using memcached”

useradd
Section 2.7, “Installing MySQL on Solaris and
OpenSolaris”

3640

Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”

V

[index top [3619]]

vi
Section 4.5.1.2, “mysql Commands”
Section 3.3.4.7, “Pattern Matching”

vmstat
Section 16.3.2, “Using memcached”

W

[index top [3619]]

watch
Section 22.4.4.25, “The
statement_performance_analyzer() Procedure”

WinDbg
Section 24.5.1.3, “Using WER with PDB to create a
Windows crashdump”

windbg.exe
Section 24.5.1.3, “Using WER with PDB to create a
Windows crashdump”

winMd5Sum
Section 2.1.3.1, “Verifying the MD5 Checksum”

WinZip
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 2.9, “Installing MySQL from Source”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”

WordPad
Section 13.2.6, “LOAD DATA INFILE Syntax”

Y

[index top [3619]]

yacc
Section 2.9.5, “Dealing with Problems Compiling
MySQL”
Section 9.3, “Keywords and Reserved Words”

yum
Section 16.3.1, “Installing memcached”
Section 2.5.7, “Installing MySQL on Linux from the
Native Software Repositories”
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”

Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of
MySQL Using the MySQL Yum Repository”
Section 16.1.1, “Setting Up MySQL on an EC2 AMI”
Section 2.11.1.4, “Upgrading MySQL with Directly-
Downloaded RPM Packages”
Section 2.11.1.2, “Upgrading MySQL with the MySQL
Yum Repository”
Section 16.3.3.3, “Using libmemcached with C and C
++”

yum install
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 2.11.1.4, “Upgrading MySQL with Directly-
Downloaded RPM Packages”

yum update
Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of
MySQL Using the MySQL Yum Repository”

yum update mysql-server
Section 2.5.2, “Replacing a Third-Party Distribution of
MySQL Using the MySQL Yum Repository”

yum-config-manager
Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of
MySQL Using the MySQL Yum Repository”

Z

[index top [3619]]

zfs recv
Section 16.2.1, “Using ZFS for File System Replication”

zip
Creating a Data Snapshot Using Raw Data Files
Section 1.7, “How to Report Bugs or Problems”

zlib_decompress
Section 4.8.1, “lz4_decompress — Decompress
mysqlpump LZ4-Compressed Output”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.5, “zlib_decompress — Decompress
mysqlpump ZLIB-Compressed Output”

zsh
Section 4.2.10, “Setting Environment Variables”

3641

zypper
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 2.11.1.4, “Upgrading MySQL with Directly-
Downloaded RPM Packages”

3642

3643

Function Index
Symbols | A | B | C | D | E | F | G | H | I | J | L | M | N | O
| P | Q | R | S | T | U | V | W | X | Y

Symbols

[index top [3643]]

%
Section 1.8.1, “MySQL Extensions to Standard SQL”

A

[index top [3643]]

ABS()
Section 24.4, “Adding New Functions to MySQL”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”
Section 12.6.2, “Mathematical Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

ACOS()
Section 12.6.2, “Mathematical Functions”

add()
Section 16.3.3.1, “Basic memcached Operations”

ADDDATE()
Section 12.7, “Date and Time Functions”

addslashes()
Section 6.1.7, “Client Programming Security
Guidelines”

ADDTIME()
Section 12.7, “Date and Time Functions”

AES_DECRYPT()
Section 12.13, “Encryption and Compression
Functions”
Section 12.18.4, “Enterprise Encryption Function
Descriptions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 6.3.12.1, “OpenSSL Versus yaSSL”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

AES_ENCRYPT()
Section 12.13, “Encryption and Compression
Functions”
Section 12.18.4, “Enterprise Encryption Function
Descriptions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 6.3.12.1, “OpenSSL Versus yaSSL”

Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

ANY_VALUE()
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 12.19, “Miscellaneous Functions”
Section 12.20.3, “MySQL Handling of GROUP BY”
Section 5.1.7, “Server SQL Modes”

Area()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”

AsBinary()
Section 12.15.6, “Geometry Format Conversion
Functions”

ASCII()
Section 13.8.3, “HELP Syntax”
Section 12.5, “String Functions”

ASIN()
Section 12.6.2, “Mathematical Functions”

AsText()
Section 12.15.6, “Geometry Format Conversion
Functions”

AsWKB()
Section 12.15.6, “Geometry Format Conversion
Functions”

AsWKT()
Section 12.15.6, “Geometry Format Conversion
Functions”

ASYMMETRIC_DECRYPT()
Section 12.18.4, “Enterprise Encryption Function
Descriptions”

ASYMMETRIC_DERIVE()
Section 12.18.4, “Enterprise Encryption Function
Descriptions”

ASYMMETRIC_ENCRYPT()
Section 12.18.4, “Enterprise Encryption Function
Descriptions”

ASYMMETRIC_SIGN()
Section 12.18.4, “Enterprise Encryption Function
Descriptions”

ASYMMETRIC_VERIFY()
Section 12.18.4, “Enterprise Encryption Function
Descriptions”

3644

ATAN()
Section 12.6.2, “Mathematical Functions”

ATAN2()
Section 12.6.2, “Mathematical Functions”

AVG()
Section 11.1.2, “Date and Time Type Overview”
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Loose Index Scan
Section 11.4.4, “The ENUM Type”
Section 1.3.2, “The Main Features of MySQL”
Section 11.4.5, “The SET Type”

B

[index top [3643]]

BENCHMARK()
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 8.13.1, “Measuring the Speed of Expressions
and Functions”
Section 13.2.10.10, “Optimizing Subqueries”
Section 13.2.10.8, “Subqueries in the FROM Clause”

BIN()
Section 9.1.6, “Bit-Field Literals”
Section 12.5, “String Functions”

BIT_AND()
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

BIT_COUNT()
Section 12.12, “Bit Functions and Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”

BIT_LENGTH()
Section 12.5, “String Functions”

BIT_OR()
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

BIT_XOR()
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

Buffer()
Section 12.15.8, “Spatial Operator Functions”

C

[index top [3643]]

CAST()
Section 9.1.6, “Bit-Field Literals”
Section 12.10, “Cast Functions and Operators”
Section 12.3.2, “Comparison Functions and Operators”
Section 11.3.7, “Conversion Between Date and Time
Types”
Section 10.1.9.2, “CONVERT() and CAST()”
Section 12.7, “Date and Time Functions”
Section 12.16.2, “Functions That Create JSON Values”
Section 9.1.4, “Hexadecimal Literals”
Section 1.8.2, “MySQL Differences from Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 10.1.7.7, “The BINARY Operator”
Section 11.6, “The JSON Data Type”
Section 12.2, “Type Conversion in Expression
Evaluation”
Section 9.4, “User-Defined Variables”

CEIL()
Section 12.6.2, “Mathematical Functions”

CEILING()
Section 18.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

Centroid()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”

CHAR()
Section 12.10, “Cast Functions and Operators”
Section 12.13, “Encryption and Compression
Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.5, “String Functions”

CHAR_LENGTH()
Section 12.5, “String Functions”
Section 10.1.14.1, “Unicode Character Sets”

CHARACTER_LENGTH()
Section 12.5, “String Functions”

CHARSET()
Section 12.14, “Information Functions”
Section 10.1.9.1, “Result Strings”

COALESCE()
Section 12.3.2, “Comparison Functions and Operators”
Section 13.2.9.2, “JOIN Syntax”

COERCIBILITY()
Section 10.1.7.5, “Collation of Expressions”
Section 12.14, “Information Functions”

3645

COLLATION()
Section B.5.4.1, “Case Sensitivity in String Searches”
Section 12.14, “Information Functions”
Section 10.1.9.1, “Result Strings”

COMPRESS()
Section 12.13, “Encryption and Compression
Functions”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”

CONCAT()
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.5, “Collation of Expressions”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 5.1.7, “Server SQL Modes”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 12.5, “String Functions”
Section 10.1.8, “String Repertoire”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 12.2, “Type Conversion in Expression
Evaluation”
Section 12.11, “XML Functions”

CONCAT_WS()
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 12.5, “String Functions”

CONNECTION_ID()
Section 13.1.14, “CREATE TABLE Syntax”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 13.7.6.4, “KILL Syntax”
Section 4.5.1.3, “mysql Logging”
Section 13.7.5.29, “SHOW PROCESSLIST Syntax”
Section 6.3.15.3, “The Audit Log File”
Section 21.9.15.3, “The threads Table”

Contains()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

CONV()
Section 12.6.2, “Mathematical Functions”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

CONVERT()
Section 12.10, “Cast Functions and Operators”
Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.2, “CONVERT() and CAST()”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”

CONVERT_TZ()
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 5.1.4, “Server System Variables”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

ConvexHull()
Section 12.15.8, “Spatial Operator Functions”

COS()
Section 12.6.2, “Mathematical Functions”

COT()
Section 12.6.2, “Mathematical Functions”

COUNT()
Section 3.3.4.8, “Counting Rows”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Loose Index Scan
Section 12.19, “Miscellaneous Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 18.1, “Overview of Partitioning in MySQL”
Section B.5.4.3, “Problems with NULL Values”
Section 5.1.7, “Server SQL Modes”
Section 1.3.2, “The Main Features of MySQL”
Section 19.5.3, “Updatable and Insertable Views”
Section 19.5.2, “View Processing Algorithms”

CRC32()
Section 12.6.2, “Mathematical Functions”

CREATE_ASYMMETRIC_PRIV_KEY()
Section 12.18.4, “Enterprise Encryption Function
Descriptions”
Section 12.18.2, “Enterprise Encryption Usage and
Examples”

3646

CREATE_ASYMMETRIC_PUB_KEY()
Section 12.18.4, “Enterprise Encryption Function
Descriptions”

CREATE_DH_PARAMETERS()
Section 12.18.4, “Enterprise Encryption Function
Descriptions”
Section 12.18.2, “Enterprise Encryption Usage and
Examples”

CREATE_DIGEST()
Section 12.18.4, “Enterprise Encryption Function
Descriptions”

Crosses()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

crypt()
Section 12.13, “Encryption and Compression
Functions”
Section 5.1.4, “Server System Variables”

CURDATE()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_DATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.7, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_DATE()
Section 11.3.7, “Conversion Between Date and Time
Types”
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIME
Section 12.7, “Date and Time Functions”

CURRENT_TIME()
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIMESTAMP
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 13.1.9, “CREATE EVENT Syntax”

Section 13.1.14, “CREATE TABLE Syntax”
Section 11.7, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_TIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_USER
Section 19.6, “Access Control for Stored Programs and
Views”
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.2.2, “Privilege System Grant Tables”
Section 17.4.1.16, “Replication and System Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.5.12, “SHOW CREATE USER Syntax”
Section 6.2.3, “Specifying Account Names”

CURRENT_USER()
Section 6.2.4, “Access Control, Stage 1: Connection
Verification”
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Implementing Proxy User Support in Authentication
Plugins
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.3.10, “Proxy Users”
Section 17.4.1.16, “Replication and System Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.7.5.12, “SHOW CREATE USER Syntax”
Section 6.2.3, “Specifying Account Names”
Section 6.3.16, “SQL-Based MySQL Account Activity
Auditing”
Section 10.1.12, “UTF-8 for Metadata”
Writing the Server-Side Authentication Plugin

CURTIME()
Section 12.7, “Date and Time Functions”

3647

Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 10.6, “MySQL Server Time Zone Support”
Section 17.4.1.14, “Replication and Fractional Seconds
Support”

D

[index top [3643]]

DATABASE()
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.1.18, “DROP DATABASE Syntax”
Section 3.4, “Getting Information About Databases and
Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section B.5.7, “Known Issues in MySQL”
Section 10.1.12, “UTF-8 for Metadata”

DATE()
Section 12.7, “Date and Time Functions”

DATE_ADD()
Section 12.6.1, “Arithmetic Operators”
Section 13.1.9, “CREATE EVENT Syntax”
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section 3.3.4.5, “Date Calculations”
Section 9.5, “Expression Syntax”

DATE_FORMAT()
Section 23.8.18, “C API Prepared Statement Problems”
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

DATE_SUB()
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”

DATEDIFF()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

DAY()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

DAYNAME()
Section 12.7, “Date and Time Functions”

Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

DAYOFMONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

DAYOFWEEK()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

DAYOFYEAR()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 18.2, “Partitioning Types”

DECODE()
Section 12.13, “Encryption and Compression
Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 1.4, “What Is New in MySQL 5.7”

decr()
Section 16.3.3.1, “Basic memcached Operations”

DEFAULT()
Section 11.7, “Data Type Default Values”
Section 13.2.5, “INSERT Syntax”
Section 12.19, “Miscellaneous Functions”
Section 13.2.8, “REPLACE Syntax”

DEGREES()
Section 12.6.2, “Mathematical Functions”

delete()
Section 16.3.3.1, “Basic memcached Operations”

DES_DECRYPT()
Section 12.13, “Encryption and Compression
Functions”
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.7”

DES_ENCRYPT()
Section 12.13, “Encryption and Compression
Functions”
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.7”

Dimension()
Section 12.15.7.1, “General Geometry Property
Functions”

3648

Disjoint()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

Distance()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

E

[index top [3643]]

ELT()
Section B.5.7, “Known Issues in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

ENCODE()
Section 12.13, “Encryption and Compression
Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 1.4, “What Is New in MySQL 5.7”

ENCRYPT()
Section 1.9.1, “Contributors to MySQL”
Section 12.13, “Encryption and Compression
Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section C.7, “Restrictions on Character Sets”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

EndPoint()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”

Envelope()
Section 12.15.7.1, “General Geometry Property
Functions”

Equals()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

EXP()
Section 13.1.14, “CREATE TABLE Syntax”
Section 12.6.2, “Mathematical Functions”

EXPORT_SET()
Section 12.5, “String Functions”

expr IN ()
Section 12.3.2, “Comparison Functions and Operators”

expr NOT IN ()
Section 12.3.2, “Comparison Functions and Operators”

ExteriorRing()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”

EXTRACT()
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

ExtractValue()
Section 12.11, “XML Functions”

F

[index top [3643]]

FIELD()
Section 12.5, “String Functions”

FIND_IN_SET()
Section 12.5, “String Functions”
Section 11.4.5, “The SET Type”

FLOOR()
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

flush_all
Section 16.3.3.1, “Basic memcached Operations”

FORMAT()
Section 12.6.2, “Mathematical Functions”
Section 12.19, “Miscellaneous Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.7, “MySQL Server Locale Support”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

FOUND_ROWS()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

3649

Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.16, “Replication and System Functions”

FROM_BASE64()
Section 12.5, “String Functions”

FROM_DAYS()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

FROM_UNIXTIME()
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 1.9.1, “Contributors to MySQL”
Section 12.7, “Date and Time Functions”
Section 17.4.1.32, “Replication and Time Zones”

G

[index top [3643]]

GeomCollFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

GeomCollFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

GeometryCollection()
Section 12.15.5, “MySQL-Specific Functions That
Create Geometry Values”

GeometryCollectionFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

GeometryCollectionFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

GeometryFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

GeometryFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

GeometryN()
Section 12.15.7.5, “GeometryCollection Property
Functions”

GeometryType()
Section 12.15.7.1, “General Geometry Property
Functions”

GeomFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

GeomFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

get()
Section 16.3.3.1, “Basic memcached Operations”

GET_FORMAT()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”

GET_LOCK
Section B.3, “Server Error Codes and Messages”

GET_LOCK()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 23.8.16, “Controlling Automatic Reconnection
Behavior”
Section 13.1.9, “CREATE EVENT Syntax”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 19.4.1, “Event Scheduler Overview”
Section 8.14.2, “General Thread States”
Section 8.10.3.1, “How the Query Cache Operates”
Section 13.7.6.4, “KILL Syntax”
Locking Service Monitoring
Section 12.19, “Miscellaneous Functions”
Section 23.8.7.3, “mysql_change_user()”
Section 23.8.7.60, “mysql_reset_connection()”
Section 17.4.1.16, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 24.3.1, “The Locking Service”
Section 21.9.11.1, “The metadata_locks Table”
Section 22.4.4.14, “The ps_setup_save() Procedure”

gethostbyaddr()
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”

gethostbyaddr_r()
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”

gethostbyname()
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”

3650

gethostbyname_r()
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”

GLength()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”

GREATEST()
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.1, “Result Strings”
Section 11.6, “The JSON Data Type”

GROUP_CONCAT()
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section B.5.7, “Known Issues in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 5.1.4, “Server System Variables”
Section 11.6, “The JSON Data Type”
Section 1.3.2, “The Main Features of MySQL”

GTID_SUBSET()
Section 12.17, “Functions Used with Global
Transaction IDs”
Section 17.1.3.1, “GTID Concepts”

GTID_SUBTRACT()
Section 12.17, “Functions Used with Global
Transaction IDs”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”

H

[index top [3643]]

HEX()
Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 9.1.4, “Hexadecimal Literals”
Section 12.6.2, “Mathematical Functions”
Section 12.19, “Miscellaneous Functions”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 10.1.9.1, “Result Strings”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 12.5, “String Functions”

HOUR()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

I

[index top [3643]]

IF()
Section 12.4, “Control Flow Functions”
Section 13.6.5.2, “IF Syntax”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section B.5.7, “Known Issues in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”

IFNULL()
Section 12.4, “Control Flow Functions”
Section B.5.4.3, “Problems with NULL Values”

IN
Section 12.3.1, “Operator Precedence”

IN()
Section 8.8.2, “EXPLAIN Output Format”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Section 11.6, “The JSON Data Type”
The Range Access Method for Single-Part Indexes
Section 12.2, “Type Conversion in Expression
Evaluation”

incr()
Section 16.3.3.1, “Basic memcached Operations”

INET6_ATON()
Section 5.1.9, “IPv6 Support”
Section 12.19, “Miscellaneous Functions”

INET6_NTOA()
Section 5.1.9, “IPv6 Support”
Section 12.19, “Miscellaneous Functions”

INET_ATON()
Section 5.1.9, “IPv6 Support”
Section 12.19, “Miscellaneous Functions”

INET_NTOA()
Section 5.1.9, “IPv6 Support”
Section 12.19, “Miscellaneous Functions”

INSERT()
Section 12.5, “String Functions”

INSTR()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

3651

InteriorRingN()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”

Intersects()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

INTERVAL()
Section 12.3.2, “Comparison Functions and Operators”

IS_FREE_LOCK()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.19, “Miscellaneous Functions”
Section 17.4.1.16, “Replication and System Functions”

IS_IPV4()
Section 12.19, “Miscellaneous Functions”

IS_IPV4_COMPAT()
Section 12.19, “Miscellaneous Functions”

IS_IPV4_MAPPED()
Section 12.19, “Miscellaneous Functions”

IS_IPV6()
Section 12.19, “Miscellaneous Functions”

IS_USED_LOCK()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.19, “Miscellaneous Functions”
Section 17.4.1.16, “Replication and System Functions”

IsClosed()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”

IsEmpty()
Section 12.15.7.1, “General Geometry Property
Functions”

ISNULL()
Section 12.3.2, “Comparison Functions and Operators”

IsSimple()
Section 12.15.7.1, “General Geometry Property
Functions”

J

[index top [3643]]

JSON_APPEND()
Section 12.16.4, “Functions That Modify JSON Values”
Section 1.4, “What Is New in MySQL 5.7”

JSON_ARRAY()
Section 12.16.2, “Functions That Create JSON Values”
Section 11.6, “The JSON Data Type”
Section 1.4, “What Is New in MySQL 5.7”

JSON_ARRAY_APPEND()
Section 12.16.4, “Functions That Modify JSON Values”
Section 1.4, “What Is New in MySQL 5.7”

JSON_ARRAY_INSERT()
Section 12.16.4, “Functions That Modify JSON Values”
Section 1.4, “What Is New in MySQL 5.7”

JSON_CONTAINS()
Section 12.16.3, “Functions That Search JSON Values”
Section 1.4, “What Is New in MySQL 5.7”

JSON_CONTAINS_PATH()
Section 12.16.3, “Functions That Search JSON Values”
Section 12.16.6, “JSON Path Syntax”
Section 1.4, “What Is New in MySQL 5.7”

JSON_DEPTH()
Section 12.16.5, “Functions That Return JSON Value
Attributes”
Section 1.4, “What Is New in MySQL 5.7”

JSON_EXTRACT()
Section 13.1.14, “CREATE TABLE Syntax”
Section 12.16.3, “Functions That Search JSON Values”
Section 11.6, “The JSON Data Type”
Section 1.4, “What Is New in MySQL 5.7”

JSON_INSERT()
Section 12.16.4, “Functions That Modify JSON Values”
Section 11.6, “The JSON Data Type”
Section 1.4, “What Is New in MySQL 5.7”

JSON_KEYS()
Section 12.16.3, “Functions That Search JSON Values”
Section 1.4, “What Is New in MySQL 5.7”

3652

JSON_LENGTH()
Section 12.16.5, “Functions That Return JSON Value
Attributes”
Section 1.4, “What Is New in MySQL 5.7”

JSON_MERGE()
Section 12.16.4, “Functions That Modify JSON Values”
Section 11.6, “The JSON Data Type”
Section 1.4, “What Is New in MySQL 5.7”

JSON_OBJECT()
Section 12.16.2, “Functions That Create JSON Values”
Section 11.6, “The JSON Data Type”
Section 1.4, “What Is New in MySQL 5.7”

JSON_QUOTE()
Section 12.16.2, “Functions That Create JSON Values”
Section 1.4, “What Is New in MySQL 5.7”

JSON_REMOVE()
Section 12.16.4, “Functions That Modify JSON Values”
Section 1.4, “What Is New in MySQL 5.7”

JSON_REPLACE()
Section 12.16.4, “Functions That Modify JSON Values”
Section 12.16.6, “JSON Path Syntax”
Section 11.6, “The JSON Data Type”
Section 1.4, “What Is New in MySQL 5.7”

JSON_SEARCH()
Section 12.16.3, “Functions That Search JSON Values”
Section 12.16.6, “JSON Path Syntax”
Section 1.4, “What Is New in MySQL 5.7”

JSON_SET()
Section 12.16.4, “Functions That Modify JSON Values”
Section 11.6, “The JSON Data Type”
Section 1.4, “What Is New in MySQL 5.7”

JSON_TYPE()
Section 12.16.5, “Functions That Return JSON Value
Attributes”
Section 12.16.3, “Functions That Search JSON Values”
Section 11.6, “The JSON Data Type”
Section 1.4, “What Is New in MySQL 5.7”

JSON_UNQUOTE()
Section 12.16.4, “Functions That Modify JSON Values”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Section 1.4, “What Is New in MySQL 5.7”

JSON_VALID()
Section 12.16.5, “Functions That Return JSON Value
Attributes”
Section 1.4, “What Is New in MySQL 5.7”

L

[index top [3643]]

LAST_DAY()
Section 12.7, “Date and Time Functions”

LAST_INSERT_ID()
Section 12.3.2, “Comparison Functions and Operators”
Section 23.8.16, “Controlling Automatic Reconnection
Behavior”
Section 13.1.14, “CREATE TABLE Syntax”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 23.8.15.3, “How to Get the Unique ID for the
Last Inserted Row”
Section 12.14, “Information Functions”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 23.8.7.38, “mysql_insert_id()”
Section 23.8.7.60, “mysql_reset_connection()”
Section 23.8.11.16, “mysql_stmt_insert_id()”
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 17.4.1.1, “Replication and
AUTO_INCREMENT”
Section 17.4.1.16, “Replication and System Functions”
Section 5.1.4, “Server System Variables”
Section 19.2.4, “Stored Procedures, Functions,
Triggers, and LAST_INSERT_ID()”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 17.4.4, “Troubleshooting Replication”
Section 19.5.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”

LCASE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

LEAST()
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.1, “Result Strings”
Section 11.6, “The JSON Data Type”

LEFT()
Section 12.10, “Cast Functions and Operators”
Section 12.5, “String Functions”

LENGTH()
Section 12.5, “String Functions”

Length()
Section 11.5, “Extensions for Spatial Data”

3653

Section 12.15.7.3, “LineString and MultiLineString
Property Functions”

LineFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

LineFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

LineString()
Section 12.15.5, “MySQL-Specific Functions That
Create Geometry Values”

LineStringFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

LineStringFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

LN()
Section 12.6.2, “Mathematical Functions”

LOAD_FILE()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.18.2, “Enterprise Encryption Usage and
Examples”
Section 8.10.3.1, “How the Query Cache Operates”
Section 13.2.7, “LOAD XML Syntax”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.16, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

LOCALTIME
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”

LOCALTIME()
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

LOCALTIMESTAMP
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”

Section 12.7, “Date and Time Functions”

LOCALTIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

LOCATE()
Section 12.5, “String Functions”

LOG()
Section 18.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

LOG10()
Section 12.6.2, “Mathematical Functions”

LOG2()
Section 12.6.2, “Mathematical Functions”

LOWER()
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.9, “Collation and
INFORMATION_SCHEMA Searches”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
Section 10.1.14.1, “Unicode Character Sets”

LPAD()
Section 12.5, “String Functions”

LTRIM()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

M

[index top [3643]]

MAKE_SET()
Section 12.5, “String Functions”

MAKEDATE()
Section 12.7, “Date and Time Functions”

MAKETIME()
Section 12.7, “Date and Time Functions”

MASTER_POS_WAIT()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”

3654

Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.2.3.1, “Commands for Operations on a
Single Channel”
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.19, “Miscellaneous Functions”
Section A.13, “MySQL 5.7 FAQ: Replication”

MATCH
Section 9.5, “Expression Syntax”

MATCH ()
Section 12.9, “Full-Text Search Functions”

MATCH()
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.5, “Full-Text Restrictions”
Section 12.9, “Full-Text Search Functions”
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
MySQL Glossary
Section 12.9.1, “Natural Language Full-Text Searches”

MAX()
Section 8.8.2, “EXPLAIN Output Format”
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.5.7, “Known Issues in MySQL”
Loose Index Scan
Section 12.20.3, “MySQL Handling of GROUP BY”
Section 11.1.1, “Numeric Type Overview”
Section 13.2.10.10, “Optimizing Subqueries”
Section 5.1.7, “Server SQL Modes”
Section 11.6, “The JSON Data Type”
Section 1.3.2, “The Main Features of MySQL”
Section 11.3.8, “Two-Digit Years in Dates”
Section 19.5.3, “Updatable and Insertable Views”
Section 8.2.1.7, “Use of Index Extensions”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 19.5.2, “View Processing Algorithms”

MBRContains()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”
Section 11.5.3.7, “Using Spatial Indexes”

MBRCoveredBy()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”

MBRCovers()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”

MBRDisjoint()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

MBREqual()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 1.4, “What Is New in MySQL 5.7”

MBREquals()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”
Section 1.4, “What Is New in MySQL 5.7”

MBRIntersects()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

MBROverlaps()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

MBRTouches()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”

MBRWithin()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”
Section 11.5.3.7, “Using Spatial Indexes”

MD5()
Section 12.13, “Encryption and Compression
Functions”

3655

Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 9.2, “Schema Object Names”
Section 6.1.1, “Security Guidelines”

MICROSECOND()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

MID()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

MIN()
Section 23.8.18, “C API Prepared Statement Problems”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.5.7, “Known Issues in MySQL”
Loose Index Scan
Section 12.20.3, “MySQL Handling of GROUP BY”
Section 11.1.1, “Numeric Type Overview”
Section 13.2.10.10, “Optimizing Subqueries”
Section B.5.4.3, “Problems with NULL Values”
Section 11.6, “The JSON Data Type”
Section 1.3.2, “The Main Features of MySQL”
Section 11.3.8, “Two-Digit Years in Dates”
Section 19.5.3, “Updatable and Insertable Views”
Section 8.2.1.7, “Use of Index Extensions”
Section 19.5.2, “View Processing Algorithms”

MINUTE()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

MLineFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

MLineFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

MOD()
Section 12.6.1, “Arithmetic Operators”
Section 3.3.4.5, “Date Calculations”
Section 12.6.2, “Mathematical Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 5.1.7, “Server SQL Modes”

MONTH()
Section 12.7, “Date and Time Functions”

Section 3.3.4.5, “Date Calculations”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 18.2, “Partitioning Types”

MONTHNAME()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

MPointFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

MPointFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

MPolyFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

MPolyFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

MultiLineString()
Section 12.15.5, “MySQL-Specific Functions That
Create Geometry Values”

MultiLineStringFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

MultiLineStringFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

MultiPoint()
Section 12.15.5, “MySQL-Specific Functions That
Create Geometry Values”

MultiPointFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

MultiPointFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

MultiPolygon()
Section 12.15.5, “MySQL-Specific Functions That
Create Geometry Values”

3656

MultiPolygonFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

MultiPolygonFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

my_open()
Section 5.1.6, “Server Status Variables”

N

[index top [3643]]

NAME_CONST()
Section 19.7, “Binary Logging of Stored Programs”
Section 12.19, “Miscellaneous Functions”

NOW()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.7, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 11.3.6, “Fractional Seconds in Time Values”
Section 8.10.3.1, “How the Query Cache Operates”
Section A.1, “MySQL 5.7 FAQ: General”
Section 10.6, “MySQL Server Time Zone Support”
Section 17.4.1.16, “Replication and System Functions”
Section 17.4.1.32, “Replication and Time Zones”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 22.4.3.21, “The metrics View”
Section 22.4.4.25, “The
statement_performance_analyzer() Procedure”
Section 11.3.3, “The YEAR Type”
Section 10.6.2, “Time Zone Leap Second Support”

NULLIF()
Section 12.4, “Control Flow Functions”

NumGeometries()
Section 12.15.7.5, “GeometryCollection Property
Functions”

NumInteriorRings()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”

NumPoints()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”

O

[index top [3643]]

OCT()
Section 12.5, “String Functions”

OCTET_LENGTH()
Section 12.5, “String Functions”

OLD_PASSWORD()
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section B.5.2.4, “Client does not support authentication
protocol”
Section 13.7.1.2, “CREATE USER Syntax”
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 24.2.3.8, “Password-Validation Plugins”
Section 5.1.4, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.1.2.5, “The Password Validation Plugin”
Section 1.4, “What Is New in MySQL 5.7”

ORD()
Section 12.5, “String Functions”

Overlaps()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

P

[index top [3643]]

PASSWORD()
Section 6.2.4, “Access Control, Stage 1: Connection
Verification”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.1.2, “CREATE USER Syntax”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.13, “Encryption and Compression
Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section B.5.2.15, “Ignoring user”
Section 18.2.5, “KEY Partitioning”
Section 1.8.1, “MySQL Extensions to Standard SQL”

3657

Section 6.1.2.4, “Password Hashing in MySQL”
Section 24.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 5.1.4, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.1.2.5, “The Password Validation Plugin”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 1.4, “What Is New in MySQL 5.7”

PERIOD_ADD()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

PERIOD_DIFF()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

PI()
Section 9.2.4, “Function Name Parsing and Resolution”
Section 12.6.2, “Mathematical Functions”

Point()
Section 12.15.5, “MySQL-Specific Functions That
Create Geometry Values”
Well-Known Text (WKT) Format

PointFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

PointFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

PointN()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”

PolyFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

PolyFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

Polygon()
Section 12.15.5, “MySQL-Specific Functions That
Create Geometry Values”

PolygonFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

PolygonFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

POSITION()
Section 12.5, “String Functions”

POW()
Section 18.2.4, “HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

POWER()
Section 18.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

pthread_mutex()
Section 1.9.1, “Contributors to MySQL”

Q

[index top [3643]]

QUARTER()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

QUOTE()
Section 23.8.7.55, “mysql_real_escape_string()”
Section 23.8.7.56, “mysql_real_escape_string_quote()”
Section 12.5, “String Functions”
Section 9.1.1, “String Literals”

R

[index top [3643]]

RADIANS()
Section 12.6.2, “Mathematical Functions”

RAND()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.6.2, “Mathematical Functions”
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 17.4.1.16, “Replication and System Functions”
Section 5.1.4, “Server System Variables”

RANDOM_BYTES()
Section 12.13, “Encryption and Compression
Functions”

3658

Section 8.10.3.1, “How the Query Cache Operates”

RELEASE_ALL_LOCKS()
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.19, “Miscellaneous Functions”

RELEASE_LOCK()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 13.2.3, “DO Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.19, “Miscellaneous Functions”
Section 17.4.1.16, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

REPEAT()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

REPLACE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

replace()
Section 16.3.3.1, “Basic memcached Operations”

REVERSE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

RIGHT()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

ROUND()
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 12.6.2, “Mathematical Functions”
Section 12.21, “Precision Math”
Section 12.21.5, “Precision Math Examples”
Section 12.21.4, “Rounding Behavior”

ROW_COUNT()
Section 13.2.1, “CALL Syntax”
Section 13.2.2, “DELETE Syntax”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Diagnostics Area Information Items
Section 12.14, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 5.2.4.3, “Mixed Binary Logging Format”

Section 23.8.7.1, “mysql_affected_rows()”
Section 17.4.1.16, “Replication and System Functions”

RPAD()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

RTRIM()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

S

[index top [3643]]

SCHEMA()
Section 12.14, “Information Functions”

SEC_TO_TIME()
Section 12.7, “Date and Time Functions”

SECOND()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

SESSION_USER()
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 10.1.12, “UTF-8 for Metadata”

set()
Section 16.3.3.1, “Basic memcached Operations”

setrlimit()
Section 5.1.3, “Server Command Options”

SHA()
Section 12.13, “Encryption and Compression
Functions”

SHA1()
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.1, “Security Guidelines”

SHA2()
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.1, “Security Guidelines”

SIGN()
Section 12.6.2, “Mathematical Functions”

3659

SIN()
Section 12.6.2, “Mathematical Functions”
Section 24.4.2.3, “UDF Argument Processing”

SLEEP()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.14.2, “General Thread States”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.19, “Miscellaneous Functions”
Section 17.4.1, “Replication Features and Issues”

SOUNDEX()
Section 24.4, “Adding New Functions to MySQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

SPACE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

SQRT()
Section 12.6.2, “Mathematical Functions”

SRID()
Section 12.15.7.1, “General Geometry Property
Functions”

ST_Area()
Section 12.15.7, “Geometry Property Functions”
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”

ST_AsBinary()
Section 11.5.3.4, “Fetching Spatial Data”
Section 12.15.6, “Geometry Format Conversion
Functions”

ST_AsGeoJSON()
Section 12.15.11, “Spatial GeoJSON Functions”
Section 11.6, “The JSON Data Type”

ST_AsText()
Section 11.5.3.4, “Fetching Spatial Data”
Section 12.15.6, “Geometry Format Conversion
Functions”

ST_AsWKB()
Section 12.15.6, “Geometry Format Conversion
Functions”

ST_AsWKT()
Section 12.15.6, “Geometry Format Conversion
Functions”

ST_Buffer()
Section 12.15.8, “Spatial Operator Functions”

ST_Buffer_Strategy()
Section 5.1.4, “Server System Variables”
Section 12.15.8, “Spatial Operator Functions”

ST_Centroid()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”

ST_Contains()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

ST_ConvexHull()
Section 12.15.8, “Spatial Operator Functions”

ST_Crosses()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

ST_Difference()
Section 12.15.8, “Spatial Operator Functions”

ST_Dimension()
Section 12.15.7.1, “General Geometry Property
Functions”

ST_Disjoint()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

ST_Distance()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

ST_Distance_Sphere()
Section 12.15.12, “Spatial Convenience Functions”

ST_EndPoint()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”
Section 12.15.8, “Spatial Operator Functions”

ST_Envelope()
Section 12.15.7.1, “General Geometry Property
Functions”
Section 12.15.8, “Spatial Operator Functions”

ST_Equals()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

3660

ST_ExteriorRing()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”
Section 12.15.8, “Spatial Operator Functions”

ST_GeoHash()
Section 12.15.10, “Spatial Geohash Functions”

ST_GeomCollFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_GeomCollFromTxt()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_GeomCollFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_GeometryCollectionFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_GeometryCollectionFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_GeometryFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_GeometryFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_GeometryN()
Section 12.15.7.5, “GeometryCollection Property
Functions”
Section 12.15.8, “Spatial Operator Functions”

ST_GeometryType()
Section 12.15.7.1, “General Geometry Property
Functions”

ST_GeomFromGeoJSON()
Section 12.15.11, “Spatial GeoJSON Functions”
Section 11.6, “The JSON Data Type”

ST_GeomFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”
Section 11.5.3.3, “Populating Spatial Columns”
Well-Known Text (WKT) Format

ST_GeomFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_InteriorRingN()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”
Section 12.15.8, “Spatial Operator Functions”

ST_Intersection()
Section 12.15.8, “Spatial Operator Functions”

ST_Intersects()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

ST_IsClosed()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”

ST_IsEmpty()
Section 12.15.7.1, “General Geometry Property
Functions”

ST_IsSimple()
Section 12.15.7.1, “General Geometry Property
Functions”

ST_IsValid()
Section 12.15.12, “Spatial Convenience Functions”

ST_LatFromGeoHash()
Section 12.15.10, “Spatial Geohash Functions”

ST_Length()
Section 11.5, “Extensions for Spatial Data”
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”
Section 12.5, “String Functions”

ST_LineFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_LineFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_LineStringFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_LineStringFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

3661

ST_LongFromGeoHash()
Section 12.15.10, “Spatial Geohash Functions”

ST_MakeEnvelope()
Section 12.15.12, “Spatial Convenience Functions”

ST_MLineFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_MLineFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_MPointFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”
Well-Known Text (WKT) Format

ST_MPointFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_MPolyFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_MPolyFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_MultiLineStringFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_MultiLineStringFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_MultiPointFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_MultiPointFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_MultiPolygonFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_MultiPolygonFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_NumGeometries()
Section 12.15.7.5, “GeometryCollection Property
Functions”

ST_NumInteriorRing()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”

ST_NumInteriorRings()
Section 12.15.7.4, “Polygon and MultiPolygon Property
Functions”

ST_NumPoints()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”

ST_Overlaps()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

ST_PointFromGeoHash()
Section 12.15.10, “Spatial Geohash Functions”

ST_PointFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_PointFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_PointN()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”
Section 12.15.8, “Spatial Operator Functions”

ST_PolyFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_PolyFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_PolygonFromText()
Section 12.15.3, “Functions That Create Geometry
Values from WKT Values”

ST_PolygonFromWKB()
Section 12.15.4, “Functions That Create Geometry
Values from WKB Values”

ST_Simplify()
Section 12.15.12, “Spatial Convenience Functions”

3662

ST_SRID()
Section 12.15.7.1, “General Geometry Property
Functions”

ST_StartPoint()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”
Section 12.15.8, “Spatial Operator Functions”

ST_SymDifference()
Section 12.15.8, “Spatial Operator Functions”

ST_Touches()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

ST_Union()
Section 12.15.8, “Spatial Operator Functions”

ST_Validate()
Section 12.15.12, “Spatial Convenience Functions”

ST_Within()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

ST_X()
Section 12.15.7.2, “Point Property Functions”

ST_Y()
Section 12.15.7.2, “Point Property Functions”

StartPoint()
Section 12.15.7.3, “LineString and MultiLineString
Property Functions”

STD()
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 1.3.2, “The Main Features of MySQL”

STDDEV()
Section 12.20.1, “GROUP BY (Aggregate) Functions”

STDDEV_POP()
Section 12.20.1, “GROUP BY (Aggregate) Functions”

STDDEV_SAMP()
Section 12.20.1, “GROUP BY (Aggregate) Functions”

STR_TO_DATE()
Section 12.7, “Date and Time Functions”

Section 10.7, “MySQL Server Locale Support”

STRCMP()
Section B.5.4.2, “Problems Using DATE Columns”
Section 12.5.1, “String Comparison Functions”

SUBDATE()
Section 12.7, “Date and Time Functions”

SUBSTR()
Section 12.5, “String Functions”

SUBSTRING()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

SUBSTRING_INDEX()
Section 6.3.16, “SQL-Based MySQL Account Activity
Auditing”
Section 12.5, “String Functions”

SUBTIME()
Section 12.7, “Date and Time Functions”

SUM()
Section 24.4.2, “Adding a New User-Defined Function”
Section 11.1.2, “Date and Time Type Overview”
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Loose Index Scan
Section 12.19, “Miscellaneous Functions”
Section 18.1, “Overview of Partitioning in MySQL”
Section B.5.4.3, “Problems with NULL Values”
Section 11.4.4, “The ENUM Type”
Section 1.3.2, “The Main Features of MySQL”
Section 11.4.5, “The SET Type”
Section 19.5.3, “Updatable and Insertable Views”
Section 19.5.2, “View Processing Algorithms”

SYSDATE()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 17.4.1.14, “Replication and Fractional Seconds
Support”
Section 17.4.1.16, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

SYSTEM_USER()
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 10.1.12, “UTF-8 for Metadata”

3663

T

[index top [3643]]

TAN()
Section 12.6.2, “Mathematical Functions”

thr_setconcurrency()
Section 5.1.4, “Server System Variables”

TIME()
Section 12.7, “Date and Time Functions”

TIME_FORMAT()
Section 12.7, “Date and Time Functions”

TIME_TO_SEC()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

TIMEDIFF()
Section 12.7, “Date and Time Functions”

TIMESTAMP()
Section 12.7, “Date and Time Functions”

TIMESTAMPADD()
Section 12.7, “Date and Time Functions”

TIMESTAMPDIFF()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”

TO_BASE64()
Section 12.5, “String Functions”

TO_DAYS()
Section 12.7, “Date and Time Functions”
Section 18.2.4, “HASH Partitioning”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 18.4, “Partition Pruning”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 18.2, “Partitioning Types”

TO_SECONDS()
Section 12.7, “Date and Time Functions”
Section 18.4, “Partition Pruning”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 18.2, “Partitioning Types”

Touches()
Section 12.15.9.1, “Spatial Relation Functions That Use
Object Shapes”

TRIM()
Section 10.1.13, “Column Character Set Conversion”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

TRUNCATE()
Section 12.6.2, “Mathematical Functions”

U

[index top [3643]]

UCASE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

UNCOMPRESS()
Section 12.13, “Encryption and Compression
Functions”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”

UNCOMPRESSED_LENGTH()
Section 12.13, “Encryption and Compression
Functions”

UNHEX()
Section 12.13, “Encryption and Compression
Functions”
Section 12.5, “String Functions”

UNIX_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 18.2.1, “RANGE Partitioning”
Section 5.1.4, “Server System Variables”
Section 22.4.3.21, “The metrics View”
Section B.5.3.7, “Time Zone Problems”

UpdateXML()
Section 12.11, “XML Functions”

UPPER()
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.9, “Collation and
INFORMATION_SCHEMA Searches”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
Section 10.1.8, “String Repertoire”
Section 10.1.14.1, “Unicode Character Sets”

3664

USER()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 13.7.1.1, “ALTER USER Syntax”
Section 10.1.7.5, “Collation of Expressions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Implementing Proxy User Support in Authentication
Plugins
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.3.10, “Proxy Users”
Section 17.4.1.16, “Replication and System Functions”
Section 6.3.16, “SQL-Based MySQL Account Activity
Auditing”
Section 10.1.12, “UTF-8 for Metadata”
Writing the Server-Side Authentication Plugin

UTC_DATE
Section 12.7, “Date and Time Functions”

UTC_DATE()
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

UTC_TIME
Section 12.7, “Date and Time Functions”

UTC_TIME()
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”

UTC_TIMESTAMP
Section 12.7, “Date and Time Functions”

UTC_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 10.6, “MySQL Server Time Zone Support”
Section 17.4.1.14, “Replication and Fractional Seconds
Support”

UUID()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 19.7, “Binary Logging of Stored Programs”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.19, “Miscellaneous Functions”

Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.16, “Replication and System Functions”
Section 5.2.4.2, “Setting The Binary Log Format”

UUID_SHORT()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.19, “Miscellaneous Functions”

V

[index top [3643]]

VALIDATE_PASSWORD_STRENGTH()
Section 12.13, “Encryption and Compression
Functions”
Password Validation Plugin Options and Variables
Section 24.2.3.8, “Password-Validation Plugins”
Section 6.1.2.5, “The Password Validation Plugin”

VALUES()
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 12.19, “Miscellaneous Functions”

VAR_POP()
Section 12.20.1, “GROUP BY (Aggregate) Functions”

VAR_SAMP()
Section 12.20.1, “GROUP BY (Aggregate) Functions”

VARIANCE()
Section 12.20.1, “GROUP BY (Aggregate) Functions”

VERSION()
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section B.5.4.1, “Case Sensitivity in String Searches”
Section 10.1.7.5, “Collation of Expressions”
Section 12.14, “Information Functions”
Section 17.4.1.16, “Replication and System Functions”
Section 6.3.15.3, “The Audit Log File”
Section 10.1.12, “UTF-8 for Metadata”

W

[index top [3643]]

WAIT_FOR_EXECUTED_GTID_SET()
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”
Section 12.17, “Functions Used with Global
Transaction IDs”

3665

Section 17.1.5.1, “Replication Mode Concepts”

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()
Section 17.2.3.1, “Commands for Operations on a
Single Channel”
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”
Section 12.17, “Functions Used with Global
Transaction IDs”

WEEK()
Section 12.7, “Date and Time Functions”
Section 5.1.4, “Server System Variables”

WEEKDAY()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 18.2, “Partitioning Types”

WEEKOFYEAR()
Section 12.7, “Date and Time Functions”

WEIGHT_STRING()
Section 10.4, “Adding a Collation to a Character Set”
Section B.5.4.1, “Case Sensitivity in String Searches”
Section 12.5, “String Functions”
Section 10.1.14.1, “Unicode Character Sets”

Within()
Section 12.15.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 12.15.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

X

[index top [3643]]

X()
Section 12.15.7.2, “Point Property Functions”

Y

[index top [3643]]

Y()
Section 12.15.7.2, “Point Property Functions”

YEAR()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 18.2.4, “HASH Partitioning”

Section 18.2.7, “How MySQL Partitioning Handles
NULL”
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 18.4, “Partition Pruning”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 18.2, “Partitioning Types”
Section 18.2.1, “RANGE Partitioning”

YEARWEEK()
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”

3666

3667

INFORMATION_SCHEMA
Index
C | E | F | G | I | K | O | P | R | S | T | U | V

C

[index top [3667]]

CHARACTER_SETS
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 20.1, “The INFORMATION_SCHEMA
CHARACTER_SETS Table”

COLLATION_CHARACTER_SET_APPLICABILITY
Section 20.3, “The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY
Table”

COLLATIONS
Section 23.8.5, “C API Data Structures”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 20.2, “The INFORMATION_SCHEMA
COLLATIONS Table”

COLUMN_PRIVILEGES
Section 20.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

COLUMNS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 20.4, “The INFORMATION_SCHEMA
COLUMNS Table”
Section 20.13, “The INFORMATION_SCHEMA
PARAMETERS Table”
Section 20.19, “The INFORMATION_SCHEMA
ROUTINES Table”

E

[index top [3667]]

ENGINES
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 5.1.4, “Server System Variables”
Section 13.7.5.16, “SHOW ENGINES Syntax”
Section 20.6, “The INFORMATION_SCHEMA
ENGINES Table”

EVENTS
Section 19.4.4, “Event Metadata”
Section 19.4.2, “Event Scheduler Configuration”
Section 17.4.1.12, “Replication of Invoked Features”
Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”

F

[index top [3667]]

FILES
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”

G

[index top [3667]]

GLOBAL_STATUS
Section 5.1.4, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Syntax”
Section 20.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

GLOBAL_VARIABLES
Section 5.1.4, “Server System Variables”
Section 13.7.5.39, “SHOW VARIABLES Syntax”
Section 20.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

I

[index top [3667]]

INFORMATION_SCHEMA
Section 22.2, “Using the sys Schema”

INFORMATION_SCHEMA
GLOBAL_STATUS
Section 20.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

INFORMATION_SCHEMA
GLOBAL_VARIABLES
Section 20.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

INFORMATION_SCHEMA.CHARACTER_SETS
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”

3668

INFORMATION_SCHEMA.COLLATIONS
Section 10.4.2, “Choosing a Collation ID”

INFORMATION_SCHEMA.COLUMNS
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 21.1, “Performance Schema Quick Start”
Section 14.2.7.7, “Physical Row Structure”
Section 5.1.4, “Server System Variables”
Section 2.11.1, “Upgrading MySQL”

INFORMATION_SCHEMA.ENGINES
Section 21.1, “Performance Schema Quick Start”

INFORMATION_SCHEMA.EVENTS
Section 19.4.4, “Event Metadata”
Section 17.4.1.12, “Replication of Invoked Features”
Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.18, “SHOW EVENTS Syntax”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”

INFORMATION_SCHEMA.FILES
Section 14.12.8, “Retrieving InnoDB Tablespace
Metadata from INFORMATION_SCHEMA.FILES”
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”
Section 20.30.14, “The INFORMATION_SCHEMA
INNODB_SYS_DATAFILES Table”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 20.24, “The INFORMATION_SCHEMA
TABLESPACES Table”

INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
Section 14.2.7.5, “Change Buffer”

INFORMATION_SCHEMA.INNODB_CMP
MySQL Glossary
Section 14.6.1.3, “Tuning Compression for InnoDB
Tables”
Section 14.12.1.3, “Using the Compression Information
Schema Tables”

INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.6.1.3, “Tuning Compression for InnoDB
Tables”

INFORMATION_SCHEMA.INNODB_CMPMEM
Section 14.12.1.3, “Using the Compression Information
Schema Tables”

INFORMATION_SCHEMA.INNODB_FT_CONFIG
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”

INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD
Section 12.9.4, “Full-Text Stopwords”

INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 12.9.8, “ngram Full-Text Parser”

INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE
Section 12.9.4, “Full-Text Stopwords”

INFORMATION_SCHEMA.INNODB_LOCK_WAITS
Section 14.12.2.1, “Usage Examples for InnoDB
Transaction and Locking Tables”

INFORMATION_SCHEMA.INNODB_LOCKS
Section 14.12.2.1, “Usage Examples for InnoDB
Transaction and Locking Tables”

INFORMATION_SCHEMA.INNODB_METRICS
Section 14.2.7.5, “Change Buffer”
Section 14.11, “InnoDB Startup Options and System
Variables”

INFORMATION_SCHEMA.INNODB_SYS_DATAFILES
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”

INFORMATION_SCHEMA.INNODB_SYS_INDEXES
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”

INFORMATION_SCHEMA.INNODB_SYS_TABLES
Section 14.4.9, “InnoDB General Tablespaces”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
MySQL Glossary
Section 14.2.7.7, “Physical Row Structure”

INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES
Section 14.4.9, “InnoDB General Tablespaces”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 14.6.2, “InnoDB Page Compression”

INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”

INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO
Section 14.11, “InnoDB Startup Options and System
Variables”

3669

INFORMATION_SCHEMA.INNODB_TRX
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.12.2.1, “Usage Examples for InnoDB
Transaction and Locking Tables”

INFORMATION_SCHEMA.KEY_COLUMN_USAGE
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

INFORMATION_SCHEMA.PARTITIONS
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 18.2.7, “How MySQL Partitioning Handles
NULL”
Section 18.2.5, “KEY Partitioning”
Section 18.3.5, “Obtaining Information About Partitions”
Section 18.2.3.1, “RANGE COLUMNS partitioning”
Section 5.1.3, “Server Command Options”
Section 20.14, “The INFORMATION_SCHEMA
PARTITIONS Table”

INFORMATION_SCHEMA.PLUGINS
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.15.1, “Installing the Audit Log Plugin”
Installing the PAM Authentication Plugin
Installing the Windows Authentication Plugin
Section 5.1.8.2, “Obtaining Server Plugin Information”
Chapter 18, Partitioning
Password Validation Plugin Installation
Section 24.2.1, “Plugin API Characteristics”
Section 24.2.2, “Plugin API Components”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Server Plugin Library and Plugin Descriptors
Section 8.12.7.1, “Thread Pool Components and
Installation”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 24.2.4.10, “Writing Password-Validation
Plugins”
Writing the Server-Side Authentication Plugin

INFORMATION_SCHEMA.PROCESSLIST
Section 8.14, “Examining Thread Information”
Section 12.14, “Information Functions”
Section 13.7.6.4, “KILL Syntax”
Section 21.4, “Performance Schema Instrument
Naming Conventions”
Section 21.9.5, “Performance Schema Stage Event
Tables”

Section 13.7.5.29, “SHOW PROCESSLIST Syntax”
Section 20.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”
Section 21.9.15.3, “The threads Table”
Section 14.12.2.1, “Usage Examples for InnoDB
Transaction and Locking Tables”

INFORMATION_SCHEMA.PROFILING
Section 1.4, “What Is New in MySQL 5.7”

INFORMATION_SCHEMA.ROUTINES
Chapter 20, INFORMATION_SCHEMA Tables
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 20.19, “The INFORMATION_SCHEMA
ROUTINES Table”

INFORMATION_SCHEMA.STATISTICS
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 14.11, “InnoDB Startup Options and System
Variables”

INFORMATION_SCHEMA.TABLE_CONSTRAINTS
Section 20.18, “The INFORMATION_SCHEMA
REFERENTIAL_CONSTRAINTS Table”

information_schema.table_constraints
Section 14.10.1, “Overview of Online DDL”

INFORMATION_SCHEMA.TABLES
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Chapter 20, INFORMATION_SCHEMA Tables
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 5.1.3, “Server Command Options”
Section 14.8.2, “Specifying the Row Format for a
Table”
Section 22.4.4.2, “The diagnostics() Procedure”
Section 22.4.2.1, “The sys_config Table”

INFORMATION_SCHEMA.TRIGGERS
Section A.5, “MySQL 5.7 FAQ: Triggers”

INFORMATION_SCHEMA.VIEWS
Section 19.5.3, “Updatable and Insertable Views”

INNODB_BUFFER_PAGE
Section 14.2.7.5, “Change Buffer”
Section 14.12.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”
Section 22.1, “Prerequisites for Using the sys Schema”
Section 20.30.18, “The INFORMATION_SCHEMA
INNODB_BUFFER_PAGE_LRU Table”

3670

Section 22.4.3.7, “The innodb_buffer_stats_by_schema
and x$innodb_buffer_stats_by_schema Views”
Section 22.4.3.8, “The innodb_buffer_stats_by_table
and x$innodb_buffer_stats_by_table Views”

INNODB_BUFFER_PAGE_LRU
Section 14.12.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”
Section 14.3.3.5, “Preloading the InnoDB Buffer Pool
for Faster Restart”
Section 20.30.18, “The INFORMATION_SCHEMA
INNODB_BUFFER_PAGE_LRU Table”

INNODB_BUFFER_POOL_STATS
Section 14.12.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”
Section 8.10.1, “The InnoDB Buffer Pool”

INNODB_CMP
Section 14.12.1, “InnoDB INFORMATION_SCHEMA
Tables about Compression”
Section 14.12.1.1, “INNODB_CMP and
INNODB_CMP_RESET”
Section 14.12.1.2, “INNODB_CMPMEM and
INNODB_CMPMEM_RESET”
Section 14.6.1.4, “Monitoring Compression at Runtime”
Section 14.12.1.3, “Using the Compression Information
Schema Tables”

INNODB_CMP_PER_INDEX
Section 14.6.1.4, “Monitoring Compression at Runtime”
Section 14.12.1.3, “Using the Compression Information
Schema Tables”

INNODB_CMP_RESET
Section 14.12.1, “InnoDB INFORMATION_SCHEMA
Tables about Compression”
Section 14.12.1.1, “INNODB_CMP and
INNODB_CMP_RESET”
Section 14.12.1.2, “INNODB_CMPMEM and
INNODB_CMPMEM_RESET”

INNODB_CMPMEM
Section 14.12.1, “InnoDB INFORMATION_SCHEMA
Tables about Compression”
Section 14.12.1.2, “INNODB_CMPMEM and
INNODB_CMPMEM_RESET”
Section 14.12.1.3, “Using the Compression Information
Schema Tables”

INNODB_CMPMEM_RESET
Section 14.12.1.2, “INNODB_CMPMEM and
INNODB_CMPMEM_RESET”

INNODB_FT_BEING_DELETED
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”

Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”

INNODB_FT_CONFIG
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”

INNODB_FT_DEFAULT_STOPWORD
Section 12.9.4, “Full-Text Stopwords”
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”

INNODB_FT_DELETED
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 20.30.26, “The INFORMATION_SCHEMA
INNODB_FT_BEING_DELETED Table”

INNODB_FT_INDEX_CACHE
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”

INNODB_FT_INDEX_TABLE
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”

INNODB_LOCK_WAITS
Section 14.12.2.3, “Data Persistence and Consistency
for InnoDB Transaction and Locking Tables”
Section 14.12.2, “InnoDB INFORMATION_SCHEMA
Transaction and Locking Tables”
Section 14.12.2.2, “INNODB_LOCKS and
INNODB_LOCK_WAITS Data”
Potential Inconsistency with PROCESSLIST Data

INNODB_LOCKS
Section 14.12.2.3, “Data Persistence and Consistency
for InnoDB Transaction and Locking Tables”
Section 14.12.2, “InnoDB INFORMATION_SCHEMA
Transaction and Locking Tables”
Section 14.12.2.2, “INNODB_LOCKS and
INNODB_LOCK_WAITS Data”

3671

MySQL Glossary
Potential Inconsistency with PROCESSLIST Data

INNODB_METRICS
Section 14.2.7.5, “Change Buffer”
Section 14.3.12, “Configuring the Merge Threshold for
Index Pages”
Section 14.12.6, “InnoDB INFORMATION_SCHEMA
Metrics Table”
Section 22.4.3.21, “The metrics View”

innodb_metrics
MySQL Glossary

INNODB_SYS_COLUMNS
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 20.30.16, “The INFORMATION_SCHEMA
INNODB_SYS_VIRTUAL Table”
Section 14.18.3, “Troubleshooting InnoDB Data
Dictionary Operations”

INNODB_SYS_DATAFILES
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 14.12.8, “Retrieving InnoDB Tablespace
Metadata from INFORMATION_SCHEMA.FILES”
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”
Section 20.24, “The INFORMATION_SCHEMA
TABLESPACES Table”

INNODB_SYS_FIELDS
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”

INNODB_SYS_FOREIGN
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

INNODB_SYS_FOREIGN_COLS
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

INNODB_SYS_INDEXES
Section 14.3.12, “Configuring the Merge Threshold for
Index Pages”

Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 14.18.3, “Troubleshooting InnoDB Data
Dictionary Operations”

INNODB_SYS_TABLES
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 14.18.3, “Troubleshooting InnoDB Data
Dictionary Operations”

INNODB_SYS_TABLESPACES
Section 14.9.2, “File Space Management”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 14.12.8, “Retrieving InnoDB Tablespace
Metadata from INFORMATION_SCHEMA.FILES”
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 20.24, “The INFORMATION_SCHEMA
TABLESPACES Table”

INNODB_SYS_TABLESTATS
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”

INNODB_TEMP_TABLE_INFO
Section 14.12.7, “InnoDB INFORMATION_SCHEMA
Temporary Table Information Table”

INNODB_TRX
Section 14.12.2.3, “Data Persistence and Consistency
for InnoDB Transaction and Locking Tables”
Section 14.12.2, “InnoDB INFORMATION_SCHEMA
Transaction and Locking Tables”
MySQL Glossary
Potential Inconsistency with PROCESSLIST Data

K

[index top [3667]]

KEY_COLUMN_USAGE
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 20.11, “The INFORMATION_SCHEMA
KEY_COLUMN_USAGE Table”

O

[index top [3667]]

3672

OPTIMIZER_TRACE
Section 20.12, “The INFORMATION_SCHEMA
OPTIMIZER_TRACE Table”

P

[index top [3667]]

PARAMETERS
Section 20.13, “The INFORMATION_SCHEMA
PARAMETERS Table”
Section 20.19, “The INFORMATION_SCHEMA
ROUTINES Table”

PARTITIONS
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 18.2.7, “How MySQL Partitioning Handles
NULL”
Section 18.3.5, “Obtaining Information About Partitions”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Chapter 18, Partitioning
Section 20.14, “The INFORMATION_SCHEMA
PARTITIONS Table”

PLUGINS
Section 5.1.8.2, “Obtaining Server Plugin Information”
Section 20.15, “The INFORMATION_SCHEMA
PLUGINS Table”

PROCESSLIST
Section 8.14, “Examining Thread Information”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Potential Inconsistency with PROCESSLIST Data
Section 13.7.5.29, “SHOW PROCESSLIST Syntax”
Section 20.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”
Section 22.4.3.22, “The processlist and x$processlist
Views”
Section 21.9.15.3, “The threads Table”

PROFILING
Section 13.7.5.30, “SHOW PROFILE Syntax”
Section 20.17, “The INFORMATION_SCHEMA
PROFILING Table”

R

[index top [3667]]

REFERENTIAL_CONSTRAINTS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”

Section 20.18, “The INFORMATION_SCHEMA
REFERENTIAL_CONSTRAINTS Table”

ROUTINES
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 13.7.5.28, “SHOW PROCEDURE STATUS
Syntax”
Section 19.2.3, “Stored Routine Metadata”
Section 20.13, “The INFORMATION_SCHEMA
PARAMETERS Table”
Section 20.19, “The INFORMATION_SCHEMA
ROUTINES Table”

S

[index top [3667]]

SCHEMA_PRIVILEGES
Section 20.21, “The INFORMATION_SCHEMA
SCHEMA_PRIVILEGES Table”

SCHEMATA
Section 6.2.2, “Privilege System Grant Tables”
Section 20.20, “The INFORMATION_SCHEMA
SCHEMATA Table”

SESSION_STATUS
Section 5.1.4, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Syntax”
Section 20.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

SESSION_VARIABLES
Section 5.1.4, “Server System Variables”
Section 13.7.5.39, “SHOW VARIABLES Syntax”
Section 20.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

STATISTICS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 20.22, “The INFORMATION_SCHEMA
STATISTICS Table”

T

[index top [3667]]

TABLE_CONSTRAINTS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 20.25, “The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table”

3673

TABLE_PRIVILEGES
Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

TABLES
Chapter 20, INFORMATION_SCHEMA Tables
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 20.23, “The INFORMATION_SCHEMA
TABLES Table”

TABLESPACES
Section 20.24, “The INFORMATION_SCHEMA
TABLESPACES Table”

TP_THREAD_GROUP_STATE
Section 8.12.7.1, “Thread Pool Components and
Installation”

TP_THREAD_GROUP_STATS
Section 8.12.7.1, “Thread Pool Components and
Installation”

TP_THREAD_STATE
Section 8.12.7.1, “Thread Pool Components and
Installation”

TRIGGERS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.38, “SHOW TRIGGERS Syntax”
Section 20.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 19.3.2, “Trigger Metadata”

U

[index top [3667]]

USER_PRIVILEGES
Section 20.28, “The INFORMATION_SCHEMA
USER_PRIVILEGES Table”

V

[index top [3667]]

VIEWS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”

Section 19.5.5, “View Metadata”

3674

3675

Join Types Index
A | C | E | F | I | R | S | U

A

[index top [3675]]

ALL
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.20, “How to Avoid Full Table Scans”
Section 8.2.1.10, “Nested-Loop Join Algorithms”

C

[index top [3675]]

const
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.15, “ORDER BY Optimization”
Section 13.2.9, “SELECT Syntax”
The Range Access Method for Single-Part Indexes

E

[index top [3675]]

eq_ref
Batched Key Access Joins
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Section 15.7.1, “MERGE Table Advantages and
Disadvantages”
Optimizing Subqueries with EXISTS Strategy
Section 21.9.4.1, “The events_waits_current Table”

F

[index top [3675]]

fulltext
Section 8.8.2, “EXPLAIN Output Format”

I

[index top [3675]]

index
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 8.8.2, “EXPLAIN Output Format”

Section 8.2.1.10, “Nested-Loop Join Algorithms”

index_merge
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.4, “Index Merge Optimization”

index_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Optimizing Subqueries with EXISTS Strategy

R

[index top [3675]]

range
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Section 8.2.1.4, “Index Merge Optimization”
Loose Index Scan
Section 8.2.1.10, “Nested-Loop Join Algorithms”
Section 8.2.1.3, “Range Optimization”
The Range Access Method for Single-Part Indexes

ref
Batched Key Access Joins
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 15.7.1, “MERGE Table Advantages and
Disadvantages”
Optimizing Derived Tables and View References
Optimizing Subqueries with EXISTS Strategy

ref_or_null
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Section 8.2.1.8, “IS NULL Optimization”
Optimizing Subqueries with EXISTS Strategy

S

[index top [3675]]

system
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.9, “SELECT Syntax”
The Range Access Method for Single-Part Indexes

3676

U

[index top [3675]]

unique_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Optimizing Subqueries with EXISTS Strategy

3677

Operator Index
Symbols | A | B | C | D | E | I | L | N | O | R | X

Symbols

[index top [3677]]

-
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”
Section 18.6, “Restrictions and Limitations on
Partitioning”

!
Section 9.5, “Expression Syntax”
Section 12.3.3, “Logical Operators”
Section 12.3.1, “Operator Precedence”

!=
Section 12.3.2, “Comparison Functions and Operators”
Section 12.3.1, “Operator Precedence”
Section 11.6, “The JSON Data Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

%
Section 12.6.1, “Arithmetic Operators”

&
Section 12.12, “Bit Functions and Operators”
Section 13.1.14, “CREATE TABLE Syntax”
Section 18.6, “Restrictions and Limitations on
Partitioning”

&&
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”

>
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Section 11.6, “The JSON Data Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

->
Section 13.1.14, “CREATE TABLE Syntax”

Section 12.16.3, “Functions That Search JSON Values”

>>
Section 12.12, “Bit Functions and Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 18.6, “Restrictions and Limitations on
Partitioning”

>=
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Section 11.6, “The JSON Data Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

<
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Section 11.6, “The JSON Data Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

<>
Section 12.3.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 11.6, “The JSON Data Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

<<
Section 12.12, “Bit Functions and Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 18.6, “Restrictions and Limitations on
Partitioning”

<=
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”

3678

Section 12.3.1, “Operator Precedence”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Section 11.6, “The JSON Data Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

<=>
Section 12.3.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 11.6, “The JSON Data Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 12.2, “Type Conversion in Expression
Evaluation”

*
Section 12.6.1, “Arithmetic Operators”
Section 11.1.1, “Numeric Type Overview”
Section 18.6, “Restrictions and Limitations on
Partitioning”

+
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”
Section 18.6, “Restrictions and Limitations on
Partitioning”

/
Section 12.6.1, “Arithmetic Operators”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”

:=
Section 12.3.4, “Assignment Operators”
Section 12.3.1, “Operator Precedence”
Section 13.7.4, “SET Syntax”
Section 9.4, “User-Defined Variables”

=
Section 12.3.4, “Assignment Operators”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Section C.4, “Restrictions on Subqueries”
Section 13.7.4, “SET Syntax”
Section 12.5.1, “String Comparison Functions”

Section 11.6, “The JSON Data Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 9.4, “User-Defined Variables”
Section 3.3.4.6, “Working with NULL Values”

^
Section 12.12, “Bit Functions and Operators”
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 18.6, “Restrictions and Limitations on
Partitioning”

|
Section 12.12, “Bit Functions and Operators”
Section 18.6, “Restrictions and Limitations on
Partitioning”

||
Section 10.1.7.3, “COLLATE Clause Precedence”
Section 9.5, “Expression Syntax”
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 10.1.9.1, “Result Strings”
Section 5.1.7, “Server SQL Modes”

~
Section 12.12, “Bit Functions and Operators”
Section 18.6, “Restrictions and Limitations on
Partitioning”

A

[index top [3677]]

AND
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 13.1.14, “CREATE TABLE Syntax”
Section 8.2.1.4, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Optimizing Subqueries with EXISTS Strategy
Section C.4, “Restrictions on Subqueries”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 12.5.1, “String Comparison Functions”
The Index Merge Intersection Access Algorithm
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 19.5.2, “View Processing Algorithms”

B

[index top [3677]]

3679

BETWEEN
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Section 11.6, “The JSON Data Type”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 12.2, “Type Conversion in Expression
Evaluation”

BINARY
Section 12.10, “Cast Functions and Operators”
Section 3.3.4.7, “Pattern Matching”
Section 3.3.4.4, “Sorting Rows”
Section 10.1.7.7, “The BINARY Operator”

BINARY str
Section 12.10, “Cast Functions and Operators”

C

[index top [3677]]

CASE
Section 13.6.5.1, “CASE Syntax”
Section 12.4, “Control Flow Functions”
Section 9.5, “Expression Syntax”
Section 1.8.1, “MySQL Extensions to Standard SQL”

CASE value WHEN END
Section 12.4, “Control Flow Functions”

CASE WHEN END
Section 12.4, “Control Flow Functions”

CASE WHEN expr1 = expr2 THEN
NULL ELSE expr1 END
Section 12.4, “Control Flow Functions”

column->path
Section 12.16.3, “Functions That Search JSON Values”
Section 11.6, “The JSON Data Type”
Section 1.4, “What Is New in MySQL 5.7”

D

[index top [3677]]

DIV
Section 12.6.1, “Arithmetic Operators”
Section 18.6, “Restrictions and Limitations on
Partitioning”

E

[index top [3677]]

expr BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”

expr LIKE pat
Section 12.5.1, “String Comparison Functions”

expr NOT BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”

expr NOT LIKE pat
Section 12.5.1, “String Comparison Functions”

expr NOT REGEXP pat
Section 12.5.2, “Regular Expressions”

expr NOT RLIKE pat
Section 12.5.2, “Regular Expressions”

expr REGEXP pat
Section 12.5.2, “Regular Expressions”

expr RLIKE pat
Section 12.5.2, “Regular Expressions”

expr1 SOUNDS LIKE expr2
Section 12.5, “String Functions”

I

[index top [3677]]

IS
Section 12.3.1, “Operator Precedence”

IS boolean_value
Section 12.3.2, “Comparison Functions and Operators”

IS NOT boolean_value
Section 12.3.2, “Comparison Functions and Operators”

IS NOT NULL
Section 12.3.2, “Comparison Functions and Operators”
Section B.5.4.3, “Problems with NULL Values”
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

IS NULL
Section 12.3.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.8, “IS NULL Optimization”

3680

Optimizing Subqueries with EXISTS Strategy
Section B.5.4.3, “Problems with NULL Values”
Section 5.1.4, “Server System Variables”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

L

[index top [3677]]

LIKE
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 12.10, “Cast Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 20.31, “Extensions to SHOW Statements”
Section 12.16.3, “Functions That Search JSON Values”
Section 13.8.3, “HELP Syntax”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.4, “mysql Server-Side Help”
Section 12.3.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Pre-Filtering by Instrument
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.7.5.3, “SHOW CHARACTER SET Syntax”
Section 13.7.5.4, “SHOW COLLATION Syntax”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.14, “SHOW DATABASES Syntax”
Section 13.7.5.18, “SHOW EVENTS Syntax”
Section 13.7.5.24, “SHOW OPEN TABLES Syntax”
Section 13.7.5.28, “SHOW PROCEDURE STATUS
Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.7.5.35, “SHOW STATUS Syntax”
Section 13.7.5.36, “SHOW TABLE STATUS Syntax”
Section 13.7.5.37, “SHOW TABLES Syntax”
Section 13.7.5.38, “SHOW TRIGGERS Syntax”
Section 13.7.5.39, “SHOW VARIABLES Syntax”
Section 6.2.3, “Specifying Account Names”
Section 12.5.1, “String Comparison Functions”
Section 9.1.1, “String Literals”
Section 5.1.5.1, “Structured System Variables”
Section 11.4.1, “The CHAR and VARCHAR Types”
Section 22.4.4.5, “The ps_setup_disable_consumer()
Procedure”
Section 22.4.4.6, “The ps_setup_disable_instrument()
Procedure”
Section 22.4.4.9, “The ps_setup_enable_consumer()
Procedure”
Section 22.4.4.10, “The ps_setup_enable_instrument()
Procedure”
The Range Access Method for Multiple-Part Indexes

The Range Access Method for Single-Part Indexes
Section 11.4.5, “The SET Type”
Section 5.1.5, “Using System Variables”

LIKE '_A%'
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”

LIKE 'pattern'
Section 13.7.5, “SHOW Syntax”
The Range Access Method for Multiple-Part Indexes

LIKE ... ESCAPE
Section B.5.7, “Known Issues in MySQL”

N

[index top [3677]]

N % M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

N MOD M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

NOT
Section 12.3.3, “Logical Operators”
Section 5.1.7, “Server SQL Modes”

NOT LIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

NOT REGEXP
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

NOT RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

O

[index top [3677]]

OR
Section 9.5, “Expression Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 8.2.1.4, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”

3681

Optimizing Subqueries with EXISTS Strategy
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.7, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”
The Index Merge Sort-Union Access Algorithm
The Index Merge Union Access Algorithm
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

R

[index top [3677]]

REGEXP
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section C.7, “Restrictions on Character Sets”

RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section C.7, “Restrictions on Character Sets”

X

[index top [3677]]

XOR
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 12.3.3, “Logical Operators”

3682

3683

Option Index
Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N
| O | P | Q | R | S | T | U | V | W | X | Y

Symbols

[index top [3683]]

--
Section 1.8.2.4, “'--' as the Start of a Comment”
Section 4.8.3, “replace — A String-Replacement
Utility”

-#
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.8.3, “replace — A String-Replacement
Utility”
Section 5.1.3, “Server Command Options”
Section 24.5.3, “The DBUG Package”

-1
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

-?
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.8.2, “perror — Explain Error Codes”
Section 4.8.3, “replace — A String-Replacement
Utility”
Section 4.8.4, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 1.3.2, “The Main Features of MySQL”
Section 4.2.4, “Using Options on the Command Line”

?
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”

A

[index top [3683]]

-A
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

3684

Section 4.6.3.4, “Other myisamchk Options”

-a
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.6.3.4, “Other myisamchk Options”
Section 16.3.2, “Using memcached”

--abort-slave-event-count
Section 17.1.6.3, “Replication Slave Options and
Variables”

--add-drop-database
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--add-drop-table
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--add-drop-trigger
Section 4.5.4, “mysqldump — A Database Backup
Program”

--add-drop-user
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--add-locks
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--admin-auth-plugin
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--admin-host
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--admin-require-ssl
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--admin-user
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--admin-xxx
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--all
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

--all-databases
Creating a Data Snapshot Using mysqldump
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 2.11.1, “Upgrading MySQL”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--all-in-1
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--all-tablespaces
Section 4.5.4, “mysqldump — A Database Backup
Program”

--allow-keywords
Section 4.5.4, “mysqldump — A Database Backup
Program”

--allow-mismatches
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--allow-suspicious-udfs
Section 5.1.3, “Server Command Options”
Section 24.4.2.6, “UDF Security Precautions”

--analyze
Section 7.6.4, “MyISAM Table Optimization”

3685

Section 4.6.3.1, “myisamchk General Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.3.4, “Other myisamchk Options”

--ansi
Section 1.8, “MySQL Standards Compliance”
Section 5.1.3, “Server Command Options”

antonio
Unix Password Authentication with Proxy Users and
Group Mapping

--apply-slave-statements
Section 4.5.4, “mysqldump — A Database Backup
Program”

--audit-log
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”
Section 6.3.15.1, “Installing the Audit Log Plugin”

--auto-generate-sql
Section 4.5.8, “mysqlslap — Load Emulation Client”

--auto-generate-sql-add-
autoincrement
Section 4.5.8, “mysqlslap — Load Emulation Client”

--auto-generate-sql-execute-number
Section 4.5.8, “mysqlslap — Load Emulation Client”

--auto-generate-sql-guid-primary
Section 4.5.8, “mysqlslap — Load Emulation Client”

--auto-generate-sql-load-type
Section 4.5.8, “mysqlslap — Load Emulation Client”

--auto-generate-sql-secondary-
indexes
Section 4.5.8, “mysqlslap — Load Emulation Client”

--auto-generate-sql-unique-query-
number
Section 4.5.8, “mysqlslap — Load Emulation Client”

--auto-generate-sql-unique-write-
number
Section 4.5.8, “mysqlslap — Load Emulation Client”

--auto-generate-sql-write-number
Section 4.5.8, “mysqlslap — Load Emulation Client”

--auto-rehash
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

auto-rehash
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”

--auto-repair
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--auto-vertical-output
Section 4.5.1.1, “mysql Options”

--autocommit
Section 5.1.4, “Server System Variables”

B

[index top [3683]]

-B
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 16.3.2, “Using memcached”

-b
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.3, “Server Command Options”
Section 16.3.2, “Using memcached”

--back_log
Section 2.7, “Installing MySQL on Solaris and
OpenSolaris”

--backup
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

3686

--base64-output
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.1.3.1, “GTID Concepts”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

--basedir
Section 2.10.1.2, “Initializing the Data Directory
Manually Using mysql_install_db”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”
Section 1.4, “What Is New in MySQL 5.7”

basedir
Section 2.3.5.2, “Creating an Option File”
Section 2.3.6, “Troubleshooting a Microsoft Windows
MySQL Server Installation”

--batch
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”

--big-tables
Section 5.1.3, “Server Command Options”

--binary-mode
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--bind-address
Section B.5.2.2, “Can't connect to [local] MySQL
server”
Section 5.1.9.2, “Configuring the MySQL Server to
Permit IPv6 Connections”

Section 5.1.9.4, “Connecting Using IPv6 Nonlocal Host
Addresses”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host
Address”
Section 5.1.9, “IPv6 Support”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 5.1.9.5, “Obtaining an IPv6 Address from a
Broker”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”

--binlog-checksum
Section 17.1.6.4, “Binary Logging Options and
Variables”

--binlog-do-db
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 17.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.2.4, “The Binary Log”

--binlog-format
Section 5.2.4.1, “Binary Logging Formats”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 5.1.3, “Server Command Options”

3687

Section 5.2.4.2, “Setting The Binary Log Format”

--binlog-ignore-db
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 17.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.2.4, “The Binary Log”

--binlog-row-event-max-size
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 5.2.4.2, “Setting The Binary Log Format”

--binlog-rows-query-log-events
Section 17.1.6.4, “Binary Logging Options and
Variables”

--block-search
Section 4.6.3.4, “Other myisamchk Options”

--bootstrap
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--builddir
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

C

[index top [3683]]

-C
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 16.3.2, “Using memcached”

-c
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 16.3.2, “Using memcached”

--cflags
Section 2.9.5, “Dealing with Problems Compiling
MySQL”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--character-set-client-handshake
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 5.1.3, “Server Command Options”
The cp932 Character Set

--character-set-filesystem
Section 5.1.3, “Server Command Options”

--character-set-server
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”

3688

--character-sets-dir
Section B.5.2.17, “Can't initialize character set”
Section 10.5, “Character Set Configuration”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 5.1.3, “Server Command Options”

--character_set_server
Section 2.9.4, “MySQL Source-Configuration Options”

--charset
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--check-only-changed
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--check-upgrade
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--chroot
Section 5.1.3, “Server Command Options”

CMAKE_BUILD_TYPE
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 2.9.5, “Dealing with Problems Compiling
MySQL”

Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_build_type
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_RELWITHDEBINFO
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 2.9.5, “Dealing with Problems Compiling
MySQL”
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_build_type
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_RELWITHDEBINFO
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_INSTALL_PREFIX
Section 24.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 2.9.3, “Installing MySQL Using a Development
Source Tree”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.4, “Server System Variables”

CMAKE_PREFIX_PATH
Section 2.9.4, “MySQL Source-Configuration Options”

--collation-server
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”

--collation_server
Section 2.9.4, “MySQL Source-Configuration Options”

--column-names
Section 4.5.1.1, “mysql Options”
Section 4.2.5, “Program Option Modifiers”

--column-type-info
Section 4.5.1.1, “mysql Options”
Section 8.2.1.19, “Optimizing LIMIT Queries”

--columns
Section 4.5.5, “mysqlimport — A Data Import
Program”

3689

--comments
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--commit
Section 4.5.8, “mysqlslap — Load Emulation Client”

--comp
Section 4.2.3, “Specifying Program Options”
Section 1.4, “What Is New in MySQL 5.7”

--compact
Section 4.5.4, “mysqldump — A Database Backup
Program”

--compatible
Section 4.5.4, “mysqldump — A Database Backup
Program”

COMPILATION_COMMENT
Section 5.1.4, “Server System Variables”

--complete-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--compr
Section 4.2.3, “Specifying Program Options”
Section 1.4, “What Is New in MySQL 5.7”

--compress
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.2.3, “Specifying Program Options”
Section 1.4, “What Is New in MySQL 5.7”

--compress-output
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--concurrency
Section 4.5.8, “mysqlslap — Load Emulation Client”

--config-file
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”

--connect-expired-password
Section 4.5.1.1, “mysql Options”

--connection-server-id
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--console
Section 14.14.2, “Enabling InnoDB Monitors”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 14.18, “InnoDB Troubleshooting”
Resetting the Root Password: Windows Systems
Section 5.1.3, “Server Command Options”
Section 2.3.5.6, “Starting MySQL from the Windows
Command Line”
Section 2.3.5.5, “Starting the Server for the First Time”
Section 5.2.2, “The Error Log”

--core-file
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

core-file
Section 24.5.1.3, “Using WER with PDB to create a
Windows crashdump”

--core-file-size
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.1.3, “Server Command Options”

--correct-checksum
Section 4.6.3.3, “myisamchk Repair Options”

--count
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

3690

Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”

--create
Section 4.5.8, “mysqlslap — Load Emulation Client”

--create-options
Section 4.5.4, “mysqldump — A Database Backup
Program”

--create-schema
Section 4.5.8, “mysqlslap — Load Emulation Client”

--cross-bootstrap
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--csv
Section 4.5.8, “mysqlslap — Load Emulation Client”

--cxxflags
Section 2.9.5, “Dealing with Problems Compiling
MySQL”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

D

[index top [3683]]

-D
Section 10.3, “Adding a Character Set”
Section 6.3.12.3, “Building MySQL with SSL Support”
Section B.5.2.17, “Can't initialize character set”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 23.7.1, “Compiling Programs with libmysqld”
Section 24.5.2, “Debugging a MySQL Client”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 2.9.2, “Installing MySQL Using a Standard
Source Distribution”
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Chapter 18, Partitioning
Section 21.2.1, “Performance Schema Build
Configuration”
Section 14.17.3.1, “Prerequisites for the InnoDB
memcached Plugin”

Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 15.9, “The EXAMPLE Storage Engine”
Section 15.8, “The FEDERATED Storage Engine”
Section 5.4, “Tracing mysqld Using DTrace”
Section 16.3.2, “Using memcached”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”
Section 2.1.1, “Which MySQL Version and Distribution
to Install”

-d
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.4, “Server System Variables”
Section 16.3.2, “Using memcached”

--daemonize
Section 5.1.3, “Server Command Options”

--data-file-length
Section 4.6.3.3, “myisamchk Repair Options”

--database
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--databases
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Creating a Data Snapshot Using mysqldump
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 7.4.5.1, “Making a Copy of a Database”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

3691

Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”

--datadir
Section 2.3.5.2, “Creating an Option File”
Section 2.10.1.2, “Initializing the Data Directory
Manually Using mysql_install_db”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.3.1, “Setting Up Multiple Data Directories”
Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”
Section 4.2.6, “Using Option Files”
Section 1.4, “What Is New in MySQL 5.7”

datadir
Section 2.3.5.2, “Creating an Option File”
Section 2.4.1, “General Notes on Installing MySQL on
OS X”
Section 16.1.1, “Setting Up MySQL on an EC2 AMI”
Section 2.3.6, “Troubleshooting a Microsoft Windows
MySQL Server Installation”
Section C.10.6, “Windows Platform Limitations”

--debug
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”

Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.3.5.6, “Starting MySQL from the Windows
Command Line”
Section 24.5.3, “The DBUG Package”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”

--debug-check
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”

--debug-info
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

3692

Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”

--debug-sync-timeout
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--default-auth
Section 23.8.14, “C API Client Plugin Functions”
Client Plugin Descriptors
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 6.3.8, “Pluggable Authentication”
Section 6.3.9.1, “The Native Authentication Plugin”
Section 6.3.9.2, “The Old Native Authentication Plugin”
Using the Authentication Plugins

--default-authentication-plugin
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--default-character-set
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 10.1.4, “Connection Character Sets and
Collations”

Section 4.5.1.5, “Executing SQL Statements from a
Text File”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 5.1.4, “Server System Variables”
Unicode Support on Windows
Section 6.3.1, “User Names and Passwords”

--default-parallelism
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--default-storage-engine
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 5.1.3, “Server Command Options”
Section 15.1, “Setting the Storage Engine”
Section 14.1.3, “Turning Off InnoDB”

default-storage-engine
Section 15.1, “Setting the Storage Engine”

--default-time-zone
Section 10.6, “MySQL Server Time Zone Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--default-tmp-storage-engine
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 5.1.3, “Server Command Options”
Section 14.1.3, “Turning Off InnoDB”

--default.key_buffer_size
Section 5.1.5.1, “Structured System Variables”

DEFAULT_CHARSET
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 10.1.3.1, “Server Character Set and Collation”

3693

DEFAULT_COLLATION
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 10.1.3.1, “Server Character Set and Collation”

--defaults
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--defaults-extra-file
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 4.2.6, “Using Option Files”

--defaults-file
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 14.3.1, “InnoDB Initialization and Startup
Configuration”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”

Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 23.7.3, “Options with the Embedded Server”
Resetting the Root Password: Windows Systems
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 5.3.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”

--defaults-group-suffix
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 2.12, “Environment Variables”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

3694

Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”

--defer-table-indexes
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--delay-key-write
Section 8.11.5, “External Locking”
Section 15.2.1, “MyISAM Startup Options”
Section A.13, “MySQL 5.7 FAQ: Replication”
Section 5.1.3, “Server Command Options”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”

--delay_key_write
Section 5.1.5, “Using System Variables”

--delete
Section 4.5.5, “mysqlimport — A Data Import
Program”

--delete-master-logs
Section 4.5.4, “mysqldump — A Database Backup
Program”

--delimiter
Section 4.5.1.1, “mysql Options”
Section 4.5.8, “mysqlslap — Load Emulation Client”

--demangle
Section 24.5.1.5, “Using a Stack Trace”

--des-key-file
Section 12.13, “Encryption and Compression
Functions”
Section 13.7.6.3, “FLUSH Syntax”
Section 5.1.3, “Server Command Options”

--description
Section 4.6.3.4, “Other myisamchk Options”

--detach
Section 4.5.8, “mysqlslap — Load Emulation Client”

--disable
Section 4.2.5, “Program Option Modifiers”

--disable-auto-rehash
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 4.5.1.1, “mysql Options”

--disable-innodb
Section 14.1.3, “Turning Off InnoDB”
Section 1.4, “What Is New in MySQL 5.7”

--disable-keys
Section 4.5.4, “mysqldump — A Database Backup
Program”

--disable-log-bin
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--disable-named-commands
Section 4.5.1.1, “mysql Options”

--disable-plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--disable-ssl
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.12.5, “SSL Command Options”

--disconnect-slave-event-count
Section 17.1.6.3, “Replication Slave Options and
Variables”

--dump
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”

--dump-date
Section 4.5.4, “mysqldump — A Database Backup
Program”

--dump-slave
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”

E

[index top [3683]]

-E
Section 4.5.1.1, “mysql Options”

3695

Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup
Program”

-e
Section 7.6.2, “How to Check MyISAM Tables for
Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 13.2.7, “LOAD XML Syntax”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 4.2.4, “Using Options on the Command Line”

--embedded
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--enable-64bit
Section 16.3.1, “Installing memcached”

--enable-cleartext-plugin
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 6.3.9.8, “The Cleartext Client-Side
Authentication Plugin”

--enable-dtrace
Section 16.3.1, “Installing memcached”
Section 16.3.2.5, “Using memcached and DTrace”

--enable-memcache
Section 16.3.3.6, “Using MySQL and memcached with
PHP”

--enable-named-pipe
Section B.5.2.2, “Can't connect to [local] MySQL
server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 2.3.5.3, “Selecting a MySQL Server Type”
Section 5.1.3, “Server Command Options”
Section 1.3.2, “The Main Features of MySQL”

--enable-plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--enable-threads
Section 16.3.1, “Installing memcached”

ENABLE_DEBUG_SYNC
Section 14.11, “InnoDB Startup Options and System
Variables”

enabled
Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository”

--end-page
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--enforce-gtid-consistency
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.4, “Restrictions on Replication with
GTIDs”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”

enforce-gtid-consistency
Section 17.1.6.5, “Global Transaction ID Options and
Variables”

--engine
Section 4.5.8, “mysqlslap — Load Emulation Client”

--event-scheduler
Section 19.4.2, “Event Scheduler Configuration”
Section 5.1.3, “Server Command Options”

event-scheduler
Section 19.4.2, “Event Scheduler Configuration”

--events
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 2.11.1, “Upgrading MySQL”

3696

Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--example
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--exclude-databases
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--exclude-events
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--exclude-gtids
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--exclude-routines
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--exclude-tables
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--exclude-triggers
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--exclude-users
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--execute
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 4.2.4, “Using Options on the Command Line”

--executed-gtids-compression-
period
Section 17.1.6.5, “Global Transaction ID Options and
Variables”

--exit-info
Section 5.1.3, “Server Command Options”

--extend-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”

--extended
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--extended-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--external-locking
Section 8.11.5, “External Locking”
Section 15.2.1, “MyISAM Startup Options”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”

--extra-file
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”

--extra-sql-file
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

F

[index top [3683]]

-F
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.2, “mysql Commands”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”

-f
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

3697

Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 24.5.1.5, “Using a Stack Trace”
Section 16.3.2, “Using memcached”

--fast
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--federated
Section 15.8, “The FEDERATED Storage Engine”

--fields-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

--fields-escaped-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

--fields-optionally-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

--fields-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

--fields-xxx
Section 4.5.4, “mysqldump — A Database Backup
Program”

--fix-db-names
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 1.4, “What Is New in MySQL 5.7”

--fix-table-names
Section 9.2.3, “Mapping of Identifiers to File Names”

Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 1.4, “What Is New in MySQL 5.7”

--flush
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”

--flush-logs
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2, “MySQL Server Logs”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--flush-privileges
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--flush_time
Section 24.1.1, “MySQL Threads”

--force
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 24.1.2, “The MySQL Test Suite”
Section 3.5, “Using mysql in Batch Mode”

--force-if-open
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--force-read
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

G

[index top [3683]]

3698

-G
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

-g
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”

--gdb
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”

--general-log
Section 5.1.3, “Server Command Options”

--general_log
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

--general_log_file
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

--gtid-executed-compression-period
Section 17.1.6.5, “Global Transaction ID Options and
Variables”

--gtid-mode
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.1.3.4, “Restrictions on Replication with
GTIDs”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.11.1, “Upgrading MySQL”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

H

[index top [3683]]

-H
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

-h
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 5.1.3, “Server Command Options”
Section 1.2, “Typographical and Syntax Conventions”
Section 16.3.2, “Using memcached”
Section 4.2.4, “Using Options on the Command Line”

--header_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--HELP
Section 4.6.3.1, “myisamchk General Options”

--help
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

3699

Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.2, “perror — Explain Error Codes”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.8.4, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 2.10.3, “Testing the Server”
Section 1.3.2, “The Main Features of MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”
Section 8.12.2, “Tuning Server Parameters”
Chapter 3, Tutorial
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”

--hex-blob
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--hexdump
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--histignore
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 1.4, “What Is New in MySQL 5.7”

--host
Section 5.1.9.2, “Configuring the MySQL Server to
Permit IPv6 Connections”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 5.1.3, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 1.2, “Typographical and Syntax Conventions”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”

3700

host
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.2.6, “Using Option Files”

--html
Section 4.5.1.1, “mysql Options”

I

[index top [3683]]

-I
Section 23.8.4.1, “Building C API Client Programs”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 16.3.5, “memcached FAQ”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.8.2, “perror — Explain Error Codes”
Section 4.8.3, “replace — A String-Replacement
Utility”
Section 4.8.4, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 16.3.2, “Using memcached”

-i
Section 7.6.2, “How to Check MyISAM Tables for
Errors”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 16.3.2, “Using memcached”

--i-am-a-dummy
Section 4.5.1.1, “mysql Options”
Using the --safe-updates Option

--idempotent
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 5.1.4, “Server System Variables”

--ignore
Section 4.5.5, “mysqlimport — A Data Import
Program”

--ignore-builtin-innodb
Section 14.11, “InnoDB Startup Options and System
Variables”

--ignore-db-dir
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--ignore-error
Section 4.5.4, “mysqldump — A Database Backup
Program”

--ignore-lines
Section 4.5.5, “mysqlimport — A Data Import
Program”

--ignore-spaces
Section 4.5.1.1, “mysql Options”

--ignore-table
Creating a Data Snapshot Using mysqldump
Section 4.5.4, “mysqldump — A Database Backup
Program”

--in_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--include
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--include-databases
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--include-events
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--include-gtids
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--include-master-host-port
Section 4.5.4, “mysqldump — A Database Backup
Program”

3701

--include-routines
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--include-tables
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--include-triggers
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--include-users
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--info
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.8.2, “perror — Explain Error Codes”
Section 4.8.4, “resolveip — Resolve Host name to
IP Address or Vice Versa”

--information
Section 4.6.3.2, “myisamchk Check Options”

--init-command
Section 4.5.1.1, “mysql Options”
Section 17.4.1.29, “Replication of Server-Side Help
Tables”

--init-file
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 21.2.3, “Performance Schema Runtime
Configuration”
Resetting the Root Password: Unix and Unix-Like
Systems
Resetting the Root Password: Windows Systems
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 15.3, “The MEMORY Storage Engine”

--init_connect
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”

--initialize
Section 2.3.5.2, “Creating an Option File”
Section 2.11.2, “Downgrading MySQL”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Chapter 22, MySQL sys Schema
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 5.1.3, “Server Command Options”

Section 5.1.4, “Server System Variables”

--initialize-insecure
Section 2.3.5.2, “Creating an Option File”
Section 2.11.2, “Downgrading MySQL”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Chapter 22, MySQL sys Schema
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--innodb
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.1.3, “Turning Off InnoDB”
Section 1.4, “What Is New in MySQL 5.7”

--innodb-status-file
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb-status-file
Section 14.14.2, “Enabling InnoDB Monitors”

--innodb-xxx
Section 5.1.3, “Server Command Options”

--innodb_adaptive_hash_index
Section 14.11, “InnoDB Startup Options and System
Variables”

--innodb_file_per_table
Section 14.4.4.1, “Enabling and Disabling File-Per-
Table Tablespaces”
Section 5.1.3, “Server Command Options”

innodb_file_per_table
Creating a Data Snapshot Using Raw Data Files
Section 5.1.3, “Server Command Options”

INNODB_PAGE_ATOMIC_REF_COUNT
Section 1.4, “What Is New in MySQL 5.7”

--innodb_rollback_on_timeout
Section 14.18.4, “InnoDB Error Handling”
Section 14.11, “InnoDB Startup Options and System
Variables”

--innodb_support_xa
Section 5.2.4, “The Binary Log”

--insecure
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

3702

--insert-ignore
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--install
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 5.1.3, “Server Command Options”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”

--install-manual
Section 5.1.3, “Server Command Options”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”

INSTALL_LAYOUT
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”

INSTALL_LIBDIR
Section 2.9.4, “MySQL Source-Configuration Options”

INSTALL_PKGCONFIGDIR
Section 23.8.4.2, “Building C API Client Programs
Using pkg-config”

INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR
Section 2.9.4, “MySQL Source-Configuration Options”
Section 23.7.2, “Restrictions When Using the
Embedded MySQL Server”
Section 5.1.4, “Server System Variables”

INSTALL_SECURE_FILE_PRIVDIR
Section 5.1.4, “Server System Variables”

INSTALL_SQLBENCHDIR
Section 2.9.4, “MySQL Source-Configuration Options”

--iterations
Section 4.5.8, “mysqlslap — Load Emulation Client”

J

[index top [3683]]

-j
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--join
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

K

[index top [3683]]

-K
Section 4.5.4, “mysqldump — A Database Backup
Program”

-k
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 16.3.2, “Using memcached”

--keep-my-cnf
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--keep_files_on_create
Section 13.1.14, “CREATE TABLE Syntax”

--key-buffer
Section 4.2.3, “Specifying Program Options”
Section 1.4, “What Is New in MySQL 5.7”

--key-buffer-size
Section 4.2.3, “Specifying Program Options”
Section 1.4, “What Is New in MySQL 5.7”

--key_buffer_size
Section 5.1.3, “Server Command Options”

--keys
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”

--keys-used
Section 4.6.3.3, “myisamchk Repair Options”

L

[index top [3683]]

-L
Section 23.8.4.1, “Building C API Client Programs”
Section 4.5.1.1, “mysql Options”

3703

Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 2.13.3, “Problems Using the Perl DBI/DBD
Interface”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 16.3.2, “Using memcached”

-l
Section 23.8.4.1, “Building C API Client Programs”
Section 23.8.13, “C API Embedded Server Function
Descriptions”
Section 23.8.6, “C API Function Overview”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.3, “myisamchk Repair Options”
Section 23.8.7.40, “mysql_library_end()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 16.3.2, “Using memcached”

--language
Section 5.1.3, “Server Command Options”

--large-pages
Section 8.12.5.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--lc-messages
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 5.1.3, “Server Command Options”

--lc-messages-dir
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 5.1.3, “Server Command Options”

--ldata
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--ledir
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--length
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”

--libmysqld-libs
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--libs
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--libs_r
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--line-numbers
Section 4.5.1.1, “mysql Options”

--lines-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”

--local
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

--local-infile
Section 13.2.7, “LOAD XML Syntax”
Section 4.5.1.1, “mysql Options”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

--local-load
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--local-service
Section 5.1.3, “Server Command Options”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”

--lock-all-tables
Section 4.5.4, “mysqldump — A Database Backup
Program”

--lock-tables
Section 4.5.4, “mysqldump — A Database Backup
Program”

3704

Section 4.5.5, “mysqlimport — A Data Import
Program”

--log
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--log-bin
Section 7.3.3, “Backup Strategy Summary”
Section 19.7, “Binary Logging of Stored Programs”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.4.5, “How to Report Replication Bugs or
Problems”
Section B.5.7, “Known Issues in MySQL”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 17.2.3.4, “Replication Channel Naming
Conventions”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 17.3.6, “Switching Masters During Failover”
Section 5.2.4, “The Binary Log”
Section 17.4.4, “Troubleshooting Replication”
Section 17.4.3, “Upgrading a Replication Setup”
Section 7.3.2, “Using Backups for Recovery”

--log-bin-index
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 5.2.4, “The Binary Log”

--log-bin-trust-function-creators
Section 19.7, “Binary Logging of Stored Programs”
Section 17.1.6.4, “Binary Logging Options and
Variables”

--log-bin-use-v1-row-events
Section 17.1.6.4, “Binary Logging Options and
Variables”

--log-error
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”

Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.2.7, “Server Log Maintenance”
Section 2.3.5.6, “Starting MySQL from the Windows
Command Line”
Section 2.3.5.5, “Starting the Server for the First Time”
Section 5.2.2, “The Error Log”

--log-error-file
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--log-isam
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 5.1.3, “Server Command Options”

--log-output
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

--log-queries-not-using-indexes
Section 5.1.3, “Server Command Options”

--log-raw
Section 6.1.2.3, “Passwords and Logging”
Section 24.2.3.10, “Query Rewrite Plugins”
Section 5.1.3, “Server Command Options”
Section 5.2.3, “The General Query Log”

--log-short-format
Section 5.1.3, “Server Command Options”
Section 5.2.5, “The Slow Query Log”

--log-slave-updates
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.4.5, “How to Report Replication Bugs or
Problems”
Section 17.3.5, “Improving Replication Performance”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.3.6, “Switching Masters During Failover”
Section 5.2.4, “The Binary Log”

--log-slow-admin-statements
Section 5.1.3, “Server Command Options”

--log-slow-slave-statements
Section 17.1.6.3, “Replication Slave Options and
Variables”

3705

--log-tc
Section 5.1.3, “Server Command Options”

--log-tc-size
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”

--log-warnings
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

--log_timestamps
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--login-file
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--login-path
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.2.6, “Using Option Files”

--loose
Section 4.2.5, “Program Option Modifiers”

--loose-opt_name
Section 4.2.6, “Using Option Files”

--low-priority
Section 4.5.5, “mysqlimport — A Data Import
Program”

--low-priority-updates
Section 8.11.3, “Concurrent Inserts”
Section 13.2.5, “INSERT Syntax”
Section A.13, “MySQL 5.7 FAQ: Replication”
Section 5.1.3, “Server Command Options”
Section 8.11.2, “Table Locking Issues”

--lower-case-table-names
Section 9.2.2, “Identifier Case Sensitivity”

M

[index top [3683]]

-M
Section 16.3.2, “Using memcached”

-m
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 16.3.2, “Using memcached”

--malloc-lib
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--master-data
Creating a Data Snapshot Using mysqldump
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2, “MySQL Server Logs”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--master-info-file
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.4.2, “Slave Status Logs”

--master-info-repository
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 17.2.4, “Replication Relay and Status Logs”
Section 17.1.6.3, “Replication Slave Options and
Variables”

3706

Setting Up Replication with Existing Data
Section 17.2.4.2, “Slave Status Logs”
Section 17.2.3.3, “Startup Options and Replication
Channels”

--master-retry-count
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”

--master-verify-checksum
Section 17.1.6.4, “Binary Logging Options and
Variables”

--max
Section 4.2.8, “Using Options to Set Program
Variables”

--max-allowed-packet
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--max-binlog-dump-events
Section 17.1.6.4, “Binary Logging Options and
Variables”

--max-binlog-size
Section 17.1.6.3, “Replication Slave Options and
Variables”

--max-record-length
Section 4.6.3.3, “myisamchk Repair Options”
Section 13.7.2.5, “REPAIR TABLE Syntax”

--max-relay-log-size
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.3.3, “Startup Options and Replication
Channels”

--max-seeks-for-key
Section 8.2.1.20, “How to Avoid Full Table Scans”
Section B.5.5, “Optimizer-Related Issues”

--max_a
Section 4.2.8, “Using Options to Set Program
Variables”

--max_join_size
Using the --safe-updates Option

--maximum
Section 4.2.5, “Program Option Modifiers”

--maximum-query_cache_size
Section 4.2.5, “Program Option Modifiers”
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.5, “Using System Variables”

--maximum-var_name
Section 5.1.3, “Server Command Options”
Section 5.1.5, “Using System Variables”

--medium-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--memlock
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.4.3, “Using Raw Disk Partitions for the
System Tablespace”

--min-examined-row-limit
Section 5.1.3, “Server Command Options”

--my-plugin
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--my-print-defaults
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”

--my_plugin
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--myisam-block-size
Section 8.10.2.5, “Key Cache Block Size”
Section 5.1.3, “Server Command Options”

--myisam-recover
Section 5.1.3, “Server Command Options”

--myisam-recover-options
Section 15.2.1, “MyISAM Startup Options”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section B.5.2.19, “Table-Corruption Issues”
Section 15.2, “The MyISAM Storage Engine”
Section 24.5.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”

--myisam_sort_buffer_size
Section 4.6.3.6, “myisamchk Memory Usage”

3707

MYSQL_MAINTAINER_MODE
Section 2.9.5, “Dealing with Problems Compiling
MySQL”

MYSQL_TCP_PORT
Section 2.9.3, “Installing MySQL Using a Development
Source Tree”
Section 2.9.4, “MySQL Source-Configuration Options”

MYSQL_UNIX_ADDR
Section B.5.3.6, “How to Protect or Change the MySQL
Unix Socket File”
Section 2.9.3, “Installing MySQL Using a Development
Source Tree”
Section 2.9.4, “MySQL Source-Configuration Options”

--mysqladmin
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--mysqld
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--mysqld-file
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--mysqld-safe-log-timestamps
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--mysqld-version
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

N

[index top [3683]]

-N
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”

-n
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 16.3.2, “Using memcached”

--name_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--named-commands
Section 4.5.1.1, “mysql Options”

--ndb
Section 4.8.2, “perror — Explain Error Codes”

--net-buffer-length
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

net_retry_count
Section 17.2.2, “Replication Implementation Details”

net_write_timeout
Section 17.2.2, “Replication Implementation Details”

--nice
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--no-auto-rehash
Section 4.5.1.1, “mysql Options”

--no-autocommit
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-beep
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--no-check
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

3708

--no-create-db
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--no-create-info
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--no-data
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-defaults
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”

Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”

--no-drop
Section 4.5.8, “mysqlslap — Load Emulation Client”

--no-log
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--no-set-names
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-symlinks
Section 4.6.3.3, “myisamchk Repair Options”

--no-tablespaces
Section 4.5.4, “mysqldump — A Database Backup
Program”

--number-char-cols
Section 4.5.8, “mysqlslap — Load Emulation Client”

--number-int-cols
Section 4.5.8, “mysqlslap — Load Emulation Client”

--number-of-queries
Section 4.5.8, “mysqlslap — Load Emulation Client”

--numeric-dump-file
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”

O

[index top [3683]]

-O
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 2.9.4, “MySQL Source-Configuration Options”

-o
Section 23.7.1, “Compiling Programs with libmysqld”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 8.12.3, “Optimizing Disk I/O”

3709

--offset
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--old-alter-table
Section 5.1.3, “Server Command Options”

--old-style-user-limits
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”

ON
Section 3.3.4.9, “Using More Than one Table”

--one-database
Section 4.5.1.1, “mysql Options”

--only-print
Section 4.5.8, “mysqlslap — Load Emulation Client”

--open-files-limit
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”

open-files-limit
Section B.5.2.7, “Too many connections”

openssl
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--opt
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--opt_name
Section 4.2.6, “Using Option Files”

--optimize
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--order-by-primary
Section 4.5.4, “mysqldump — A Database Backup
Program”

--out_dir
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--out_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

P

[index top [3683]]

-P
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 16.3.2, “Using memcached”

-p
Section 6.3.2, “Adding User Accounts”
Section 4.2.2, “Connecting to the MySQL Server”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

3710

Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section B.5.2.5, “Password Fails When Entered
Interactively”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”
Section 2.3.5.6, “Starting MySQL from the Windows
Command Line”
Section 2.3.5.9, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 2.3.8, “Upgrading MySQL on Windows”
Section 6.3.1, “User Names and Passwords”
Section 16.3.2, “Using memcached”
Section 4.2.4, “Using Options on the Command Line”
Section 2.3.7, “Windows Postinstallation Procedures”

--page
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--page-type-dump
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--page-type-summary
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--pager
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--parallel-recover
Section 4.6.3.3, “myisamchk Repair Options”

--parallel-schemas
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--partition
Section 5.1.3, “Server Command Options”

--password
Section 6.3.2, “Adding User Accounts”
Section 4.2.2, “Connecting to the MySQL Server”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 7.3, “Example Backup and Recovery Strategy”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section B.5.2.5, “Password Fails When Entered
Interactively”
Section 6.3.8, “Pluggable Authentication”
Section 6.3.9.10, “The Test Authentication Plugin”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 6.3.1, “User Names and Passwords”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”
Section 4.2.4, “Using Options on the Command Line”

password
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.2.6, “Using Option Files”

3711

--performance-schema-consumer-
consumer_name
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-stages-current
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-stages-history
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-stages-history-long
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-statements-current
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-statements-history
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-statements-history-long
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-transactions-current
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-transactions-history
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-transactions-history-long
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-waits-current
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-waits-history
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
events-waits-history-long
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
global-instrumentation
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
statements-digest
Section 21.11, “Performance Schema Command
Options”

--performance-schema-consumer-
thread-instrumentation
Section 21.11, “Performance Schema Command
Options”

--performance-schema-instrument
Section 21.11, “Performance Schema Command
Options”
Section 21.2.2, “Performance Schema Startup
Configuration”

--performance-schema-xxx
Section 5.1.3, “Server Command Options”

--
performance_schema_max_mutex_classes
Section 21.5, “Performance Schema Status Monitoring”

--
performance_schema_max_mutex_instances
Section 21.5, “Performance Schema Status Monitoring”

--pid-file
Section 2.5.10, “Managing MySQL Server with
systemd”

3712

Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--pipe
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 2.3.5.9, “Testing The MySQL Installation”

--plugin
Section 5.1.3, “Server Command Options”

--plugin-dir
Section 23.8.14, “C API Client Plugin Functions”
Client Plugin Descriptors
Section 4.5.1.1, “mysql Options”
Section 23.8.14.3, “mysql_load_plugin()”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”

Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 6.3.8, “Pluggable Authentication”
Section C.9, “Restrictions on Pluggable Authentication”
Using the Authentication Plugins
Using Your Own Protocol Trace Plugins

--plugin-ini
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”

--plugin-innodb_file_per_table
Section 5.1.3, “Server Command Options”

--plugin-load
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.15.1, “Installing the Audit Log Plugin”
Installing the PAM Authentication Plugin
Installing the Windows Authentication Plugin
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Password Validation Plugin Installation
Password Validation Plugin Options and Variables
Section 6.3.8, “Pluggable Authentication”
Section 24.2.2, “Plugin API Components”
Section 24.2.4.2, “Plugin Data Structures”
Section 5.1.3, “Server Command Options”
Server Plugin Library and Plugin Descriptors
Section 24.2, “The MySQL Plugin API”
Section 8.12.7.1, “Thread Pool Components and
Installation”
Using the Authentication Plugins
Section 1.4, “What Is New in MySQL 5.7”

--plugin-load-add
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.7”

--plugin-sql-mode
Section 5.1.3, “Server Command Options”

--plugin-xxx
Section 5.1.3, “Server Command Options”

--plugin_dir
Section 2.9.4, “MySQL Source-Configuration Options”
Section 24.2.2, “Plugin API Components”

--plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”

3713

Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”

--plugindir
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--port
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”

port
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.2.6, “Using Option Files”

--port-open-timeout
Section 5.1.3, “Server Command Options”

--post-query
Section 4.5.8, “mysqlslap — Load Emulation Client”

--post-system
Section 4.5.8, “mysqlslap — Load Emulation Client”

--pre-query
Section 4.5.8, “mysqlslap — Load Emulation Client”

--pre-system
Section 4.5.8, “mysqlslap — Load Emulation Client”

--prefix
Section 16.3.1, “Installing memcached”

--print-defaults
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 2.11.1, “Upgrading MySQL”

--prompt
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--protocol
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

3714

Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 2.3.5.5, “Starting the Server for the First Time”
Section 2.3.5.9, “Testing The MySQL Installation”
Section 1.3.2, “The Main Features of MySQL”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”

Q

[index top [3683]]

-Q
Section 4.5.4, “mysqldump — A Database Backup
Program”

-q
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”

--query
Section 4.5.8, “mysqlslap — Load Emulation Client”

--query-cache-size
Section 8.11.5, “External Locking”

--quick
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section B.5.2.8, “Out of memory”

Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.6, “Using Option Files”

--quote-names
Section 4.5.4, “mysqldump — A Database Backup
Program”

R

[index top [3683]]

-R
Section 16.3.4.1, “memcached General Statistics”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.3.4, “Other myisamchk Options”
Section 16.3.2, “Using memcached”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

-r
Section 24.4.2, “Adding a New User-Defined Function”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 5.1.3, “Server Command Options”
Section 16.3.2, “Using memcached”

--random-password-file
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--random-passwords
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

3715

--raw
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--read-from-remote-master
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

--read-from-remote-server
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--read-only
Section 4.6.3.2, “myisamchk Check Options”

--reconnect
Section 4.5.1.1, “mysql Options”

--recover
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--relative
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--relay-log
Section 17.1.2.6, “Adding Slaves to a Replication
Environment”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.3.5, “Improving Replication Performance”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.3.3, “Startup Options and Replication
Channels”
Section 17.2.4.1, “The Slave Relay Log”

--relay-log-index
Section 17.1.2.6, “Adding Slaves to a Replication
Environment”

Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.3.3, “Startup Options and Replication
Channels”
Section 17.2.4.1, “The Slave Relay Log”

--relay-log-info-file
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.4.2, “Slave Status Logs”

--relay-log-info-repository
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 17.2.4, “Replication Relay and Status Logs”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.4.2, “Slave Status Logs”

--relay-log-purge
Section 17.1.6.3, “Replication Slave Options and
Variables”

relay-log-purge
Section 17.1.6.3, “Replication Slave Options and
Variables”

--relay-log-recovery
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 17.2.4, “Replication Relay and Status Logs”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 5.1.12, “The Server Shutdown Process”

--relay-log-space-limit
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.3.3, “Startup Options and Replication
Channels”

--remove
Section 5.1.3, “Server Command Options”
Section 5.3.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 2.3.5.8, “Starting MySQL as a Windows
Service”

--repair
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--replace
Section 4.5.4, “mysqldump — A Database Backup
Program”

3716

Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--replicate-*
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 17.2.5.3, “Replication Rule Application”
Section 17.1.6.3, “Replication Slave Options and
Variables”

--replicate-*-db
Section 17.2.5.3, “Replication Rule Application”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section C.1, “Restrictions on Stored Programs”

--replicate-*-table
Section 17.2.5.3, “Replication Rule Application”

--replicate-do-db
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 17.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 17.3.4, “Replicating Different Databases to
Different Slaves”
Section 17.4.1.27, “Replication and Reserved Words”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 5.2.4, “The Binary Log”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

--replicate-do-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 17.2.5.2, “Evaluation of Table-Level Replication
Options”
Section 17.4.1.27, “Replication and Reserved Words”
Section 17.4.1.16, “Replication and System Functions”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.2.5.3, “Replication Rule Application”
Section 17.1.6.3, “Replication Slave Options and
Variables”

Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

--replicate-ignore-db
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 17.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 17.4.1.27, “Replication and Reserved Words”
Section 17.4.1.16, “Replication and System Functions”
Section 17.2.5.3, “Replication Rule Application”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 5.2.4, “The Binary Log”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

--replicate-ignore-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 17.2.5.2, “Evaluation of Table-Level Replication
Options”
Section 17.4.1.27, “Replication and Reserved Words”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

--replicate-rewrite-db
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

--replicate-same-server-id
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 17.1.6.3, “Replication Slave Options and
Variables”

3717

--replicate-wild-do-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 17.2.5.2, “Evaluation of Table-Level Replication
Options”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 17.3.4, “Replicating Different Databases to
Different Slaves”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”

--replicate-wild-ignore-table
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 17.2.5.2, “Evaluation of Table-Level Replication
Options”
Section A.13, “MySQL 5.7 FAQ: Replication”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”

replication-ignore-table
Section 17.4.1.39, “Replication and Views”

--replication-rewrite-db
Section 17.1.6.3, “Replication Slave Options and
Variables”

--report-host
Section 17.1.7.1, “Checking Replication Status”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.33, “SHOW SLAVE HOSTS Syntax”

--report-password
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.33, “SHOW SLAVE HOSTS Syntax”

--report-port
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.33, “SHOW SLAVE HOSTS Syntax”

--report-user
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

Section 13.7.5.33, “SHOW SLAVE HOSTS Syntax”

--result-file
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--rewrite-db
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 1.4, “What Is New in MySQL 5.7”

--routines
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and
Content Separately”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 2.11.1, “Upgrading MySQL”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--rpm
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

S

[index top [3683]]

-S
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.2.1, “Invoking MySQL Programs”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

3718

Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.6.3.4, “Other myisamchk Options”

-s
Section 7.6.2, “How to Check MyISAM Tables for
Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.8.2, “perror — Explain Error Codes”
Section 4.8.3, “replace — A String-Replacement
Utility”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.8.4, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 16.3.2, “Using memcached”

--safe-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”

Section 4.6.3.3, “myisamchk Repair Options”

--safe-updates
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Using the --safe-updates Option

--safe-user-create
Section 5.1.3, “Server Command Options”

--secure-auth
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password
Plugin”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.7”

--secure-file-priv
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--select_limit
Using the --safe-updates Option

--server-id
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.33, “SHOW SLAVE HOSTS Syntax”
Section 17.4.4, “Troubleshooting Replication”

3719

server-id
Section 17.1.2.6, “Adding Slaves to a Replication
Environment”
Section 17.1.1, “Binary Log File Position Based
Replication Configuration Overview”
Section 17.1.6.2, “Replication Master Options and
Variables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.1.2.1, “Setting the Replication Master
Configuration”
Setting the Replication Slave Configuration
Setting Up Replication with Existing Data

--server-public-key-path
Section 4.5.1.1, “mysql Options”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”

--service-startup-timeout
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

--set-auto-increment
Section 4.6.3.4, “Other myisamchk Options”

--set-charset
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--set-collation
Section 4.6.3.3, “myisamchk Repair Options”

--set-gtid-purged
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

--shared-memory
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 5.1.3, “Server Command Options”
Section 5.3.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 2.3.5.5, “Starting the Server for the First Time”
Section 1.3.2, “The Main Features of MySQL”

--shared-memory-base-name
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 23.8.7.50, “mysql_options()”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 5.3.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”

--short-form
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--show
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”

--show-slave-auth-info
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.7.5.33, “SHOW SLAVE HOSTS Syntax”

--show-table-type
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”

--show-warnings
Section 4.5.1.1, “mysql Options”

3720

Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--sigint-ignore
Section 4.5.1.1, “mysql Options”

--silent
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.8.2, “perror — Explain Error Codes”
Section 4.8.4, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”

--single-transaction
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 14.15, “InnoDB Backup and Recovery”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--skip
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.2.5, “Program Option Modifiers”
Section 5.1.3, “Server Command Options”

--skip-add-drop-table
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-add-locks
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-auto-rehash
Section 4.5.1.1, “mysql Options”
Section 14.18.3, “Troubleshooting InnoDB Data
Dictionary Operations”

--skip-character-set-client-
handshake
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
The cp932 Character Set

--skip-column-names
Section 4.5.1.1, “mysql Options”

--skip-comments
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-concurrent-insert
Section 5.1.3, “Server Command Options”

--skip-database
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--skip-defer-table-indexes
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--skip-definer
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--skip-disable-keys
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-dump-date
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-dump-rows
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--skip-engine_name
Section 13.7.5.16, “SHOW ENGINES Syntax”

--skip-event-scheduler
Section 5.1.3, “Server Command Options”

--skip-events
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

3721

--skip-extended-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-external-locking
Section 8.11.5, “External Locking”
Section 8.14.2, “General Thread States”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”

--skip-federated
Section 17.3.2, “Using Replication with Different Master
and Slave Storage Engines”

--skip-grant
Section 4.2.3, “Specifying Program Options”
Section 1.4, “What Is New in MySQL 5.7”

--skip-grant-tables
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”
Section 19.4.2, “Event Scheduler Configuration”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 6.3.8, “Pluggable Authentication”
Resetting the Root Password: Generic Instructions
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 4.2.3, “Specifying Program Options”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 4.2.4, “Using Options on the Command Line”
Section 1.4, “What Is New in MySQL 5.7”
Section 6.2.6, “When Privilege Changes Take Effect”

--skip-gtids
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”

--skip-host-cache
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”

--skip-innodb
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section A.13, “MySQL 5.7 FAQ: Replication”
Section 5.1.3, “Server Command Options”
Section 14.1.3, “Turning Off InnoDB”
Section 1.4, “What Is New in MySQL 5.7”

--skip-innodb-checksums
Section 14.11, “InnoDB Startup Options and System
Variables”

--skip-innodb_adaptive_hash_index
Section 14.11, “InnoDB Startup Options and System
Variables”

--skip-innodb_doublewrite
Section 14.11, “InnoDB Startup Options and System
Variables”

--skip-kill-mysqld
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”

--skip-line-numbers
Section 4.5.1.1, “mysql Options”

--skip-lock-tables
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-name-resolve
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.3.5.9, “Testing The MySQL Installation”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”

--skip-named-commands
Section 4.5.1.1, “mysql Options”

--skip-networking
Section B.5.2.2, “Can't connect to [local] MySQL
server”
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section B.5.2.9, “MySQL server has gone away”
Section 6.3.8, “Pluggable Authentication”

3722

Resetting the Root Password: Generic Instructions
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 17.4.3, “Upgrading a Replication Setup”

skip-networking
Section A.13, “MySQL 5.7 FAQ: Replication”
Section 17.1.2.1, “Setting the Replication Master
Configuration”
Section 17.4.4, “Troubleshooting Replication”

--skip-new
Section 24.5.1, “Debugging a MySQL Server”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 5.1.4, “Server System Variables”

--skip-opt
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-pager
Section 4.5.1.1, “mysql Options”

--skip-partition
Chapter 18, Partitioning
Section 5.1.3, “Server Command Options”

--skip-plugin-innodb_file_per_table
Section 5.1.3, “Server Command Options”

--skip-plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”

--skip-quick
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-quote-names
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-random-passwords
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--skip-reconnect
Section 23.8.16, “Controlling Automatic Reconnection
Behavior”
Disabling mysql Auto-Reconnect
Section 4.5.1.1, “mysql Options”

--skip-routines
Section 7.4.5.3, “Dumping Stored Programs”

Section 4.5.6, “mysqlpump — A Database Backup
Program”

--skip-secure-auth
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.7”

--skip-set-charset
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--skip-show-database
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 13.7.5.14, “SHOW DATABASES Syntax”
Section 1.9.5, “Supporters of MySQL”

--skip-slave-start
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 17.3.7, “Setting Up Replication Using SSL”
Setting Up Replication with Existing Data
Section 13.4.2.6, “START SLAVE Syntax”
Section 17.2.3.3, “Startup Options and Replication
Channels”
Section 17.4.4, “Troubleshooting Replication”
Section 17.4.3, “Upgrading a Replication Setup”

--skip-ssl
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.12.5, “SSL Command Options”

--skip-stack-trace
Section 24.5.1.4, “Debugging mysqld under gdb”

3723

Section 5.1.3, “Server Command Options”

--skip-super-large-pages
Section 8.12.5.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”

--skip-symbolic-links
Section 13.1.14, “CREATE TABLE Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

--skip-sys-schema
Chapter 22, MySQL sys Schema
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--skip-syslog
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.2.2, “The Error Log”

--skip-triggers
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--skip-tz-utc
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--skip-version-check
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--skip-warn
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

--skip-watch-progress
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--skip-write-binlog
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”

--skip_grant_tables
Section 4.2.4, “Using Options on the Command Line”

--slave-checkpoint-group
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.3.3, “Startup Options and Replication
Channels”

--slave-checkpoint-period
Section 17.1.6.3, “Replication Slave Options and
Variables”

--slave-load-tmpdir
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.2, “Database Backup Methods”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section B.5.3.5, “Where MySQL Stores Temporary
Files”

--slave-max-allowed-packet
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave-max-allowed-packet
Section 17.1.6.3, “Replication Slave Options and
Variables”

--slave-net-timeout
Section 17.1.6.3, “Replication Slave Options and
Variables”

--slave-parallel-type
Section 17.1.6.3, “Replication Slave Options and
Variables”

--slave-parallel-workers
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.3.3, “Startup Options and Replication
Channels”

--slave-pending-jobs-size-max
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave-rows-search-algorithms
Section 17.1.6.3, “Replication Slave Options and
Variables”

--slave-skip-counter
Section 17.2.3.3, “Startup Options and Replication
Channels”

3724

--slave-skip-errors
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.4.1.28, “Slave Errors During Replication”

--slave-sql-verify-checksum
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 17.1.6.3, “Replication Slave Options and
Variables”

--slave_compressed_protocol
Section 17.1.6.3, “Replication Slave Options and
Variables”

--slave_net-timeout
Section 17.2.3.3, “Startup Options and Replication
Channels”

--sleep
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--slow-query-log
Section 5.1.3, “Server Command Options”

--slow-start-timeout
Section 5.1.3, “Server Command Options”

--slow_query_log
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

--slow_query_log_file
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.2.5, “The Slow Query Log”

--socket
Section B.5.2.2, “Can't connect to [local] MySQL
server”
Section 4.2.2, “Connecting to the MySQL Server”
Section B.5.3.6, “How to Protect or Change the MySQL
Unix Socket File”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.3.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Server Plugin Library and Plugin Descriptors
Section 2.3.5.9, “Testing The MySQL Installation”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 5.3.4, “Using Client Programs in a Multiple-
Server Environment”

socket
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.2.6, “Using Option Files”

--sort-index
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-records
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--sporadic-binlog-dump-fail
Section 17.1.6.4, “Binary Logging Options and
Variables”

--sql-mode
Chapter 12, Functions and Operators

3725

Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”

sql-mode
Section 5.1.7, “Server SQL Modes”

--srcdir
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--ssl
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 4.2.2, “Connecting to the MySQL Server”
Section 13.7.1.2, “CREATE USER Syntax”
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.3.12.5, “SSL Command Options”
Section 6.3.12, “Using Secure Connections”

--ssl*
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”

--ssl-ca
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 13.7.1.2, “CREATE USER Syntax”
Section 6.3.13.2, “Creating SSL Certificates and Keys
Using openssl”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 6.3.12.5, “SSL Command Options”

--ssl-capath
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.7.1.2, “CREATE USER Syntax”
Section 6.3.12.1, “OpenSSL Versus yaSSL”
Section 6.3.12.5, “SSL Command Options”

--ssl-cert
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 13.7.1.2, “CREATE USER Syntax”
Section 6.3.13.2, “Creating SSL Certificates and Keys
Using openssl”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 6.3.12.5, “SSL Command Options”

--ssl-cipher
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.12.1, “OpenSSL Versus yaSSL”
Section 6.3.12.2, “Secure Connection Protocols and
Ciphers”
Section 6.3.12.5, “SSL Command Options”

--ssl-crl
Section 6.3.12.1, “OpenSSL Versus yaSSL”
Section 6.3.12.5, “SSL Command Options”

--ssl-crlpath
Section 6.3.12.1, “OpenSSL Versus yaSSL”

3726

Section 6.3.12.5, “SSL Command Options”

--ssl-key
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 13.7.1.2, “CREATE USER Syntax”
Section 6.3.13.2, “Creating SSL Certificates and Keys
Using openssl”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 6.3.12.5, “SSL Command Options”

--ssl-verify-server-cert
Section 6.3.12.5, “SSL Command Options”

--ssl-xxx
Section 6.3.12.3, “Building MySQL with SSL Support”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 5.1.4, “Server System Variables”
Section 6.3.12.5, “SSL Command Options”
Section 6.3.12, “Using Secure Connections”

--standalone
Section 24.5.1.2, “Creating Trace Files”
Section 5.1.3, “Server Command Options”
Section 2.3.5.6, “Starting MySQL from the Windows
Command Line”

--start-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event
Times”

--start-page
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--start-position
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event
Positions”

--statefile
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--static
Section 23.8.4.2, “Building C API Client Programs
Using pkg-config”

--stats
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”

--status
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”

--stop-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event
Times”

--stop-never
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--stop-never-slave-server-id
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--stop-position
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event
Positions”

--strict-check
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--suffix
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”

--super-large-pages
Section 8.12.5.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”

--symbolic-links
Section 5.1.3, “Server Command Options”

--symbols-file
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”

SYSCONFDIR
Section 4.2.6, “Using Option Files”

3727

--sysdate-is-now
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 17.4.1.16, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--syslog
Section 2.12, “Environment Variables”
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.2.2, “The Error Log”
Section 1.4, “What Is New in MySQL 5.7”

--syslog-tag
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.2.2, “The Error Log”

T

[index top [3683]]

-T
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”

-t
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”

Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 5.1.3, “Server Command Options”
Section 16.3.2, “Using memcached”

--tab
Section 7.1, “Backup and Recovery Types”
Section 7.2, “Database Backup Methods”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4, “Using mysqldump for Backups”

--table
Section 4.5.1.1, “mysql Options”

--tables
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--tc-heuristic-recover
Section 5.1.3, “Server Command Options”

--tcp-ip
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--tee
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--temp-pool
Section 5.1.3, “Server Command Options”

--test
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

Text
Section 1.2, “Typographical and Syntax Conventions”

--thread_cache_size
Section 24.5.1.4, “Debugging mysqld under gdb”

--thread_stack
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”

--timezone
Section 10.6, “MySQL Server Time Zone Support”

3728

Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 17.4.1.32, “Replication and Time Zones”
Section 5.1.4, “Server System Variables”
Section B.5.3.7, “Time Zone Problems”

--tls-version
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 6.3.12.2, “Secure Connection Protocols and
Ciphers”

--tmpdir
Section B.5.2.13, “Can't create/write to file”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.7”
Section B.5.3.5, “Where MySQL Stores Temporary
Files”

tmpdir
Section 2.3, “Installing MySQL on Microsoft Windows”

--to-last-log
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.6.7.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

--transaction-isolation
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”

--transaction-read-only
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”

--triggers
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--tz-utc
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”

U

[index top [3683]]

-U
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 16.3.2, “Using memcached”

-u
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

3729

Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 2.3.5.9, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 6.3.1, “User Names and Passwords”
Section 16.3.2, “Using memcached”
Section 2.3.7, “Windows Postinstallation Procedures”

--uid
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”

--unbuffered
Section 4.5.1.1, “mysql Options”

--unpack
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”

--update-state
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.3.2, “myisamchk Check Options”
Section 15.2, “The MyISAM Storage Engine”

--upgrade-system-tables
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--use-default
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”

--use-frm
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--use-threads
Section 4.5.5, “mysqlimport — A Data Import
Program”

--user
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 7.3, “Example Backup and Recovery Strategy”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.10.1.2, “Initializing the Data Directory
Manually Using mysql_install_db”

Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 4.2.1, “Invoking MySQL Programs”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.4, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 6.3.8, “Pluggable Authentication”
Resetting the Root Password: Unix and Unix-Like
Systems
Section 5.1.3, “Server Command Options”
Section 2.10.2, “Starting the Server”
Section 6.3.9.9, “The Socket Peer-Credential
Authentication Plugin”
Section 6.3.9.10, “The Test Authentication Plugin”
Section 6.3.1, “User Names and Passwords”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”
Section 4.2.6, “Using Option Files”

user
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.2.6, “Using Option Files”

--users
Section 4.5.6, “mysqlpump — A Database Backup
Program”

3730

V

[index top [3683]]

-V
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.8.2, “perror — Explain Error Codes”
Section 4.8.3, “replace — A String-Replacement
Utility”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.8.4, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 4.2.4, “Using Options on the Command Line”

-v
Section 7.6.2, “How to Check MyISAM Tables for
Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 16.3.2.8, “memcached Logs”

Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 4.8.2, “perror — Explain Error Codes”
Section 4.8.3, “replace — A String-Replacement
Utility”
Section 5.1.3, “Server Command Options”
Section 16.3.2, “Using memcached”
Section 4.2.4, “Using Options on the Command Line”

--validate-password
Password Validation Plugin Installation
Password Validation Plugin Options and Variables

--var_name
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

3731

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 5.1.3, “Server Command Options”

--variable
Section 23.8.4.2, “Building C API Client Programs
Using pkg-config”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”

--verbose
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 4.5.1.5, “Executing SQL Statements from a
Text File”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.8.2, “perror — Explain Error Codes”
Section 5.1.3, “Server Command Options”

Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”
Section 8.12.2, “Tuning Server Parameters”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”

--verify-binlog-checksum
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--version
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.7.2, “my_print_defaults — Display
Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.7.1, “mysql_config — Display Options for
Compiling Clients”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 4.4.5, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 4.8.2, “perror — Explain Error Codes”
Section 4.7.3, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.8.4, “resolveip — Resolve Host name to
IP Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 4.2.4, “Using Options on the Command Line”

3732

--version-check
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”

--vertical
Section 1.7, “How to Report Bugs or Problems”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

W

[index top [3683]]

-W
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”

-w
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log
File Contents”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--wait
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

--warn
Section 4.6.6, “mysql_config_editor — MySQL
Configuration Utility”

--watch-progress
Section 4.5.6, “mysqlpump — A Database Backup
Program”

--where
Section 4.5.4, “mysqldump — A Database Backup
Program”

--windows
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

--with-libevent
Section 16.3.1, “Installing memcached”

WITH_BOOST
Section 2.9, “Installing MySQL from Source”
Section 2.9.4, “MySQL Source-Configuration Options”

WITH_CLIENT_PROTOCOL_TRACING
Section 2.9.4, “MySQL Source-Configuration Options”

WITH_DEBUG
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 13.7.5.15, “SHOW ENGINE Syntax”

WITH_EDITLINE
Section 2.9.4, “MySQL Source-Configuration Options”

WITH_LIBEDIT
Section 2.9.4, “MySQL Source-Configuration Options”

WITH_MECAB
Section 12.9.9, “MeCab Full-Text Parser Plugin”

WITH_PERFSCHEMA_STORAGE_ENGINE
Section 21.2.1, “Performance Schema Build
Configuration”

WITH_SYSTEMD
Section 2.9.4, “MySQL Source-Configuration Options”

WITH_TEST_TRACE_PLUGIN
Section 2.9.4, “MySQL Source-Configuration Options”
Using the Test Protocol Trace Plugin
Using Your Own Protocol Trace Plugins

3733

WITH_ZLIB
Section 2.9.4, “MySQL Source-Configuration Options”

--write
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”

--write-binlog
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

X

[index top [3683]]

-X
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”

-x
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”

--xml
Section 13.2.7, “LOAD XML Syntax”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 12.11, “XML Functions”

Y

[index top [3683]]

-Y
Section 4.5.4, “mysqldump — A Database Backup
Program”

-y
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”

3734

3735

Privileges Index
A | C | D | E | F | G | I | L | P | R | S | T | U

A

[index top [3735]]

ALL
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

ALL PRIVILEGES
Section 6.2.1, “Privileges Provided by MySQL”

ALTER
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.1.6, “ALTER TABLE Syntax”
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.28, “RENAME TABLE Syntax”
Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

ALTER ROUTINE
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.22, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 19.2.2, “Stored Routines and MySQL
Privileges”

C

[index top [3735]]

CREATE
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.28, “RENAME TABLE Syntax”

CREATE ROUTINE
Section 19.7, “Binary Logging of Stored Programs”

Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 19.2.2, “Stored Routines and MySQL
Privileges”

CREATE TABLESPACE
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

CREATE TEMPORARY TABLES
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

CREATE USER
Section 6.3.2, “Adding User Accounts”
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.7.1.3, “DROP USER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Writing the Server-Side Authentication Plugin

CREATE VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5, “Restrictions on Views”
Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

D

[index top [3735]]

DELETE
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 13.7.1.3, “DROP USER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.8, “REPLACE Syntax”
Section 15.7, “The MERGE Storage Engine”
Section 21.9.2.4, “The setup_objects Table”

3736

Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”

DROP
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 13.1.18, “DROP DATABASE Syntax”
Section 13.1.24, “DROP TABLE Syntax”
Section 13.1.27, “DROP VIEW Syntax”
Section 12.18.1, “Enterprise Encryption Installation”
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 13.7.1.4, “GRANT Syntax”
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 21.8, “Performance Schema General Table
Characteristics”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.28, “RENAME TABLE Syntax”
Section 21.9.15.1, “The host_cache Table”
Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 6.2, “The MySQL Access Privilege System”
Section 13.1.29, “TRUNCATE TABLE Syntax”

E

[index top [3735]]

EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.19, “DROP EVENT Syntax”
Section 19.4.1, “Event Scheduler Overview”
Section 19.4.3, “Event Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.7, “SHOW CREATE EVENT Syntax”
Section 13.7.5.18, “SHOW EVENTS Syntax”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”

EXECUTE
Section 19.6, “Access Control for Stored Programs and
Views”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.22, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 22.1, “Prerequisites for Using the sys Schema”

Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 19.2.2, “Stored Routines and MySQL
Privileges”

F

[index top [3735]]

FILE
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 12.18.2, “Enterprise Encryption Usage and
Examples”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”

G

[index top [3735]]

GRANT OPTION
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.6, “REVOKE Syntax”
Section 20.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

I

[index top [3735]]

INDEX
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

INSERT
Section 19.6, “Access Control for Stored Programs and
Views”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”

3737

Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 12.18.1, “Enterprise Encryption Installation”
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 15.11.1, “Pluggable Storage Engine
Architecture”
Section 22.1, “Prerequisites for Using the sys Schema”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.28, “RENAME TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.2.8, “REPLACE Syntax”
Section 5.1.3, “Server Command Options”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”
Section 20.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 21.9.2.4, “The setup_objects Table”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”

L

[index top [3735]]

LOCK TABLES
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”

P

[index top [3735]]

PROCESS
Section 6.3.2, “Adding User Accounts”
Section 14.14.2, “Enabling InnoDB Monitors”
Section 19.4.2, “Event Scheduler Configuration”
Section 8.14, “Examining Thread Information”
Section 13.7.1.4, “GRANT Syntax”
Chapter 20, INFORMATION_SCHEMA Tables

Section 13.7.6.4, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Section 22.1, “Prerequisites for Using the sys Schema”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.15, “SHOW ENGINE Syntax”
Section 13.7.5.29, “SHOW PROCESSLIST Syntax”
Section 20.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”
Section 21.9.15.3, “The threads Table”

PROXY
Section 13.7.1.4, “GRANT Syntax”
Implementing Proxy User Support in Authentication
Plugins
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 6.3.10, “Proxy Users”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 21.9.15.1, “The host_cache Table”
Unix Password Authentication with Proxy Users and
Group Mapping
Using the Windows Authentication Plugin

PROXY ... WITH GRANT OPTION
Section 6.3.10, “Proxy Users”

R

[index top [3735]]

REFERENCES
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 20.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

RELOAD
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 12.13, “Encryption and Compression
Functions”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 23.8.7.58, “mysql_refresh()”
Section 23.8.7.59, “mysql_reload()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.6.6, “RESET Syntax”

3738

Section 21.9.15.1, “The host_cache Table”

REPLICATION CLIENT
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”
Section 13.7.5.23, “SHOW MASTER STATUS Syntax”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”

REPLICATION SLAVE
Section 17.1.2.2, “Creating a User for Replication”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.3.7, “Setting Up Replication Using SSL”

S

[index top [3735]]

SELECT
Section 19.6, “Access Control for Stored Programs and
Views”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.2.3, “CHECKSUM TABLE Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.14.1, “CREATE TABLE ... LIKE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 21.17, “Migrating to Performance Schema
System and Status Variable Tables”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 21.8, “Performance Schema General Table
Characteristics”
Section 22.1, “Prerequisites for Using the sys Schema”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section C.5, “Restrictions on Views”
Section 5.1.4, “Server System Variables”
Section 13.7.5.12, “SHOW CREATE USER Syntax”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 13.7.5.21, “SHOW GRANTS Syntax”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”
Section 20.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 15.7, “The MERGE Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 19.3.1, “Trigger Syntax and Examples”
Section 13.2.11, “UPDATE Syntax”

SHOW DATABASES
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 13.7.5.14, “SHOW DATABASES Syntax”

SHOW VIEW
Section 13.7.1.4, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5, “Restrictions on Views”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”

SHUTDOWN
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 13.7.1.4, “GRANT Syntax”
Section 23.8.7.71, “mysql_shutdown()”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 13.7.6.7, “SHUTDOWN Syntax”
Section 5.1.12, “The Server Shutdown Process”

SUPER
Section 19.6, “Access Control for Stored Programs and
Views”
Section 13.7.1, “Account Management Statements”
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.5, “ALTER SERVER Syntax”
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.1.7, “ALTER VIEW Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 19.7, “Binary Logging of Stored Programs”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 13.7.6.1, “BINLOG Syntax”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.13, “CREATE SERVER Syntax”

3739

Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 13.1.23, “DROP SERVER Syntax”
Section 13.7.1.3, “DROP USER Syntax”
Section 12.13, “Encryption and Compression
Functions”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 10.7, “MySQL Server Locale Support”
Section 10.6, “MySQL Server Time Zone Support”
Section 23.8.7.12, “mysql_dump_debug_info()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 6.3.6, “Password Expiration Policy”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Syntax”
Section 17.2.1, “Replication Formats”
Section 17.1.5.1, “Replication Mode Concepts”
Section 13.7.1.6, “REVOKE Syntax”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 13.7.4, “SET Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 17.1.2, “Setting Up Binary Log File Position
Based Replication”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”
Section 13.7.5.23, “SHOW MASTER STATUS Syntax”
Section 13.7.5.29, “SHOW PROCESSLIST Syntax”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 5.2.4, “The Binary Log”
Section 24.5.3, “The DBUG Package”
Section 22.4.4.2, “The diagnostics() Procedure”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”
Section 22.4.4.12, “The ps_setup_reload_saved()
Procedure”
Section 22.4.4.14, “The ps_setup_save() Procedure”
Section 22.4.4.22, “The ps_trace_statement_digest()
Procedure”
Section 22.4.4.23, “The ps_trace_thread() Procedure”

Section 22.4.4.25, “The
statement_performance_analyzer() Procedure”
Section B.5.2.7, “Too many connections”
Section 5.1.5, “Using System Variables”
Using Version Tokens
Version Tokens Functions

T

[index top [3735]]

TRIGGER
Section 19.6, “Access Control for Stored Programs and
Views”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.1.26, “DROP TRIGGER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.38, “SHOW TRIGGERS Syntax”
Section 20.27, “The INFORMATION_SCHEMA
TRIGGERS Table”

U

[index top [3735]]

UPDATE
Section 19.6, “Access Control for Stored Programs and
Views”
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8, “Performance Schema General Table
Characteristics”
Section 21.2.3, “Performance Schema Runtime
Configuration”
Section 21.9.2, “Performance Schema Setup Tables”
Section 22.1, “Prerequisites for Using the sys Schema”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 20.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 15.7, “The MERGE Storage Engine”
Section 21.9.2.4, “The setup_objects Table”
Section 19.3.1, “Trigger Syntax and Examples”
Section 13.2.11, “UPDATE Syntax”
Writing the Server-Side Authentication Plugin

3740

USAGE
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

3741

SQL Modes Index
A | D | E | H | I | M | N | O | P | R | S | T

A

[index top [3741]]

ALLOW_INVALID_DATES
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section B.5.4.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”

ANSI
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 5.1.7, “Server SQL Modes”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”

ANSI_QUOTES
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 23.8.7.56, “mysql_real_escape_string_quote()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 8.9.3, “Optimizer Hints”
Section 9.2, “Schema Object Names”
Section 5.1.7, “Server SQL Modes”
Section 9.1.1, “String Literals”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

D

[index top [3741]]

DB2
Section 5.1.7, “Server SQL Modes”

E

[index top [3741]]

ERROR_FOR_DIVISION_BY_ZERO
Section 12.21.3, “Expression Handling”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 12.21.5, “Precision Math Examples”
Section 5.1.7, “Server SQL Modes”
Section 1.4, “What Is New in MySQL 5.7”

H

[index top [3741]]

HIGH_NOT_PRECEDENCE
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 5.1.7, “Server SQL Modes”

I

[index top [3741]]

IGNORE_SPACE
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 4.5.1.1, “mysql Options”
Section 5.1.7, “Server SQL Modes”

M

[index top [3741]]

MAXDB
Section 11.1.2, “Date and Time Type Overview”
Section 5.1.7, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”

MSSQL
Section 5.1.7, “Server SQL Modes”

MYSQL323
Section 5.1.7, “Server SQL Modes”

MYSQL40
Section 5.1.7, “Server SQL Modes”

N

[index top [3741]]

NO_AUTO_CREATE_USER
Section 13.7.1.4, “GRANT Syntax”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.7, “Server SQL Modes”
Section 1.4, “What Is New in MySQL 5.7”

NO_AUTO_VALUE_ON_ZERO
Section 13.1.14, “CREATE TABLE Syntax”
Section 5.1.7, “Server SQL Modes”
Section 3.6.9, “Using AUTO_INCREMENT”

NO_BACKSLASH_ESCAPES
Section 12.16.4, “Functions That Modify JSON Values”
Section 23.8.7.55, “mysql_real_escape_string()”
Section 5.1.7, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”

3742

Section 9.1.1, “String Literals”

NO_DIR_IN_CREATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 17.4.1.11, “Replication and DIRECTORY Table
Options”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.7, “Server SQL Modes”
Section 18.2.6, “Subpartitioning”
Section 5.2.4, “The Binary Log”

NO_ENGINE_SUBSTITUTION
Section 13.1.6, “ALTER TABLE Syntax”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 13.1.14, “CREATE TABLE Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.7, “Server SQL Modes”
Section 15.1, “Setting the Storage Engine”
Section 17.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 1.4, “What Is New in MySQL 5.7”

NO_FIELD_OPTIONS
Section 5.1.7, “Server SQL Modes”

NO_KEY_OPTIONS
Section 5.1.7, “Server SQL Modes”

NO_TABLE_OPTIONS
Section 5.1.7, “Server SQL Modes”

NO_UNSIGNED_SUBTRACTION
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 11.1.1, “Numeric Type Overview”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.7, “Server SQL Modes”

NO_ZERO_DATE
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.10, “Cast Functions and Operators”
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.3, “Date and Time Types”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section B.5.4.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”
Section 1.4, “What Is New in MySQL 5.7”

NO_ZERO_IN_DATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.3, “Date and Time Types”

Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section B.5.4.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”
Section 1.4, “What Is New in MySQL 5.7”

O

[index top [3741]]

ONLY_FULL_GROUP_BY
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 3.3.4.8, “Counting Rows”
Section 12.20.2, “GROUP BY Modifiers”
Section 12.19, “Miscellaneous Functions”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 12.20.3, “MySQL Handling of GROUP BY”
Section 5.1.7, “Server SQL Modes”
Section 1.4, “What Is New in MySQL 5.7”

ORACLE
Section 5.1.7, “Server SQL Modes”

P

[index top [3741]]

PAD_CHAR_TO_FULL_LENGTH
Section 5.1.7, “Server SQL Modes”
Section 11.1.3, “String Type Overview”
Section 11.4.1, “The CHAR and VARCHAR Types”

PIPES_AS_CONCAT
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 5.1.7, “Server SQL Modes”

POSTGRESQL
Section 5.1.7, “Server SQL Modes”

R

[index top [3741]]

REAL_AS_FLOAT
Section 11.1.1, “Numeric Type Overview”
Section 11.2, “Numeric Types”
Section 5.1.7, “Server SQL Modes”

S

[index top [3741]]

STRICT_ALL_TABLES
Section 1.8.3.3, “Constraints on Invalid Data”
Section 12.21.3, “Expression Handling”

3743

Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.7, “Server SQL Modes”
Section 17.4.3, “Upgrading a Replication Setup”

STRICT_TRANS_TABLES
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 12.21.3, “Expression Handling”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.7, “Server SQL Modes”
Section 17.4.3, “Upgrading a Replication Setup”
Section 1.4, “What Is New in MySQL 5.7”

T

[index top [3741]]

TRADITIONAL
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 12.21.3, “Expression Handling”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”
Section 5.1.7, “Server SQL Modes”

3744

3745

Statement/Syntax Index

A | B | C | D | E | F | G | H | I | K | L | O | P | R | S | T | U
| W | X

A

[index top [3745]]

ADD FULLTEXT INDEX
Section 14.10.1, “Overview of Online DDL”

ADD INDEX
Section 14.10.1, “Overview of Online DDL”

ADD SPATIAL INDEX
Section 14.10.1, “Overview of Online DDL”

ALTER DATABASE
Section 13.1.1, “ALTER DATABASE Syntax”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 17.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 1.4, “What Is New in MySQL 5.7”

ALTER EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 13.1.9, “CREATE EVENT Syntax”
Section 19.4.4, “Event Metadata”
Section 19.4.1, “Event Scheduler Overview”
Section 19.4.3, “Event Syntax”
Section 12.14, “Information Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”
Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”

ALTER EVENT event_name
ENABLED
Section 17.4.1.12, “Replication of Invoked Features”

ALTER FUNCTION
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.2.1, “Stored Routine Syntax”

ALTER IGNORE TABLE
Section 18.3.4, “Maintenance of Partitions”

ALTER PROCEDURE
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.2.1, “Stored Routine Syntax”

ALTER SCHEMA
Section 13.1.1, “ALTER DATABASE Syntax”

ALTER SERVER
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.4.1.7, “Replication of CREATE SERVER,
ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

ALTER TABLE
Section 13.1.6.2, “ALTER TABLE Examples”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 10.1.3.4, “Column Character Set and Collation”
Section 10.1.13, “Column Character Set Conversion”
Section 14.10.4, “Combining or Separating DDL
Statements”
Configuring Automatic Statistics Calculation for
Persistent Optimizer Statistics
Section 14.3.11, “Configuring Optimizer Statistics for
InnoDB”
Configuring Optimizer Statistics Parameters for
Individual Tables
Section 14.3.12, “Configuring the Merge Threshold for
Index Pages”
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”

3746

Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.4.5, “Creating a File-Per-Table Tablespace
Outside the Data Directory”
Section 3.3.2, “Creating a Table”
Section 14.6.1.2, “Creating Compressed Tables”
Section 14.5.1, “Creating InnoDB Tables”
Section 11.5.3.2, “Creating Spatial Columns”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 14.9.4, “Defragmenting a Table”
Section 13.1.21, “DROP INDEX Syntax”
Section 14.7.1, “Enabling File Formats”
Section 14.3.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”
Section 14.10.5, “Examples of Online DDL”
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.18.2, “Forcing InnoDB Recovery”
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 12.9, “Full-Text Search Functions”
Section 8.14.2, “General Thread States”
Section 13.7.1.4, “GRANT Syntax”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”
Section 14.10.7, “How Crash Recovery Works with
Online DDL”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 8.10.3.1, “How the Query Cache Operates”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.10.6, “Implementation Details of Online
DDL”
Section 12.14, “Information Functions”
Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 14.10, “InnoDB and Online DDL”
Section 14.18.5, “InnoDB Error Codes”
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.4.9, “InnoDB General Tablespaces”
Section 14.13, “InnoDB Integration with MySQL
Performance Schema”
Section 14.6.2, “InnoDB Page Compression”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.6.1, “InnoDB Table Compression”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.10.9, “Limitations of Online DDL”
Section C.10.3, “Limits on Table Size”

Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 18.3.4, “Maintenance of Partitions”
Section 18.3.2, “Management of HASH and KEY
Partitions”
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 15.7.2, “MERGE Table Problems”
Section 14.13.1, “Monitoring ALTER TABLE Progress
for InnoDB Tables Using Performance Schema”
Section 14.5.2, “Moving or Copying InnoDB Tables to
Another Machine”
Section 15.2.1, “MyISAM Startup Options”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.1, “myisamchk General Options”
Section 1.8.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 23.8.7.36, “mysql_info()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 12.9.8, “ngram Full-Text Parser”
Section 14.10.8, “Online DDL for Partitioned InnoDB
Tables”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 8.4.1, “Optimizing Data Size”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 14.10.1, “Overview of Online DDL”
Section 14.6.1.1, “Overview of Table Compression”
Section 18.3, “Partition Management”
Section 18.6.4, “Partitioning and Locking”
Section 18.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”
Section 14.10.2, “Performance and Concurrency
Considerations for Online DDL”
Section 21.9.5, “Performance Schema Stage Event
Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.6.1, “Problems with ALTER TABLE”
Section 18.2.3.1, “RANGE COLUMNS partitioning”
Section 18.2.1, “RANGE Partitioning”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 13.1.28, “RENAME TABLE Syntax”
Section 17.4.1.1, “Replication and
AUTO_INCREMENT”
Section 17.4.1.27, “Replication and Reserved Words”
Replication with More Columns on Master or Slave
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section C.5, “Restrictions on Views”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”

3747

Section 5.2.4.2, “Setting The Binary Log Format”
Section 15.1, “Setting the Storage Engine”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section 13.1.14.4, “Silent Column Specification
Changes”
Section 14.8.2, “Specifying the Row Format for a
Table”
Section 14.6.1.7, “SQL Compression Syntax Warnings
and Errors”
Section 14.10.3, “SQL Syntax for Online DDL”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 11.1.3, “String Type Overview”
Section 10.1.3.3, “Table Character Set and Collation”
Section B.5.6.2, “TEMPORARY Table Problems”
Section 5.2.6, “The DDL Log”
Section 20.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 20.14, “The INFORMATION_SCHEMA
PARTITIONS Table”
Section 15.3, “The MEMORY Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 5.2.5, “The Slow Query Log”
Section 14.18.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 10.1.11, “Upgrading from Previous to Current
Unicode Support”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”
Section 17.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section 14.7.2, “Verifying File Format Compatibility”
Section 1.4, “What Is New in MySQL 5.7”
Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”
Section B.5.3.5, “Where MySQL Stores Temporary
Files”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”

ALTER TABLE ... ADD FOREIGN
KEY
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

ALTER TABLE ... ADD PARTITION
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 14.4.9, “InnoDB General Tablespaces”

ALTER TABLE ...
ALGORITHM=COPY
Section 13.1.6, “ALTER TABLE Syntax”

Section 14.10.9, “Limitations of Online DDL”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

ALTER TABLE ...
ALGORITHM=INPLACE
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.10.9, “Limitations of Online DDL”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”
Section 1.4, “What Is New in MySQL 5.7”

ALTER TABLE ... COMPRESSION
Section 14.6.2, “InnoDB Page Compression”

ALTER TABLE ...
COMPRESSION=None
Section 14.6.2, “InnoDB Page Compression”

ALTER TABLE ... DISCARD
PARTITION ... TABLESPACE
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 14.4.6.1, “Transportable Tablespace
Examples”

ALTER TABLE ... DISCARD
TABLESPACE
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.4.9, “InnoDB General Tablespaces”
MySQL Glossary
Section 14.4.6.2, “Transportable Tablespace Internals”

ALTER TABLE ... DROP FOREIGN
KEY
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

ALTER TABLE ... DROP PARTITION
Section 17.4.1.19, “Replication and Partitioning”

ALTER TABLE ... ENGINE
Section 5.1.4, “Server System Variables”

ALTER TABLE ... ENGINE =
MEMORY
Section 17.4.1.23, “Replication and MEMORY Tables”

ALTER TABLE ... ENGINE
permitted_engine
Section 5.1.4, “Server System Variables”

3748

ALTER TABLE ... ENGINE=INNODB
Section 1.4, “What Is New in MySQL 5.7”

ALTER TABLE ... EXCHANGE
PARTITION
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 18.6.4, “Partitioning and Locking”
Section 1.4, “What Is New in MySQL 5.7”

ALTER TABLE ... FORCE
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 1.4, “What Is New in MySQL 5.7”

ALTER TABLE ... IMPORT
PARTITION ... TABLESPACE
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 14.4.6.1, “Transportable Tablespace
Examples”

ALTER TABLE ... IMPORT
TABLESPACE
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 14.5.2, “Moving or Copying InnoDB Tables to
Another Machine”
MySQL Glossary
Section 14.4.6.1, “Transportable Tablespace
Examples”
Section 14.4.6.2, “Transportable Tablespace Internals”

ALTER TABLE ... OPTIMIZE
PARTITION
Section 18.3.4, “Maintenance of Partitions”
Section 18.6.2, “Partitioning Limitations Relating to
Storage Engines”

ALTER TABLE ... PARTITION BY
Section 18.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”

ALTER TABLE ... PARTITION BY ...
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 18.6, “Restrictions and Limitations on
Partitioning”

ALTER TABLE ... RENAME
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

ALTER TABLE ... REORGANIZE
PARTITION
Section 13.1.14, “CREATE TABLE Syntax”

ALTER TABLE ... REPAIR
PARTITION
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 18.3.4, “Maintenance of Partitions”

ALTER TABLE ... TABLESPACE
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.4.4.1, “Enabling and Disabling File-Per-
Table Tablespaces”
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”

ALTER TABLE ...
TABLESPACE=innodb_file_per_table
Section 14.11, “InnoDB Startup Options and System
Variables”

ALTER TABLE ... TRUNCATE
PARTITION
Section 18.3.4, “Maintenance of Partitions”
Section 18.3, “Partition Management”
Section 18.6.4, “Partitioning and Locking”

ALTER TABLE ... TRUNCATE
PARTITION ALL
Section 18.3.4, “Maintenance of Partitions”

ALTER TABLE ... UPGRADE
PARTITIONING
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 1.4, “What Is New in MySQL 5.7”

ALTER TABLE ...IMPORT
TABLESPACE
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.4.9, “InnoDB General Tablespaces”

ALTER TABLE EXCHANGE
PARTITION
Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”

ALTER TABLE RENAME INDEX
Section 14.10.1, “Overview of Online DDL”

3749

ALTER TABLE t TRUNCATE
PARTITION ()
Section 13.2.2, “DELETE Syntax”

ALTER TABLE t1 REORGANIZE
PARTITION
Section 14.4.9, “InnoDB General Tablespaces”

ALTER TABLE t3 DROP PARTITION
p2
Section 5.2.6, “The DDL Log”

ALTER TABLE table_name
ENGINE=InnoDB;
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”

ALTER TABLE tbl_name
ENGINE=INNODB
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.9.4, “Defragmenting a Table”

ALTER TABLE tbl_name FORCE
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.9.4, “Defragmenting a Table”

ALTER TABLE tbl_name
TABLESPACE tablespace_name
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.4.9, “InnoDB General Tablespaces”
MySQL Glossary
Section 1.4, “What Is New in MySQL 5.7”

ALTER TABLESPACE ... ENGINE
Section 5.1.4, “Server System Variables”

ALTER USER
Section 6.2.4, “Access Control, Stage 1: Connection
Verification”
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password
Plugin”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 6.3.6, “Password Expiration Policy”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”

Section 6.3.10, “Proxy Users”
Resetting the Root Password: Generic Instructions
Resetting the Root Password: Unix and Unix-Like
Systems
Resetting the Root Password: Windows Systems
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 5.1.4, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.3.12.5, “SSL Command Options”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 6.1.2.5, “The Password Validation Plugin”
Section 6.3.11, “User Account Locking”
Section 1.4, “What Is New in MySQL 5.7”

ALTER USER ... ACCOUNT LOCK
Section B.3, “Server Error Codes and Messages”

ALTER USER ... ACCOUNT
UNLOCK
Section B.3, “Server Error Codes and Messages”

ALTER VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 12.14, “Information Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.5.2, “View Processing Algorithms”
Section 19.5.1, “View Syntax”

ANALYZE TABLE
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Configuring Automatic Statistics Calculation for
Persistent Optimizer Statistics
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 14.3.11, “Configuring Optimizer Statistics for
InnoDB”
Configuring Optimizer Statistics Parameters for
Individual Tables
Configuring the Number of Sampled Pages for InnoDB
Optimizer Statistics
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Equality Range Optimization of Many-Valued
Comparisons
Section 14.3.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.2, “General Thread States”

3750

Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
InnoDB Persistent Statistics Tables Example
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.7, “Limits on InnoDB Tables”
Section 18.3.4, “Maintenance of Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 1.8.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.15, “Replication and FLUSH”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.22, “SHOW INDEX Syntax”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.2.5, “The Slow Query Log”

B

[index top [3745]]

BEGIN
Section 13.6.1, “BEGIN ... END Compound-Statement
Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 14.18.4, “InnoDB Error Handling”
Section 21.9.7, “Performance Schema Transaction
Tables”
Section 17.4.1.33, “Replication and Transactions”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”

BEGIN ... END
Section 13.6.1, “BEGIN ... END Compound-Statement
Syntax”
Section 13.6.5.1, “CASE Syntax”

Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.6.6.1, “Cursor CLOSE Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.3, “DECLARE Syntax”
Section 19.1, “Defining Stored Programs”
Section 19.4.1, “Event Scheduler Overview”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.4.1, “Local Variable DECLARE Syntax”
Section 13.6.4.2, “Local Variable Scope and
Resolution”
Section 13.6, “MySQL Compound-Statement Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 13.6.2, “Statement Label Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.3.1, “Trigger Syntax and Examples”

BINLOG
Section 13.7.6.1, “BINLOG Syntax”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

C

[index top [3745]]

CACHE INDEX
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 8.10.2.4, “Index Preloading”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 8.10.2.2, “Multiple Key Caches”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CALL
Section 19.6, “Access Control for Stored Programs and
Views”
Section 19.7, “Binary Logging of Stored Programs”
Section 23.8.5, “C API Data Structures”
Section 23.8.18, “C API Prepared Statement Problems”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 23.8.20, “C API Support for Prepared CALL
Statements”
Section 13.2.1, “CALL Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.38, “mysql_insert_id()”

3751

Section 23.8.7.46, “mysql_more_results()”
Section 23.8.7.47, “mysql_next_result()”
Section 23.8.7.54, “mysql_real_connect()”
Section 23.8.7.70, “mysql_set_server_option()”
Section 23.8.11.17, “mysql_stmt_next_result()”
Section 13.5, “SQL Syntax for Prepared Statements”
Chapter 19, Stored Programs and Views
Section 19.2.1, “Stored Routine Syntax”
Section 19.3.1, “Trigger Syntax and Examples”

CALL p()
RESIGNAL with a Condition Value and Optional New
Signal Information

CALL stored_procedure()
Section 18.6.4, “Partitioning and Locking”

CASE
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 13.6.5.1, “CASE Syntax”
Section 12.4, “Control Flow Functions”
Section 13.6.5, “Flow Control Statements”

CHANGE MASTER TO
Adding a Binary Log Based Master to a Multi-Source
Replication Slave
Adding a GTID Based Master to a Multi-Source
Replication Slave
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 17.1.1, “Binary Log File Position Based
Replication Configuration Overview”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.2.3.1, “Commands for Operations on a
Single Channel”
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”
Creating a Data Snapshot Using mysqldump
Section 17.3.9, “Delayed Replication”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 13.7.1.4, “GRANT Syntax”
Section 17.1.3.1, “GTID Concepts”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 17.4.1.21, “Replication and Master or Slave
Shutdowns”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 8.14.7, “Replication Slave Connection Thread
States”
Section 8.14.5, “Replication Slave I/O Thread States”

Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 8.14.6, “Replication Slave SQL Thread States”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 5.1.6, “Server Status Variables”
Section 13.7.1.7, “SET PASSWORD Syntax”
Setting the Master Configuration on the Slave
Setting Up Replication between a New Master and
Slaves
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 17.3.7, “Setting Up Replication Using SSL”
Setting Up Replication with Existing Data
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 17.2.4.2, “Slave Status Logs”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 17.3.6, “Switching Masters During Failover”
Section 21.9.10.3, “The
replication_applier_configuration Table”
Section 21.9.10.1, “The
replication_connection_configuration Table”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”
Section 1.4, “What Is New in MySQL 5.7”

CHANGE REPLICATION FILTER
Section 5.1.6, “Server Status Variables”

CHANGE REPLICATION FILTER
REPLICATE_DO_DB
Section 17.1.6.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_DO_TABLE
Section 17.1.6.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_IGNORE_DB
Section 17.1.6.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_IGNORE_TABLE
Section 17.1.6.3, “Replication Slave Options and
Variables”

3752

CHANGE REPLICATION FILTER
REPLICATE_REWRITE_DB
Section 17.1.6.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_WILD_DO_TABLE
Section 17.1.6.3, “Replication Slave Options and
Variables”

CHANGE REPLICATION FILTER
REPLICATE_WILD_IGNORE_TABLE
Section 17.1.6.3, “Replication Slave Options and
Variables”

CHECK TABLE
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 2.11.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 8.11.5, “External Locking”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 14.15, “InnoDB Backup and Recovery”
Section 14.18, “InnoDB Troubleshooting”
Section 18.3.4, “Maintenance of Partitions”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section A.6, “MySQL 5.7 FAQ: Views”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.75, “mysql_store_result()”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 23.8.7.77, “mysql_use_result()”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 15.2.4.2, “Problems from Tables Not Being
Closed Properly”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section C.3, “Restrictions on Server-Side Cursors”

Section C.1, “Restrictions on Stored Programs”
Section C.5, “Restrictions on Views”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.7, “The MERGE Storage Engine”
Section 5.2.5, “The Slow Query Log”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”

CHECK TABLE ... EXTENDED
Section 13.7.2.2, “CHECK TABLE Syntax”

CHECK TABLE ... FOR UPGRADE
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 2.11.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 13.7.2.5, “REPAIR TABLE Syntax”

CHECKSUM TABLE
Section 13.7.2.3, “CHECKSUM TABLE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 17.4.1.4, “Replication and CHECKSUM
TABLE”

COMMIT
Section 19.7, “Binary Logging of Stored Programs”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 14.5.3, “Grouping DML Operations with
Transactions”
Section 14.2.2.8, “Implicit Transaction Commit and
Rollback”
Section 14.18.4, “InnoDB Error Handling”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.7, “Limits on InnoDB Tables”
Section 14.2.1, “MySQL and the ACID Model”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.1.2.3, “Obtaining the Replication Master
Binary Log Coordinates”
Section 8.5.3, “Optimizing InnoDB Read-Only
Transactions”
Section 21.9.7, “Performance Schema Transaction
Tables”

3753

Section 17.4.1.33, “Replication and Transactions”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Rewriter Query Rewrite Plugin Procedures and
Functions
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.2.4, “The Binary Log”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 20.23, “The INFORMATION_SCHEMA
TABLES Table”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”
Section 19.3.1, “Trigger Syntax and Examples”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

COMMIT AND CHAIN
Section 21.9.7, “Performance Schema Transaction
Tables”

CREATE DATABASE
Section 7.1, “Backup and Recovery Types”
Section 23.8.6, “C API Function Overview”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 13.1.8, “CREATE DATABASE Syntax”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 17.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 9.2.2, “Identifier Case Sensitivity”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 23.8.7.8, “mysql_create_db()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 21.4, “Performance Schema Instrument
Naming Conventions”
Section 7.4.2, “Reloading SQL-Format Backups”

Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section B.3, “Server Error Codes and Messages”
Section 13.7.5.6, “SHOW CREATE DATABASE
Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE DATABASE dbx
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”

CREATE DATABASE IF NOT
EXISTS
Section 17.4.1.5, “Replication of CREATE ... IF NOT
EXISTS Statements”

CREATE EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 13.1.9, “CREATE EVENT Syntax”
Section 19.4.4, “Event Metadata”
Section 19.4.3, “Event Syntax”
Section 12.14, “Information Functions”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.7, “SHOW CREATE EVENT Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”
Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”

CREATE EVENT IF NOT EXISTS
Section 17.4.1.5, “Replication of CREATE ... IF NOT
EXISTS Statements”

CREATE FULLTEXT INDEX
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”

CREATE FUNCTION
Section 24.4, “Adding New Functions to MySQL”
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 1.9.1, “Contributors to MySQL”
Section 13.1.10, “CREATE FUNCTION Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”

3754

Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 12.18.1, “Enterprise Encryption Installation”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 12.14, “Information Functions”
Installing or Uninstalling the UDF Locking Interface
Installing or Uninstalling Version Tokens
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.2.1, “Stored Routine Syntax”
Section 24.4.2.1, “UDF Calling Sequences for Simple
Functions”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Section 2.11.1, “Upgrading MySQL”

CREATE INDEX
Section 14.3.12, “Configuring the Merge Threshold for
Index Pages”
Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 14.10.5, “Examples of Online DDL”
Section 12.9, “Full-Text Search Functions”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”
Section 14.10.7, “How Crash Recovery Works with
Online DDL”
Section 14.18.5, “InnoDB Error Codes”
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
MySQL Glossary
Section 12.9.8, “ngram Full-Text Parser”
Section 8.7, “Optimizing for MEMORY Tables”
Section 14.10.1, “Overview of Online DDL”
Section 14.10.2, “Performance and Concurrency
Considerations for Online DDL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.2.5, “The Slow Query Log”

CREATE LOGFILE GROUP
Section 4.5.4, “mysqldump — A Database Backup
Program”

CREATE OR REPLACE VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section C.5, “Restrictions on Views”

CREATE PROCEDURE
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 13.2.1, “CALL Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 12.14, “Information Functions”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.2.1, “Stored Routine Syntax”

CREATE SCHEMA
Section 13.1.8, “CREATE DATABASE Syntax”

CREATE SERVER
Section 13.1.5, “ALTER SERVER Syntax”
Section 15.8.2.2, “Creating a FEDERATED Table
Using CREATE SERVER”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.7.6.3, “FLUSH Syntax”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 15.8.2, “How to Create FEDERATED Tables”
Section 17.4.1.7, “Replication of CREATE SERVER,
ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE TABLE
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.6, “ALTER TABLE Syntax”
Chapter 15, Alternative Storage Engines
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 7.1, “Backup and Recovery Types”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 10.1.3.4, “Column Character Set and Collation”
Section 8.3.4, “Column Indexes”
Configuring Automatic Statistics Calculation for
Persistent Optimizer Statistics

3755

Section 14.3.11, “Configuring Optimizer Statistics for
InnoDB”
Configuring Optimizer Statistics Parameters for
Individual Tables
Section 14.3.12, “Configuring the Merge Threshold for
Index Pages”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.13, “CREATE SERVER Syntax”
Section 13.1.14.1, “CREATE TABLE ... LIKE Syntax”
Section 13.1.14.2, “CREATE TABLE ... SELECT
Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 15.8.2.1, “Creating a FEDERATED Table
Using CONNECTION”
Section 14.4.5, “Creating a File-Per-Table Tablespace
Outside the Data Directory”
Section 3.3.2, “Creating a Table”
Section 14.6.1.2, “Creating Compressed Tables”
Section 14.5.1, “Creating InnoDB Tables”
Section 11.5.3.2, “Creating Spatial Columns”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 7.2, “Database Backup Methods”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 14.7.1, “Enabling File Formats”
Section 14.14.2, “Enabling InnoDB Monitors”
Section 14.3.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”
Section 14.10.5, “Examples of Online DDL”
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 12.9, “Full-Text Search Functions”
Section 3.4, “Getting Information About Databases and
Tables”
Section 17.1.3.1, “GTID Concepts”
Section 18.2.4, “HASH Partitioning”
Section 13.8.3, “HELP Syntax”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”
Section 18.2.7, “How MySQL Partitioning Handles
NULL”
Section 9.2.2, “Identifier Case Sensitivity”
Section 12.14, “Information Functions”
Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”
Section 14.16, “InnoDB and MySQL Replication”
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 14.18.5, “InnoDB Error Codes”
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.4.9, “InnoDB General Tablespaces”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”

Section 14.6.2, “InnoDB Page Compression”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.6.1, “InnoDB Table Compression”
Section 14.18, “InnoDB Troubleshooting”
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 14.1, “Introduction to InnoDB”
Section 18.2.5, “KEY Partitioning”
Section C.10.3, “Limits on Table Size”
Section 18.2.2, “LIST Partitioning”
Section 13.2.7, “LOAD XML Syntax”
Section 3.3.3, “Loading Data into a Table”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 1.8.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 12.9.8, “ngram Full-Text Parser”
Section 8.4.1, “Optimizing Data Size”
Section 8.12.3, “Optimizing Disk I/O”
Section 8.5.7, “Optimizing InnoDB DDL Operations”
Section 14.10.1, “Overview of Online DDL”
Section 18.1, “Overview of Partitioning in MySQL”
Section 14.6.1.1, “Overview of Table Compression”
Section 18.3, “Partition Management”
Section 18.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 18.2, “Partitioning Types”
Section 6.2.1, “Privileges Provided by MySQL”
Section 18.2.3.1, “RANGE COLUMNS partitioning”
Section 18.2.1, “RANGE Partitioning”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 13.2.8, “REPLACE Syntax”
Section 17.4.1.1, “Replication and
AUTO_INCREMENT”
Section 17.4.1.3, “Replication and Character Sets”
Section 17.4.1.11, “Replication and DIRECTORY Table
Options”
Section 17.4.1.14, “Replication and Fractional Seconds
Support”
Section 17.4.1.16, “Replication and System Functions”
Section 17.4.1.6, “Replication of CREATE TABLE ...
SELECT Statements”
Replication with More Columns on Master or Slave
Section 18.6, “Restrictions and Limitations on
Partitioning”

3756

Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 15.1, “Setting the Storage Engine”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.10, “SHOW CREATE TABLE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.7.5.36, “SHOW TABLE STATUS Syntax”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section 13.1.14.4, “Silent Column Specification
Changes”
Section B.1, “Sources of Error Information”
Section 14.8.2, “Specifying the Row Format for a
Table”
Section 14.6.1.7, “SQL Compression Syntax Warnings
and Errors”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 11.1.3, “String Type Overview”
Section 18.2.6, “Subpartitioning”
Section 10.1.3.3, “Table Character Set and Collation”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 14.15.2, “Tablespace Discovery During Crash
Recovery”
Section 15.5, “The ARCHIVE Storage Engine”
Section 11.4.4, “The ENUM Type”
Section 20.30.14, “The INFORMATION_SCHEMA
INNODB_SYS_DATAFILES Table”
Section 20.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 20.14, “The INFORMATION_SCHEMA
PARTITIONS Table”
Section 15.3, “The MEMORY Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 14.18.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 13.1.29, “TRUNCATE TABLE Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”
Section 3.3.4.9, “Using More Than one Table”
Section 7.4, “Using mysqldump for Backups”
Section 17.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 8.12.4, “Using Symbolic Links”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section 1.4, “What Is New in MySQL 5.7”
Section C.10.6, “Windows Platform Limitations”

CREATE TABLE ... LIKE
Section 13.1.14.1, “CREATE TABLE ... LIKE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 17.4.1.1, “Replication and
AUTO_INCREMENT”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 15.7, “The MERGE Storage Engine”

CREATE TABLE ... SELECT
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 19.7, “Binary Logging of Stored Programs”
Section 12.10, “Cast Functions and Operators”
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 13.1.14.2, “CREATE TABLE ... SELECT
Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section B.5.7, “Known Issues in MySQL”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 17.4.2, “Replication Compatibility Between
MySQL Versions”
Section 17.4.1.6, “Replication of CREATE TABLE ...
SELECT Statements”
Section 17.1.3.4, “Restrictions on Replication with
GTIDs”
Section 1.8.2.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Syntax”
Section 5.1.7, “Server SQL Modes”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE TABLE ... SELECT ...
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 18.3.1, “Management of RANGE and LIST
Partitions”

CREATE TABLE ... TABLESPACE
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.4.5, “Creating a File-Per-Table Tablespace
Outside the Data Directory”
Section 14.5.1, “Creating InnoDB Tables”
Section 14.4.4.1, “Enabling and Disabling File-Per-
Table Tablespaces”
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”

CREATE TABLE IF NOT EXISTS
Section 17.4.1.5, “Replication of CREATE ... IF NOT
EXISTS Statements”

3757

CREATE TABLE IF NOT EXISTS ...
LIKE
Section 17.4.1.5, “Replication of CREATE ... IF NOT
EXISTS Statements”

CREATE TABLE IF NOT EXISTS ...
SELECT
Section 17.4.1.5, “Replication of CREATE ... IF NOT
EXISTS Statements”

CREATE TABLE new_table
SELECT ... FROM old_table ...
Section 13.1.14.2, “CREATE TABLE ... SELECT
Syntax”
Section 13.2.9, “SELECT Syntax”

CREATE TABLE tbl_name ...
TABLESPACE tablespace_name
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.4.9, “InnoDB General Tablespaces”
MySQL Glossary
Section 1.4, “What Is New in MySQL 5.7”

CREATE TABLESPACE
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 13.1.25, “DROP TABLESPACE Syntax”
Section 14.9.2, “File Space Management”
Section 14.4.9, “InnoDB General Tablespaces”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 5.1.4, “Server System Variables”
Section 20.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 1.4, “What Is New in MySQL 5.7”

CREATE TEMPORARY TABLE
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 13.7.1.4, “GRANT Syntax”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.1.3.4, “Restrictions on Replication with
GTIDs”
Section 5.1.4, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE TEMPORY TABLE
Section 14.11, “InnoDB Startup Options and System
Variables”

CREATE TRIGGER
Section 19.7, “Binary Logging of Stored Programs”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 12.14, “Information Functions”
Section A.5, “MySQL 5.7 FAQ: Triggers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Optimizing Subqueries with EXISTS Strategy
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.3.1, “Trigger Syntax and Examples”

CREATE USER
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host
Address”
Section 13.7.1.2, “CREATE USER Syntax”
Section 17.1.2.2, “Creating a User for Replication”
Section 12.13, “Encryption and Compression
Functions”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 8.12.5.1, “How MySQL Uses Memory”
Implementing Proxy User Support in Authentication
Plugins
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Installing the PAM Authentication Plugin
Installing the Windows Authentication Plugin
Section 5.1.9, “IPv6 Support”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 24.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 6.3.8, “Pluggable Authentication”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.10.1.3, “Problems Running mysql_install_db”
Section 6.3.10, “Proxy Users”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”

3758

Section 6.3.4, “Setting Account Resource Limits”
Section 13.7.5.12, “SHOW CREATE USER Syntax”
Section 6.2.3, “Specifying Account Names”
Section 6.3.12.5, “SSL Command Options”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 6.2, “The MySQL Access Privilege System”
Section 6.1.2.5, “The Password Validation Plugin”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 6.3.11, “User Account Locking”
Section 6.3.1, “User Names and Passwords”
Section 6.3.17.3, “Using MySQL Enterprise Firewall”
Section 6.3.12, “Using Secure Connections”
Using the PAM Authentication Plugin
Using the Windows Authentication Plugin
Section 1.4, “What Is New in MySQL 5.7”

CREATE USER ... ACCOUNT LOCK
Section B.3, “Server Error Codes and Messages”

CREATE VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 8.14.2, “General Thread States”
Section 12.14, “Information Functions”
Section 18.6.4, “Partitioning and Locking”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section C.5, “Restrictions on Views”
Section 9.2, “Schema Object Names”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 19.5.3, “Updatable and Insertable Views”
Section 19.5.2, “View Processing Algorithms”
Section 19.5.1, “View Syntax”

D

[index top [3745]]

DEALLOCATE PREPARE
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 21.9.6.4, “The prepared_statements_instances
Table”

DECLARE
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.6.3, “DECLARE Syntax”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.6.4, “Variables in Stored Programs”

DECLARE ... CONDITION
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7.5, “SIGNAL Syntax”

DECLARE ... HANDLER
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Effect of Signals on Handlers, Cursors, and Statements

DELETE
Section 6.3.2, “Adding User Accounts”
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 14.2.7.5, “Change Buffer”
Section 2.11.2.1, “Changes Affecting Downgrades from
MySQL 5.7”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 14.6.1.6, “Compression for OLTP Workloads”
Section 14.3.5, “Configuring InnoDB Change Buffering”
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section B.5.4.6, “Deleting Rows from Related Tables”
Section 14.10.5, “Examples of Online DDL”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 14.18.2, “Forcing InnoDB Recovery”
Section 12.9.5, “Full-Text Restrictions”
Chapter 12, Functions and Operators
Section 8.14.2, “General Thread States”

3759

Section 13.7.1.4, “GRANT Syntax”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Chapter 20, INFORMATION_SCHEMA Tables
Section 14.16, “InnoDB and MySQL Replication”
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 8.11.1, “Internal Locking Methods”
Section 13.2.9.2, “JOIN Syntax”
Section 9.3, “Keywords and Reserved Words”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 18.2.2, “LIST Partitioning”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 1.8.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.49, “mysql_num_rows()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.13, “mysql_stmt_field_count()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 8.9.3, “Optimizer Hints”
Optimizing Derived Tables and View References
Section 8.2.2, “Optimizing DML Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 14.10.1, “Overview of Online DDL”
Section 18.1, “Overview of Partitioning in MySQL”
Section 18.4, “Partition Pruning”
Section 18.5, “Partition Selection”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 8.14.3, “Query Cache Thread States”
Section 18.2.1, “RANGE Partitioning”
Section 17.4.1.17, “Replication and LIMIT”
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.4.1.26, “Replication and the Query
Optimizer”
Section 17.4.1.35, “Replication and Triggers”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section C.5, “Restrictions on Views”

Section 13.7.1.6, “REVOKE Syntax”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 3.3.4.1, “Selecting All Data”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.4.1.12, “Statement Probes”
Section 13.2.10.9, “Subquery Errors”
Section 8.2.1.18, “Subquery Optimization”
Section 13.2.10, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.2.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 20.30.13, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESTATS View”
Section 20.23, “The INFORMATION_SCHEMA
TABLES Table”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 15.3, “The MEMORY Storage Engine”
Section 15.7, “The MERGE Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 19.3.1, “Trigger Syntax and Examples”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 13.1.29, “TRUNCATE TABLE Syntax”
Section 19.5.3, “Updatable and Insertable Views”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”
Using the --safe-updates Option
Section 1.4, “What Is New in MySQL 5.7”
Section 23.8.15.2, “What Results You Can Get from a
Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 23.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query() Returns
Success”

DELETE FROM ... WHERE ...
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”

DELETE FROM a.t
Section 17.1.6.3, “Replication Slave Options and
Variables”

DELETE FROM t1,t2
Section 5.4.1.12, “Statement Probes”

3760

DESCRIBE
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 13.1.14, “CREATE TABLE Syntax”
Section 3.3.2, “Creating a Table”
Section 13.8.1, “DESCRIBE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 20.31, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and
Tables”
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 23.8.11.28, “mysql_stmt_store_result()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.1.14.4, “Silent Column Specification
Changes”
Section 20.30.17, “The INFORMATION_SCHEMA
INNODB_BUFFER_PAGE Table”
Section 20.30.18, “The INFORMATION_SCHEMA
INNODB_BUFFER_PAGE_LRU Table”
Section 20.30.19, “The INFORMATION_SCHEMA
INNODB_BUFFER_POOL_STATS Table”
Section 20.30.1, “The INFORMATION_SCHEMA
INNODB_CMP and INNODB_CMP_RESET Tables”
Section 20.30.2, “The INFORMATION_SCHEMA
INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 20.30.3, “The INFORMATION_SCHEMA
INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 20.30.26, “The INFORMATION_SCHEMA
INNODB_FT_BEING_DELETED Table”
Section 20.30.21, “The INFORMATION_SCHEMA
INNODB_FT_CONFIG Table”
Section 20.30.22, “The INFORMATION_SCHEMA
INNODB_FT_DEFAULT_STOPWORD Table”
Section 20.30.25, “The INFORMATION_SCHEMA
INNODB_FT_DELETED Table”
Section 20.30.24, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_CACHE Table”
Section 20.30.23, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_TABLE Table”
Section 20.30.6, “The INFORMATION_SCHEMA
INNODB_LOCK_WAITS Table”
Section 20.30.5, “The INFORMATION_SCHEMA
INNODB_LOCKS Table”
Section 20.30.20, “The INFORMATION_SCHEMA
INNODB_METRICS Table”
Section 20.30.9, “The INFORMATION_SCHEMA
INNODB_SYS_COLUMNS Table”
Section 20.30.14, “The INFORMATION_SCHEMA
INNODB_SYS_DATAFILES Table”
Section 20.30.10, “The INFORMATION_SCHEMA
INNODB_SYS_FIELDS Table”

Section 20.30.11, “The INFORMATION_SCHEMA
INNODB_SYS_FOREIGN Table”
Section 20.30.12, “The INFORMATION_SCHEMA
INNODB_SYS_FOREIGN_COLS Table”
Section 20.30.8, “The INFORMATION_SCHEMA
INNODB_SYS_INDEXES Table”
Section 20.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 20.30.13, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESTATS View”
Section 20.30.16, “The INFORMATION_SCHEMA
INNODB_SYS_VIRTUAL Table”
Section 20.30.27, “The INFORMATION_SCHEMA
INNODB_TEMP_TABLE_INFO Table”
Section 20.30.4, “The INFORMATION_SCHEMA
INNODB_TRX Table”
Section 3.6.6, “Using Foreign Keys”
Section 10.1.12, “UTF-8 for Metadata”

DISCARD PARTITION ...
TABLESPACE
Section 13.1.6.1, “ALTER TABLE Partition Operations”

DO
Section 13.1.2, “ALTER EVENT Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.2.3, “DO Syntax”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 12.19, “Miscellaneous Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 18.6.4, “Partitioning and Locking”
Section C.1, “Restrictions on Stored Programs”
Section 13.2.10, “Subquery Syntax”
Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”

DROP DATABASE
Section 23.8.6, “C API Function Overview”
Section 13.1.18, “DROP DATABASE Syntax”
Section 13.1.25, “DROP TABLESPACE Syntax”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 17.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.4.9, “InnoDB General Tablespaces”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 23.8.7.11, “mysql_drop_db()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

3761

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section C.10.6, “Windows Platform Limitations”

DROP DATABASE IF EXISTS
Section 17.4.1.9, “Replication of DROP ... IF EXISTS
Statements”

DROP EVENT
Section 19.7, “Binary Logging of Stored Programs”
Section 19.4.3, “Event Syntax”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”

DROP FUNCTION
Section 24.4, “Adding New Functions to MySQL”
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 1.9.1, “Contributors to MySQL”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”
Section 13.1.20, “DROP FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 13.1.22, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 12.18.1, “Enterprise Encryption Installation”
Section 9.2.4, “Function Name Parsing and Resolution”
Installing or Uninstalling the UDF Locking Interface
Installing or Uninstalling Version Tokens
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.2.1, “Stored Routine Syntax”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Section 2.11.1, “Upgrading MySQL”

DROP INDEX
Section 13.1.6, “ALTER TABLE Syntax”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 13.1.21, “DROP INDEX Syntax”
Section 14.10.5, “Examples of Online DDL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 14.10.1, “Overview of Online DDL”
Section 5.1.3, “Server Command Options”

Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.2.5, “The Slow Query Log”

DROP PREPARE
Section 21.9.6.4, “The prepared_statements_instances
Table”

DROP PROCEDURE
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 19.7, “Binary Logging of Stored Programs”
Section 6.3.17.2, “Installing or Uninstalling MySQL
Enterprise Firewall”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.2.1, “Stored Routine Syntax”

DROP SCHEMA
Section 13.1.18, “DROP DATABASE Syntax”
Section 5.1.4, “Server System Variables”

DROP SERVER
Section 13.7.6.3, “FLUSH Syntax”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 17.4.1.7, “Replication of CREATE SERVER,
ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

DROP TABLE
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 14.4.5, “Creating a File-Per-Table Tablespace
Outside the Data Directory”
Section 13.1.24, “DROP TABLE Syntax”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 14.18.2, “Forcing InnoDB Recovery”
Section 24.2.3.2, “Full-Text Parser Plugins”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
How the Diagnostics Area is Populated
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”
Section 14.4.9, “InnoDB General Tablespaces”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 15.7.2, “MERGE Table Problems”

3762

Section 1.8.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 8.5.7, “Optimizing InnoDB DDL Operations”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5, “Restrictions on Views”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.2.6, “The DDL Log”
Section 15.3, “The MEMORY Storage Engine”
Section 15.7, “The MERGE Storage Engine”
Section 14.18.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 13.1.29, “TRUNCATE TABLE Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”
Section 1.4, “What Is New in MySQL 5.7”

DROP TABLE IF EXISTS
Section 17.4.1.9, “Replication of DROP ... IF EXISTS
Statements”

DROP TABLESPACE
Section 14.4.9, “InnoDB General Tablespaces”
Section 5.1.4, “Server System Variables”

DROP TABLESPACE
tablespace_name
Section 14.4.9, “InnoDB General Tablespaces”

DROP TEMPORARY TABLE
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.4, “Restrictions on Replication with
GTIDs”

DROP TEMPORARY TABLE IF
EXISTS
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

DROP TRIGGER
Section 13.1.26, “DROP TRIGGER Syntax”

Section A.5, “MySQL 5.7 FAQ: Triggers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.3.1, “Trigger Syntax and Examples”

DROP USER
Section 13.7.1.3, “DROP USER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 12.14, “Information Functions”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 6.3.3, “Removing User Accounts”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.1.6, “REVOKE Syntax”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”
Section 6.3.1, “User Names and Passwords”

DROP USER 'x'@'localhost'
Using the Authentication Plugins

DROP VIEW
Section 13.1.27, “DROP VIEW Syntax”
Section C.5, “Restrictions on Views”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 19.5.1, “View Syntax”

DROP VIEW IF EXISTS
Section 17.4.1.9, “Replication of DROP ... IF EXISTS
Statements”

E

[index top [3745]]

EXECUTE
Section 23.8.20, “C API Support for Prepared CALL
Statements”
Section 13.2.1, “CALL Syntax”
Section 13.5.2, “EXECUTE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”

3763

Section 21.9.6.4, “The prepared_statements_instances
Table”

EXPLAIN
Section 13.1.6, “ALTER TABLE Syntax”
Batched Key Access Joins
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Configuring the Number of Sampled Pages for InnoDB
Optimizer Statistics
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 24.5.1, “Debugging a MySQL Server”
Section 13.8.1, “DESCRIBE Syntax”
Section 8.2.1.17, “DISTINCT Optimization”
Section 8.2.1.5, “Engine Condition Pushdown
Optimization”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.2.1.20, “How to Avoid Full Table Scans”
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Section 8.9.4, “Index Hints”
Section 8.2.1.4, “Index Merge Optimization”
Chapter 20, INFORMATION_SCHEMA Tables
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 8.2.1.8, “IS NULL Optimization”
Loose Index Scan
Section 8.2.1.13, “Multi-Range Read Optimization”
Chapter 21, MySQL Performance Schema
Section 23.8.11.28, “mysql_stmt_store_result()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Section 18.3.5, “Obtaining Information About Partitions”
Section 8.9.3, “Optimizer Hints”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Section B.5.5, “Optimizer-Related Issues”
Optimizing Derived Tables and View References
Section 8.2.4, “Optimizing INFORMATION_SCHEMA
Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 13.2.10.10, “Optimizing Subqueries”
Optimizing Subqueries with EXISTS Strategy
Optimizing Subqueries with Semi-Join Transformations
Optimizing Subqueries with Subquery Materialization
Section 8.2.1.15, “ORDER BY Optimization”
Range Optimization of Row Constructor Expressions
Section C.1, “Restrictions on Stored Programs”
Section 13.2.9, “SELECT Syntax”
Section B.3, “Server Error Codes and Messages”

Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section B.5.4.7, “Solving Problems with No Matching
Rows”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 13.2.10.8, “Subqueries in the FROM Clause”
The Index Merge Intersection Access Algorithm
Section 1.3.2, “The Main Features of MySQL”
Section 22.4.4.22, “The ps_trace_statement_digest()
Procedure”
The Range Access Method for Multiple-Part Indexes
Section 8.8, “Understanding the Query Execution Plan”
Section 8.2.1.7, “Use of Index Extensions”
Section 24.5.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 11.5.3.7, “Using Spatial Indexes”
Section 8.3.6, “Verifying Index Usage”
Section 1.4, “What Is New in MySQL 5.7”

EXPLAIN ... SELECT
Section 18.3.5, “Obtaining Information About Partitions”

EXPLAIN EXTENDED
Section 8.2.1.5, “Engine Condition Pushdown
Optimization”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Optimizing Subqueries with EXISTS Strategy
Optimizing Subqueries with Semi-Join Transformations
Optimizing Subqueries with Subquery Materialization
Section 13.7.5.40, “SHOW WARNINGS Syntax”

EXPLAIN FOR CONNECTION
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Section 5.1.6, “Server Status Variables”

EXPLAIN PARTITIONS
Section 13.8.2, “EXPLAIN Syntax”
Section 18.3.5, “Obtaining Information About Partitions”
Section 8.8.1, “Optimizing Queries with EXPLAIN”

EXPLAIN PARTITIONS SELECT
Section 18.3.5, “Obtaining Information About Partitions”

EXPLAIN PARTITIONS SELECT
COUNT()
Section 18.2.1, “RANGE Partitioning”

EXPLAIN SELECT
Section 8.8.2, “EXPLAIN Output Format”
Section 14.2.2.10, “How to Cope with Deadlocks”
Section 1.7, “How to Report Bugs or Problems”
Section 1.8.1, “MySQL Extensions to Standard SQL”

3764

Section 18.3.5, “Obtaining Information About Partitions”
Section 13.2.10.8, “Subqueries in the FROM Clause”

EXPLAIN SELECT ... ORDER BY
Section 8.2.1.15, “ORDER BY Optimization”

EXPLAIN tbl_name
Section 8.8.1, “Optimizing Queries with EXPLAIN”

F

[index top [3745]]

FETCH
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”
Section C.1, “Restrictions on Stored Programs”

FETCH ... INTO var_list
Section 13.6.4, “Variables in Stored Programs”

FLUSH
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Syntax”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 13.7.1.4, “GRANT Syntax”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 23.8.7.58, “mysql_refresh()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.15, “Replication and FLUSH”
Section 13.7.6.6, “RESET Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 5.1.11, “Server Response to Signals”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

FLUSH BINARY LOGS
Section 5.2.7, “Server Log Maintenance”

FLUSH DES_KEY_FILE
Section 12.13, “Encryption and Compression
Functions”

FLUSH HOSTS
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 23.8.7.58, “mysql_refresh()”
Section 5.1.4, “Server System Variables”
Section 21.9.15.1, “The host_cache Table”

FLUSH LOGS
Section 7.3.3, “Backup Strategy Summary”

Section 7.2, “Database Backup Methods”
Section 17.1.5.3, “Disabling GTID Transactions Online”
Section 17.1.5.2, “Enabling GTID Transactions Online”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Syntax”
Section 5.2, “MySQL Server Logs”
Section 23.8.7.58, “mysql_refresh()”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 17.4.1.15, “Replication and FLUSH”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.2.7, “Server Log Maintenance”
Section 5.1.6, “Server Status Variables”
Section 5.2.2, “The Error Log”
Section 17.2.4.1, “The Slave Relay Log”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

FLUSH MASTER
Section 17.4.1.15, “Replication and FLUSH”

FLUSH OPTIMIZER_COSTS
Section 8.9.5, “The Optimizer Cost Model”

FLUSH PRIVILEGES
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 23.8.7.58, “mysql_refresh()”
Section 23.8.7.59, “mysql_reload()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.2, “Privilege System Grant Tables”
Section 17.4.1.15, “Replication and FLUSH”
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 1.2, “Typographical and Syntax Conventions”
Section 6.2.6, “When Privilege Changes Take Effect”

FLUSH QUERY CACHE
Section 13.7.6.3, “FLUSH Syntax”
Section 8.10.3.4, “Query Cache Status and
Maintenance”

FLUSH RELAY LOGS
Section 17.2.3.1, “Commands for Operations on a
Single Channel”
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”

FLUSH SLAVE
Section 17.4.1.15, “Replication and FLUSH”

3765

FLUSH STATUS
Section 23.8.7.58, “mysql_refresh()”
Section 21.9.14.11, “Performance Schema Status
Variable Summary Tables”
Section 21.9.13, “Performance Schema Status Variable
Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.2.1.7, “Use of Index Extensions”

FLUSH TABLE
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.2.1.7, “Use of Index Extensions”

FLUSH TABLES
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.14.2, “General Thread States”
Section 13.2.4, “HANDLER Syntax”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 15.7.2, “MERGE Table Problems”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 23.8.7.58, “mysql_refresh()”
Section 17.1.2.3, “Obtaining the Replication Master
Binary Log Coordinates”
Section 15.2.4.2, “Problems from Tables Not Being
Closed Properly”
Section 8.10.3.4, “Query Cache Status and
Maintenance”
Section 17.4.1.15, “Replication and FLUSH”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

FLUSH TABLES ... FOR EXPORT
Section 14.4.5, “Creating a File-Per-Table Tablespace
Outside the Data Directory”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.5.2, “Moving or Copying InnoDB Tables to
Another Machine”
MySQL Glossary
Section 14.4.6.1, “Transportable Tablespace
Examples”
Section 14.4.6.2, “Transportable Tablespace Internals”

FLUSH TABLES tbl_name ... FOR
EXPORT
Section 13.7.6.3, “FLUSH Syntax”

FLUSH TABLES tbl_name ... WITH
READ LOCK
Section 13.7.6.3, “FLUSH Syntax”

FLUSH TABLES tbl_name WITH
READ LOCK
Section 13.2.4, “HANDLER Syntax”

FLUSH TABLES WITH READ LOCK
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.14.2, “General Thread States”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.1.2.3, “Obtaining the Replication Master
Binary Log Coordinates”
Section 17.4.1.15, “Replication and FLUSH”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 21.9.11.1, “The metadata_locks Table”

FLUSH USER_RESOURCES
Section 13.7.6.3, “FLUSH Syntax”
Section 6.3.4, “Setting Account Resource Limits”

G

[index top [3745]]

GET DIAGNOSTICS
Section 13.6.7, “Condition Handling”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
How the Diagnostics Area is Populated
How the Diagnostics Area Stack Works
Section 13.6.7.4, “RESIGNAL Syntax”
Section C.2, “Restrictions on Condition Handling”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.4, “Server System Variables”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Signal Condition Information Items
Section 13.6.7.5, “SIGNAL Syntax”

3766

Section B.1, “Sources of Error Information”

GET STACKED DIAGNOSTICS
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
How the Diagnostics Area Stack Works
Section 1.4, “What Is New in MySQL 5.7”

GRANT
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 6.3.5, “Assigning Account Passwords”
Section 14.3.2, “Configuring InnoDB for Read-Only
Operation”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host
Address”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 17.1.2.2, “Creating a User for Replication”
Section 12.13, “Encryption and Compression
Functions”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 8.12.5.1, “How MySQL Uses Memory”
Implementing Proxy User Support in Authentication
Plugins
Section 12.14, “Information Functions”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Installing the PAM Authentication Plugin
Installing the Windows Authentication Plugin
Section 5.1.9, “IPv6 Support”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section A.13, “MySQL 5.7 FAQ: Replication”
MySQL Glossary
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 8.2.3, “Optimizing Database Privileges”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 24.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.10.1.3, “Problems Running mysql_install_db”
Section 6.3.10, “Proxy Users”
Section 17.4.1.15, “Replication and FLUSH”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.25, “Replication of the mysql System
Database”

Section 13.7.1.6, “REVOKE Syntax”
Section 6.1.1, “Security Guidelines”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”
Section 13.7.5.21, “SHOW GRANTS Syntax”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”
Section 6.2, “The MySQL Access Privilege System”
Section 6.1.2.5, “The Password Validation Plugin”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 6.3.1, “User Names and Passwords”
Section 6.3.17.3, “Using MySQL Enterprise Firewall”
Using the PAM Authentication Plugin
Using the Windows Authentication Plugin
Section 1.4, “What Is New in MySQL 5.7”
Section 6.2.6, “When Privilege Changes Take Effect”

GRANT ALL
Section 13.7.1.4, “GRANT Syntax”

GRANT EVENT
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”

GRANT USAGE
Section 6.3.5, “Assigning Account Passwords”

GROUP BY
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”

H

[index top [3745]]

HANDLER
Section 23.8.16, “Controlling Automatic Reconnection
Behavior”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.7.6.3, “FLUSH Syntax”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 1.8, “MySQL Standards Compliance”
Section 23.8.7.3, “mysql_change_user()”
Section 23.8.7.60, “mysql_reset_connection()”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

3767

HANDLER ... CLOSE
Section 13.7.5.24, “SHOW OPEN TABLES Syntax”

HANDLER ... OPEN
Section 13.7.5.24, “SHOW OPEN TABLES Syntax”

HANDLER ... READ
Section C.1, “Restrictions on Stored Programs”

HANDLER OPEN
Section 13.2.4, “HANDLER Syntax”
Section 13.1.29, “TRUNCATE TABLE Syntax”

HELP
Section 13.8.3, “HELP Syntax”
Section 17.4.1.29, “Replication of Server-Side Help
Tables”
Section 5.1.10, “Server-Side Help”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

I

[index top [3745]]

IF
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 12.4, “Control Flow Functions”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.2, “IF Syntax”

IMPORT PARTITION ...
TABLESPACE
Section 13.1.6.1, “ALTER TABLE Partition Operations”

INSERT
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 7.1, “Backup and Recovery Types”
Section 19.7, “Binary Logging of Stored Programs”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”

Section 14.2.7.5, “Change Buffer”
Section 2.11.2.1, “Changes Affecting Downgrades from
MySQL 5.7”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 10.1.13, “Column Character Set Conversion”
Section 14.6.1.6, “Compression for OLTP Workloads”
Section 8.11.3, “Concurrent Inserts”
Section 14.3.5, “Configuring InnoDB Change Buffering”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 15.8.2.1, “Creating a FEDERATED Table
Using CONNECTION”
Section 11.7, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.2.2, “DELETE Syntax”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.18.2, “Enterprise Encryption Usage and
Examples”
Section 7.3.1, “Establishing a Backup Policy”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 12.21.3, “Expression Handling”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 14.18.2, “Forcing InnoDB Recovery”
Section 12.9.5, “Full-Text Restrictions”
Section 8.14.2, “General Thread States”
Section 13.7.1.4, “GRANT Syntax”
Section 14.5.3, “Grouping DML Operations with
Transactions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 23.8.15.3, “How to Get the Unique ID for the
Last Inserted Row”
Section 12.14, “Information Functions”
Chapter 20, INFORMATION_SCHEMA Tables
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 14.18.5, “InnoDB Error Codes”
Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”

3768

Section 8.11.1, “Internal Locking Methods”
Section 18.2.2, “LIST Partitioning”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 3.3.3, “Loading Data into a Table”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 12.19, “Miscellaneous Functions”
Section A.1, “MySQL 5.7 FAQ: General”
Section A.5, “MySQL 5.7 FAQ: Triggers”
Section A.6, “MySQL 5.7 FAQ: Views”
Section 1.8.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.38, “mysql_insert_id()”
Section 23.8.7.49, “mysql_num_rows()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.13, “mysql_stmt_field_count()”
Section 23.8.11.16, “mysql_stmt_insert_id()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 23.8.11.21, “mysql_stmt_prepare()”
Section 23.8.7.75, “mysql_store_result()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 8.9.3, “Optimizer Hints”
Section 8.2.2, “Optimizing DML Statements”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 14.10.1, “Overview of Online DDL”
Section 18.1, “Overview of Partitioning in MySQL”
Section 18.4, “Partition Pruning”
Section 18.5, “Partition Selection”
Section 18.6.4, “Partitioning and Locking”
Section 6.1.2.3, “Passwords and Logging”
Section 21.9.6, “Performance Schema Statement Event
Tables”
Section 11.5.3.3, “Populating Spatial Columns”
Pre-Filtering by Thread
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”

Section 8.14.3, “Query Cache Thread States”
Section 18.2.1, “RANGE Partitioning”
Section 13.2.8, “REPLACE Syntax”
Section 17.4.1.1, “Replication and
AUTO_INCREMENT”
Section 17.4.1.30, “Replication and Server SQL Mode”
Section 17.4.1.16, “Replication and System Functions”
Section 17.4.1.35, “Replication and Triggers”
Section 17.4.1.38, “Replication and Variables”
Section 17.1.6.2, “Replication Master Options and
Variables”
Section 17.2.5.3, “Replication Rule Application”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.4.1.7, “Row-Level Probes”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.5.27, “SHOW PROCEDURE CODE
Syntax”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section 17.4.1.28, “Slave Errors During Replication”
Section 8.2.2.1, “Speed of INSERT Statements”
Section 5.4.1.12, “Statement Probes”
Section 13.2.10, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 10.1.7.6, “The _bin and binary Collations”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.2.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 20.23, “The INFORMATION_SCHEMA
TABLES Table”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 15.7, “The MERGE Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1.12, “The Server Shutdown Process”
Section 19.3.1, “Trigger Syntax and Examples”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 14.17.8, “Troubleshooting the InnoDB
memcached Plugin”
Section 19.5.3, “Updatable and Insertable Views”
Section 13.2.11, “UPDATE Syntax”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”
Section 19.3, “Using Triggers”
Section 1.4, “What Is New in MySQL 5.7”
Section 23.8.15.2, “What Results You Can Get from a
Query”
Section 6.2.6, “When Privilege Changes Take Effect”

3769

Section 23.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query() Returns
Success”
Section 24.2.4.8, “Writing Audit Plugins”

INSERT ... ()
Section 5.4.1.12, “Statement Probes”

INSERT ... ON DUPLICATE KEY
UPDATE
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 12.14, “Information Functions”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 15.7.2, “MERGE Table Problems”
Section 12.19, “Miscellaneous Functions”
MySQL Glossary
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.38, “mysql_insert_id()”
Section 18.6.4, “Partitioning and Locking”

INSERT ... SELECT
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 8.11.3, “Concurrent Inserts”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5, “INSERT Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 23.8.7.38, “mysql_insert_id()”
Section 18.5, “Partition Selection”
Section 18.6.4, “Partitioning and Locking”
Section 17.4.1.17, “Replication and LIMIT”
Section 5.1.4, “Server System Variables”
Section 5.4.1.12, “Statement Probes”
Section 5.2.4, “The Binary Log”

INSERT ... SELECT ON DUPLICATE
KEY UPDATE
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”

INSERT ... SET
Section 13.2.5, “INSERT Syntax”

INSERT ... VALUES
Section 13.2.5, “INSERT Syntax”
Section 23.8.7.36, “mysql_info()”

INSERT DELAYED
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 1.4, “What Is New in MySQL 5.7”

INSERT IGNORE
Section 1.8.3.3, “Constraints on Invalid Data”
Section 1.8.3.4, “ENUM and SET Constraints”
Section 12.14, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 5.1.7, “Server SQL Modes”

INSERT IGNORE ... SELECT
Section 13.2.5.1, “INSERT ... SELECT Syntax”

INSERT INTO ... SELECT
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 1.8.2.1, “SELECT INTO TABLE Differences”
Section 15.3, “The MEMORY Storage Engine”

INSERT INTO ... SELECT ...
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 23.8.7.36, “mysql_info()”
Section 23.8.15.2, “What Results You Can Get from a
Query”

INSERT INTO ... SELECT FROM
memory_table
Section 17.4.1.23, “Replication and MEMORY Tables”

INSTALL PLUGIN
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Installing or Uninstalling Version Tokens

3770

Section 6.3.15.1, “Installing the Audit Log Plugin”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 5.1.8.2, “Obtaining Server Plugin Information”
Password Validation Plugin Installation
Password Validation Plugin Options and Variables
Section 6.3.8, “Pluggable Authentication”
Section 15.11.1, “Pluggable Storage Engine
Architecture”
Section 24.2.2, “Plugin API Components”
Section 24.2.4.2, “Plugin Data Structures”
Section 17.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.3, “Server Command Options”
Server Plugin Library and Plugin Descriptors
Section 13.7.5.25, “SHOW PLUGINS Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 20.15, “The INFORMATION_SCHEMA
PLUGINS Table”
Section 24.2, “The MySQL Plugin API”
Section 1.4, “What Is New in MySQL 5.7”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 24.2.4.10, “Writing Password-Validation
Plugins”
Writing the Server-Side Authentication Plugin

ITERATE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.2, “Statement Label Syntax”

K

[index top [3745]]

KILL
Section 8.14.2, “General Thread States”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.39, “mysql_kill()”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 13.7.5.29, “SHOW PROCESSLIST Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

Section 22.4.3.9, “The innodb_lock_waits and x
$innodb_lock_waits Views”
Section 22.4.3.28, “The schema_table_lock_waits and
x$schema_table_lock_waits Views”

KILL CONNECTION
Section 13.7.6.4, “KILL Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 5.1.12, “The Server Shutdown Process”

KILL QUERY
Section 13.7.6.4, “KILL Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 5.1.12, “The Server Shutdown Process”

L

[index top [3745]]

LEAVE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Syntax”
Section 13.6.2, “Statement Label Syntax”

LOAD DATA
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 8.11.3, “Concurrent Inserts”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 10.1.3.2, “Database Character Set and
Collation”
Section B.5.7, “Known Issues in MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 3.3.3, “Loading Data into a Table”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 18.1, “Overview of Partitioning in MySQL”
Section 18.5, “Partition Selection”
Section 18.6.4, “Partitioning and Locking”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section C.1, “Restrictions on Stored Programs”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”
Section 3.3.4.1, “Selecting All Data”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 11.4.4, “The ENUM Type”
Section 9.4, “User-Defined Variables”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

3771

Section 19.3, “Using Triggers”

LOAD DATA INFILE
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.8, “Audit Log Plugin Restrictions”
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.11.3, “Concurrent Inserts”
Section 7.2, “Database Backup Methods”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 12.14, “Information Functions”
Section B.5.7, “Known Issues in MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 15.2.1, “MyISAM Startup Options”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import
Program”
Section 9.1.7, “NULL Values”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 4.1, “Overview of MySQL Programs”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.4.3, “Problems with NULL Values”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 17.4.1.18, “Replication and LOAD DATA
INFILE”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 8.14.6, “Replication Slave SQL Thread States”
Section C.7, “Restrictions on Character Sets”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section 8.2.2.1, “Speed of INSERT Statements”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.2.10, “Subquery Syntax”
Section 15.3, “The MEMORY Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section B.5.3.5, “Where MySQL Stores Temporary
Files”
Section C.10.6, “Windows Platform Limitations”

LOAD DATA INFILE ...
Section 23.8.7.36, “mysql_info()”
Section 23.8.15.2, “What Results You Can Get from a
Query”

LOAD DATA LOCAL
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 23.8.7.50, “mysql_options()”
Section 23.8.7.54, “mysql_real_connect()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

LOAD DATA LOCAL INFILE
Section 23.8.6, “C API Function Overview”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 23.8.7.50, “mysql_options()”
Section 23.8.7.68, “mysql_set_local_infile_default()”
Section 23.8.7.69, “mysql_set_local_infile_handler()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

LOAD INDEX INTO CACHE
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 8.10.2.4, “Index Preloading”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

LOAD INDEX INTO CACHE ...
IGNORE LEAVES
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”

LOAD XML
Section 13.2.7, “LOAD XML Syntax”
Section 18.1, “Overview of Partitioning in MySQL”
Section 18.5, “Partition Selection”
Section 5.1.7, “Server SQL Modes”

LOAD XML INFILE
Section 13.2.7, “LOAD XML Syntax”

LOAD XML LOCAL
Section 13.2.7, “LOAD XML Syntax”

LOAD XML LOCAL INFILE
Section 13.2.7, “LOAD XML Syntax”

LOCK TABLE
Section 8.11.3, “Concurrent Inserts”
Section 8.14.2, “General Thread States”

3772

Section B.5.6.1, “Problems with ALTER TABLE”

LOCK TABLES
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.1.14.1, “CREATE TABLE ... LIKE Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 14.2.2.9, “Deadlock Detection and Rollback”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 14.2.2.10, “How to Cope with Deadlocks”
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 8.11.1, “Internal Locking Methods”
Section 14.5.7, “Limits on InnoDB Tables”
Section 13.3.5.2, “LOCK TABLES and Triggers”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 15.7.2, “MERGE Table Problems”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 18.6.4, “Partitioning and Locking”
Section 6.2.1, “Privileges Provided by MySQL”
Section 15.2.4.2, “Problems from Tables Not Being
Closed Properly”
Section C.1, “Restrictions on Stored Programs”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

LOCK TABLES ... READ
Section 13.7.6.3, “FLUSH Syntax”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.7, “Limits on InnoDB Tables”
Section 8.11.4, “Metadata Locking”

LOCK TABLES ... WRITE
Section 14.11, “InnoDB Startup Options and System
Variables”

Section 14.5.7, “Limits on InnoDB Tables”

LOOP
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section 13.6.2, “Statement Label Syntax”

O

[index top [3745]]

OPTIMIZE TABLE
Section 24.5.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Syntax”
Section 15.2.3.2, “Dynamic Table Characteristics”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.2, “General Thread States”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 14.6.2, “InnoDB Page Compression”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 13.7.6.4, “KILL Syntax”
Section 14.10.9, “Limitations of Online DDL”
Section 18.3.4, “Maintenance of Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.1, “myisamchk General Options”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.5, “Other Optimization Tips”
Section 14.10.1, “Overview of Online DDL”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.15, “Replication and FLUSH”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 14.8.2, “Specifying the Row Format for a
Table”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 15.2.3.1, “Static (Fixed-Length) Table
Characteristics”

3773

Section 15.5, “The ARCHIVE Storage Engine”
Section 20.30.26, “The INFORMATION_SCHEMA
INNODB_FT_BEING_DELETED Table”
Section 20.30.21, “The INFORMATION_SCHEMA
INNODB_FT_CONFIG Table”
Section 20.30.25, “The INFORMATION_SCHEMA
INNODB_FT_DELETED Table”
Section 20.30.24, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_CACHE Table”
Section 20.30.23, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_TABLE Table”
Section 5.1.12, “The Server Shutdown Process”
Section 5.2.5, “The Slow Query Log”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section 1.4, “What Is New in MySQL 5.7”

ORDER BY
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”

P

[index top [3745]]

PREPARE
Section 23.8.20, “C API Support for Prepared CALL
Statements”
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 13.2.1, “CALL Syntax”
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.2, “EXECUTE Syntax”
Section 9.2.2, “Identifier Case Sensitivity”
Section 8.11.4, “Metadata Locking”
Section 13.5.1, “PREPARE Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 21.9.6.4, “The prepared_statements_instances
Table”

PURGE BINARY LOGS
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.1.4, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 5.2.7, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

R

[index top [3745]]

RELEASE SAVEPOINT
Section 21.9.7, “Performance Schema Transaction
Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 21.9.7.1, “The events_transactions_current
Table”

RENAME INDEX
Section 14.10.1, “Overview of Online DDL”

RENAME TABLE
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.14.2, “General Thread States”
Section 9.2.2, “Identifier Case Sensitivity”
Section 14.5.2, “Moving or Copying InnoDB Tables to
Another Machine”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 13.1.28, “RENAME TABLE Syntax”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

RENAME USER
Section 13.7.1.4, “GRANT Syntax”
Section 12.14, “Information Functions”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Syntax”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”
Section 6.2.6, “When Privilege Changes Take Effect”

REPAIR TABLE
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.6, “ALTER TABLE Syntax”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”

3774

Section 18.3.3, “Exchanging Partitions and
Subpartitions with Tables”
Section 8.11.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.2, “General Thread States”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 16.2.3, “Handling MySQL Recovery with ZFS”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 18.3.4, “Maintenance of Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 15.2.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 15.2.4.2, “Problems from Tables Not Being
Closed Properly”
Section B.5.6.1, “Problems with ALTER TABLE”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 17.4.1.15, “Replication and FLUSH”
Section 17.4.1.20, “Replication and REPAIR TABLE”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table
Maintenance Schedule”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.1.12, “The Server Shutdown Process”
Section 5.2.5, “The Slow Query Log”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”

REPEAT
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 19.1, “Defining Stored Programs”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.6, “REPEAT Syntax”
Section 13.6.2, “Statement Label Syntax”

REPLACE
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 13.1.14.2, “CREATE TABLE ... SELECT
Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 11.7, “Data Type Default Values”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 12.14, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 15.7.2, “MERGE Table Problems”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.1, “mysql_affected_rows()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Section 8.9.3, “Optimizer Hints”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 18.1, “Overview of Partitioning in MySQL”
Section 18.5, “Partition Selection”
Section 18.6.4, “Partitioning and Locking”
Section 13.2.8, “REPLACE Syntax”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.3, “Server Command Options”
Section 13.2.10, “Subquery Syntax”
Section 15.5, “The ARCHIVE Storage Engine”
Section 1.3.2, “The Main Features of MySQL”
Section 13.2.11, “UPDATE Syntax”

REPLACE ... SELECT
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section B.5.7, “Known Issues in MySQL”

REPLACE DELAYED
Section 1.4, “What Is New in MySQL 5.7”

RESET
Section 13.7.6.3, “FLUSH Syntax”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 1.8.1, “MySQL Extensions to Standard SQL”

3775

Section 13.7.6.6, “RESET Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

RESET MASTER
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”
Section 23.8.7.58, “mysql_refresh()”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 17.3.6, “Switching Masters During Failover”
Section 5.2.4, “The Binary Log”
Section 21.9.10.5, “The
replication_applier_status_by_coordinator Table”
Section 21.9.10.6, “The
replication_applier_status_by_worker Table”
Section 21.9.10.2, “The replication_connection_status
Table”

RESET QUERY CACHE
Section 8.14.3, “Query Cache Thread States”

RESET SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.2.3.1, “Commands for Operations on a
Single Channel”
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”
Section 17.3.9, “Delayed Replication”
Section 23.8.7.58, “mysql_refresh()”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 21.9.10.5, “The
replication_applier_status_by_coordinator Table”
Section 21.9.10.6, “The
replication_applier_status_by_worker Table”
Section 21.9.10.2, “The replication_connection_status
Table”

RESET SLAVE ALL
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.2.4, “RESET SLAVE Syntax”

RESIGNAL
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”

Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Diagnostics Area Information Items
Diagnostics Area-Related System Variables
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
How the Diagnostics Area is Populated
How the Diagnostics Area Stack Works
RESIGNAL Alone
RESIGNAL Requires Condition Handler Context
Section 13.6.7.4, “RESIGNAL Syntax”
RESIGNAL with a Condition Value and Optional New
Signal Information
RESIGNAL with New Signal Information
Section C.2, “Restrictions on Condition Handling”
Section C.1, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Signal Condition Information Items

RETURN
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.6.5, “Flow Control Statements”
How the Diagnostics Area Stack Works
Section 13.6.5.5, “LOOP Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Syntax”

REVOKE
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 14.3.2, “Configuring InnoDB for Read-Only
Operation”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 12.14, “Information Functions”
Section 5.1.9, “IPv6 Support”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section A.13, “MySQL 5.7 FAQ: Replication”
Section 1.8.2, “MySQL Differences from Standard SQL”
MySQL Glossary
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.10.1.3, “Problems Running mysql_install_db”
Section 6.3.10, “Proxy Users”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.25, “Replication of the mysql System
Database”
Section 13.7.1.6, “REVOKE Syntax”
Section 6.1.1, “Security Guidelines”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”

3776

Section 6.2, “The MySQL Access Privilege System”
Section 6.3.1, “User Names and Passwords”
Section 6.2.6, “When Privilege Changes Take Effect”

REVOKE ALL PRIVILEGES
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

ROLLBACK
Section 19.7, “Binary Logging of Stored Programs”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.2.9, “Deadlock Detection and Rollback”
Section 14.5.3, “Grouping DML Operations with
Transactions”
Section 12.14, “Information Functions”
Section 14.18.4, “InnoDB Error Handling”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 14.2.1, “MySQL and the ACID Model”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 23.8.7.3, “mysql_change_user()”
Section 21.9.7, “Performance Schema Transaction
Tables”
Section 17.4.1.33, “Replication and Transactions”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section B.5.4.5, “Rollback Failure for Nontransactional
Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 13.3.2, “Statements That Cannot Be Rolled
Back”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.2.4, “The Binary Log”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”
Section 19.3.1, “Trigger Syntax and Examples”

ROLLBACK TO SAVEPOINT
Section 21.9.7, “Performance Schema Transaction
Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 21.9.7.1, “The events_transactions_current
Table”

ROLLBACK to SAVEPOINT
Section 19.3.1, “Trigger Syntax and Examples”

S

[index top [3745]]

SAVEPOINT
Section 21.9.7, “Performance Schema Transaction
Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 21.9.7.1, “The events_transactions_current
Table”

SELECT
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.7, “ALTER VIEW Syntax”
Section 12.3.4, “Assignment Operators”
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 14.2.2.5, “Avoiding the Phantom Problem
Using Next-Key Locking”
Section 19.7, “Binary Logging of Stored Programs”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 23.8.20, “C API Support for Prepared CALL
Statements”
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 13.2.1, “CALL Syntax”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”
Section 8.11.3, “Concurrent Inserts”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.14.2, “CREATE TABLE ... SELECT
Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 15.8.2.1, “Creating a FEDERATED Table
Using CONNECTION”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”

3777

Section 14.2.2.9, “Deadlock Detection and Rollback”
Section 13.2.2, “DELETE Syntax”
Section 8.4.3.2, “Disadvantages of Creating Many
Tables in the Same Database”
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section 13.2.3, “DO Syntax”
Section 5.1.5.2, “Dynamic System Variables”
Section 3.2, “Entering Queries”
Section 12.18.2, “Enterprise Encryption Usage and
Examples”
Section 19.4.2, “Event Scheduler Configuration”
Section 10.1.7.8, “Examples of the Effect of Collation”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.18.2, “Forcing InnoDB Recovery”
Chapter 12, Functions and Operators
Section 12.16.3, “Functions That Search JSON Values”
Section 8.14.2, “General Thread States”
Section 13.7.1.4, “GRANT Syntax”
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 14.5.3, “Grouping DML Operations with
Transactions”
Section 13.2.4, “HANDLER Syntax”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 18.2.7, “How MySQL Partitioning Handles
NULL”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.2.2.10, “How to Cope with Deadlocks”
Section 1.7, “How to Report Bugs or Problems”
Section 9.2.1, “Identifier Qualifiers”
Section 8.9.4, “Index Hints”
Section 12.14, “Information Functions”
Chapter 20, INFORMATION_SCHEMA Tables
Section 2.10.1, “Initializing the Data Directory”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 13.2.9.2, “JOIN Syntax”
Section 9.3, “Keywords and Reserved Words”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 13.2.7, “LOAD XML Syntax”
Section 13.6.4.2, “Local Variable Scope and
Resolution”
Section 14.2.2.3, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”

Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 8.3.5, “Multiple-Column Indexes”
Section 7.6.4, “MyISAM Table Optimization”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section A.13, “MySQL 5.7 FAQ: Replication”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Chapter 21, MySQL Performance Schema
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.22, “mysql_field_count()”
Section 23.8.7.48, “mysql_num_fields()”
Section 23.8.7.49, “mysql_num_rows()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 23.8.11.28, “mysql_stmt_store_result()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 4.5.8, “mysqlslap — Load Emulation Client”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Section 18.3.5, “Obtaining Information About Partitions”
Section 8.3, “Optimization and Indexes”
Section 8.9.3, “Optimizer Hints”
Section B.5.5, “Optimizer-Related Issues”
Optimizing Derived Tables and View References
Section 8.5.3, “Optimizing InnoDB Read-Only
Transactions”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Optimizing Subqueries with EXISTS Strategy
Optimizing Subqueries with Semi-Join Transformations
Section 4.6.3.4, “Other myisamchk Options”
Section 14.10.1, “Overview of Online DDL”
Section 18.4, “Partition Pruning”
Section 18.5, “Partition Selection”
Section 18.6.4, “Partitioning and Locking”

3778

Section 21.4, “Performance Schema Instrument
Naming Conventions”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.4.2, “Problems Using DATE Columns”
Section B.5.4.8, “Problems with Floating-Point Values”
Section 8.10.3.2, “Query Cache SELECT Options”
Section 8.10.3.4, “Query Cache Status and
Maintenance”
Section 8.14.3, “Query Cache Thread States”
Section 24.2.3.10, “Query Rewrite Plugins”
Section 18.2.3.1, “RANGE COLUMNS partitioning”
Section 15.4.1, “Repairing and Checking CSV Tables”
Section 13.2.8, “REPLACE Syntax”
Section 17.2, “Replication Implementation”
Section 17.1.6.2, “Replication Master Options and
Variables”
Section 17.4.1.5, “Replication of CREATE ... IF NOT
EXISTS Statements”
Section 17.4.1.12, “Replication of Invoked Features”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section C.1, “Restrictions on Stored Programs”
Section C.5, “Restrictions on Views”
Section 3.3.4, “Retrieving Information from a Table”
Section 3.6.7, “Searching on Two Keys”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 13.2.9, “SELECT Syntax”
Section 3.3.4.1, “Selecting All Data”
Section 3.3.4.2, “Selecting Particular Rows”
Section B.3, “Server Error Codes and Messages”
Section 5.1.7, “Server SQL Modes”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.9, “SHOW CREATE PROCEDURE
Syntax”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 13.7.5.17, “SHOW ERRORS Syntax”
Section 13.7.5.27, “SHOW PROCEDURE CODE
Syntax”
Section 13.7.5.29, “SHOW PROCESSLIST Syntax”
Section 13.7.5.32, “SHOW RELAYLOG EVENTS
Syntax”
Section 13.7.5, “SHOW Syntax”
Section 13.7.5.39, “SHOW VARIABLES Syntax”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section B.5.4.7, “Solving Problems with No Matching
Rows”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 5.4.1.12, “Statement Probes”

Section 19.2.1, “Stored Routine Syntax”
Section 9.1.1, “String Literals”
Section 13.2.10.8, “Subqueries in the FROM Clause”
Section 13.2.10.6, “Subqueries with EXISTS or NOT
EXISTS”
Section 13.2.10.9, “Subquery Errors”
Section 13.2.10, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.2.4, “The Binary Log”
Section 11.4.4, “The ENUM Type”
Section 21.9.15.1, “The host_cache Table”
Section 20.4, “The INFORMATION_SCHEMA
COLUMNS Table”
Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 20.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 15.7, “The MERGE Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 8.10.3, “The MySQL Query Cache”
The Range Access Method for Single-Part Indexes
Section 5.1.8.3, “The Rewriter Query Rewrite Plugin”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 21.9.15.3, “The threads Table”
Section 19.3.1, “Trigger Syntax and Examples”
Section 12.2, “Type Conversion in Expression
Evaluation”
Section 1.2, “Typographical and Syntax Conventions”
Section 13.2.9.3, “UNION Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 9.4, “User-Defined Variables”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 24.5.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 11.5.3.7, “Using Spatial Indexes”
Section 5.1.5, “Using System Variables”
Using the --safe-updates Option
Using the Rewriter Query Rewrite Plugin
Section 10.1.12, “UTF-8 for Metadata”
Version Tokens System Variables
Section 19.5.1, “View Syntax”
Section 1.4, “What Is New in MySQL 5.7”
Section B.5.3.5, “Where MySQL Stores Temporary
Files”

SELECT *
Section 11.4.3, “The BLOB and TEXT Types”

SELECT * FROM t PARTITION ()
Section 18.1, “Overview of Partitioning in MySQL”

3779

SELECT * INTO OUTFILE
'file_name' FROM tbl_name
Section 7.2, “Database Backup Methods”

SELECT ... FOR UPDATE
Section 14.2.2.10, “How to Cope with Deadlocks”
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 14.2.2.1, “InnoDB Lock Modes”
Section 14.2.2.3, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
MySQL Glossary

SELECT ... FROM
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... FROM ... FOR UPDATE
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... FROM ... LOCK IN
SHARE MODE
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... INTO
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.6.4.2, “Local Variable Scope and
Resolution”
Section 17.4.1.16, “Replication and System Functions”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 1.8.2.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Syntax”

SELECT ... INTO DUMPFILE
Section 2.10.1, “Initializing the Data Directory”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 5.1.4, “Server System Variables”

SELECT ... INTO OUTFILE
Section 7.1, “Backup and Recovery Types”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 14.18.2, “Forcing InnoDB Recovery”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 9.1.7, “NULL Values”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 1.8.2.1, “SELECT INTO TABLE Differences”
Section 5.1.3, “Server Command Options”

Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 1.2, “Typographical and Syntax Conventions”
Section C.10.6, “Windows Platform Limitations”

SELECT ... INTO OUTFILE
'file_name'
Section 13.2.9.1, “SELECT ... INTO Syntax”

SELECT ... INTO var_list
Section C.1, “Restrictions on Stored Programs”
Section 13.6.4, “Variables in Stored Programs”

SELECT ... LOCK IN SHARE MODE
Section 14.2.2.1, “InnoDB Lock Modes”
Section 14.2.2.3, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 13.3.6, “SET TRANSACTION Syntax”

SELECT DISTINCT
Configuring the Number of Sampled Pages for InnoDB
Optimizer Statistics
Section 8.14.2, “General Thread States”
Optimizing Subqueries with Semi-Join Transformations

SELECT SLEEP()
Section 5.1.7, “Server SQL Modes”

SET
Section 12.3.4, “Assignment Operators”
Section 19.7, “Binary Logging of Stored Programs”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 14.6.1.2, “Creating Compressed Tables”
Section 19.1, “Defining Stored Programs”
Section 5.1.5.2, “Dynamic System Variables”
Section 12.18.2, “Enterprise Encryption Usage and
Examples”
Section 19.4.2, “Event Scheduler Configuration”
Section 12.1, “Function and Operator Reference”
Chapter 12, Functions and Operators
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
How the Diagnostics Area is Populated
Section 12.14, “Information Functions”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 12.3, “Operators”
Section 18.6.4, “Partitioning and Locking”

3780

Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 6.3.6, “Password Expiration Policy”
Section 8.10.3.3, “Query Cache Configuration”
Section 17.1.6.2, “Replication Master Options and
Variables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 14.3.3.7, “Resizing the InnoDB Buffer Pool
Online”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 13.7.5.39, “SHOW VARIABLES Syntax”
Section 13.2.10, “Subquery Syntax”
Section 19.3.1, “Trigger Syntax and Examples”
Section 9.4, “User-Defined Variables”
Section 4.2.8, “Using Options to Set Program
Variables”
Section 5.1.5, “Using System Variables”
Using the --safe-updates Option
Section 13.6.4, “Variables in Stored Programs”
Section B.5.3.5, “Where MySQL Stores Temporary
Files”

SET @@global.gtid_purged
Section 4.5.4, “mysqldump — A Database Backup
Program”

SET autocommit
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 13.3, “MySQL Transactional and Locking
Statements”

SET autocommit = 0
Section 17.3.8, “Semisynchronous Replication”

SET GLOBAL
Section 14.3.5, “Configuring InnoDB Change Buffering”
Section 5.1.5.2, “Dynamic System Variables”
Section 13.7.1.4, “GRANT Syntax”
Section 8.10.2.2, “Multiple Key Caches”
MySQL Glossary
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 13.7.4, “SET Syntax”
Section 5.1.5, “Using System Variables”

SET GLOBAL
sql_slave_skip_counter
Section 13.4.2.5, “SET GLOBAL
sql_slave_skip_counter Syntax”

SET GLOBAL TRANSACTION
Section 13.3.6, “SET TRANSACTION Syntax”

SET NAMES
Section 10.1.6, “Character Set for Error Messages”
Section 5.1.4, “Server System Variables”
Section 12.2, “Type Conversion in Expression
Evaluation”

SET PASSWORD
Section 6.3.5, “Assigning Account Passwords”
Section B.5.2.4, “Client does not support authentication
protocol”
Section 13.7.1.2, “CREATE USER Syntax”
Section 12.14, “Information Functions”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 6.3.6, “Password Expiration Policy”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 24.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 6.2.2, “Privilege System Grant Tables”
Section 17.4.1.38, “Replication and Variables”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Resetting the Root Password: Generic Instructions
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 5.1.4, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.7.4, “SET Syntax”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 6.1.2.5, “The Password Validation Plugin”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 1.4, “What Is New in MySQL 5.7”
Section 6.2.6, “When Privilege Changes Take Effect”
Writing the Server-Side Authentication Plugin

SET SESSION
Section 5.1.5.2, “Dynamic System Variables”
Section 13.7.4, “SET Syntax”
Section 5.1.5, “Using System Variables”

SET SESSION TRANSACTION
Section 13.3.6, “SET TRANSACTION Syntax”

SET sql_mode='modes'
Section A.3, “MySQL 5.7 FAQ: Server SQL Mode”

SET TIMESTAMP = value
Section 8.14, “Examining Thread Information”

3781

SET TRANSACTION
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”

SET TRANSACTION ISOLATION
LEVEL
Section 13.7.4, “SET Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”

SHOW
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 3.3, “Creating and Using a Database”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 20.31, “Extensions to SHOW Statements”
Chapter 20, INFORMATION_SCHEMA Tables
Section 9.2.3, “Mapping of Identifiers to File Names”
Section A.13, “MySQL 5.7 FAQ: Replication”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 23.8.11.28, “mysql_stmt_store_result()”
Section 23.8.7.75, “mysql_store_result()”
Section 23.8.7.77, “mysql_use_result()”
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 21.1, “Performance Schema Quick Start”
Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.22, “SHOW INDEX Syntax”
Section 13.7.5.24, “SHOW OPEN TABLES Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.7.5, “SHOW Syntax”
Section 13.7.5.37, “SHOW TABLES Syntax”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”
Section 5.2.4, “The Binary Log”
Section 20.1, “The INFORMATION_SCHEMA
CHARACTER_SETS Table”
Section 20.3, “The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY
Table”
Section 20.2, “The INFORMATION_SCHEMA
COLLATIONS Table”
Section 20.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 20.4, “The INFORMATION_SCHEMA
COLUMNS Table”

Section 20.6, “The INFORMATION_SCHEMA
ENGINES Table”
Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”
Section 20.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”
Section 20.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”
Section 20.11, “The INFORMATION_SCHEMA
KEY_COLUMN_USAGE Table”
Section 20.14, “The INFORMATION_SCHEMA
PARTITIONS Table”
Section 20.15, “The INFORMATION_SCHEMA
PLUGINS Table”
Section 20.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”
Section 20.17, “The INFORMATION_SCHEMA
PROFILING Table”
Section 20.18, “The INFORMATION_SCHEMA
REFERENTIAL_CONSTRAINTS Table”
Section 20.21, “The INFORMATION_SCHEMA
SCHEMA_PRIVILEGES Table”
Section 20.20, “The INFORMATION_SCHEMA
SCHEMATA Table”
Section 20.22, “The INFORMATION_SCHEMA
STATISTICS Table”
Section 20.25, “The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table”
Section 20.26, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 20.23, “The INFORMATION_SCHEMA
TABLES Table”
Section 20.24, “The INFORMATION_SCHEMA
TABLESPACES Table”
Section 20.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 20.28, “The INFORMATION_SCHEMA
USER_PRIVILEGES Table”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 22.2, “Using the sys Schema”
Section 10.1.12, “UTF-8 for Metadata”

SHOW BINARY LOGS
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”
Section 4.6.7.3, “Using mysqlbinlog to Back Up Binary
Log Files”

3782

SHOW BINLOG EVENTS
Section 17.1.3.1, “GTID Concepts”
Section C.3, “Restrictions on Server-Side Cursors”
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”
Section 13.4.2.6, “START SLAVE Syntax”

SHOW CHARACTER SET
Section 13.1.1, “ALTER DATABASE Syntax”
Section 10.1.2, “Character Sets and Collations in
MySQL”
Section 10.1.14, “Character Sets and Collations That
MySQL Supports”
Section 20.31, “Extensions to SHOW Statements”
Section 13.7.5.3, “SHOW CHARACTER SET Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”

SHOW COLLATION
Section 13.1.1, “ALTER DATABASE Syntax”
Section 23.8.5, “C API Data Structures”
Section 10.5, “Character Set Configuration”
Section 10.1.2, “Character Sets and Collations in
MySQL”
Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 10.4.2, “Choosing a Collation ID”
Section 10.1.3.4, “Column Character Set and Collation”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 13.7.5.4, “SHOW COLLATION Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 10.1.3.3, “Table Character Set and Collation”
Section 20.3, “The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY
Table”
Section 20.2, “The INFORMATION_SCHEMA
COLLATIONS Table”

SHOW COLUMNS
Section 13.8.2, “EXPLAIN Syntax”
Section 20.31, “Extensions to SHOW Statements”
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 23.8.7.43, “mysql_list_fields()”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 20.30.17, “The INFORMATION_SCHEMA
INNODB_BUFFER_PAGE Table”
Section 20.30.18, “The INFORMATION_SCHEMA
INNODB_BUFFER_PAGE_LRU Table”
Section 20.30.19, “The INFORMATION_SCHEMA
INNODB_BUFFER_POOL_STATS Table”

Section 20.30.1, “The INFORMATION_SCHEMA
INNODB_CMP and INNODB_CMP_RESET Tables”
Section 20.30.2, “The INFORMATION_SCHEMA
INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 20.30.3, “The INFORMATION_SCHEMA
INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 20.30.26, “The INFORMATION_SCHEMA
INNODB_FT_BEING_DELETED Table”
Section 20.30.21, “The INFORMATION_SCHEMA
INNODB_FT_CONFIG Table”
Section 20.30.22, “The INFORMATION_SCHEMA
INNODB_FT_DEFAULT_STOPWORD Table”
Section 20.30.25, “The INFORMATION_SCHEMA
INNODB_FT_DELETED Table”
Section 20.30.24, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_CACHE Table”
Section 20.30.23, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_TABLE Table”
Section 20.30.6, “The INFORMATION_SCHEMA
INNODB_LOCK_WAITS Table”
Section 20.30.5, “The INFORMATION_SCHEMA
INNODB_LOCKS Table”
Section 20.30.20, “The INFORMATION_SCHEMA
INNODB_METRICS Table”
Section 20.30.9, “The INFORMATION_SCHEMA
INNODB_SYS_COLUMNS Table”
Section 20.30.14, “The INFORMATION_SCHEMA
INNODB_SYS_DATAFILES Table”
Section 20.30.10, “The INFORMATION_SCHEMA
INNODB_SYS_FIELDS Table”
Section 20.30.11, “The INFORMATION_SCHEMA
INNODB_SYS_FOREIGN Table”
Section 20.30.12, “The INFORMATION_SCHEMA
INNODB_SYS_FOREIGN_COLS Table”
Section 20.30.8, “The INFORMATION_SCHEMA
INNODB_SYS_INDEXES Table”
Section 20.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 20.30.13, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESTATS View”
Section 20.30.16, “The INFORMATION_SCHEMA
INNODB_SYS_VIRTUAL Table”
Section 20.30.27, “The INFORMATION_SCHEMA
INNODB_TEMP_TABLE_INFO Table”
Section 20.30.4, “The INFORMATION_SCHEMA
INNODB_TRX Table”

SHOW COLUMNS FROM tbl_name
LIKE 'enum_col'
Section 11.4.4, “The ENUM Type”

SHOW COUNT()
Section 13.7.5.17, “SHOW ERRORS Syntax”

3783

Section 13.7.5.40, “SHOW WARNINGS Syntax”

SHOW CREATE DATABASE
Section 5.1.4, “Server System Variables”
Section 13.7.5.6, “SHOW CREATE DATABASE
Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”

SHOW CREATE EVENT
Section 19.4.4, “Event Metadata”
Section 13.7.5.18, “SHOW EVENTS Syntax”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”

SHOW CREATE FUNCTION
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 1.7, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 13.7.5.9, “SHOW CREATE PROCEDURE
Syntax”
Section 19.2.3, “Stored Routine Metadata”

SHOW CREATE PROCEDURE
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 1.7, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 13.7.5.8, “SHOW CREATE FUNCTION
Syntax”
Section 19.2.3, “Stored Routine Metadata”

SHOW CREATE SCHEMA
Section 13.7.5.6, “SHOW CREATE DATABASE
Syntax”

SHOW CREATE TABLE
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 14.3.12, “Configuring the Merge Threshold for
Index Pages”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.6.1.2, “Creating Compressed Tables”
Section 11.7, “Data Type Default Values”
Section 13.8.2, “EXPLAIN Syntax”
Section 3.4, “Getting Information About Databases and
Tables”
Section 15.8.2, “How to Create FEDERATED Tables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.6.2, “InnoDB Page Compression”
Section 18.2.5, “KEY Partitioning”
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 18.3.5, “Obtaining Information About Partitions”

Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.10, “SHOW CREATE TABLE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.1.14.4, “Silent Column Specification
Changes”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”
Section 3.6.6, “Using Foreign Keys”

SHOW CREATE TRIGGER
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 20.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 19.3.2, “Trigger Metadata”

SHOW CREATE USER
Section 6.3.2, “Adding User Accounts”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.3.11, “User Account Locking”

SHOW CREATE VIEW
Section 13.1.17, “CREATE VIEW Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5, “Restrictions on Views”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 19.5.5, “View Metadata”

SHOW DATABASES
Section 13.1.8, “CREATE DATABASE Syntax”
Section 3.3, “Creating and Using a Database”
Section 20.31, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and
Tables”
Section 13.7.1.4, “GRANT Syntax”
Section 9.2.2, “Identifier Case Sensitivity”
Chapter 20, INFORMATION_SCHEMA Tables
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 21.2.1, “Performance Schema Build
Configuration”
Section 6.2.2, “Privilege System Grant Tables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.14, “SHOW DATABASES Syntax”

SHOW ENGINE
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.15, “SHOW ENGINE Syntax”

3784

SHOW ENGINE INNODB MUTEX
Section 14.14.3, “InnoDB Standard Monitor and Lock
Monitor Output”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 13.7.5.15, “SHOW ENGINE Syntax”
Section 1.4, “What Is New in MySQL 5.7”

SHOW ENGINE INNODB STATUS
Section 14.2.7.6, “Adaptive Hash Indexes”
Section 14.3.2, “Configuring InnoDB for Read-Only
Operation”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.14.2, “Enabling InnoDB Monitors”
Section 14.2.2.10, “How to Cope with Deadlocks”
Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”
Section 14.12.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”
Section 14.12.6, “InnoDB INFORMATION_SCHEMA
Metrics Table”
Section 14.12.3, “InnoDB INFORMATION_SCHEMA
System Tables”
Section 14.14.3, “InnoDB Standard Monitor and Lock
Monitor Output”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.2, “Moving or Copying InnoDB Tables to
Another Machine”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 8.5.3, “Optimizing InnoDB Read-Only
Transactions”
Section 13.7.5.15, “SHOW ENGINE Syntax”
Section B.1, “Sources of Error Information”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

SHOW ENGINE
PERFORMANCE_SCHEMA STATUS
Section 21.5, “Performance Schema Status Monitoring”
Section 13.7.5.15, “SHOW ENGINE Syntax”

SHOW ENGINES
Chapter 15, Alternative Storage Engines
Section 14.1.2, “Checking InnoDB Availability”
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 21.2.1, “Performance Schema Build
Configuration”
Section 21.1, “Performance Schema Quick Start”
Section 2.3.5.3, “Selecting a MySQL Server Type”
Section 5.1.4, “Server System Variables”
Section 13.7.5.16, “SHOW ENGINES Syntax”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.6, “The BLACKHOLE Storage Engine”

SHOW ERRORS
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
How the Diagnostics Area is Populated
Section 14.5.6, “InnoDB and FOREIGN KEY
Constraints”
RESIGNAL with a Condition Value and Optional New
Signal Information
Section 5.1.4, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Syntax”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Signal Condition Information Items
Section B.1, “Sources of Error Information”

SHOW EVENTS
Section 19.4.4, “Event Metadata”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.7.5.18, “SHOW EVENTS Syntax”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”
Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”

SHOW FULL COLUMNS
Section 13.1.14, “CREATE TABLE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 20.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

SHOW FULL PROCESSLIST
Section 8.14, “Examining Thread Information”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”

SHOW FULL TABLES
Section 4.5.7, “mysqlshow — Display Database,
Table, and Column Information”
Section 13.7.5.37, “SHOW TABLES Syntax”

SHOW FUNCTION CODE
Section 13.7.5.27, “SHOW PROCEDURE CODE
Syntax”

SHOW FUNCTION STATUS
Section 13.7.5.28, “SHOW PROCEDURE STATUS
Syntax”
Section 19.2.3, “Stored Routine Metadata”

SHOW GLOBAL STATUS
Section 5.1.4, “Server System Variables”
Section 20.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

SHOW GLOBAL VARIABLES
Section 5.1.4, “Server System Variables”

3785

Section 20.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW GRANTS
Section 6.3.2, “Adding User Accounts”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.2, “Privilege System Grant Tables”
Section 13.7.1.6, “REVOKE Syntax”
Section 6.1.1, “Security Guidelines”
Section 13.7.5.21, “SHOW GRANTS Syntax”
Section 13.7.5.26, “SHOW PRIVILEGES Syntax”
Section 6.2, “The MySQL Access Privilege System”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”

SHOW INDEX
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 14.3.12, “Configuring the Merge Threshold for
Index Pages”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.9.4, “Index Hints”
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 14.5.7, “Limits on InnoDB Tables”
Section 8.9.3, “Optimizer Hints”
Section 4.6.3.4, “Other myisamchk Options”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.22, “SHOW INDEX Syntax”
Section 20.22, “The INFORMATION_SCHEMA
STATISTICS Table”
Section 20.25, “The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table”

SHOW MASTER LOGS
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”

SHOW MASTER STATUS
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”
Section 17.4.5, “How to Report Replication Bugs or
Problems”
Section 17.1.2.3, “Obtaining the Replication Master
Binary Log Coordinates”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”
Section 17.4.4, “Troubleshooting Replication”

SHOW OPEN TABLES
Section 13.7.5.24, “SHOW OPEN TABLES Syntax”

SHOW PLUGINS
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.15.1, “Installing the Audit Log Plugin”
Installing the PAM Authentication Plugin
Installing the Windows Authentication Plugin
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 5.1.8.2, “Obtaining Server Plugin Information”
Chapter 18, Partitioning
Password Validation Plugin Installation
Section 6.3.8, “Pluggable Authentication”
Section 24.2.1, “Plugin API Characteristics”
Section 24.2.2, “Plugin API Components”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Server Plugin Library and Plugin Descriptors
Section 13.7.5.25, “SHOW PLUGINS Syntax”
Section 20.15, “The INFORMATION_SCHEMA
PLUGINS Table”
Section 8.12.7.1, “Thread Pool Components and
Installation”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 24.2.4.10, “Writing Password-Validation
Plugins”
Writing the Server-Side Authentication Plugin

SHOW PRIVILEGES
Section 13.7.5.26, “SHOW PRIVILEGES Syntax”

SHOW PROCEDURE CODE
Section 13.7.5.19, “SHOW FUNCTION CODE Syntax”

SHOW PROCEDURE STATUS
Section 13.7.5.20, “SHOW FUNCTION STATUS
Syntax”
Section 19.2.3, “Stored Routine Metadata”

SHOW PROCESSLIST
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.7.1, “Checking Replication Status”
Section 5.4.1.2, “Command Probes”
Section 5.4.1.1, “Connection Probes”
Section 17.3.9, “Delayed Replication”
Section 19.4.2, “Event Scheduler Configuration”
Section 8.14, “Examining Thread Information”
Section 8.14.2, “General Thread States”
Section 13.7.1.4, “GRANT Syntax”
Section 17.1.3.1, “GTID Concepts”
Section 12.14, “Information Functions”
Section 14.18.4, “InnoDB Error Handling”
Section 13.7.6.4, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”

3786

Section A.13, “MySQL 5.7 FAQ: Replication”
Section 23.8.7.44, “mysql_list_processes()”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Section 21.4, “Performance Schema Instrument
Naming Conventions”
Section 21.9.5, “Performance Schema Stage Event
Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.4.1.6, “Query Execution Probes”
Section 5.4.1.3, “Query Probes”
Section 17.2.2, “Replication Implementation Details”
Section 13.7.5.29, “SHOW PROCESSLIST Syntax”
Section 13.7.5.30, “SHOW PROFILE Syntax”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 17.3.6, “Switching Masters During Failover”
Section 20.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”
Section 22.4.3.22, “The processlist and x$processlist
Views”
Section 22.4.5.13, “The ps_is_thread_instrumented()
Function”
Section 22.4.4.7, “The ps_setup_disable_thread()
Procedure”
Section 22.4.4.11, “The ps_setup_enable_thread()
Procedure”
Section 22.4.5.15, “The ps_thread_id() Function”
Section 21.9.15.3, “The threads Table”
Section B.5.2.7, “Too many connections”
Section 17.4.4, “Troubleshooting Replication”

SHOW PROFILE
Section 8.14, “Examining Thread Information”
Section 8.14.2, “General Thread States”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 21.16.1, “Query Profiling Using Performance
Schema”
Section 5.1.4, “Server System Variables”
Section 13.7.5.30, “SHOW PROFILE Syntax”
Section 13.7.5.31, “SHOW PROFILES Syntax”
Section 20.17, “The INFORMATION_SCHEMA
PROFILING Table”

SHOW PROFILES
Section 2.9.4, “MySQL Source-Configuration Options”
Section 21.16.1, “Query Profiling Using Performance
Schema”
Section 5.1.4, “Server System Variables”
Section 13.7.5.30, “SHOW PROFILE Syntax”
Section 13.7.5.31, “SHOW PROFILES Syntax”
Section 20.17, “The INFORMATION_SCHEMA
PROFILING Table”

SHOW RELAYLOG EVENTS
Section 17.2.3.1, “Commands for Operations on a
Single Channel”
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.32, “SHOW RELAYLOG EVENTS
Syntax”
Section 13.4.2, “SQL Statements for Controlling Slave
Servers”

SHOW SCHEMAS
Section 13.7.5.14, “SHOW DATABASES Syntax”

SHOW SESSION STATUS
Section 20.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”

SHOW SESSION VARIABLES
Section 20.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW SLAVE HOSTS
Section 17.1.7.1, “Checking Replication Status”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”

SHOW SLAVE STATUS
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.7.1, “Checking Replication Status”
Section 17.2.3.1, “Commands for Operations on a
Single Channel”
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”
Section 17.3.9, “Delayed Replication”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”
Section 17.4.5, “How to Report Replication Bugs or
Problems”
Section A.13, “MySQL 5.7 FAQ: Replication”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”

3787

Section 17.2.2, “Replication Implementation Details”
Section 17.1.5.1, “Replication Mode Concepts”
Section 8.14.5, “Replication Slave I/O Thread States”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.3.7, “Setting Up Replication Using SSL”
Section 13.7.5.23, “SHOW MASTER STATUS Syntax”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 17.4.1.28, “Slave Errors During Replication”
Section 17.2.4.2, “Slave Status Logs”
Section B.1, “Sources of Error Information”
Section 13.4.2, “SQL Statements for Controlling Slave
Servers”
Section 13.4.2.6, “START SLAVE Syntax”
Section 21.9.10.3, “The
replication_applier_configuration Table”
Section 21.9.10.4, “The replication_applier_status
Table”
Section 21.9.10.5, “The
replication_applier_status_by_coordinator Table”
Section 21.9.10.6, “The
replication_applier_status_by_worker Table”
Section 21.9.10.1, “The
replication_connection_configuration Table”
Section 21.9.10.2, “The replication_connection_status
Table”
Section 17.4.4, “Troubleshooting Replication”
Section 1.4, “What Is New in MySQL 5.7”

SHOW STATUS
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 21.17, “Migrating to Performance Schema
System and Status Variable Tables”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 21.12, “Performance Schema System
Variables”
Section 24.2.1, “Plugin API Characteristics”
Section 8.10.3.4, “Query Cache Status and
Maintenance”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.2.2, “Replication Implementation Details”
Section 17.4.1.31, “Replication Retries and Timeouts”
Section C.1, “Restrictions on Stored Programs”
Section 17.3.8.3, “Semisynchronous Replication
Monitoring”
Server Plugin Library and Plugin Descriptors
Server Plugin Status and System Variables
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Syntax”
Section 8.2.1.7, “Use of Index Extensions”
Section 1.4, “What Is New in MySQL 5.7”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4, “Writing Plugins”

SHOW STATUS LIKE 'perf%'
Section 21.5, “Performance Schema Status Monitoring”

SHOW TABLE STATUS
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.5.1, “Creating InnoDB Tables”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.9.2, “File Space Management”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.7, “Limits on InnoDB Tables”
Section 18.3.5, “Obtaining Information About Partitions”
Section 14.2.7.7, “Physical Row Structure”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.36, “SHOW TABLE STATUS Syntax”
Section 14.8.2, “Specifying the Row Format for a
Table”
Section 15.5, “The ARCHIVE Storage Engine”

SHOW TABLES
Section 3.3.2, “Creating a Table”
Section 20.31, “Extensions to SHOW Statements”
Section 9.2.2, “Identifier Case Sensitivity”
Chapter 20, INFORMATION_SCHEMA Tables
Section 14.12, “InnoDB INFORMATION_SCHEMA
Tables”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 5.1.3, “Server Command Options”
Section 13.7.5.36, “SHOW TABLE STATUS Syntax”
Section 13.7.5.37, “SHOW TABLES Syntax”
Section B.5.2.16, “Table 'tbl_name' doesn't exist”
Section B.5.6.2, “TEMPORARY Table Problems”
Section 6.3.17.3, “Using MySQL Enterprise Firewall”

SHOW TRIGGERS
Section A.5, “MySQL 5.7 FAQ: Triggers”
Section 13.7.5.38, “SHOW TRIGGERS Syntax”
Section 20.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 19.3.2, “Trigger Metadata”

SHOW VARIABLES
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 24.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 19.4.2, “Event Scheduler Configuration”
Section 21.17, “Migrating to Performance Schema
System and Status Variable Tables”
Section 17.1.4.3, “Multi-Source Replication Monitoring”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”

3788

Section 21.2.2, “Performance Schema Startup
Configuration”
Section 21.12, “Performance Schema System
Variables”
Section 24.2.1, “Plugin API Characteristics”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.3, “Running Multiple MySQL Instances on
One Machine”
Section 17.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 13.7.5.39, “SHOW VARIABLES Syntax”
Section 5.1.5, “Using System Variables”
Section 1.4, “What Is New in MySQL 5.7”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.10, “Writing Password-Validation
Plugins”
Section 24.2.4, “Writing Plugins”

SHOW WARNINGS
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 10.4.4.3, “Diagnostics During Index.xml
Parsing”
Section 13.1.22, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Effect of Signals on Handlers, Cursors, and Statements
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
How the Diagnostics Area is Populated
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 8.3.9, “Optimizer Use of Generated Column
Indexes”
Optimizing Subqueries with EXISTS Strategy
Optimizing Subqueries with Semi-Join Transformations
Optimizing Subqueries with Subquery Materialization
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 24.2.3.10, “Query Rewrite Plugins”
Section B.3, “Server Error Codes and Messages”
Section 5.1.4, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Syntax”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Signal Condition Information Items
Section 13.6.7.5, “SIGNAL Syntax”
Section B.1, “Sources of Error Information”
Using the Rewriter Query Rewrite Plugin

SHUTDOWN
Section 23.8.7.71, “mysql_shutdown()”

Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.6.7, “SHUTDOWN Syntax”

SIGNAL
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Diagnostics Area Information Items
Effect of Signals on Handlers, Cursors, and Statements
How the Diagnostics Area is Populated
Section 12.14, “Information Functions”
Section 13.6.7.4, “RESIGNAL Syntax”
Section C.2, “Restrictions on Condition Handling”
Section C.1, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Signal Condition Information Items
Section 13.6.7.5, “SIGNAL Syntax”

SQL_AFTER_MTS_GAPS
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”

START GROUP_REPLICATION
Section 1.4, “What Is New in MySQL 5.7”

START SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.2.3.1, “Commands for Operations on a
Single Channel”
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”
Section 17.3.9, “Delayed Replication”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.1.2.3, “Passwords and Logging”
Section 17.1.7.2, “Pausing Replication on the Slave”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 17.3.4, “Replicating Different Databases to
Different Slaves”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 17.2.2, “Replication Implementation Details”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 17.4.1.28, “Slave Errors During Replication”
Section 13.4.2.6, “START SLAVE Syntax”

3789

Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 17.3.6, “Switching Masters During Failover”
Section 17.4.4, “Troubleshooting Replication”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

START SLAVE SQL_THREAD
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”

START SLAVE UNTIL
Section 17.1.6.3, “Replication Slave Options and
Variables”

START SLAVE UNTIL
SQL_AFTER_MTS_GAPS
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”

START TRANSACTION
Section 13.6.1, “BEGIN ... END Compound-Statement
Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.5.3, “Grouping DML Operations with
Transactions”
Section 14.2.2.10, “How to Cope with Deadlocks”
Section 14.18.4, “InnoDB Error Handling”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.2.2.3, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 8.5.3, “Optimizing InnoDB Read-Only
Transactions”
Section 21.9.7, “Performance Schema Transaction
Tables”
Section C.1, “Restrictions on Stored Programs”
Section 17.3.8, “Semisynchronous Replication”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”

Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”
Section 19.3.1, “Trigger Syntax and Examples”
Section 13.3.7.2, “XA Transaction States”

START TRANSACTION READ ONLY
MySQL Glossary
Section 8.5.3, “Optimizing InnoDB Read-Only
Transactions”

START TRANSACTION WITH
CONSISTENT SNAPSHOT
Section 14.2.2.2, “Consistent Nonlocking Reads”

STATS_PERSISTENT=0
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”

STATS_PERSISTENT=1
Section 14.3.11.1, “Configuring Persistent Optimizer
Statistics Parameters”

STOP GROUP_REPLICATION
Section 1.4, “What Is New in MySQL 5.7”

STOP SLAVE
Section 17.1.2.6, “Adding Slaves to a Replication
Environment”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.7.1, “Checking Replication Status”
Section 17.2.3.1, “Commands for Operations on a
Single Channel”
Section 17.2.3.2, “Compatibility with Previous
Replication Statements”
Section 17.3.9, “Delayed Replication”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.1.7.2, “Pausing Replication on the Slave”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”

3790

Section 13.4.2.6, “START SLAVE Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 17.3.6, “Switching Masters During Failover”
Section 21.9.10.6, “The
replication_applier_status_by_worker Table”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”
Section 1.4, “What Is New in MySQL 5.7”

STOP SLAVE SQL_THREAD
Section 13.4.2.2, “CHANGE REPLICATION FILTER
Syntax”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

T

[index top [3745]]

TRUNCATE TABLE
Section 15.2.3.3, “Compressed Table Characteristics”
Section 21.9.14.8, “Connection Summary Tables”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.2.2, “DELETE Syntax”
Section 21.2.3.3, “Event Pre-Filtering”
Section 21.9.14.1, “Event Wait Summary Tables”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 21.9.14.6, “File I/O Summary Tables”
Section 13.2.4, “HANDLER Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.17.7, “Internals of the InnoDB memcached
Plugin”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 18.3.4, “Maintenance of Partitions”
Section 18.3.1, “Management of RANGE and LIST
Partitions”
Section 21.9.14.10, “Memory Summary Tables”
Section 15.7.2, “MERGE Table Problems”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 21.9.14.5, “Object Wait Summary Table”
Section 8.5.7, “Optimizing InnoDB DDL Operations”
Section 21.9.8, “Performance Schema Connection
Tables”

Section 21.2.3.1, “Performance Schema Event Timing”
Section 21.8, “Performance Schema General Table
Characteristics”
Section 21.9.14.11, “Performance Schema Status
Variable Summary Tables”
Section 21.9.13, “Performance Schema Status Variable
Tables”
Section 21.9.14, “Performance Schema Summary
Tables”
Section 21.9.12, “Performance Schema System
Variable Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.4.1.36, “Replication and TRUNCATE
TABLE”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 21.9.14.9, “Socket Summary Tables”
Section 21.9.14.2, “Stage Summary Tables”
Section 21.9.14.3, “Statement Summary Tables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 21.9.8.1, “The accounts Table”
Section 21.9.5.1, “The events_stages_current Table”
Section 21.9.5.2, “The events_stages_history Table”
Section 21.9.5.3, “The events_stages_history_long
Table”
Section 21.9.6.1, “The events_statements_current
Table”
Section 21.9.6.2, “The events_statements_history
Table”
Section 21.9.6.3, “The events_statements_history_long
Table”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 21.9.7.2, “The events_transactions_history
Table”
Section 21.9.7.3, “The
events_transactions_history_long Table”
Section 21.9.4.1, “The events_waits_current Table”
Section 21.9.4.2, “The events_waits_history Table”
Section 21.9.4.3, “The events_waits_history_long
Table”
Section 21.9.15.1, “The host_cache Table”
Section 21.9.8.2, “The hosts Table”
Section 20.30.8, “The INFORMATION_SCHEMA
INNODB_SYS_INDEXES Table”
Section 20.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 15.3, “The MEMORY Storage Engine”
Section 21.9.6.4, “The prepared_statements_instances
Table”
Section 22.4.4.24, “The ps_truncate_all_tables()
Procedure”
Section 21.9.2.5, “The setup_timers Table”
The table_io_waits_summary_by_index_usage Table
The table_io_waits_summary_by_table Table

3791

The table_lock_waits_summary_by_table Table
Section 21.9.8.3, “The users Table”
Section 21.9.14.4, “Transaction Summary Tables”
Section 13.1.29, “TRUNCATE TABLE Syntax”
Section 14.17.6, “Using the InnoDB memcached Plugin
with Replication”
Section 1.4, “What Is New in MySQL 5.7”
Section 23.8.15.2, “What Results You Can Get from a
Query”

TRUNCATE TABLE host_cache
Section 21.9.15.1, “The host_cache Table”

U

[index top [3745]]

UNINSTALL PLUGIN
Section 13.7.6.3, “FLUSH Syntax”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Installing or Uninstalling Version Tokens
Section 4.4.3, “mysql_plugin — Configure MySQL
Server Plugins”
Section 21.15, “Performance Schema and Plugins”
Section 15.11.1, “Pluggable Storage Engine
Architecture”
Section 24.2.2, “Plugin API Components”
Server Plugin Library and Plugin Descriptors
Section 13.7.5.25, “SHOW PLUGINS Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 20.15, “The INFORMATION_SCHEMA
PLUGINS Table”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 24.2.4.10, “Writing Password-Validation
Plugins”
Writing the Server-Side Authentication Plugin

UNION
Section 23.8.5, “C API Data Structures”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.14, “Information Functions”
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 11.2.5, “Numeric Type Attributes”
Optimizing Subqueries with Semi-Join Transformations
Section C.5, “Restrictions on Views”

Section 10.1.9.1, “Result Strings”
Section 3.6.7, “Searching on Two Keys”
Section 13.2.9, “SELECT Syntax”
Section 5.1.6, “Server Status Variables”
Section 13.2.10, “Subquery Syntax”
Section 15.7, “The MERGE Storage Engine”
The Range Access Method for Single-Part Indexes
Section 13.2.9.3, “UNION Syntax”
Section 19.5.3, “Updatable and Insertable Views”
Section 19.5.2, “View Processing Algorithms”
Section 19.5.1, “View Syntax”
Section 12.11, “XML Functions”

UNION ALL
Section 12.14, “Information Functions”
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 13.2.9.3, “UNION Syntax”
Section 19.5.3, “Updatable and Insertable Views”
Section 19.5.2, “View Processing Algorithms”

UNION DISTINCT
Section 13.2.9.3, “UNION Syntax”

UNLOCK TABLES
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.2.2.10, “How to Cope with Deadlocks”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 14.5.7, “Limits on InnoDB Tables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 14.4.6.1, “Transportable Tablespace
Examples”
Section 14.4.6.2, “Transportable Tablespace Internals”

UPDATE
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”

3792

Section 12.3.4, “Assignment Operators”
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function
Overview”
Section 23.8.17, “C API Support for Multiple Statement
Execution”
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 14.2.7.5, “Change Buffer”
Section 2.11.2.1, “Changes Affecting Downgrades from
MySQL 5.7”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 10.1.13, “Column Character Set Conversion”
Section 14.6.1.6, “Compression for OLTP Workloads”
Section 14.3.5, “Configuring InnoDB Change Buffering”
Section 14.3.12, “Configuring the Merge Threshold for
Index Pages”
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Section 13.1.17, “CREATE VIEW Syntax”
Section 15.8.2.1, “Creating a FEDERATED Table
Using CONNECTION”
Section 11.7, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 14.18.2, “Forcing InnoDB Recovery”
Section 12.9.5, “Full-Text Restrictions”
Section 12.1, “Function and Operator Reference”
Chapter 12, Functions and Operators
Section 8.14.2, “General Thread States”
Section 13.7.1.4, “GRANT Syntax”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Chapter 20, INFORMATION_SCHEMA Tables
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.11, “InnoDB Startup Options and System
Variables”

Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 13.2.9.2, “JOIN Syntax”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.2.2.3, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 12.19, “Miscellaneous Functions”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.36, “mysql_info()”
Section 23.8.7.38, “mysql_insert_id()”
Section 23.8.7.49, “mysql_num_rows()”
Section 23.8.7.50, “mysql_options()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.16, “mysql_stmt_insert_id()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 8.8.4, “Obtaining Execution Plan Information
for a Named Connection”
Section 12.3, “Operators”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 8.9.3, “Optimizer Hints”
Optimizing Derived Tables and View References
Section 8.2.2, “Optimizing DML Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 14.10.1, “Overview of Online DDL”
Section 18.1, “Overview of Partitioning in MySQL”
Section 18.4, “Partition Pruning”
Section 18.5, “Partition Selection”
Section 18.6.4, “Partitioning and Locking”
Section 6.1.2.3, “Passwords and Logging”
Pre-Filtering by Thread
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.4.2, “Problems Using DATE Columns”
Section 17.4.1.17, “Replication and LIMIT”
Section 17.4.1.26, “Replication and the Query
Optimizer”
Section 17.4.1.35, “Replication and Triggers”

3793

Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section C.5, “Restrictions on Views”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 3.3.4.1, “Selecting All Data”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section 17.4.1.28, “Slave Errors During Replication”
Section 5.4.1.12, “Statement Probes”
Section 13.2.10.9, “Subquery Errors”
Section 8.2.1.18, “Subquery Optimization”
Section 13.2.10, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 10.1.7.6, “The _bin and binary Collations”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.2.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 20.30.13, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESTATS View”
Section 20.23, “The INFORMATION_SCHEMA
TABLES Table”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 15.7, “The MERGE Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 5.1.12, “The Server Shutdown Process”
Section 22.4.2.3, “The sys_config_update_set_user
Trigger”
Section 19.3.1, “Trigger Syntax and Examples”
Section 6.2.7, “Troubleshooting Problems Connecting
to MySQL”
Section 19.5.3, “Updatable and Insertable Views”
Section 1.8.2.2, “UPDATE Differences”
Section 13.2.11, “UPDATE Syntax”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”
Using the --safe-updates Option
Section 1.4, “What Is New in MySQL 5.7”
Section 23.8.15.2, “What Results You Can Get from a
Query”
Section 6.2.6, “When Privilege Changes Take Effect”

Section 23.8.15.1, “Why mysql_store_result()
Sometimes Returns NULL After mysql_query() Returns
Success”

UPDATE ... ()
Section 14.2.2.2, “Consistent Nonlocking Reads”

UPDATE ... WHERE ...
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”

UPDATE IGNORE
Section 5.1.7, “Server SQL Modes”
Section 13.2.11, “UPDATE Syntax”

UPDATE t1,t2 ...
Section 5.4.1.12, “Statement Probes”

USE
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 3.3.1, “Creating and Selecting a Database”
Section 3.3, “Creating and Using a Database”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 17.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 8.9.4, “Index Hints”
Chapter 20, INFORMATION_SCHEMA Tables
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 17.2.5.3, “Replication Rule Application”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 19.2.1, “Stored Routine Syntax”
Section 13.8.4, “USE Syntax”

USE db2
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

USE db_name
Section 4.5.1.1, “mysql Options”

USE test
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

3794

W

[index top [3745]]

WHERE
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”

WHILE
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.2, “Statement Label Syntax”
Section 13.6.5.8, “WHILE Syntax”

X

[index top [3745]]

XA BEGIN
Section 21.9.7, “Performance Schema Transaction
Tables”

XA COMMIT
Section 2.11.2, “Downgrading MySQL”
Section 21.9.7, “Performance Schema Transaction
Tables”
Section 5.1.4, “Server System Variables”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 2.11.1, “Upgrading MySQL”
Section 13.3.7.2, “XA Transaction States”

XA END
Section C.6, “Restrictions on XA Transactions”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA PREPARE
Section 21.9.7.1, “The events_transactions_current
Table”
Section 13.3.7.2, “XA Transaction States”

XA RECOVER
Section 2.11.2, “Downgrading MySQL”
Section 2.11.1, “Upgrading MySQL”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA ROLLBACK
Section 2.11.2, “Downgrading MySQL”
Section 21.9.7, “Performance Schema Transaction
Tables”
Section 5.1.4, “Server System Variables”

Section 21.9.7.1, “The events_transactions_current
Table”
Section 2.11.1, “Upgrading MySQL”
Section 13.3.7.2, “XA Transaction States”

XA START
Section 21.9.7, “Performance Schema Transaction
Tables”
Section C.6, “Restrictions on XA Transactions”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA START xid
Section 13.3.7.1, “XA Transaction SQL Syntax”

3795

Status Variable Index
A | B | C | D | F | H | I | K | L | M | N | O | P | Q | R | S | T
| U | V

A

[index top [3795]]

Aborted_clients
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.1.6, “Server Status Variables”

Aborted_connects
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.1.6, “Server Status Variables”

Audit_log_current_size
Section 6.3.15.7, “Audit Log Plugin Status Variables”

Audit_log_event_max_drop_size
Section 6.3.15.7, “Audit Log Plugin Status Variables”

Audit_log_events
Section 6.3.15.7, “Audit Log Plugin Status Variables”

Audit_log_events_filtered
Section 6.3.15.7, “Audit Log Plugin Status Variables”

Audit_log_events_lost
Section 6.3.15.7, “Audit Log Plugin Status Variables”

Audit_log_events_written
Section 6.3.15.7, “Audit Log Plugin Status Variables”

Audit_log_total_size
Section 6.3.15.7, “Audit Log Plugin Status Variables”

Audit_log_write_waits
Section 6.3.15.7, “Audit Log Plugin Status Variables”

B

[index top [3795]]

Binlog_cache_disk_use
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 5.1.6, “Server Status Variables”
Section 5.2.4, “The Binary Log”

Binlog_cache_use
Section 17.1.6.4, “Binary Logging Options and
Variables”

Section 5.1.6, “Server Status Variables”
Section 5.2.4, “The Binary Log”

Binlog_stmt_cache_disk_use
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 5.1.6, “Server Status Variables”

Binlog_stmt_cache_use
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 5.1.6, “Server Status Variables”

Bytes_received
Section 5.1.6, “Server Status Variables”

Bytes_sent
Section 5.1.6, “Server Status Variables”

C

[index top [3795]]

Com_flush
Section 5.1.6, “Server Status Variables”

Com_stmt_reprepare
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”

Compression
Section 5.1.6, “Server Status Variables”

Connection_errors_accept
Section 5.1.6, “Server Status Variables”

Connection_errors_internal
Section 5.1.6, “Server Status Variables”

Connection_errors_max_connections
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Connection_errors_peer_addr
Section 5.1.6, “Server Status Variables”

Connection_errors_select
Section 5.1.6, “Server Status Variables”

Connection_errors_tcpwrap
Section 5.1.6, “Server Status Variables”

Connection_errors_xxx
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”

3796

Section 5.1.6, “Server Status Variables”

Connections
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Created_tmp_disk_tables
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Created_tmp_files
Section 5.1.6, “Server Status Variables”

Created_tmp_tables
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Syntax”
Section 21.9.6.1, “The events_statements_current
Table”

D

[index top [3795]]

Delayed_errors
Section 5.1.6, “Server Status Variables”

Delayed_insert_threads
Section 5.1.6, “Server Status Variables”

Delayed_writes
Section 5.1.6, “Server Status Variables”

F

[index top [3795]]

Firewall_access_denied
MySQL Enterprise Firewall Status Variables

Firewall_access_granted
MySQL Enterprise Firewall Status Variables
Section 6.3.17.3, “Using MySQL Enterprise Firewall”

Firewall_access_suspicious
MySQL Enterprise Firewall Status Variables

Firewall_cached_entries
MySQL Enterprise Firewall Status Variables

Flush_commands
Section 5.1.6, “Server Status Variables”

H

[index top [3795]]

Handler_commit
Section 5.1.6, “Server Status Variables”

Handler_delete
Section 5.1.6, “Server Status Variables”

Handler_external_lock
Section 5.1.6, “Server Status Variables”

Handler_mrr_init
Section 5.1.6, “Server Status Variables”

Handler_prepare
Section 5.1.6, “Server Status Variables”

Handler_read_first
Range Optimization of Row Constructor Expressions
Section 5.1.6, “Server Status Variables”

Handler_read_key
Range Optimization of Row Constructor Expressions
Section 5.1.6, “Server Status Variables”

Handler_read_last
Section 5.1.6, “Server Status Variables”

Handler_read_next
Range Optimization of Row Constructor Expressions
Section 5.1.6, “Server Status Variables”
Section 8.2.1.7, “Use of Index Extensions”

Handler_read_prev
Section 5.1.6, “Server Status Variables”

Handler_read_rnd
Section 5.1.6, “Server Status Variables”

Handler_read_rnd_next
Section 5.1.6, “Server Status Variables”

Handler_rollback
Section 5.1.6, “Server Status Variables”

Handler_savepoint
Section 5.1.6, “Server Status Variables”

Handler_savepoint_rollback
Section 5.1.6, “Server Status Variables”

3797

Handler_update
Section 5.1.6, “Server Status Variables”

Handler_write
Section 5.1.6, “Server Status Variables”

I

[index top [3795]]

Innodb_available_undo_logs
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_bytes_data
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_bytes_dirty
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_dump_status
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_load_status
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_data
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_dirty
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_flushed
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_free
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_latched
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_misc
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_total
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_read_ahead
Section 14.3.3.1, “Configuring InnoDB Buffer Pool
Prefetching (Read-Ahead)”
Section 14.11, “InnoDB Startup Options and System
Variables”

Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_read_ahead_evicted
Section 14.3.3.1, “Configuring InnoDB Buffer Pool
Prefetching (Read-Ahead)”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_read_requests
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_reads
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_resize_status
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.3.3.7, “Resizing the InnoDB Buffer Pool
Online”
Section 5.1.6, “Server Status Variables”
Section 1.4, “What Is New in MySQL 5.7”

Innodb_buffer_pool_wait_free
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_write_requests
Section 5.1.6, “Server Status Variables”

Innodb_data_fsyncs
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 5.1.6, “Server Status Variables”

Innodb_data_pending_fsyncs
Section 5.1.6, “Server Status Variables”

Innodb_data_pending_reads
Section 5.1.6, “Server Status Variables”

Innodb_data_pending_writes
Section 5.1.6, “Server Status Variables”

Innodb_data_read
Section 5.1.6, “Server Status Variables”

Innodb_data_reads
Section 5.1.6, “Server Status Variables”

Innodb_data_writes
Section 5.1.6, “Server Status Variables”

Innodb_data_written
Section 5.1.6, “Server Status Variables”

3798

Innodb_dblwr_pages_written
Section 5.1.6, “Server Status Variables”

Innodb_dblwr_writes
Section 5.1.6, “Server Status Variables”

Innodb_have_atomic_builtins
Section 5.1.6, “Server Status Variables”

Innodb_log_waits
Section 5.1.6, “Server Status Variables”

Innodb_log_write_requests
Section 5.1.6, “Server Status Variables”

Innodb_log_writes
Section 5.1.6, “Server Status Variables”

Innodb_num_open_files
Section 5.1.6, “Server Status Variables”

Innodb_os_log_fsyncs
Section 5.1.6, “Server Status Variables”

Innodb_os_log_pending_fsyncs
Section 5.1.6, “Server Status Variables”

Innodb_os_log_pending_writes
Section 5.1.6, “Server Status Variables”

Innodb_os_log_written
Section 5.1.6, “Server Status Variables”

Innodb_page_size
Section 5.1.6, “Server Status Variables”

Innodb_pages_created
Section 5.1.6, “Server Status Variables”

Innodb_pages_read
Section 5.1.6, “Server Status Variables”

Innodb_pages_written
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_current_waits
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_time
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_time_avg
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_time_max
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_waits
Section 5.1.6, “Server Status Variables”

Innodb_rows_deleted
Section 5.1.6, “Server Status Variables”

Innodb_rows_inserted
Section 5.1.6, “Server Status Variables”

Innodb_rows_read
Section 5.1.6, “Server Status Variables”

Innodb_rows_updated
Section 5.1.6, “Server Status Variables”

Innodb_truncated_status_writes
Section 5.1.6, “Server Status Variables”

K

[index top [3795]]

Key_blocks_not_flushed
Section 5.1.6, “Server Status Variables”

Key_blocks_unused
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_blocks_used
Section 5.1.6, “Server Status Variables”

Key_read_requests
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_reads
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_write_requests
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_writes
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

L

[index top [3795]]

3799

Last_query_cost
Section 5.1.6, “Server Status Variables”

Last_query_partial_plans
Section 5.1.6, “Server Status Variables”

Locked_connects
Section 5.1.6, “Server Status Variables”
Section 6.3.11, “User Account Locking”

M

[index top [3795]]

Max_execution_time_exceeded
Section 5.1.6, “Server Status Variables”

Max_execution_time_set
Section 5.1.6, “Server Status Variables”

Max_execution_time_set_failed
Section 5.1.6, “Server Status Variables”

Max_statement_time_exceeded
Section 5.1.6, “Server Status Variables”

Max_statement_time_set
Section 5.1.6, “Server Status Variables”

Max_statement_time_set_failed
Section 5.1.6, “Server Status Variables”

Max_used_connections
Section 13.7.6.3, “FLUSH Syntax”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Max_used_connections_time
Section 5.1.6, “Server Status Variables”

mecab_charset
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 5.1.6, “Server Status Variables”

N

[index top [3795]]

Not_flushed_delayed_rows
Section 5.1.6, “Server Status Variables”

O

[index top [3795]]

Ongoing_anonymous_gtid_violating_transaction_count
Section 5.1.6, “Server Status Variables”

Ongoing_anonymous_transaction_count
Section 5.1.6, “Server Status Variables”

Ongoing_automatic_gtid_violating_transaction_count
Section 5.1.6, “Server Status Variables”

Open_files
Section 5.1.6, “Server Status Variables”

Open_streams
Section 5.1.6, “Server Status Variables”

Open_table_definitions
Section 5.1.6, “Server Status Variables”

Open_tables
Section 5.1.6, “Server Status Variables”

Opened_files
Section 5.1.6, “Server Status Variables”

Opened_table_definitions
Section 5.1.6, “Server Status Variables”

Opened_tables
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

P

[index top [3795]]

Performance_schema_digest_lost
Section 21.12, “Performance Schema System
Variables”

Performance_schema_index_stat_lost
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”

Performance_schema_memory_classes_lost
Section 21.13, “Performance Schema Status Variables”

Performance_schema_metadata_lock_lost
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”

3800

Performance_schema_mutex_classes_lost
Section 21.5, “Performance Schema Status Monitoring”

Performance_schema_mutex_instances_lost
Section 21.5, “Performance Schema Status Monitoring”

Performance_schema_nested_statement_lost
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”

Performance_schema_prepared_statements_lost
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”
Section 21.9.6.4, “The prepared_statements_instances
Table”

Performance_schema_program_lost
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”

Performance_schema_session_connect_attrs_lost
Section 21.12, “Performance Schema System
Variables”

Performance_schema_table_handles_lost
Section 21.12, “Performance Schema System
Variables”

Performance_schema_table_lock_stat_lost
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”

Performance_schema_thread_instances_lost
Section 21.9.12, “Performance Schema System
Variable Tables”
Section 21.12, “Performance Schema System
Variables”

Prepared_stmt_count
Section 5.1.6, “Server Status Variables”

Q

[index top [3795]]

Qcache_free_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and
Maintenance”
Section 5.1.6, “Server Status Variables”

Qcache_free_memory
Section 5.1.6, “Server Status Variables”

Qcache_hits
Section 8.10.3.1, “How the Query Cache Operates”
Section 5.1.6, “Server Status Variables”

Qcache_inserts
Section 5.1.6, “Server Status Variables”

Qcache_lowmem_prunes
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and
Maintenance”
Section 5.1.6, “Server Status Variables”

Qcache_not_cached
Section 5.1.6, “Server Status Variables”

Qcache_queries_in_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.6, “Server Status Variables”

Qcache_total_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and
Maintenance”
Section 5.1.6, “Server Status Variables”

Queries
Section 5.1.6, “Server Status Variables”

Questions
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 5.1.6, “Server Status Variables”

R

[index top [3795]]

Rewriter_number_loaded_rules
Rewriter Query Rewrite Plugin Status Variables

Rewriter_number_reloads
Rewriter Query Rewrite Plugin Status Variables

Rewriter_number_rewritten_queries
Rewriter Query Rewrite Plugin Status Variables

Rewriter_reload_error
Rewriter Query Rewrite Plugin Procedures and
Functions
Rewriter Query Rewrite Plugin Rules Table
Rewriter Query Rewrite Plugin Status Variables
Using the Rewriter Query Rewrite Plugin

3801

Rpl_semi_sync_master_clients
Section 17.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 17.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_net_avg_wait_time
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_net_wait_time
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_net_waits
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_no_times
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_no_tx
Section 17.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 17.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_status
Section 17.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 17.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_timefunc_failures
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_tx_avg_wait_time
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_tx_wait_time
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_tx_waits
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_wait_pos_backtraverse
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_wait_sessions
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_master_yes_tx
Section 17.3.8.1, “Semisynchronous Replication
Administrative Interface”

Section 17.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rpl_semi_sync_slave_status
Section 17.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 17.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.6, “Server Status Variables”

Rsa_public_key
Section 6.3.12.1, “OpenSSL Versus yaSSL”
Section 5.1.6, “Server Status Variables”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”

S

[index top [3795]]

Select_full_join
Section 5.1.6, “Server Status Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Select_full_range_join
Section 5.1.6, “Server Status Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Select_range
Section 5.1.6, “Server Status Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Select_range_check
Section 5.1.6, “Server Status Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Select_scan
Section 5.1.6, “Server Status Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Slave_heartbeat_period
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 13.4.2.4, “RESET SLAVE Syntax”
Section 5.1.6, “Server Status Variables”

Slave_last_heartbeat
Section 21.9.10, “Performance Schema Replication
Tables”

3802

Section 5.1.6, “Server Status Variables”

Slave_open_temp_tables
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 5.1.6, “Server Status Variables”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 1.4, “What Is New in MySQL 5.7”

Slave_received_heartbeats
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 5.1.6, “Server Status Variables”

Slave_retried_transactions
Section 21.9.10, “Performance Schema Replication
Tables”
Section 5.1.6, “Server Status Variables”

Slave_running
Section 21.9.10, “Performance Schema Replication
Tables”
Section 17.2.2, “Replication Implementation Details”
Section 5.1.6, “Server Status Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”

Slow_launch_threads
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Slow_queries
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Sort_merge_passes
Section 8.2.1.15, “ORDER BY Optimization”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Sort_range
Section 5.1.6, “Server Status Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Sort_rows
Section 5.1.6, “Server Status Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Sort_scan
Section 5.1.6, “Server Status Variables”
Section 21.9.6.1, “The events_statements_current
Table”

Ssl_accept_renegotiates
Section 5.1.6, “Server Status Variables”

Ssl_accepts
Section 5.1.6, “Server Status Variables”

Ssl_callback_cache_hits
Section 5.1.6, “Server Status Variables”

Ssl_cipher
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.12.2, “Secure Connection Protocols and
Ciphers”
Section 5.1.6, “Server Status Variables”

Ssl_cipher_list
Section 6.3.12.2, “Secure Connection Protocols and
Ciphers”
Section 5.1.6, “Server Status Variables”

Ssl_client_connects
Section 5.1.6, “Server Status Variables”

Ssl_connect_renegotiates
Section 5.1.6, “Server Status Variables”

Ssl_ctx_verify_depth
Section 5.1.6, “Server Status Variables”

Ssl_ctx_verify_mode
Section 5.1.6, “Server Status Variables”

Ssl_default_timeout
Section 5.1.6, “Server Status Variables”

Ssl_finished_accepts
Section 5.1.6, “Server Status Variables”

Ssl_finished_connects
Section 5.1.6, “Server Status Variables”

Ssl_server_not_after
Section 5.1.6, “Server Status Variables”

Ssl_server_not_before
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_hits
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_misses
Section 5.1.6, “Server Status Variables”

3803

Ssl_session_cache_mode
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_overflows
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_size
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_timeouts
Section 5.1.6, “Server Status Variables”

Ssl_sessions_reused
Section 5.1.6, “Server Status Variables”

Ssl_used_session_cache_entries
Section 5.1.6, “Server Status Variables”

Ssl_verify_depth
Section 5.1.6, “Server Status Variables”

Ssl_verify_mode
Section 5.1.6, “Server Status Variables”

Ssl_version
Section 6.3.12.2, “Secure Connection Protocols and
Ciphers”
Section 5.1.6, “Server Status Variables”

T

[index top [3795]]

Table_locks_immediate
Section 8.11.1, “Internal Locking Methods”
Section 5.1.6, “Server Status Variables”

Table_locks_waited
Section 8.11.1, “Internal Locking Methods”
Section 5.1.6, “Server Status Variables”

Table_open_cache_hits
Section 5.1.6, “Server Status Variables”

Table_open_cache_misses
Section 5.1.6, “Server Status Variables”

Table_open_cache_overflows
Section 5.1.6, “Server Status Variables”

Tc_log_max_pages_used
Section 5.1.6, “Server Status Variables”

Tc_log_page_size
Section 5.1.6, “Server Status Variables”

Tc_log_page_waits
Section 5.1.6, “Server Status Variables”

Threads_cached
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”
Section 5.1.6, “Server Status Variables”

Threads_connected
Section 5.1.6, “Server Status Variables”

Threads_created
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Threads_running
Section A.14, “MySQL 5.7 FAQ: MySQL Enterprise
Thread Pool”
Section 5.1.6, “Server Status Variables”

U

[index top [3795]]

Uptime
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 5.1.6, “Server Status Variables”

Uptime_since_flush_status
Section 5.1.6, “Server Status Variables”

V

[index top [3795]]

validate_password_dictionary_file_last_parsed
Password Validation Plugin Options and Variables

validate_password_dictionary_file_words_count
Password Validation Plugin Options and Variables

3804

3805

System Variable Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q
| R | S | T | U | V | W

A

[index top [3805]]

audit_log_buffer_size
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”
Section 6.3.15.7, “Audit Log Plugin Status Variables”

audit_log_connection_policy
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”

audit_log_current_session
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”

audit_log_exclude_accounts
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”

audit_log_file
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”
Section 6.3.15.2, “Audit Log Plugin Security
Considerations”
Section 6.3.15, “MySQL Enterprise Audit Log Plugin”

audit_log_flush
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”

audit_log_format
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”
Section 6.3.15, “MySQL Enterprise Audit Log Plugin”
Section 6.3.15.3, “The Audit Log File”

audit_log_include_accounts
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”

audit_log_policy
Section 6.3.15.4, “Audit Log Plugin Logging Control”

Section 6.3.15.6, “Audit Log Plugin Options and
Variables”
Section 6.3.15, “MySQL Enterprise Audit Log Plugin”

audit_log_rotate_on_size
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”

audit_log_statement_policy
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”

audit_log_strategy
Section 6.3.15.4, “Audit Log Plugin Logging Control”
Section 6.3.15.6, “Audit Log Plugin Options and
Variables”

authentication_windows_log_level
Using the Windows Authentication Plugin

authentication_windows_use_principal_name
Using the Windows Authentication Plugin

auto_generate_certs
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 6.3.12.1, “OpenSSL Versus yaSSL”
Section 5.1.4, “Server System Variables”
Section 6.3.12, “Using Secure Connections”

auto_increment_increment
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 5.7 FAQ: General”
Section 17.4.1.38, “Replication and Variables”
Section 17.1.6.2, “Replication Master Options and
Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

auto_increment_offset
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 5.7 FAQ: General”
Section 17.4.1.38, “Replication and Variables”
Section 17.1.6.2, “Replication Master Options and
Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

AUTOCOMMIT
Section 17.4.1.33, “Replication and Transactions”

3806

autocommit
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.2.9, “Deadlock Detection and Rollback”
Section 13.2.2, “DELETE Syntax”
Section 14.10.5, “Examples of Online DDL”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 14.5.7, “Limits on InnoDB Tables”
Section 14.2.2.3, “Locking Reads (SELECT ... FOR
UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 8.5.3, “Optimizing InnoDB Read-Only
Transactions”
Section 21.9.7, “Performance Schema Transaction
Tables”
Section 17.4.1.33, “Replication and Transactions”
Section 17.1.3.4, “Restrictions on Replication with
GTIDs”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 8.12.7.2, “Thread Pool Operation”

automatic_sp_privileges
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 5.1.4, “Server System Variables”
Section 19.2.2, “Stored Routines and MySQL
Privileges”

avoid_temporal_upgrade
Section 5.1.4, “Server System Variables”

B

[index top [3805]]

back_log
Section 5.1.4, “Server System Variables”

basedir
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.4, “Server System Variables”

big_tables
Section 5.1.4, “Server System Variables”

bind_address
Section 5.1.4, “Server System Variables”

binlog
Section 17.1.6.4, “Binary Logging Options and
Variables”

binlog_cache_size
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 5.1.6, “Server Status Variables”
Section 5.2.4, “The Binary Log”

binlog_checksum
Section 17.1.6.4, “Binary Logging Options and
Variables”
MySQL Glossary
Section 5.2.4, “The Binary Log”

binlog_direct_non_transactional_updates
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 17.4.1.33, “Replication and Transactions”

binlog_error_action
Section 17.1.6.4, “Binary Logging Options and
Variables”

binlog_format
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 12.7, “Date and Time Functions”
Section 17.2.1.3, “Determination of Safe and Unsafe
Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 5.2.4.4, “Logging Format for Changes to mysql
Database Tables”
Section 12.6.2, “Mathematical Functions”
Section 12.19, “Miscellaneous Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section A.13, “MySQL 5.7 FAQ: Replication”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 17.4.1.2, “Replication and BLACKHOLE
Tables”
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.4.1.33, “Replication and Transactions”
Section 17.2.1, “Replication Formats”
Section 17.4.1.25, “Replication of the mysql System
Database”
Section 5.1.3, “Server Command Options”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 5.2.3, “The General Query Log”
Section 17.4.3, “Upgrading a Replication Setup”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

3807

Section 14.17.6, “Using the InnoDB memcached Plugin
with Replication”

binlog_group_commit_sync_delay
Section 17.1.6.4, “Binary Logging Options and
Variables”

binlog_group_commit_sync_no_delay_count
Section 17.1.6.4, “Binary Logging Options and
Variables”

binlog_gtid_simple_recovery
Section 17.1.6.5, “Global Transaction ID Options and
Variables”

binlog_max_flush_queue_time
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 1.4, “What Is New in MySQL 5.7”

binlog_order_commits
Section 17.1.6.4, “Binary Logging Options and
Variables”

binlog_row_image
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.1.6.4, “Binary Logging Options and
Variables”

binlog_rows_query_log_events
Section 17.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”
Section 17.1.6.4, “Binary Logging Options and
Variables”

binlog_stmt_cache_size
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 5.1.6, “Server Status Variables”

binlogging_impossible_mode
Section 17.1.6.4, “Binary Logging Options and
Variables”

block_encryption_mode
Section 12.13, “Encryption and Compression
Functions”
Section 5.1.4, “Server System Variables”

bulk_insert_buffer_size
Section 15.2.1, “MyISAM Startup Options”
Section 5.1.4, “Server System Variables”
Section 8.2.2.1, “Speed of INSERT Statements”

C

[index top [3805]]

character_set_client
Section 23.8.9.1, “C API Prepared Statement Type
Codes”
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 13.7.5.7, “SHOW CREATE EVENT Syntax”
Section 13.7.5.9, “SHOW CREATE PROCEDURE
Syntax”
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 13.7.5.18, “SHOW EVENTS Syntax”
Section 13.7.5.28, “SHOW PROCEDURE STATUS
Syntax”
Section 13.7.5.38, “SHOW TRIGGERS Syntax”
Section 5.2.4, “The Binary Log”
Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 20.19, “The INFORMATION_SCHEMA
ROUTINES Table”
Section 20.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Using the Rewriter Query Rewrite Plugin

character_set_connection
Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 10.1.7.5, “Collation of Expressions”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.9.2, “CONVERT() and CAST()”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression
Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 10.7, “MySQL Server Locale Support”
Section 17.4.1.38, “Replication and Variables”
Section 10.1.9.1, “Result Strings”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 9.1.1, “String Literals”
Section 10.1.8, “String Repertoire”

3808

Section 12.2, “Type Conversion in Expression
Evaluation”

character_set_database
Section 10.1.4, “Connection Character Sets and
Collations”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 1.4, “What Is New in MySQL 5.7”

character_set_filesystem
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

character_set_results
Section 23.8.5, “C API Data Structures”
Section 10.1.6, “Character Set for Error Messages”
Section 10.1.4, “Connection Character Sets and
Collations”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 10.1.12, “UTF-8 for Metadata”

character_set_server
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 12.9.4, “Full-Text Stopwords”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.3, “Replication and Character Sets”
Section 17.4.1.38, “Replication and Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”

character_set_system
Section 10.5, “Character Set Configuration”
Section 5.1.4, “Server System Variables”
Section 10.1.12, “UTF-8 for Metadata”

character_sets_dir
Section 10.4.3, “Adding a Simple Collation to an 8-Bit
Character Set”

Section 10.4.4.1, “Defining a UCA Collation Using
LDML Syntax”
Section 5.1.4, “Server System Variables”

check_proxy_users
Section 6.3.10, “Proxy Users”
Section 5.1.4, “Server System Variables”

collation_connection
Section 10.1.3.5, “Character String Literal Character
Set and Collation”
Section 10.1.7.5, “Collation of Expressions”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.9.2, “CONVERT() and CAST()”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression
Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 10.1.9.1, “Result Strings”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 13.7.5.7, “SHOW CREATE EVENT Syntax”
Section 13.7.5.9, “SHOW CREATE PROCEDURE
Syntax”
Section 13.7.5.11, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 13.7.5.18, “SHOW EVENTS Syntax”
Section 13.7.5.28, “SHOW PROCEDURE STATUS
Syntax”
Section 13.7.5.38, “SHOW TRIGGERS Syntax”
Section 5.2.4, “The Binary Log”
Section 20.7, “The INFORMATION_SCHEMA EVENTS
Table”
Section 20.19, “The INFORMATION_SCHEMA
ROUTINES Table”
Section 20.27, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 12.2, “Type Conversion in Expression
Evaluation”

collation_database
Section 10.1.4, “Connection Character Sets and
Collations”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
Section 1.4, “What Is New in MySQL 5.7”

3809

collation_server
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.3.2, “Database Character Set and
Collation”
Section 12.9.4, “Full-Text Stopwords”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”

completion_type
Section 23.8.7.6, “mysql_commit()”
Section 23.8.7.61, “mysql_rollback()”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”

concurrent_insert
Section 8.11.3, “Concurrent Inserts”
Section 8.11.1, “Internal Locking Methods”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 5.1.4, “Server System Variables”

connect_timeout
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section B.5.2.3, “Lost connection to MySQL server”
Section 23.8.7.54, “mysql_real_connect()”
Section 5.1.4, “Server System Variables”

core_file
Section 5.1.4, “Server System Variables”

D

[index top [3805]]

daemon_memcached_engine_lib_name
Section 14.17.3.2, “Installing and Configuring the
InnoDB memcached Plugin”

daemon_memcached_engine_lib_path
Section 14.17.3.2, “Installing and Configuring the
InnoDB memcached Plugin”

daemon_memcached_option
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 14.17.3.2, “Installing and Configuring the
InnoDB memcached Plugin”
Section 14.17.4.1, “Password-Protecting the
memcached Interface through SASL”
Section 14.17.8, “Troubleshooting the InnoDB
memcached Plugin”

daemon_memcached_r_batch_size
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.17.3.2, “Installing and Configuring the
InnoDB memcached Plugin”
Section 14.17.5.6, “Performing DML and DDL
Statements on the Underlying InnoDB Table”
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”
Section 14.17.6, “Using the InnoDB memcached Plugin
with Replication”

daemon_memcached_w_batch_size
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.17.3.2, “Installing and Configuring the
InnoDB memcached Plugin”
Section 14.17.5.6, “Performing DML and DDL
Statements on the Underlying InnoDB Table”
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”
Section 14.17.6, “Using the InnoDB memcached Plugin
with Replication”

DATADIR
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.4.5, “Creating a File-Per-Table Tablespace
Outside the Data Directory”

datadir
Section 14.2.4, “InnoDB Redo Log”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 14.10.9, “Limitations of Online DDL”
MySQL Glossary
Section 5.1.4, “Server System Variables”
Section 14.4.7, “Storing InnoDB Undo Logs in Separate
Tablespaces”
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”
Section 20.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section B.5.3.5, “Where MySQL Stores Temporary
Files”

date_format
Section 5.1.4, “Server System Variables”

3810

datetime_format
Section 5.1.4, “Server System Variables”

debug
Section 5.1.4, “Server System Variables”
Section 24.5.3, “The DBUG Package”

debug_sync
Section 5.1.4, “Server System Variables”

default
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”

default_authentication_plugin
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.9, “Authentication Plugins Available in
MySQL”
Section 13.7.1.2, “CREATE USER Syntax”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

default_password_lifetime
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.7.1.2, “CREATE USER Syntax”
Section 6.3.6, “Password Expiration Policy”
Section 6.2.2, “Privilege System Grant Tables”
Section 5.1.4, “Server System Variables”

default_storage_engine
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 13.1.25, “DROP TABLESPACE Syntax”
Section 14.4.9, “InnoDB General Tablespaces”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 17.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 1.4, “What Is New in MySQL 5.7”

default_tmp_storage_engine
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 15.1, “Setting the Storage Engine”

default_week_format
Section 12.7, “Date and Time Functions”
Section 18.6.3, “Partitioning Limitations Relating to
Functions”
Section 5.1.4, “Server System Variables”

delay_key_write
Section 13.1.14, “CREATE TABLE Syntax”
Section 5.1.4, “Server System Variables”

delayed_insert_limit
Section 5.1.4, “Server System Variables”

delayed_insert_timeout
Section 5.1.4, “Server System Variables”

delayed_queue_size
Section 5.1.4, “Server System Variables”

disabled_storage_engines
Section 5.1.3, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 5.1.4, “Server System Variables”

disconnect_on_expired_password
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 5.1.4, “Server System Variables”

div_precision_increment
Section 12.6.1, “Arithmetic Operators”
Section 5.1.4, “Server System Variables”

E

[index top [3805]]

end_markers_in_json
Section 5.1.4, “Server System Variables”

enforce
Section 17.1.6.5, “Global Transaction ID Options and
Variables”

enforce_gtid_consistency
Section 17.1.5.3, “Disabling GTID Transactions Online”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.5.1, “Replication Mode Concepts”

eq_range_index_dive_limit
Equality Range Optimization of Many-Valued
Comparisons
Section 5.1.4, “Server System Variables”

error_count
Diagnostics Area-Related System Variables
Section 5.1.4, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Syntax”
Section B.1, “Sources of Error Information”

3811

Section 13.5, “SQL Syntax for Prepared Statements”

event_scheduler
Section 19.4.2, “Event Scheduler Configuration”
Section 23.7.2, “Restrictions When Using the
Embedded MySQL Server”
Section 5.1.4, “Server System Variables”
Section 19.4.6, “The Event Scheduler and MySQL
Privileges”

executed_gtids_compression_period
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”

expire_logs_days
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 5.2.7, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”

explicit_defaults_for_timestamp
Section 11.3.5, “Automatic Initialization and Updating
for TIMESTAMP and DATETIME”
Section 11.7, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 5.1.4, “Server System Variables”

external_user
Implementing Proxy User Support in Authentication
Plugins
Section 6.3.10, “Proxy Users”
Section 5.1.4, “Server System Variables”
Writing the Server-Side Authentication Plugin

F

[index top [3805]]

flush
Section 5.1.4, “Server System Variables”

flush_time
Section 5.1.4, “Server System Variables”

foreign_key_checks
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 14.10.6, “Implementation Details of Online
DDL”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 14.10.1, “Overview of Online DDL”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”

Section 13.1.14.3, “Using FOREIGN KEY Constraints”

ft_boolean_syntax
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.4, “Server System Variables”

ft_max_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Creating a Data Snapshot Using Raw Data Files
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.8, “ngram Full-Text Parser”
Section 5.1.4, “Server System Variables”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”

ft_min_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Creating a Data Snapshot Using Raw Data Files
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 12.9.8, “ngram Full-Text Parser”
Section 5.1.4, “Server System Variables”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”

ft_query_expansion_limit
Section 5.1.4, “Server System Variables”

ft_stopword_file
Section 12.9.2, “Boolean Full-Text Searches”
Creating a Data Snapshot Using Raw Data Files
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 5.1.4, “Server System Variables”

G

[index top [3805]]

general_log
MySQL Glossary
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

general_log_file
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

group_concat_max_len
Section 12.20.1, “GROUP BY (Aggregate) Functions”

3812

Section 5.1.4, “Server System Variables”

gtid
Section 17.1.5.3, “Disabling GTID Transactions Online”

gtid_done
Section 13.7.5.23, “SHOW MASTER STATUS Syntax”

gtid_executed
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 17.1.5.1, “Replication Mode Concepts”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 17.1.3.4, “Restrictions on Replication with
GTIDs”
Section 13.7.5.23, “SHOW MASTER STATUS Syntax”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

gtid_executed_compression_period
Section 17.1.6.5, “Global Transaction ID Options and
Variables”

gtid_mode
Adding a GTID Based Master to a Multi-Source
Replication Slave
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.5.3, “Disabling GTID Transactions Online”
Section 17.1.5.2, “Enabling GTID Transactions Online”
Section 12.17, “Functions Used with Global
Transaction IDs”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.1.5.1, “Replication Mode Concepts”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 21.9.10.6, “The
replication_applier_status_by_worker Table”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

gtid_next
Section 13.1.5, “ALTER SERVER Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 13.7.2.2, “CHECK TABLE Syntax”

Section 13.1.13, “CREATE SERVER Syntax”
Section 13.1.23, “DROP SERVER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 17.1.5.1, “Replication Mode Concepts”
Section 13.7.6.6, “RESET Syntax”
Section 5.1.6, “Server Status Variables”
Section 13.4.2.6, “START SLAVE Syntax”
Section 13.4.2.7, “STOP SLAVE Syntax”
Section 21.9.7.1, “The events_transactions_current
Table”
Section 21.9.10.6, “The
replication_applier_status_by_worker Table”

gtid_owned
Section 17.1.6.5, “Global Transaction ID Options and
Variables”

gtid_purged
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”
Section 17.1.5.1, “Replication Mode Concepts”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 17.1.3.3, “Using GTIDs for Failover and
Scaleout”

H

[index top [3805]]

have_compress
Section 5.1.4, “Server System Variables”

have_crypt
Section 5.1.4, “Server System Variables”

have_dynamic_loading
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.4, “Server System Variables”

have_geometry
Section 5.1.4, “Server System Variables”

have_openssl
Section 5.1.4, “Server System Variables”

have_partitioning
Chapter 18, Partitioning

3813

have_profiling
Section 5.1.4, “Server System Variables”

have_query_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”

have_rtree_keys
Section 5.1.4, “Server System Variables”

have_ssl
Section 6.3.12.3, “Building MySQL with SSL Support”
Section 5.1.4, “Server System Variables”

have_statement_timeout
Section 5.1.4, “Server System Variables”

have_symlink
Section 5.1.4, “Server System Variables”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

host_cache_size
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

hostname
Section 5.1.4, “Server System Variables”

I

[index top [3805]]

identity
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”

ignore_db_dirs
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

init_connect
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 21.9.15.1, “The host_cache Table”

init_file
Section 5.1.4, “Server System Variables”

init_slave
Section 17.1.6.3, “Replication Slave Options and
Variables”

innodb
Section 14.3.2, “Configuring InnoDB for Read-Only
Operation”

innodb_adaptive_flushing
Section 14.3.3.2, “Configuring the Rate of InnoDB
Buffer Pool Flushing”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”

innodb_adaptive_flushing_lwm
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”

innodb_adaptive_hash_index
Section 14.2.7.6, “Adaptive Hash Indexes”
Section 14.3.6, “Configuring Thread Concurrency for
InnoDB”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 8.5.9, “Optimizing InnoDB Configuration
Variables”
Section 13.1.29, “TRUNCATE TABLE Syntax”

innodb_adaptive_hash_index_parts
Section 14.2.7.6, “Adaptive Hash Indexes”

innodb_adaptive_max_sleep_delay
Section 14.3.6, “Configuring Thread Concurrency for
InnoDB”
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_additional_mem_pool_size
Section 14.3.4, “Configuring the Memory Allocator for
InnoDB”
Section 1.4, “What Is New in MySQL 5.7”

innodb_api_bk_commit_interval
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”

innodb_api_disable_rowlock
Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”

innodb_api_enable_binlog
Section 14.17.6, “Using the InnoDB memcached Plugin
with Replication”

3814

innodb_api_enable_mdl
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”

innodb_api_trx_level
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”

innodb_autoextend_increment
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”
Section 14.3.1, “InnoDB Initialization and Startup
Configuration”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 14.4.1, “Resizing the InnoDB System
Tablespace”

innodb_autoinc_lock_mode
Section 14.5.5, “AUTO_INCREMENT Handling in
InnoDB”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 12.14, “Information Functions”
Section 14.5.7, “Limits on InnoDB Tables”
MySQL Glossary

innodb_buffer_pool_chunk_size
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.3.3.7, “Resizing the InnoDB Buffer Pool
Online”
Section 1.4, “What Is New in MySQL 5.7”

innodb_buffer_pool_dump_at_shutdown
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 14.3.3.5, “Preloading the InnoDB Buffer Pool
for Faster Restart”

innodb_buffer_pool_dump_now
Section 14.11, “InnoDB Startup Options and System
Variables”
Monitoring Buffer Pool Load Progress Using
Performance Schema

innodb_buffer_pool_dump_pct
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.3.3.5, “Preloading the InnoDB Buffer Pool
for Faster Restart”
Section 1.4, “What Is New in MySQL 5.7”

innodb_buffer_pool_filename
Section 14.3.3.5, “Preloading the InnoDB Buffer Pool
for Faster Restart”

innodb_buffer_pool_instances
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 14.3.3.7, “Resizing the InnoDB Buffer Pool
Online”
Section 8.10.1, “The InnoDB Buffer Pool”
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”
Section 14.3.3.4, “Using Multiple Buffer Pool Instances”

innodb_buffer_pool_load_abort
Section 5.1.6, “Server Status Variables”

innodb_buffer_pool_load_at_startup
Section 14.11, “InnoDB Startup Options and System
Variables”
Monitoring Buffer Pool Load Progress Using
Performance Schema
MySQL Glossary
Section 14.3.3.5, “Preloading the InnoDB Buffer Pool
for Faster Restart”
Section 5.1.6, “Server Status Variables”

innodb_buffer_pool_load_now
Section 14.11, “InnoDB Startup Options and System
Variables”
Monitoring Buffer Pool Load Progress Using
Performance Schema
Section 5.1.6, “Server Status Variables”

innodb_buffer_pool_size
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 14.6.1.6, “Compression for OLTP Workloads”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.18.5, “InnoDB Error Codes”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.3.3.7, “Resizing the InnoDB Buffer Pool
Online”
Section 5.1.6, “Server Status Variables”
Section 8.10.1, “The InnoDB Buffer Pool”
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”
Section 14.3.3.4, “Using Multiple Buffer Pool Instances”
Section 1.4, “What Is New in MySQL 5.7”

3815

innodb_change_buffer_max_size
Section 14.3.5.1, “Configuring the Change Buffer
Maximum Size”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_change_buffering
Section 14.2.7.5, “Change Buffer”
Section 14.3.5, “Configuring InnoDB Change Buffering”
Section 14.3.2, “Configuring InnoDB for Read-Only
Operation”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”

innodb_checksum_algorithm
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_checksums
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary

innodb_cmp_per_index_enabled
Section 14.6.1.4, “Monitoring Compression at Runtime”
Section 20.30.2, “The INFORMATION_SCHEMA
INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 14.6.1.3, “Tuning Compression for InnoDB
Tables”

innodb_compression_failure_threshold_pct
Section 14.6.1.6, “Compression for OLTP Workloads”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 14.6.1.3, “Tuning Compression for InnoDB
Tables”

innodb_compression_level
Section 14.6.1.6, “Compression for OLTP Workloads”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”
MySQL Glossary
Section 14.6.1.3, “Tuning Compression for InnoDB
Tables”

innodb_compression_pad_pct_max
Section 14.6.1.6, “Compression for OLTP Workloads”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”

MySQL Glossary
Section 14.6.1.3, “Tuning Compression for InnoDB
Tables”

innodb_concurrency_tickets
Section 14.3.6, “Configuring Thread Concurrency for
InnoDB”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 8.5.9, “Optimizing InnoDB Configuration
Variables”

innodb_create_intrinsic
Section 1.4, “What Is New in MySQL 5.7”

innodb_data_file_path
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 14.3.1, “InnoDB Initialization and Startup
Configuration”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 14.4.1, “Resizing the InnoDB System
Tablespace”
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”
Section 14.18.1, “Troubleshooting InnoDB I/O
Problems”
Section 14.4.3, “Using Raw Disk Partitions for the
System Tablespace”

innodb_data_home_dir
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 14.3.1, “InnoDB Initialization and Startup
Configuration”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 14.18.1, “Troubleshooting InnoDB I/O
Problems”

innodb_default_row_format
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 14.8.4, “COMPACT and REDUNDANT Row
Formats”
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.11, “InnoDB Startup Options and System
Variables”

3816

MySQL Glossary
Section 8.4.1, “Optimizing Data Size”
Section 14.2.7.7, “Physical Row Structure”
Section 14.8.2, “Specifying the Row Format for a
Table”
Section 1.4, “What Is New in MySQL 5.7”

innodb_doublewrite
Section 14.9.1, “InnoDB Disk I/O”
Section 14.3.1, “InnoDB Initialization and Startup
Configuration”
Section 14.2.1, “MySQL and the ACID Model”
MySQL Glossary
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”

innodb_fast_shutdown
Section 2.11.2.1, “Changes Affecting Downgrades from
MySQL 5.7”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 14.7.2.1, “Compatibility Check When InnoDB Is
Started”
Section 2.11.2, “Downgrading MySQL”
MySQL Glossary
Section 14.15.1, “The InnoDB Recovery Process”
Section 5.1.12, “The Server Shutdown Process”
Section 2.11.1, “Upgrading MySQL”

innodb_fil_make_page_dirty_debug
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_file_format
Section 14.7.2.2, “Compatibility Check When a Table Is
Opened”
Section 14.7.2.1, “Compatibility Check When InnoDB Is
Started”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.6.1.2, “Creating Compressed Tables”
Section 14.5.1, “Creating InnoDB Tables”
Section 14.8.3, “DYNAMIC and COMPRESSED Row
Formats”
Section 14.7.1, “Enabling File Formats”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”
Section 14.7.3, “Identifying the File Format in Use”
Section 14.7, “InnoDB File-Format Management”
Section 14.4.9, “InnoDB General Tablespaces”
Section 14.12.7, “InnoDB INFORMATION_SCHEMA
Temporary Table Information Table”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 14.2.7.7, “Physical Row Structure”

Section 14.6.1.7, “SQL Compression Syntax Warnings
and Errors”
Section 10.1.11, “Upgrading from Previous to Current
Unicode Support”

innodb_file_format_check
Section 14.7.2.2, “Compatibility Check When a Table Is
Opened”
Section 14.7.2.1, “Compatibility Check When InnoDB Is
Started”
Section 14.7, “InnoDB File-Format Management”
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_file_format_max
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.7, “InnoDB File-Format Management”
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_file_per_table
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.4.6, “Copying File-Per-Table Tablespaces to
Another Server”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.4.5, “Creating a File-Per-Table Tablespace
Outside the Data Directory”
Section 14.6.1.2, “Creating Compressed Tables”
Section 14.5.1, “Creating InnoDB Tables”
Section 14.8.3, “DYNAMIC and COMPRESSED Row
Formats”
Section 14.4.4.1, “Enabling and Disabling File-Per-
Table Tablespaces”
Section 14.9.2, “File Space Management”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”
Section 14.10.6, “Implementation Details of Online
DDL”
Section 14.16, “InnoDB and MySQL Replication”
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”
Section 14.4.9, “InnoDB General Tablespaces”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.14.4, “InnoDB Tablespace Monitor Output”
Section 14.1, “Introduction to InnoDB”
Section 14.5.2, “Moving or Copying InnoDB Tables to
Another Machine”
Section 14.2.1, “MySQL and the ACID Model”
MySQL Glossary
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 14.9.5, “Reclaiming Disk Space with
TRUNCATE TABLE”

3817

Section 17.3.4, “Replicating Different Databases to
Different Slaves”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 14.6.1.7, “SQL Compression Syntax Warnings
and Errors”
Section 20.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 10.1.11, “Upgrading from Previous to Current
Unicode Support”

innodb_fill_factor
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.2.7.4, “Physical Structure of an InnoDB
Index”
Section 14.2.7.8, “Sorted Index Builds”
Section 1.4, “What Is New in MySQL 5.7”

innodb_flush_log_at_timeout
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_flush_log_at_trx_commit
Section 14.2.1, “MySQL and the ACID Model”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”

innodb_flush_method
Section 14.4.4, “InnoDB File-Per-Table Tablespaces”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 5.1.6, “Server Status Variables”
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”

innodb_flush_neighbors
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”

innodb_flush_sync
Section 14.3.8, “Configuring the InnoDB Master Thread
I/O Rate”
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_flushing_avg_loops
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”

innodb_force_load_corrupted
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_force_recovery
Section 14.18.2, “Forcing InnoDB Recovery”
Section 1.7, “How to Report Bugs or Problems”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 2.11.4, “Rebuilding or Repairing Tables or
Indexes”
Section 14.15.2, “Tablespace Discovery During Crash
Recovery”
Section 14.15.1, “The InnoDB Recovery Process”

innodb_ft_aux_table
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 20.30.26, “The INFORMATION_SCHEMA
INNODB_FT_BEING_DELETED Table”
Section 20.30.21, “The INFORMATION_SCHEMA
INNODB_FT_CONFIG Table”
Section 20.30.25, “The INFORMATION_SCHEMA
INNODB_FT_DELETED Table”
Section 20.30.24, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_CACHE Table”
Section 20.30.23, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_TABLE Table”

innodb_ft_cache_size
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 20.30.24, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_CACHE Table”

innodb_ft_enable_diag_print
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_ft_enable_stopword
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 12.9.1, “Natural Language Full-Text Searches”

innodb_ft_max_token_size
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 12.9.8, “ngram Full-Text Parser”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”

3818

innodb_ft_min_token_size
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 12.9.9, “MeCab Full-Text Parser Plugin”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 12.9.8, “ngram Full-Text Parser”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”

innodb_ft_num_word_optimize
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”

innodb_ft_result_cache_limit
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_ft_server_stopword_table
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 20.30.22, “The INFORMATION_SCHEMA
INNODB_FT_DEFAULT_STOPWORD Table”

innodb_ft_sort_pll_degree
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_ft_total_cache_size
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 20.30.24, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_CACHE Table”

innodb_ft_user_stopword_table
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 20.30.22, “The INFORMATION_SCHEMA
INNODB_FT_DEFAULT_STOPWORD Table”

innodb_io_capacity
Section 14.3.8, “Configuring the InnoDB Master Thread
I/O Rate”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”
Section 1.4, “What Is New in MySQL 5.7”

innodb_io_capacity_max
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”

innodb_large_prefix
Section 8.3.4, “Column Indexes”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.8.3, “DYNAMIC and COMPRESSED Row
Formats”
Section 14.7, “InnoDB File-Format Management”
Section 14.8, “InnoDB Row Storage and Row Formats”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.7, “Limits on InnoDB Tables”
MySQL Glossary
Section 14.8.1, “Overview of InnoDB Row Storage”
Section 14.8.2, “Specifying the Row Format for a
Table”
Section 10.1.11, “Upgrading from Previous to Current
Unicode Support”

innodb_lock_wait_timeout
Section 14.2.2.9, “Deadlock Detection and Rollback”
Section 14.18.5, “InnoDB Error Codes”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 17.4.1.31, “Replication Retries and Timeouts”
Section 17.1.6.3, “Replication Slave Options and
Variables”

innodb_locks_unsafe_for_binlog
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
MySQL Glossary
Section 13.3.6, “SET TRANSACTION Syntax”

innodb_log_buffer_size
Section 14.11, “InnoDB Startup Options and System
Variables”

3819

MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 8.5.4, “Optimizing InnoDB Redo Logging”

innodb_log_checksum_algorithm
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 1.4, “What Is New in MySQL 5.7”

innodb_log_file_size
Section 14.4.2, “Changing the Number or Size of
InnoDB Redo Log Files”
Section 14.3.2, “Configuring InnoDB for Read-Only
Operation”
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 14.3.1, “InnoDB Initialization and Startup
Configuration”
Section 14.2.4, “InnoDB Redo Log”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 8.5.4, “Optimizing InnoDB Redo Logging”
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”

innodb_log_files_in_group
Section 14.4.2, “Changing the Number or Size of
InnoDB Redo Log Files”
Section 14.2.4, “InnoDB Redo Log”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 8.5.4, “Optimizing InnoDB Redo Logging”

innodb_log_group_home_dir
Section 2.10.1.1, “Initializing the Data Directory
Manually Using mysqld”
Section 14.2.4, “InnoDB Redo Log”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”

innodb_lru_scan_depth
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”

innodb_max_dirty_pages_pct
Section 14.3.3.2, “Configuring the Rate of InnoDB
Buffer Pool Flushing”
Section 14.11, “InnoDB Startup Options and System
Variables”

Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”

innodb_max_dirty_pages_pct_lwm
Section 14.3.3.6, “Tuning InnoDB Buffer Pool Flushing”

innodb_max_purge_lag
Section 14.2.3, “InnoDB Multi-Versioning”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_max_purge_lag_delay
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_max_undo_log_size
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.4.8, “Truncating Undo Logs That Reside in
Undo Tablespaces”

innodb_monitor_disable
Section 14.12.6, “InnoDB INFORMATION_SCHEMA
Metrics Table”
Section 13.7.5.15, “SHOW ENGINE Syntax”
Section 20.30.20, “The INFORMATION_SCHEMA
INNODB_METRICS Table”

innodb_monitor_enable
Section 14.12.6, “InnoDB INFORMATION_SCHEMA
Metrics Table”
Section 13.7.5.15, “SHOW ENGINE Syntax”
Section 20.30.20, “The INFORMATION_SCHEMA
INNODB_METRICS Table”

innodb_monitor_reset
Section 14.12.6, “InnoDB INFORMATION_SCHEMA
Metrics Table”
Section 20.30.20, “The INFORMATION_SCHEMA
INNODB_METRICS Table”

innodb_monitor_reset_all
Section 14.12.6, “InnoDB INFORMATION_SCHEMA
Metrics Table”
Section 20.30.20, “The INFORMATION_SCHEMA
INNODB_METRICS Table”

innodb_old_blocks_pct
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.3.3.3, “Making the Buffer Pool Scan
Resistant”
MySQL Glossary

3820

Section 8.10.1, “The InnoDB Buffer Pool”

innodb_old_blocks_time
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.3.3.3, “Making the Buffer Pool Scan
Resistant”
MySQL Glossary
Section 8.10.1, “The InnoDB Buffer Pool”

innodb_online_alter_log_max_size
Section 14.10.6, “Implementation Details of Online
DDL”
MySQL Glossary

innodb_open_files
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 5.1.4, “Server System Variables”

innodb_optimize_fulltext_only
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.2.7.3, “InnoDB FULLTEXT Indexes”
Section 14.12.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 20.30.23, “The INFORMATION_SCHEMA
INNODB_FT_INDEX_TABLE Table”

innodb_optimize_point_storage
Section 1.4, “What Is New in MySQL 5.7”

innodb_page_cleaners
Section 1.4, “What Is New in MySQL 5.7”

innodb_page_size
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.6.1.2, “Creating Compressed Tables”
Section 14.3.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”
Section 14.9.2, “File Space Management”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”
Section 14.4.9, “InnoDB General Tablespaces”
Section 14.6.2, “InnoDB Page Compression”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.7, “Limits on InnoDB Tables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.6.1.1, “Overview of Table Compression”
Section 14.2.7.4, “Physical Structure of an InnoDB
Index”
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”

Section 20.30.15, “The INFORMATION_SCHEMA
INNODB_SYS_TABLESPACES Table”
Section 14.17.8, “Troubleshooting the InnoDB
memcached Plugin”

innodb_print_all_deadlocks
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 14.2.2.10, “How to Cope with Deadlocks”
Section 14.18, “InnoDB Troubleshooting”
MySQL Glossary

innodb_purge_batch_size
Section 14.3.10, “Configuring InnoDB Purge
Scheduling”

innodb_purge_rseg_truncate_frequency
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.4.8, “Truncating Undo Logs That Reside in
Undo Tablespaces”

innodb_purge_threads
Section 14.3.10, “Configuring InnoDB Purge
Scheduling”
Section 14.3.8, “Configuring the InnoDB Master Thread
I/O Rate”
MySQL Glossary

innodb_random_read_ahead
Section 14.3.3.1, “Configuring InnoDB Buffer Pool
Prefetching (Read-Ahead)”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_read_ahead_threshold
Section 14.3.3.1, “Configuring InnoDB Buffer Pool
Prefetching (Read-Ahead)”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_read_io_threads
Section 14.3.7, “Configuring the Number of Background
InnoDB I/O Threads”
Section 14.14.3, “InnoDB Standard Monitor and Lock
Monitor Output”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 24.1.1, “MySQL Threads”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_rollback_segments
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

3821

Section 14.4.7, “Storing InnoDB Undo Logs in Separate
Tablespaces”

innodb_saved_page_number_debug
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_sort_buffer_size
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary

innodb_spin_wait_delay
Section 14.3.9, “Configuring Spin Lock Polling”

innodb_stats_auto_recalc
Configuring Automatic Statistics Calculation for
Persistent Optimizer Statistics
Section 14.3.11, “Configuring Optimizer Statistics for
InnoDB”
Configuring Optimizer Statistics Parameters for
Individual Tables
Section 13.1.14, “CREATE TABLE Syntax”
InnoDB Persistent Statistics Tables Example

innodb_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
MySQL Glossary

innodb_stats_on_metadata
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”

innodb_stats_persistent
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 14.3.11, “Configuring Optimizer Statistics for
InnoDB”
Configuring Optimizer Statistics Parameters for
Individual Tables
Section 14.3.11.1, “Configuring Persistent Optimizer
Statistics Parameters”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.3.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.7, “Limits on InnoDB Tables”

innodb_stats_persistent_sample_pages
Configuring Optimizer Statistics Parameters for
Individual Tables

Configuring the Number of Sampled Pages for InnoDB
Optimizer Statistics
Section 14.3.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.7, “Limits on InnoDB Tables”

innodb_stats_transient_sample_pages
Section 14.3.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”
Section 14.3.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.5.7, “Limits on InnoDB Tables”

innodb_status_output
Section 14.14.2, “Enabling InnoDB Monitors”
Section 1.4, “What Is New in MySQL 5.7”

innodb_status_output_locks
Section 14.14.2, “Enabling InnoDB Monitors”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 1.4, “What Is New in MySQL 5.7”

innodb_strict_mode
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TABLESPACE Syntax”
Section 14.6.1.5, “How Compression Works for InnoDB
Tables”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 5.1.7, “Server SQL Modes”
Section 14.6.1.7, “SQL Compression Syntax Warnings
and Errors”

innodb_support_xa
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 5.2.4, “The Binary Log”
Section 14.17.5.3, “Tuning Performance of the InnoDB
memcached Plugin”
Section 1.4, “What Is New in MySQL 5.7”

innodb_sync_debug
Section 2.9.4, “MySQL Source-Configuration Options”

innodb_table_locks
Section 14.11, “InnoDB Startup Options and System
Variables”

3822

Section 14.5.7, “Limits on InnoDB Tables”

innodb_temp_data_file_path
Section 14.2.6, “InnoDB Temporary Table Undo Logs”
MySQL Glossary
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”
Section 20.30.27, “The INFORMATION_SCHEMA
INNODB_TEMP_TABLE_INFO Table”
Section 1.4, “What Is New in MySQL 5.7”
Section B.5.3.5, “Where MySQL Stores Temporary
Files”

innodb_thread_concurrency
Section 14.3.6, “Configuring Thread Concurrency for
InnoDB”
Section 14.14.3, “InnoDB Standard Monitor and Lock
Monitor Output”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section A.14, “MySQL 5.7 FAQ: MySQL Enterprise
Thread Pool”
Section 8.5.9, “Optimizing InnoDB Configuration
Variables”

innodb_thread_sleep_delay
Section 14.3.6, “Configuring Thread Concurrency for
InnoDB”
Section 14.11, “InnoDB Startup Options and System
Variables”

innodb_tmpdir
Section B.5.3.5, “Where MySQL Stores Temporary
Files”

innodb_undo_directory
Section 14.3.2, “Configuring InnoDB for Read-Only
Operation”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 14.4.7, “Storing InnoDB Undo Logs in Separate
Tablespaces”
Section 14.4.8, “Truncating Undo Logs That Reside in
Undo Tablespaces”

innodb_undo_log_truncate
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.4.8, “Truncating Undo Logs That Reside in
Undo Tablespaces”
Section 1.4, “What Is New in MySQL 5.7”

innodb_undo_logs
Section 14.11, “InnoDB Startup Options and System
Variables”

Section 14.2.5, “InnoDB Undo Logs”
Section 5.1.6, “Server Status Variables”
Section 14.4.7, “Storing InnoDB Undo Logs in Separate
Tablespaces”
Section 14.4.8, “Truncating Undo Logs That Reside in
Undo Tablespaces”

innodb_undo_tablespaces
Section 14.3.2, “Configuring InnoDB for Read-Only
Operation”
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary
Section 14.4.7, “Storing InnoDB Undo Logs in Separate
Tablespaces”
Section 20.8, “The INFORMATION_SCHEMA FILES
Table”
Section 14.4.8, “Truncating Undo Logs That Reside in
Undo Tablespaces”

innodb_use_native_aio
Section 14.11, “InnoDB Startup Options and System
Variables”
MySQL Glossary

innodb_use_sys_malloc
Section 14.3.4, “Configuring the Memory Allocator for
InnoDB”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 1.4, “What Is New in MySQL 5.7”

innodb_write_io_threads
Section 14.3.7, “Configuring the Number of Background
InnoDB I/O Threads”
Section 14.14.3, “InnoDB Standard Monitor and Lock
Monitor Output”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 24.1.1, “MySQL Threads”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

insert_id
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 5.1.4, “Server System Variables”

interactive_timeout
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 23.8.7.54, “mysql_real_connect()”
Section 5.1.4, “Server System Variables”

internal_tmp_disk_storage_engine
Section 8.4.4, “Internal Temporary Table Use in
MySQL”

3823

Section 5.1.4, “Server System Variables”

J

[index top [3805]]

join_buffer_size
Batched Key Access Joins
Section 8.2.1.10, “Nested-Loop Join Algorithms”
Section 5.1.4, “Server System Variables”

K

[index top [3805]]

keep_files_on_create
Section 5.1.4, “Server System Variables”

key_buffer_size
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 8.8.5, “Estimating Query Performance”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 7.6.3, “How to Repair MyISAM Tables”
Section B.5.7, “Known Issues in MySQL”
Section 8.10.2.2, “Multiple Key Caches”
Section 8.10.2.6, “Restructuring a Key Cache”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.2.2.3, “Speed of DELETE Statements”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
Section 5.1.5.1, “Structured System Variables”
Section 8.10.2, “The MyISAM Key Cache”
Section 8.12.2, “Tuning Server Parameters”
Section 4.2.6, “Using Option Files”

key_cache_age_threshold
Section 8.10.2.3, “Midpoint Insertion Strategy”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”

key_cache_block_size
Section 8.10.2.5, “Key Cache Block Size”
Section 8.10.2.6, “Restructuring a Key Cache”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”

key_cache_division_limit
Section 8.10.2.3, “Midpoint Insertion Strategy”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”

L

[index top [3805]]

large_files_support
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”

large_page_size
Section 5.1.4, “Server System Variables”

large_pages
Section 5.1.4, “Server System Variables”

last_insert_id
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”

lc_messages
Section 5.1.4, “Server System Variables”
Section 10.2, “Setting the Error Message Language”

lc_messages_dir
Section 5.1.4, “Server System Variables”
Section 10.2, “Setting the Error Message Language”

lc_time_names
Section 12.7, “Date and Time Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 10.7, “MySQL Server Locale Support”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

license
Section 5.1.4, “Server System Variables”

local
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”

local_infile
Section 5.1.4, “Server System Variables”

lock_wait_timeout
Section 5.1.4, “Server System Variables”

locked_in_memory
Section 5.1.4, “Server System Variables”

log
Adding a Binary Log Based Master to a Multi-Source
Replication Slave

3824

Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section C.6, “Restrictions on XA Transactions”
Section 17.2.3.3, “Startup Options and Replication
Channels”
Section 14.17.6, “Using the InnoDB memcached Plugin
with Replication”

log_backward_compatible_user_definitions
Section 5.1.4, “Server System Variables”
Section 13.7.5.12, “SHOW CREATE USER Syntax”

log_bin
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 17.1.6.5, “Global Transaction ID Options and
Variables”
Section 17.1.3.1, “GTID Concepts”

log_bin_basename
Section 17.1.6.4, “Binary Logging Options and
Variables”

log_bin_index
Section 17.1.6.4, “Binary Logging Options and
Variables”

log_bin_trust_function_creators
Section 19.7, “Binary Logging of Stored Programs”
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section A.4, “MySQL 5.7 FAQ: Stored Procedures and
Functions”
Section 5.1.4, “Server System Variables”

log_bin_use_v
Section 17.1.6.4, “Binary Logging Options and
Variables”

log_builtin_as_identified_by_password
Section 5.1.4, “Server System Variables”
Section 13.7.5.12, “SHOW CREATE USER Syntax”

log_error
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”

log_error_verbosity
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section B.5.2.9, “MySQL server has gone away”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

Section 5.2.2, “The Error Log”
Section 1.4, “What Is New in MySQL 5.7”

log_output
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

log_queries_not_using_indexes
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

log_slave_updates
Section 17.1.6.4, “Binary Logging Options and
Variables”

log_slow_admin_statements
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

log_slow_slave_statements
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.2.5, “The Slow Query Log”

log_syslog
Section 2.5.10, “Managing MySQL Server with
systemd”
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”

log_syslog_facility
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”

log_syslog_include_pid
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”

log_syslog_tag
Section 4.3.2, “mysqld_safe — MySQL Server
Startup Script”
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”

log_throttle_queries_not_using_indexes
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

3825

log_timestamps
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

log_warnings
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”
Section 1.4, “What Is New in MySQL 5.7”

long_query_time
Section 5.2, “MySQL Server Logs”
Section 4.5.2, “mysqladmin — Client for Administering
a MySQL Server”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

low_priority_updates
Section 5.1.4, “Server System Variables”
Section 8.11.2, “Table Locking Issues”

lower_case_file_system
Section 5.1.4, “Server System Variables”

lower_case_table_names
Section 10.1.7.9, “Collation and
INFORMATION_SCHEMA Searches”
Section 13.7.1.4, “GRANT Syntax”
Section 17.2.5, “How Servers Evaluate Replication
Filtering Rules”
Section 1.7, “How to Report Bugs or Problems”
Section 9.2.2, “Identifier Case Sensitivity”
Section 8.9.3, “Optimizer Hints”
Section 17.4.1.38, “Replication and Variables”
Section 13.7.1.6, “REVOKE Syntax”
Section 5.1.4, “Server System Variables”
Section 13.7.5.37, “SHOW TABLES Syntax”
Section 20.30.9, “The INFORMATION_SCHEMA
INNODB_SYS_COLUMNS Table”
Section 20.30.7, “The INFORMATION_SCHEMA
INNODB_SYS_TABLES Table”
Section 13.1.14.3, “Using FOREIGN KEY Constraints”

M

[index top [3805]]

master_info_repository
Section 17.1.6.3, “Replication Slave Options and
Variables”

master_verify_checksum
Section 17.1.6.4, “Binary Logging Options and
Variables”
MySQL Glossary
Section 5.2.4, “The Binary Log”

max_allowed_packet
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 12.3.2, “Comparison Functions and Operators”
Section B.5.4.6, “Deleting Rows from Related Tables”
Section 12.20.1, “GROUP BY (Aggregate) Functions”
Section 8.12.5.1, “How MySQL Uses Memory”
Section B.5.2.3, “Lost connection to MySQL server”
Section 23.8, “MySQL C API”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.50, “mysql_options()”
Section 23.8.11.26, “mysql_stmt_send_long_data()”
Section 23.8.7.77, “mysql_use_result()”
Section B.5.2.10, “Packet Too Large”
Section 17.4.1.22, “Replication and
max_allowed_packet”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”
Section 11.6, “The JSON Data Type”
Section 4.2.6, “Using Option Files”
Using Version Tokens

max_binlog_cache_size
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 5.2.4, “The Binary Log”

max_binlog_size
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 5.2, “MySQL Server Logs”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.2.7, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
Section 17.2.4.1, “The Slave Relay Log”

max_binlog_stmt_cache_size
Section 17.1.6.4, “Binary Logging Options and
Variables”

max_connect_errors
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section 13.7.6.3, “FLUSH Syntax”
Section B.5.2.6, “Host 'host_name' is blocked”

3826

Section 5.1.4, “Server System Variables”
Section 21.9.15.1, “The host_cache Table”

max_connections
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”
Section 21.12, “Performance Schema System
Variables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.12.7.2, “Thread Pool Operation”
Section B.5.2.7, “Too many connections”

max_delayed_threads
Section 5.1.4, “Server System Variables”

max_digest_length
Section 8.12.5.1, “How MySQL Uses Memory”
Section 21.7, “Performance Schema Statement
Digests”
Section 21.12, “Performance Schema System
Variables”
Section 5.1.4, “Server System Variables”
Section 21.9.6.1, “The events_statements_current
Table”
Section 6.3.17.3, “Using MySQL Enterprise Firewall”

max_error_count
Diagnostics Area-Related System Variables
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.6.7.4, “RESIGNAL Syntax”
Section 5.1.4, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Syntax”
Section 13.7.5.40, “SHOW WARNINGS Syntax”

max_execution_time
Section 8.9.3, “Optimizer Hints”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

max_heap_table_size
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section C.10.3, “Limits on Table Size”
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.4.1.38, “Replication and Variables”
Section C.3, “Restrictions on Server-Side Cursors”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 15.3, “The MEMORY Storage Engine”

max_insert_delayed_threads
Section 5.1.4, “Server System Variables”

max_join_size
Section 8.8.2, “EXPLAIN Output Format”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 5.1.5, “Using System Variables”

max_length_for_sort_data
Section 8.2.1.15, “ORDER BY Optimization”
Section 5.1.4, “Server System Variables”

max_points_in_geometry
Section 5.1.4, “Server System Variables”
Section 12.15.8, “Spatial Operator Functions”

max_prepared_stmt_count
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 21.12, “Performance Schema System
Variables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.5, “SQL Syntax for Prepared Statements”

max_relay_log_size
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 17.2.4.1, “The Slave Relay Log”

max_seeks_for_key
Section 14.5.7, “Limits on InnoDB Tables”
Section 5.1.4, “Server System Variables”

max_sort_length
Section 13.1.14, “CREATE TABLE Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 8.2.1.15, “ORDER BY Optimization”
Section 5.1.4, “Server System Variables”
Section 11.4.3, “The BLOB and TEXT Types”
Section 11.6, “The JSON Data Type”

max_sp_recursion_depth
Section 5.1.4, “Server System Variables”
Section 19.2.1, “Stored Routine Syntax”

max_statement_time
Section 8.9.3, “Optimizer Hints”
Section 13.2.9, “SELECT Syntax”

3827

Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

max_tmp_tables
Section 5.1.4, “Server System Variables”

max_user_connections
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.7.1.2, “CREATE USER Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 5.1.4, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”

max_write_lock_count
Section 5.1.4, “Server System Variables”
Section 8.11.2, “Table Locking Issues”

mecab_rc_file
Section 12.9.9, “MeCab Full-Text Parser Plugin”

metadata_locks_cache_size
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

metadata_locks_hash_instances
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

min_examined_row_limit
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

multi_range_count
Section 5.1.4, “Server System Variables”

myisam_data_pointer_size
Section 13.1.14, “CREATE TABLE Syntax”
Section C.10.3, “Limits on Table Size”
Section 5.1.4, “Server System Variables”

myisam_max_sort_file_size
Section 15.2.1, “MyISAM Startup Options”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”
Section 8.6.3, “Speed of REPAIR TABLE Statements”

myisam_mmap_size
Section 5.1.4, “Server System Variables”

myisam_recover_options
Section 5.1.4, “Server System Variables”

myisam_repair_threads
Section 5.1.4, “Server System Variables”

myisam_sort_buffer_size
Section 13.1.6, “ALTER TABLE Syntax”
Section 15.2.1, “MyISAM Startup Options”
Section 5.1.4, “Server System Variables”
Section 8.6.3, “Speed of REPAIR TABLE Statements”

myisam_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics
Collection”
Section 5.1.4, “Server System Variables”

myisam_use_mmap
Section 8.12.5.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”

mysql_firewall_max_query_size
MySQL Enterprise Firewall System Variables
Section 6.3.17.3, “Using MySQL Enterprise Firewall”

mysql_firewall_mode
MySQL Enterprise Firewall System Variables
Section 6.3.17.3, “Using MySQL Enterprise Firewall”

mysql_firewall_trace
MySQL Enterprise Firewall System Variables
Section 6.3.17.3, “Using MySQL Enterprise Firewall”

mysql_native_password_proxy_users
Section 6.3.10, “Proxy Users”
Section 5.1.4, “Server System Variables”

N

[index top [3805]]

named_pipe
Section 5.1.4, “Server System Variables”

net_buffer_length
Section 8.12.5.1, “How MySQL Uses Memory”
Section 23.8, “MySQL C API”
Section 23.8.7.50, “mysql_options()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlpump — A Database Backup
Program”
Section 5.1.4, “Server System Variables”

net_read_timeout
Section B.5.2.3, “Lost connection to MySQL server”
Section 5.1.4, “Server System Variables”

3828

net_retry_count
Section 5.1.4, “Server System Variables”

net_write_timeout
Section 5.1.4, “Server System Variables”

new
Section 5.1.4, “Server System Variables”

ngram_token_size
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.4, “Full-Text Stopwords”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 12.9.8, “ngram Full-Text Parser”

O

[index top [3805]]

offline_mode
Section 5.1.4, “Server System Variables”

old
Section 8.9.4, “Index Hints”
Section 5.1.4, “Server System Variables”

old_alter_table
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.10.4, “Combining or Separating DDL
Statements”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 14.10.2, “Performance and Concurrency
Considerations for Online DDL”
Section 5.1.4, “Server System Variables”
Section 14.10.3, “SQL Syntax for Online DDL”

old_passwords
Section 6.3.5, “Assigning Account Passwords”
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section B.5.2.4, “Client does not support authentication
protocol”
Section 13.7.1.2, “CREATE USER Syntax”
Section 12.13, “Encryption and Compression
Functions”
Section 6.3.7, “Password Expiration and Sandbox
Mode”
Section 6.3.6, “Password Expiration Policy”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.4, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 1.4, “What Is New in MySQL 5.7”

open_files_limit
Section B.5.2.18, “'File' Not Found and Similar Errors”

Section 21.12, “Performance Schema System
Variables”
Section 18.6, “Restrictions and Limitations on
Partitioning”
Section 5.1.4, “Server System Variables”

optimizer_prune_level
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 8.9.3, “Optimizer Hints”
Optimizing Subqueries with Semi-Join Transformations
Section 5.1.4, “Server System Variables”

optimizer_search_depth
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 5.1.4, “Server System Variables”

optimizer_switch
Batched Key Access Joins
Block Nested-Loop Algorithm for Outer Joins and Semi-
Joins
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 8.9.2, “Controlling Switchable Optimizations”
Section 8.2.1.5, “Engine Condition Pushdown
Optimization”
Section 8.2.1.6, “Index Condition Pushdown
Optimization”
Join Buffer Management for Block Nested-Loop and
Batched Key Access Algorithms
Section 8.2.1.13, “Multi-Range Read Optimization”
Section 8.9.3, “Optimizer Hints”
Optimizing Derived Tables and View References
Optimizing Subqueries with Semi-Join Transformations
Optimizing Subqueries with Subquery Materialization
Section 5.1.4, “Server System Variables”
Section 22.4.5.7, “The list_add() Function”
Section 8.2.1.7, “Use of Index Extensions”
Section 19.5.2, “View Processing Algorithms”
Section 1.4, “What Is New in MySQL 5.7”

optimizer_trace
Section 5.1.4, “Server System Variables”
Section 20.12, “The INFORMATION_SCHEMA
OPTIMIZER_TRACE Table”

optimizer_trace_features
Section 5.1.4, “Server System Variables”

optimizer_trace_limit
Section 5.1.4, “Server System Variables”

optimizer_trace_max_mem_size
Section 5.1.4, “Server System Variables”

optimizer_trace_offset
Section 5.1.4, “Server System Variables”

3829

P

[index top [3805]]

performance_schema
Section 21.1, “Performance Schema Quick Start”
Section 21.2.2, “Performance Schema Startup
Configuration”
Section 21.12, “Performance Schema System
Variables”

performance_schema_accounts_size
Section 21.9.14.11, “Performance Schema Status
Variable Summary Tables”
Section 21.9.13, “Performance Schema Status Variable
Tables”
Section 21.12, “Performance Schema System
Variables”
Section 21.9.8.1, “The accounts Table”

performance_schema_digests_size
Section 21.7, “Performance Schema Statement
Digests”
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”
Section 21.9.14.3, “Statement Summary Tables”

performance_schema_events_stages_history_long_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9.5.3, “The events_stages_history_long
Table”

performance_schema_events_stages_history_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9.5.2, “The events_stages_history Table”

performance_schema_events_statements_history_long_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9.6.3, “The events_statements_history_long
Table”

performance_schema_events_statements_history_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9.6.2, “The events_statements_history
Table”

performance_schema_events_transactions_history_long_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9.7.3, “The
events_transactions_history_long Table”

performance_schema_events_transactions_history_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9.7.2, “The events_transactions_history
Table”

performance_schema_events_waits_history_long_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9, “Performance Schema Table
Descriptions”
Section 13.7.5.15, “SHOW ENGINE Syntax”
Section 21.9.4.3, “The events_waits_history_long
Table”

performance_schema_events_waits_history_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9, “Performance Schema Table
Descriptions”
Section 13.7.5.15, “SHOW ENGINE Syntax”
Section 21.9.4.2, “The events_waits_history Table”

performance_schema_hosts_size
Section 21.9.14.11, “Performance Schema Status
Variable Summary Tables”
Section 21.9.13, “Performance Schema Status Variable
Tables”
Section 21.12, “Performance Schema System
Variables”
Section 21.9.8.2, “The hosts Table”

performance_schema_max_cond_classes
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_cond_instances
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_digest_length
Section 21.7, “Performance Schema Statement
Digests”
Section 21.12, “Performance Schema System
Variables”
Section 5.1.4, “Server System Variables”
Section 21.9.6.1, “The events_statements_current
Table”

performance_schema_max_file_classes
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_file_handles
Section 21.12, “Performance Schema System
Variables”

3830

performance_schema_max_file_instances
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_index_stat
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_memory_classes
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_metadata_locks
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”
Section 21.9.11.1, “The metadata_locks Table”

performance_schema_max_mutex_classes
Section 21.5, “Performance Schema Status Monitoring”
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_mutex_instances
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_prepared_statements_instances
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”
Section 21.9.6.4, “The prepared_statements_instances
Table”

performance_schema_max_program_instances
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_rwlock_classes
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_rwlock_instances
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_socket_classes
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_socket_instances
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_sql_text_length
Section 21.7, “Performance Schema Statement
Digests”
Section 21.12, “Performance Schema System
Variables”
Section 21.9.6.1, “The events_statements_current
Table”

performance_schema_max_stage_classes
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_statement_classes
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_statement_stack
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_table_handles
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”
Section 21.9.11.2, “The table_handles Table”

performance_schema_max_table_instances
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_table_lock_stat
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_thread_classes
Section 21.12, “Performance Schema System
Variables”

performance_schema_max_thread_instances
Section 21.9.13, “Performance Schema Status Variable
Tables”
Section 21.13, “Performance Schema Status Variables”
Section 21.12, “Performance Schema System
Variables”
Section 13.7.5.15, “SHOW ENGINE Syntax”

performance_schema_session_connect_attrs_size
Section 21.12, “Performance Schema System
Variables”

performance_schema_setup_actors_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9.2.1, “The setup_actors Table”

3831

performance_schema_setup_objects_size
Section 21.12, “Performance Schema System
Variables”
Section 21.9.2.4, “The setup_objects Table”

performance_schema_users_size
Section 21.9.14.11, “Performance Schema Status
Variable Summary Tables”
Section 21.9.13, “Performance Schema Status Variable
Tables”
Section 21.12, “Performance Schema System
Variables”
Section 21.9.8.3, “The users Table”

pid_file
Section 5.1.4, “Server System Variables”

plugin_dir
Section 6.1.2.2, “Administrator Guidelines for Password
Security”
Section 24.2.4.3, “Compiling and Installing Plugin
Libraries”
Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-Defined Functions”
Section 12.18.1, “Enterprise Encryption Installation”
Section 2.10.1, “Initializing the Data Directory”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Installing or Uninstalling the UDF Locking Interface
Installing or Uninstalling Version Tokens
Section 6.3.15.1, “Installing the Audit Log Plugin”
Installing the PAM Authentication Plugin
Installing the Windows Authentication Plugin
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Password Validation Plugin Installation
Section 6.3.8, “Pluggable Authentication”
Section 15.11.1, “Pluggable Storage Engine
Architecture”
Section 24.2.2, “Plugin API Components”
Section 14.17.3.1, “Prerequisites for the InnoDB
memcached Plugin”
Section C.9, “Restrictions on Pluggable Authentication”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.25, “SHOW PLUGINS Syntax”
Section 20.15, “The INFORMATION_SCHEMA
PLUGINS Table”
Section 6.3.9.7, “The No-Login Authentication Plugin”
Section 6.3.9.5, “The PAM Authentication Plugin”
Section 6.3.9.9, “The Socket Peer-Credential
Authentication Plugin”
Section 6.3.9.10, “The Test Authentication Plugin”
Section 6.3.9.6, “The Windows Native Authentication
Plugin”

Section 8.12.7.1, “Thread Pool Components and
Installation”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Using the Authentication Plugins
Using Your Own Protocol Trace Plugins
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA
Plugins”
Section 24.2.4.10, “Writing Password-Validation
Plugins”
Section 24.2.4.7, “Writing Semisynchronous
Replication Plugins”

port
Section B.5.2.2, “Can't connect to [local] MySQL
server”
Section 5.1.4, “Server System Variables”

preload_buffer_size
Section 5.1.4, “Server System Variables”

profiling
Section 5.1.4, “Server System Variables”
Section 13.7.5.30, “SHOW PROFILE Syntax”
Section 20.17, “The INFORMATION_SCHEMA
PROFILING Table”

profiling_history_size
Section 5.1.4, “Server System Variables”
Section 13.7.5.30, “SHOW PROFILE Syntax”

protocol_version
Section 5.1.4, “Server System Variables”

proxy_user
Section 6.3.10, “Proxy Users”
Section 5.1.4, “Server System Variables”

pseudo_slave_mode
Section 5.1.4, “Server System Variables”

pseudo_thread_id
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”

Q

[index top [3805]]

query_alloc_block_size
Section 5.1.4, “Server System Variables”

3832

query_cache_limit
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”

query_cache_min_res_unit
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”

query_cache_size
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1.5, “Using System Variables”

query_cache_type
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.2, “Query Cache SELECT Options”
Section 13.2.9, “SELECT Syntax”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

query_cache_wlock_invalidate
Section 5.1.4, “Server System Variables”

query_prealloc_size
Section 5.1.4, “Server System Variables”

R

[index top [3805]]

rand_seed
Section 5.1.4, “Server System Variables”

range_alloc_block_size
Section 5.1.4, “Server System Variables”

range_optimizer_max_mem_size
Section 5.1.4, “Server System Variables”

rbr_exec_mode
Section 5.1.4, “Server System Variables”

read_buffer_size
Section 8.12.5.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”
Section 8.6.3, “Speed of REPAIR TABLE Statements”

read_only
Section 13.7.1, “Account Management Statements”
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 17.3.1.3, “Backing Up a Master or Slave by
Making It Read Only”

Section 13.7.1.2, “CREATE USER Syntax”
Section 13.7.1.3, “DROP USER Syntax”
Section 8.14.2, “General Thread States”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Syntax”
Section 17.4.1.38, “Replication and Variables”
Section 13.7.1.6, “REVOKE Syntax”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”

read_rnd_buffer_size
Section 8.12.5.1, “How MySQL Uses Memory”
Section 8.2.1.13, “Multi-Range Read Optimization”
Section 8.2.1.15, “ORDER BY Optimization”
Section 5.1.4, “Server System Variables”
Section 8.12.2, “Tuning Server Parameters”

relay
Section C.6, “Restrictions on XA Transactions”
Section 17.2.3.3, “Startup Options and Replication
Channels”

relay_log
Section 17.1.6.3, “Replication Slave Options and
Variables”

relay_log_basename
Section 17.1.6.3, “Replication Slave Options and
Variables”

relay_log_index
Section 17.1.6.3, “Replication Slave Options and
Variables”

relay_log_info_file
Section 17.1.6.3, “Replication Slave Options and
Variables”

relay_log_info_repository
Section 17.1.6.3, “Replication Slave Options and
Variables”

relay_log_purge
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 5.1.4, “Server System Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”

relay_log_recovery
Section 17.1.6.3, “Replication Slave Options and
Variables”

3833

relay_log_space_limit
Section 8.14.5, “Replication Slave I/O Thread States”
Section 5.1.4, “Server System Variables”
Section 17.2.3.3, “Startup Options and Replication
Channels”

report_host
Section 5.1.4, “Server System Variables”

report_password
Section 5.1.4, “Server System Variables”

report_port
Section 5.1.4, “Server System Variables”

report_user
Section 5.1.4, “Server System Variables”

require_secure_transport
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section B.3, “Server Error Codes and Messages”
Section 5.1.4, “Server System Variables”
Section 6.3.12, “Using Secure Connections”

rewriter_enabled
Rewriter Query Rewrite Plugin System Variables
Using the Rewriter Query Rewrite Plugin

rewriter_verbose
Rewriter Query Rewrite Plugin System Variables

rpl_semi_sync_master_enabled
Section 17.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 17.3.8.3, “Semisynchronous Replication
Monitoring”
Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_timeout
Section 17.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_trace_level
Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_wait_for_slave_count
Section 17.3.8, “Semisynchronous Replication”

Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_wait_no_slave
Section 5.1.4, “Server System Variables”

rpl_semi_sync_master_wait_point
Section 17.3.8, “Semisynchronous Replication”
Section 5.1.4, “Server System Variables”

rpl_semi_sync_slave_enabled
Section 17.3.8.1, “Semisynchronous Replication
Administrative Interface”
Section 17.3.8.2, “Semisynchronous Replication
Installation and Configuration”
Section 5.1.4, “Server System Variables”

rpl_semi_sync_slave_trace_level
Section 5.1.4, “Server System Variables”

rpl_stop_slave_timeout
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 13.4.2.7, “STOP SLAVE Syntax”

S

[index top [3805]]

secure_auth
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section B.5.2.4, “Client does not support authentication
protocol”
Section 6.3.9.3, “Migrating Away from Pre-4.1
Password Hashing and the mysql_old_password
Plugin”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

secure_file_priv
Section 2.10.1, “Initializing the Data Directory”
Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.1.3, “Making MySQL Secure Against
Attackers”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 6.2.1, “Privileges Provided by MySQL”
Section 23.7.2, “Restrictions When Using the
Embedded MySQL Server”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

3834

Section 12.5, “String Functions”

server_id
Section 12.19, “Miscellaneous Functions”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 6.3.15.3, “The Audit Log File”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

server_uuid
Section 17.1.3.1, “GTID Concepts”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 17.1.6, “Replication and Binary Logging
Options and Variables”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.6, “START SLAVE Syntax”
Section 21.9.10.2, “The replication_connection_status
Table”

session_track_gtids
Section 23.8.7.65, “mysql_session_track_get_first()”
Section 17.1.5.1, “Replication Mode Concepts”
Section 5.1.4, “Server System Variables”

session_track_schema
Section 23.8.7.65, “mysql_session_track_get_first()”
Section 5.1.4, “Server System Variables”

session_track_state_change
Section 23.8.7.65, “mysql_session_track_get_first()”
Section 5.1.4, “Server System Variables”

session_track_system_variables
Section 23.8.7.65, “mysql_session_track_get_first()”
Section 5.1.4, “Server System Variables”

sha
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 6.3.12.1, “OpenSSL Versus yaSSL”
Section 6.3.10, “Proxy Users”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 6.3.9.4, “The SHA-256 Authentication Plugin”
Section 6.3.12, “Using Secure Connections”

shared_memory
Section B.3, “Server Error Codes and Messages”

Section 5.1.4, “Server System Variables”

shared_memory_base_name
Section 5.1.4, “Server System Variables”

show_compatibility_
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 13.7.6.3, “FLUSH Syntax”
Section 21.17, “Migrating to Performance Schema
System and Status Variable Tables”
Section 21.9.14.11, “Performance Schema Status
Variable Summary Tables”
Section 21.9.13, “Performance Schema Status Variable
Tables”
Section 21.9.12, “Performance Schema System
Variable Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.35, “SHOW STATUS Syntax”
Section 13.7.5.39, “SHOW VARIABLES Syntax”
Section 20.9, “The INFORMATION_SCHEMA
GLOBAL_STATUS and SESSION_STATUS Tables”
Section 20.10, “The INFORMATION_SCHEMA
GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”
Section 1.4, “What Is New in MySQL 5.7”

show_old_temporals
Section 5.1.4, “Server System Variables”

simplified_binlog_gtid_recovery
Section 17.1.6.5, “Global Transaction ID Options and
Variables”

skip_external_locking
Section 8.11.5, “External Locking”
Section 5.1.4, “Server System Variables”

skip_name_resolve
Section 5.1.4, “Server System Variables”

skip_networking
Section 5.1.4, “Server System Variables”

skip_show_database
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

slave
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.3.3, “Startup Options and Replication
Channels”

3835

slave_allow_batching
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_checkpoint_group
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_checkpoint_period
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_compressed_protocol
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_exec_mode
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.1.2, “Usage of Row-Based Logging and
Replication”

slave_load_tmpdir
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

slave_max_allowed_packet
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_net_timeout
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.7.1, “Checking Replication Status”
Section 17.4.1.21, “Replication and Master or Slave
Shutdowns”
Section 8.14.5, “Replication Slave I/O Thread States”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

slave_parallel_type
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_parallel_workers
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 21.9.10, “Performance Schema Replication
Tables”
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”

Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 8.14.6, “Replication Slave SQL Thread States”
Section 13.4.2.7, “STOP SLAVE Syntax”

slave_pending_jobs_size_max
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_preserve_commit_order
Section 17.4.1.34, “Replication and Transaction
Inconsistencies”
Section 8.14.5, “Replication Slave I/O Thread States”
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_rows_search_algorithms
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_skip_errors
Section 17.1.6.3, “Replication Slave Options and
Variables”

slave_sql_verify_checksum
MySQL Glossary
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.2.4, “The Binary Log”

slave_transaction_retries
Section 17.4.1.31, “Replication Retries and Timeouts”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 17.2.3.3, “Startup Options and Replication
Channels”

slave_type_conversions
Section 17.1.6.3, “Replication Slave Options and
Variables”

slow_launch_time
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

slow_query_log
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

slow_query_log_file
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”

3836

socket
Section 5.1.4, “Server System Variables”

sort_buffer_size
Section 7.6.3, “How to Repair MyISAM Tables”
Section 8.2.1.19, “Optimizing LIMIT Queries”
Section 8.2.1.15, “ORDER BY Optimization”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

sql_auto_is_null
Section 12.3.2, “Comparison Functions and Operators”
Section 13.1.14, “CREATE TABLE Syntax”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”

sql_big_selects
Section 5.1.4, “Server System Variables”

sql_buffer_result
Section 5.1.4, “Server System Variables”

sql_log_bin
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 17.1.6.1, “Replication and Binary Logging
Option and Variable Reference”
Section 5.1.4, “Server System Variables”
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 13.7.4, “SET Syntax”
Section 22.4.4.2, “The diagnostics() Procedure”
Section 22.4.4.12, “The ps_setup_reload_saved()
Procedure”
Section 22.4.4.14, “The ps_setup_save() Procedure”
Section 22.4.4.22, “The ps_trace_statement_digest()
Procedure”
Section 22.4.4.23, “The ps_trace_thread() Procedure”
Section 22.4.4.25, “The
statement_performance_analyzer() Procedure”
Section 17.4.3, “Upgrading a Replication Setup”

sql_log_off
Section 17.1.6.4, “Binary Logging Options and
Variables”
MySQL Glossary
Section 17.1.6.1, “Replication and Binary Logging
Option and Variable Reference”
Section 5.2.1, “Selecting General Query and Slow
Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”

SQL_MODE
Section 14.10.5, “Examples of Online DDL”

Section 14.10.1, “Overview of Online DDL”

sql_mode
Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.7”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”
Section 13.1.16, “CREATE TRIGGER Syntax”
Effect of Signals on Handlers, Cursors, and Statements
Section 12.21.3, “Expression Handling”
Section 11.3.6, “Fractional Seconds in Time Values”
Section 1.7, “How to Report Bugs or Problems”
Section 14.1.1, “InnoDB as the Default MySQL Storage
Engine”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 5.7 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 1.8, “MySQL Standards Compliance”
Section 4.4.2, “mysql_install_db — Initialize
MySQL Data Directory”
Section B.5.4.2, “Problems Using DATE Columns”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.2, “Server Configuration Defaults”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.5.13, “SHOW CREATE VIEW Syntax”
Section 5.2.4, “The Binary Log”
Section 20.29, “The INFORMATION_SCHEMA VIEWS
Table”
Section 22.4.5.7, “The list_add() Function”
Section 4.2.6, “Using Option Files”
Section 5.1.5, “Using System Variables”
Section 1.4, “What Is New in MySQL 5.7”

sql_notes
Diagnostics Area-Related System Variables
Section 5.1.4, “Server System Variables”
Section 13.7.5.40, “SHOW WARNINGS Syntax”

sql_quote_show_create
Section 5.1.4, “Server System Variables”
Section 13.7.5.6, “SHOW CREATE DATABASE
Syntax”
Section 13.7.5.10, “SHOW CREATE TABLE Syntax”

sql_safe_updates
Section 5.1.4, “Server System Variables”

sql_select_limit
Section 5.1.4, “Server System Variables”

sql_slave_skip_counter
Section 17.1.5.1, “Replication Mode Concepts”
Section 17.1.6.3, “Replication Slave Options and
Variables”

3837

Section 17.1.3.4, “Restrictions on Replication with
GTIDs”
Section 13.7.5.34, “SHOW SLAVE STATUS Syntax”

sql_warnings
Section 5.1.4, “Server System Variables”

ssl_ca
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 5.1.4, “Server System Variables”

ssl_capath
Section 5.1.4, “Server System Variables”

ssl_cert
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 5.1.4, “Server System Variables”

ssl_cipher
Section 5.1.4, “Server System Variables”

ssl_crl
Section 5.1.4, “Server System Variables”

ssl_crlpath
Section 5.1.4, “Server System Variables”

ssl_key
Section 6.3.12.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.13.1, “Creating SSL and RSA Certificates
and Keys using MySQL”
Section 5.1.4, “Server System Variables”

storage_engine
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 17.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 1.4, “What Is New in MySQL 5.7”

stored_program_cache
Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”
Section 5.1.4, “Server System Variables”

super_read_only
Section 5.1.4, “Server System Variables”

sync_binlog
Section 17.1.6.4, “Binary Logging Options and
Variables”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.2.1, “MySQL and the ACID Model”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 17.4.1.21, “Replication and Master or Slave
Shutdowns”
Section 5.2.4, “The Binary Log”

sync_frm
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

sync_master_info
Section 17.1.6.3, “Replication Slave Options and
Variables”

sync_relay_log
Section 17.1.6.3, “Replication Slave Options and
Variables”

sync_relay_log_info
Section 17.4.1.21, “Replication and Master or Slave
Shutdowns”
Section 17.1.6.3, “Replication Slave Options and
Variables”

system_time_zone
Section 10.6, “MySQL Server Time Zone Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

T

[index top [3805]]

table_definition_cache
Section 5.1.4, “Server System Variables”

table_open_cache
Section B.5.2.18, “'File' Not Found and Similar Errors”
Section 8.14.2, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes
Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.12.2, “Tuning Server Parameters”

table_open_cache_instances
Section 5.1.6, “Server Status Variables”

3838

Section 5.1.4, “Server System Variables”

thread_cache_size
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

thread_concurrency
Section 5.1.4, “Server System Variables”

thread_handling
Section 5.1.4, “Server System Variables”
Section 8.12.7.1, “Thread Pool Components and
Installation”

thread_pool_algorithm
Section 8.12.7.1, “Thread Pool Components and
Installation”

thread_pool_high_priority_connection
Section 8.12.7.1, “Thread Pool Components and
Installation”
Section 8.12.7.2, “Thread Pool Operation”

thread_pool_max_unused_threads
Section 8.12.7.1, “Thread Pool Components and
Installation”

thread_pool_prio_kickup_timer
Section 8.12.7.1, “Thread Pool Components and
Installation”
Section 8.12.7.2, “Thread Pool Operation”
Section 8.12.7.3, “Thread Pool Tuning”

thread_pool_size
Section 8.12.7.1, “Thread Pool Components and
Installation”
Section 8.12.7.2, “Thread Pool Operation”
Section 8.12.7.3, “Thread Pool Tuning”

thread_pool_stall_limit
Section 8.12.7.1, “Thread Pool Components and
Installation”
Section 8.12.7.2, “Thread Pool Operation”
Section 8.12.7.3, “Thread Pool Tuning”

thread_stack
Section 8.12.5.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”
Section 19.2.1, “Stored Routine Syntax”

time_format
Section 5.1.4, “Server System Variables”

time_zone
Section 13.1.9, “CREATE EVENT Syntax”
Section 12.7, “Date and Time Functions”
Section 19.4.4, “Event Metadata”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 10.6, “MySQL Server Time Zone Support”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”

timed_mutexes
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.7”

timestamp
Section 15.8.3, “FEDERATED Storage Engine Notes
and Tips”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”

tls_version
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 6.3.12.2, “Secure Connection Protocols and
Ciphers”
Section 5.1.4, “Server System Variables”

tmp_table_size
Section 8.4.4, “Internal Temporary Table Use in
MySQL”
Section C.3, “Restrictions on Server-Side Cursors”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

tmpdir
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section B.5.2.13, “Can't create/write to file”
Section 7.2, “Database Backup Methods”
Section 14.10.6, “Implementation Details of Online
DDL”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.10.9, “Limitations of Online DDL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 8.2.1.15, “ORDER BY Optimization”
Section 14.10.2, “Performance and Concurrency
Considerations for Online DDL”
Section 17.1.6.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 20.30.27, “The INFORMATION_SCHEMA
INNODB_TEMP_TABLE_INFO Table”

3839

Section B.5.3.5, “Where MySQL Stores Temporary
Files”

transaction_alloc_block_size
Section 5.1.4, “Server System Variables”

transaction_prealloc_size
Section 5.1.4, “Server System Variables”

transaction_write_set_extraction
Section 5.1.4, “Server System Variables”

tx_isolation
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”

tx_read_only
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”

U

[index top [3805]]

unique_checks
Section 14.5.4, “Converting Tables from MyISAM to
InnoDB”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”

updatable_views_with_limit
Section 5.1.4, “Server System Variables”
Section 19.5.3, “Updatable and Insertable Views”

V

[index top [3805]]

validate_password_dictionary_file
Password Validation Plugin Options and Variables

validate_password_length
Section 12.13, “Encryption and Compression
Functions”
Password Validation Plugin Options and Variables

validate_password_mixed_case_count
Password Validation Plugin Options and Variables

validate_password_number_count
Password Validation Plugin Options and Variables

validate_password_policy
Password Validation Plugin Options and Variables
Section 6.1.2.5, “The Password Validation Plugin”

validate_password_special_char_count
Password Validation Plugin Options and Variables

validate_user_plugins
Section 5.1.4, “Server System Variables”

version
Section 12.14, “Information Functions”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 5.1.4, “Server System Variables”
Section 6.3.15.3, “The Audit Log File”

version_comment
Section 5.1.4, “Server System Variables”
Section 13.7.5.39, “SHOW VARIABLES Syntax”

version_compile_machine
Section 5.1.4, “Server System Variables”

version_compile_os
Section 5.1.4, “Server System Variables”

version_tokens_session
Section B.3, “Server Error Codes and Messages”
Using Version Tokens
Version Tokens System Variables

version_tokens_session_number
Version Tokens System Variables

W

[index top [3805]]

wait_timeout
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.54, “mysql_real_connect()”
Section 5.1.4, “Server System Variables”

warning_count
Diagnostics Area-Related System Variables
Effect of Signals on Handlers, Cursors, and Statements
Section 5.1.4, “Server System Variables”
Section 13.7.5.17, “SHOW ERRORS Syntax”
Section 13.7.5.40, “SHOW WARNINGS Syntax”
Section B.1, “Sources of Error Information”
Section 13.5, “SQL Syntax for Prepared Statements”

3840

3841

Transaction Isolation Level
Index
R | S

R

[index top [3841]]

READ COMMITTED
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 14.2.2.10, “How to Cope with Deadlocks”
Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section A.1, “MySQL 5.7 FAQ: General”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”

READ UNCOMMITTED
Section 14.17.2, “Architecture of InnoDB and
memcached Integration”
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.17.5.6, “Performing DML and DDL
Statements on the Underlying InnoDB Table”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”

READ-COMMITTED
Section 5.1.3, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Syntax”

READ-UNCOMMITTED
Section 5.1.3, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Syntax”

REPEATABLE READ
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 14.17.5.4, “Controlling Transactional Behavior
of the InnoDB memcached Plugin”
Section 14.2.2.4, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.11, “InnoDB Startup Options and System
Variables”

Section 5.2.4.3, “Mixed Binary Logging Format”
Section 8.5.2, “Optimizing InnoDB Transaction
Management”
Section 14.2.2.6, “Predicate Locking for Spatial
Indexes”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”
Section 13.3.7, “XA Transactions”

REPEATABLE-READ
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”

S

[index top [3841]]

SERIALIZABLE
Section 14.2.2.2, “Consistent Nonlocking Reads”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.11, “InnoDB Startup Options and System
Variables”
Section 14.2.2.7, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 14.2.2.6, “Predicate Locking for Spatial
Indexes”
Section 5.1.3, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT,
and ROLLBACK Syntax”
Section 14.2.2, “The InnoDB Transaction Model and
Locking”
Section 13.3.7, “XA Transactions”

3842

	MySQL 5.7 Reference Manual
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 About This Manual
	1.2 Typographical and Syntax Conventions
	1.3 Overview of the MySQL Database Management System
	1.3.1 What is MySQL?
	1.3.2 The Main Features of MySQL
	1.3.3 History of MySQL

	1.4 What Is New in MySQL 5.7
	1.5 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.7
	1.6 MySQL Information Sources
	1.6.1 MySQL Mailing Lists
	1.6.1.1 Guidelines for Using the Mailing Lists

	1.6.2 MySQL Community Support at the MySQL Forums
	1.6.3 MySQL Community Support on Internet Relay Chat (IRC)
	1.6.4 MySQL Enterprise

	1.7 How to Report Bugs or Problems
	1.8 MySQL Standards Compliance
	1.8.1 MySQL Extensions to Standard SQL
	1.8.2 MySQL Differences from Standard SQL
	1.8.2.1 SELECT INTO TABLE Differences
	1.8.2.2 UPDATE Differences
	1.8.2.3 Foreign Key Differences
	1.8.2.4 '--' as the Start of a Comment

	1.8.3 How MySQL Deals with Constraints
	1.8.3.1 PRIMARY KEY and UNIQUE Index Constraints
	1.8.3.2 FOREIGN KEY Constraints
	1.8.3.3 Constraints on Invalid Data
	1.8.3.4 ENUM and SET Constraints

	1.9 Credits
	1.9.1 Contributors to MySQL
	1.9.2 Documenters and translators
	1.9.3 Packages that support MySQL
	1.9.4 Tools that were used to create MySQL
	1.9.5 Supporters of MySQL

	Chapter 2 Installing and Upgrading MySQL
	2.1 General Installation Guidance
	2.1.1 Which MySQL Version and Distribution to Install
	2.1.2 How to Get MySQL
	2.1.3 Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.1.3.1 Verifying the MD5 Checksum
	2.1.3.2 Signature Checking Using GnuPG
	2.1.3.3 Signature Checking Using Gpg4win for Windows
	2.1.3.4 Signature Checking Using RPM

	2.1.4 Installation Layouts
	2.1.5 Compiler-Specific Build Characteristics

	2.2 Installing MySQL on Unix/Linux Using Generic Binaries
	2.3 Installing MySQL on Microsoft Windows
	2.3.1 MySQL Installation Layout on Microsoft Windows
	2.3.2 Choosing An Installation Package
	2.3.3 Installing MySQL on Microsoft Windows Using MySQL Installer
	2.3.3.1 MySQL Installer GUI
	MySQL Product Catalog
	Remove MySQL Products
	Alter MySQL Products

	2.3.3.2 MySQL Installer Console

	2.3.4 MySQL Notifier
	2.3.4.1 Remote monitoring set up and installation instructions

	2.3.5 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive
	2.3.5.1 Extracting the Install Archive
	2.3.5.2 Creating an Option File
	2.3.5.3 Selecting a MySQL Server Type
	2.3.5.4 Initializing the Data Directory
	2.3.5.5 Starting the Server for the First Time
	2.3.5.6 Starting MySQL from the Windows Command Line
	2.3.5.7 Customizing the PATH for MySQL Tools
	2.3.5.8 Starting MySQL as a Windows Service
	2.3.5.9 Testing The MySQL Installation

	2.3.6 Troubleshooting a Microsoft Windows MySQL Server Installation
	2.3.7 Windows Postinstallation Procedures
	2.3.8 Upgrading MySQL on Windows

	2.4 Installing MySQL on OS X
	2.4.1 General Notes on Installing MySQL on OS X
	2.4.2 Installing MySQL on OS X Using Native Packages
	2.4.3 Installing a MySQL Launch Daemon
	2.4.4 Installing and Using the MySQL Preference Pane

	2.5 Installing MySQL on Linux
	2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository
	2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository
	2.5.3 Installing MySQL on Linux Using the MySQL APT Repository
	2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository
	2.5.5 Installing MySQL on Linux Using RPM Packages
	2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle
	2.5.7 Installing MySQL on Linux from the Native Software Repositories
	2.5.8 Installing MySQL on Linux with docker
	2.5.9 Installing MySQL on Linux with juju
	2.5.10 Managing MySQL Server with systemd

	2.6 Installing MySQL Using Unbreakable Linux Network (ULN)
	2.7 Installing MySQL on Solaris and OpenSolaris
	2.7.1 Installing MySQL on Solaris Using a Solaris PKG
	2.7.2 Installing MySQL on OpenSolaris Using IPS

	2.8 Installing MySQL on FreeBSD
	2.9 Installing MySQL from Source
	2.9.1 MySQL Layout for Source Installation
	2.9.2 Installing MySQL Using a Standard Source Distribution
	2.9.3 Installing MySQL Using a Development Source Tree
	2.9.4 MySQL Source-Configuration Options
	2.9.5 Dealing with Problems Compiling MySQL
	2.9.6 MySQL Configuration and Third-Party Tools

	2.10 Postinstallation Setup and Testing
	2.10.1 Initializing the Data Directory
	2.10.1.1 Initializing the Data Directory Manually Using mysqld
	2.10.1.2 Initializing the Data Directory Manually Using mysql_install_db
	2.10.1.3 Problems Running mysql_install_db

	2.10.2 Starting the Server
	2.10.2.1 Troubleshooting Problems Starting the MySQL Server

	2.10.3 Testing the Server
	2.10.4 Securing the Initial MySQL Accounts
	2.10.5 Starting and Stopping MySQL Automatically

	2.11 Upgrading or Downgrading MySQL
	2.11.1 Upgrading MySQL
	2.11.1.1 Changes Affecting Upgrades to MySQL 5.7
	2.11.1.2 Upgrading MySQL with the MySQL Yum Repository
	2.11.1.3 Upgrading MySQL with the MySQL APT Repository
	2.11.1.4 Upgrading MySQL with Directly-Downloaded RPM Packages

	2.11.2 Downgrading MySQL
	2.11.2.1 Changes Affecting Downgrades from MySQL 5.7

	2.11.3 Checking Whether Tables or Indexes Must Be Rebuilt
	2.11.4 Rebuilding or Repairing Tables or Indexes
	2.11.5 Copying MySQL Databases to Another Machine

	2.12 Environment Variables
	2.13 Perl Installation Notes
	2.13.1 Installing Perl on Unix
	2.13.2 Installing ActiveState Perl on Windows
	2.13.3 Problems Using the Perl DBI/DBD Interface

	Chapter 3 Tutorial
	3.1 Connecting to and Disconnecting from the Server
	3.2 Entering Queries
	3.3 Creating and Using a Database
	3.3.1 Creating and Selecting a Database
	3.3.2 Creating a Table
	3.3.3 Loading Data into a Table
	3.3.4 Retrieving Information from a Table
	3.3.4.1 Selecting All Data
	3.3.4.2 Selecting Particular Rows
	3.3.4.3 Selecting Particular Columns
	3.3.4.4 Sorting Rows
	3.3.4.5 Date Calculations
	3.3.4.6 Working with NULL Values
	3.3.4.7 Pattern Matching
	3.3.4.8 Counting Rows
	3.3.4.9 Using More Than one Table

	3.4 Getting Information About Databases and Tables
	3.5 Using mysql in Batch Mode
	3.6 Examples of Common Queries
	3.6.1 The Maximum Value for a Column
	3.6.2 The Row Holding the Maximum of a Certain Column
	3.6.3 Maximum of Column per Group
	3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column
	3.6.5 Using User-Defined Variables
	3.6.6 Using Foreign Keys
	3.6.7 Searching on Two Keys
	3.6.8 Calculating Visits Per Day
	3.6.9 Using AUTO_INCREMENT

	3.7 Using MySQL with Apache

	Chapter 4 MySQL Programs
	4.1 Overview of MySQL Programs
	4.2 Using MySQL Programs
	4.2.1 Invoking MySQL Programs
	4.2.2 Connecting to the MySQL Server
	4.2.3 Specifying Program Options
	4.2.4 Using Options on the Command Line
	4.2.5 Program Option Modifiers
	4.2.6 Using Option Files
	4.2.7 Command-Line Options that Affect Option-File Handling
	4.2.8 Using Options to Set Program Variables
	4.2.9 Option Defaults, Options Expecting Values, and the = Sign
	4.2.10 Setting Environment Variables

	4.3 MySQL Server and Server-Startup Programs
	4.3.1 mysqld — The MySQL Server
	4.3.2 mysqld_safe — MySQL Server Startup Script
	4.3.3 mysql.server — MySQL Server Startup Script
	4.3.4 mysqld_multi — Manage Multiple MySQL Servers

	4.4 MySQL Installation-Related Programs
	4.4.1 comp_err — Compile MySQL Error Message File
	4.4.2 mysql_install_db — Initialize MySQL Data Directory
	4.4.3 mysql_plugin — Configure MySQL Server Plugins
	4.4.4 mysql_secure_installation — Improve MySQL Installation Security
	4.4.5 mysql_ssl_rsa_setup — Create SSL/RSA Files
	4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables
	4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

	4.5 MySQL Client Programs
	4.5.1 mysql — The MySQL Command-Line Tool
	4.5.1.1 mysql Options
	4.5.1.2 mysql Commands
	4.5.1.3 mysql Logging
	4.5.1.4 mysql Server-Side Help
	4.5.1.5 Executing SQL Statements from a Text File
	4.5.1.6 mysql Tips
	Input-Line Editing
	Unicode Support on Windows
	Displaying Query Results Vertically
	Using the --safe-updates Option
	Disabling mysql Auto-Reconnect

	4.5.2 mysqladmin — Client for Administering a MySQL Server
	4.5.3 mysqlcheck — A Table Maintenance Program
	4.5.4 mysqldump — A Database Backup Program
	4.5.5 mysqlimport — A Data Import Program
	4.5.6 mysqlpump — A Database Backup Program
	4.5.7 mysqlshow — Display Database, Table, and Column Information
	4.5.8 mysqlslap — Load Emulation Client

	4.6 MySQL Administrative and Utility Programs
	4.6.1 innochecksum — Offline InnoDB File Checksum Utility
	4.6.2 myisam_ftdump — Display Full-Text Index information
	4.6.3 myisamchk — MyISAM Table-Maintenance Utility
	4.6.3.1 myisamchk General Options
	4.6.3.2 myisamchk Check Options
	4.6.3.3 myisamchk Repair Options
	4.6.3.4 Other myisamchk Options
	4.6.3.5 Obtaining Table Information with myisamchk
	4.6.3.6 myisamchk Memory Usage

	4.6.4 myisamlog — Display MyISAM Log File Contents
	4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables
	4.6.6 mysql_config_editor — MySQL Configuration Utility
	4.6.7 mysqlbinlog — Utility for Processing Binary Log Files
	4.6.7.1 mysqlbinlog Hex Dump Format
	4.6.7.2 mysqlbinlog Row Event Display
	4.6.7.3 Using mysqlbinlog to Back Up Binary Log Files
	4.6.7.4 Specifying the mysqlbinlog Server ID

	4.6.8 mysqldumpslow — Summarize Slow Query Log Files

	4.7 MySQL Program Development Utilities
	4.7.1 mysql_config — Display Options for Compiling Clients
	4.7.2 my_print_defaults — Display Options from Option Files
	4.7.3 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

	4.8 Miscellaneous Programs
	4.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output
	4.8.2 perror — Explain Error Codes
	4.8.3 replace — A String-Replacement Utility
	4.8.4 resolveip — Resolve Host name to IP Address or Vice Versa
	4.8.5 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output

	Chapter 5 MySQL Server Administration
	5.1 The MySQL Server
	5.1.1 Server Option and Variable Reference
	5.1.2 Server Configuration Defaults
	5.1.3 Server Command Options
	5.1.4 Server System Variables
	5.1.5 Using System Variables
	5.1.5.1 Structured System Variables
	5.1.5.2 Dynamic System Variables

	5.1.6 Server Status Variables
	5.1.7 Server SQL Modes
	5.1.8 Server Plugins
	5.1.8.1 Installing and Uninstalling Plugins
	5.1.8.2 Obtaining Server Plugin Information
	5.1.8.3 The Rewriter Query Rewrite Plugin
	Installing the Rewriter Query Rewrite Plugin
	Using the Rewriter Query Rewrite Plugin
	Rewriter Query Rewrite Plugin Reference
	Rewriter Query Rewrite Plugin Rules Table
	Rewriter Query Rewrite Plugin Procedures and Functions
	Rewriter Query Rewrite Plugin System Variables
	Rewriter Query Rewrite Plugin Status Variables

	5.1.8.4 Version Tokens
	Version Tokens Components
	Installing or Uninstalling Version Tokens
	Using Version Tokens
	Version Tokens Reference
	Version Tokens Functions
	Version Tokens System Variables

	5.1.9 IPv6 Support
	5.1.9.1 Verifying System Support for IPv6
	5.1.9.2 Configuring the MySQL Server to Permit IPv6 Connections
	5.1.9.3 Connecting Using the IPv6 Local Host Address
	5.1.9.4 Connecting Using IPv6 Nonlocal Host Addresses
	5.1.9.5 Obtaining an IPv6 Address from a Broker

	5.1.10 Server-Side Help
	5.1.11 Server Response to Signals
	5.1.12 The Server Shutdown Process

	5.2 MySQL Server Logs
	5.2.1 Selecting General Query and Slow Query Log Output Destinations
	5.2.2 The Error Log
	5.2.3 The General Query Log
	5.2.4 The Binary Log
	5.2.4.1 Binary Logging Formats
	5.2.4.2 Setting The Binary Log Format
	5.2.4.3 Mixed Binary Logging Format
	5.2.4.4 Logging Format for Changes to mysql Database Tables

	5.2.5 The Slow Query Log
	5.2.6 The DDL Log
	5.2.7 Server Log Maintenance

	5.3 Running Multiple MySQL Instances on One Machine
	5.3.1 Setting Up Multiple Data Directories
	5.3.2 Running Multiple MySQL Instances on Windows
	5.3.2.1 Starting Multiple MySQL Instances at the Windows Command Line
	5.3.2.2 Starting Multiple MySQL Instances as Windows Services

	5.3.3 Running Multiple MySQL Instances on Unix
	5.3.4 Using Client Programs in a Multiple-Server Environment

	5.4 Tracing mysqld Using DTrace
	5.4.1 mysqld DTrace Probe Reference
	5.4.1.1 Connection Probes
	5.4.1.2 Command Probes
	5.4.1.3 Query Probes
	5.4.1.4 Query Parsing Probes
	5.4.1.5 Query Cache Probes
	5.4.1.6 Query Execution Probes
	5.4.1.7 Row-Level Probes
	5.4.1.8 Read Row Probes
	5.4.1.9 Index Probes
	5.4.1.10 Lock Probes
	5.4.1.11 Filesort Probes
	5.4.1.12 Statement Probes
	5.4.1.13 Network Probes
	5.4.1.14 Keycache Probes

	Chapter 6 Security
	6.1 General Security Issues
	6.1.1 Security Guidelines
	6.1.2 Keeping Passwords Secure
	6.1.2.1 End-User Guidelines for Password Security
	6.1.2.2 Administrator Guidelines for Password Security
	6.1.2.3 Passwords and Logging
	6.1.2.4 Password Hashing in MySQL
	6.1.2.5 The Password Validation Plugin
	Password Validation Plugin Installation
	Password Validation Plugin Options and Variables

	6.1.3 Making MySQL Secure Against Attackers
	6.1.4 Security-Related mysqld Options and Variables
	6.1.5 How to Run MySQL as a Normal User
	6.1.6 Security Issues with LOAD DATA LOCAL
	6.1.7 Client Programming Security Guidelines

	6.2 The MySQL Access Privilege System
	6.2.1 Privileges Provided by MySQL
	6.2.2 Privilege System Grant Tables
	6.2.3 Specifying Account Names
	6.2.4 Access Control, Stage 1: Connection Verification
	6.2.5 Access Control, Stage 2: Request Verification
	6.2.6 When Privilege Changes Take Effect
	6.2.7 Troubleshooting Problems Connecting to MySQL

	6.3 MySQL User Account Management
	6.3.1 User Names and Passwords
	6.3.2 Adding User Accounts
	6.3.3 Removing User Accounts
	6.3.4 Setting Account Resource Limits
	6.3.5 Assigning Account Passwords
	6.3.6 Password Expiration Policy
	6.3.7 Password Expiration and Sandbox Mode
	6.3.8 Pluggable Authentication
	6.3.9 Authentication Plugins Available in MySQL
	6.3.9.1 The Native Authentication Plugin
	6.3.9.2 The Old Native Authentication Plugin
	6.3.9.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin
	6.3.9.4 The SHA-256 Authentication Plugin
	6.3.9.5 The PAM Authentication Plugin
	Installing the PAM Authentication Plugin
	Using the PAM Authentication Plugin
	Unix Password Authentication without Proxy Users
	LDAP Authentication without Proxy Users
	Unix Password Authentication with Proxy Users and Group Mapping

	PAM Authentication Plugin Debugging

	6.3.9.6 The Windows Native Authentication Plugin
	Installing the Windows Authentication Plugin
	Using the Windows Authentication Plugin

	6.3.9.7 The No-Login Authentication Plugin
	6.3.9.8 The Cleartext Client-Side Authentication Plugin
	6.3.9.9 The Socket Peer-Credential Authentication Plugin
	6.3.9.10 The Test Authentication Plugin

	6.3.10 Proxy Users
	6.3.11 User Account Locking
	6.3.12 Using Secure Connections
	6.3.12.1 OpenSSL Versus yaSSL
	6.3.12.2 Secure Connection Protocols and Ciphers
	6.3.12.3 Building MySQL with SSL Support
	6.3.12.4 Configuring MySQL to Use Secure Connections
	6.3.12.5 SSL Command Options

	6.3.13 Creating SSL and RSA Certificates and Keys
	6.3.13.1 Creating SSL and RSA Certificates and Keys using MySQL
	6.3.13.2 Creating SSL Certificates and Keys Using openssl
	6.3.13.3 Creating RSA Keys Using openssl

	6.3.14 Connecting to MySQL Remotely from Windows with SSH
	6.3.15 MySQL Enterprise Audit Log Plugin
	6.3.15.1 Installing the Audit Log Plugin
	6.3.15.2 Audit Log Plugin Security Considerations
	6.3.15.3 The Audit Log File
	6.3.15.4 Audit Log Plugin Logging Control
	6.3.15.5 Audit Log Plugin Option and Variable Reference
	6.3.15.6 Audit Log Plugin Options and Variables
	6.3.15.7 Audit Log Plugin Status Variables
	6.3.15.8 Audit Log Plugin Restrictions

	6.3.16 SQL-Based MySQL Account Activity Auditing
	6.3.17 MySQL Enterprise Firewall
	6.3.17.1 MySQL Enterprise Firewall Components
	6.3.17.2 Installing or Uninstalling MySQL Enterprise Firewall
	6.3.17.3 Using MySQL Enterprise Firewall
	6.3.17.4 MySQL Enterprise Firewall Reference
	MySQL Enterprise Firewall Tables
	MySQL Enterprise Firewall Procedures and Functions
	MySQL Enterprise Firewall System Variables
	MySQL Enterprise Firewall Status Variables

	Chapter 7 Backup and Recovery
	7.1 Backup and Recovery Types
	7.2 Database Backup Methods
	7.3 Example Backup and Recovery Strategy
	7.3.1 Establishing a Backup Policy
	7.3.2 Using Backups for Recovery
	7.3.3 Backup Strategy Summary

	7.4 Using mysqldump for Backups
	7.4.1 Dumping Data in SQL Format with mysqldump
	7.4.2 Reloading SQL-Format Backups
	7.4.3 Dumping Data in Delimited-Text Format with mysqldump
	7.4.4 Reloading Delimited-Text Format Backups
	7.4.5 mysqldump Tips
	7.4.5.1 Making a Copy of a Database
	7.4.5.2 Copy a Database from one Server to Another
	7.4.5.3 Dumping Stored Programs
	7.4.5.4 Dumping Table Definitions and Content Separately
	7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

	7.5 Point-in-Time (Incremental) Recovery Using the Binary Log
	7.5.1 Point-in-Time Recovery Using Event Times
	7.5.2 Point-in-Time Recovery Using Event Positions

	7.6 MyISAM Table Maintenance and Crash Recovery
	7.6.1 Using myisamchk for Crash Recovery
	7.6.2 How to Check MyISAM Tables for Errors
	7.6.3 How to Repair MyISAM Tables
	7.6.4 MyISAM Table Optimization
	7.6.5 Setting Up a MyISAM Table Maintenance Schedule

	Chapter 8 Optimization
	8.1 Optimization Overview
	8.2 Optimizing SQL Statements
	8.2.1 Optimizing SELECT Statements
	8.2.1.1 Speed of SELECT Statements
	8.2.1.2 How MySQL Optimizes WHERE Clauses
	8.2.1.3 Range Optimization
	The Range Access Method for Single-Part Indexes
	The Range Access Method for Multiple-Part Indexes
	Equality Range Optimization of Many-Valued Comparisons
	Range Optimization of Row Constructor Expressions

	8.2.1.4 Index Merge Optimization
	The Index Merge Intersection Access Algorithm
	The Index Merge Union Access Algorithm
	The Index Merge Sort-Union Access Algorithm

	8.2.1.5 Engine Condition Pushdown Optimization
	8.2.1.6 Index Condition Pushdown Optimization
	8.2.1.7 Use of Index Extensions
	8.2.1.8 IS NULL Optimization
	8.2.1.9 LEFT JOIN and RIGHT JOIN Optimization
	8.2.1.10 Nested-Loop Join Algorithms
	8.2.1.11 Nested Join Optimization
	8.2.1.12 Outer Join Simplification
	8.2.1.13 Multi-Range Read Optimization
	8.2.1.14 Block Nested-Loop and Batched Key Access Joins
	Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms
	Block Nested-Loop Algorithm for Outer Joins and Semi-Joins
	Batched Key Access Joins

	8.2.1.15 ORDER BY Optimization
	8.2.1.16 GROUP BY Optimization
	Loose Index Scan
	Tight Index Scan

	8.2.1.17 DISTINCT Optimization
	8.2.1.18 Subquery Optimization
	Optimizing Subqueries with Semi-Join Transformations
	Optimizing Subqueries with Subquery Materialization
	Optimizing Derived Tables and View References
	Optimizing Subqueries with EXISTS Strategy

	8.2.1.19 Optimizing LIMIT Queries
	8.2.1.20 How to Avoid Full Table Scans

	8.2.2 Optimizing DML Statements
	8.2.2.1 Speed of INSERT Statements
	8.2.2.2 Speed of UPDATE Statements
	8.2.2.3 Speed of DELETE Statements

	8.2.3 Optimizing Database Privileges
	8.2.4 Optimizing INFORMATION_SCHEMA Queries
	8.2.5 Other Optimization Tips

	8.3 Optimization and Indexes
	8.3.1 How MySQL Uses Indexes
	8.3.2 Using Primary Keys
	8.3.3 Using Foreign Keys
	8.3.4 Column Indexes
	8.3.5 Multiple-Column Indexes
	8.3.6 Verifying Index Usage
	8.3.7 InnoDB and MyISAM Index Statistics Collection
	8.3.8 Comparison of B-Tree and Hash Indexes
	8.3.9 Optimizer Use of Generated Column Indexes

	8.4 Optimizing Database Structure
	8.4.1 Optimizing Data Size
	8.4.2 Optimizing MySQL Data Types
	8.4.2.1 Optimizing for Numeric Data
	8.4.2.2 Optimizing for Character and String Types
	8.4.2.3 Optimizing for BLOB Types
	8.4.2.4 Using PROCEDURE ANALYSE

	8.4.3 Optimizing for Many Tables
	8.4.3.1 How MySQL Opens and Closes Tables
	8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

	8.4.4 Internal Temporary Table Use in MySQL

	8.5 Optimizing for InnoDB Tables
	8.5.1 Optimizing Storage Layout for InnoDB Tables
	8.5.2 Optimizing InnoDB Transaction Management
	8.5.3 Optimizing InnoDB Read-Only Transactions
	8.5.4 Optimizing InnoDB Redo Logging
	8.5.5 Bulk Data Loading for InnoDB Tables
	8.5.6 Optimizing InnoDB Queries
	8.5.7 Optimizing InnoDB DDL Operations
	8.5.8 Optimizing InnoDB Disk I/O
	8.5.9 Optimizing InnoDB Configuration Variables
	8.5.10 Optimizing InnoDB for Systems with Many Tables

	8.6 Optimizing for MyISAM Tables
	8.6.1 Optimizing MyISAM Queries
	8.6.2 Bulk Data Loading for MyISAM Tables
	8.6.3 Speed of REPAIR TABLE Statements

	8.7 Optimizing for MEMORY Tables
	8.8 Understanding the Query Execution Plan
	8.8.1 Optimizing Queries with EXPLAIN
	8.8.2 EXPLAIN Output Format
	8.8.3 EXPLAIN EXTENDED Output Format
	8.8.4 Obtaining Execution Plan Information for a Named Connection
	8.8.5 Estimating Query Performance

	8.9 Controlling the Query Optimizer
	8.9.1 Controlling Query Plan Evaluation
	8.9.2 Controlling Switchable Optimizations
	8.9.3 Optimizer Hints
	8.9.4 Index Hints
	8.9.5 The Optimizer Cost Model

	8.10 Buffering and Caching
	8.10.1 The InnoDB Buffer Pool
	8.10.2 The MyISAM Key Cache
	8.10.2.1 Shared Key Cache Access
	8.10.2.2 Multiple Key Caches
	8.10.2.3 Midpoint Insertion Strategy
	8.10.2.4 Index Preloading
	8.10.2.5 Key Cache Block Size
	8.10.2.6 Restructuring a Key Cache

	8.10.3 The MySQL Query Cache
	8.10.3.1 How the Query Cache Operates
	8.10.3.2 Query Cache SELECT Options
	8.10.3.3 Query Cache Configuration
	8.10.3.4 Query Cache Status and Maintenance

	8.10.4 Caching of Prepared Statements and Stored Programs

	8.11 Optimizing Locking Operations
	8.11.1 Internal Locking Methods
	8.11.2 Table Locking Issues
	8.11.3 Concurrent Inserts
	8.11.4 Metadata Locking
	8.11.5 External Locking

	8.12 Optimizing the MySQL Server
	8.12.1 System Factors and Startup Parameter Tuning
	8.12.2 Tuning Server Parameters
	8.12.3 Optimizing Disk I/O
	8.12.4 Using Symbolic Links
	8.12.4.1 Using Symbolic Links for Databases on Unix
	8.12.4.2 Using Symbolic Links for MyISAM Tables on Unix
	8.12.4.3 Using Symbolic Links for Databases on Windows

	8.12.5 Optimizing Memory Use
	8.12.5.1 How MySQL Uses Memory
	8.12.5.2 Enabling Large Page Support

	8.12.6 Optimizing Network Use
	8.12.6.1 How MySQL Uses Threads for Client Connections
	8.12.6.2 DNS Lookup Optimization and the Host Cache

	8.12.7 The Thread Pool Plugin
	8.12.7.1 Thread Pool Components and Installation
	8.12.7.2 Thread Pool Operation
	8.12.7.3 Thread Pool Tuning

	8.13 Measuring Performance (Benchmarking)
	8.13.1 Measuring the Speed of Expressions and Functions
	8.13.2 Using Your Own Benchmarks
	8.13.3 Measuring Performance with performance_schema

	8.14 Examining Thread Information
	8.14.1 Thread Command Values
	8.14.2 General Thread States
	8.14.3 Query Cache Thread States
	8.14.4 Replication Master Thread States
	8.14.5 Replication Slave I/O Thread States
	8.14.6 Replication Slave SQL Thread States
	8.14.7 Replication Slave Connection Thread States
	8.14.8 Event Scheduler Thread States

	Chapter 9 Language Structure
	9.1 Literal Values
	9.1.1 String Literals
	9.1.2 Number Literals
	9.1.3 Date and Time Literals
	9.1.4 Hexadecimal Literals
	9.1.5 Boolean Literals
	9.1.6 Bit-Field Literals
	9.1.7 NULL Values

	9.2 Schema Object Names
	9.2.1 Identifier Qualifiers
	9.2.2 Identifier Case Sensitivity
	9.2.3 Mapping of Identifiers to File Names
	9.2.4 Function Name Parsing and Resolution

	9.3 Keywords and Reserved Words
	9.4 User-Defined Variables
	9.5 Expression Syntax
	9.6 Comment Syntax

	Chapter 10 Globalization
	10.1 Character Set Support
	10.1.1 Character Sets and Collations in General
	10.1.2 Character Sets and Collations in MySQL
	10.1.3 Specifying Character Sets and Collations
	10.1.3.1 Server Character Set and Collation
	10.1.3.2 Database Character Set and Collation
	10.1.3.3 Table Character Set and Collation
	10.1.3.4 Column Character Set and Collation
	10.1.3.5 Character String Literal Character Set and Collation
	10.1.3.6 National Character Set
	10.1.3.7 Examples of Character Set and Collation Assignment
	10.1.3.8 Compatibility with Other DBMSs

	10.1.4 Connection Character Sets and Collations
	10.1.5 Configuring the Character Set and Collation for Applications
	10.1.6 Character Set for Error Messages
	10.1.7 Collation Issues
	10.1.7.1 Collation Names
	10.1.7.2 Using COLLATE in SQL Statements
	10.1.7.3 COLLATE Clause Precedence
	10.1.7.4 Collations Must Be for the Right Character Set
	10.1.7.5 Collation of Expressions
	10.1.7.6 The _bin and binary Collations
	10.1.7.7 The BINARY Operator
	10.1.7.8 Examples of the Effect of Collation
	10.1.7.9 Collation and INFORMATION_SCHEMA Searches

	10.1.8 String Repertoire
	10.1.9 Operations Affected by Character Set Support
	10.1.9.1 Result Strings
	10.1.9.2 CONVERT() and CAST()
	10.1.9.3 SHOW Statements and INFORMATION_SCHEMA

	10.1.10 Unicode Support
	10.1.10.1 The ucs2 Character Set (UCS-2 Unicode Encoding)
	10.1.10.2 The utf16 Character Set (UTF-16 Unicode Encoding)
	10.1.10.3 The utf16le Character Set (UTF-16LE Unicode Encoding)
	10.1.10.4 The utf32 Character Set (UTF-32 Unicode Encoding)
	10.1.10.5 The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)
	10.1.10.6 The utf8mb3 Character Set (Alias for utf8)
	10.1.10.7 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

	10.1.11 Upgrading from Previous to Current Unicode Support
	10.1.12 UTF-8 for Metadata
	10.1.13 Column Character Set Conversion
	10.1.14 Character Sets and Collations That MySQL Supports
	10.1.14.1 Unicode Character Sets
	10.1.14.2 West European Character Sets
	10.1.14.3 Central European Character Sets
	10.1.14.4 South European and Middle East Character Sets
	10.1.14.5 Baltic Character Sets
	10.1.14.6 Cyrillic Character Sets
	10.1.14.7 Asian Character Sets
	The cp932 Character Set
	The gb18030 Character Set

	10.2 Setting the Error Message Language
	10.3 Adding a Character Set
	10.3.1 Character Definition Arrays
	10.3.2 String Collating Support for Complex Character Sets
	10.3.3 Multi-Byte Character Support for Complex Character Sets

	10.4 Adding a Collation to a Character Set
	10.4.1 Collation Implementation Types
	10.4.2 Choosing a Collation ID
	10.4.3 Adding a Simple Collation to an 8-Bit Character Set
	10.4.4 Adding a UCA Collation to a Unicode Character Set
	10.4.4.1 Defining a UCA Collation Using LDML Syntax
	10.4.4.2 LDML Syntax Supported in MySQL
	10.4.4.3 Diagnostics During Index.xml Parsing

	10.5 Character Set Configuration
	10.6 MySQL Server Time Zone Support
	10.6.1 Staying Current with Time Zone Changes
	10.6.2 Time Zone Leap Second Support

	10.7 MySQL Server Locale Support

	Chapter 11 Data Types
	11.1 Data Type Overview
	11.1.1 Numeric Type Overview
	11.1.2 Date and Time Type Overview
	11.1.3 String Type Overview

	11.2 Numeric Types
	11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
	11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
	11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
	11.2.4 Bit-Value Type - BIT
	11.2.5 Numeric Type Attributes
	11.2.6 Out-of-Range and Overflow Handling

	11.3 Date and Time Types
	11.3.1 The DATE, DATETIME, and TIMESTAMP Types
	11.3.2 The TIME Type
	11.3.3 The YEAR Type
	11.3.4 YEAR(2) Limitations and Migrating to YEAR(4)
	11.3.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME
	11.3.6 Fractional Seconds in Time Values
	11.3.7 Conversion Between Date and Time Types
	11.3.8 Two-Digit Years in Dates

	11.4 String Types
	11.4.1 The CHAR and VARCHAR Types
	11.4.2 The BINARY and VARBINARY Types
	11.4.3 The BLOB and TEXT Types
	11.4.4 The ENUM Type
	11.4.5 The SET Type

	11.5 Extensions for Spatial Data
	11.5.1 Spatial Data Types
	11.5.2 The OpenGIS Geometry Model
	11.5.2.1 The Geometry Class Hierarchy
	11.5.2.2 Geometry Class
	11.5.2.3 Point Class
	11.5.2.4 Curve Class
	11.5.2.5 LineString Class
	11.5.2.6 Surface Class
	11.5.2.7 Polygon Class
	11.5.2.8 GeometryCollection Class
	11.5.2.9 MultiPoint Class
	11.5.2.10 MultiCurve Class
	11.5.2.11 MultiLineString Class
	11.5.2.12 MultiSurface Class
	11.5.2.13 MultiPolygon Class

	11.5.3 Using Spatial Data
	11.5.3.1 Supported Spatial Data Formats
	Well-Known Text (WKT) Format
	Well-Known Binary (WKB) Format

	11.5.3.2 Creating Spatial Columns
	11.5.3.3 Populating Spatial Columns
	11.5.3.4 Fetching Spatial Data
	11.5.3.5 Optimizing Spatial Analysis
	11.5.3.6 Creating Spatial Indexes
	11.5.3.7 Using Spatial Indexes

	11.6 The JSON Data Type
	11.7 Data Type Default Values
	11.8 Data Type Storage Requirements
	11.9 Choosing the Right Type for a Column
	11.10 Using Data Types from Other Database Engines

	Chapter 12 Functions and Operators
	12.1 Function and Operator Reference
	12.2 Type Conversion in Expression Evaluation
	12.3 Operators
	12.3.1 Operator Precedence
	12.3.2 Comparison Functions and Operators
	12.3.3 Logical Operators
	12.3.4 Assignment Operators

	12.4 Control Flow Functions
	12.5 String Functions
	12.5.1 String Comparison Functions
	12.5.2 Regular Expressions

	12.6 Numeric Functions and Operators
	12.6.1 Arithmetic Operators
	12.6.2 Mathematical Functions

	12.7 Date and Time Functions
	12.8 What Calendar Is Used By MySQL?
	12.9 Full-Text Search Functions
	12.9.1 Natural Language Full-Text Searches
	12.9.2 Boolean Full-Text Searches
	12.9.3 Full-Text Searches with Query Expansion
	12.9.4 Full-Text Stopwords
	12.9.5 Full-Text Restrictions
	12.9.6 Fine-Tuning MySQL Full-Text Search
	12.9.7 Adding a Collation for Full-Text Indexing
	12.9.8 ngram Full-Text Parser
	12.9.9 MeCab Full-Text Parser Plugin

	12.10 Cast Functions and Operators
	12.11 XML Functions
	12.12 Bit Functions and Operators
	12.13 Encryption and Compression Functions
	12.14 Information Functions
	12.15 Spatial Analysis Functions
	12.15.1 Spatial Function Reference
	12.15.2 Argument Handling by Spatial Functions
	12.15.3 Functions That Create Geometry Values from WKT Values
	12.15.4 Functions That Create Geometry Values from WKB Values
	12.15.5 MySQL-Specific Functions That Create Geometry Values
	12.15.6 Geometry Format Conversion Functions
	12.15.7 Geometry Property Functions
	12.15.7.1 General Geometry Property Functions
	12.15.7.2 Point Property Functions
	12.15.7.3 LineString and MultiLineString Property Functions
	12.15.7.4 Polygon and MultiPolygon Property Functions
	12.15.7.5 GeometryCollection Property Functions

	12.15.8 Spatial Operator Functions
	12.15.9 Functions That Test Spatial Relations Between Geometry Objects
	12.15.9.1 Spatial Relation Functions That Use Object Shapes
	12.15.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)
	12.15.9.3 MySQL-Specific Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)

	12.15.10 Spatial Geohash Functions
	12.15.11 Spatial GeoJSON Functions
	12.15.12 Spatial Convenience Functions

	12.16 JSON Functions
	12.16.1 JSON Function Reference
	12.16.2 Functions That Create JSON Values
	12.16.3 Functions That Search JSON Values
	12.16.4 Functions That Modify JSON Values
	12.16.5 Functions That Return JSON Value Attributes
	12.16.6 JSON Path Syntax

	12.17 Functions Used with Global Transaction IDs
	12.18 MySQL Enterprise Encryption Functions
	12.18.1 Enterprise Encryption Installation
	12.18.2 Enterprise Encryption Usage and Examples
	12.18.3 Enterprise Encryption Function Reference
	12.18.4 Enterprise Encryption Function Descriptions

	12.19 Miscellaneous Functions
	12.20 Functions and Modifiers for Use with GROUP BY Clauses
	12.20.1 GROUP BY (Aggregate) Functions
	12.20.2 GROUP BY Modifiers
	12.20.3 MySQL Handling of GROUP BY
	12.20.4 Detection of Functional Dependence

	12.21 Precision Math
	12.21.1 Types of Numeric Values
	12.21.2 DECIMAL Data Type Characteristics
	12.21.3 Expression Handling
	12.21.4 Rounding Behavior
	12.21.5 Precision Math Examples

	Chapter 13 SQL Statement Syntax
	13.1 Data Definition Statements
	13.1.1 ALTER DATABASE Syntax
	13.1.2 ALTER EVENT Syntax
	13.1.3 ALTER FUNCTION Syntax
	13.1.4 ALTER PROCEDURE Syntax
	13.1.5 ALTER SERVER Syntax
	13.1.6 ALTER TABLE Syntax
	13.1.6.1 ALTER TABLE Partition Operations
	13.1.6.2 ALTER TABLE Examples

	13.1.7 ALTER VIEW Syntax
	13.1.8 CREATE DATABASE Syntax
	13.1.9 CREATE EVENT Syntax
	13.1.10 CREATE FUNCTION Syntax
	13.1.11 CREATE INDEX Syntax
	13.1.12 CREATE PROCEDURE and CREATE FUNCTION Syntax
	13.1.13 CREATE SERVER Syntax
	13.1.14 CREATE TABLE Syntax
	13.1.14.1 CREATE TABLE ... LIKE Syntax
	13.1.14.2 CREATE TABLE ... SELECT Syntax
	13.1.14.3 Using FOREIGN KEY Constraints
	13.1.14.4 Silent Column Specification Changes

	13.1.15 CREATE TABLESPACE Syntax
	13.1.16 CREATE TRIGGER Syntax
	13.1.17 CREATE VIEW Syntax
	13.1.18 DROP DATABASE Syntax
	13.1.19 DROP EVENT Syntax
	13.1.20 DROP FUNCTION Syntax
	13.1.21 DROP INDEX Syntax
	13.1.22 DROP PROCEDURE and DROP FUNCTION Syntax
	13.1.23 DROP SERVER Syntax
	13.1.24 DROP TABLE Syntax
	13.1.25 DROP TABLESPACE Syntax
	13.1.26 DROP TRIGGER Syntax
	13.1.27 DROP VIEW Syntax
	13.1.28 RENAME TABLE Syntax
	13.1.29 TRUNCATE TABLE Syntax

	13.2 Data Manipulation Statements
	13.2.1 CALL Syntax
	13.2.2 DELETE Syntax
	13.2.3 DO Syntax
	13.2.4 HANDLER Syntax
	13.2.5 INSERT Syntax
	13.2.5.1 INSERT ... SELECT Syntax
	13.2.5.2 INSERT DELAYED Syntax
	13.2.5.3 INSERT ... ON DUPLICATE KEY UPDATE Syntax

	13.2.6 LOAD DATA INFILE Syntax
	13.2.7 LOAD XML Syntax
	13.2.8 REPLACE Syntax
	13.2.9 SELECT Syntax
	13.2.9.1 SELECT ... INTO Syntax
	13.2.9.2 JOIN Syntax
	13.2.9.3 UNION Syntax

	13.2.10 Subquery Syntax
	13.2.10.1 The Subquery as Scalar Operand
	13.2.10.2 Comparisons Using Subqueries
	13.2.10.3 Subqueries with ANY, IN, or SOME
	13.2.10.4 Subqueries with ALL
	13.2.10.5 Row Subqueries
	13.2.10.6 Subqueries with EXISTS or NOT EXISTS
	13.2.10.7 Correlated Subqueries
	13.2.10.8 Subqueries in the FROM Clause
	13.2.10.9 Subquery Errors
	13.2.10.10 Optimizing Subqueries
	13.2.10.11 Rewriting Subqueries as Joins

	13.2.11 UPDATE Syntax

	13.3 MySQL Transactional and Locking Statements
	13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax
	13.3.2 Statements That Cannot Be Rolled Back
	13.3.3 Statements That Cause an Implicit Commit
	13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax
	13.3.5 LOCK TABLES and UNLOCK TABLES Syntax
	13.3.5.1 Interaction of Table Locking and Transactions
	13.3.5.2 LOCK TABLES and Triggers
	13.3.5.3 Table-Locking Restrictions and Conditions

	13.3.6 SET TRANSACTION Syntax
	13.3.7 XA Transactions
	13.3.7.1 XA Transaction SQL Syntax
	13.3.7.2 XA Transaction States

	13.4 Replication Statements
	13.4.1 SQL Statements for Controlling Master Servers
	13.4.1.1 PURGE BINARY LOGS Syntax
	13.4.1.2 RESET MASTER Syntax
	13.4.1.3 SET sql_log_bin Syntax

	13.4.2 SQL Statements for Controlling Slave Servers
	13.4.2.1 CHANGE MASTER TO Syntax
	13.4.2.2 CHANGE REPLICATION FILTER Syntax
	13.4.2.3 MASTER_POS_WAIT() Syntax
	13.4.2.4 RESET SLAVE Syntax
	13.4.2.5 SET GLOBAL sql_slave_skip_counter Syntax
	13.4.2.6 START SLAVE Syntax
	13.4.2.7 STOP SLAVE Syntax

	13.4.3 SQL Statements for Controlling Group Replication
	13.4.3.1 START GROUP_REPLICATION Syntax
	13.4.3.2 STOP GROUP_REPLICATION Syntax

	13.5 SQL Syntax for Prepared Statements
	13.5.1 PREPARE Syntax
	13.5.2 EXECUTE Syntax
	13.5.3 DEALLOCATE PREPARE Syntax

	13.6 MySQL Compound-Statement Syntax
	13.6.1 BEGIN ... END Compound-Statement Syntax
	13.6.2 Statement Label Syntax
	13.6.3 DECLARE Syntax
	13.6.4 Variables in Stored Programs
	13.6.4.1 Local Variable DECLARE Syntax
	13.6.4.2 Local Variable Scope and Resolution

	13.6.5 Flow Control Statements
	13.6.5.1 CASE Syntax
	13.6.5.2 IF Syntax
	13.6.5.3 ITERATE Syntax
	13.6.5.4 LEAVE Syntax
	13.6.5.5 LOOP Syntax
	13.6.5.6 REPEAT Syntax
	13.6.5.7 RETURN Syntax
	13.6.5.8 WHILE Syntax

	13.6.6 Cursors
	13.6.6.1 Cursor CLOSE Syntax
	13.6.6.2 Cursor DECLARE Syntax
	13.6.6.3 Cursor FETCH Syntax
	13.6.6.4 Cursor OPEN Syntax

	13.6.7 Condition Handling
	13.6.7.1 DECLARE ... CONDITION Syntax
	13.6.7.2 DECLARE ... HANDLER Syntax
	13.6.7.3 GET DIAGNOSTICS Syntax
	13.6.7.4 RESIGNAL Syntax
	RESIGNAL Alone
	RESIGNAL with New Signal Information
	RESIGNAL with a Condition Value and Optional New Signal Information
	RESIGNAL Requires Condition Handler Context

	13.6.7.5 SIGNAL Syntax
	Signal Condition Information Items
	Effect of Signals on Handlers, Cursors, and Statements

	13.6.7.6 Scope Rules for Handlers
	13.6.7.7 The MySQL Diagnostics Area
	Diagnostics Area Structure
	Diagnostics Area Information Items
	How the Diagnostics Area is Populated
	How the Diagnostics Area Stack Works
	Diagnostics Area-Related System Variables

	13.7 Database Administration Statements
	13.7.1 Account Management Statements
	13.7.1.1 ALTER USER Syntax
	13.7.1.2 CREATE USER Syntax
	13.7.1.3 DROP USER Syntax
	13.7.1.4 GRANT Syntax
	13.7.1.5 RENAME USER Syntax
	13.7.1.6 REVOKE Syntax
	13.7.1.7 SET PASSWORD Syntax

	13.7.2 Table Maintenance Statements
	13.7.2.1 ANALYZE TABLE Syntax
	13.7.2.2 CHECK TABLE Syntax
	13.7.2.3 CHECKSUM TABLE Syntax
	13.7.2.4 OPTIMIZE TABLE Syntax
	13.7.2.5 REPAIR TABLE Syntax

	13.7.3 Plugin and User-Defined Function Statements
	13.7.3.1 CREATE FUNCTION Syntax for User-Defined Functions
	13.7.3.2 DROP FUNCTION Syntax
	13.7.3.3 INSTALL PLUGIN Syntax
	13.7.3.4 UNINSTALL PLUGIN Syntax

	13.7.4 SET Syntax
	13.7.5 SHOW Syntax
	13.7.5.1 SHOW BINARY LOGS Syntax
	13.7.5.2 SHOW BINLOG EVENTS Syntax
	13.7.5.3 SHOW CHARACTER SET Syntax
	13.7.5.4 SHOW COLLATION Syntax
	13.7.5.5 SHOW COLUMNS Syntax
	13.7.5.6 SHOW CREATE DATABASE Syntax
	13.7.5.7 SHOW CREATE EVENT Syntax
	13.7.5.8 SHOW CREATE FUNCTION Syntax
	13.7.5.9 SHOW CREATE PROCEDURE Syntax
	13.7.5.10 SHOW CREATE TABLE Syntax
	13.7.5.11 SHOW CREATE TRIGGER Syntax
	13.7.5.12 SHOW CREATE USER Syntax
	13.7.5.13 SHOW CREATE VIEW Syntax
	13.7.5.14 SHOW DATABASES Syntax
	13.7.5.15 SHOW ENGINE Syntax
	13.7.5.16 SHOW ENGINES Syntax
	13.7.5.17 SHOW ERRORS Syntax
	13.7.5.18 SHOW EVENTS Syntax
	13.7.5.19 SHOW FUNCTION CODE Syntax
	13.7.5.20 SHOW FUNCTION STATUS Syntax
	13.7.5.21 SHOW GRANTS Syntax
	13.7.5.22 SHOW INDEX Syntax
	13.7.5.23 SHOW MASTER STATUS Syntax
	13.7.5.24 SHOW OPEN TABLES Syntax
	13.7.5.25 SHOW PLUGINS Syntax
	13.7.5.26 SHOW PRIVILEGES Syntax
	13.7.5.27 SHOW PROCEDURE CODE Syntax
	13.7.5.28 SHOW PROCEDURE STATUS Syntax
	13.7.5.29 SHOW PROCESSLIST Syntax
	13.7.5.30 SHOW PROFILE Syntax
	13.7.5.31 SHOW PROFILES Syntax
	13.7.5.32 SHOW RELAYLOG EVENTS Syntax
	13.7.5.33 SHOW SLAVE HOSTS Syntax
	13.7.5.34 SHOW SLAVE STATUS Syntax
	13.7.5.35 SHOW STATUS Syntax
	13.7.5.36 SHOW TABLE STATUS Syntax
	13.7.5.37 SHOW TABLES Syntax
	13.7.5.38 SHOW TRIGGERS Syntax
	13.7.5.39 SHOW VARIABLES Syntax
	13.7.5.40 SHOW WARNINGS Syntax

	13.7.6 Other Administrative Statements
	13.7.6.1 BINLOG Syntax
	13.7.6.2 CACHE INDEX Syntax
	13.7.6.3 FLUSH Syntax
	13.7.6.4 KILL Syntax
	13.7.6.5 LOAD INDEX INTO CACHE Syntax
	13.7.6.6 RESET Syntax
	13.7.6.7 SHUTDOWN Syntax

	13.8 MySQL Utility Statements
	13.8.1 DESCRIBE Syntax
	13.8.2 EXPLAIN Syntax
	13.8.3 HELP Syntax
	13.8.4 USE Syntax

	Chapter 14 The InnoDB Storage Engine
	14.1 Introduction to InnoDB
	14.1.1 InnoDB as the Default MySQL Storage Engine
	14.1.2 Checking InnoDB Availability
	14.1.3 Turning Off InnoDB

	14.2 InnoDB Concepts and Architecture
	14.2.1 MySQL and the ACID Model
	14.2.2 The InnoDB Transaction Model and Locking
	14.2.2.1 InnoDB Lock Modes
	14.2.2.2 Consistent Nonlocking Reads
	14.2.2.3 Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)
	14.2.2.4 InnoDB Record, Gap, and Next-Key Locks
	14.2.2.5 Avoiding the Phantom Problem Using Next-Key Locking
	14.2.2.6 Predicate Locking for Spatial Indexes
	14.2.2.7 Locks Set by Different SQL Statements in InnoDB
	14.2.2.8 Implicit Transaction Commit and Rollback
	14.2.2.9 Deadlock Detection and Rollback
	14.2.2.10 How to Cope with Deadlocks

	14.2.3 InnoDB Multi-Versioning
	14.2.4 InnoDB Redo Log
	14.2.4.1 Group Commit for Redo Log Flushing

	14.2.5 InnoDB Undo Logs
	14.2.6 InnoDB Temporary Table Undo Logs
	14.2.7 InnoDB Table and Index Structures
	14.2.7.1 Role of the .frm File for InnoDB Tables
	14.2.7.2 Clustered and Secondary Indexes
	14.2.7.3 InnoDB FULLTEXT Indexes
	14.2.7.4 Physical Structure of an InnoDB Index
	14.2.7.5 Change Buffer
	14.2.7.6 Adaptive Hash Indexes
	14.2.7.7 Physical Row Structure
	14.2.7.8 Sorted Index Builds

	14.2.8 InnoDB Mutex and Read/Write Lock Implementation

	14.3 InnoDB Configuration
	14.3.1 InnoDB Initialization and Startup Configuration
	14.3.2 Configuring InnoDB for Read-Only Operation
	14.3.3 InnoDB Buffer Pool Configuration
	14.3.3.1 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)
	14.3.3.2 Configuring the Rate of InnoDB Buffer Pool Flushing
	14.3.3.3 Making the Buffer Pool Scan Resistant
	14.3.3.4 Using Multiple Buffer Pool Instances
	14.3.3.5 Preloading the InnoDB Buffer Pool for Faster Restart
	Monitoring Buffer Pool Load Progress Using Performance Schema

	14.3.3.6 Tuning InnoDB Buffer Pool Flushing
	14.3.3.7 Resizing the InnoDB Buffer Pool Online

	14.3.4 Configuring the Memory Allocator for InnoDB
	14.3.5 Configuring InnoDB Change Buffering
	14.3.5.1 Configuring the Change Buffer Maximum Size

	14.3.6 Configuring Thread Concurrency for InnoDB
	14.3.7 Configuring the Number of Background InnoDB I/O Threads
	14.3.8 Configuring the InnoDB Master Thread I/O Rate
	14.3.9 Configuring Spin Lock Polling
	14.3.10 Configuring InnoDB Purge Scheduling
	14.3.11 Configuring Optimizer Statistics for InnoDB
	14.3.11.1 Configuring Persistent Optimizer Statistics Parameters
	Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
	Configuring Optimizer Statistics Parameters for Individual Tables
	Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
	InnoDB Persistent Statistics Tables
	InnoDB Persistent Statistics Tables Example
	Retrieving Index Size Using the innodb_index_stats Table

	14.3.11.2 Configuring Non-Persistent Optimizer Statistics Parameters
	14.3.11.3 Estimating ANALYZE TABLE Complexity for InnoDB Tables

	14.3.12 Configuring the Merge Threshold for Index Pages

	14.4 InnoDB Tablespace Management
	14.4.1 Resizing the InnoDB System Tablespace
	14.4.2 Changing the Number or Size of InnoDB Redo Log Files
	14.4.3 Using Raw Disk Partitions for the System Tablespace
	14.4.4 InnoDB File-Per-Table Tablespaces
	14.4.4.1 Enabling and Disabling File-Per-Table Tablespaces

	14.4.5 Creating a File-Per-Table Tablespace Outside the Data Directory
	14.4.6 Copying File-Per-Table Tablespaces to Another Server
	14.4.6.1 Transportable Tablespace Examples
	14.4.6.2 Transportable Tablespace Internals

	14.4.7 Storing InnoDB Undo Logs in Separate Tablespaces
	14.4.8 Truncating Undo Logs That Reside in Undo Tablespaces
	14.4.9 InnoDB General Tablespaces

	14.5 InnoDB Table Management
	14.5.1 Creating InnoDB Tables
	14.5.2 Moving or Copying InnoDB Tables to Another Machine
	14.5.3 Grouping DML Operations with Transactions
	14.5.4 Converting Tables from MyISAM to InnoDB
	14.5.5 AUTO_INCREMENT Handling in InnoDB
	14.5.6 InnoDB and FOREIGN KEY Constraints
	14.5.7 Limits on InnoDB Tables

	14.6 InnoDB Table and Page Compression
	14.6.1 InnoDB Table Compression
	14.6.1.1 Overview of Table Compression
	14.6.1.2 Creating Compressed Tables
	14.6.1.3 Tuning Compression for InnoDB Tables
	14.6.1.4 Monitoring Compression at Runtime
	14.6.1.5 How Compression Works for InnoDB Tables
	14.6.1.6 Compression for OLTP Workloads
	14.6.1.7 SQL Compression Syntax Warnings and Errors

	14.6.2 InnoDB Page Compression

	14.7 InnoDB File-Format Management
	14.7.1 Enabling File Formats
	14.7.2 Verifying File Format Compatibility
	14.7.2.1 Compatibility Check When InnoDB Is Started
	14.7.2.2 Compatibility Check When a Table Is Opened

	14.7.3 Identifying the File Format in Use
	14.7.4 Modifying the File Format

	14.8 InnoDB Row Storage and Row Formats
	14.8.1 Overview of InnoDB Row Storage
	14.8.2 Specifying the Row Format for a Table
	14.8.3 DYNAMIC and COMPRESSED Row Formats
	14.8.4 COMPACT and REDUNDANT Row Formats

	14.9 InnoDB Disk I/O and File Space Management
	14.9.1 InnoDB Disk I/O
	14.9.2 File Space Management
	14.9.3 InnoDB Checkpoints
	14.9.4 Defragmenting a Table
	14.9.5 Reclaiming Disk Space with TRUNCATE TABLE

	14.10 InnoDB and Online DDL
	14.10.1 Overview of Online DDL
	14.10.2 Performance and Concurrency Considerations for Online DDL
	14.10.3 SQL Syntax for Online DDL
	14.10.4 Combining or Separating DDL Statements
	14.10.5 Examples of Online DDL
	14.10.6 Implementation Details of Online DDL
	14.10.7 How Crash Recovery Works with Online DDL
	14.10.8 Online DDL for Partitioned InnoDB Tables
	14.10.9 Limitations of Online DDL

	14.11 InnoDB Startup Options and System Variables
	14.12 InnoDB INFORMATION_SCHEMA Tables
	14.12.1 InnoDB INFORMATION_SCHEMA Tables about Compression
	14.12.1.1 INNODB_CMP and INNODB_CMP_RESET
	14.12.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET
	14.12.1.3 Using the Compression Information Schema Tables

	14.12.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Tables
	14.12.2.1 Usage Examples for InnoDB Transaction and Locking Tables
	14.12.2.2 INNODB_LOCKS and INNODB_LOCK_WAITS Data
	14.12.2.3 Data Persistence and Consistency for InnoDB Transaction and Locking Tables
	Potential Inconsistency with PROCESSLIST Data

	14.12.3 InnoDB INFORMATION_SCHEMA System Tables
	14.12.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables
	14.12.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables
	14.12.6 InnoDB INFORMATION_SCHEMA Metrics Table
	14.12.7 InnoDB INFORMATION_SCHEMA Temporary Table Information Table
	14.12.8 Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES

	14.13 InnoDB Integration with MySQL Performance Schema
	14.13.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema
	14.13.2 Monitoring InnoDB Mutex Waits Using Performance Schema

	14.14 InnoDB Monitors
	14.14.1 InnoDB Monitor Types
	14.14.2 Enabling InnoDB Monitors
	14.14.3 InnoDB Standard Monitor and Lock Monitor Output
	14.14.4 InnoDB Tablespace Monitor Output
	14.14.5 InnoDB Table Monitor Output

	14.15 InnoDB Backup and Recovery
	14.15.1 The InnoDB Recovery Process
	14.15.2 Tablespace Discovery During Crash Recovery

	14.16 InnoDB and MySQL Replication
	14.17 InnoDB Integration with memcached
	14.17.1 Benefits of the InnoDB / memcached Combination
	14.17.2 Architecture of InnoDB and memcached Integration
	14.17.3 Getting Started with InnoDB Memcached Plugin
	14.17.3.1 Prerequisites for the InnoDB memcached Plugin
	14.17.3.2 Installing and Configuring the InnoDB memcached Plugin
	14.17.3.3 Verifying the InnoDB and memcached Setup

	14.17.4 Security Considerations for the InnoDB memcached Plugin
	14.17.4.1 Password-Protecting the memcached Interface through SASL

	14.17.5 Writing Applications for the InnoDB memcached Interface
	14.17.5.1 Adapting an Existing MySQL Schema for a memcached Application
	14.17.5.2 Adapting an Existing memcached Application for the Integrated memcached Daemon
	14.17.5.3 Tuning Performance of the InnoDB memcached Plugin
	14.17.5.4 Controlling Transactional Behavior of the InnoDB memcached Plugin
	14.17.5.5 Adapting DML Statements to memcached Operations
	14.17.5.6 Performing DML and DDL Statements on the Underlying InnoDB Table

	14.17.6 Using the InnoDB memcached Plugin with Replication
	14.17.7 Internals of the InnoDB memcached Plugin
	14.17.8 Troubleshooting the InnoDB memcached Plugin

	14.18 InnoDB Troubleshooting
	14.18.1 Troubleshooting InnoDB I/O Problems
	14.18.2 Forcing InnoDB Recovery
	14.18.3 Troubleshooting InnoDB Data Dictionary Operations
	14.18.4 InnoDB Error Handling
	14.18.5 InnoDB Error Codes

	Chapter 15 Alternative Storage Engines
	15.1 Setting the Storage Engine
	15.2 The MyISAM Storage Engine
	15.2.1 MyISAM Startup Options
	15.2.2 Space Needed for Keys
	15.2.3 MyISAM Table Storage Formats
	15.2.3.1 Static (Fixed-Length) Table Characteristics
	15.2.3.2 Dynamic Table Characteristics
	15.2.3.3 Compressed Table Characteristics

	15.2.4 MyISAM Table Problems
	15.2.4.1 Corrupted MyISAM Tables
	15.2.4.2 Problems from Tables Not Being Closed Properly

	15.3 The MEMORY Storage Engine
	15.4 The CSV Storage Engine
	15.4.1 Repairing and Checking CSV Tables
	15.4.2 CSV Limitations

	15.5 The ARCHIVE Storage Engine
	15.6 The BLACKHOLE Storage Engine
	15.7 The MERGE Storage Engine
	15.7.1 MERGE Table Advantages and Disadvantages
	15.7.2 MERGE Table Problems

	15.8 The FEDERATED Storage Engine
	15.8.1 FEDERATED Storage Engine Overview
	15.8.2 How to Create FEDERATED Tables
	15.8.2.1 Creating a FEDERATED Table Using CONNECTION
	15.8.2.2 Creating a FEDERATED Table Using CREATE SERVER

	15.8.3 FEDERATED Storage Engine Notes and Tips
	15.8.4 FEDERATED Storage Engine Resources

	15.9 The EXAMPLE Storage Engine
	15.10 Other Storage Engines
	15.11 Overview of MySQL Storage Engine Architecture
	15.11.1 Pluggable Storage Engine Architecture
	15.11.2 The Common Database Server Layer

	Chapter 16 High Availability and Scalability
	16.1 Using MySQL within an Amazon EC2 Instance
	16.1.1 Setting Up MySQL on an EC2 AMI
	16.1.2 EC2 Instance Limitations
	16.1.3 Deploying a MySQL Database Using EC2

	16.2 Using ZFS Replication
	16.2.1 Using ZFS for File System Replication
	16.2.2 Configuring MySQL for ZFS Replication
	16.2.3 Handling MySQL Recovery with ZFS

	16.3 Using MySQL with memcached
	16.3.1 Installing memcached
	16.3.2 Using memcached
	16.3.2.1 memcached Deployment
	16.3.2.2 Using Namespaces
	16.3.2.3 Data Expiry
	16.3.2.4 memcached Hashing/Distribution Types
	16.3.2.5 Using memcached and DTrace
	16.3.2.6 Memory Allocation within memcached
	16.3.2.7 memcached Thread Support
	16.3.2.8 memcached Logs

	16.3.3 Developing a memcached Application
	16.3.3.1 Basic memcached Operations
	16.3.3.2 Using memcached as a MySQL Caching Layer
	16.3.3.3 Using libmemcached with C and C++
	libmemcached Base Functions
	libmemcached Server Functions
	libmemcached Set Functions
	libmemcached Get Functions
	Controlling libmemcached Behaviors
	libmemcached Command-Line Utilities

	16.3.3.4 Using MySQL and memcached with Perl
	16.3.3.5 Using MySQL and memcached with Python
	16.3.3.6 Using MySQL and memcached with PHP
	16.3.3.7 Using MySQL and memcached with Ruby
	16.3.3.8 Using MySQL and memcached with Java
	16.3.3.9 Using the memcached TCP Text Protocol

	16.3.4 Getting memcached Statistics
	16.3.4.1 memcached General Statistics
	16.3.4.2 memcached Slabs Statistics
	16.3.4.3 memcached Item Statistics
	16.3.4.4 memcached Size Statistics
	16.3.4.5 memcached Detail Statistics
	16.3.4.6 Using memcached-tool

	16.3.5 memcached FAQ

	Chapter 17 Replication
	17.1 Configuring Replication
	17.1.1 Binary Log File Position Based Replication Configuration Overview
	17.1.2 Setting Up Binary Log File Position Based Replication
	17.1.2.1 Setting the Replication Master Configuration
	17.1.2.2 Creating a User for Replication
	17.1.2.3 Obtaining the Replication Master Binary Log Coordinates
	17.1.2.4 Choosing a Method for Data Snapshots
	Creating a Data Snapshot Using mysqldump
	Creating a Data Snapshot Using Raw Data Files

	17.1.2.5 Setting Up Replication Slaves
	Setting the Replication Slave Configuration
	Setting the Master Configuration on the Slave
	Setting Up Replication between a New Master and Slaves
	Setting Up Replication with Existing Data

	17.1.2.6 Adding Slaves to a Replication Environment

	17.1.3 Replication with Global Transaction Identifiers
	17.1.3.1 GTID Concepts
	17.1.3.2 Setting Up Replication Using GTIDs
	17.1.3.3 Using GTIDs for Failover and Scaleout
	17.1.3.4 Restrictions on Replication with GTIDs

	17.1.4 MySQL Multi-Source Replication
	17.1.4.1 MySQL Multi-Source Replication Overview
	17.1.4.2 Multi-Source Replication Tutorials
	Configuring Multi-Source Replication
	Adding a GTID Based Master to a Multi-Source Replication Slave
	Adding a Binary Log Based Master to a Multi-Source Replication Slave
	Starting Multi-Source Replication Slaves
	Stopping Multi-Source Replication Slaves
	Resetting Multi-Source Replication Slaves

	17.1.4.3 Multi-Source Replication Monitoring
	Monitoring Channels Using Performance Schema Tables

	17.1.4.4 Multi-Source Replication Error Messages

	17.1.5 Changing Replication Modes on Online Servers
	17.1.5.1 Replication Mode Concepts
	17.1.5.2 Enabling GTID Transactions Online
	17.1.5.3 Disabling GTID Transactions Online
	17.1.5.4 Verifying Replication of Anonymous Transactions

	17.1.6 Replication and Binary Logging Options and Variables
	17.1.6.1 Replication and Binary Logging Option and Variable Reference
	17.1.6.2 Replication Master Options and Variables
	17.1.6.3 Replication Slave Options and Variables
	17.1.6.4 Binary Logging Options and Variables
	17.1.6.5 Global Transaction ID Options and Variables

	17.1.7 Common Replication Administration Tasks
	17.1.7.1 Checking Replication Status
	17.1.7.2 Pausing Replication on the Slave

	17.2 Replication Implementation
	17.2.1 Replication Formats
	17.2.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
	17.2.1.2 Usage of Row-Based Logging and Replication
	17.2.1.3 Determination of Safe and Unsafe Statements in Binary Logging

	17.2.2 Replication Implementation Details
	17.2.3 Replication Channels
	17.2.3.1 Commands for Operations on a Single Channel
	17.2.3.2 Compatibility with Previous Replication Statements
	17.2.3.3 Startup Options and Replication Channels
	17.2.3.4 Replication Channel Naming Conventions

	17.2.4 Replication Relay and Status Logs
	17.2.4.1 The Slave Relay Log
	17.2.4.2 Slave Status Logs

	17.2.5 How Servers Evaluate Replication Filtering Rules
	17.2.5.1 Evaluation of Database-Level Replication and Binary Logging Options
	17.2.5.2 Evaluation of Table-Level Replication Options
	17.2.5.3 Replication Rule Application

	17.3 Replication Solutions
	17.3.1 Using Replication for Backups
	17.3.1.1 Backing Up a Slave Using mysqldump
	17.3.1.2 Backing Up Raw Data from a Slave
	17.3.1.3 Backing Up a Master or Slave by Making It Read Only

	17.3.2 Using Replication with Different Master and Slave Storage Engines
	17.3.3 Using Replication for Scale-Out
	17.3.4 Replicating Different Databases to Different Slaves
	17.3.5 Improving Replication Performance
	17.3.6 Switching Masters During Failover
	17.3.7 Setting Up Replication Using SSL
	17.3.8 Semisynchronous Replication
	17.3.8.1 Semisynchronous Replication Administrative Interface
	17.3.8.2 Semisynchronous Replication Installation and Configuration
	17.3.8.3 Semisynchronous Replication Monitoring

	17.3.9 Delayed Replication

	17.4 Replication Notes and Tips
	17.4.1 Replication Features and Issues
	17.4.1.1 Replication and AUTO_INCREMENT
	17.4.1.2 Replication and BLACKHOLE Tables
	17.4.1.3 Replication and Character Sets
	17.4.1.4 Replication and CHECKSUM TABLE
	17.4.1.5 Replication of CREATE ... IF NOT EXISTS Statements
	17.4.1.6 Replication of CREATE TABLE ... SELECT Statements
	17.4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
	17.4.1.8 Replication of CURRENT_USER()
	17.4.1.9 Replication of DROP ... IF EXISTS Statements
	17.4.1.10 Replication with Differing Table Definitions on Master and Slave
	Replication with More Columns on Master or Slave
	Replication of Columns Having Different Data Types

	17.4.1.11 Replication and DIRECTORY Table Options
	17.4.1.12 Replication of Invoked Features
	17.4.1.13 Replication and Floating-Point Values
	17.4.1.14 Replication and Fractional Seconds Support
	17.4.1.15 Replication and FLUSH
	17.4.1.16 Replication and System Functions
	17.4.1.17 Replication and LIMIT
	17.4.1.18 Replication and LOAD DATA INFILE
	17.4.1.19 Replication and Partitioning
	17.4.1.20 Replication and REPAIR TABLE
	17.4.1.21 Replication and Master or Slave Shutdowns
	17.4.1.22 Replication and max_allowed_packet
	17.4.1.23 Replication and MEMORY Tables
	17.4.1.24 Replication and Temporary Tables
	17.4.1.25 Replication of the mysql System Database
	17.4.1.26 Replication and the Query Optimizer
	17.4.1.27 Replication and Reserved Words
	17.4.1.28 Slave Errors During Replication
	17.4.1.29 Replication of Server-Side Help Tables
	17.4.1.30 Replication and Server SQL Mode
	17.4.1.31 Replication Retries and Timeouts
	17.4.1.32 Replication and Time Zones
	17.4.1.33 Replication and Transactions
	17.4.1.34 Replication and Transaction Inconsistencies
	17.4.1.35 Replication and Triggers
	17.4.1.36 Replication and TRUNCATE TABLE
	17.4.1.37 Replication and User Name Length
	17.4.1.38 Replication and Variables
	17.4.1.39 Replication and Views

	17.4.2 Replication Compatibility Between MySQL Versions
	17.4.3 Upgrading a Replication Setup
	17.4.4 Troubleshooting Replication
	17.4.5 How to Report Replication Bugs or Problems

	Chapter 18 Partitioning
	18.1 Overview of Partitioning in MySQL
	18.2 Partitioning Types
	18.2.1 RANGE Partitioning
	18.2.2 LIST Partitioning
	18.2.3 COLUMNS Partitioning
	18.2.3.1 RANGE COLUMNS partitioning
	18.2.3.2 LIST COLUMNS partitioning

	18.2.4 HASH Partitioning
	18.2.4.1 LINEAR HASH Partitioning

	18.2.5 KEY Partitioning
	18.2.6 Subpartitioning
	18.2.7 How MySQL Partitioning Handles NULL

	18.3 Partition Management
	18.3.1 Management of RANGE and LIST Partitions
	18.3.2 Management of HASH and KEY Partitions
	18.3.3 Exchanging Partitions and Subpartitions with Tables
	18.3.4 Maintenance of Partitions
	18.3.5 Obtaining Information About Partitions

	18.4 Partition Pruning
	18.5 Partition Selection
	18.6 Restrictions and Limitations on Partitioning
	18.6.1 Partitioning Keys, Primary Keys, and Unique Keys
	18.6.2 Partitioning Limitations Relating to Storage Engines
	18.6.3 Partitioning Limitations Relating to Functions
	18.6.4 Partitioning and Locking

	Chapter 19 Stored Programs and Views
	19.1 Defining Stored Programs
	19.2 Using Stored Routines (Procedures and Functions)
	19.2.1 Stored Routine Syntax
	19.2.2 Stored Routines and MySQL Privileges
	19.2.3 Stored Routine Metadata
	19.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

	19.3 Using Triggers
	19.3.1 Trigger Syntax and Examples
	19.3.2 Trigger Metadata

	19.4 Using the Event Scheduler
	19.4.1 Event Scheduler Overview
	19.4.2 Event Scheduler Configuration
	19.4.3 Event Syntax
	19.4.4 Event Metadata
	19.4.5 Event Scheduler Status
	19.4.6 The Event Scheduler and MySQL Privileges

	19.5 Using Views
	19.5.1 View Syntax
	19.5.2 View Processing Algorithms
	19.5.3 Updatable and Insertable Views
	19.5.4 The View WITH CHECK OPTION Clause
	19.5.5 View Metadata

	19.6 Access Control for Stored Programs and Views
	19.7 Binary Logging of Stored Programs

	Chapter 20 INFORMATION_SCHEMA Tables
	20.1 The INFORMATION_SCHEMA CHARACTER_SETS Table
	20.2 The INFORMATION_SCHEMA COLLATIONS Table
	20.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	20.4 The INFORMATION_SCHEMA COLUMNS Table
	20.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	20.6 The INFORMATION_SCHEMA ENGINES Table
	20.7 The INFORMATION_SCHEMA EVENTS Table
	20.8 The INFORMATION_SCHEMA FILES Table
	20.9 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
	20.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
	20.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	20.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
	20.13 The INFORMATION_SCHEMA PARAMETERS Table
	20.14 The INFORMATION_SCHEMA PARTITIONS Table
	20.15 The INFORMATION_SCHEMA PLUGINS Table
	20.16 The INFORMATION_SCHEMA PROCESSLIST Table
	20.17 The INFORMATION_SCHEMA PROFILING Table
	20.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
	20.19 The INFORMATION_SCHEMA ROUTINES Table
	20.20 The INFORMATION_SCHEMA SCHEMATA Table
	20.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	20.22 The INFORMATION_SCHEMA STATISTICS Table
	20.23 The INFORMATION_SCHEMA TABLES Table
	20.24 The INFORMATION_SCHEMA TABLESPACES Table
	20.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	20.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	20.27 The INFORMATION_SCHEMA TRIGGERS Table
	20.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table
	20.29 The INFORMATION_SCHEMA VIEWS Table
	20.30 INFORMATION_SCHEMA Tables for InnoDB
	20.30.1 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
	20.30.2 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
	20.30.3 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
	20.30.4 The INFORMATION_SCHEMA INNODB_TRX Table
	20.30.5 The INFORMATION_SCHEMA INNODB_LOCKS Table
	20.30.6 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table
	20.30.7 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table
	20.30.8 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table
	20.30.9 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table
	20.30.10 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table
	20.30.11 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table
	20.30.12 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table
	20.30.13 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View
	20.30.14 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table
	20.30.15 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table
	20.30.16 The INFORMATION_SCHEMA INNODB_SYS_VIRTUAL Table
	20.30.17 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
	20.30.18 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
	20.30.19 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
	20.30.20 The INFORMATION_SCHEMA INNODB_METRICS Table
	20.30.21 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
	20.30.22 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
	20.30.23 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
	20.30.24 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
	20.30.25 The INFORMATION_SCHEMA INNODB_FT_DELETED Table
	20.30.26 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
	20.30.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

	20.31 Extensions to SHOW Statements

	Chapter 21 MySQL Performance Schema
	21.1 Performance Schema Quick Start
	21.2 Performance Schema Configuration
	21.2.1 Performance Schema Build Configuration
	21.2.2 Performance Schema Startup Configuration
	21.2.3 Performance Schema Runtime Configuration
	21.2.3.1 Performance Schema Event Timing
	21.2.3.2 Performance Schema Event Filtering
	21.2.3.3 Event Pre-Filtering
	Pre-Filtering by Instrument
	Pre-Filtering by Object
	Pre-Filtering by Thread
	Pre-Filtering by Consumer
	Example Consumer Configurations

	21.2.3.4 Naming Instruments or Consumers for Filtering Operations
	21.2.3.5 Determining What Is Instrumented

	21.3 Performance Schema Queries
	21.4 Performance Schema Instrument Naming Conventions
	21.5 Performance Schema Status Monitoring
	21.6 Performance Schema Atom and Molecule Events
	21.7 Performance Schema Statement Digests
	21.8 Performance Schema General Table Characteristics
	21.9 Performance Schema Table Descriptions
	21.9.1 Performance Schema Table Index
	21.9.2 Performance Schema Setup Tables
	21.9.2.1 The setup_actors Table
	21.9.2.2 The setup_consumers Table
	21.9.2.3 The setup_instruments Table
	21.9.2.4 The setup_objects Table
	21.9.2.5 The setup_timers Table

	21.9.3 Performance Schema Instance Tables
	21.9.3.1 The cond_instances Table
	21.9.3.2 The file_instances Table
	21.9.3.3 The mutex_instances Table
	21.9.3.4 The rwlock_instances Table
	21.9.3.5 The socket_instances Table

	21.9.4 Performance Schema Wait Event Tables
	21.9.4.1 The events_waits_current Table
	21.9.4.2 The events_waits_history Table
	21.9.4.3 The events_waits_history_long Table

	21.9.5 Performance Schema Stage Event Tables
	21.9.5.1 The events_stages_current Table
	21.9.5.2 The events_stages_history Table
	21.9.5.3 The events_stages_history_long Table

	21.9.6 Performance Schema Statement Event Tables
	21.9.6.1 The events_statements_current Table
	21.9.6.2 The events_statements_history Table
	21.9.6.3 The events_statements_history_long Table
	21.9.6.4 The prepared_statements_instances Table

	21.9.7 Performance Schema Transaction Tables
	21.9.7.1 The events_transactions_current Table
	21.9.7.2 The events_transactions_history Table
	21.9.7.3 The events_transactions_history_long Table

	21.9.8 Performance Schema Connection Tables
	21.9.8.1 The accounts Table
	21.9.8.2 The hosts Table
	21.9.8.3 The users Table

	21.9.9 Performance Schema Connection Attribute Tables
	21.9.9.1 The session_account_connect_attrs Table
	21.9.9.2 The session_connect_attrs Table
	21.9.9.3 The user_variables_by_thread Table

	21.9.10 Performance Schema Replication Tables
	21.9.10.1 The replication_connection_configuration Table
	21.9.10.2 The replication_connection_status Table
	21.9.10.3 The replication_applier_configuration Table
	21.9.10.4 The replication_applier_status Table
	21.9.10.5 The replication_applier_status_by_coordinator Table
	21.9.10.6 The replication_applier_status_by_worker Table
	21.9.10.7 The replication_group_members Table
	21.9.10.8 The replication_group_member_stats Table

	21.9.11 Performance Schema Lock Tables
	21.9.11.1 The metadata_locks Table
	21.9.11.2 The table_handles Table

	21.9.12 Performance Schema System Variable Tables
	21.9.13 Performance Schema Status Variable Tables
	21.9.14 Performance Schema Summary Tables
	21.9.14.1 Event Wait Summary Tables
	21.9.14.2 Stage Summary Tables
	21.9.14.3 Statement Summary Tables
	21.9.14.4 Transaction Summary Tables
	21.9.14.5 Object Wait Summary Table
	21.9.14.6 File I/O Summary Tables
	21.9.14.7 Table I/O and Lock Wait Summary Tables
	The table_io_waits_summary_by_table Table
	The table_io_waits_summary_by_index_usage Table
	The table_lock_waits_summary_by_table Table

	21.9.14.8 Connection Summary Tables
	21.9.14.9 Socket Summary Tables
	21.9.14.10 Memory Summary Tables
	21.9.14.11 Performance Schema Status Variable Summary Tables

	21.9.15 Performance Schema Miscellaneous Tables
	21.9.15.1 The host_cache Table
	21.9.15.2 The performance_timers Table
	21.9.15.3 The threads Table

	21.10 Performance Schema Option and Variable Reference
	21.11 Performance Schema Command Options
	21.12 Performance Schema System Variables
	21.13 Performance Schema Status Variables
	21.14 The Performance Schema Memory-Allocation Model
	21.15 Performance Schema and Plugins
	21.16 Using the Performance Schema to Diagnose Problems
	21.16.1 Query Profiling Using Performance Schema

	21.17 Migrating to Performance Schema System and Status Variable Tables

	Chapter 22 MySQL sys Schema
	22.1 Prerequisites for Using the sys Schema
	22.2 Using the sys Schema
	22.3 sys Schema Progress Reporting
	22.4 sys Schema Object Reference
	22.4.1 sys Schema Object Index
	22.4.2 sys Schema Tables and Triggers
	22.4.2.1 The sys_config Table
	22.4.2.2 The sys_config_insert_set_user Trigger
	22.4.2.3 The sys_config_update_set_user Trigger

	22.4.3 sys Schema Views
	22.4.3.1 The host_summary and x$host_summary Views
	22.4.3.2 The host_summary_by_file_io and x$host_summary_by_file_io Views
	22.4.3.3 The host_summary_by_file_io_type and x$host_summary_by_file_io_type Views
	22.4.3.4 The host_summary_by_stages and x$host_summary_by_stages Views
	22.4.3.5 The host_summary_by_statement_latency and x$host_summary_by_statement_latency Views
	22.4.3.6 The host_summary_by_statement_type and x$host_summary_by_statement_type Views
	22.4.3.7 The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema Views
	22.4.3.8 The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table Views
	22.4.3.9 The innodb_lock_waits and x$innodb_lock_waits Views
	22.4.3.10 The io_by_thread_by_latency and x$io_by_thread_by_latency Views
	22.4.3.11 The io_global_by_file_by_bytes and x$io_global_by_file_by_bytes Views
	22.4.3.12 The io_global_by_file_by_latency and x$io_global_by_file_by_latency Views
	22.4.3.13 The io_global_by_wait_by_bytes and x$io_global_by_wait_by_bytes Views
	22.4.3.14 The io_global_by_wait_by_latency and x$io_global_by_wait_by_latency Views
	22.4.3.15 The latest_file_io and x$latest_file_io Views
	22.4.3.16 The memory_by_host_by_current_bytes and x$memory_by_host_by_current_bytes Views
	22.4.3.17 The memory_by_thread_by_current_bytes and x$memory_by_thread_by_current_bytes Views
	22.4.3.18 The memory_by_user_by_current_bytes and x$memory_by_user_by_current_bytes Views
	22.4.3.19 The memory_global_by_current_bytes and x$memory_global_by_current_bytes Views
	22.4.3.20 The memory_global_total and x$memory_global_total Views
	22.4.3.21 The metrics View
	22.4.3.22 The processlist and x$processlist Views
	22.4.3.23 The ps_check_lost_instrumentation View
	22.4.3.24 The schema_auto_increment_columns View
	22.4.3.25 The schema_index_statistics and x$schema_index_statistics Views
	22.4.3.26 The schema_object_overview View
	22.4.3.27 The schema_redundant_indexes and x$schema_flattened_keys Views
	22.4.3.28 The schema_table_lock_waits and x$schema_table_lock_waits Views
	22.4.3.29 The schema_table_statistics and x$schema_table_statistics Views
	22.4.3.30 The schema_table_statistics_with_buffer and x$schema_table_statistics_with_buffer Views
	22.4.3.31 The schema_tables_with_full_table_scans and x$schema_tables_with_full_table_scans Views
	22.4.3.32 The schema_unused_indexes View
	22.4.3.33 The session and x$session Views
	22.4.3.34 The session_ssl_status View
	22.4.3.35 The statement_analysis and x$statement_analysis Views
	22.4.3.36 The statements_with_errors_or_warnings and x$statements_with_errors_or_warnings Views
	22.4.3.37 The statements_with_full_table_scans and x$statements_with_full_table_scans Views
	22.4.3.38 The statements_with_runtimes_in_95th_percentile and x$statements_with_runtimes_in_95th_percentile Views
	22.4.3.39 The statements_with_sorting and x$statements_with_sorting Views
	22.4.3.40 The statements_with_temp_tables and x$statements_with_temp_tables Views
	22.4.3.41 The user_summary and x$user_summary Views
	22.4.3.42 The user_summary_by_file_io and x$user_summary_by_file_io Views
	22.4.3.43 The user_summary_by_file_io_type and x$user_summary_by_file_io_type Views
	22.4.3.44 The user_summary_by_stages and x$user_summary_by_stages Views
	22.4.3.45 The user_summary_by_statement_latency and x$user_summary_by_statement_latency Views
	22.4.3.46 The user_summary_by_statement_type and x$user_summary_by_statement_type Views
	22.4.3.47 The version View
	22.4.3.48 The wait_classes_global_by_avg_latency and x$wait_classes_global_by_avg_latency Views
	22.4.3.49 The wait_classes_global_by_latency and x$wait_classes_global_by_latency Views
	22.4.3.50 The waits_by_host_by_latency and x$waits_by_host_by_latency Views
	22.4.3.51 The waits_by_user_by_latency and x$waits_by_user_by_latency Views
	22.4.3.52 The waits_global_by_latency and x$waits_global_by_latency Views

	22.4.4 sys Schema Stored Procedures
	22.4.4.1 The create_synonym_db() Procedure
	22.4.4.2 The diagnostics() Procedure
	22.4.4.3 The execute_prepared_stmt() Procedure
	22.4.4.4 The ps_setup_disable_background_threads() Procedure
	22.4.4.5 The ps_setup_disable_consumer() Procedure
	22.4.4.6 The ps_setup_disable_instrument() Procedure
	22.4.4.7 The ps_setup_disable_thread() Procedure
	22.4.4.8 The ps_setup_enable_background_threads() Procedure
	22.4.4.9 The ps_setup_enable_consumer() Procedure
	22.4.4.10 The ps_setup_enable_instrument() Procedure
	22.4.4.11 The ps_setup_enable_thread() Procedure
	22.4.4.12 The ps_setup_reload_saved() Procedure
	22.4.4.13 The ps_setup_reset_to_default() Procedure
	22.4.4.14 The ps_setup_save() Procedure
	22.4.4.15 The ps_setup_show_disabled() Procedure
	22.4.4.16 The ps_setup_show_disabled_consumers() Procedure
	22.4.4.17 The ps_setup_show_disabled_instruments() Procedure
	22.4.4.18 The ps_setup_show_enabled() Procedure
	22.4.4.19 The ps_setup_show_enabled_consumers() Procedure
	22.4.4.20 The ps_setup_show_enabled_instruments() Procedure
	22.4.4.21 The ps_statement_avg_latency_histogram() Procedure
	22.4.4.22 The ps_trace_statement_digest() Procedure
	22.4.4.23 The ps_trace_thread() Procedure
	22.4.4.24 The ps_truncate_all_tables() Procedure
	22.4.4.25 The statement_performance_analyzer() Procedure
	22.4.4.26 The table_exists() Procedure

	22.4.5 sys Schema Stored Functions
	22.4.5.1 The extract_schema_from_file_name() Function
	22.4.5.2 The extract_table_from_file_name() Function
	22.4.5.3 The format_bytes() Function
	22.4.5.4 The format_path() Function
	22.4.5.5 The format_statement() Function
	22.4.5.6 The format_time() Function
	22.4.5.7 The list_add() Function
	22.4.5.8 The list_drop() Function
	22.4.5.9 The ps_is_account_enabled() Function
	22.4.5.10 The ps_is_consumer_enabled() Function
	22.4.5.11 The ps_is_instrument_default_enabled() Function
	22.4.5.12 The ps_is_instrument_default_timed() Function
	22.4.5.13 The ps_is_thread_instrumented() Function
	22.4.5.14 The ps_thread_account() Function
	22.4.5.15 The ps_thread_id() Function
	22.4.5.16 The ps_thread_stack() Function
	22.4.5.17 The ps_thread_trx_info() Function
	22.4.5.18 The sys_get_config() Function
	22.4.5.19 The version_major() Function
	22.4.5.20 The version_minor() Function
	22.4.5.21 The version_patch() Function

	Chapter 23 Connectors and APIs
	23.1 MySQL Connector/ODBC
	23.2 MySQL Connector/Net
	23.3 MySQL Connector/J
	23.4 MySQL Connector/C++
	23.5 MySQL Connector/C
	23.6 MySQL Connector/Python
	23.7 libmysqld, the Embedded MySQL Server Library
	23.7.1 Compiling Programs with libmysqld
	23.7.2 Restrictions When Using the Embedded MySQL Server
	23.7.3 Options with the Embedded Server
	23.7.4 Embedded Server Examples

	23.8 MySQL C API
	23.8.1 MySQL C API Implementations
	23.8.2 Simultaneous MySQL Server and Connector/C Installations
	23.8.3 Example C API Client Programs
	23.8.4 Building and Running C API Client Programs
	23.8.4.1 Building C API Client Programs
	23.8.4.2 Building C API Client Programs Using pkg-config
	23.8.4.3 Writing C API Threaded Client Programs
	23.8.4.4 Running C API Client Programs
	23.8.4.5 C API Server and Client Library Versions

	23.8.5 C API Data Structures
	23.8.6 C API Function Overview
	23.8.7 C API Function Descriptions
	23.8.7.1 mysql_affected_rows()
	23.8.7.2 mysql_autocommit()
	23.8.7.3 mysql_change_user()
	23.8.7.4 mysql_character_set_name()
	23.8.7.5 mysql_close()
	23.8.7.6 mysql_commit()
	23.8.7.7 mysql_connect()
	23.8.7.8 mysql_create_db()
	23.8.7.9 mysql_data_seek()
	23.8.7.10 mysql_debug()
	23.8.7.11 mysql_drop_db()
	23.8.7.12 mysql_dump_debug_info()
	23.8.7.13 mysql_eof()
	23.8.7.14 mysql_errno()
	23.8.7.15 mysql_error()
	23.8.7.16 mysql_escape_string()
	23.8.7.17 mysql_fetch_field()
	23.8.7.18 mysql_fetch_field_direct()
	23.8.7.19 mysql_fetch_fields()
	23.8.7.20 mysql_fetch_lengths()
	23.8.7.21 mysql_fetch_row()
	23.8.7.22 mysql_field_count()
	23.8.7.23 mysql_field_seek()
	23.8.7.24 mysql_field_tell()
	23.8.7.25 mysql_free_result()
	23.8.7.26 mysql_get_character_set_info()
	23.8.7.27 mysql_get_client_info()
	23.8.7.28 mysql_get_client_version()
	23.8.7.29 mysql_get_host_info()
	23.8.7.30 mysql_get_option()
	23.8.7.31 mysql_get_proto_info()
	23.8.7.32 mysql_get_server_info()
	23.8.7.33 mysql_get_server_version()
	23.8.7.34 mysql_get_ssl_cipher()
	23.8.7.35 mysql_hex_string()
	23.8.7.36 mysql_info()
	23.8.7.37 mysql_init()
	23.8.7.38 mysql_insert_id()
	23.8.7.39 mysql_kill()
	23.8.7.40 mysql_library_end()
	23.8.7.41 mysql_library_init()
	23.8.7.42 mysql_list_dbs()
	23.8.7.43 mysql_list_fields()
	23.8.7.44 mysql_list_processes()
	23.8.7.45 mysql_list_tables()
	23.8.7.46 mysql_more_results()
	23.8.7.47 mysql_next_result()
	23.8.7.48 mysql_num_fields()
	23.8.7.49 mysql_num_rows()
	23.8.7.50 mysql_options()
	23.8.7.51 mysql_options4()
	23.8.7.52 mysql_ping()
	23.8.7.53 mysql_query()
	23.8.7.54 mysql_real_connect()
	23.8.7.55 mysql_real_escape_string()
	23.8.7.56 mysql_real_escape_string_quote()
	23.8.7.57 mysql_real_query()
	23.8.7.58 mysql_refresh()
	23.8.7.59 mysql_reload()
	23.8.7.60 mysql_reset_connection()
	23.8.7.61 mysql_rollback()
	23.8.7.62 mysql_row_seek()
	23.8.7.63 mysql_row_tell()
	23.8.7.64 mysql_select_db()
	23.8.7.65 mysql_session_track_get_first()
	23.8.7.66 mysql_session_track_get_next()
	23.8.7.67 mysql_set_character_set()
	23.8.7.68 mysql_set_local_infile_default()
	23.8.7.69 mysql_set_local_infile_handler()
	23.8.7.70 mysql_set_server_option()
	23.8.7.71 mysql_shutdown()
	23.8.7.72 mysql_sqlstate()
	23.8.7.73 mysql_ssl_set()
	23.8.7.74 mysql_stat()
	23.8.7.75 mysql_store_result()
	23.8.7.76 mysql_thread_id()
	23.8.7.77 mysql_use_result()
	23.8.7.78 mysql_warning_count()

	23.8.8 C API Prepared Statements
	23.8.9 C API Prepared Statement Data Structures
	23.8.9.1 C API Prepared Statement Type Codes
	23.8.9.2 C API Prepared Statement Type Conversions

	23.8.10 C API Prepared Statement Function Overview
	23.8.11 C API Prepared Statement Function Descriptions
	23.8.11.1 mysql_stmt_affected_rows()
	23.8.11.2 mysql_stmt_attr_get()
	23.8.11.3 mysql_stmt_attr_set()
	23.8.11.4 mysql_stmt_bind_param()
	23.8.11.5 mysql_stmt_bind_result()
	23.8.11.6 mysql_stmt_close()
	23.8.11.7 mysql_stmt_data_seek()
	23.8.11.8 mysql_stmt_errno()
	23.8.11.9 mysql_stmt_error()
	23.8.11.10 mysql_stmt_execute()
	23.8.11.11 mysql_stmt_fetch()
	23.8.11.12 mysql_stmt_fetch_column()
	23.8.11.13 mysql_stmt_field_count()
	23.8.11.14 mysql_stmt_free_result()
	23.8.11.15 mysql_stmt_init()
	23.8.11.16 mysql_stmt_insert_id()
	23.8.11.17 mysql_stmt_next_result()
	23.8.11.18 mysql_stmt_num_rows()
	23.8.11.19 mysql_stmt_param_count()
	23.8.11.20 mysql_stmt_param_metadata()
	23.8.11.21 mysql_stmt_prepare()
	23.8.11.22 mysql_stmt_reset()
	23.8.11.23 mysql_stmt_result_metadata()
	23.8.11.24 mysql_stmt_row_seek()
	23.8.11.25 mysql_stmt_row_tell()
	23.8.11.26 mysql_stmt_send_long_data()
	23.8.11.27 mysql_stmt_sqlstate()
	23.8.11.28 mysql_stmt_store_result()

	23.8.12 C API Threaded Function Descriptions
	23.8.12.1 my_init()
	23.8.12.2 mysql_thread_end()
	23.8.12.3 mysql_thread_init()
	23.8.12.4 mysql_thread_safe()

	23.8.13 C API Embedded Server Function Descriptions
	23.8.13.1 mysql_server_init()
	23.8.13.2 mysql_server_end()

	23.8.14 C API Client Plugin Functions
	23.8.14.1 mysql_client_find_plugin()
	23.8.14.2 mysql_client_register_plugin()
	23.8.14.3 mysql_load_plugin()
	23.8.14.4 mysql_load_plugin_v()
	23.8.14.5 mysql_plugin_options()

	23.8.15 Common Questions and Problems When Using the C API
	23.8.15.1 Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success
	23.8.15.2 What Results You Can Get from a Query
	23.8.15.3 How to Get the Unique ID for the Last Inserted Row

	23.8.16 Controlling Automatic Reconnection Behavior
	23.8.17 C API Support for Multiple Statement Execution
	23.8.18 C API Prepared Statement Problems
	23.8.19 C API Prepared Statement Handling of Date and Time Values
	23.8.20 C API Support for Prepared CALL Statements

	23.9 MySQL PHP API
	23.10 MySQL Perl API
	23.11 MySQL Python API
	23.12 MySQL Ruby APIs
	23.12.1 The MySQL/Ruby API
	23.12.2 The Ruby/MySQL API

	23.13 MySQL Tcl API
	23.14 MySQL Eiffel Wrapper

	Chapter 24 Extending MySQL
	24.1 MySQL Internals
	24.1.1 MySQL Threads
	24.1.2 The MySQL Test Suite

	24.2 The MySQL Plugin API
	24.2.1 Plugin API Characteristics
	24.2.2 Plugin API Components
	24.2.3 Types of Plugins
	24.2.3.1 Storage Engine Plugins
	24.2.3.2 Full-Text Parser Plugins
	24.2.3.3 Daemon Plugins
	24.2.3.4 INFORMATION_SCHEMA Plugins
	24.2.3.5 Semisynchronous Replication Plugins
	24.2.3.6 Audit Plugins
	24.2.3.7 Authentication Plugins
	24.2.3.8 Password-Validation Plugins
	24.2.3.9 Protocol Trace Plugins
	24.2.3.10 Query Rewrite Plugins

	24.2.4 Writing Plugins
	24.2.4.1 Overview of Plugin Writing
	24.2.4.2 Plugin Data Structures
	Server Plugin Library and Plugin Descriptors
	Server Plugin Status and System Variables
	Client Plugin Descriptors

	24.2.4.3 Compiling and Installing Plugin Libraries
	24.2.4.4 Writing Full-Text Parser Plugins
	24.2.4.5 Writing Daemon Plugins
	24.2.4.6 Writing INFORMATION_SCHEMA Plugins
	24.2.4.7 Writing Semisynchronous Replication Plugins
	24.2.4.8 Writing Audit Plugins
	24.2.4.9 Writing Authentication Plugins
	Writing the Server-Side Authentication Plugin
	Writing the Client-Side Authentication Plugin
	Using the Authentication Plugins
	Implementing Proxy User Support in Authentication Plugins

	24.2.4.10 Writing Password-Validation Plugins
	24.2.4.11 Writing Protocol Trace Plugins
	Using the Test Protocol Trace Plugin
	Using Your Own Protocol Trace Plugins

	24.3 MySQL Services for Plugins
	24.3.1 The Locking Service
	24.3.1.1 The Locking Service C Interface
	24.3.1.2 The Locking Service UDF Interface
	Installing or Uninstalling the UDF Locking Interface
	Using the UDF Locking Interface
	Locking Service Monitoring
	Locking Service UDF Interface Reference

	24.4 Adding New Functions to MySQL
	24.4.1 Features of the User-Defined Function Interface
	24.4.2 Adding a New User-Defined Function
	24.4.2.1 UDF Calling Sequences for Simple Functions
	24.4.2.2 UDF Calling Sequences for Aggregate Functions
	24.4.2.3 UDF Argument Processing
	24.4.2.4 UDF Return Values and Error Handling
	24.4.2.5 UDF Compiling and Installing
	24.4.2.6 UDF Security Precautions

	24.4.3 Adding a New Native Function

	24.5 Debugging and Porting MySQL
	24.5.1 Debugging a MySQL Server
	24.5.1.1 Compiling MySQL for Debugging
	24.5.1.2 Creating Trace Files
	24.5.1.3 Using WER with PDB to create a Windows crashdump
	24.5.1.4 Debugging mysqld under gdb
	24.5.1.5 Using a Stack Trace
	24.5.1.6 Using Server Logs to Find Causes of Errors in mysqld
	24.5.1.7 Making a Test Case If You Experience Table Corruption

	24.5.2 Debugging a MySQL Client
	24.5.3 The DBUG Package

	Chapter 25 MySQL Enterprise Edition
	25.1 MySQL Enterprise Monitor Overview
	25.2 MySQL Enterprise Backup Overview
	25.3 MySQL Enterprise Security Overview
	25.4 MySQL Enterprise Encryption Overview
	25.5 MySQL Enterprise Audit Overview
	25.6 MySQL Enterprise Firewall Overview
	25.7 MySQL Enterprise Thread Pool Overview

	Chapter 26 MySQL Workbench
	Appendix A MySQL 5.7 Frequently Asked Questions
	A.1 MySQL 5.7 FAQ: General
	A.2 MySQL 5.7 FAQ: Storage Engines
	A.3 MySQL 5.7 FAQ: Server SQL Mode
	A.4 MySQL 5.7 FAQ: Stored Procedures and Functions
	A.5 MySQL 5.7 FAQ: Triggers
	A.6 MySQL 5.7 FAQ: Views
	A.7 MySQL 5.7 FAQ: INFORMATION_SCHEMA
	A.8 MySQL 5.7 FAQ: Migration
	A.9 MySQL 5.7 FAQ: Security
	A.10 MySQL 5.7 FAQ: MySQL Cluster
	A.11 MySQL 5.7 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
	A.12 MySQL 5.7 FAQ: Connectors & APIs
	A.13 MySQL 5.7 FAQ: Replication
	A.14 MySQL 5.7 FAQ: MySQL Enterprise Thread Pool

	Appendix B Errors, Error Codes, and Common Problems
	B.1 Sources of Error Information
	B.2 Types of Error Values
	B.3 Server Error Codes and Messages
	B.4 Client Error Codes and Messages
	B.5 Problems and Common Errors
	B.5.1 How to Determine What Is Causing a Problem
	B.5.2 Common Errors When Using MySQL Programs
	B.5.2.1 Access denied
	B.5.2.2 Can't connect to [local] MySQL server
	Connection to MySQL Server Failing on Windows

	B.5.2.3 Lost connection to MySQL server
	B.5.2.4 Client does not support authentication protocol
	B.5.2.5 Password Fails When Entered Interactively
	B.5.2.6 Host 'host_name' is blocked
	B.5.2.7 Too many connections
	B.5.2.8 Out of memory
	B.5.2.9 MySQL server has gone away
	B.5.2.10 Packet Too Large
	B.5.2.11 Communication Errors and Aborted Connections
	B.5.2.12 The table is full
	B.5.2.13 Can't create/write to file
	B.5.2.14 Commands out of sync
	B.5.2.15 Ignoring user
	B.5.2.16 Table 'tbl_name' doesn't exist
	B.5.2.17 Can't initialize character set
	B.5.2.18 'File' Not Found and Similar Errors
	B.5.2.19 Table-Corruption Issues

	B.5.3 Administration-Related Issues
	B.5.3.1 Problems with File Permissions
	B.5.3.2 How to Reset the Root Password
	Resetting the Root Password: Windows Systems
	Resetting the Root Password: Unix and Unix-Like Systems
	Resetting the Root Password: Generic Instructions

	B.5.3.3 What to Do If MySQL Keeps Crashing
	B.5.3.4 How MySQL Handles a Full Disk
	B.5.3.5 Where MySQL Stores Temporary Files
	B.5.3.6 How to Protect or Change the MySQL Unix Socket File
	B.5.3.7 Time Zone Problems

	B.5.4 Query-Related Issues
	B.5.4.1 Case Sensitivity in String Searches
	B.5.4.2 Problems Using DATE Columns
	B.5.4.3 Problems with NULL Values
	B.5.4.4 Problems with Column Aliases
	B.5.4.5 Rollback Failure for Nontransactional Tables
	B.5.4.6 Deleting Rows from Related Tables
	B.5.4.7 Solving Problems with No Matching Rows
	B.5.4.8 Problems with Floating-Point Values

	B.5.5 Optimizer-Related Issues
	B.5.6 Table Definition-Related Issues
	B.5.6.1 Problems with ALTER TABLE
	B.5.6.2 TEMPORARY Table Problems

	B.5.7 Known Issues in MySQL

	Appendix C Restrictions and Limits
	C.1 Restrictions on Stored Programs
	C.2 Restrictions on Condition Handling
	C.3 Restrictions on Server-Side Cursors
	C.4 Restrictions on Subqueries
	C.5 Restrictions on Views
	C.6 Restrictions on XA Transactions
	C.7 Restrictions on Character Sets
	C.8 Restrictions on Performance Schema
	C.9 Restrictions on Pluggable Authentication
	C.10 Limits in MySQL
	C.10.1 Limits on Joins
	C.10.2 Limits on Number of Databases and Tables
	C.10.3 Limits on Table Size
	C.10.4 Limits on Table Column Count and Row Size
	C.10.5 Limits Imposed by .frm File Structure
	C.10.6 Windows Platform Limitations

	MySQL Glossary
	Appendix D Licenses for Third-Party Components
	D.1 Artistic License (Perl) 1.0
	D.2 Boost Library License
	D.3 Corosync License
	D.4 dtoa.c License
	D.5 Editline Library (libedit) License
	D.6 Expect.pm License
	D.7 Facebook Fast Checksum Patch License
	D.8 Facebook Patches License
	D.9 FindGTest.cmake License
	D.10 Fred Fish's Dbug Library License
	D.11 getarg License
	D.12 GNU General Public License Version 2.0, June 1991
	D.13 GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library Exception Version 3.1, 31 March 2009
	D.14 GNU Lesser General Public License Version 2.1, February 1999
	D.15 GNU Readline License
	D.16 GNU Standard C++ Library (libstdc++) License
	D.17 Google C++ Mocking Framework (Google Mock) License
	D.18 Google Controlling Master Thread I/O Rate Patch License
	D.19 Google Perftools (TCMalloc utility) License
	D.20 Google Protocol Buffers License
	D.21 Google SMP Patch License
	D.22 ICU4C Unicode Libraries License
	D.23 Janson License
	D.24 lib_sql.cc License
	D.25 Libaio License
	D.26 libevent License
	D.27 Linux-PAM License
	D.28 LZ4 License
	D.29 md5 (Message-Digest Algorithm 5) License
	D.30 MeCab Dictionary License
	D.31 MeCab License
	D.32 memcached License
	D.33 Memcached.pm License
	D.34 mkpasswd.pl License
	D.35 nt_servc (Windows NT Service class library) License
	D.36 OpenPAM License
	D.37 OpenSSL v1.0 License
	D.38 Percona Multiple I/O Threads Patch License
	D.39 Pion License
	D.40 RapidJSON v0.1
	D.41 Red HAT RPM Spec File License
	D.42 RegEX-Spencer Library License
	D.43 Richard A. O'Keefe String Library License
	D.44 sajson License
	D.45 SHA-1 in C License
	D.46 Unicode Data Files
	D.47 zlib License

	General Index
	C Function Index
	Command Index
	Function Index
	INFORMATION_SCHEMA Index
	Join Types Index
	Operator Index
	Option Index
	Privileges Index
	SQL Modes Index
	Statement/Syntax Index
	Status Variable Index
	System Variable Index
	Transaction Isolation Level Index

